
ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA
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1 Introduction

Operations Research (OR) is a discipline that has its origins in the Second World

War, when it was used as a support for decision-making in the military field. The

Association of European Operational Research Societies (EURO) describes OR as:

“a scientific approach to the solution of problems in the management of complex

systems. In a rapidly changing environment, an understanding is sought which will

facilitate the choice and the implementation of more effective solutions which, typi-

cally, may involve complex interactions among people, materials, and money” [2].

Nowadays, it is widely used in different types of industries, from finance to retail,

from telecommunications to medical services, from oil and gas to industrial produc-

tion. Regardless of the specific industrial application, Operations Research tools can

support managers to make quantitative, better and more informed decisions. This

is achieved through the implementation of mathematical models that represent the

reality in which we operate and for which we look for a solution, possibly optimal.

Model design and model resolution are two opposite activities, in the sense that, if

on the one hand, the aim is to increase the accuracy in the representation of reality,

on the other hand, it is necessary to consider the model complexity in terms of fea-

sibility and time consumption. Models that poorly approximate the reality result in

useless solution, too complex models make usually not possible to find an algorithm

that runs in polynomial time in the size of the inputs and finds a global optimum.

Generally speaking, a good model finds the right balance between model accuracy

and model complexity.

In recent years, some research on the improvement of OR models, both in accuracy

and complexity, has seen new forms of ”collaboration” with algorithms belonging

to the field of Machine learning (ML). The term Machine Learning was coined by

Arthur Samuel [37], an American IBMer and pioneer in the field of computer gaming
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and Artificial Intelligence. Ron Kohavi refers to ML, saying that it is the application

of induction algorithms as one step in the process of knowledge discovery[26]. These

algorithms are used to build data-based mathematical models in order to make pre-

dictions or decisions without explicit programming [27]. Like Operations Research,

Machine Learning is widely used in various types of applications in any industry

due to its unique flexibility.

The focus of this thesis is on the combination of Operations Research and Ma-

chine Learning. The goal is to build a data-driven, rather than problem-driven,

mathematical model through the integration of these two disciplines. Specifically,

we will use an ML model to shape a constraint of an optimization model. This par-

ticular type of integration is useful whenever we have to model one or more relations

between the decisions and their impact on the system. These kinds of relations can

be difficult to model manually, and so ML models are used to learn it through the

use of data. This methods is very generic and can be applied whenever information

can be inferred from data.

An example in which a data-driven approach has shown good results is presented in

[29]. The authors work on two dispatching problems that consist of mapping a set of

heterogeneous jobs on the platform cores so as to maximize an objective related to

the core efficiencies. In this case, the Machine Learning model is used to predict the

efficiency of each core according to various factors including temperature, workload,

core position, and so forth.

Another example can be the use of Machine Learning models to predict the main-

tenance of an industrial machine whose work schedule is defined by an optimization

model. Knowing, dynamically, the probability of failure of a machine (or one of its

components) it is possible to make more accurate scheduling that may involve more

machines.

Our case study concerns the important issue of humanitarian food aid. We start

illustrating an existing model that optimizes the flow of food throughout the hu-

manitarian supply chain, minimizing the total costs in order to feed more people in

4



need. Then, we focus on the diet sub-problem implementing an ML-based model

that takes into account the ration palatability. Since the palatability constraint (es-

pecially when we have to consider people’s opinions rather than just general rules) is

difficult to express in a mathematical way, we use Machine Learning to learn it au-

tomatically. The process to derive an optimization model which includes a Machine

Learning-based component is divided into four steps:

• Data collection. Data collection is necessary to get an idea of the opti-

mization model structure and to train the ML models that will be used as a

constraint. The data collection process may involve the external environment,

or, like in our case study, can be the result of an artificial data generator.

• Data processing. Data processing involves a series of tasks to improve the

quality of the dataset and make it suitable for model training. This phase

includes data cleaning and data transformation activities.

• Building and training of the ML model. Once the dataset is structured

and the data is pre-processed, the ML model has to be designed and trained

taking into account the trade-off between model complexity and accuracy.

• Embedding the ML model into the optimization model. Once the ML

model has been trained, it can be embedded into the optimization model to

build a data-driven constraint or (part of the) objective function.

The remainder of the research is structured as follows. In Section 2.1, the relevant

literature regarding the integration of Machine Learning and Operations Research is

reviewed. The literature review on humanitarian supply chain management, which

is the baseline scenario in the case study, follows in Section 2.2. In Section 3, the

importance of the optimal diet and its palatability are discussed. In Section 4, the

new data-driven approach is explained in detail. A real application of this approach

is described in Section 5 with a case study that includes all the steps mentioned

in the previous section. In Section 5, are also discussed the results obtained from

the case study. Then, in Section 6, the data-driven approach is analyzed with the
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pros and cons that emerged during the case study. Lastly, conclusions and possible

subjects of further research are outlined in the final Section 7.
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2 Literature review

2.1 Operations Research-Machine Learning

In this research, we focus on a particular approach where ML is used to improve an

OR model, however, it should be noted that the OR-ML combination is not one-way.

Well-known and extensively studied OR algorithms can improve or even replace ML

models in some cases. A perfect example comes from the field of Explainable Arti-

ficial Intelligence XAI, where exact approaches such as Optimal Classification Tree

[6] or Boolean Decision Rules via Column Generation [12] report results compa-

rable to state-of-the-art ML models in terms of accuracy, but with a much higher

degree of explainability. Another example is presented by Fischetti and Jo where a

Mixed-integer Linear Programming (MILP) model is used for feature visualization

and the construction of adversarial examples for Deep Neural Networks (DNNs) [16].

Focusing on how Machine Learning can support Operations Research, the survey

titled ”Machine Learning for combinatorial optimization: a methodological tour

d’horizon” [5] reports various situations in which ML models can improve the reso-

lution of OR problems. The authors point out that from an optimization perspective,

Machine Learning can help improve optimization algorithms in two ways:

• Replace some heavy calculations with fast approximations. In this case, learn-

ing can be used to construct these approximations in a general way without

the need to derive new explicit algorithms.

• Expert knowledge is not complete, and some algorithm decisions can be del-

egated to the learning machine to explore the decision space and hopefully

implement good decisions.

For example, some research has been conducted on new approaches for branch and

bound (B&B) algorithms. One of these approaches considers a special type of deci-
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sion tree that approximates strong branching decisions and decides on what variable

to branch next [30]. For a complete survey on this type of B&B algorithms we refer

to [28].

Another way to combine ML and OR is to use the first one to build (part of)

the optimization model replacing, or supporting, the (traditional) manual model

building. According to [29], this approach is able to (i) use data in order to learn

relations between decision variables (decidables), and their impacts (observables),

and (ii) encapsulate these relations into components of an optimization model, i.e.,

objective function or constraints.

The idea of using ML to learn and define parts of the optimization model that

are difficult to derive manually is the central theme of this thesis. According to [13],

this approach allows for using data to define specific models for specific problems,

does not require domain experts to the same extent as traditional modeling, can be

less expensive in terms of money and time, and is easily adjustable to changes in

the scenario.

It paves the way for a powerful type of optimization model building but brings with

it a series of new tasks to perform and some drawbacks to consider. Therefore, it

is essential to have a clear idea of the scenario in order to evaluate the need for

transparency, the accessibility of data, and the trade-off between complexity and

accuracy.

2.2 The humanitarian food aid

The case study of this research focuses on one of the key points in the humanitarian

aids research area: the distribution of food in geographical areas that have been/are

subject to natural (e.g. hurricanes, earthquakes, floods) or human-made (e.g. wars,

oil spills) disasters. According to the Food and Agriculture Organization (FAO)

report (2020) [15], in today’s world, there are more than 689 million undernourished

people in the world, accounting for 8.9 percent of the global population. It is esti-

mated that by 2030 (the year the United Nations has set the goal of achieving the
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zero hunger challenge of sustainable development [43]), this number will increase

to more than 840 million. According to the new studies conducted by the World

Food Programme (WFP) [45], due to the COVID-19, the number of people facing

starvation is expected to skyrocket if no new plans are implemented. The WFP

is the world’s largest humanitarian organization addressing hunger and promoting

food security. It provides food assistance to an average of 91.4 million people in 83

countries each year, with more than 16,000 employees across the globe [44].

In a more general setting, providing aid to vulnerable people is the core purpose

of the humanitarian supply chain management (HSCM) [41]. HSCM aims to ensure

the prioritization of needs, and hence to respond to affected people by using given re-

sources efficiently during and after a disaster [46]. Within HSCM, Altay and Green

split the disaster management into 4 stages: mitigation, preparedness, response,

and recovery [1]. The first two stages occur before the disaster (pre-disaster) and

involve all necessary preventive measures to avoid/minimize the negative impacts.

