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Abstract 

 

The thesis is situated within the “I SEE project” (Inclusive STEM Education to Enhance the 

capacity to aspire and imagine future careers), a triennial ERASMUS+ project, started in 2016 

and ended in September 2019, coordinated by the Department of Physics and Astronomy of the 

University of Bologna (https://iseeproject.eu/). 

The main aim of the project is to design of teaching modules on advanced interdisciplinary 

STEM topics, such as climate change, quantum computers or artificial intelligence, for 

secondary school students. The approach developed toward these STEM topics reflects the need 

of updating Science Education and preparing students to address the socio-scientific challenges 

that the world compels us to face. 

The work of this thesis concerns the design and the development of an activity on classical and 

quantum random walk that aims to: i. carry out the intrinsic interdisciplinarity of the topic, ii. 

highlight the differences between the logic at the basis of the classical and quantum computers.  

It is designed in the light of a follow-up of the I SEE project, the IDENTITIES project 

(https://identitiesproject.eu/). IDENTITIES (Integrate Disciplines to Elaborate Novel Teaching 

approaches to InTerdisciplinarity and Innovate pre-service teacher Education for STEM 

challenges) is an ERASMUS+ project, started in September 2019 and coordinated by the 

Department of Physics and Astronomy of the University of Bologna. This project, more focused 

on interdisciplinary themes, provides  a lens to explore the random walk as a context in which 

we can investigate, on one hand, the peculiarities of the disciplines involved and, on the other, 

their intertwining.  

A future-oriented part, my main contribution to the activity, is carried out in order to foster 

students to explore the wide range of application and implication that random walk hides and 

to show them the variety of STEM carriers that can be involved. 

 

 

 

 

https://iseeproject.eu/
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Sommario 

 

La tesi si colloca all'interno del “progetto I SEE” (Inclusive STEM Education to Enhance the 

capacity to aspire and imagine future careers), un progetto triennale ERASMUS +, avviato nel 

2016 e terminato a settembre 2019, coordinato dal Dipartimento di Fisica e Astronomia 

dell'Università di Bologna (https://iseeproject.eu/).          

L'obiettivo principale di I SEE è la progettazione di moduli didattici su argomenti STEM 

avanzati, come il cambiamento climatico, i computer quantistici o l'intelligenza artificiale, per 

studenti delle scuole secondarie. L'approccio sviluppato per affrontare questi temi riflette la 

necessità di aggiornare la didattica delle scienze con lo scopo di preparare gli studenti ad 

affrontare le sfide socio-scientifiche che il mondo ci pone davanti. 

Il lavoro di questa tesi riguarda la progettazione e lo sviluppo di un'attività sul random walk 

classico e quantistico che mira a: i. esplorare l'intrinseca interdisciplinarità del tema, ii. mettere 

in luce le differenze tra la logica alla base dei computer classici e quantistici.          

Come follow-up del progetto I SEE è nato il progetto IDENTITIES (Integrate Disciplines to 

Elaborate Novel Teaching approach to InTerdisciplinarity and Innovate pre-service teacher 

Education for STEM challenge). Si tratta di un progetto ERASMUS +, avviato a settembre 

2019 e coordinato dal Dipartimento di Fisica e Astronomia dell'Università di Bologna. Questo 

progetto, più incentrato su temi interdisciplinari, ha fornito una lente per esplorare il random 

walk come un contesto in cui indagare, da un lato, le peculiarità delle discipline coinvolte e, 

dall'altro, il loro intreccio. 

Il mio principale contributo riguarda lo sviluppo di un’attività orientata al futuro con lo scopo  

di fare esplorare agli studenti l'ampia gamma di applicazioni e implicazioni del random walk e 

per mostrare loro la varietà di carriere STEM che possono essere coinvolte. 

 

 

 

 

https://iseeproject.eu/
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Introduction  

 

The present thesis is situated within the I SEE project (Inclusive STEM Education to Enhance 

the capacity to aspire and imagine future careers), an ERASMUS+ project coordinated by the 

University of Bologna that started in 2016 (http://www.iseeproject.eu/) and finished in 

September 2019. The aim of the I SEE project is the development of teaching-learning modules 

on STEM topics such as climate change, carbon sequestration, artificial intelligence, and 

quantum technologies. I contributed to the design of the second implementation of a teaching 

module on Quantum computers for secondary school students. In particular, I participated in 

the realization of an activity on classical and quantum random walk that is located in a follow-

up of the I SEE project: the IDENTITIES project. This project is much more focused on the 

theme of interdisciplinarity and it provide us a lens on which analyze and reconstruct the topic 

for secondary school students.                     

The module we designed has been implemented within the PLS (Piano Lauree Scientifiche) 

project, organized by the department of Physics and Astronomy of University of Bologna in 

January-February 2020.  

The thesis is divided in three chapters and the conclusions.                    

The first chapter is focused on the I SEE project. After a brief introduction in which I 

problematize the importance of address contemporary STEM challenges in Science Education, 

the I SEE project and its teaching goals are introduced. In the last part of the chapter an overall 

description of the developed module on the quantum computer is presented. 

The second chapter is dedicated to the random walk. Once the probabilistic tools necessary to 

understand the topic are resumed, the classical and quantum random walk are deepened from a 

mathematical and physical point of view.   

The third chapter, original part of the thesis, concerns the educational reconstruction of an 

activity on the random walk. In the first part of the chapter a description of the aims of the 

activity and of what we actually did with students are presented. The last part is dedicated to 

the activity, held my me, regarding an exploration of the broad spectrum of application of 

classical and quantum random walk, from Physics to art. 

In the conclusions some students reaction to the interdisciplinary approach are discussed. 

http://www.iseeproject.eu/
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Chapter 1: I SEE project and the teaching module on quantum 

computing 

1.1 Science and STEM education  

“If the role of education is to prepare learners for their future, how can education prepare 

learners for an uncertain future?” (Branchetti, Cutler, Laherto, Levrini, Palmgren, Tasquier & 

Wilson, 2018) 

This is an important question in the contemporary society, a question that arises spontaneously 

due to the uncertainty of modern time. In this society, science and technology play a crucial 

role enhancing the need to develop skills and competences to navigate the complexity and the 

uncertainty we are experiencing, and to broaden the future’s perceptions of the young 

generation.  On the contrary, in the era of technical and social acceleration (Rosa H., 2010), 

science and technology are contributing, especially in the young, to increasing a sense of 

anxiety and fear. The constant changes and the acceleration of the evolution of our society, 

assisted by an economic crisis, caused an impairment in young people’s educational and 

professional possibilities. This is also showed by the European union trough the Eurobarometer 

survey, that pointed out the exclusion from economic and social life suffered by young people.  

Furthermore, the survey highlighted their difficulties to project themselves into the future 

(Eurobarometer,2014).  

Science education is becoming more and more aware of the need to prepare young people to 

deal with an uncertain future and to develop a pedagogy that can understand the anxiety that 

young people feel. There is the need to update the science education. The path that science 

education is taking is to foster the interest toward STEM subjects as a context to explore the 

relation between science disciplines and the societal challenges.  

The STEM subjects are, as the acronym would suggest, the disciplines related to Science, 

Technology, Engineering and Mathematics. This acronym was created in the late 1990’s in the 

USA by the National Science Foundation. The contemporary challenges that world requires to 

face mark the needs of combining these disciplines to create more integrated and 

interdisciplinary approach to learning where “rigorous academic concepts are coupled with real 

world applications and students use STEM in contexts that make connections between school, 

community, work, and the wider world” (Committee on STEM Education, 2018). 
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STEM education is not the simple combination, but it is a multidisciplinary, interdisciplinary 

and transdisciplinary approach that search for an integration between these disciplines. There 

are different definitions of STEM education, one of the most significative to recall its 

multidisciplinary character is the one provided by Kennedy and Odell: “an approach to teaching 

that is larger than its constituent parts” (National High School Alliance, nd, in Kennedy & 

Odell, 2014). 

• An important feature of STEM education is the boundary crossing between the different 

disciplines in order to have a better comprehension of this. As identified by Vasquez, 

there are four increasing levels of integration: 

• Disciplinary: concepts and skills are learned separately in each discipline. 

