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Abstract

Simulating geophysical electromagnetic (EM) data over real-life conductivity mod-

els requires numerical algorithms that can incorporate realistically complex geometry

and topography. The most successful way to incorporate them is to use unstruc-

tured meshes in the discretization of an Earth model. Current mesh-based numerical

methods that are capable of using such meshes have inherent drawbacks caused by

generating 3-D unstructured meshes conforming to irregular geometries. Such a mesh

generation process may become computationally expensive and unstable, and partic-

ularly so for EM inversion computations in which the forward modelling may be

required many times. In this thesis I investigate the feasibility and applicability of

radial basis function-based finite difference (RBF-FD), a meshfree method, in forward

modelling 3-D EM data. In the meshfree method, the physical model is represented

using only a set of unconnected points, effectively overcoming the issues related to

the mesh generation. To improve numerical efficiency, unstructured point sets are

used in the computation for the first time for EM problems. The computation is

further accelerated by introducing a new type of radial basis function in the RBF-

FD method. The convergence and accuracy of the proposed RBF-FD method are

demonstrated first via forward modelling gravity and gravity gradient data. The

computational efficiency of the meshfree method is compared with that of using a

more traditional finite element method. The meshfree method is then applied to

forward model magnetotelluric data of which the effectiveness is demonstrated using

three benchmark conductivity models from the literature. Faithful reproduction of
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the physics in the EM fields, e.g. discontinuous electric fields across the conductivity

contrasts, is achieved by proposing a hybrid meshfree scheme which is a modifica-

tion to standard meshfree algorithms. The hybrid method is also applied to simulate

controlled-source EM data in the frame of both total-field and primary-secondary field

approaches, in which the problems in dealing with singular source functions that cause

singularities in the EM fields are addressed. For these two approaches, the accuracies

of the proposed hybrid meshfree method in forward modelling the controlled-source

EM data are demonstrated by using idealized 1-D layered models and a 3-D marine

canonical disk model. The successful applications of the proposed meshfree method

in modelling the above EM data suggest that the meshfree technique has the poten-

tial of becoming an important numerical method for simulating EM responses over

complicated conductivity models.
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Chapter 1

Introduction

1.1 Challenges in constructing realistically com-

plex Earth models

1.1.1 Interpretation for realistic geophysical models

Geophysical electromagnetic (EM) methods are extremely sensitive to electrical con-

ductivity in the subsurface of the Earth. As such, EM survey methods have been

the predominant geophysical methods for delineation of conductive or conductor-

associated mineral deposits such as volcanic-associated massive sulphides and ura-

nium deposits (Dyck & West, 1984), and for detection of metal objects such as UXO

(unexploded ordnance) buried in the shallow subsurface (Pellerin, 2002). Surveys

for groundwater, geothermal resources and environmental monitoring also frequently

use EM methods (Everett, 2013). In these applications, the conductivity contrast

between a target and its country rock units is sufficiently high, allowing the target’s
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EM signal to be detectable (Spies & Frischknecht, 1991; Zhdanov, 2009).

Both time-domain and frequency-domain EM survey methods are frequently used

in practice. In time-domain EM methods, the EM source signal is generated by

inducing a transient electric current within a wire or a loop transmitter, for example,

which is then abruptly shut off. The induced secondary EM field from the subsurface

can then be observed in the absence of the source signal. In frequency-domain EM

methods, however, the source field is continuous and oscillates at a particular period.

The measured EM field in practice is a mix of both source signal and induced signal

from the subsurface. A comprehensive summary and explanation of geophysical EM

theory and basic survey methods is given by Nabighian (1988, 1991).

The immediate output from an interpretation of the collected EM data for a par-

ticular region is a distribution of conductivity, or a model of the physical property

conductivity, rather than the actual lithology and rock units. To delineate the litho-

logical structures of the subsurface, extra information such as geological knowledge

and petrophysical links between the conductivity values and rock types needs to be

incorporated into the interpretation. The geophysical data interpretation is itself a

quantitative analysis that often consists of forward modelling (computer simulation)

and inversion of the surveyed data (Nabighian & Asten, 2002; Oldenburg & Pratt,

2007).

An inversion seeks to recover the conductivity model whose predicted EM re-

sponses fit adequately well the actual field data. The predicted EM responses of a

candidate model are obtained by forward modelling, which is the problem of that, if

the EM survey and configuration parameters and the conductivity distribution are

known, how to find a mathematical solution, for example electric and magnetic fields
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at specific measurement sites, of Maxwell’s equations. One fundamental feature of

the inversion is non-uniqueness, meaning that there can be an infinite number of po-

tential models whose EM responses fit the observed data (e.g., Parker, 1977). This is

precisely the reason why regularized, or constrained, inversions where particular desir-

able structures or features of the model are forced to appear are necessary (Tarantola

& Valette, 1982).

In terms of constraints for inversion, either known a priori physical property values

or geometries of geological units can be used (McGaughey, 2007). For the former type

of information, one example is the air’s conductivity value in a conductivity model

with an air layer, which is known and can be treated as a strong constraint. For

the latter, examples are surface topography and bathymetry that are often measured

by other means. While the physical property information is often straightforward to

implement in both forward modelling and inversion, incorporation of known geometry

information is more challenging. This is because that in the forward modelling,

which is the ‘engine’ of an inversion run, a simple model discretization such as using

rectilinear meshes is capable of readily incorporating physical property values, but

requires a non-trivial effort to deal with complex geometries. Often, discretizations

using unstructured meshes1 are needed for representing such geometries, which are

ubiquitous in realistic Earth models (Fullagar & Pears, 2007). Indeed, with the

increasing power of 3-D geological computer modelling, an integrated geophysical

interpretation taking the geological observations such as lithological stratigraphic

boundaries and contact surfaces into consideration is needed more than ever (Pears

1An unstructured mesh is a tessellation of the problem domain with irregular connectivity and
local topology in the mesh.
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& Chalke, 2016; Lelièvre & Farquharson, 2016).

1.1.2 State-of-the-art numerical modelling methods

In spite of the demand for constructing realistically complex Earth models from geo-

physical EM data, 3-D forward modelling and thus inversion algorithms that are

capable of doing this have not been reported until recently (e.g., Günther et al.,

2006; Newman, 2014; Usui et al., 2017; Jahandari & Farquharson, 2017; Wang et al.,

2018). The feasibility of 3-D EM imaging for realistic conductivity models is largely

attributed to the adoption of unstructured meshes (e.g., tetrahedral meshes), which

permits a relatively easy and efficient discretization of topography and bathymetry

(Franke et al., 2007; Nam et al., 2007; Schwarzbach et al., 2011; Ren et al., 2013;

Ansari & Farquharson, 2014; Jahandari & Farquharson, 2015). While the impor-

tance of using unstructured meshes in forward modelling was acknowledged several

decades ago in academia (Coggon, 1971), a routine use of them has become possible

only in recent years when open-source mesh generating software has become avail-

able (Shewchuk, 1996; Fabri et al., 2000; Si, 2015). With unstructured meshes being

increasingly used, there have been corresponding changes in the development of 3-D

numerical modelling algorithms.

For a general inhomogeneous conductivity model, only a numerical solution to

Maxwell’s equations can be sought, which is, to date, mostly sought using integral

equation (IE) method, finite difference (FD) method, finite volume (FV) method2 and

finite element (FE) method (Börner, 2010). The IE method was intensively studied

2FV method is closely related to FD method, and can be shown to be equivalent to some FD
schemes over rectilinear meshes. However, there are also important differences between the two.
Therefore, they are treated as two different numerical methods here.
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from 1970s to 1990s at a time when computer power was very limited (e.g., Jones &

Pascoe, 1972; Hohmann, 1975; Newman et al., 1986). In the IE method, a numerical

solution consists of two parts: a primary field which is often computed analytically

over a homogeneous or layered Earth model (background model), and a secondary

field caused merely by inhomogeneities that are embedded in the background model to

complete the 3-D inhomogeneous model. The background model is never discretized,

and its EM response can be obtained relatively easily. Only the inhomogeneities are

discretized by meshes, either structured or unstructured, and the resultant secondary

field is numerically computed. For a single and small localized inhomogeneity, the IE

method generates a linear system with a small number of degrees of freedom for solv-

ing the secondary field, which can be efficiently solved. However, this linear system

has a full and dense matrix, making the method inefficient for modelling complex in-

homogeneities. Another challenge of the method is that the background model needs

to be some simple, ideal model for which analytical solutions are available. This does

however make it difficult to account for complex geometries in a realistic model.

The FD method has been applied to simulate EM fields in engineering problems

for a long time (Yee, 1966; Taflove & Umashankar, 1990). Nevertheless, the method

had not received significant attention in the geophysical EM community until ad-

vanced modern computers were developed in 1990s (Wang & Hohmann, 1993; Mackie

et al., 1993; Newman & Alumbaugh, 1995; Streich, 2009). By discretizing the entire

model domain with meshes (mostly restricted to be rectilinear meshes), FD meth-

ods allow for a more straightforward and general treatment of inhomogeneities in

3-D conductivity models than IE methods. Although the resultant linear system is

typically large, the system is symmetric and highly sparse, and thus can be solved
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with efficiency. One particular aspect of efficiency is its relatively small memory stor-

age requirement when the linear system is solved with iterative solvers (Saad, 2003),

which was paramount in early 1990s considering the computer power at that time.

Among various FD schemes, the Yee-scheme (Yee, 1966) is particularly favoured since

it faithfully reproduces continuous tangential EM fields while at the same time allows

for possible jumps in normal EM fields across the elements’ interfaces (material’s

discontinuities) in a mesh. In terms of modelling EM responses over geometrically

complex models, common FD techniques have severe limitations in dealing with highly

irregular geometries since the FD approximation is essentially one dimensional and

is only feasible over tensor-product, or orthogonal, grids for 2-D and 3-D problems.

Curvilinear boundaries have to be approximated by staircase-like rectangular cells,

or otherwise non-trivial efforts would be needed (Jurgens et al., 1992). Further, a lo-

cal refinement of the mesh often propagates to the domain’s boundaries, resulting in

excessive degrees of freedom in other regions that are not of interest. The refinement

propagation issue can be mitigated by using quadtree (2-D case) or octree (3-D case)

meshes, but by doing so extra complexities in computation such as interpolation of

unknowns due to unconformity of these meshes have to be introduced (e.g., Haber &

Heldmann, 2007).

For the FE method, the advantages of supporting unstructured meshes and of

generating symmetric and sparse linear systems are both present, making the method

a powerful solution to modelling EM responses over Earth models with complicated

geometries. Like FD methods, the FE method also discretizes the whole problem

domain into subdomains, which are called finite elements. Two important types of

FE approaches are node-based (or scalar) and edge-based (or vector) FE methods. In

6



scalar FE methods, unknowns are defined at the nodes in a mesh, whereas in vector

FE methods the unknowns are associated with the edges of cells in the mesh. A

notable characteristic of the scalar FE method is that the unknown quantity solved

for by the numerical method will be forced to be continuous everywhere in the problem

domain, in contrast to the vector counterpart where only the tangential component

of the unknown quantity is forced to be continuous (Jin, 2014). Consequently, scalar

FE techniques are largely restricted to modelling continuous EM field components

or EM potentials for inhomogeneous models (Coggon, 1971; Pridmore et al., 1981;

Badea et al., 2001; Li & Key, 2007; Puzyrev et al., 2013).