The third and fourth stages involve short-term response after the disaster (post-

disaster) and long-term reconstruction to restore the affected communities to their

pre-disaster condition [38]. The post-disaster relief and reconstruction phase is one

of the most difficult tasks, both in terms of planning and coordinating. It includes or-

der fulfillment, demand and supply management, human resource management, and

performance evaluation [24]. Nevertheless, according to [8], most of the literature

on humanitarian logistics focuses on disaster preparedness and response, making

long-term recovery a neglected topic. Only a few mathematical models cover the

entire scope of the humanitarian supply chain. In these cases, attention is focused

on (a combination of) three sub-problems, namely facility location [3], distribution

[19, 31, 36] and, inventory control [4, 34].

Because of this gap in mathematical formulations for post-disaster relief, Peters

et al. [32] developed a deterministic linear model (Nutritious Supply Chain (NSC)

model from now on) which integrates multiple supply chain decisions such as food

basket design, transfer modality selection, sourcing, and delivery plan. The various
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successful applications of the NSC model fostered us to use its basic version (with

no cash and no voucher modalities allowed) as the starting point of our research.
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3 The diet problem with palata-

bility constraints
In this section, first, we present the origin of the diet problem, and then describe how

it is considered in the NSC model. Finally, we describe the palatability constraint

and what makes it so interesting.

3.1 The diet problem: the origins

Back in 1945, George Stigler, winner of the 1982 Nobel Prize in Economics, pub-

lished the paper ”The Cost of Living” [39]. Stigler proposed the following problem:

”For a moderately active man weighing 154 pounds, how much of each of 77 foods

should be eaten every day so that the man’s intake of nine nutrients will be at least

equal to the Recommended Dietary Allowances (RDAs) suggested by the National

Research Council in 1943, with the cost of the diet being minimal?” The problem,

initially solved by a heuristic method, became, according to G. Dantzig [11], the

first large-scale problem solved by using the Simplex Method by Jack Laderman in

1947.

Since 1945, many variants of the diet problem have been developed [14, 33, 17],

each of them tailored to a specific situation. In Peters et al. HSCM, dietary issues

represent a relevant part of the model. A brief description of the NSC model is

required before delving into the diet formulation.

3.2 Humanitarian Food Supply Chain model de-

scription

The model formulated by Peters et al. [32] is a combination of a capacitated, multi-

commodity, multi-period network flow model and a diet problem via the addition
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of nutritional components and requirements. In the humanitarian supply chain, the

suppliers are modeled as source nodes, the discharge ports and WFP warehouses

are considered transshipment nodes, and the demand nodes are the Final Delivery

Points (FDPs), where the demand is dependent on the food basket and the number

of beneficiaries.

Suppliers are divided into international, regional, and local suppliers. International

suppliers refer to suppliers located outside the mission country, regional suppliers

refer to suppliers within the mission country, and local suppliers indicate the FDPs

markets. Supply nodes are the only places in the network were goods can be procured

and enter the network. After the goods enter the network, they are transported to

transshipment nodes, locations in which food can be temporarily stored before being

shipped to Final Delivery Points. The FDPs are the locations of beneficiaries, these

are modeled as the endpoint of the humanitarian supply chain.

The objective function is composed of transportation costs, storage costs, handling

costs in suppliers’ nodes, and other costs such as milling, packaging, monitoring,

reporting, etc. Constraints affect the flow of commodities, purchasing, transporta-

tion and processing capacity, the degree of satisfaction of nutritional needs, and the

amount of each commodity. The demand is defined as nutritional requirements.

This allows to optimize the food baskets, rather than using pre-defined ones. In

this way, it is necessary to provide accurate information about the nutritional value

of different foods, as well as the minimum nutritional requirements for the average

person. In this thesis, we used the daily nutrient requirements presented in the re-

port ”Planning a Ration” by the World Health Organization (WHO) [42]. Further

adjustments can be done depending on the demographics, ages, city/country tem-

perature, and other factors. For example, according to WHO (Table 3.1), with an

average temperature of 20 degrees Celsius or higher, the daily energy requirement

is 2100 kcal. A reduction of 5 degrees means that daily energy intake will increase

by 100 kcal, a further decrease of 5 degrees will require another 100 kcal, and so on.
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Adjustments to energy requirement mean daily temperature
20◦C
15◦C +100 kcal
10◦C +200 kcal
5◦C +300 kcal
0◦C +400 kcal

Table 3.1: Source: The management of nutrition in major emergencies. WHO.
Geneva, 2000.

In this study, we consider only average values and these values are reported in

Table A.1 and A.2 shown in the Appendix.

3.3 The food basket palatability

According to [32], their NSC model aims to generate food baskets that address the

nutrient gap, are distributable, and palatable. The definition of palatability is based

on constraints that limit the maximum and minimum quantity of each food in the

basket. These constraints are used to avoid solutions with extreme (too high or too

small) values. For example, solutions with more than half a kilogram of peas or 200

grams of oil in a daily ration would be considered unpalatable. Therefore, in the

NSC model, there are five constraints, one for each macro category of foods, that

impose upper and lower bounds to the amount of food per category. These limits

are based on ”unwritten rules” quantified with the help of nutrition experts and

food basket designers.

Macro Category minratg minratg
Cereals & Grains 250 500
Pulses & Vegetables 30 130
Oils & Fats 15 40
Mixed & Blended Foods 0 60

Table 3.2: These ration sizes are tailored for General Food Distribution (GFD),
which is the bulk of WFP distribution. Source: Peters et al. (2016)[32]

This approach can, with a high degree of approximation, include some socio-

cultural aspects in the constraint’s formulation (e.g. an higher limit of rice for

Asians) but it is very unlikely that it also considers subjective components. This
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may drive to food baskets whose palatability score is misleading and far from the

beneficiary’s opinion. Moreover, this approach forces the ration to be palatable but

does not provide the flexibility to impose varying degrees of palatability.

Considering that much of the information useful for modeling this constraint can be

derived from beneficiaries’ opinions, we decided to use, in our research, a Machine

Learning model for extracting information and using it to model the palatability

constraint. In this scenario, a data-driven constraint has the potential to model

(implicit) cultural, social, and geographic factors in a very insightful way. Moreover,

this constraint can be used with different palatability scores to ensure a higher degree

of flexibility.
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4 Data-driven optimization

The general process to describe a scenario with a mathematical programming formu-

lation, and solve it, is composed of problem identification, mathematical modeling,

solution analysis, decision-making, and evaluation of the results obtained through

the use of simulators or real applications. Usually, the most complex part is the

mathematical modeling, where a full understanding of optimization tools and the

scenario to be modeled is essential. From the point of view of accuracy, a good

optimization model must be both inclusive (i.e., it includes what belongs to the

problem) and exclusive (i.e., shaved-off what does not belong to the problem). An

inaccurate model can lead to optimal, but useless solutions. A very accurate model

could be extremely complex to solve.

The worst situation would be if a complex formulation is also inaccurate. This

is more likely if the relations between decisions and system observations are man-

ually translated into mathematical formulations.

The purpose of this research is to show how Machine Learning algorithms can be

used to learn the relation between decidables and observables, on the system. One

of the main reasons why these algorithms can be used is to replace, or complete, the

traditional problem-driven constraints, relieving the OR expert from the onerous

task of manual modeling, whenever the translation into mathematical constraints

turns out to be extremely complex or is not possible because of lack of knowledge.

Among the different positive aspects, this approach has consequences in terms of

accuracy and the ability to adapt to changes in the scenario. We will see it in the

case study and in the final considerations.

The Machine Learning-based Optimization (MLBO) model typically has the

following structure:
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min
x,z

f(x, z) (4.1)

s.t. (4.2)

gj(x, z) ≤ bj ∀j ∈ J (4.3)

z = h(x) (4.4)

x ∈ D (4.5)

where, x represents the decidables in domain D, and z is the vector of observables,

which is inferred from the target system, and that we are modelling with the use of

h(x). The h(x) vector of functions is the encoding of the ML model that describes

those parts of the system where the relationship between observables and decidables

is highly complex to model manually. Both the objective function f(x,z) and the

constraint functions gj(x, z) can be based on a combination of decision variables and

observables.

In order to design a model with the structure just presented, there are three steps

to follow:

1. Optimization model formulation. In this phase OR experts, in collabo-

ration with domain experts, formulate a general structure of the optimization

model. They decide what should be the objective function, what are the

decision variables, and what is the design of those constraints that can be effi-

ciently (right trade-off between accuracy and complexity) built in a traditional

problem-driven way.