• Multidisciplinary: Concepts and skills are learned separately in each discipline but 

within a common theme. 

• Interdisciplinary: Closely linked concepts and skills are learned from two or more 

disciplines with the aim of deepening knowledge and skills. 

• Transdisciplinary: Knowledge and skills learned from two or more disciplines are 

applied to real-world problems and projects, thus helping to shape the learning 

experience. (Vasquez et al 2013) 

In Vasquez’s idea, the transdisciplinary level is the most important because the task of STEM 

education is to help solving real-world problems and to provide the skills to understand our 

uncertain time. STEM education has also the duty to prepare young people to the jobs of the 

future, the STEM carriers, as referred by a report from the Committee on STEM Education 

National Science and Technology Council (USA) of May 2013: “The jobs of the future are 

STEM jobs: The demand for professionals in STEM fields is projected to outpace the supply of 

trained workers and professionals. Additionally, STEM competencies are increasingly required 

for workers both within and outside specific STEM occupations.” (Holdren, Marrett, & Suresh, 

2013).  

We can now understand the importance of including STEM education in science education. 

In the next section, I present the I SEE project and how it contributed to the development of a 

STEM approach to improve the young people’s capacities to deal with their future.  
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1.2 I SEE project 

The I SEE project (https://iseeproject.eu/), an acronym that stands for Innovative STEM 

Education to Enhance the capacity to aspire and imagine future careers, is a European project, 

coordinated by the University of Bologna and finished in September 2019. It involved eight 

different partners: 

Three secondary schools: the Liceo A. Einstein in Rimini (Italy), the Helsinki Normal Lyceum 

(Finland), and the Hamrahlid College of Reykjavik (Iceland). 

Two universities departments: Department of Physics of the University of Bologna (UNIBO) 

and the Department of Physics of the University of Helsinki (UH) 

Three associations: The Icelandic Environment Association (IEA), the Association for Science 

Education (ASE, UK) and he Fondazione Golinelli (FG). 

The project tried to solve the issues embedded by science education, pointed out in the first 

paragraph, in order to provide the students with the abilities to understand the future and aspire 

to STEM careers. The principal aim of the project is to realize teaching module on STEM topic 

in order to foster students’ identities as capable persons and responsible citizens in a fast 

changing world (Branchetti et al., 2018). 

A central aspect is the development of “future-scaffolding skills” that will help the students to 

understand and face up to the future. For future-scaffolding skills we “refer to the capability of 

organising knowledge in the present, imagining futures and moving dynamically and 

consciously, back and forth, globally-locally between different times and dimensions” (Levrini, 

Tasquier, Branchetti, & Barelli, 2019). Some of these skills are strategic thinking and planning, 

risk taking, thinking beyond the realm of possibilities, managing uncertainty, creative thinking, 

modelling, and argumentation.  

The teaching modules developed within the I SEE project concern four cross-cutting topics: 

climate change, carbon sequestration, artificial intelligence, and quantum computing. All these 

topics share some characteristics: they are future-oriented, STEM topics, and they are relevant 

from a personal and social point of view. The present thesis is focused on the quantum 

computing module. 

Although the topics are different, all the I SEE modules have the same structure. The three main 

phases of the typical structure are (Fig.1): 

Encountering the focal issue; 

https://iseeproject.eu/
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Developing of conceptual ad epistemological knowledge about the topic; 

Synthesizing the ideas and putting them into practice with future oriented activities. 

 

Figure 1.1: structure of an I SEE project module 

Every module begins with the students encountering the focal issues, that is necessary to 

develop a preliminary idea of the main topic. In this preliminary phase, we stress on the 

relevance of the topic and on the multidimensional aspect of the module. Initially all the 

instruments needed to understand and face up the topic, such as the conceptual and 

epistemological scientific knowledge required and the specific language, are presented to the 

students. Then the problematic aspects of the topic and an analysis of the stakeholders involved 

in the theme are introduced. 

 

The second phase can be divided in three sub-phases: 

Conceptual knowledge (CK) 

Epistemological knowledge and practice (EKP) 

Inquiry practice (IP). 

Conceptual knowledge refers to the disciplinary content knowledge, in this phase the topic is 

introduced from the conceptual point of view. Then the aim moves on the epistemic practice 

such as, modelling, arguing, and explaining, and this is achieved with a series of group activities 

where the students are guided also to grasp the shift in the epistemological paradigm. Other 

activities are organised to use and acquire inquiry skills such as formulating hypotheses, 
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designing inquiry, and moving from models to experiments and vice versa. Studies in the field 

have shown that including these three features in the science contents may foster a deeper and 

meaningful learning (Tasquier, Levrini, & Dillon, 2016).  

The last phase is focused on future-oriented practices. These future-oriented activities can be 

divided in four groups: 

Activities to flesh out the future-oriented structure of scientific discourse, language, and 

concepts. 

Activities inspired by future studies or by the working life and social matters. 

Exposure activities to enlarge the imagination about possible STEM careers. 

Action competence activities. 

 

This is the most creative part of the I SEE module, where the students have to deal with a real 

problem. This is also a moment in which, knowledge and practices acquired along the whole 

sequence begin to transform into skills in action. This final part particularly contributes to the 

creation in the students of the future scaffolding skills.  

 

1.3 The quantum computing module 

The module on quantum technologies is an output of the Erasmus+ project I SEE, described in 

the previous section. However, in the last year it was elaborated to match new aims foreseen by 

another project that is a sort of follow up of I SEE: the IDENTITIES project 

(https://identitiesproject.eu/). IDENTITIES project (Integrate Disciplines to Elaborate Novel 

Teaching approaches to InTerdisciplinarity and Innovate pre-service teacher Education for 

STEM challenges) is still coordinated by the University of Bologna and started just when I SEE 

finished, in September 2019. The overarching goals of the new project are i) to design novel 

teaching approaches on interdisciplinarity in science and mathematics to innovate pre-service 

teacher education for contemporary challenges and ii) to explore emergent advanced STEM 

themes (i.e. quantum technologies, artificial intelligence, nano-technologies) and curricular 

interdisciplinary topics (i.e. cryptography, parabola, etc.) as contexts to explore inter-multi-

trans-disciplinary forms of knowledge organization and to design classroom activities and new 

models of co-teaching. With the lenses of IDENTITIES the module on quantum computing was 

re-thought in order to explore the topic as a STEM topic, focusing on the links and interweaving 

between physics, mathematics, and computer science. 

https://identitiesproject.eu/
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The teaching module was implemented twice within the PLS (Piano Lauree Scientifiche) 

laboratories organized by the University of Bologna. The first pilot study was realized in 

February/March 2019 and involved 25 secondary school students (17/18 years old). I participate 

to the second round that took place in January/February 2020 and involved 22 secondary school 

students. The course was structured as an I SEE module with a combination of lectures, 

interactive/laboratory activities, and group activities. Some activities, including the activity of 

random walk, was a novelty of the second edition, added to match the goals of IDENTITIES.  

The main purposes of the course, in principle with the characteristics of the I SEE project 

modules, were: 

To introduce the basic quantum physics knowledge necessary to understand the differences 

between a classical and a quantum computer and to grasp the potentiality of these new 

technologies 

To consider the scientific, cultural, and social implications of these new quantum technologies 

(quantum computers, quantum simulators and quantum internet) 

To grasp the multidimensionality of the theme and to detect the possibilities of STEM carriers  

To develop critical thought that can guide in this fast changing world and in the upcoming 

future. 

 

The module consisted in six meetings of three hours each. Each meeting included activities to 

introduce students to the conceptual and epistemological dimensions of the topic, and a part 

dedicated to future-oriented activities. In table 1 the timetable of course is reported. 

 

Table 1: timetable of the Quantum computing course 

Day Concept&epistemological -oriented activities Future-oriented activities 

1 History of classical computers 

Introduction and history of quantum 

technologies 

Future-oriented activity “quantum 

computing &...” 

2 The basics concepts for quantum computer 

(state, superposition principle, Qubit, state 

evolution and measurement) 

Delivery of students’ output on 

“quantum computing &...” 