To date, the FE method appears to be the most suitable modelling method for

realistic Earth models with irregular surfaces and topography for example. The reason

is that a general treatment of FE approximation of functions over various basic types

of subdomains (e.g., triangles and parallelograms in 2-D case, and tetrahedra and

prisms in 3-D case) can be used (Brenner & Scott, 2007; Jin, 2014). It almost costs

the same amount of effort to implement a FE algorithm using rectilinear meshes

as that using completely unstructured meshes. This is in contrast to FD and FV

methods, for example. While the FV method can support unstructured meshes, it

requires much more effort to do so than that of using a direct FD algorithm with a

rectilinear mesh, and it also needs a higher degree of regularity of the unstructured

meshes compared to a FE algorithm using the same type of mesh (Jahandari &

Farquharson, 2014, 2015).
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1.1.3 Benefits and challenges in using unstructured meshes

Aside from being more realistic and consistent with geological models, the benefits

of using unstructured meshes in understanding the effects of model geometry on

simulated EM data have also been consistently demonstrated. For example, Günther

et al. (2006) studied artifacts caused by ignoring topography structure in interpreting

direct current (DC) resistivity data. Schwarzbach et al. (2011) modelled marine

controlled-source EM (CSEM) responses over a bathymetry conductivity model with

a seafloor topography constructed from real data, and confirmed the strong influence

of topography on the EM fields. The employment of unstructured tetrahedral meshes

allowed Jahandari & Farquharson (2015) and Ansari et al. (2017) to synthesize and

compare the predicted EM responses of a massive sulphide ore deposit at Voisey’s Bay,

Canada, with the actual EM data collected in the field. Another modelling example

is the study of Um et al. (2015), where the authors used unstructured meshes in their

FE algorithm to investigate the effects of very thin steel casing in a well on borehole-

surface CSEM data. In the case of magnetotellurics, Usui (2015) and subsequently

Usui et al. (2017) included topography explicitly in the 3-D forward modelling and

inversion of real data and demonstrated that the undesired effect of galvanic distortion

in interpreting magnetotelluric data can be effectively removed.

With an increasing use of unstructured meshes in tackling 3-D problems, some

significant challenges related to mesh generation and FE algorithm implementation

have emerged. In order to obtain an accurate numerical solution by the FE method,

the mesh used for solving Maxwell’s equations is required to be of sufficient quality.

In the case of FE algorithms, a quality mesh generally means that its cells or ele-
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ments are close to regular polygons or polyhedra. It is understood that the accuracy

and efficiency of a FE solution have a strong dependence on the mesh quality, which

is often characterized by the ratio of the largest to smallest cell sizes, elongation,

dihedral angles and radius-edge ratio of cells, etc, for tetrahedral elements for exam-

ple (Du et al., 2009; Ansari & Farquharson, 2014). The process in obtaining a FE

numerical solution when using iterative matrix equation solvers, which are memory

efficient, can be slow or even fail to converge if the mesh quality is not good enough

(Ansari & Farquharson, 2014). Even using direct equation solvers, if without neces-

sary quality control in the mesh generation, the resulting mesh can have too many

low quality cells which cause numerical interpolation errors in the obtained solution

(Schwarzbach et al., 2011). For many real-world Earth models that contain rough

and highly irregular changes of contact surfaces and topographies, the requirement of

quality meshes thus poses a significant challenge in the mesh generation.

Even with the aid of third-party automated mesh generating software, significant

difficulties are still faced. If a quality mesh is generated without guidance, often

excessive elements are observed as a result of overmeshing, making the FE-based

forward modelling intractable (Nalepa et al., 2016; Nalepa, 2016). An example of

meshing a thin layer of hydrocarbon reservoir with possible excessive cells is illustrated

in Fig 1.1 (Dunham et al., 2018). For an experienced modeller, some rules of thumb

can be used. For example, by deploying denser and smaller elements at the EM

transmitters and receivers and in other regions where EM fields are expected to

change rapidly, and coarser, larger elements elsewhere, the total number of elements

can be made to be affordable for given computing resources (Key & Ovall, 2011).

However, such experience-guided discretization easily becomes non-trivial for large-
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scale models with multiple inhomogeneities where changes of EM fields are harder

to predict (Schwarzbach et al., 2011; Nalepa et al., 2016). A practical solution to

such manual refinement or coarsening of a mesh is adaptive mesh generation methods

(Oden & Prudhomme, 2001). Such adaptive meshing techniques can refine or coarsen

some specific parts of an existing mesh based on error estimators constructed from

the current numerical solution. As a result, minimum user interference is required in

designing a quality mesh without too many excessive cells. One example of adaptive

meshing techniques is the goal-oriented adaptive refinement method, which by far

has been favoured in 2-D and 3-D EM modelling problems (see, e.g., Franke et al.,

2007; Key & Ovall, 2011; Schwarzbach et al., 2011; Ren et al., 2013; Grayver & Burg,

2014).

Nevertheless, adaptive meshing schemes for unstructured elements in 3-D prob-

lems are computationally expensive and sometimes even prohibitive. A new mesh

resulting from local refinement or coarsening of an existing mesh is obtained either

by subdivision or merging of local elements (e.g., Key & Ovall, 2011; Schwarzbach

et al., 2011), or by remeshing the whole problem domain (e.g., Ren et al., 2013).

The benefit of the former strategy is that it has good stability and only part of the

original mesh needs to be updated. The difficulty is that complicated mapping of

corresponding elements between the two meshes, and thus updates of degrees of free-

dom, are required. As the topology of the original mesh is changed, noncomformal

elements may also arise, adding additional interpolation computation. In the latter

strategy, the aforementioned issues of mapping are avoided, but the remeshing can be

time-consuming since the whole domain needs to be remeshed at each iteration of re-

finements. Furthermore, the remeshing process suffers from possible breakdown of the
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Figure 1.1. Two different tetrahedral meshes for the same multi-
layer marine hydrocarbon reservoir model. The thin hydrocarbon
layer is shown in red in both meshes. The mesh shown in (a) has
about 1 million more cells than the mesh in (b), with the latter mesh
being generated with better edge length constraints. From Fig 7 in
Dunham et al. (2018).
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mesh generator which can be attributed to various factors such as model complexity,

software bugs, memory limits, etc.

To summarize, the FE method in conjunction with unstructured meshes appears

to be the most suitable solution among mesh-based methods to modelling 3-D EM re-

sponses over real-world Earth models with irregular geometries. However, there have

been observed difficulties arising mainly from using quality meshes in the FE method,

which potentially hampers its application towards dealing with realistic Earth models.

This observation motivates the author of this thesis to investigate a fundamentally

different numerical method, that is, the meshfree method, which does not require a

mesh in obtaining a numerical solution, and its applicability in solving the above 3-D

EM modelling problems.

1.2 Meshfree discretization in forward modellings

A key feature of meshfree discretizations is that only a cloud of unconnected points3

are required in deriving a numerical solution to partial differential equations such

as Maxwell’s equations. As a consequence, numerical methods that can work with

meshfree discretizations in the modelling task have their own distinct features and

are termed meshfree methods. This is in contrast to traditional numerical methods

that rely on a tessellated mesh (hence, mesh-based methods) in order to acquire a

numerical solution with a desired accuracy. It is the mesh reliance of mesh-based

methods that requires an Earth model be finely meshed with voxel-like cells or el-

ements (Fig 1.2a and Fig 1.2b). However, such fine scale meshes are solely for the

3In the literature of meshfree studies, both ‘node’ and ‘point’ are interchangeably used to refer
to the basic element of a meshfree discretization. In this thesis, the word ‘point’ is preferred.
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Classic rectilinear mesha) b)

RBF-FD subdomain

Unstructured triangular mesh c)

r

Meshfree points 

Figure 1.2. Schematic illustration of model discretizations for 2-D ir-
regular geometries using (a) rectilinear mesh with local quadtree re-
finements, (b) unstructured triangular mesh and (c) meshfree points.

purpose of geophysical data modelling and are not necessary in describing the ge-

ometry of geological structures. In describing a geological model, much rougher 3-D

meshes, for example a mesh with only outlines of different rock units, are adequate.

The interior volumes of rock units even need not be meshed. These rough meshes

are precisely the outputs and/or inputs from geological interpretations. In this sense,

it can be viewed that there are two meshes involved in the context of forward mod-

elling geophysical data: one is the mesh describing the geometries of different rock

units such as those for a conductor embedded in the resistive subsurface in the half

space model (‘model mesh’, Fig 1.3a), and the other one used to carry out forward

modelling which is often required to be able to sufficiently sample the function values

of the quantity of the forward problem (‘numerical mesh’, Fig 1.3b). Hereinafter, all

discussions about meshes will refer to the latter case.

A meshfree discretization serves the same purpose as that of a tessellated mesh

(Fig 1.2c) used for a good numerical solution. For this reason, the discretization

is also required to be fine enough in most scenarios (Fig 1.3c). However, in the

case of a meshfree discretization, there are now important advantages regarding the
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(a) (b) (c)

Figure 1.3. Different spatial discretizations of an Earth model in
mesh-based and meshfree numerical methods: (a) a mesh describ-
ing the example Earth model which is shown as the cross section of
a conductor (in red) embedded in the half space (in grey); (b) an
example mesh (unstructured tetrahedra) used for solving the equa-
tions if using mesh-based methods; (c) a cloud of points used for
solving the equations when using meshfree methods.

mesh generation and mesh refinement issues over traditional mesh-based numerical

methods:

• The generation of a set of unconnected points, even with comparable regularity

constraints of a fine mesh, is more straightforward and requires less effort.

• The generation of quality points is believed to be more robust than the gen-

eration of quality meshes (Du et al., 2002; Fornberg & Flyer, 2015b; Slak &

Kosec, 2019), allowing for a more robust adaptive refining (‘remeshing’) than

for mesh-based methods.

• Adaptive refining and/or coarsening of a meshfree discretization is more compu-

tationally efficient than the similar process in mesh-based numerical methods,

since an addition or deletion of some points will not affect the rest of the points

(Duarte & Oden, 1996b; Rabczuk & Belytschko, 2005). This means that there

will be no unconformity issues between the old degrees of freedom and the new
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ones.

These advantages provide the basis for overcoming the aforementioned challenges

in modelling EM data over complex Earth models when using mesh-based methods

such as FE. Meshfree numerical methods for data simulation were originally developed

in research fields other than geophysical applications. The investigation in this thesis

is therefore focused on how, given a meshfree point discretization, can an appropriate

formulation of Maxwell’s equations be solved using such a discretization.

1.3 Thesis overview

In the following, Chapter 2 firstly presents a review of meshfree numerical methods.

Basic meshfree function approximation methods as well as state-of-the-art meshfree

numerical methods are introduced. The meshfree method investigated in this thesis

is also elaborated with implementation details and justifications for it to be used for

geophysical data modelling. In Chapter 3, with the background problem being that

of numerically modelling gravity data, a convergence analysis of the meshfree method

based on numerical evidence is presented, which is followed by the investigation of

how to determine the stencil size (the number of points in a meshfree subdomain)

in implementing the meshfree method. A comparison study using the meshfree ap-

proach and a more traditional finite element algorithm is also provided. This part

of work has been published as a peer-reviewed paper (Long & Farquharson, 2019a).