2. Machine Learning model design. This phase includes data collection,

data processing, the choice of the Machine Learning algorithm to embed, its

training, and evaluation. This step is not trivial, and it may take a long time

to make the model accurate.

3. Embedding the trained Machine Learning model into the optimiza-

tion model. It is possible to embed an ML model into an optimization model
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only if the former one is encoded so that it can be exploited by the optimization

solver for the search process.

Since the first step is to define the optimization model and the process depends

on the application, we will present it directly in the case study (Chapter 5). A

complete explanation of the second and third steps is provided in the following

sections.

4.1 Machine Learning model design

In this paragraph, we present the process of developing a Machine Learning model.

Usually, it consists of: data collection, data preparation, model choice, and model

training. In order to perform these steps in the best way, it is necessary that the

general structure of the optimization model is already defined. With clear informa-

tion about the decision variables and the observables, it is easier to identify what

are the inputs and what should be the output of the ML model. Questions such

as: “What are we trying to predict?”, “What are the target features?”, “How is the

target feature going to be measured?”, “What kind of problem are we facing?” can

help to identify the necessary tasks to perform.

Now, we discuss those steps that require special attention in the MLBO context.

4.1.1 Data collection

The process of gathering data is an essential step to maintain the correctness of

the model since the quality and quantity of data has a direct influence on the final

model performance.

The dataset for the learning techniques can be harvested from the real system or

extracted from a simulator based on the real system. In the former case, we use

methods such as observations, surveys, or interviews. Often these methods are very

expensive in terms of time (for example, data gathering may involve manual activi-

ties that are much slower than automated processes) and money (for example, the

use of ad hoc sensors), but no, or few, assumptions and approximations are needed.

An alternative is to use software that simulates reality in order to collect data. This

method may be faster than previous methods, usually cheaper, and very flexible.
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However, it can lead to poor approximations of reality, and therefore to a useless

dataset. Hence, it must be performed in an accurate way.

Whenever we deal with MLBO, the trained Machine Learning model is applied

to all those solutions that the solver evaluates during the optimization process. On

these solutions, the ML model can perform very badly if the dataset is composed

especially by the most likely solutions that can occur in the scenario. To avoid this

problem, we have to realize a dataset that covers the entire space of solutions as

uniformly (and unbiased) as possible [29].

4.1.2 Data preparation

Once we have the dataset, it can be necessary to clean and transform raw data into a

form that can readily be used to train the Machine Learning model. Cleaning refers

to the operation such as deleting irrelevant data and outliers or filling in missing

values. Transforming data is the process of updating the format or value entries to

reach a well-defined outcome. In the latter process are included tasks such as labels

and features extraction, feature scaling, and data splitting into training, validation,

and test sets:

• Training dataset. It is used to fit the model.

• Validation dataset. It is used to provide an unbiased evaluation of a model

fit on the training dataset while tuning model parameters, also known as hyper-

parameters.

• Test dataset. It is used to provide an unbiased evaluation of a final model

fit on the training dataset.

Labels and features extraction is a critical process that impacts the final performance

of the ML model. In the MLBO, we can decide to feed the Machine Learning model

with (part of) the decision variables, or/and with their mathematical combinations.

To use more complex features they must be encoded in the MLBO model by using

specific constraints for feature extraction. If on the one hand, it can improve the
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accuracy of the ML model, on the other hand, it can also increase the computational

complexity of the final model optimization.

4.1.3 Model choice and training

A good knowledge of the main Machine Learning algorithms is necessary to identify

the algorithms that would perform best in the application of interest. Generally,

Machine Learning algorithms are divided in four types of Learning: supervised,

unsupervised, semi-supervised and reinforcement (Figure 4.1):

• In Supervised Learning, the dataset is a collection of labeled examples

{(xs, ys)}Ns=1 where xs is a vector of features, in our case represented by the

decidables, and N is the number of samples s in the dataset. Each of the

features contains information about the system that we are studying. ys is the

label associated with xs and it can be either an element belonging to a finite

set of classes (also called categories), or a real number, or a more complex

structure, like a vector, a matrix, a tree, or a graph. These algorithms are

used for regression and classification problems to predict the label associated

with a vector of features passed as input to the trained model.

• In Unsupervised Learning, the dataset used to train the model is a col-

lection of unlabeled examples {xs}Ns=1. In this case, the goal is to create a

model that takes as input a vector of x and searches for patterns and informa-

tion that was previously undetected. These algorithms are used in clustering,

dimensionality reduction, and outlier detection.

• In Semi-supervised Learning, a dataset combines a small amount of labeled

data with a large amount of unlabeled data. The goal is the same as that of

supervised learning, but it is hoped that using many unlabeled examples can

help the learning algorithm to compute a better model.

• In Reinforcement learning, the algorithm interacts with an environment

and is capable of perceiving the “state” of that environment as a vector of

features. The algorithm is able to perform actions based on the current state,

and it gets rewards based on the goodness of taken actions. The goal of this
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kind of algorithm is to learn a function, also known as policy, that takes as

input the state vector and outputs the optimal action to take.

We refer to [40, 18] for a more comprehensive explanation of these algorithms.

Figure 4.1: Types of Learning

Once we have identified the type of algorithms suitable for our problem, it is time

to choose the specific algorithm that, once trained, will return better results on the

test set. The processes of model training and quality assessment are widely studied

in the literature [35, 21]. In a traditional application, the accuracy is measured with

metrics such as Means Squared Error (MSE) or the number of correctly classified

instances. However, in MLBO, the quality assessment can be compromised since the

ML model has to work with instances that correspond to the solutions evaluated

by the optimization solver. Often, these instances, favored in terms of objective

function cost, are not present, or are but in a relatively small number, in the test

set. If the machine learning model performs poorly in these situations, the quality

assessment performed on the test set will not highlight this issue and will result in

optimistic accuracy values. We will deepen it in the case study, where a solution to
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this problem is presented.

In traditional Machine Learning applications, evaluating the model is usually a mat-

ter of accuracy, and the computational complexity is often overlooked. In MLBO,

when we talk about ML-model complexity, we refer to the size and linearity of the

trained model. This architectural complexity has an impact on the MLBO model

resolution both in terms of time to solve and in terms of optimality guarantees. This

leads to a trade-off between accuracy and complexity in the choice of the predictive

model. Two Machine Learning models antipodal in terms of architectural com-

plexity are Linear Regression (linear model) and Artificial Neural Networks (highly

nonlinear model).

Linear Regression

(Multiple) Linear regression (LR) is a supervised algorithm for regression problems.

A Linear Regression model takes as input a vector x ∈ Rn of decidables and predicts

the value of a scalar Y ∈ R that is called dependent variable. The output is a linear

function of inputs and the general formula is:

Y = xβ + ε, (4.6)

where β ∈ Rn is the vector of parameters, or weights, and ε ∈ R is the intercept.

Different techniques can be used to train the linear regression model from data, the

most common of which is called Ordinary Least Squares (OLS).

In the basic case, with no regularization terms, the architectural complexity of Lin-

ear Regression models is usually low due to the model linearity and the number of

parameters that is equal to the number of variables plus the intercept. If, on the

one hand, the simplicity of the model makes it very attractive for embedding in OR

models, on the other hand, if the relation between x and Y is nonlinear we have

poor performances that make the model useless in practice.

This concept will become clearer with the case study when we will analyze the
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performance of LR used as a constraint of an MLBO model.

Artificial Neural Networks

Artificial Neural Networks (ANNs) are biologically inspired models whose basic unit

is called node, or neuron. According to Haykin [22], a neuron k can be described

mathematically by the following equations:

vk =
n∑

i=1

wkixi (4.7)

yk = ϕ(vk + bk), (4.8)

where vk is a linear combination of inputs x1, x2, ..., xn and weights wk1, wk2, ..., wkn.

The bias bk aims to increase/decrease the net input of the activation function. ϕ(·)

is the so-called activation function, which is a nonlinear, monotonic, non-decreasing

function. yk is the output of neuron k (Figure 4.2).

Figure 4.2: Scheme of an artificial neuron. Source: Haykin (2009)[23]

Typically, neurons are aggregated into layers and the number of layers defines

the depth of the ANN. The first layer is the input layer, the last one is the output

layer, and those in the middle are called hidden layers. Each neuron has inputs

and produces a single output which can be sent to multiple other neurons. The
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input can be derived from the feature values of external data, or it can be derived

by the output of the neurons in the previous layer. The outputs of the final layer

accomplish the predictive task.

The ANN architecture used for the case study is a Fully Connected Neural Net-

work (FCNN) where all the neurons in one layer are connected to the neurons in

the next layer (Figure 4.3).