3 Introduction to multi-qubit systems and 

entanglement 

Cryptography 

Futures and action competence 

activity: the Eve city 
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The lessons were held by: 

Prof. Olivia Levrini, a researcher in Physics Education, coordinator of the course; 

Prof. Elisa Ercolessi, a theoretical physicist with expertise in quantum computing; 

Paola Fantini, a retired secondary school teacher with professional expertise in classical 

architectures and algorithms;  

Sara Satanassi, a PhD student in Physics; 

Me, Dario Casali, Bachelor student in Physics. 

 

1.3.1 The lectures 

The first day started with an introduction of the course presented by Professor Olivia Levrini. 

After a brief presentation of the characteristic of an I SEE project module on quantum 

computing, she asked some questions about the future to the students. The students’ answers 

showed and confirmed the uncertainty and the apprehension that the young people feel for the 

future (justifying one of the main reasons for the realization of the course).  

Then the meeting proceeded with a lecture held by Paola Fantini, with an introduction of 

classical computing and classical computer. The aims of the lecture were:  

to introduce what classical computer architecture is  

to introduce the binary logic that characterises classical computer,  

to retrace the evolution of classical computer (from hardware to software).  

The leading thread of the lecture, and of the entire course, was the presentation of the 

parallelism between experiment and computation. To reach this goal, the three phases of 

computer processing (input information – processing information – output information) have 

been used to re-read the phases of an experiment: state preparation – state 

manipulation/evolution – measurement (Satanassi, 2019; Satanassi, S., Ercolessi, E., Levrini, 

O., under review). The lecture was very engaging because Paola Fantini joined an historical 

4 Quantum teleportation Futures and action competence 

activity: the Eve city 

5 Classical and Quantum random walk Futures and action competence 

activity: the Eve city 

6 Delivery of students’ outputs on futures and action competence activity (cancelled due 

Covid epidemic) 
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exposition on the evolution of the classical computers and her personal history (as an Italian 

early adopter of the computer technology).  

More specifically, after a brief introduction of Von Neumann architecture, the concept of Bit 

and the logic gates were presented through a story extracted from an article published in 1988 

by Dewdney called “an ancient rope-and-pulley computer is unearthed in the jungle of 

Apraphul” (Dewdney, 1988). The story tells of an invented island where mechanical devices 

were found and such devices reproduced logic gates realized with systems of ropes and pulleys. 

Then the computational representation of logic gates and their functioning were shown, 

introducing students to the concept of circuit. Finally a brief evolution of quantum computers 

has been presented, passing through the four generations of computers (from information 

processing through vacuum tubes, to the modern microchips). 

The second part of the lecture was held by Sara Satanassi, who introduced quantum 

technologies as a current scientific challenge with strong implications on the society. Following 

a similar path to Fantini’s part, after an introduction of the history and evolution of the quantum 

computers, she took a glance on the principal quantum concepts (superposition principle and 

Qubit) in order to open up students’ vision on the differences between the classic and quantum 

computer. Finally she presented some fields of application of quantum technologies and the 

impact of these technologies on different dimensions such as the dimension of research, society, 

politics, ethics, environment, and education.  

The final part of the meeting was dedicated to a group activity: the aim was to introduce students 

to the Quantum Manifesto, an official document that highlights the importance of such 

technologies in the European scenario, and guide them to explore in group the principal 

scientific and societal fields of interest of the quantum technologies (Scientific and technologic 

research, politic, society and communication).  

The second day started with the delivery of the group activity, the students in groups presented 

their explorations on the different implication and on the possible applications of the quantum 

technologies to the whole class.  

Then, a deeper lecture on the basic concepts of quantum physics and quantum computing were 

presented to students. The lecture was held by Professor Elisa Ercolessi. Through the approach 

of the comparison between experiment and computation, already seen in previous lectures, and 

through the Stern and Gerlach experiment, she introduced the concepts of quantum state, 

evolution of the state, superposition principle and measurement. Finally, she passed to the 



19 
 

computational representation of the same concept introducing the concept of Qubit, quantum 

logic gates and respective truth table. 

The third day Professor Elisa Ercolessi introduced two-Qubit systems and the concept of 

entanglement. The lecture continued with the presentation, after a brief historical excursus, of 

quantum cryptography, in particular of the BB84 protocol, through the simulation of QUVIS 

by the University of St. Andrews (https://www.st-

andrews.ac.uk/physics/quvis/simulations_html5/sims/cryptography-

bb84/Quantum_Cryptography.html). 

The second half of the lesson was held by Olivia Levrini, that introduced students to the 

future-oriented activities. Firstly she presented to the students the concept of the “future-

cone” (fig.2).  

 

Figure 1.2: I SEE interpretation of the Future-cone by Voros. 

The future-cone is an important representation of the vision of the “futures”. It is a fundamental 

step to communicate to students, that the future should not be thought as singular but as plural. 

There are different possible futures, some are plausible, some probable and some are preferable. 

Each future is imaginable by depicting scenarios, which are “stories about distinct futures” 

(Miller, 2006, p. 98).                  

Then a short story about an imaginary city called Eve was presented to students. They, divided 

in groups, had to put themselves in the shoes of the major of the city and decide whether or not 

to invest in a big quantum artificial intelligence to re-invent the Eve city. The students had 

consider the possible implications of their choice, to find the stakeholders, the needs and the 

https://www.st-andrews.ac.uk/physics/quvis/simulations_html5/sims/cryptography-bb84/Quantum_Cryptography.html
https://www.st-andrews.ac.uk/physics/quvis/simulations_html5/sims/cryptography-bb84/Quantum_Cryptography.html
https://www.st-andrews.ac.uk/physics/quvis/simulations_html5/sims/cryptography-bb84/Quantum_Cryptography.html
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interests of the citizens and their relationships. At the end they had to decide whether to adopt 

or not the technology and to imagine the possible impact of their choice. 

The fourth day was mainly focused on quantum teleportation. The activity was held by Sara 

Satanassi, taking in account the complexity of the topic, she used the approach of the 

comparison between experiment and circuit and articulated the discourse on four different 

levels: the narrative, the logical, the technical- mechanistic, and mathematical one (Satanassi, 

S., Fantini, P., Spada, R., Levrini, O., under review). Initially she contextualised the problem 

to be solved (how teleport the state of the photon from one side to the other of the Danube) 

through an introductive story (narrative level). Then she passed to the description the quantum 

teleportation experiment (technical-mechanistic level), realized by the group of Zeilinger in 

2004 (Ursin, Jennewein, Aspelmeyer, Kaltenbaek, Lindenthal, Walther, P., & Zeilinger, 2006). 

She mainly focused on the crucial moments that make teleportation possible without going into 

the details of the experimental tools. Finally she presented the circuital representation (logical 

level) of the teleportation protocol, recalling the logic gates introduced in the previous meeting 

and presenting the calculation using the bra-ket formalism (mathematical level). 

The meeting continued with the pursuance of the EVE city’s group activity where three possible 

scenarios were presented to the students and they had to decide the one they prefer. The students 

with the same choices formed the group and presented to the rest of the group the motivations 

for their choice. The activity fostered students to think about an actual problem of the society 

and try to address it within the chosen scenario, paying attention to the hypothetical crucial 

steps or contingencies that could lead to the problem solution.  

The fifth day was centered on the classical and quantum random walk, with the lens on 

interdisciplinarity between mathematics, physics, and computer science. This is the main focus 

on my thesis and topic of the third chapter. I contributed to the design and the development of 

the activities carried out in this meeting.   

The sixth day should be dedicated to the delivery of the future-oriented activity. Unfortunately, 

because of the health crisis caused by the covid-19, we had to cancel it.            

In the next chapter the classical and quantum random walk are treated from a mathematical and 

physical perspectives.  
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Chapter 2: A probabilistic study of the classical and quantum 

random walk 

With the term random walk, we refer to a probabilistic theory based on a discrete parameter 

stochastic process 𝑋(𝑡), with random variable 𝑋 describing the position as a function of time 𝑡. 

In order to be able to talk about random walk we have to be familiar with certain concepts of 

the probabilistic theory like random variables and probabilistic distributions. In particular we 

are going to analyse the normal (or gaussian) distribution and the binomial distribution, even 

studying links between the two. 