Chapter 4 presents the feasibility and applicability study of the proposed meshfree

method in numerically simulating 3-D magnetotelluric data, a commonly used EM

survey approach that uses passive EM source signals. The feasibility of using the
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meshfree method in the frame of EM potential equations is theoretically analyzed

first and then demonstrated with numerical results. The results of this chapter have

been published in a separate paper (Long & Farquharson, 2019c). In Chapter 5,

the mixed meshfree method proposed in modelling magnetotelluric data is further

extended in order to solve the forward modelling of controlled-source EM responses

over a general 3-D conductivity model. The incorporation of singular EM source func-

tions in the meshfree method is investigated and numerically tested. Part of the work

in this chapter has been summarized in previous SEG Expanded Abstracts (Long &

Farquharson, 2017, 2019b). Finally, Chapter 6 and 7 present further discussions and

conclusions, respectively, of the above studies.
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Chapter 2

A review of meshfree numerical

methods

In this chapter, function approximation in a mathematical background is presented

first, which is followed by a review of meshfree numerical methods for solving general

partial differential equations in the literature. The meshfree method investigated

in this thesis is reviewed with more details regarding its development history and

algorithm implementation, along with the justifications of employing it in simulating

geophysical data.

2.1 Meshfree function approximation

Meshfree function approximation is fundamental to meshfree numerical methods

for solving partial differential equations (PDEs). The problem of meshfree func-

tion approximation can be stated as: given n discrete data sites with positions ri

(i = 1, . . . , n) and their associated function values {fi}ni=1, find an approximant f̂(r)
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to the unknown function f , which is assumed to be sufficiently smooth, such that

||f̂(r)− f(r)||p, r ∈ Ω ⊂ R3, f̂ , f ∈ R, (2.1)

is minimized over the problem domain Ω. || · ||p is a chosen norm, and R3 is the 3-D

space of real values. Ω is the support of f and is also called a meshfree subdomain

when only a set of local points are employed to construct function approximation (see

Fig 2.1). Eq (2.1) states a general measure of the quality of the approximation. To

obtain a good approximation, the approximate f̂(r) is often expanded using known

and simple functions.

The assumption of a sufficient smoothness of the unknown function allows a gen-

eral treatment of the approximation problem and systematic developments of math-

ematical theories (e.g., error analysis, see Buhmann, 2003; Fasshauer, 2007). With

this assumption, the approximant, f̂(r), can be expanded as a linear combination of

some basis functions ϕ

f̂(r) =
M∑
i=1

ϕi(r) · ci, (2.2)

where ci are coefficients to be determined, and M is the number of terms of basis

functions. Depending on the choice of types of basis functions, M may or may not

be equal to n which is the number of data sites.

In the context of meshfree approximation where the data sites are discrete points

in 3-D space, two types of basis functions are commonly used: monomial functions

and radial functions. Other rational functions are possible in principle, but they

are not as widely used as these two types (Fasshauer, 2007). The approximation
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Figure 2.1. Schematic illustration of meshfree subdomains consisting
of scattered points. A set of local points within a neighbourhood
(outlined by dotted circles) of a point (denoted as support point)
comprises the subdomain for that point.

based on monomial functions is termed moving least squares (MLS) method, and

the counterpart based on radial basis functions is termed radial basis function-based

method (Fasshauer, 2007). Note the use of monomial functions in approximation over

meshed subdomains is the foundation of the mesh-based numerical methods such as

finite element and classical grid-based finite difference methods (Fig 2.2 (a) and (b)).

In the method of MLS, a complete set of monomial functions is typically used for

accuracy. For example, a complete set of linear monomials in 3-D space is [1, x, y, z]

withM = 4, and a complete set of quadratic monomials is [1, x, y, z, xy, yz, xz, x2, y2, z2]

with M = 10. The approximant f̂ constructed using MLS is determined by minimiz-

ing the functional

J =
n∑

k=1

w(r, rk)

(
M∑
i=1

ϕi(r) · ci − fk

)2

, (2.3)

where ci are the coefficients to be determined, rk is the position of kth point in a

subdomain, and w(r, rk) is a weight function which is predetermined and is chosen

such that w > 0. In order to obtain a unique solution to eq (2.3), n ⩾M is required
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Figure 2.2. Schematic illustration of different discretizations in
mesh-based and meshfree approximation methods. Shown above
are (a) a grid-based finite difference stencil, (b) an unstructured
mesh and (c) two meshfree subdomains.

to hold. In practice, n > M is often the case and ci are solved in a least squares

manner (see Nguyen et al., 2008, and references therein). The weight function is

required here so that the linear system of equations from least squares averaging has

a nonsingular matrix for high dimensional (2-D and 3-D) data sites, which makes MLS

feasible for multivariate function approximation, or equivalently, for high dimensional

meshfree function approximation. However, in 2-D and 3-D situations, the data sites,

or meshfree points in a subdomain are still required to possess a certain degree of

regularity such as not being collinear points (Fig 2.3), regardless of the choice of w.

In the method of approximation by radial basis functions (RBFs), which are ex-

plained with more details in Sections 2.4 and 2.4.1, ϕi(r) are translations of a chosen

RBF at the n points. Since many RBFs that are used in practical meshfree function

approximation are positive definite functions, standard Lagrange-type interpolation

conditions (f̂(ri) = fi = f(ri), i = 1, · · · , n) can be employed to determine ci in

eq (2.2). In this case, n =M in each subdomain.
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Equidistant points(a) (b) Random points (c) collinear points

Figure 2.3. Some point arrangements in a 2-D meshfree subdomain:
(a) regular, equidistant points; (b) randomly distributed points and
(c) collinear points. The red point is the support point.

2.2 Meshfree methods for solving PDEs

Different meshfree numerical methods have been developed to solve PDEs arising

from various applications. Although early applications of meshfree methods were pri-

marily focused on fluid and solid mechanics and astrophysics, applications in many

other fields have been reported (see the reviews by Belytschko et al., 1996; Li & Liu,

2002; Nguyen et al., 2008; Chen et al., 2017). Over the years, there have been nu-

merous meshfree PDE-solving approaches proposed which are often named by the

proposers’ practical applications, causing a remarkable inconsistency in the nomen-

clature of meshfree numerical methods (see, e.g., the various names listed in Chen

et al., 2017). This is sometimes inconvenient and even misleading for researchers

and practitioners to understand the techniques in those approaches. To alleviate this

issue, an explanation of the essence of those meshfree methods is presented here.

Similar to mesh-based numerical methods, meshfree methods are generally cate-

gorized as two groups from the point of view of deriving a numerical solution: strong

form-based methods (SFMs) and weak form-based methods (WFMs). In the process

of seeking a numerical solution to PDEs (e.g., Df = g, g is a known function) over a

bounded domain, the action of a differential operator D on the unknown function f ,
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Df , will be approximated as the result of a linear combination of a certain number

(e.g., k) of local function values

Df ≈
k∑

j=1

cjfj. (2.4)

In SFMs, the coefficients cj in eq (2.4) are obtained by satisfying the above approx-

imation at discrete data sites (meshfree points here). In WFMs, however, the PDE

under consideration is satisfied in an averaged sense (thus, the ‘weak’ form)

∫
Ω′
v · (Df − g) dV = 0, Ω′ ⊂ R3, (2.5)

where v is often referred to as test function or weight function, and Ω′ is the problem

domain.

It can be observed from eqs (2.4) and (2.5) that in either type of the numerical

methods, approximation of the unknown function f needs to be carried out before a

numerical solution can be found, and there are a number of meshfree function approx-

imation approaches available in addition to the two widely used ones mentioned in the

previous section. In the case of WFMs, aside from different ways of approximating f ,

there are different methods to partition the problem domain into subdomains (sub-

domains for function approximation and for weak form integration may be different).

There are also different ways to choose the test function, for which two commonly

used approaches are Galerkin (also known as Bubnov-Galerkin or standard Galerkin)

method and Petrov-Galerkin method (Atluri & Zhu, 1998; Gockenbach, 2006).

Differing in these aspects in finding a numerical solution, some notable strong
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form-based meshfree methods include smoothed particle hydrodynamics (Gingold &

Monaghan, 1977), generalized finite differences (Liszka & Orkisz, 1980), the vortex

method (Leonard, 1985), finite-volume particle-in-cell method (Munz et al., 1999),

meshless collocation method (Kansa, 1990a) and RBF-based finite difference (RBF-

FD, Tolstykh & Shirobokov, 2003). Similarly, some notable weak form-based mesh-

free methods are diffuse element method (Nayroles et al., 1992), element free Galerkin

method (EFG, Belytschko et al., 1994), reproducing kernel particle method (Liu et al.,

1995), h-p cloud method (Duarte & Oden, 1996a), partition of unity method (Me-

lenk & Babuška, 1996), free mesh method (Yagawa & Yamada, 1996), meshless local

Petrov-Galerkin method (MLPG, Atluri & Zhu, 1998), and radial point interpola-

tion method (RPIM, Wang & Liu, 2002a). In the past two decades, improvements

to the aforementioned methods have been developed that are devoted to enhancing

particular aspects in computer implementations such as efficiency and convergence

rate (Chen et al., 2017). One important example of these improvements is how to

accurately and efficiently carry out volume or surface integration over meshfree sub-

domains in WFMs. This is because when using meshfree function approximation

techniques, the resultant shape functions are often high-order rational functions, as

opposed to low-order polynomials that typically appear in mesh-based methods (e.g.,

finite element and integral equation methods), and as such the integrals in eq (2.5)

have to be carried out numerically instead of analytically.
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2.3 Applications in geophysics

Applications of meshfree methods in geophysics were reported as early as the 1970s

(Hardy, 1971). However, meshfree methods are still not widely known to the geo-

physical community. As mentioned in the Introduction of the thesis, a major benefit

of using meshfree numerical methods is that irregular geometries can be relatively

easily represented. Another advantage using meshfree methods is that high order

accuracy and/or convergence rate can be achieved by a discretization with fewer de-

grees of freedom than that using traditional mesh-based methods. The latter is due

to the high order smoothness of the meshfree approximant or interpolant. To date,

there have been increasing applications of meshfree methods in forward modelling

geophysical data. For example, Jia & Hu (2006) investigated the numerical accu-

racy of applying EFG to simulate 2-D time-domain seismic wave fields. Martin et al.

(2015) demonstrated that using RBF-FD with multiquadric RBFs can lead to a high-

order h convergence in modelling 2-D seismic wave propagation. Similarly, Takekawa

et al. (2015) proposed to use a polynomial-based meshfree FD approach to solve

the problem of frequency-domain elastic wave modelling, which is further studied by

Takekawa & Mikada (2016, 2018). Li et al. (2017) studied time-space-domain elastic

wave modelling using RBF-FD for greater temporal accuracy, which uses the same

RBFs as in Martin et al. (2015). For the modelling of EM data, Wittke & Tezkan

(2014) presented an application of MLPG for simulating 2-D magnetotelluric (MT)

responses of inhomogeneous conductivity models. The same MT numerical problem

was also studied by Li et al. (2015) using an implementation of EFG and by Ji et al.

(2018) using a realization of RPIM.
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The above geophysical studies using meshfree techniques involve, however, only

2-D problems and only employ uniform or quasi-uniform (unstructured but uniform

density of points) meshfree point discretizations. In this thesis, 3-D geophysical data

modelling problems are addressed and the use of unstructured meshfree discretizations

is investigated. I have adopted the strong form-based variant of RBF-FD for such

purpose. This choice is based on the facts that: first, RBF-FD allows for arbitrarily

distributed meshfree points to be used in discretizing Earth models, and therefore is

capable of dealing with complex and realistic geometries of models; second, RBF-FD

is free from integrations when transforming continuous PDEs into discrete algebraic

equations, effectively circumventing difficulties arising from numerical integrations

(quadrature and/or cubature) using WFMs (e.g., EFG and MLPG).

