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                                                              ABSTRACT 

 

 

 

 

Autism spectrum disorders (ASD) are neurodevelopmental disorders that are 

currently diagnosed on the basis of abnormal stereotyped behaviour as well as 

observable deficits in communication and social functioning.  Although a variety of 

candidate genes have been attributed to the disorder, no single gene is applicable to 

more than 1–2% of the general ASD population.  Despite extensive efforts, definitive 

genes that contribute to autism susceptibility have yet to be identified.  The major 

problems in dealing with the gene expression dataset of autism include the presence of 

limited number of samples and large noises due to errors of experimental 

measurements and natural variation.  In this study, a systematic combination of three 

important filters, namely t-test (TT), Wilcoxon Rank Sum (WRS) and Feature 

Correlation (COR) are applied along with efficient wrapper algorithm based on 

geometric binary particle swarm optimization-support vector machine (GBPSO-

SVM), aiming at selecting and classifying the most attributed genes of autism.  A new 

approach based on the criterion of median ratio, mean ratio and variance deviations is 

also applied to reduce the initial dataset prior to its involvement.  Results showed that 

the most discriminative genes that were identified in the first and last selection steps 

concluded the presence of a repetitive gene (CAPS2), which was assigned as the most 

ASD risk gene.  The fused result of genes subset that were selected by the GBPSO-

SVM algorithm increased the classification accuracy to about 92.10%, which is higher 

than those reported in literature for the same autism dataset.  Noticeably, the 

application of ensemble using random forest (RF) showed better performance 

compared to that of previous studies. However, the ensemble approach based on the 

employment of SVM as an integrator of the fused genes from the output branches of 

GBPSO-SVM outperformed the RF integrator.  The overall improvement was ascribed 

to the selection strategies that were taken to reduce the dataset and the utilization of 

efficient wrapper based GBPSO-SVM algorithm. 
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                                                           ABSTRAK 

 
 
 
 

Gangguan spektrum autisme (ASD) adalah gangguan perkembangan neuro 

yang kini didiagnos berdasarkan tingkah laku stereotaip yang tidak normal serta dilihat 

sebagai kelemahan dalam aspek komunikasi dan fungsi sosial. Walaupun telah banyak 

kajian terhadap pelbagai gen calon telah dikaitkan dengan kelemahan ini, tiada gen 

tunggal yang boleh digunakan mewakili lebih dari 1-2% populasi ASD. Walaupun 

banyak usaha telah dilaksanakn, gen definitif yang menyumbang kepada 

kecenderungan autisme belum dikenalpasti. Permasalahan utama dalam menangani 

dataset ekspresi gen autisme termasuklah kehadiran jumlah sampel yang terhad dan 

noisy data akibat ralat dalam pengukuran dan variasi semulajadi. Dalam kajian ini, 

satu gabungan sistematik tiga saringan penting iaitu t-test (TT), Wilcoxon Rank Sum 

(WRS) dan Ciri Korelasi (COR) digunakan bersama dengan algoritma pembalut 

efisien yang berdasarkan mesin vektor sokongan dan dioptimum dengan zarah binari 

geometrik (GBPSO-SVM), bertujuan untuk memilih dan mengklasifikasikan gen 

autisme yang paling signifikan. Pendekatan baru berdasarkan kriteria nisbah median, 

nisbah min dan penyimpangan varians juga digunakan untuk mengecilkan amaun 

dataset. Keputusan menunjukkan bahawa gen paling diskriminatif yang dikenalpasti 

dalam langkah pemilihan pertama dan terakhir mendapati kehadiran gen berulang 

(CAPS2), iaitu sebagai gen ASD paling risiko. Hasil gabungan daripada subset gen 

yang dipilih oleh algoritma GBPSO-SVM didapati telah meningkatkan ketepatan 

klasifikasi ke sekitar 92.10%, iaitu lebih tinggi daripada yang dilaporkan dalam kajian 