Figure 4.3: Fully Connected Neural Network architecture

Generally, ANNs are very flexible and adaptable to different scenarios, resulting

in good performance even with little domain knowledge. However, the disadvan-

tage is that Artificial Neural Networks have a complex architecture. In FCNN, the

number of trainable parameters is much higher than the number of features

per sample. They depend on the input size, the number of nodes and the number
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of deviations.

If an FCNN is composed of one hidden layer with h nodes, an input layer with i

nodes, and an output layer with o nodes:

number of parameters = (i× h+ h× o)︸ ︷︷ ︸
connections between layers

+ (h+ o)︸ ︷︷ ︸
biases in every layer

In addition to a large number of parameters, another thing that makes ANNs com-

plex models is their nonlinearity. Activation functions such as the hyperbolic tan-

gent, or the sigmoid make the model nonlinear, and consequently also the MLBO

model. It has a huge impact in terms of computational complexity both to train the

predictive model and (mainly) to optimize the final MLBO model.

4.2 Embedding the Machine Learning model

Embedding an ML model into an optimization model is the last step. A successful

embedding would allow us to take full advantage of the optimization solver’s poten-

tial. According to [29], the ability to embed ML models into optimization models

plays a key role in bridging the gap between predictive and prescriptive analytics.

The embedding process requires that the Machine Learning model trained in the

previous step is mathematically “explainable” in the form of decision variables and

trained parameters.

The integration of an LR model, thanks to its linear structure, has no significant

impact on the complexity of the final optimization model. Furthermore, if the final

model belongs to the class of Linear Programming (LP), algorithms such as the

Interior-points Method would guarantee an optimal solution in polynomial time.

The optimality guarantees, however, do not give information in terms of accuracy of

the ML component. If the regression model performs poorly in the MLBO model,

the final solution, still optimal for the MLBO model, will be useless and not appli-

cable to the studied system.

With ANNs, embedding requires more attention. Since ANNs are modular models,
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it is possible to integrate each node of the neural network individually through the

use of decision variables, parameters, and their own activation function. Afterwards,

it is possible to combine them in order to obtain a single function that outputs the

prediction of the neural network. The same process can be done in a single step,

embedding the entire ANN starting from the output layer to the input layer. There-

fore, if on the one hand, a large number of nodes and layers allows a more accurate

description of nonlinear functions, on the other hand, the embedding of these models

becomes more complicated to perform.

Unlike LR, with ANNs the final problem is a Mixed Integer Nonlinear Programming

(MINLP). As long as the activation functions are supported by the MINLP solver,

the integration process is feasible. With nonlinear activation functions, the MINLP

solver will converge to a local optimum, possibly different from the global optimum,

but still useful for the studied problem.
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5 Case study: A palatable diet for

Humanitarian Aids
In this chapter, we explore how Machine Learning is used to mathematically model

the ration palatability in a diet problem formulation within the HSCM scenario.

We will describe how data is collected, how it is processed, and which ML models

are used. Then we will proceed with the description of the MLBO model and the

results obtained. Finally, we will highlight some critical issues of the MLBO model

and what are the possible causes and remedies.

5.1 Technical implementation

The optimization modeling language used for the case study is Pyomo. Pyomo is

an open-source software package that supports a diverse set of optimization capa-

bilities for formulating, solving, and analyzing optimization models [20]. All the

optimization models are taken over by NEOS server, which is a free internet-based

service that provides access to more than 60 state-of-the-art solvers [10]. We adopted

CPLEX v12.9 [9] to solve LP models, and KNITRO v12.2 [7] to solve MINLP mod-

els.

We executed the calculations on a standard Windows 10 laptop machine featuring

an Intel i7 8565U and 8 Gb RAM.

5.2 Data collection for the case study

To build a palatability constraint based on Machine Learning, it is necessary to define

the dataset that will be used to train and assess the ML model. Data collection

is a process whose difficulty depends very much on the type of application being

considered. In our case, each sample contains a set of features represented by the

quantity of each food and a label represented by the palatability score associated

with that food basket. In order to collect the palatability scores, beneficiaries must
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provide feedback on the goodness of different rations. As this is a difficult task to

be performed in practice, especially within a short time period, we decided to build

a generator of food baskets, and a set of rules to evaluate each basket in terms of

palatability. In both cases, a well-defined scale must be used to classify food baskets

from the most palatable to the least palatable.

5.2.1 On-site data collection using people’s opinions

The first way to collect data is to generate food baskets with different quantities and

combinations of foods and then place them under the judgment of beneficiaries. One

could also ask them directly to design rations that have different palatability values.

This approach has the great advantage of reaching people’s subjective opinions,

which implicitly contain all the factors related to social and cultural influences.

However, there are some drawbacks to consider:

• Coordination complexity. Involving people, especially in complex situations

such as those where WFP operates, requires good collaboration between bene-

ficiaries and humanitarian organizations. Data collection can be done through

interviews or questionnaires that may require standardized forms, a central-

ized database, and the use of heterogeneous tools (digital and/or traditional).

Bad coordination would increase the impact of the following points.

• High costs. Collecting data requires expensive tools for data acquisition, stor-

age, and maintenance. In addition, it requires specialized personnel to handle

data-related operations.

• Limited number of iterations. The data collection process can be performed

in several and separate stages depending on the type of data we need. As we

will describe in section 5.6.1, to improve the MLBO model we proceed with

an iterative data collection process. This may not be possible, for economic

and limited time reasons, when we deal with on-site data gathering.

Despite the drawbacks, we believe that with sufficient resources and a good orga-

nization of activities, it is possible to carry out field data collections increasing the
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scenario representativeness in the dataset. In our research, it was not possible to

use field data as it is not yet available and laborious to gather in a short time.

5.2.2 Artificial data collection using a food basket generator

To generate a large number of different food baskets, we developed the Food Basket

Generator (FBG) which is a mathematical optimization model with parameters

(highlighted in teal) that allow getting different solutions at each run. We underline

that FBG is not the optimization model that provides the best palatable food basket,

but is only used for generating data on food basket palatable scores, in place of

collecting data directly from the beneficiaries. The palatability score corresponding

to each food basket is based on a function we defined and described just after the

model presentation.

We want to specify that from now on, we will talk about daily food baskets. Deciding

whether to change these baskets daily, weekly, or monthly is beyond the scope of

this article. However, we expect that the resulting baskets will remain the same for

a period of time that guarantees efficient quantities of food also under other cost

items (e.g., purchase, transport, storage). This means that if in a daily food basket

we have 20 grams of meat, and the food basket remains unchanged for 30 days, we

must consider 600 grams of meat per person. The same is true for all the other foods

that make up the basket, assuming that the ration palatability remains unchanged

and that it does not depend on the size of the time period.

Food Basket Generator model

We use the same notation as in Peters et al.[32], adapted to our situation.

Set Description
K Set of commodities (k ∈ K)
G Set of food macro categories (g ∈ G)
L Set of nutrients (l ∈ L)

Gabsence
Set of commodities that must be kept
below a certain threshold (Gabsence ⊂ K)

Gpresence
Set of commodities that must be kept
above a certain threshold (Gpresence ⊂ K)

Table 5.1: Sets notation used in the FBG model
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Parameter Description
Nutreql Nutritional requirement for nutrient l ∈ L (grams/person/day)
Nutvalkl Nutritional value for nutrient l per gram of commodity k ∈ K

minratg
Lower limit per commodities macro category g ∈ G
(grams/person/day)

maxratg
Upper limit per commodities macro category g ∈ G
(grams/person/day)

randomThresholdp
Threshold used as lower
bound to the amount of those foods k ∈ Gpresence

randomThresholda
Threshold used to upper
bound to the amount of those foods k ∈ Gabsence

palat rangeg
Random value in the range [0, maxratg−minratg

2
]

∀g ∈ G (grams/person/day)

Table 5.2: Parameter notation used in the FBG model

Parameter Description
Sl Realized shortfall of nutrient l in percentage
xk Amount of commodity k measured in hectograms

PalatabilityComponentg
Distance between the amount of food in category g

and the point maxratg+minratg
2

∀g ∈ G

Table 5.3: Variable notation used in the FBG model

Objective function

The objective function in the traditional model for the diet problem is a minimization

of costs. In our case, we minimize nutrient shortfalls (5.1). This choice is based on

the model structure where Sl variables can result in values that make the food basket

feasible but not meaningful if they do not constrained or used as part of the objective

function. The loss in practical meaning happens because most of the nutrients do

not reach the minimum requirements. We decided to avoid constraints on Sl and

use them in the objective function (assuming that all the nutrients have the same

importance) to expand the space of feasible solutions. Nevertheless, if we want to

minimize the cost, it is completely possible, but we have to impose upper bounds

on Sl variables.

min
x,S

∑
l∈L

Sl (5.1)
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Constraints

∑
k∈k

Nutvalklxk ≥ Nutreql(1− Sl) ∀l = 1... |L| (5.2)

Constraints (5.2) ensure the nutrient requirements, although allowing for the use of

shortfalls. Sl variables constrained to be in the range 0-1 (5.10).

minratg ≤
∑
k∈g

xk ≤ maxratg ∀g ∈ G (5.3)

Constraints (5.3) bound the amount of food for all the five macro categories in order

to consider only solutions with a minimum value of palatability according to Peters

et al. [32].

xk ≥ randomThresholdp ∀k ∈ Gpresence (5.4)

xk ≤ randomThresholda ∀k ∈ Gabsence (5.5)

xsalt ≥ 0.15 (5.6)

xsugar ≥ 0.5 (5.7)

Constraints (5.4) and (5.5) are used respectively to force the presence of a certain

type of commodity in the final solution and to exclude other commodities from it.