2.4 RBF-based meshfree methods

A radial basis function (RBF) is defined as a radially symmetric (with respect to

its centre) rational function. An RBF is mathematically denoted in general as

R(r) = R(||r − ri||l2) throughout this thesis, where r = (x, y, z) in 3D is the ar-

gument (variable) and ri is its centre
1. The radial symmetry means that the value of

the function only depends on the Euclidean distance (r) between the argument and its

centre. Therefore, any rotations of an RBF does not change the function value. RBFs

are particularly suitable for multivariate function approximation based on scattered

data (Buhmann, 2003). The importance of these properties of RBFs in the context of

meshfree function approximation and PDE-solving problems is two-fold. First, RBFs

1The centre variable of an RBF always appears at the second place within || · || throughout the
thesis.
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can be directly used in the function approximation with standard Lagrange interpola-

tion conditions, that is, the approximant f̂ of an unknown function f constructed in

this way passes through all discrete function values f̂(ri) = fi = f(ri). This enables

a straightforward and simple implementation of Dirichlet-type boundary conditions

in solving PDEs, for which extra boundary treatments would otherwise be needed if

using polynomial-based meshfree approximation (Atluri & Shen, 2002). Second, pos-

sible matrix singularity issues of the resultant linear system in multidimensional mesh-

free approximation are readily avoided, even for extreme point arrangements (e.g.,

collinear points in Fig 2.3, Section 2.1). Extreme point arrangements will cause sin-

gularity issues in the polynomial-based meshfree approximation such as MLS (Wang

& Liu, 2002a).

Although RBFs were used for solving problems of scattered data interpolation as

early as the 1970s (e.g., Hardy, 1971, for geological mapping), applications of using

RBF-based approximation in solving PDEs had not been reported until 1990s (Kansa,

1990a,b). The method used by Kansa (1990a) is essentially a global approximation

of differential operators, or derivatives, in a PDE by using the RBF-based meshfree

approximation, leading to a full, dense and unsymmetrical matrix in the resultant

linear system of equations. Since his pioneering works, many researchers have been

seeking more efficient RBF-based numerical methods that for example are able to

generate a sparse and/or symmetric global matrix equation such that larger modelling

problems could be tackled. One noticeable development as a result of these effort is the

proposal of using compactly supported2 RBFs in Kansa’s method, which originally

used global RBFs (see, e.g., Schaback & Wendland, 1999). The use of compactly

2A compactly supported function is a function whose non-zero domain is compact.
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supported RBFs greatly improves the sparsity of the matrix of the linear system of

equations.

A more revolutionary idea is, however, using the RBF-based approximation for

differential operators in a finite difference way, which was to the best of my knowledge

independently proposed by Tolstykh & Shirobokov (2003), Shu et al. (2003), and

Larsson & Fornberg (2003). The most significant difference between this new idea

and previous methods is that the approximation of derivatives only occurs within

local subdomains, rather than happening globally (using all points). The nature of

local approximation ensures that the final linear system always has a sparse matrix,

and at the same time allows for possibilities of constructing symmetric coefficient

matrices. In spite of different terms in nomenclature employed in the literature, the

numerical method based on this idea is mostly called RBF-based finite difference

method (RBF-FD) (Fornberg & Flyer, 2015a). Throughout this thesis, ‘RBF-FD’ is

used to refer to such a numerical method for which the implementation is further

described in detail in Section 2.4.1.

Compared to mesh-based numerical methods such as finite element and grid-based

finite difference, one aspect to note is that theoretical developments of RBF-FD tech-

niques in terms of error analysis (e.g., convergence) in the context of solving various

PDEs are less mature and still being studied. However, significant advances have

been reported in the past two decades. For example, Wright (2003) pointed out that

although RBF-FD is conceptually similar to classical grid-based FD, the differen-

tiation weights (i.e., RBF-FD weights) in the RBF-FD frame enforce the resultant

difference formula to be exact for a given RBF, whereas the differentiation weights

in the grid-based FD scheme enforce the resultant difference formula to be exact for
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polynomials up to some degree. Performance evaluations and convergence analyses

(under refinements of discretization) of RBF-FD demonstrated via numerical results

are provided by, for example, Ding et al. (2005), Wright & Fornberg (2006), Bayona

et al. (2010) and Davydov & Oanh (2011a). Studies focusing on the numerical anal-

ysis of RBF-FD involving two major groups of RBFs (see Table 2.1) have revealed

new insights regarding adding polynomials in RBF-based approximation (Flyer et al.,

2016a,b; Bayona et al., 2017). General mathematical analyses, albeit more theoreti-

cal, regarding convergence and error bounds in solving PDEs have also been reported

steadily (e.g., Fasshauer, 1996; Franke & Schaback, 1998; Schaback, 2007; Davydov

& Schaback, 2016; Schaback, 2017).

2.4.1 RBF-FD

RBF-FD uses the strong form of differential equations and generalizes classical grid-

based FD methods from lattice-based grids to arbitrarily scattered points. In RBF-

FD, a differential operator acting on a function (e.g., ∇2ϕ with ϕ as gravitational

potential) is directly approximated as a linear combination of local function values,

which can be written as

D f |r=ri ≈
n∑

j=1

cjfj, (2.6)

where D is the operator, f = f(r) is the function, fj are discrete function values, and

cj are approximation coefficients or weights. The subscript r = ri indicates that the

approximation takes place at a specific position. The mathematical form in eq (2.6)

can be equally used for an approximation of operators when using a classical grid-

based FD approach. However, a classical grid-based FD approach approximating Df
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is essentially one dimensional, and finding cj in eq (2.6) is equivalent to enforcing that

the corresponding FD formula (e.g., 3-point central FD formula) is exact for monomial

functions 1, x, x2,. . ., up to a desired degree. In the RBF-FD case, the approximation

in eq (2.6) is possible for higher dimensional (e.g., 2-D and 3-D) spaces, and finding the

weights is equivalent to enforcing that the RBF-FD formula is exact for translations

of a given RBF (Fornberg & Flyer, 2015a). In practice, when determining the RBF-

FD weights cj in the meshfree case, the (possibly unknown) function, f , is itself

approximated using a Lagrange-type interpolant3 first. The RBF-based interpolant

s(r) is written as

s(r) =
n∑

k=1

R(||r− rk||) · bk, r ∈ R3, (2.7)

where || · || is the l2 norm, R(||r− rk||) is an RBF, R is the space of real values, and

n is the number of local points (also the number of local function values) within a

meshfree subdomain (see Fig 2.1). The interpolation coefficients, bk, are obtained by

enforcing the standard Lagrange interpolation condition

s(rk) = fk = f(rk), k = 1, 2, · · · , n (2.8)

which is equivalent to solving the local linear system

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

R(||r1 − r1||) R(||r1 − r2||) · · · R(||r1 − rn||)

R(||r2 − r1||) R(||r2 − r2||) · · · R(||r2 − rn||)
...

...
. . .

...

R(||rn − r1||) R(||rn − r2||) · · · R(||rn − rn||)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1

b2

...

bn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

f1

f2

...

fn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (2.9)

3The interpolant, rather than approximant, is used here to indicate that the approximation here
is derived using interpolation conditions, as described in the following.
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Eq (2.9) can be written as a compact matrix form:

Rb = F, (2.10)

where R is the symmetric matrix at the left-hand side of eq (2.9), b = (b1 b2 · · · bn)T

is the vector of the interpolation coefficients and F = (f1 f2 · · · fn)T the function

value vector. The superscript T indicates the transpose of a vector or matrix unless

otherwise indicated.

It is seen here that R is only determined by the predefined point distribution once

a type of RBF is chosen. To ensure a unique solution to eq (2.10), the matrix R

needs to be nonsingular. This is proven to be true for many positive definite RBFs,

which include the examples listed in Table 2.1 (Buhmann, 2003; Fasshauer, 2007). If

the inverse of R exists, the unique solution to eq (2.10) is b = R−1F. Substituting

this relation back into eq (2.7) leads to the form of interpolant in terms of meshfree

shape functions :

s(r) =
n∑

k=1

Nk(r)fk, (2.11)

where the shape functions Nk(r) = Nk(x, y, z) are non-polynomial rational functions

and satisfy Nk(rk) = 1 and Nk(rl) = 0 (l = 1, . . . , k − 1, k + 1, . . . , n).

If the vector of local function values F is known as well, which is common in

function approximation, a unique interpolant can then be obtained. However, in

approximating differential operators in the context of solving PDEs, as in the case

of finding RBF-FD weights, the function f , therefore F, is typically unknown. This

means that eq (2.10) is not the right one to solve in order to obtain RBF-FD weights;
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instead, a different local linear system of equations should be solved.

To demonstrate, the action of a differential operator on f is now expanded using

the interpolant in eq (2.7) as

Df |r=ri ≈
n∑

k=1

DR(||r− rk||)|r=ri · bk

=

(
b1 · · · bn

)
⎛⎜⎜⎜⎜⎜⎝
DR(||r− r1||)|r=ri

...

DR(||r− rn||)|r=ri

⎞⎟⎟⎟⎟⎟⎠
= bT ·PRadial, (2.12)

where PT
Radial = (DR(||r− r1||), · · · , DR(||r− rn||))|r=ri , and b is the same vector as

in eq (2.10). Next, replacing b in eq (2.12) with R−1F results in

Df |r=ri ≈ FTR−1PRadial. (2.13)

Denoting the product of R−1 and PRadial in eq (2.13) as a vector (e.g., c), it is clear

that

Df |r=ri ≈ FTc =
n∑

j=1

cjfj, (2.14)

and

Rc = PRadial. (2.15)

As a result, solving eq (2.15) for each meshfree subdomain gives rise to its RBF-FD

weights cj. Note that eq (2.15) only differs from eq (2.9) in the right-hand side vector.

The interpolant in eq (2.7) can be enriched with low-order monomial basis func-
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Table 2.1. Common types of RBFs. The infinitely smooth RBFs
include a shape parameter c > 0. r is the Euclidean distance between
two points r1 and r2: r = ||r1 − r2||l2 . N+ is the space of positive
integers.

Type of basis function Radial function R(r)

Finite-smoothness RBFs
Generalized Duchon spline r2klogr, k ∈ N+

Polyharmonic spline (PHS) r2k−1, k ∈ N+

Infinitely smooth RBFs

Gaussian (GA) e−(cr)2

Multiquadric (MQ) (c2 + r2)
1
2

Inverse-multiquadric (IMQ) (c2 + r2)−
1
2

tions. In general, the enrichment of monomials improves stability and convergence

under h refinement (i.e., under different cell sizes in the mesh, here under different

inter-nodal distances). In the 3-D case, a complete monomial basis of linear order is

[1, x, y, z], and [1, x, y, z, xy, yz, xz, x2, y2, z2] for quadratic order. Hereinafter, these

monomial basis functions are generally called polynomials based on the facts that

any polynomial function can be constructed from monomial basis functions and poly-

nomials are more commonly used. In this section, only the demonstration using the

RBF-based approximation enriched with 3-D linear polynomials is given. However,

the procedure can be equally and straightforwardly applied to higher-order polyno-

mial enrichment situations. The enriched interpolant thus becomes

s(r) =
n∑

k=1

R(||r− rk||) · bk + d0 + d1x+ d2y + d3z, (2.16)

with di (i = 0, 1, 2, 3) as additional degrees of freedom. The determination of the

additional coefficients requires extra equations, which are provided by applying the
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unisolvency conditions (Buhmann, 2003)

n∑
k=1

bk =
n∑

k=1

bkxk =
n∑

k=1

bkyk =
n∑

k=1

bkzk = 0 (2.17)

at the n local points. Here, xk, yk and zk are the Cartesian coordinates of the kth

point. Now a unique solution to the approximation problem in eq (2.16) is guaranteed.