literatur terdahulu untuk dataset autisme yang sama. Kenyataannya, penerapan metod 

himpunan menggunakan algoritma Random Forest (RF) menunjukkan prestasi yang 

lebih baik berbanding dengan kajian terdahulu. Walau bagaimanapun, prestasi metod 

himpunan menggunakan SVM sebagai penyepadu gen yang bersatu daripada 

cawangan pengeluaran GBPSO-SVM mengatasi penyepadu RF. Secara 

keseluruhannya, penambahbaikan telah berjaya dilaksana sebagai strategi baru dalam 

pemilihan untuk mengurangkan dataset dan penggunaan algoritma GBPSO-SVM 

berdasarkan pembalut yang efisien. 
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CHAPTER 1 

 

 

 

 

1                                         INTRODUCTION 

 

 

 

 

1.1       Background   

 
 

Autism is a neuro-developmental disorder which is defined by a weakened 

social interaction, impaired verbal and non-verbal communications as well as 

repetitive actions among the autistic persons.  It is also recognized as autistic spectrum 

disorder (ASD) or pervasive developmental disorder (PDD) (Muhle et al., 2004).  This 

disorder is appeared in more than 1% of the population, whereas  males are four times 

more vulnerable to the disorder compared to females (De Rubeis and Buxbaum, 2015).  

It has been reported that the prevalence rate of autism has dramatically risen in the last 

decade from the year of 2000 to 2012, as shown in Figure 1.1.  Generally, the 

symptoms of autism disorder will be apparently seen in early age of childhood, 

especially before age three, at which the diagnosing purpose can be initiated. A wide 

range of phenotypes and intellectual disability (of about 35%) is persistent with the 

autistic people, while their language delay is counted to be 50% and epilepsy is from 

5–15% (Geschwind and State, 2015).   

 

 

Consequently, ASD causes lifelong disabilities on the individuals who are 

suffering from and inserts significant burdens on their families, schools, and society 

(Wazana et al., 2007).  It is however believed that environmental factors and 

heritability contribute to autism, researchers anticipating that genetic factors are 

playing a major role in the occurrence of the disorder (Thurm and Swedo, 2012).  

Nevertheless, it was suspecting that the environmental factors, such as vaccine 

hypothesis, can be another cause of autism, but this was not truly approved and hence 

http://topics.sciencedirect.com/topics/page/Phenotype
http://topics.sciencedirect.com/topics/page/Intellectual_disability
http://topics.sciencedirect.com/topics/page/Epilepsy
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the author of that study has taken away his license of physician (Alarcón et al., 2008). 

Supporting to the genetic causes, recent studies showed the presence of a high 

similarity in the genetics of autistic among the genetic features of autistic twin (Taniai 

et al., 2008). Interestingly, it was observed that the genetic similarity is high among 

identical twins who are from the same developmental environment and same parental 

chromosomes. 

 
 

 

Figure 1.1: Autism prevalence during 2000 to 2012 (MOISSE, 2016). 

 

 

The genomics science is the field of studying genes and their functions.  

Genomics provide a great  approach to perform interesting researches on autism as it 

facilitates investigation on the global changes of gene expression (Gregg et al., 2008).  

Each gene is analogous to a chapter of an instruction book, revealing the theory behind 

creating a specific family of molecules.  As such, the genes that are known as protein-

coding  identifies how to establish large molecules that are made from amino-acid 

chains (proteins) while that the non-coding genes define the way of creating small 

molecules that are made from ribonucleic acid (RNA) chains (Leung et al., 2016).  

Therefore, investigation on the expression level of genes for both healthy and non-

healthy samples helps in recognizing the altered gene expression of particular genes.  

In these contexts, biologists require to identify the most relevant genes that can be 

utilized as biomarkers for tracing a known disease. 
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Consequently, the attributed genes enable us to understand the formation 

mechanism of the disease as well as predicting the serious danger of such disease.  Up 

until now, there is a lack of treatment for the major symptoms of ASD and even no 

accurate biomarkers have been identified to diagnose this disorder (Yoo, 2015).  This 

is basically due to the fact that the etiology of autism is not clearly known yet.  