For a feasible formulation we must have Gpresence ∩Gabsence = ∅. Constraints (5.6)

and (5.7) are used to bound the only two commodities, salt and sugar, that do not

belong to any category.

∑
k∈g

100xk − PalatabilityComponentg =
maxratg +minratg

2
∀g ∈ G (5.8)

−Palat rangeg ≤ PalatabilityComponentg ≤ Palat rangeg ∀g ∈ G (5.9)

With constraint (5.9), we give to the optimization solver the flexibility to choose

PalatabilityComponentg within a randomly generated range of feasible values.

PalatabilityComponentg will be chosen so as to minimize the objective function as

much as possible and, at the same time, it will fix the amount of food in the macro
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category g thanks to constraints (5.8).

0 ≤ Sl ≤ 1 ∀l ∈ L (5.10)

xk ≥ 0 ∀k ∈ K (5.11)

Constraints (5.11) are used to impose the amount of each commodity to be greater

than or equal to 0.

How to ensure a different solution at each run

The FBG is a LP model where some of the components are randomly set during

the model setup. The constraints (5.8), (5.9), (5.4), and (5.5) are used to define a

different search space at each run. This means that, when the optimization solver

searches for the globally optimal solution, has to explore a different space of solutions

every time the optimization process is launched.

CPLEX is the solver used to find the optimal solution at each run. It is possible

to generate more than one hundred of different solutions in one minute with a

computation time per execution of about 0.06 seconds.

Food Basket Palatability Score

Once performed the optimization process, we have a solution with five

PalatabilityComponentg values, one for each macro category. To combine these five

values in a single palatability score (the desired label), we defined a formula based

on the following idea: the closer the PalatabilityComponentg variables are to

zero, the higher the basket palatability score. This formula assigns to assign

different scores depending on the amount of food. In other words, we call optimal

point the center of each macro category range shown in Table 3.2, and we assign

higher palatability scores to those solutions that have the sum of food per macro

category closer to the optimal point.

More precisely, we aim to penalize the more those solutions that are the closer to the

boundaries minratg and maxratg, hence, we use the Euclidean Distance Function
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to define the score:

Food Basket Palatability Score =

√∑
g

(γg(x̂g −Optg))2 (5.12)

where

x̂g =
∑
k∈g

xk with g ∈ G (5.13)

Optg =
maxratg +minratg

2
with g ∈ G (5.14)

Since the macro categories g have different range sizes, we use γg to balance the

impact of each of them on the score. The function used to calculate γg is (5.15) and

the values are displayed in table 5.4.

γg =
max{g∈G}(maxratg −minratg)

maxratg −minratg
(5.15)

Macro category γg
Cereals & Grains 1
Pulses & Vegetables 2.5
Oils & Fats 10
Mixed & Blended Foods 4.16
Meat & Fish & Dairy 6.25

Table 5.4: γg values for the five macro categories.

With (5.12), we get a palatability score that goes from 0 to 279.96 where 0

represents the highest palatability and 279.96 the worst one.

In order to get higher scores associated with higher palatabilities we reversed the

score by this expression:

Food Basket Palatability Score = 279.96− Food Basket Palatability Score

In Table 5.2 we see two examples of daily food baskets generated through the FBG

and their palatability score.
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Food Basket 1 Food Basket 2
Commodity Amount Commodity Amount
Beans 13.0g Beans 92.0 g
Cheese 10.2 g Dried skim milk 13.1 g
Dates 10.9 g Milk 10.9 g
Dried skim milk 19.8 g Salt 5.0 g
Salt 5.0 g Sorghum/millet 13.0 g
Chickpeas 69.1 g Soya-fortified sorghum 10.1 g
Sorghum/millet 379.8 g Sugar 5.4 g
Oil 38.5 g Oil 28.5 g
Wheat 110.2 g Wheat Flour 362.0 g
Wheat-soya blend 37.0 g Wheat-soya blend 22.9 g
Palatability score 176.5 Palatability score 42.23

Table 5.5: Two examples of daily food baskets generated by the FBG.

Figure 5.1 is a 3D representation of how the palatability score function 5.12

works with different amounts of food per macro category, where darker colors are

associated with lower scores (less palatable baskets). Since it is possible to visualize

data in maximum three dimensions, only 3 out of 5 categories are plotted.

Figure 5.1: 3D scatter plot on the Food Basket Palatability Score function. X axis:
Cereals & Grains [g], Y axis: Pulses & Vegetables [g], Z axis: Mixed & Blended
Foods [g]. Darker colors are associated with lower scores.
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5.3 Data preparation for the case study

The dataset created by FBG consists of 650,000 samples. Each sample is character-

ized by 25 features and 1 label. Each feature represent the grams of commodities

that make up the daily food basket and the label represent the basket palatability

score. Since we use the FBG, no data cleaning activities are required. We divided

the whole dataset into training set (80%) and test set (20%). The shape of the

training set is (520,000; 26) and the shape of the test set is (130,000; 25), where the

label column will be used for quality evaluation.

We performed a label ”Min-Max Normalization”, which is necessary for Neural Net-

works with output activation functions that return values between 0 and 1. Besides,

it is worth noting that label scaling does not affect the MLBO model, but feature

scaling requires specific scaling constraints.

In addition to the amount of each food in the basket, we decided not to add more

complex features. This choice has two main reasons: (i) since we know a priori the

function that associates a food basket with its palatability score, it is possible to

manually build more complex functions making the ML model useless. The second

reason (ii) is related to the complexity of the MLBO model, which would increase

with the addition of feature extraction constraints.

With a dataset made of beneficiaries’ opinions, the situation is different, and the

reason (i) would no longer be meaningful.

5.4 Model choice and training for the case study

We use two alternative ML models to predict the palatability score: a Linear Re-

gression model and a Fully Connected Neural Network. Both models are trained on

the same training set and evaluated on the same test set. To evaluate the perfor-

mance of the trained model on the test set, we used the Algorithm 1. If the absolute

difference between the target and the prediction is greater than a certain threshold,

the algorithm considers the prediction to be wrong. In this way, it is possible to

measure the model accuracy as if we were working with a classification problem.
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Algorithm 1 Compute the accuracy of the Machine Learning model

Require: List of Predictions P ∈ Rn.
Require: List of Target values T ∈ Rn.
Ensure: Percentage of wrong predictions. PercErr ∈ R.
1: Err ← 0
2: for i in 1 ... P.size() do
3: if |P [i]− T [i]| ≥ THRESHOLD then
4: Err ← Err + 1
5: end if
6: end for
7: PercErr = 100Err

P.size()

5.4.1 MLBO with Linear Regression

The Linear Regression model used in this application is a weighted linear combina-

tion of inputs plus the intercept term. OLS was used for model fitting. It takes a

few seconds to fit the model to the training set. If on the one hand, the simplicity

of the model makes it ideal to be integrated into the MLBO model, on the other

hand, it makes the model unable to approximate nonlinear functions. This can be

seen from the performance measured using Algorithm 1:

• Percentage of error with threshold 0.05 = 19.54%

• Percentage of error with threshold 0.03 = 27.05%

• Percentage of error with threshold 0.01 = 36.97%

The performance on the test set is poor, but we decided to conduct further evalua-

tions with the LR model embedded in the optimization model in order to perform

another type of assessment.

5.4.2 MLBO with Artificial Neural Network

The second Machine Learning model used is a Fully Connected Neural Network.