The updated local linear system of equations then becomes

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 x1 y1 z1

R
...

...
...

...

1 xn yn zn

1 · · · 1

x1 · · · xn 0

y1 · · · yn

z1 · · · zn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1

...

bn

d0

d1

d2

d3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f1

...

fn

0

0

0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2.18)

and can be expressed in a compact matrix form as

⎛⎜⎝R P

PT 0

⎞⎟⎠
⎛⎜⎝b

d

⎞⎟⎠ =

⎛⎜⎝F

0

⎞⎟⎠ , (2.19)

where P denotes the upper right blocky submatrix

P =

⎛⎜⎜⎜⎜⎜⎝
1 x1 y1 z1

...
...

...
...

1 xn yn zn

⎞⎟⎟⎟⎟⎟⎠ , (2.20)

33



and d denotes the vector (d0 d1 d2 d3)
T .

Similar to the situation without polynomial enrichment, eq (2.19) is not solvable

for seeking RBF-FD weights. Instead, a different linear system of equations needs

to be solved. Using the same demonstration process presented before, it is proven

that the new local linear system has the same left-hand matrix as in eq (2.19), but a

different right-hand side (RHS) vector:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 x1 y1 z1

R
...

...
...

...

1 xn yn zn

1 · · · 1

x1 · · · xn 0

y1 · · · yn

z1 · · · zn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

w1

...

wn

wn+1

wn+2

wn+3

wn+4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

DR(||r− r1||)|r=ri

...

DR(||r− rn||)|r=ri

D 1|r=ri

D x|r=ri

D y|r=ri

D z|r=ri

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2.21)

where D is the same operator as in eq (2.6), and wi (i = 1, . . . , n, n + 4) are the

solution. Note that only wi (i = 1, . . . , n) are used as the RBF-FD weights.

In general, the dimension of the linear system in eq (2.21) will be n +m, with n

as the number of meshfree points in a subdomain (i.e., number of RBF interpolation

basis functions) and m as the number of terms of enriched polynomials. In this

thesis, the local linear system of equations in eq (2.21) is by default solved by the

LU decomposition algorithm implemented in open source package LAPACK (version

3.8.0) (Anderson et al., 1999), unless otherwise stated.
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2.4.2 Infinitely smooth and finite-smoothness RBFs

In the scheme of RBF-based meshfree numerical methods (including RBF-FD), many

different RBFs can be chosen to form the meshfree interpolation in eq (2.18) with

a nonsingular coefficient matrix. These RBFs are often grouped as two categories

in terms of smoothness (Fasshauer, 2007): infinitely smooth and finite-smoothness

RBFs (the finite-smoothness RBFs are sometimes called piecewise smooth RBFs, see

Fornberg et al., 2002). As the group names indicate, infinitely smooth RBFs are

differentiable for any order of derivatives, whereas finite-smoothness RBFs are Ck

functions with 0 ⩽ k ̸= ∞ as an integer. Some typical RBFs from these two groups

are listed in Table 2.1. Since Kansa’s pioneering work (see Section 2.4), RBF-based

PDE-solving methods using infinitely smooth RBFs have been frequently studied and

applied for meshfree PDE-solving problems in areas that include computational fluid

dynamics and solid mechanics (e.g., Wang & Liu, 2002a; Shu et al., 2003; Chandhini

& Sanyasiraju, 2007), mantle convection modelling of the Earth (e.g., Wright et al.,

2010), and seismic wavefield simulation (e.g., Takekawa et al., 2015; Li et al., 2017).

The success and popularity of using infinitely smooth RBFs in PDE-solving meth-

ods is largely because of their high-order convergence rate under refinement. However,

infinitely smooth RBFs often contain a shape parameter (see Table 2.1) that controls

the flatness of the RBF. The shape parameter has a significant effect on the numerical

accuracy of RBF-based interpolation and therefore that of PDE-solving algorithms,

and needs to be chosen with care. In fact, in the case of infinitely smooth RBFs,

it is now understood that flatter RBFs (e.g., smaller c in Gaussian RBFs e−(cr)2)

result in a better interpolation accuracy in theory but at the same time a more ill-
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conditioned local linear system of equations in the function approximation, although

the approximation itself is well-posed (Schaback, 1995; Fasshauer & Zhang, 2007;

Fornberg & Piret, 2007). If the ill-conditioned linear system is solved directly using

algorithms with finite precision arithmetic, a numerical solution with low accuracy

will be obtained. This is due to numerical evaluation errors. On the other hand,

using sharper RBFs leads to a better conditioned linear system which can be solved

with less numerical errors, but the approximation accuracy is predicted theoretically

to be lower. This phenomenon is sometimes referred to as ‘uncertainty principle’ in

the literature (Schaback, 1995). It is this dilemma that causes a trade-off in selecting

a good enough shape parameter of infinitely smooth RBFs for solving a general PDE,

as explained in the following.

To use infinitely smooth RBFs in deriving approximation weights of differential

equations (e.g., RBF-FD weights), two categories of methods can be used to ensure

the interpolation accuracy, or equivalently, the quality of approximation weights of

PDEs. The first type of methods aims to find an ‘optimal’ or trade-off shape param-

eter that limits the deterioration of the numerical solution of local linear system of

interpolation to an acceptable level (Rippa, 1999; Wang & Liu, 2002b; Fasshauer &

Zhang, 2007; Davydov & Oanh, 2011b; Uddin, 2014). Once such a value of shape

parameter is determined, the local linear systems can then be solved directly (e.g.,

by LU decomposition) without any modification or preconditioning (methods of this

group are thus abbreviated as RBF-direct methods in the following). The second type

of method focuses on finding a new and more stable basis of vectors4 that spans the

same solution space as the original RBF-based basis does for the coefficient matrix

4Here, the basis of vectors of a matrix is referred to as the column basis vectors of a matrix.
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of interpolation, such that the resultant new linear system can be stably solved with

accuracy for the whole range of shape parameter values (Fornberg & Wright, 2004;

Fornberg & Piret, 2007; Fornberg et al., 2011; Fasshauer & McCourt, 2012; Larsson

et al., 2013; Fornberg et al., 2013). The change of basis vectors of a coefficient matrix

can be considered as a preconditioning technique (e.g., Larsson et al., 2013; similarly,

methods of this group are abbreviated as basis-changing methods in the following).

Infinitely smooth RBFs have the advantage of higher order of convergence than

the finite-smoothness RBFs in meshfree function approximation. However, in the

context of solving PDEs such as forward modelling of geophysical data, the use of

infinitely smooth RBFs is considered to be disadvantageous in this thesis study. This

can be justified from two aspects. First, when using localized meshfree PDE-solving

methods, for example RBF-FD in this thesis, the convergence advantage of infinitely

smooth RBFs is somewhat diminished. Convergence rate of solution when solving

PDEs is no longer predominantly affected by the RBFs; it will be equally or even

overwhelmingly affected by the subdomain size (i.e., number of points in a mesh-

free subdomain, Bayona et al., 2010) and possibly enriched polynomials (Flyer et al.,

2016a). Second, significant computational cost is necessary to determine a sufficiently

good shape parameter, particularly for large-scale Earth models with a considerable

amount of degrees of freedom as in the case of geophysical data modelling. This can

be explained with both RBF-direct and basis-changing methods mentioned above in

determining the shape parameter of RBFs. In the former methods (i.e., RBF-direct

methods), since an optimal shape parameter is typically affected by many factors in-

cluding spatial arrangement of local points, type of RBFs, size of subdomain and the

unknown function itself (Rippa, 1999), search algorithms for determining an optimal
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parameter become potentially problem-specific. Also, an intelligent search algorithm

considering these factors is needed to find the optimal parameter, requiring solving

the local interpolation linear system many times for each point. In the latter methods,

the basis-changing process provides stable numerical solutions even for those shape

parameters of flat RBFs, however, the developed algorithms so far entail complicated

decomposition and orthogonalization of the original interpolation matrix, and typi-

cally require 10 to 20 times more computational time than a standard evaluation time

using direct LU decomposition (Larsson et al., 2013).

Finite-smoothness RBFs (e.g., polyharmonic splines, or PHSs, in Table 2.1), on

the other hand, are free of such a shape parameter and thus completely avoid the

necessity of selecting a good shape parameter for solving PDEs. Another benefit of

using PHS RBFs is that although the local linear system of equations arising from

RBF-based interpolation can still become very ill-conditioned when the number of

points in subdomains is not small (e.g., n > 50 in 3-D), accurate solution of the

linear system can be readily obtained by a direct LU decomposition if scaling the

subdomain by a distance hs first, which is essentially a preconditioning technique,

for very large condition number situations (Iske, 2003). This is different from the

ill-conditioning issue of using flat infinitely smooth RBFs as just described, which

may require the computation of LU decomposition many times in deriving differen-

tial weights in a subdomain. This simple scaling preconditioning, made possible due

to the invariant property under scaling of PHS RBFs (Iske, 2003), is however not

applicable to infinitely smooth RBFs. As such, PHS RBFs are preferred in the appli-

cations of RBF-FD in this thesis study. Recent studies (Flyer et al., 2016a,b; Bayona

et al., 2017) show that the meshfree interpolation using PHS RBFs, if augmented
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with proper polynomials, can overcome saturation errors under local refinements of

points, a difficulty frequently encountered when using infinitely smooth RBFs alone

(e.g., Gaussian RBFs, Fornberg et al., 2013). Another finding in these studies is

that when using PHS RBFs in the RBF-FD scheme, the rate of h convergence (i.e.,

convergence under refinement) is essentially dependent on the degree of enriched poly-

nomials, rather on the degree of PHS RBFs. This finding, although being a numerical

observation, provides a new insight in applying RBF-FD for solving PDEs with good

accuracy.

2.5 Application of meshfree methods in problems

with discontinuity

Regardless of the type of basis functions (RBF or non-RBF), a standard meshfree

function approximation results in a highly smooth interpolant within each meshfree

subdomain. Since meshfree subdomains typically overlap, this gives rise to a globally

smooth solution when solving PDEs (Nguyen et al., 2008). The global smoothness of

a numerical solution is traditionally an advantage of meshfree PDE-solving methods

when considering their early applications as mentioned before (e.g., computational

fluid dynamics and astrophysics). For the same reason, the smoothness nature of

standard meshfree techniques becomes a drawback when solving problems involving

discontinuities in the function of interest or in its first derivatives (Krongauz & Be-

lytschko, 1998). The application of meshfree methods in synthesizing geophysical EM

data for a geometrically arbitrary 3-D conductivity model falls within the case that
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involves possible discontinuities.

Being a potential difficulty, the reproduction of possible discontinuities in a mesh-

free solution has been addressed since as early as 1990s (Belytschko et al., 1996) and

is still an active research topic (e.g., Jalušić et al., 2017). Over the years, two ma-

jor ideas for overcoming this difficulty have been developed. The first is to modify

to some extent the standard meshfree function approximation in order to reproduce

desirable discontinuities within meshfree subdomains. The second is to take advan-

tage of the geometric information of the discontinuities and then construct a normal

meshfree approximation that satisfies specific conditions. Since the discontinuity be-

haviour of the normal electric field in geophysical EM data over conductivity jumps

is well understood, this discontinuity issue needs to be addressed in order to apply

any meshfree technique to synthesize EM responses. The proposed meshfree method

in this thesis originates from the second idea, but differs from existing techniques.