Nevertheless, the possibility of heritability causes is expected to be about 70% to 

90%, yet the changeable phenotype and complex architecture of genetic has become a 

bottleneck in front of  identifying the susceptible genes of autism (Alarcón et al., 

2008).  It has been claimed that the aggregative actions of multiple genes are 

responsible to produce autism disorder, which in turn gives more complexity to the 

disorder in terms of genomic investigations  (Purcell et al., 2001).  The pioneer work 

of Gregg et al. (2008), which was made upon using genomic profiling of whole blood 

has shown differences between gene expression among the autistic and healthy 

children. Besides, they observed variations in gene expression between the subtypes 

of autism such as autism with regression and without regression at the early onset 

stage.  Because of these variations, the identification of most related genes to autism 

disorder has become a common problem.  This is not a challenging task for biologists 

only, but for computer scientists as well, especially when building a generalized model 

for autistic genes is targeted. 

 

 

Moreover, it is quite reasonable to use gene expression data to relate the 

phenotypes of disease and its attributed biomarkers (de Menezes et al., 2004; Leung 

and Cavalieri, 2003).  Interestingly, computer models can be effectively applied to 

recognize autism through using the microarray data of gene expression (Hu and Lai, 

2013; Stahl et al., 2012).  Microarray is a tool used to estimate whether mutation in 

genes has occurred for a particular individual.  The information is recorded in a 

microarray chip, which consists of a small glass plate enclosed in plastic.  Fabrication 

of microarrays by some companies is almost similar in methodology to those of the 

production of computer microchips.  The surface of each chip comprises thousands of 

short, synthetic and single-stranded DNA sequences (Govindarajan et al., 2012). 

These are added together to the investigated normal gene and to its variants (mutations) 

which have been observed in the human population.  The techniques of machine 
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learning and datamining  are considered as an effective tool in the application of 

genomic medicine that depend on computational problems and datasets in order to 

predict phenotypes (Leung et al., 2016).  These techniques are dealing with the 

development and employment of statistical methods as well as machine learning 

algorithms which are capable to be improved with experience.  Machine learning is  

mostly important to interpret large datasets of genomic, it can also be successfully 

utilized to annotate a wide diversity of elements in genomic sequence (Libbrecht and 

Noble, 2015).  

 

 

Studies in cancer informatics has shown great contribution of datamining and 

machine learning in finding the related genes (Chandra Sekhara Rao Annavarapu and 

Banka, 2016; Guyon et al., 2002; Rejani and Selvi, 2009) since abnormalities in genes 

is led to alteration in the gene expression values of those genes.  These studies have 

generically found the very specific genes related with each type of cancer and based 

on this, various models have been proposed in the literature to predict the risk of having 

cancer (Alba et al., 2007; Tran et al., 2014).  However, autism gene expression data is 

having some specific characteristics, which make the feature selection, model creation 

and prediction more challenging than cancer gene expression analysis.  As mentioned 

earlier, the contribution of many genes and environmental factors in the appearance of 

this spectrum disorder has made the gene expression profile of autistic people to be 

characterized by high variance in many genes rather than a group of genes.  However, 

these variances could not be seen equally in different types and different groups of 

autisms.  They may appear in one gene for an individual, while they may appear in 

many genes for another one (Yoo, 2015). 

 

 

It is worth to mention that studies about autism gene expression are few, most 

of the studies have been done in behaviour detection and autism neurology (Beacher 

et al., 2012; Crippa et al., 2015; Elsabbagh et al., 2009).  Due to the importance of 

finding those genes related to autism (Muhle et al., 2004; Taniai et al., 2008; Yoo, 

2015) computer models can take part in this finding.  This can be achieved by building 

some models consisting of statistic and machine learning algorithms aiming at 

handling the high variance and dealing with many altered genes.  Figure 1.2 shows the 
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representation of existed relation between autism and gene alteration, which may 

include, deletion, duplication and inversion. 