The architecture chosen is a good compromise between accuracy and complexity (as

defined in section 4.1.3). It consists of an input layer, two hidden layers respectively

composed of five and three neurons each, and an output layer consisting of a single

neuron activated by a sigmoid function. In all the other layers, we have the hyper-

bolic tangent as activation function. Training is performed on 1,000 epochs with a
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batch size of 256 samples, MSE as loss function and Adam [25] as optimization al-

gorithm. The training process took around 2 hours, and the performance measured

on the test set shows the following results:

• Percentage of error with threshold 0.05 = 0.60%

• Percentage of error with threshold 0.03 = 5.06%

• Percentage of error with threshold 0.01 = 11.11%

The FCNN accuracy is much better than Linear Regression but its nonlinear struc-

ture may require the use of global solvers, which usually take a long time to find an

optimal solution. The alternative is to use non-global solvers and get locally optimal

solutions in a much shorter time. We used KNITRO solver, which has no global

optimality guarantees but returns the best solution in about a minute.

5.5 Embedding the Machine Learning model for

the case study

The final step of the data-driven approach is to embed Machine Learning model into

the optimization model. In our case study, the only ML-based constraint is used

to control the food basket palatability score. We emphasize that, depending on the

scenario, the ML model can be used in more than one constraint and/or as (part

of) the objective function.

The designed MLBO model is very similar to the FBG model. The objective function

remains the same as well as for constraints (5.18), (5.17), (5.22), and (5.23) which

are equal to those used in FBG. Also constraints (5.19) and (5.20) remain equal to

(5.6) and (5.7) (used in FBG) in order to prevent the MLBO model from generating

solutions where the amount of salt and sugar exceeds the threshold imposed in

the FBG. Such solutions would probably be predicted very poorly by the Machine

Learning model since it has never seen something similar in the training set. In the
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MLBO model, we do not consider constraints (5.4), (5.5), (5.8) and (5.9).

min
x,S

∑
l∈L

Sl (5.16)

∑
k∈k

Nutvalklxk ≥ Nutreql(1− Sl) ∀l = 1... |L| (5.17)

minratg ≤
∑
k∈g

xk ≤ maxratg ∀g ∈ G (5.18)

xsalt ≥ 0.15 (5.19)

xsugar ≥ 0.5 (5.20)

Palatability prediction(x) ≥ P limit (5.21)

0 ≤ Sl ≤ 1 ∀l ∈ L (5.22)

xk ≥ 0 ∀k ∈ K (5.23)

Constraint (5.21) is based on Machine Learning. It consists of variables, trained

weights, and activation functions (in the case of Neural Networks) that combined

together approximate the relationship between food baskets and their palatability

score. This constraint is used to force the best solution to be at least as palatable

as the parameter P limit (according to the ML model prediction).

If the ML model does not perform well once embedded in the optimization model, it

may underestimate, or in the worst case overestimates the real palatability score. In

order to check the match between real palatability and predicted palatability

we can use the score function (5.12), which would return the real palatability score

of any solution generated by the MLBO model. If we use field data, it is necessary

to collect the beneficiary’s feedback and use it as real score. The latter situation is

affected by all the disadvantages already mentioned in Section 5.2.1.

5.6 Numerical results

In subsections 5.4.1 and 5.4.2, in order to evaluate the performance of the ML mod-

els, we have performed a quality assessment based on the test set. In this section,

we evaluate the LR and FCNN models as part of the optimization process.

When the ML model does not perform well in some parts of the feasible region, the
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solver can select as best solutions whose real palatability score is very different from

the predicted one. Pushing this concept to the limit, a solution that is overesti-

mated in terms of palatability can also be preferred in terms of objective function,

because an overestimation of palatability corresponds to a sort of relaxation of the

palatability limit constraint. Therefore, the solver can more easily find a solution

with low amount of shortfalls. In this case, the ML model would have a poor perfor-

mance when integrated into the MLBO model, and high performance if measured

exclusively on the test set.

Figure 5.2 compares the performance of the two Machine Learning models embed-

ded into the MLBO model. These results are obtained using CPLEX and KNITRO

as optimization solvers respectively for the LR-MLBO model and the FCNN-MLBO

mode. On the x-axis, we show different values (between 0 and 1) of P limit used

in the optimization model. On the y-axis, we show the difference between the real

palatability and the palatability predicted by the ML model for the solution obtained

by solving the MLBO model.

Figure 5.2: Difference between Real Palatability and Predicted Palatability in both
FCNN and LR

This difference is never less than zero due to the fact that the objective function

”pushes” in the direction with lower palatability scores. The amount of each food

in the optimal solution and the corresponding value of the objective function are

shown in Table A.3 and A.4.
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In Figures 5.4 and 5.3, the same type of assessment is shown from a different per-

spective. The gray line and the pink line represent the real palatability of the best

solutions found at each different P limits. The blue and violet lines represent the

predicted palatability score.

Figure 5.3: Comparison between predicted palatability and real palatability in an
FCNN-MLBO scenario.

Figure 5.4: Comparison between predicted palatability and real palatability in an
MLBO scenario.
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In Figure 5.5, we compare FCNN (blue line) and LR (violet line) defining each

solution with its objective value and real palatability score. From an ideal predictive

model, we would expect a non-decreasing line that always goes from left to right, but,

as we can see, this is not the case in neither of the models studied by us. With the

LR-MLBO model, the optimal solutions have much higher objective values compared

to those generated by the FCNN-MLBO model. This happens even though with the

LR-MLBO the solutions never exceed 0.22 in real palatability score.

Figure 5.5: Comparison between solutions generated with the LR-MLBO and solu-
tions generated with the FCNN-MLBO model. Each solution is represented by its
real palatability score and objective value.

Even once embedded in the optimization model, the performance of the Neural

Network is significantly better than that of Linear Regression. With the LR model,

we can solve the MLBO model to global optimality, but because it is not able to

clearly describe the space of feasible solutions, it would lead to solutions with no

practical meaning. With the FCNN, global optimality is not guaranteed by KNI-

TRO, but the approximation of reality is good, especially when compared with the

LR.

The worst FCNN performances occur when P limit is around 0.5, and above 0.9.

The cause of this error is clearly due to a poor approximation of the Food Basket
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Palatability Score function. According to the label definition, the solutions with

higher palatability are those closest to the center of the polytope. In other words,

the solution with the highest palatability score is the solution whose

PalatabilityComponentg
1 value is closest to ±0 for each macro category (whether

they approach zero from negative or positive values). Looking at Table 5.6, we no-

ticed a correlation between the performance of the predictive model and the values

of PalatabilityComponentg (one for each macro category and calculated as in the

FBG model). The more negative PalatabilityComponentg values are, the greater

the error. It seems that the Neural Network fails to model properly that once the

”center of the polytope” is passed, the palatability score begins to decrease again.

Original MLBO model - Palatability Component per macro category
P limit Cereals&Grains Pulses&Vegetables Oils&Fats Mixed&Blended Meat&Fish&Dairy Error

0.1 125 23.17 12.5 30 20 0.0203
0.2 91.67 1.5 12.5 30 20 0.0464
0.3 49.46 -10.28 12.5 28.10 20 0.0875
0.4 38.17 -27.71 12.5 23.26 17.01 0.1738
0.5 32.71 -35.96 12.5 21.74 15.57 0.2246
0.6 30.58 -33.41 12.24 16.05 12.68 0.2438
0.7 23.91 -22.09 6.59 13.58 10.71 0.1346
0.8 26.30 -11.53 1.33 11.05 8.17 0.0720
0.9 31.77 1.92 -5.78 7.28 5.07 0.2326
0.95 23.96 7.90 -12.49 5.62 4.86 0.4138

Table 5.6: Comparison between PalatabilityComponentg values and the difference
between Predicted and real palatability (Error) in the best solutions found, at dif-
ferent P limit in the original MLBO model.

In order to see whether negative values of PalatabilityComponentg critically

affect the performance of the Neural Network, we tested it within the MLBO model

modifying the constraint (5.18), which becomes:

minratg +maxratg
2

≤
∑
k∈g

xk ≤ maxratg ∀g ∈ G (5.24)

Hence, we bind PalatabilityComponentg to be greater than 0 in each macro cate-

gory. It is still possible to increase the palatability score from 0 to 1, but it is not

possible to go beyond the center by continuing in the same direction. The results in

Figure 5.6, Figure 5.7, and Table 5.7 show significant improvements in the accuracy

of the FCNN model.