After the introduction of the random walk from a mathematical point of view, we will analyse 

the differences between the classical and the quantum random walk and we will explore the 

application of the binomial distribution to the random walk. The Galton board will be presented 

as the physical counterpart both for the classical and for the quantum case. This example is not 

only an important physic application, but it can also bring to a better comprehension of the 

random walk’s concept.  

The following brief review is mainly excerpted from the book “Introduction to error analysis, 

the study of uncertainties in physical measurements” by Taylor J. (1997).  

2.1 A glance at the probability theory  

2.1.1 The concept of probability and of probability density function 

A stochastic variable (or random variable) is a quantity  𝑋, defined by a set of possible values 

and by a probability distribution over these values. This set of possible values can assume 

discrete or continue values. 

 The set can be discrete, like the outcome of a coin toss (head or tail) or the number of electrons 

in the conduction band of a semiconductor. The set can be continue, like a component of the 

velocity of a Brownian particle.  

In the discrete case, the variables have an associate probability 𝑝𝑖, with the following properties: 

𝑝𝑖 ≥ 0 

∑𝑝𝑖 = 1   (1.1) 

The probability density function, 𝑃(𝑥), is defined as: 

𝑃𝑋(𝑥) = ∑𝑝𝑖𝛿(𝑥 − 𝑥𝑖)   (1.2) 
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For continue variables, the probability distribution function, 𝑃(𝑥),  complies the following the 

properties: 

𝑃(𝑥) ≥ 0 

∫ 𝑃(𝑥)𝑑𝑥
+∞

−∞
= 1   (1.3) 

where 1.3 is the normalization property. 

𝑃(𝑥)𝑑𝑥 represents the probability that 𝑋 attains a value within 𝑥 and 𝑥 + 𝑑𝑥, so the probability 

density function, that is the probability in an interval [𝑎 < 𝑥 < 𝑏], is defined as: 

𝑃𝑟𝑜𝑏(𝑎 < 𝑥 < 𝑏) = ∫ 𝑃(𝑥)𝑑𝑥
𝑏

𝑎
  (1.4) 

Through the probability distribution function, we can also define the cumulative distribution 

function, that is the probability that 𝑋 will take a value less than or equal to x: 

𝐹(𝑥) = ∫ 𝑃(𝑥′)𝑑𝑥′
𝑥

−∞
  (1.5) 

We have to introduce other few concepts that will be useful for the following explanation of 

the distributions, the moments.  

The moments provide information on the amplitude and shape of the probability density𝑃𝑋(𝑥). 

The nth moment of 𝑋 is defined as: 

〈𝑥𝑛〉 = ∫ 𝑥𝑛𝑃𝑋(𝑥)𝑑𝑥
+∞

−∞
. (1.6) 

this general definition assumes specific meanings for certain value of the n. The average is 

defined as: 

〈𝑥〉 = ∫ 𝑥𝑃𝑋(𝑥)𝑑𝑥
+∞

−∞
.  (1.7) 

Using the definition of average we can define another useful value, the variance: 

𝑉𝑎𝑟(𝑋) = 〈𝑥2〉 − 〈𝑥〉2   (1.8) 

With the variance we can also obtain the standard deviation as the square root of the variance: 

𝜎 =  √𝑉𝑎𝑟(𝑋) = √〈𝑥2〉 − 〈𝑥〉2    (1.9) 

The last concept we need is the characteristic function that is the Fourier transformation of the 

probability function. It is an alternative route to analytical studies compared to the probability 

or the cumulative density functions. The characteristic function  𝑓𝑋(𝑘) is defined as: 
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𝑓𝑋(𝑘) = 〈𝑒𝑖𝑘𝑥〉  =  ∫ 𝑃(𝑥)𝑒𝑖𝑘𝑥+∞

−∞
𝑑𝑥 =  ∑

(𝑖𝑘)𝑛〈𝑥𝑛〉

𝑛!
∞
𝑛=0   (1.10) 

If the characteristic function is known, we can obtain the probability function as: 

𝑃(𝑥) =  
1

2𝜋
∫ 𝑓𝑋(𝑘)

+∞

−∞
𝑒−𝑖𝑘𝑥𝑑𝑘  (1.11) 

2.1.2 Binomial distribution 

In order to explain the binomial distribution we can start with the example of an 𝑁 number of 

independent coin tosses. As we know the result of a coin toss can be head or tail. In this example 

we have a number 𝑛ℎ of heads and a number 𝑛𝑡 of tails that must follow the equation 𝑁 = 𝑛ℎ +

𝑛𝑡 . 

The probability of obtaining a number 𝑛ℎ of heads is given by the binomial distribution: 

𝑃(𝑛ℎ) =
𝑁!

𝑛ℎ!−(𝑁−𝑛ℎ!)
𝑝𝑛ℎ𝑞𝑁−𝑛ℎ  (1.12) 

where 𝑝 is the probability to obtain head and 𝑞 = 1 − 𝑝 is the probability to obtain tail. 

We can check that the normalization property is verified: 

∑ 𝑃(𝑛ℎ) =  𝑁
𝑛ℎ=0 ∑  

𝑁!

𝑛ℎ!−(𝑁−𝑛ℎ!)
𝑝𝑛ℎ𝑞𝑁−𝑛ℎ = (𝑝 + 𝑞)𝑁 =  1𝑁 = 1𝑁

𝑛ℎ=0    (1.13) 

We can define the average number of heads (or tails) on a number 𝑁 of attempts: 

<𝑛ℎ> = ∑ 𝑛ℎ  
𝑁!

𝑛ℎ!−(𝑁−𝑛ℎ!)
𝑝𝑛ℎ𝑞𝑁−𝑛ℎ = 𝑝𝑁𝑁

𝑛ℎ=0     (1.14) 

The standard deviation is: 

𝜎𝑛ℎ
= √𝑁𝑝(1 − 𝑝) = √𝑁𝑝𝑞  (1.15) 

2.1.3 Gaussian distribution 

In the limit 𝑜𝑓 𝑁 → ∞ (𝑁 number of tries) the binomial distribution can be approximated to the 

gaussian (or normal) distribution. 

The general form of the Gaussian distribution is: 

𝑃(𝑥) = 𝐶𝑒
− 

1

2(𝐴𝑥2−𝐵𝑥)                   (−∞ < 𝑥 < ∞)  (1.16) 

where A, B and C are positive constants: A determines the width, B determines the position of 

the peak and C is the normalization constant. These parameters can be expressed using the 

mean, µ, and the standard deviation, 𝜎, and they become:  
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𝐴 =
1

𝜎2   𝐵 =  −𝐴µ 𝐶 = (
𝐴

2𝜋
)

1/2

𝑒−𝐵2/2𝐴 (1.17) 

Now the Gaussian distribution can be written as: 

𝑃(𝑥) = √
1

2𝜋𝜎2 𝑒
−

(𝑥−µ)2

2𝜎2   (1.18) 

 

2.2 Random walk: an application of binomial distribution 

After briefly reviewing the mathematical tools, let us now address some applications and 

examples of these distributions. Our major interest is for the random walk. It can be seen as an 

application of the binomial distribution. The simplest form of random walk is the classical 

bidimensional random walk. Let us consider a particle that can move in a unidimensional space 

(figure 2.1), making single steps on the left or on the right.  