 

 

 

Figure 1.2: Deletion (a), duplication (b) and inversion (c) are all chromosome 

abnormalities that have been implicated in autism (Beaudet, 2007). 

 

 

 

 

1.2       Challenges in Autism Microarray Data Analysis 

 
 

            The data of autism gene expression encounters the problem of limited number 

of observations (samples) compared to the high number of features (genes).  For 

instance, the dataset which is used in the current study contains very high features of 

more than 54,600 genes, whereas the number of observations are limited to only 146 

samples. This in turn results in a high imbalance between the number of genes and 

observations (patients).  Dealing with such data needs more attention and it requires a 

sophisticated model, such that it can handle such high number of features or genes. 

 

 

          Another existed challenge is due to the lack of enough data to be used in studies 

on autism disorder.  There are few datasets related to ASD which are available through 

the well-known NCBI repositories (database, 2011), while each of them represents 

different data for a specific type of autism, and some of them represent different 
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component of genes such as RNA-seq and protein structure (Crippa et al., 2015; 

Nishimura et al., 2007; Release, 2016).  Moreover, biologically, the group of autism 

disorder presents different gene alterations in both number and in type (Lenroot and 

Yeung, 2013).   

 

 

Therefore, it would be difficult to get the exact biomarker genes that are 

responsible for the disorder unless very careful investigations are made or there should 

be more datasets to be available for that purpose.  As autism is recognized by a broad 

spectrum of disorder (Thurm and Swedo, 2012) its biology is different enough from 

those of the cancer and other diseases.  Having various causes to produce the disorder 

and many different genes to contribute requires serious efforts to be made in order to 

find those genes which are related to a specific type of autism.  This could be mainly 

due to the lack of previous works on analysing a specific type of autism and the 

nonexistence of datasets for similar group of people having the same phenotypes.  As 

explained previously, due to the wide range of gene contribution to autism, their gene 

expression values in the current datasets have the problem of high variance among so 

many genes which can be found clearly in autism group.   

 
 

For example, in the dataset of autism downloaded from NCBI database 

(database, 2011), the variance of gene expression values of different individuals 

changing from 0.099 to 24.19 ×106 with the mean of 2.38 ×104, median of 38.84 and 

13,245 genes of the expression variance higher than 1000.  Nevertheless, a portion of 

variance can also be seen in control (normal) group, but this kind of variance is related 

to the noise, which may be resulted from having more than one batch or the devices 

which are used to generate gene expression.  Therefore, giving extra efforts to build a 

computerized model that can identify the biomarker genes for autism spectrum 

disorder and classify autistic from non-autistic samples are of primary request in this 

study.  This will be done via applying some steps of statistical operations and three 

filters in parallel, followed by a wrapper feature selection then combining the results 

of feature selection branches to one ensemble form. 
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1.3       Problem Statement  

 

 

The main problem in gene expression analysis is the difficulty of selection and 

identification of most relevant/biomarker genes to autism.  This is due to the presence 

of limited number of observations in comparison to the very large number of genes, 

which is known as high dimensionality, requiring sophisticated methods to handle it. 

 
 
Moreover, the datasets which are generated by microarray technology have 

large number of gene expression values, leading to the complexity in terms of 

datamining and machine learning analysis.  Furthermore, they contain noise, which is 

defined as “the error in the variance of a measured variable”, resulting from errors in 

measurements or natural variation (Han et al., 2011; Hira and Gillies, 2015).  

Determination of the real expression values from the noise is one of the main problems 

in gene expression analysis.  

 

 

Furthermore, the gene expression levels in autism disorder are highly noisy and 

several sequences of these genes show a large variance.  In autism, the extra variance 

may be linked with alteration in many genes.  Consequently, it is not an easy task to 

find the attributed genes straightforward unless careful analysis and investigation are 

made upon the microarray dataset through the application of various criteria and 

algorithms during the pre-selection, selection and classification of the expressed genes.      