The details of available techniques along with the newly proposed techniques in this

thesis are presented in Chapters 4 and 5.
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Chapter 3

Simulation of geophysical gravity

data using RBF-FD

3.1 Introduction

Geophysical gravity data interpretations resolve density information in the subsurface.

The interpretations are routinely carried out by means of 3-D inversion nowadays, in

which 3-D forward modellings are necessary (Li & Oldenburg, 1998; Moorkamp et al.,

2011). In the forward problem, the task is to calculate gravity fields (mostly vertical

gravity) and gravity gradients at specific measurement locations due to a density

distribution of the subsurface. Two categories of methods are capable of modelling the

gravity responses of a general inhomogeneous density model: summation-based and

PDE-solving techniques. In the summation-based approaches, gravity responses are

obtained by taking volume integrals based on Newton’s law of universal gravitation.

In the PDE-solving category, a boundary value problem using Poisson’s equation of
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gravitational potential is solved.

Summation-based approaches are often called analytical methods since the evalu-

ation of integrals can be carried out rather accurately, sometimes even without using

numerical quadrature. Early studies in terms of 3-D gravity data modelling mostly

focused on this type of technique, with a number of developed mathematical formulae

for evaluating integrals. A particular interest in the early time was to use rectilinear

meshes, which are the simplest 3-D meshes, for discretizations (Nagy, 1966; Banerjee

& Das Gupta, 1977; Last & Kubik, 1983; Guillen & Menichetti, 1984; Bear et al., 1995;

Li & Oldenburg, 1998). In order to account for complex density models, analytical

formulae of computing gravity or gravitational potential have also been developed,

mainly based on the gravity responses due to a particular type of polyhedral element

other than prisms with homogeneous densities (Paul, 1974; Barnett, 1976; Okabe,

1979; Waldvogel, 1979; Pohánka, 1988; Petrović, 1996; Holstein, 2002; Tsoulis, 2012;

D’Urso, 2014a). More recently, there have been attempts in developing such analyt-

ical formulae for polyhedral elements within which the density is not constant, but

changes continuously following the pattern of some polynomial functions (Pohánka,

1998; Hansen, 1999; Holstein, 2003; Zhou, 2009; D’Urso, 2014b; Ren et al., 2017a).

One obvious reason to use summation-based approaches in the context of forward

modelling and inversion of gravity data is that their algorithm implementations are

relatively easy and straightforward. Also, very accurate numerical results are often

offered if the above-mentioned analytical formulae are available for a given model

discretization. In terms of efficiency, the computation complexity forN measurements

with a discretization of M degrees of freedom (the number of cells) is O(N ×M). It

is known that the efficiency achieved using summation-based approaches deteriorates
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as either N or M increases, which is a major drawback when dealing with large-

scale models with possible hundreds of thousands of measurements (e.g., airborne

gravity surveys). Another disadvantage is that, when adopting such approaches as

the forward modelling engine in an inversion using gradient-based optimization, for

example, the popular minimum-structure inversion using a Gaussian-Newton method,

the resultant sensitivity matrix is full and dense and has the dimension of N by

M . This full and dense sensitivity matrix would require a large amount of memory

storage for inversions for large-scale models, or for moderate-scale models but with

high resolution. Aside from the memory storage issue, the computational complexity

also increases due to a large full and dense sensitivity matrix, for which the detailed

arguments are presented by, for example, Farquharson & Mosher (2009) and May &

Knepley (2011). For practical 3-D forward modelling and inversion of gravity data,

additional remedies that alleviate the storage of and/or the computational complexity

related to the sensitivity matrix are often required (e.g., Li & Oldenburg, 1998, 2003;

Chasseriau & Chouteau, 2003; Pilkington, 2009; Davis & Li, 2011; May & Knepley,

2011; Ren et al., 2017b).

In contrast to summation-based approaches, PDE-solving techniques can synthe-

size all N data measurements at once, including gravity fields and gravity gradients,

with a trivial cost once a solution to the PDE is obtained. In other words, the

computational complexity is O(M). This is because gravity signals at the desired

measurement locations can be simultaneously obtained by solving once a linear sys-

tem of equations in PDE-solving approaches. The linear system arising from tra-

ditional PDE-solving techniques (e.g., grid-based FD, FE and FV methods) has a

highly sparse coefficient matrix. When this coefficient matrix is implicitly formed
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and stored in memory in a matrix-free way, the aforementioned sensitivity matrix

even needs not be explicitly stored. As a result, the computation involving the sen-

sitivity matrix, which is still full and dense, can be very efficiently carried out in the

case of gradient-based iterative inversions (Farquharson & Mosher, 2009). Although

the solution accuracy of a PDE-solving approach is affected by model discretization,

the above-mentioned advantages of PDE-solving approaches make them an attractive

option for practical gravity data inversions, particularly for those involving large-scale

complex models.

Forward modellings and inversions of 3-D gravity data using grid-based FD, FE

and FV methods have all been reported in the literature. Farquharson & Mosher

(2009) and Farquharson (2008) used a FD method together with rectilinear meshes

to forward model and invert, respectively, gravity data, and demonstrated the above

computational efficiency of PDE-solving approaches with numerical examples. Zhang

et al. (2004) used an FE implementation for the forward calculation of gravity fields

in their genetic search-based inversion algorithm. Cai & Wang (2005) also used a

FE method for 3-D gravity data modelling and compared its computational efficiency

with that of summation-based techniques. They concluded that using the FE tech-

niques can be significantly more efficient than using summation-based counterparts in

modelling over 3-D complex geological regions if the data amount N is much greater

than a few hundreds. May & Knepley (2011) reported similar efficiency results by

using an FE implementation and summation-based techniques. Their comparison

study suggests that the FE approach in conjunction with an approximated boundary

condition for solving Poisson’s equation (Cai & Wang, 2005) can be more useful in

practice than an accelerated version of summation-based techniques, namely, their

44



fast multipole method. More recently, PDE-solving techniques have been used for

dealing with complicated geometries of density models (Jahandari & Farquharson,

2013) and for modelling efficiency in working with large-scale density models (Haber

et al., 2014; Gross et al., 2015).

In this chapter, the chosen meshfree method, RBF-FD, is proposed as an alter-

native PDE-solving approach to forward model 3-D gravity signals. Implementation

details of the meshfree methods, for example how to determine RBF-FD stencil sizes,

are presented here. Despite being a simpler problem compared to EM field simula-

tions, the gravity data modelling is a good example of investigating the fundamentals

of the meshfree method, which will be the basis for the later applications in modelling

MT and CSEM data.

3.2 Poisson’s equation for gravitational potential

In this thesis, Poisson’s equation for the gravitational potential due to a density

distribution is numerically solved. A general expression for the equation is (Kellogg,

1967; Blakely, 1996)

∇2ϕ(r) = −4πγρ(r); for r ∈ Ω ⊂ R3, (3.1)

where ϕ(r) is the potential function, γ is the gravitational constant, ρ(r) denotes the

density function or distribution, Ω represents the problem domain, and ∇2 is the

Laplacian operator. Eq (3.1) holds both in and outside the density source region

Ωs (Ωs ⊂ Ω, ρ ̸= 0 only in Ωs). In practical geophysical applications, gravity fields
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and gravity gradients are collected as the measurements. The gravity field vector, or

acceleration vector, g is obtained by taking the gradient of ϕ

g = −∇ϕ. (3.2)

The gravity gradients, which are the 9 components of the 3 by 3 gradient tensor, U,

are numerically obtained by taking the gradient of g

U = ∇g = −∇∇ϕ =

⎛⎜⎜⎜⎜⎜⎝
Uxx Uxy Uxz

Uyx Uyy Uyz

Uzx Uzy Uzz

⎞⎟⎟⎟⎟⎟⎠ . (3.3)

For the gravity problem, U has symmetric components; that is, Uxy = Uyx, Uzy = Uyz

and Uzx = Uxz always hold. Also, according to eq (3.1), the three diagonal components

of U satisfy Uxx + Uyy + Uzz = 0 outside of the source regions. As a result, only 5 of

the components of the gradient tensor are independent.

In order to devise a numerical solution to eq (3.1), the problem domain Ω is

truncated to be a rectangular box for all numerical examples here. On its boundaries,

the Dirichlet boundary condition

ϕ(r) = 0, r ∈ ∂Ω, (3.4)

is used to ensure a unique solution. One can use far-field approximated potential

values to replace the boundary condition in eq (3.4) so that the problem domain,

which is also the computational domain, is further reduced in size (Cai & Wang,
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2005). However, the homogeneous Dirichlet boundary condition in eq (3.4) is simple

to implement and more general for density models with arbitrary geometries. Further,

it can be shown that a local refinement with unstructured meshfree points allows for

an efficient discretization without a significant increase in the number of degrees of

freedom.

Eq (3.1) is discretized over the meshfree points per subdomain using the approxi-

mation discussed in Section 2.4.1. For the source term, the point-based density value

of ρ(r) is used for homogeneous regions, and an arithmetic average of the density is

used for any meshfree points residing on the interfaces in the density model. The

gravitational potential is smooth even across the boundaries of the density source so

that there is no discontinuity issues here.

3.3 Convergence analysis of RBF-FD

3.3.1 The case of global refinement

A synthetic density model with a single prismatic density anomaly was designed in

order to understand the convergence behaviour of RBF-FD under a global refinement

of discretization. The prism, with the density ρ = 2000 kg m−3, is embedded at the

centre of the computational domain and is surrounded by a void region with density

ρ = 0 kg m−3. The model set-up is the same as that in Farquharson & Mosher

(2009) and May & Knepley (2011). The rectangular computational domain size is

truncated to be Ω = {(x, y, z)| − 500 m ⩽ x, y, z ⩽ 500 m}. The prism source has

the dimension of 100 × 100 × 100 m. The meshfree points are distributed in a way
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Figure 3.1. Quasi-uniform points shown on the surface and at the
cross-section y = 0 of the prismatic density model for convergence
analysis. The red points in the middle of the cross section are inside
the cubic density source.

such that they are quasi-uniform and unstructured (Fig 3.1), that is, an unstructured

set of points with uniform averaged internodal distances1. Unstructured meshfree

point discretizations are favoured for meshfree methods in this thesis study because

they have the most powerful capability of representing irregular geometries which are

common in realistic Earth models. In the case of quasi-uniform discretizations, the

number of points grows as the order of N3
h with Nh the estimated number of points

in each Cartesian direction.

The truncated domain is not sufficiently large to use the boundary condition in

eq (3.4) without significant numerical errors. Therefore, an analytical solution of

potentials on the boundaries based on a summation-based integral technique (Wald-

vogel, 1976) was used as the boundary values. The small truncated domain is not

1Such a quasi-uniform point discretization normally has almost the same amount of degrees of
freedom as that of a uniform rectilinear mesh.
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Figure 3.2. RMS errors of computed gravity potentials versus the
averaged internodal distance h. Results were calculated by PHS
RBF-FD with enriched linear polynomials (labelled as ‘PHS+poly4’)
and quadratic polynomials (labelled as ‘PHS+poly10’). The two
black solid lines indicate theoretical linear O(h) and quadratic O(h2)
convergence rates in the log-log plot.

suitable for practical applications, but was chosen in the test such that the number

of degrees of freedom will not become too large under global refinements. In order

to assess the convergence rate of different RBF-FD schemes, the root-mean-square

(RMS) error in the following is computed

RMS =

√ 1

N

N∑
i=1

(
ϕnumer
i − ϕexact

i

ϕexact
i

)2

, (3.5)

where N is the total number of points but excluding those on the boundaries of the

computational domain, ϕnumer
i are the potentials computed by RBF-FD and ϕexact

i

are the analytical solutions.