 

figure 2.1: unidimensional random walk 

We want to know the probability of being in a position 𝑛 (−∞ < 𝑛 < ∞) after 𝑟 steps. To each 

step corresponds a stochastic variable 𝑋𝑗 (j = 1,2, …,𝑟), taking the value 𝛥, −𝛥 with the same 

probability of 
1

2
. The position after r steps is: 

𝑌𝑁 = ∑ 𝑋𝑗
𝑟
𝑗=0   (1.19) 

The corresponding characteristic function is: 

𝑓𝑌𝑁
(𝑘) =  (cos(𝑘𝛥))𝑁  (1.20) 

We can express this function with a Taylor series: 

𝑓𝑌𝑁
(𝑘) =  (cos(𝑘𝛥))𝑁 =  (1 −

𝑘2𝛥2

2!
+ ⋯ )𝑁  ≈ 1 −

𝑁𝑘2𝛥2

2!
+ ⋯  (1.21) 

We can easily find that the mean is 〈𝑌𝑁〉 = 0, and the standard deviation is σ𝑌𝑁
= Δ√𝑁 
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It is possible to find the characteristic function considering the distance Δ and the infinitesimal 

time τ between two consecutive steps: 

𝑓𝑌(𝑘, (𝑁 + 1)τ)  −  𝑓𝑌(𝑘, 𝑁τ) =  (cos(𝑘𝛥)  −  1) 𝑓𝑌(𝑘, 𝑁τ) =  (−
𝑘2𝛥2

2!
+ ⋯ )𝑓𝑌(𝑘, 𝑁τ) 

 (1.22) 

We can define the random walk diffusion coefficient 𝐷 = (
𝛥2

2τ
) and within the limit for D finite, 

that is when N → ∞, τ → 0, 𝛥 → 0 and labelling N𝜏 = t we can notice that: 

lim
𝑁→ ∞

lim
τ→0

𝑓𝑌(𝑘,(𝑁+1)τ) − 𝑓𝑌(𝑘,𝑁τ)

τ
=  

𝜕𝑓𝑌(𝑘,𝑡)

𝜕𝑡
  (1.23) 

And 

lim
𝑁→ ∞

lim
τ→0

lim
 𝛥→0

(−
𝑘2𝛥2

2τ
+ ⋯ )𝑓𝑌(𝑘, 𝑁τ) =  −𝐷𝑘2𝑓𝑌(𝑘, 𝑡)  (1.24) 

That brings to: 

𝜕𝑓𝑌(𝑘,𝑡)

𝜕𝑡
 =  −𝐷𝑘2𝑓𝑌(𝑘, 𝑡)  (1.25) 

When 𝑓𝑌(𝑘, 0) = 1 the eq. 1.24 has the following solution: 

𝑓𝑌(𝑘, 𝑡) =  𝑒−𝐷𝑘2𝑡  (1.26) 

The probability distribution has the form: 

𝑃(𝑦, 𝑡) =  
1

2𝜋
∫ 𝑒−𝑖𝑘𝑦𝑒−𝐷𝑘2𝑡+∞

−∞
𝑑𝑘 =  √

1

4𝜋𝐷𝑡
𝑒−

𝑦2

4𝐷𝑡  (1.27) 

The probability density function of a random walker is a gaussian and its standard deviation is 

𝜎 =  √2𝐷𝑡   

2.2.1 Galton board  

The Galton board is a device invented by Francis Galton to provide an empirical proof of the 

central limit theorem and normal distribution. The device is structured as a vertical board with 

interleaved rows of pegs. A ball, thrown into the apparatus, moves under gravitation and it 

bounces off the pegs while falling. When the ball hit a peg, it randomly moves right or left with 

the same probability of 1/2. 
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Figure 2.2: Galton board structure 

Calling 𝑋𝑘 the horizontal deviation caused by a peg in row k, it can only take the values: 

𝑋𝑘 =  {
  1                      𝑤ℎ𝑒𝑛 𝑡ℎ𝑒 𝑏𝑎𝑙𝑙 𝑔𝑜𝑒𝑠 𝑟𝑖𝑔ℎ𝑡

−1                   𝑤ℎ𝑒𝑛 𝑡ℎ𝑒 𝑏𝑎𝑙𝑙 𝑔𝑜𝑒𝑠 𝑙𝑒𝑓𝑡
 

The probability function takes the values: 

𝑃𝑋𝑘
(𝑛) {

1

2
  𝑖𝑓 𝑛 = 1

   
1

2
  𝑖𝑓 𝑛 = −1

 

The horizontal distance from the centre 𝑋 is given by 𝑋 = ∑ 𝑋𝑘 𝑁
𝑘=1  

The horizontal distance 𝑋 is a discrete binomial variable as a sum of Bernoulli independent 

variables. We can easily find the probability function: 

𝑃𝑋 = (𝑛
𝑘

)𝑝𝑘(1 − 𝑝)𝑛−𝑘 =  (𝑛
𝑘

)
1

2

𝑛
 𝑤𝑖𝑡ℎ 𝑝 =

1

2
 (1.28) 

We can see an example of the probability distribution for a classic Galton board in table 1. 

Table 1: Probability of being at position 𝑋 after 𝑁 steps for a classic Galton board 

 

 

 

 

 



28 
 

 

2.3 Quantum random walk 

In this paragraph we introduce the quantum random walk in the discrete case.    

The main reference we used for the presentation of the topic in this section is a paper titled 

“Quantum random walks: an introductory overview” by Kempe J. (Kempe, 2003). 

Let us consider a particle in a unidimensional space, whose position is described by a wave-

packet |𝜓𝑥0
⟩ localised around the position 𝑥0. The transition of the particle after a step of length 

𝑙 can be expressed by the unitary operator: 

𝑈𝑙 = 𝑒−
𝑖𝑃𝑙

ħ   such that     𝑈𝑙|𝜓𝑥0
⟩ =  |𝜓𝑥0−𝑙⟩.     (1.29) 

Let us also assume a particle with a spin of  −
1

2
 . It is useful to represent the 𝑧 component of 

the spin operator with 𝑆𝑧 and to denote its eigenstates by |↑⟩ and |↓⟩, so that 𝑆𝑧|↑⟩ =  
ℏ

2
|↑⟩ and 

𝑆𝑧|↓⟩ =  
ℏ

2
|↓⟩.  

We can put ℏ = 1 (like in the natural system) to simplify the notation, so the particle is 

described by the tensor: 

|𝛹⟩ =  𝛼↑ |↑⟩ ⨂|𝜓↑⟩ + 𝛼↓ |↓⟩ ⨂ |𝜓↓⟩    (1.30) 

The first part of (1.30) is the component of the wave-function of the particle in the spin-|↑⟩ 

space and the second one in the spin-|↓⟩ space. Furthermore normalization requires that |𝛼↑|
2

+

 |𝛼↓|
2

= 1.                         

The time development corresponding to a step of length 𝑙 of particle with the spin −
1

2
 can now 

be described by the unitary operator: 
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𝑈 = 𝑒−2𝑖𝑆𝑧⊗𝑃𝑙
     (1.31) 

This operator induces a conditional translation on the particle depending on its internal spin-

degree of freedom. If the spin of the particle is initially in the state |↑⟩, so that its wave-function 

is of the form    |↑⟩ ⊗|𝜓𝑥0
⟩, an application of the operator 𝑈 transforms the wave-function into 

|↑⟩ ⊗|𝜓𝑥0−𝑙⟩ and the particle will be shifted by a step 𝑙 to left. The opposite case is when the 

spin of the particle is initially in the state |↓⟩, so that its wave-function is of the form |↓⟩ ⊗|𝜓𝑥0
⟩, 

an application of the operator 𝑈 transforms the wave-function to |↓⟩ ⊗|𝜓𝑥0+𝑙⟩ and the particle 

will be shifted by 𝑙 to right. 

An important behavior occurs when the spin of the particle, localized in 𝑥0, is not in an 

eigenstate of 𝑆𝑧, but it is in a superposition state: 

|𝛹𝒊𝒏⟩ =  (𝛼↑ |↑⟩ +  𝛼↓ |↓⟩) ⊗ |𝜓𝑥0
⟩  (1.32) 

The application of the operator 𝑈 brings to: 

𝑈|𝛹𝒊𝒏⟩ = 𝛼↑|↑⟩ ⊗ |𝜓𝑥0−𝑙⟩ +  𝛼↓|↓⟩ ⊗ |𝜓𝑥0+𝑙⟩  (1.33) 

Now if we want to measure the spin in the 𝑆𝑧 basis, the particle will be in the state |↑⟩⊗|𝜓𝑥0−𝑙⟩, 

localized around 𝑥0 + 𝑙 with the probability 𝑝↑ = |𝛼↑|
2
or in the state 𝛼↓|↓⟩ ⊗ |𝜓𝑥0+𝑙⟩, 

localized around 𝑥0 − 𝑙 with the probability 𝑝↓ = |𝛼↓|
2
.     