 

 

Hence, this thesis is expected to answer the following questions:  

 

 

(i) How to reduce the high dimensionality of gene expression dataset by 

removing the most similar genes and pre-selection? 

(ii)  How to effectively find the most important genes despite the presence of 

high variance and noise in the dataset? 

(iii) How can a model be generated based on the selected genes to make 

prediction on the autism dataset? 

(iv) Does an ensemble of some input methods can make the performance of 

the model more accurate?             
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1.4       Objective of the Study 

 
 

The objective of the current research work can be summarized as follows: 

 

 

(i) To propose statistical based pre-selection and three filter methods in 

dealing with high variance and redundancy in autism gene expression 

dataset and for gene selection accordingly. 

 

 

(ii) To apply a hybrid form of machine learning algorithm, known as 

geometric binary particle swarm optimization-support vector machine 

(GBPSO-SVM) in the second phase of selection process aiming at 

effective achievement of accurate features representing discriminant 

genes for the autism disorder. 

 

 

(iii) To address the accuracy of the utilized models in each step and using 

ensemble classification (Random Forest (RF) and/or SVM) by 

combining the results of different outputs from final selection steps, 

thereby producing a fruitful result. 

 

 

 

 

1.5       Scopes and Limitations 

 
 

The contribution of the current work is specifically limited to the field of gene 

expression analysis of Autism Spectrum Disorder (ASD).  This is aiming at identifying 

the most relevant genes to autism such that they can be used as biomarkers for the 

diagnosis of the disorder.  Besides, the built model could be used to predict and 

recognize the risk of existing autism or not. Hence, the scopes of this research are 

illustrated as follows: 

 

 

(i) The experimental procedures and analysis are performed on Windows 64-

bit Operating system, Corei5, 2.7 GHz processor speed and 8 GB RAM. 
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(ii) MATLAB programming (R2016a) and Weka programming (version 3.8) 

are used.  

 

 

(iii) The database benchmark in this work is related to autism disorder. 

 

 

(iv) The dataset is consisting of 54613 features/genes and 146 

observations/samples. 

 

 

(v) The dataset format is in (. soft) tab delimited text file, which is a special 

text format used by NCBI-GEO database repository (database, 2011). 

 

 

(vi) Multiple criteria based on a combination of mean, median and variance 

are used followed by the utilization of three filter methods, namely two 

sample t-test (T-test), Wilcoxon rank sum (WRS), and feature correlation 

with class (COR) test, in the process of gene selection. 

 

 

(vii) The applied wrapper form of machine learning method is in the form of 

hybrid (GBPSO-SVM), which is used as the second phase of feature 

selection.  RF algorithm is also employed in parallel with SVM at the final 

step of the classifications to represent the ensemble of the fused results. 

 

 

 

 

1.6       Significance of the Research 

 

 

The significance of this study is two-fold, which can be categorized into 

computational and biological aspects. From the computational approach, the proposed 

method is aimed at finding the most related genes to autism then making classification 

upon them.  Moreover, increasing the efficiency of the model by proposing new 

statistical and machine learning criteria of gene selection.  What is related to the 

biological approach is that the results of this study could help the medical and 
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biological sectors to further investigate those genes which have been identified during 

this research. 

 

 

 

 

1.7       Thesis Outline 

 
 

In Chapter one, an introduction and statement of the thesis is given which 

includes a general background on the topic and problem statement followed by 

challenges in the data analysis of autism gene expression, and objective of the thesis.  

As well as, the scope and significance of the study are presented therein along with the 

thesis outline as its last section.  Chapter two reports a literature review on the methods 

and techniques used for the reduction of dataset, gene feature selection and 

classification processes, while Chapter three illustrates the proposed methodology of 

the research work in detail.  In Chapter four, the obtained results are analysed and 

discussed. Finally, Chapter five is devoted to draw the conclusions and future 

suggested works.  
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