1PalatabilityComponentg is calculated as in constraint (5.8).
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Figure 5.6: FCNN performance before and after the change of constraint (5.18)

Figure 5.7: Comparison between predicted palatability and real palatability in an
FCNN-MLBO model with constraint (5.18) replaced by constraint (5.24)

Modified MLBO model - Palatability Component per macro category
P limit Cereals&Grains Pulses&Vegetables Oils&Fats Mixed&Blended Meat&Fish& Dairy Error

0.1 125.00 23.17 12.50 30.00 20.00 0.0204
0.2 91.67 1.50 12.50 30.00 20.00 0.0465
0.3 40.75 2.28e-07 12.50 25.78 20.00 0.0535
0.4 34.99 2.35e-09 12.50 21.89 15.44 0.0574
0.5 27.50 2.26e-09 9.44 18.60 13.59 0.0291
0.6 18.28 1.24e-07 6.19 15.78 11.29 0.0106
0.7 10.99 5.68e-09 3.23 13.36 9.59 0.0134
0.8 13.69 4.51e-08 0.20 11.03 7.51 0.0350
0.9 14.74 1.30e-09 1.70e-10 3.14 3.30 -0.0289
0.95 4.23 1.09e-09 1.25e-10 1.31 2.9378 0.0220

Table 5.7: Comparison between PalatabilityComponentg values and the difference
between Predicted and real palatability (Error) in the best solutions found, at dif-
ferent P limit, with the modified MLBO model.
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In Figure 5.6, we see that, in the modified MLBO model, the difference between

the predicted palatability and the real palatability is at most equal to 0.0546. In

Table 5.7, instead, we see a progressive approach to 0 by PalatabilityComponentg

in all the macro categories when the palatability score increases. We would have ex-

pected a similar behavior in the unmodified MLBO model if the FCNN had worked

properly.

The same proof was performed with the LR-MLBO model, which resulted in im-

pressive results especially for high values of P limit. From 0.7 to 0.9 we have feasible

solutions with real palatability scores higher than the predicted ones. This can be

a problem in terms of objective value, but it is a good result in terms of feasibility.

In Figure 5.8, we can see a comparison between the LR-MLBO model before and

after the change of constraint 5.18. The problem, in this case, turns out to be for

P limit greater than or equal to 0.95, where the model results infeasible.

Figure 5.8: Comparison between predicted palatability and real palatability in an
LR-MLBO model with constraint (5.18) replaced by constraint (5.24)

Also in this case, it is useful to display different solutions, generated by the two

modified MLBO models, in terms of real palatability scores and objective values. In

Figure 5.9, we show the comparison between the modified LR-MLBO model and the

modified FCNN-MLBO model. The optimization model with the Neural Network

always has a lower, and therefore better, objective value probably because it is able

to better describe the space of feasible solutions allowing the optimization solver to
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search in a larger space.

Figure 5.9: Comparison between solutions generated with the modified LR-MLBO
model and solutions generated with the modified FCNN-MLBO model. Each solu-
tion is represented by its real palatability score and objective value.

The dataset used for model training plays a major role in this error. Indeed,

only 1.5% of samples have one or more negative PalatabilityComponentg values.

Therefore, further data generation should be carried out focusing more on solutions

with negative PalatabilityComponentg. This requires to modify constraints (5.9)

in the FBG.

5.6.1 Specific Food Basket Generator

For what concerns Neural Networks, another way to improve the performance of

predictive models is to insert in the training set solutions computed by MLBO. The

iterative logic behind Algorithm 2 requires the use of the MLBO model to generate

solutions with different P limit values from 0 to 1. Each solution is associated with

its real palatability score calculated with the function (5.12). Once P limit is equal

to 1, the solutions and their scores are included in a partially filled dataset for

retraining the Neural Network. The initial number of samples in the dataset must

be enough to represent the entire population, but not too large, to prevent the new

samples from having no effect on the training process. This process is repeated until

the accuracy of the embedded Neural Network is considered to be adequate.
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Algorithm 2 Recursive execution flow to improve the embedded Neural Network
accuracy

Require: pre-trained FCNN
Require: dataset of food baskets. Partial dataset ∈ Rnx26

Require: Palatability limit increment. INCREMENT ∈ R
Require: Limit to the number of iterations. COUNTER LIMIT ∈ R
Ensure: Increase in the FCNN accuracy within the MLBO model
1: Counter ← 0
2: do
3: if Counter > 0 then
4: FCNN ← train(FCNN, Partial dataset)
5: end if
6: P limit ← 0
7: while P limit ≤ 1 do
8: solution ← MLBO model(P limit, FCNN)
9: palatability← Food Basket Palatability Score(P limit,Partial dataset)

10: Save the solution and its palatability in Partial dataset
11: P limit ← P limit + INCREMENT
12: end while
13: Counter ← Counter +1

14: while Counter ≤ COUNTER LIMIT

We used the described FCNN, INCREMENT equal to 0.05 (20 new data points

in each iteration), and a Partial dataset with a shape of (40000,26)2.

The result obtained by executing this algorithm depends on the number of iterations

performed. In Figure 5.10, we see how the performance changes as the number of

iterations increases. We can see a continuously improving performance until the

20th iteration, where it starts to decrease. With 1 iteration (yellow line), we have an

average improvement of 1.1% in the FCNN accuracy for each P limit value. With

4 iterations (blue line) we have an average improvement of 2.63% with a peak of

7.2% for P limit equals to 0.55. With 20 iterations (red line), the best average im-

provement which is around 6.04% with a peak of 26% for P limit equals to 0.55.

Even with 50 iterations (green line) the average performance is 5.25% better than

the initial FCNN performance, but slightly worse than the performance with 20

interactions.

For high values of P limit, the performance starts to decrease already with 20 iter-

2The best size of the dataset and the value of INCREMENT are very important decisions that
we leave as a subject of future research.
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ations where the average performance decrease from 0.8 to 0.95 is around 12%.

Figure 5.10: Comparison of embedded FCNNs performance calculated after different
iterations of Algorithm 2.

Furthermore, the number of iterations also depends on how the new samples

are labeled. If we are working with field data, in order to associate each solution

generated by the MLBO model with its palatability score, it is necessary to discuss

with the beneficiaries and ask them to provide personal opinions. In view of this,

we must consider that it may have high costs and take a long time. However, it

would also be possible to perform this process as a natural feedback mechanism to

be obtained when the food baskets are delivered to the beneficiaries, before defining

the food basket of the successive period.

46



6 Considerations
From the quantitative analyses carried out in the previous chapter, it is clear that

the success of the data-driven approach depends deeply on the accuracy of the em-

bedded ML model. We believe accuracy is the main feature without which it is not

even worthwhile to solve the optimization model that includes the ML component,

due to its computational complexity which is another very important characteristic

to evaluate. Even though, in our case study, linear regression was not proven to

be accurate enough, we believe this is not always the case and if the linear model

approximates the relationship between variables effectively, it could be preferred to

other models thanks to its linearity. The case study also revealed the importance

of having a good dataset where an imbalance in the composition of data can lead

to problems that are difficult to identify in the test set. Although, as already men-

tioned, there are differences between the various predictive models, let us discuss

the pros and cons of data-driven approaches and how they emerged in our research.

Positive aspects

It is data-driven. Using Machine Learning in the mathematical modeling phase

allows us to describe complex aspects that are difficult to express mathematically.

In our case, we delegated the mathematical modeling of the palatability constraint

to two different supervised algorithms whose task was to use data in order to identify

and describe the relationship between food baskets (our decidables) and palatability

scores (our observables). To collect data we used a generator, but the idea behind

this approach remains valid with field data. Thanks to Machine Learning, whenever

we collect field data, we are able to take full advantage of it and build specific models

for specific scenarios.

Model building is partially automated. Using Machine Learning to model

constraints and objective functions allows us to delegate tasks to very flexible algo-
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rithms (such as Neural Networks) that easily adapt themselves to different scenarios.

This allows optimization experts to avoid risky situations where domain experts can

hardly express phenomena occurring in reality. In the case study, we implemented

the palatability constraint without any intervention by domain experts except for

the dataset collection, which, according to the situation, can be an easier task.

It is easier to recognize and adapt to changing scenarios. If the scenario

changes over time, but parts of the model are data-driven, then we only need to fre-

quently update the dataset and retrain the Machine Learning model. For example,

in our case, there is no need to build different constraints for different beneficiary

groups. It is enough to work on a single Machine Learning model that can adapt

to distinct datasets collected from different populations. Most importantly, as dis-

cussed in [13], with a data-driven approach we avoid running into the dangerous

situation where a change in the problem environment is not observed, and the model

is not valid anymore. In our case study, the quality of the dataset changes from

group to group but hardly changes over time. However, we must be careful that

there is no discrepancy between real palatability and predicted palatability. In that

case, it is necessary to ask the beneficiaries for feedback and adjust the predictive

model.

More and better post optimization analyses. Another way to combine Ma-

chine Learning and Operations Research without integrating them into one single

model is to use ML to evaluate one or more solutions after the optimization process.