         

 This last procedure coincides to a random walk on a line, where after a step the particle is on 

average displaced by 𝑙(𝑝↑ − 𝑝↓).        

         If we repeat the process 𝑇 times, we will find that the particle is on average 

displaced by: 

〈𝑥〉 = 𝑇𝑙(𝑝↑ − 𝑝↓) = 𝑇𝑙(|𝛼↑|
2

− |𝛼↓|
2

)  (1.34) 

And the variance of its distribution will be: 

𝜎2 = 𝑇𝑙|𝛼↑|
2

|𝛼↓|
2

= 𝑇𝑙𝑝↑𝑝↓  (1.35) 

2.3.1 The discrete case 

Let 𝐻𝑝 be the Hilbert space spanned by the position of the particle. We describe the random 

walk in one dimension, so on a line or on a circle. In the first case the space is spanned by the 
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base {|𝑖⟩: 𝑖 ∈ 𝒁}, in the second case (a circle of perimeter of lenght 𝑁) we have 𝐻𝑝 = {|𝑖⟩: 𝑖 =

0 … 𝑁 − 1} with |𝑖⟩ corresponding to a particle localized in position 𝑖.   

        

The total space is constituted by the Hilbert space 𝐻𝑝 and a “coin-space” (the spin space) 𝐻𝑐 

spanned by the base {|↑⟩, |↓⟩}, so the total space is given by 𝐻 = 𝐻𝑐 ⊗ 𝐻𝑝. 

The conditional translation is expressed by the shift operator defined as: 

𝑆 = |↑⟩⟨↑| ⊗ ∑ |𝑖 + 1⟩⟨𝑖|𝑖 + |↓⟩⟨↓| ⊗ ∑ |𝑖 − 1⟩⟨𝑖|𝑖  (1.36) 

where 𝑖 ∈ 𝒁 in the case of the line or 0 ≤ 𝑖 ≤ 𝑁 − 1 in the case of the circle. 𝑆 transforms the 

basis state: 

|↑⟩ ⊗ |𝑖⟩ 
𝑆
→ |↑⟩ ⊗ |𝑖 + 1⟩   (1.37) 

and 

|↓⟩ ⊗ |𝑖⟩ 
𝑆
→ |↓⟩ ⊗ |𝑖 − 1⟩.  (1.38) 

The first step of the random walk is a rotation in the coin-space 𝐻𝑐. Let us take the initial state 

of the random walk in the |0⟩ state while the coin is in the state |↑⟩, |𝛷𝑖𝑛⟩ = |↑⟩ ⊗ |0⟩. After 

an iteration (a rotation in the coin space followed by the application of the 𝑆 operator) we want 

to have a shift on the right (|1⟩) with a probability of  
1

2
 and a shift on the left (|−1⟩) with the 

same probability. A commonly balanced unitary coin is the Hadamard coin 𝐻: 

𝐻 =
1

√2
(

1 1
1 −1

)  (1.39) 

Using the 𝐻 coin, it esay to see that it is balanced: 

|↑⟩ ⊗ |0⟩
𝐻
→

1

√2
(|↑⟩ + |↓⟩) ⊗ |0⟩

𝑆
→

1

√2
(|↑⟩ ⊗ |1⟩ + |↓⟩ ⊗ |−1⟩)  (1.40) 

Measuring the coin state in the standard basis gives {|↑⟩ ⊗ |1⟩, |↓⟩ ⊗ |−1⟩} with probability 
1

2
. 

After this measurement there is no correlation between the position left. If we continue the 

process, with a measurement at each iteration, we obtain a classic random walk represented by 

a classic Galton board. 
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Figure 2.3: Galton’s board 

In the quantum random walk, we do not measure the coin register during intermediate iteration, 

to keep the quantum correlations between different positions and let them interfere in the 

following steps. 

The quantum random walk of 𝑇 steps is defined by the transformation 𝑈𝑇, where 𝑈 is given by: 

𝑈 = 𝑆 ∙ (𝐻 ⊗ 𝐼)  (1.41) 

In order to show the differences of the quantum walk from its classical counterpart let us evolve 

the walk (without intermediate measurements), starting from the initial state 

|𝛷𝑖𝑛⟩ = |↓⟩ ⊗ |0⟩  (1.42) 

|𝛷𝑖𝑛⟩    
𝑈
→     

1

√2
(|↑⟩ ⊗ |1⟩ − |↓⟩ ⊗ |−1⟩)     

𝑈
→     

1

2
(|↑⟩ ⊗ |2⟩ − (|↑⟩ − |↓⟩) ⊗ |0⟩ + |↓⟩ ⊗

|−2⟩)     
𝑈
→ 

1

2√2
(|↑⟩ ⊗ |3⟩ +|↓⟩ ⊗ |1⟩ + |↑⟩ ⊗ |−1⟩ − 2|↓⟩ ⊗ |−1⟩ − |↓⟩ ⊗ |−3⟩) 

 (1.43) 

In table 2, the probability distribution for this case is reported. 

Table 2: Probability of being at position 𝑋 after 𝑁 steps for a quantum Galton board with the 

initial state: |𝛷𝑖𝑛⟩ = |↓⟩ ⊗ |0⟩. 
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We can see a very different behavior of the quantum random walk: it is no more approaching a 

gaussian distribution. An important thing to notice is the asymmetry of the distribution, that is 

shifted to the left. This is explained by the characteristics of the Hadamard coin that treats 

differently the two directions |↑⟩ and |↓⟩, it only multiplies the phase by -1 in the case |↓⟩. This 

induces more cancellations for paths going right-wards (destructive interference) while 

particles that move to the left interfere constructively.  

It is also possible to obtain a symmetric distribution, it is necessary to start the walk with a 

superposition of |↑⟩ and |↓⟩, |𝛷𝑆𝑦𝑛⟩ =
1

√2
(|↑⟩ + 𝑖|↓⟩) ⊗ |0⟩. Table 3 shows an example of a 

symmetric distribution. 

Table 3: Probability of being at position 𝑋 after 𝑁 steps for a quantum Galton board with the 

symmetric initial state:    |𝛷𝑆𝑦𝑛⟩ =
1

√2
(|↑⟩ + 𝑖|↓⟩) ⊗ |0⟩ 

 

 

 -5 -4 -3 -2 -1 0 1 2 3 4 5 

0      1      

1     1

2
 

 1

2
 

    

2    1

4
 

 1

2
 

 1

4
 

   

3   1

8
 

 5

8
 

 1

8
 

 1

8
 

  

4  1

16
 

 5

8
 

 1

8
 

 1

8
 

 1

16
 

 

5 1

32
 

 17

32
 

 1

8
 

 1

8
 

 5

32
 

 1

32
 

 -4 -3 -2 -1 0 1 2 3 4 

0     1     

1    1

2
 

 1

2
 

   

2   1

4
 

 1

2
 

 1

4
 

  

3  1

8
 

 3

8
 

 3

8
 

 1

8
 

 

4 1

16
 

 3

8
 

 1

8
 

 3

8
 

 1

16
 



33 
 

The next chapter is dedicated to the design of the activity and to the exploration of some 

applications and implications about classical and quantum random walk, my principal 

contribution.  
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Chapter 3: Planning and implementation of an educational activity 

In this chapter the development of the fifth day of the module, centered on classical and 

quantum random walk, is presented. The aims of the activity were to: 

a. regain the basic concept of quantum physics, introduced in the previous meeting, 

necessary and sufficient to comprehend the new logic at the basis of quantum 

technologies; 

b. explore the classical and quantum random walk with an interdisciplinary lens 

(mathematic, physics, computer science); 

c. highlight the differences between classical and quantum logic; 

d. reflect on the nature of probability in the two cases. 

The activity lasted about two hours and was structured as follows: 

▪ Introduction of classical random walk from an interdisciplinary perspective; 

▪ Introduction of quantum random walk and comparison with the classical case; 

▪ Presentation of some applications of the random walk. 