The PHS RBF used is r5 in this chapter as it is twice differentiable and thus is

able to approximate the Laplacian operator (see Appendix A). The stencil size was
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fixed as n = 30. The h convergence results are shown in Fig 3.2. It is evident that

for both situations of polynomial enrichment (linear and quadratic), the numerical

solution using the PHS RBF-FD scheme converges to the true solution. In addition,

it is observed that the PHS RBF-FD enriched with linear polynomials in meshfree

interpolation has the convergence rate approximately as O(h), and the counterpart

with quadratic polynomials has the convergence rate approximately as O(h2) when

reducing the internodal distance. These observations are consistent with those of Bay-

ona et al. (2017) which shows that it is numerically observed that the h convergence

order is dependent on the highest order of the enriched polynomials, rather than the

order of PHS RBFs. It is worth noting that in both situations of enrichment, the

number of RBF-FD weights for each subdomain is the same; therefore, the additional

computational costs as a result of using higher order polynomials occur in the process

of finding RBF-FD weights, instead of in solving the global linear system of equations

which is often the most computationally expensive part for a numerical solution.

3.3.2 The case of local refinement

Although uniform (i.e., equidistant points) or quasi-uniform 3-D point discretiza-

tions are relatively easy to generate, non-uniform and unstructured meshfree point

discretizations are more practical. The non-uniform feature of a discretization is ful-

filled by using local refinements. Several studies using meshfree methods have been

reported for solving geophysical modelling for EM data (Wittke & Tezkan, 2014) and

for seismic wave field (Jia & Hu, 2006; Martin et al., 2015; Takekawa & Mikada, 2016;

Li et al., 2017). However, they all use uniform, or quasi-uniform, or the combination
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of these two types of point discretizations and are focused on 2-D problems. A ma-

jor drawback of using these discretizations is that the number of degrees of freedom

grows as N3
h when solving 3-D problems. In this case, unstructured discretizations

with local refinements will be more efficient.

To demonstrate the convergence of RBF-FD under local point refinements, the

same single-block density model was discretized with non-uniform points. Typically,

local refinements are deployed in regions where numerical accuracy is desired or the

function involved changes very rapidly. For the density model here, a line with 200

points was designed for the synthetic measurement sites. The line is located at

−200m ⩽ x ⩽ 200 m, y = 0 m, z = 100 m, which is 100 m above the centre of

the rectangular block anomaly. The local refinements are focused on the measure-

ment sites and inside the density block. The computational domain was extended to

be Ω = {(x, y, z)| − 500 km ⩽ x, y, z ⩽ 500 km}. This is made possible because of

the limited degrees of freedom (up to 90,000 for discretization examples here). As a

result, the homogeneous Dirichlet boundary condition in eq (3.4) was used for all dis-

cretizations with local refinements here. A graphical example of the local refinements

is shown in Fig 3.3.

Both gravity potentials and the vertical gravity component (gz) at the measure-

ment sites were computed under different local refining scales for two cases. In the

first case, local refinements were carried out inside the density source. In the second

case, the points around the 200 measurement sites were refined with different scales.

The refining scales were manually controlled by setting different internodal distances

in the discretizations. To examine the local convergence performance, relative errors

of the numerically computed potentials and gravity are considered. For the numerical
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Figure 3.3. Unstructured, non-uniform point discretization dis-
played in: (a) a perspective view of the points within the easting
−500 ⩽ x ⩽ 0 km, and (b) an enlarged view of the local point re-
finements within the blocky density source (red points, internodal
distance h = 10 m) and at the observation sites at the cross section
northing y = 0 m (internodal distance h = 1 m).

solutions, the PHS RBF-FD with enriched quadratic polynomials was used. In both

cases, the RBF-FD stencil size was fixed as n = 37 to avoid possible adverse effects on

numerical accuracy that result from using an insufficient number of points in RBF-FD

subdomains (influence of the stencil size is discussed in the next section). In order

to obtain the exact potentials and gravity values, the summation-based methods of

Waldvogel (1976) and Li & Chouteau (1998; by the method of eq. 4) were used for

calculating the analytical potential and gravity values, respectively.

The relative errors are shown in Fig 3.4. In the first case (panels a and b), the

density source was refined with different averaged internodal distances, and the mea-

surement sites were refined with the internodal distance h = 1 m. In the second case

(panels c and d), the measurement sites were refined with different scales, as indicated

in Fig 3.4, and the density source was refined with the internodal distance h = 10

m. It is observed that in both cases, the numerical solutions converge to the exact

ones under local refinements. Note that the error spikes in the case of measurement

refinement when h = 20 m (blue dots) shown in panels c and d are due to the lower
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point regularity caused by the meshing tool (Si, 2015). The results show that for

accurate modelling, the density source, or the physical property distribution, should

be appropriately discretized. It is also seen that the smoothness of the numerical

solution can be improved by the local refinements. These observations are similar to

those of numerical solutions obtained by mesh-based methods such as FE and FV.

A comparison of the computed gravitational potentials and vertical gravities along

the designed measurement line using a quasi-uniform discretization and an unstruc-

tured point discretization is shown in Fig 3.5. For both discretizations, the PHS RBF-

FD was enriched with quadratic polynomials. In the former case, RBF-FD stencil size

was n = 30 and the average internodal distance h = 20 m. The computational domain

was Ω = {(x, y, z)|−500 m ⩽ x, y, z ⩽ 500 m}. While in the latter case, i.e., the non-

uniform discretization, n = 37 and Ω = {(x, y, z)| − 500 km ⩽ x, y, z ⩽ 500 km}. A

local refinement with h = 9.5 for the density source and h = 1 m at the measurement

sites was used. For both types of discretizations, the numerical solutions of ϕ and gz

agree well with corresponding analytical solutions, with the maximum relative errors

being less than 2 %. While the quasi-uniform discretization has 367, 605 points in

total, the unstructured discretization has only 72, 082 points, which is approximately

one fifth of the former. It is noted that in the latter case, a much larger computational

domain with practical boundary conditions (ϕ = 0 at the boundaries) can be used,

which has little assumptions on the density source distribution.

The gravity gradient tensor components (Uxx, Uxy, Uxz, Uyy, Uyz, and Uzz) can also

be directly computed using the meshfree method. Fig 3.6 shows the computed tensor

components using the above non-uniform unstructured point discretization in the

meshfree method. For comparison, an analytical solution (Okabe, 1979) is also given.
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Figure 3.4. Relative errors for the numerical potential and gravity
by RBF-FD along the test line in the blocky density model (Fig 3.3).
Panels a and b show the errors under different refining scales inside
the density source (indicated by the internodal distance h = 40, 20,
10 and 5 m) for potentials and gravities (gz), respectively. In the case
of source refinements, a refinement of h = 1 m was applied at the
measurements. Panels c and d show the corresponding errors under
different local refining scales at the measurement sites (indicated by
the internodal distance h = 20, 10, and 5 m). The situation without
local refinement at the measurements is denoted as NR. In the case
of measurement refinements, a refinement of h = 10 m was applied
for the density source block.
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Figure 3.5. Computed potential (ϕ), vertical gravity (gz), and their
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m (panels a, c and e), and using a non-uniform, unstructured point
discretization (panels b, d and f), which is discussed in the text, for
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Figure 3.6. Comparison of six components of gravity gradient tensor
(Uxx, Uxy, Uxz, Uyy, Uyz, and Uzz) calculated using the PHS RBF-
FD method with a non-uniform, unstructured point discretization,
and using a summation method (Okabe, 1979) for the blocky density
model. The gradient values are shown in Eötvös (E).
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The measurement sites are the same as those for Fig 3.4 and Fig 3.5. It is observed

that the calculated gradient tensor components also have an excellent agreement with

analytical results. Although Uzz is often not considered as an independent component,

it was numerically computed here (i.e., not using the relation Uzz = −Uxx − Uyy).

3.4 Influence of stencil size

In RBF-FD, stencil size refers to the number of points in a subdomain. Although

varying stencil sizes for different subdomains can be used, how best to choose the

meshfree points in a subdomain remains unclear. There have been attempts in auto-

matically determining an optimal RBF-FD stencil for each subdomain when solving

PDEs (e.g., Wright & Fornberg, 2006). However, such selection processes inevitably

introduce extra computational costs by solving an optimization problem. In the PHS

RBF-FD investigated here, the stencil size is fixed for all meshfree subdomains.

The RBF-FD stencil size affects the matrix dimension of local interpolation linear

systems and the sparsity of the formed coefficient matrix of the global linear system

of equations, therefore the solving efficiency. It also affects the interpolation accuracy

which determines the quality of RBF-FD weights within each subdomain and eventu-

ally the accuracy of the numerical solution when solving PDEs. To show the influence

of using different stencil sizes on the final numerical solution, the quasi-uniform point

discretization with the computational domain size Ω = {(x, y, z)| − 500 m ⩽ x, y, z ⩽

500 m} was used for demonstration. Again, exact potential values were used as the

boundary values. The average internodal distance was hs = 45 m. The total number

of points was 37,227. RMS errors of potentials using PHS RBF-FD were calculated
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Figure 3.7. Plots of RMS errors (panel a) of potentials of PHS RBF-
FD, and the condition numbers (κ, panel b) of the local interpolation
linear system for the point at (x, y, z) = (50.0, 50.0, 50.0) versus
various stencil sizes, n. In the labels, ‘4’ indicates that the PHS
RBF-FD was enriched with linear polynomials, and ‘10’ indicates
that quadratic polynomials were instead used. ‘scaled’ indicates
that the PHS RBF-based interpolation was scaled by the distance
hsp, which is the radius of the smallest sphere enclosing all n points
in a subdomain. ‘unscaled’ indicates that the interpolation was not
scaled.

for different stencil sizes ranging from n = 12 to n = 70, as shown in Fig 3.7. In this

example, both linear and quadratic polynomial enrichment were tested in the frame

of PHS RBF-FD. The PHS RBFs can be scaled simply by the maximum Euclidean

distance between the support point and the rest of the points in a subdomain, or

the radius of the smallest sphere enclosing all n points in a subdomain, to improve

the conditioning of the local interpolation system. Both scaled and unscaled PHS

RBF-based meshfree interpolations were tested.

As observed from Fig 3.7(a), the solution accuracy of the PHS RBF-FD is affected

by the stencil size n. For an accurate numerical solution for 3-D problems, the stencil

size should not be too small. It is seen that in this example, the RMS errors for all

4 implementations of the PHS RBF-FD become saturated after increasing n to be

about 30. When n is less than 20, the RMS errors are large and the numerical solution
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becomes inaccurate. By testing various other examples using both quasi-uniform and

non-uniform discretizations, it is found that using n ⩾ 30 is mostly sufficient to obtain

an accurate numerical solution. It is also observed that when n becomes sufficiently

large, increasing n further does not improve the accuracy, but however significantly

increases the computational cost by reducing the sparsity of the matrix of the global

linear system of equations. This suggests that in the PHS RBF-FD, the benefit of

using many more points in subdomains is very limited.