Referring to our case study, we can use a pure optimization model (without the

palatability constraint) to find the global optimal solution, and then apply an ML

model to determine its palatability score. On the same line, we can perform a 3-

dimensional Commodity Swap Analysis (based on what has been done in [32]) with

costs, nutritional levels, and palatability scores to define each solution and evaluate

what happens if we swap types of food. In this case, the predictive model can be

used to evaluate the changes of palatability scores.
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Negative aspects

It is less explainable. In the introduction, we mentioned the importance of hav-

ing transparent algorithms and how Operations Research has a greater degree of

explainability than most of the Machine Learning algorithms. In our case study,

by integrating the Neural Network into the optimization model, we are decreasing

its explainability. With the FCNN, it is very hard, if not impossible, to understand

what is the relationship between commodity quantities and palatability scores. How-

ever, it must be emphasized that in some situations, transparency in the process is

not always necessary. Indeed, in our case study, we preferred to lose transparency

in order to get an accurate optimization model.

It may need huge data. In order to build a good predictive model, it is usually

necessary to have a large amount of data representative of the scenario. Collecting

field data can be so challenging to require cheaper and faster alternatives which

may not guarantee the same representativeness of the population. Furthermore, it

may be necessary to collect data multiple times in different periods and for different

purposes, which makes the process itself more complicated.

Computational complex. The integration of ML models usually involves the

formulation of nonlinear, non-convex models. This is not the case with linear ML

models, but as we have seen, it is not always possible to describe the relationship

between variables in a linear manner without affecting the accuracy (and sometimes

even feasibility) of the final solutions. Nevertheless, we are confident that more re-

search will be conducted on selection and integration methods of Machine Learning

models whose structure can be best exploited for boosting the search process.
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7 Conslusions and further research
This research aimed to combine Machine Learning and Operations Research meth-

ods to derive one single optimization model where one of the constraints was built

with a data-driven approach. Two Machine Learning models, a Linear Regression

model and a Neural Network, were used alternatively for the realization of the em-

pirical constraint. The two models were compared mainly in terms of accuracy.

These performance measurements were performed on a test set and on the solutions

evaluated by the optimization solver. In addition, an algorithm was reported to

improve the performance of the Neural Network, which is particularly suitable for

iterative learning processes.

The research reported interesting results highlighting the importance of choosing

an appropriate Machine Learning model. As future research, we recommend carry-

ing out in-depth studies on the Machine Learning-based optimization model and on

new ways to exploit its structure during the optimization process.

In the case study, an optimization model was used to generate the dataset. The

composition of the dataset is critical for building unbiased ML models. This is true

with both artificial data collection and on-site data collection. We reserve as future

research, a more accurate study of the characteristics (e.g. size, samples distribu-

tion) of a good dataset. The adoption of field data could incentivize the use of

further constraints for feature extraction to improve the performance of embedded

ML models. It may also be necessary to redesign Algorithm 2 such that the num-

ber of iterations needed to improve the model is small, given the long time and

high costs it requires. In this perspective, it would be interesting to apply online

learning techniques to improve the predictive model by adding new specific samples.

We emphasize that, although we only focused on two Machine Learning models,
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we can find, in the literature, more suitable predictive models to embed in the op-

timization process. We suggest, as future research, to carry out a thorough study

of a wider range of ML models and perform a comparison to find which ones are

most suitable for the considered problem. In our case study, it would be interesting

to perform further tests with classification models in order to distinguish between

palatable food baskets and unpalatable ones without assigning them a score.

Finally, as long-term objectives, we propose the study of a new type of optimization

solver for the resolution of Machine Learning-based optimization models. More-

over, another interesting aspect is to determine, by applying robust optimization

techniques, robust solutions against inaccuracy of the predictive models.
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Acronyms
ANN Artificial Neural Netowork. 22–25

B&B Branch and Bound. 7, 8

DNN Deep Neural Network. 7

EURO The Association of European Operational Research Societies. 3

FAO Food and Agriculture Organization. 8

FBG Food Basket Generator. 28, 31–34, 36, 41, 44

FCNN Fully Connected Neural Network. 23, 24, 36–38, 40, 41, 43, 45

FDP Final Delivery Point. 12

HSCM Humanitarian Supply Chain Management. 9, 11, 26

LP Linear Programming. 24

LR Linear Regression. 21, 22, 24, 25, 35, 37, 38, 40

MILP Mixed Integer Linear Programming. 7

MINLP Mixed Integer Non-linear Programming. 25

ML Machine Learning. 3–5, 7, 8, 16–18, 24, 26, 34, 36–38, 48, 49

MLBO Machine Learning-based Optimization. 15, 17, 18, 20–22, 24, 26, 27, 34–38,

40, 41, 43, 44, 46

MSE Mean Square Error. 20, 36

NSC Nutritious Supply Chain. 9–11, 13
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OLS Ordinary Least Squares. 21

OR Operations Research. 3, 7, 8

RDA Recommended Dietary Allowance. 11

WFP World Food Programme. 9, 12, 13, 27

WHO World Health Organization. 12

XAI Explainable Artificial Intelligence. 7
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[12] Dash, S., Günlük, O., and Wei, D. Boolean decision rules via column

generation. In NeurIPS (2018).

[13] den Hertog, D., and Postek, K. Bridging the gap between predictive and

prescriptive analytics-new optimization methodology needed. (2016).

[14] Esra, B. A robust optimization approach to diet problem with overall glycemic

load as objective function. Applied Mathematical Modelling 38, 19 (2014), 4926–

4940.

[15] FAO, IFAD, UNICEF, WFP, and WHO. The state of food security and

nutrition in the world 2020. Transforming food systems for affordable healthy

diets. Rome, 2020.

[16] Fischetti, M., and Jo, J. Deep neural networks and mixed integer linear

optimization. Constraints, 23 (2018), 296–309.

[17] Garille, S. Stigler’s diet problem revisited. Operations Research 49 (2001).

[18] Goodfellow, I., Bengio, Y., and Courville, A. Deep Learning. MIT

Press, 2016. http://www.deeplearningbook.org.

[19] Haghani, A., and Oh, S.-C. Formulation and solution of a multi-commodity,

multi-modal network flow model for disaster relief operations. Transportation

Research Part A: Policy and Practice 30, 3 (1996), 231–250.

[20] Hart, W. E., Laird, C. D., Watson, J.-P., Woodruff, D. L., Hacke-

beil, G. A., Nicholson, B. L., and Siirola, J. D. Pyomo–optimization

modeling in python, second ed., vol. 67. Springer Science & Business Media,

2017.

[21] Hastie, T., Tibshirani, R., and Friedman, J. The elements of statistical

learning: data mining, inference and prediction. Springer, 2009.

55

http://www.deeplearningbook.org


[22] Haykin, S. Neural Networks: A comprehensive foundation, 2nd ed. Prentice

Hall PTR, USA, 1998.

[23] Haykin, S. Neural networks and learning machines, third ed. Pearson Educa-

tion, Upper Saddle River, NJ, 2009.

[24] John, L., Ramesh, A., and Sridharan, R. Humanitarian supply chain

management: A critical review. Int. J. of Services and Operations Management

13 (2012), 498–524.

[25] Kingma, D., and Ba, J. Adam: A method for stochastic optimization.

International Conference on Learning Representations (2014).

[26] Kohavi, R. Glossary of terms: special issue on applications of machine learn-

ing and the knowledge discovery process. http://robotics.stanford.edu/

~ronnyk/glossary.html.

[27] Koza, J. R., Bennett, F. H., Andre, D., and Keane, M. A. Automated

design of both the topology and sizing of analog electrical circuits using genetic

programming. Springer Netherlands, Dordrecht, 1996, pp. 151–170.

[28] Lodi, A., and Zarpellon, G. On learning and branching: a survey. TOP,

25 (2017), 207–236.

[29] Lombardi, M., Milano, M., and Bartolini, A. Empirical decision model

learning. Artificial Intelligence (2016), 343–367.

[30] Marcos Alvarez, A., Louveaux, Q., and L., W. A supervised machine

learning approach to variable branching in branch-and-bound. Technical report

(2014).

[31] Ozdamar, L., and Demir, O. A hierarchical clustering and routing proce-

dure for large scale disaster relief logistics planning. Transportation Research

Part E: Logistics and Transportation Review 48 (2012), 591–602.

56

http://robotics.stanford.edu/~ronnyk/glossary.html
http://robotics.stanford.edu/~ronnyk/glossary.html


[32] Peters, K., Fleuren, H., den Hertog, D., Kavelj, M., Silva, S.,

Goncalves, R., Ergun, O., and Soldner, M. The nutritious supply

chain : Optimizing humanitarian food aid. Tech. rep., 2016.

[33] Pulliam, H. R. Diet pptimization with nutrient constraints. The American

Naturalist 109, 970 (1975), 765–768.
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