The structure of the random walk activity comprehends all the educational aspects of the I SEE 

module (Section 1.X). In fact, the activity includes, first of all, an introductory overview of the 

topic, followed by the treatment of the conceptual elements of the random walk through a 

teamwork activity aimed to solve a problem. Then, a brief interactive lecture is held and, finally, 

the presentation of visualization tools such as simulations and examples complete the slot. The 

activity was thought not only to introduce students to the conceptual aspects of random walk 

and to appropriate formalism but also to communicate the epistemological aspects behind the 

topic, with a special focus on the concept of random and on the differences between classical 

and quantum logic. In the end we wanted to give a vision on the possible applications of the 

random walk to enlarge the imagination about the impact on the random walk on different  

fields, even beyond the physical and mathematical ones, and about the plurality of possible 

STEM careers involved.  

 

3.1 The teaching activity 

The first part of the activity was dedicated to the classical random walk. In order to introduce 

students to the topic and to its mathematization we started with a team-work activity in which 

they had to solve the well-known problem of the “Drunk sailor’s” (figure 3.1).  
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Figure 3.1 “Drunk sailor’s” random walk 

The task was: 

“A mathematician, an experimental physicist and a computer scientist are in a cafe 

debating on the best way to solve the following problem:  

Charlie, after a long evening of vices and extravagances out of town, returns, a bit 

staggering, to Eve city. As soon as he crosses the door of the city, a problem arises: 

Charlie does not remember where he lives and what is the way to go back. So he starts 

walking across the streets, proceeding randomly -but without ever turning back! -, 

hoping to find the right way again.  

- What is the probability that Charlie will reach his house (green square, figure 3.1) 

by moving randomly? 

- What about the probability that Charlie randomly reaches his friend Bob's house 

(yellow square, figure 3.1)? Is it the same? 

The problem made the experts arguing for hours. The issues that most of all aroused 

discussion concerned: what does it mean to model "walking randomly" for a physicist, 

a mathematician, and a computer scientist? What is the best method to obtain 

information on the final probability (measure, calculate and compute)? Among the 

experts, there were who was looking for rules or models to formalize the problem, who 

was looking for phenomenological examples/contexts in which design measures, who 

was looking for input and output data/variables and process strategies (algorithms) to 

get the computer to solve the problem in the fastest/most effective/and elegant way.” 

The groups were asked to reflect on the methods and tools that characterized the disciplines and 

to try to answer to the following questions: 
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▪ What tools and what forms of reasoning would you use to model the problem and 

support your position in the discussion? 

▪ How would you reformulate the problem from your perspective (mathematics, physics, 

and computer science) in order to use "your" conceptual, formal, and methodological 

tools? 

▪ How would you solve it? 

 

The students were divided in three kinds of groups: a group that played the role of 

mathematicians, that of experimental physicists and that of computer scientists. They students 

were asked to tell what type of group they preferred and the groups were formed according to 

students’ preferences. The mathematicians’ group solved the problem through the Tartaglia 

triangle and the permutations. The physicists’ group thought that it was possible to model the 

problem for example with the Galton board. The computer scientists’ group proposed to solve 

the problem with the realization of a computer code that, step by step, calculates the probability 

with the formula. 

This introductory problem was designed both to build the interdisciplinary lens that characterize 

the whole meeting, and to test students’ inquiry skills. In particular, we wanted to investigate 

their ability of making hypothesis and solve problems with different approaches. 

Furthermore, through the “Drunk sailor’s” problem we shed light on a profound 

epistemological aspect: the concept of “random”.  

The second part of the activity was dedicated to take stock of the classical random walk and to 

introduce the quantum random walk with an interdisciplinary lens.  

After resuming the probabilistic aspect of the classical random walk (figure 3.2), the students 

were introduced to the concept of probability distribution (mathematical point of view).  
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Figure 3.2 Classical random walk summary slide 

The drunk's path to come back home is stressed to be similar to the path of a sober person who 

decides, at each intersection, whether to go right or left by flipping a coin. At each toss the 

person is equally likely to move to the right or left and the probability distribution obtained is 

a binomial distribution (figure 3.3). 

 

Figure 3.3: binomial distribution of the discrete random walk 

 From a physical point of view, the Galton machine was presented through a video 

(https://www.youtube.com/watch?v=4HpvBZnHOVI) in order to not only show how a random 

walk can physically be realized but also to test, against an experiment, the “mathematical 

hypothesis” about the probability distribution.  

Finally, from a computational point of view, two methods were discussed. The first was the one 

presented from the group of students who played the role of computer scientists: we know the 

https://www.youtube.com/watch?v=4HpvBZnHOVI
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equation and we implement it on a computer to calculate the probability. The second possible 

method was introduced in the discussion and consists in the simulation of the coin with n 

algorithm that generates random numbers (Figure 3.4). 

 

Figure 3.4: algorithm for generating random numbers in python. 

The presentation of these two methods was important to highlight the different ways of 

processing between a simulator and a computer, important point of the previous meetings. The 

quantum random walk was now introduced fostering students to think about the initial problem 

in the case in which the drunker was “quantum”.  

The basic concepts of quantum physics necessary to understand the topic had been introduced 

in the previous lectures, and now they were resumed. Particular importance was given to the 

concepts of state, state processing and superposition principle (figure 3.5).  
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Figure 3.5: Introduction to quantum random walk 

In order to build an analogy with the classical case, the flip coin and the shift rule were redefined 

in the quantum case. So, the classical coin was replaced by the Hadamard logic gate that 

transforms |0⟩ and |1⟩ as 

|0⟩ →
|0⟩ + |1⟩

√2
 

|1⟩ →
|0⟩ − |1⟩

√2
 

while the shift operator remained the same: based on the outcome of the “toss” the “quantum 

drunkard” moves to the right or to the left. 

Once all the “ingredients” were explained, the quantum random walk was presented from a 

mathematical point of view with the Dirac formalism (figure 3.6). 
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Figure 3.6:  mathematical passages to solve the “quantum drunk problem” 

The various mathematical passages to solve the “quantum drunk problem” were reconstructed 

with help of the students that participated actively. Through the calculation we showed how, 

starting from a particular state (|0, ↑⟩), the shape of the probability distribution was different 

from the classical case: the distribution was no longer centred and changed shape according to 

the initial state (Figure 3.7). 

 

Figure 3.7: probability distribution in the quantum case 

Then the case of a symmetric shape of the probability distribution were discussed (Figure 3.8). 
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Figure 3.8: symmetric shape of probability distribution in the quantum case 

From a physical point of view we introduced the example of the boson sampling (Figure 3.9).  

Our aim was not to present the very complicated phenomenon, but to use it as a visual tool. 

 

Figure 3.9: boson sampling (https://www.youtube.com/watch?v=jiodj5b8Z1E)  

From a computational point of view, the code to implement the quantum random walk was 

presented (Figure 3.10). Through this perspective, we shed light on the nature of the probability 

in the classical and quantum case. As regards the nature of probability in the case of classical 

computation, based on classical and therefore deterministic physics, it is not possible to 

generate completely random numbers (in fact, we talk about pseudo-random number generator), 

for which randomness is not intrinsic. In the quantum case, on the other hand, the probability 

lies in the properties of the quantum object, that is of ontological nature. 
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Figure 3.10: Quantum random walk 

Finally a simulation, built with a PhD student (Sunny Pradhan), was presented, and discussed 

to show the differences between the classical and quantum random walk (Figure 3.11). 

 

Figure 3.11: comparison between probability distribution in classical and quantum random 

walk 

In particular, we insisted on the following aspects: 
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▪ The quantum random walk “samples” the “position space” of the particle faster than the 

classical case; 

▪ The particle in the quantum case can assume many more positions than in the classical 

one. 

The activity proved to be very reach and allowed us to: 

a. regain the basic concept of quantum physics and of computation introduced in the 

previous meeting; 

b. present the classical and quantum random walk with an interdisciplinary approach 

showing how the peculiarities of the different involved disciplined interplay and interact 

to build a more comprehensive picture of random walk; 

c. show where the difference between classical and quantum computation lies; 

d. reflect on the nature of probability in the two cases. 

 

3.2 The importance of the simulations in the Physics Education 

When we were planning the fifth meeting, we realized that the theme of the activity, the 

classical and quantum random walk, could be an arduous topic for the students and that we need 

more than a single point of view. We thought that the simple mathematical explanation of the 

topic could not be enough to communicate the topic and we decided to introduce some 

simulations to improve not only the understanding but also the visualization.  

The use of computer simulations for science education is not new in the literature. In fact, 

computer simulations make complex systems accessible for students of varying ages, abilities 

and learning levels. The computer, instead of the student, can assume responsibility of 

processing the underlying mathematics in order to let the student begin exploring a complex 

system by first focusing on conceptual understanding (Rieber, L. P., Tzeng, S. C., & Tribble, 

K., 2004). The strength of the computer simulation is the interactivity, a simulation in fact is 

not a static reproduction and the students can interact with the program. Nevertheless, it is 

incorrect to believe that more interactive a simulation is and more the students learn. It is 

important not to abuse of this interactivity which can otherwise have negative effects on the 

learning. In the case of simulation, this can occur when there are too many possible choices, 

because of an interface made too heavy by unnecessary details or because the interactivity 

simply suffocates the students’ capabilities of reflection (Landriscina, 2009). 
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The controversial interactivity is not the only advantage of the simulation, that offers also 

practical advantages such as freedom from time and space, safety, and cheapness. Physics is an 

experimental science where observation, measuring and theoretical speculations are processes 

that cannot be separated from the physical knowledge construction, even in the classroom and 

the simulations brings the experiments in the classroom (Concari, Giorgi, Cámara, & Giacosa, 

2006). The absence of restriction in time and space allows several consecutive attempts without 

fear of making mistakes and the possibility of testing alternative hypothesis. These possibilities 

give the opportunity to develop several cognitive processes: 

▪ integrate the information coming from different sources  

▪ connect new knowledge to the one already known 

▪ recover analogies capable of favoring one’s understanding 

▪ produce explanations 

▪ coordinate representation and different perspectives  

▪ to create inferences 

▪ to abandon concepts that are no longer useful 

 All this can facilitate the construction of new mental schemes or the replacement of the already 

existing with new ones.                                

The simulation we realized for the activity aims to show the probability distribution in the 

classical and quantum case in order to draw the differences in terms of the basic logic. We 

introduced the interactivity through the possibility of inserting several factors in input. One of 

them is the choice between the classical coin and the “Hadamard coin” (or other transformation 

that create a superposition state). Other input variables are: the initial state and the number of 

“balls”. 

3.3 Applications of the random walk 

3.3.1 The activity on the application in class 

The final part of the random walk activity, held by me, was a future-oriented activity, a 

presentation on the possible applications of the random walk in various fields from art to 

finance. Table 3.1 shows the applications that I presented. 

Table 3.1 Fields of interest and corresponding topics of the different applications 

Field Topic 

Art “Quantum Cloud” sculpture 

Digital image processing Image segmentation 
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Analysis algorithm PageRank 

Finance 
High speed trading 

Random walk theory 

Videogame programming Artificial intelligence 

 

I started with an introduction where I explained the aim of the presentation in which random 

walk was presented not only as simple mathematical algorithm, but also as a powerful tool in 

various fields, that go far from mathematics and physics. For this purpose, I showed the image 

of the sculpture “Quantum cloud” (figure 3.12) a work of art designed through the random walk. 

 

Figure 3.12 the sculpture “Quantum cloud” 

I continued the presentation with a quick overview of digital image processing with the random 

walker method applied on the image segmentation (figure 3.13). 

 

Figure 3.13 example of image segmentation through random walker method 

As for the field of the network analysis, I briefly showed the structure of the PageRank 

algorithm, used by Google to give a weight to the different sites on the web. This algorithm was 
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developed starting from the classic random walk. I continued with a part on the finance 

application of the random walk with the examples of high-speed trading and with the “random 

walk theory”. The first is a practice where you act on the market with a large number of 

transactions at very high speed, with the aim of building maps of the markets. The second one 

is a theory of the evolution of the markets based on the mathematical concept of random walk, 

according to which there is no correlation between future and past market trends.      

The last example that I decided to show was the application in the evolution of artificial 

intelligence (AI) in videogames. I explained that one of the first examples of AI in the 

videogame history is represented by the four ghosts in Pac-man where the orange one is 

programmed through the random walk (figure 3.14).  

 

Figure 3.14 Pac-man screenshot 

 

3.3.2 The importance of the applications 

We see in the first chapter the structure of an I SEE module, and one of the three main phases 

of every module concerns the future oriented activities. As we said there are four kinds of future 

oriented activities in the I SEE modules: activities to flesh out the future-oriented structure of 

scientific discourse, activities inspired by future studies, exposure activities and action 

competence activities. The presentation of the applications belongs to the future oriented 

activities as an exposure activity with the aim of enlarging the imagination about possible 

STEM careers. In particular, activities of this type are based on the idea that a student, in order 
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to be able to choose among alternative futures, has to be exposed to the sense of them. The 

exposure activities make STEM careers more attractive because, it is conjectured in I SEE, they 

will not only help students directly experience the acquisition of authentic professional 

competences but they will also support students to cope rationally, emotionally, creatively, and 

responsively with their future (Branchetti et al., 2018). This kind of activities shows the possible 

fields of applications of a scientific topic, is an important instrument of the future oriented 

activities, because we can demonstrate how close the STEM themes are to reality and helpful 

for facing it.  
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Conclusions 

The present thesis is situated within the I SEE project, an Erasmus + project with the 

overarching goal of designing and developing teaching modules on STEM (Science, 

Technology, Engineering and Mathematic) topics. In particular, I participated to the design and 

the implementation of a module of quantum computers.  

The I SEE project has developed an approach to deal with a big challenge that the Science 

Education is facing: the inclusion of STEM in teaching because STEM subjects can be a context 

to explore the relation between science disciplines and societal challenges. The developed 

approach keeps together the conceptual and epistemological dimensions and the future 

dimension of a STEM topic. The interaction between these three dimensions is supposed to 

improve students’ capacities to navigate the complexity and the uncertainty of the present and 

enlarge their visions of the future, supporting possible ways of acting in the present with one’s 

eye on the horizon. As follow-up of the project I SEE, the project IDENTITIES is much more 

focused on the theme of interdisciplinarity and because of this new activities have been 

designed for the 2020 edition of the module of quantum technologies. 

In particularly, it was new and informed also by the project IDENTITES the activity to which 

I directly contributed. It concerns the classical and quantum random walk and, as well as a 

future-oriented activity. It is an activity strongly characterized by the aim to show the 

interdisciplinarity between physics, mathematics, and computer science. More specifically, the 

educational reconstruction of the topic allowed us to touch the most important aspects of the 

entire module: i. the intrinsic interdisciplinary nature of quantum technologies and ii. the 

difference between the logic at the basis of classical and quantum computers. In fact showing 

the random walk from a mathematical, physical, and computational perspective, the student 

could explore the peculiarities of the disciplines involved and how they intertwine to build a 

more comprehensive picture of the topic. 

The designed interdisciplinary approach seemed to be effective and to have impacted students’ 

understanding of the topic.  

A student commented:  

“This type of approach helped me to have a comparison of the various disciplines on 

the same topic and therefore to complete it in all its aspects. Mathematics is based on 

the elaboration of numbers and on certain procedures, the physics on measurements 

and experiments, computer science on logical procedures” 
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The quotation stresses  the peculiarities of the disciplines he perceived and the role that a multi-

perspective vision can provide to grasp many aspects of the topic.   

Another students said:  

“[...] the three disciplines complement each other as mathematics provides formulas 

that are applied and exploited by physics to formulate laws which in turn are 

transported to a computational dimension where they are easily verified”. 

This student tried to find a thread, a sort of concecutio that regulates the roles and the purposes 

of the three disciplines.  

Finally, the future-oriented dimension, typical of I SEE project, prompted me to pay particular 

attention on the application and implication of the random walk in various fields from physics 

to art. This activity fosters the students to deal with the wide range of STEM carriers that these 

technologies can involve. 

I think that one of the main difficulties that Science Education has to overcome is to make 

explicit to the students the importance of the STEM themes and to expand the vision on the 

future STEM careers. This is one of the goals that I hope to continue to contribute for the future 

as well. 
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