The changes of conditioning of the local interpolation linear system for an example

subdomain with its support point as (x, y, z) = (50.0, 50.0, 50.0) are also plotted in

Fig 3.7(b). It shows that the conditioning can be improved significantly by scaling the

interpolation problem. Although the RMS errors in this example for the unscaled and

scaled situations are almost indistinguishable, the use of scaled PHS RBF-based in-

terpolation can prevent possible inaccurate evaluations of the PHS RBF-FD weights.

3.5 A comparison between RBF-FD and scalar FE

methods

In this section, a comparison of performances between the PHS RBF-FD and scalar

FE methods for modelling gravity data over an irregular density model is presented.

The density model was built up from part of the model of the Bay du Nord reservoir

which is located at the Flemish Pass Basin offshore eastern Canada (Dunham et al.,

2018). In the density model, two non-zero density blocks are embedded in a back-

ground region that has ρ = 0 kg m−3. The density value of the background medium
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here is not realistic. It is used merely to generate a sharp change in the simulated

gravities at locations of interest. The first block is a Cretaceous sedimentary layer

with an average thickness of 300 m and density value ρ = 2200 kg m−3. The second

block is a reservoir unit that is approximately 100 m thick and is overlain by the

sedimentary layer. The reservoir block is assigned the density value ρ = 2600 kg m−3.

The gap distance between the two blocks is about 100 m for the northern parts. At

the southern end, the two blocks gradually attach and join together, and the attach-

ment forms a wedge-like sharp angle, as shown in Fig 3.8 and Fig 3.9. To evaluate the

numerical solutions of the vertical gravity field, gz, using PHS RBF-FD and scalar

FE methods, two vertical lines representing measurement sites were designed. The

two lines are within the cross section in the y-z plane of the coordinate system with

x = 0 m (easting). The y (northing) coordinates of the two lines are y = −3.5 km

(line-1, or L1) and y = −1.0 km (line-2, or L2), respectively. The range of the vertical

coordinates of the two lines is from z = −2.5 km to z = −4.0 km.

For both RBF-FD and FE methods, unstructured model discretizations were em-

ployed here to represent the irregular geometries, especially those near the attachment

of the two density blocks. For the FE method, an unstructured tetrahedral mesh is

used. For the PHS RBF-FD, the points generated as the vertices of the tetrahedral ele-

ments in the FE mesh are used as the meshfree discretization. The same set of points is

used for both methods in this example so that the numerical performances from using

the two methods can be compared with minimum discrepancies resulted from model

discretizations. In this case, the linear systems from the PHS RBF-FD and scalar FE

methods have exactly the same dimension and number of degrees of freedom. The

computational domain was set to be Ω = {(x, y, z)| − 50 km ⩽ x, y, z ⩽ 50 km}. The
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(a)

Reservoir

Overlayer

(b)

Figure 3.8. Perspective 3-D views of the Bay du Nord density model.
The easting is along the x direction, and the northing is along the
y direction. The top panel (a) shows the reservoir unit overlain by
the sedimentary unit. The view is looking from south to north. The
bottom panel (b) is a side view from north to south. A 2-D cross
section at x = 0 (easting) that cuts through the two blocks is given
in Fig 3.9.
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Figure 3.9. Vertical cross section of the Bay du Nord model at
x = 0 (easting, looking from the positive x direction). The northing
direction is along the y axis. Two vertical white lines mark the
positions of two measurement lines at y = −3.5 km (L1) and y =
−1.0 km (L2), respectively.

Dirichlet boundary condition for Poisson’s equation in eq (3.4) was used. To ensure

the accuracy of numerical solutions, local refinements at the measurement sites (200

sites for each line) and within the density blocks were carried out unless otherwise

indicated. A comparison of the meshed and meshfree point discretizations is given in

Fig 3.10.

The FE results for gz at the measurement sites were computed by using linear basis

functions in the FE elemental analysis. Implementation of the linear FE is the same

as that described in Jahandari & Farquharson (2013) for example. For the PHS RBF-

FD results, the stencil size was fixed as n = 30 and quadratic polynomials were used

in meshfree interpolations. To show the accuracies of both FE and RBF-FD methods,

an analytical solution was also obtained using the summation-based method in Okabe

(1979). The analytical solution for gz was obtained by summing up the calculations
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(a)

(b)

(c)

(d)

Figure 3.10. Unstructured mesh (panel a) and meshfree points
(panel b) for the section shown in Fig 3.9. Note that the mesh
is located on the 3-D crinkled surface made at easting x = 0 m, and
the points in the panel (b) are the 3-D points within the rectan-
gular domain: Ωp = {(x, y, z)| − 0.75 < x < 0.75 km,−6.0 < y <
1.0 km,−5.0 < z < −2.0 km}. Panel (c) shows an enlarged 3-D
view of the mesh around the wedge-like attachment that is shown in
the panel (a). Panel (d) shows the same enlarged view as in panel
(c) but only with the tetrahedral elements in the background region.
In the panel (d), the tetrahedra shown at the southern end become
increasingly thin wedge- or sliver-like elements.
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Figure 3.11. Plots of computed gz along the two vertical lines of
the Bay du Nord model, L1 (y = −3.5 km) and L2 (y = −1.0
km), for three different model discretizations using PHS RBF-FD
(panels a and c) and scalar FE (panels b and d) methods. Analytical
solutions are denoted by ‘Okabe’. The three model discretizations
are distinguished by the total number of points, N .
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Figure 3.12. Plots of the differences between various numerical solu-
tions and analytical solution of gz for the Bay du Nord model. The
numerical solutions, as shown in Fig 3.11, were computed along the
two vertical lines, L1 (y = −3.5 km) and L2 (y = −1.0 km), for
three different model discretizations using PHS RBF-FD (panels a
and c) and scalar FE (panels b and d) methods. The three model
discretizations are distinguished by the total number of points, N .
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of gz over each tetrahedral element. Although the two linear systems of equations

resulting from the FE and RBF-FD schemes have the same dimension, the coefficient

matrices of the two systems have different sparsities, or different numbers of non-zero

entries. The coefficient matrix of the PHS RBF-FD with n = 30 is generally denser

than that of the linear FE.

In this example, three different model discretizations were generated with the

total number of points as N = 62,418, 73,047, and 83,948, respectively. The three

discretizations are obtained by using increasingly higher quality controls in generating

the mesh without changing the local refinement constraints. Therefore, a discretiza-

tion with more points can be considered as a global refinement of the previous one with

fewer points. The corresponding total numbers of tetrahedral elements are Nele =

392,363, 459,129 and 526,796, respectively. The computed gz for these discretizations

are plotted in Fig 3.11, and the differences (i.e., absolute errors) between the numeri-

cal solutions and the analytical solution are plotted in Fig 3.12. The results show that

both RBF-FD and linear FE solutions converge to the true solution as N increases.

Although the RBF-FD solution has larger deviations from the analytical solution

than the FE solution when N = 62, 418, the RBF-FD solution is more accurate than

the FE counterpart when N = 83, 948, as shown in Fig 3.12. This is because the

PHS RBF-FD enriched with quadratic polynomials has a nonlinear convergence rate,

whereas the linear FE has only a linear convergence rate. Also, the linear FE solution

is less smooth than that of PHS RBF-FD.

In terms of computational efficiency, the RBF-FD method implemented here is

generally slower than the linear FE method in assembling and solving the system of

algebraic equations. The assembling process refers to deriving RBF-FD or FE weights
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and forming the coefficient matrix of the linear system. The solving phase refers to

solving the linear system after assembling. The main reasons for more computational

cost from the RBF-FD are that firstly, the local interpolation linear system described

in eq (2.21) needs to be numerically evaluated, as opposed to analytical evaluation in

the case of linear FE with tetrahedral elements (the FE interpolation linear system

has the dimension 4× 4). Secondly, the RBF-FD implemented with the fixed stencil

size n = 30 is likely to generate more non-zero entries than the linear FE method,

resulting in more factorization time during the solving phase. For example, when

N = 73, 047, in which case the RBF-FD and linear FE gave comparable accuracies of

gz, the number of non-zero entries in the RBF-FD linear system was nz = 2, 187, 814,

while in the linear FE the number was nz = 1, 137, 641. The computational time in

seconds for the meshfree solution was t = 33.410 s (28.407 s for matrix assembling,

and 5.003 s for solving phase), while the same computational time for the FE solution

was t = 18.624 s (14.427 s for matrix assembling, and 4.197 s for solving phase).

In practice, post-processing time for numerical solutions can also be non-negligible,

despite the fact that it is mostly a fraction of the entire running time. The post-

processing time for numerical methods such as FE and RBF-FD is referred to as

the amount of time needed to obtain derivatives (e.g., vertical gravities or gravity

gradients here) from the solutions (e.g., gravity potentials here) to the linear sys-

tem. For this example with Nsite = 200 measurement sites, the RBF-FD required

0.1 s to obtain the vertical gravities from potentials, whereas the linear FE needed

3.172 s. The substantially less processing time for the former is due to the use of

k-dimensional tree2 structures in searching meshfree subdomains, which is a common

2Here, k represents the spatial dimension. k-dimensional tree structures are a type of method to
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method to group unconnected points. The longer FE processing time is due to neces-

sary geometry searching calculations (Nsite times) in a standard FE implementation,

for example finding which elements a specific vertex or measurement site belongs to

in the unstructured mesh. Such geometry searching calculations, for which the ef-

ficiency is dependent on the implementation algorithm and available outputs from

mesh generation software, are also needed N times (for N degrees of freedom) prior

to the assembling of the global linear system.

3.6 Chapter summary

Convergence analysis and performance of PHS RBF-FD are presented in the example

of modelling gravity data. It is numerically demonstrated that the PHS RBF-FD

(with PHS as r5) converges to the exact solution under global and local point re-

finements. A nonlinear h convergence rate can be obtained by enriching the PHS

RBF-FD with nonlinear polynomials when constructing meshfree interpolation in

subdomains. The PHS RBF-FD stencil size determines the number of points in each

meshfree subdomain. For the case of using a constant stencil size (n) for all subdo-

mains, the numerical solution using the PHS RBF-FD is shown to be not improved

by using very large n. On the other hand, using very small stencil sizes (n ⩽ 20) in

the 3-D case results in inaccurate solutions. The numerical tests suggest that using

n = 30 is mostly adequate for accuracy of RBF-FD approximations of derivatives

up to second order (e.g., Laplacian operator). A comparison of performance between

using the PHS RBF-FD and using a linear scalar FE method shows that the RBF-FD

organize data.
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computation is generally more expensive than that of linear FE for a discretization

with the same number of degrees of freedom. The main reason is because of the

numerical evaluation of interpolation linear systems of equations with the dimension

as n +m in the RBF-FD case, with n as the number of points in a subdomain and

m as the number of the enriched polynomials.
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Chapter 4

Simulation of magnetotelluric data

using PHS RBF-FD

4.1 Introduction

The magnetotelluric (MT) method is a natural source EM survey method that as-

sumes a plane wave incident EM field at the surface of the Earth as the signal.

Although the true sources, such as lightning and solar radiation, produce non-plane

wave EM fields, they are far away from the Earth’s surface and therefore the plane

wave approximation is valid for EM frequencies of MT surveys (Evans, 2012). The

frequencies used in the MT method are typically very low (between 0.0001 Hz and 10

Hz) and the penetration depth of MT signals can reach dozens or hundreds of kilo-

metres. In terms of the numerical modelling of MT data, the mathematical equations

(Maxwell’s equations) describing the propagation of the EM fields are the same as

those for the controlled-source EM method. However, as there is no source term in
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Maxwell’s equations for the MT method, numerical issues related to singularity near

sources can be avoided in the MT case.

Over the years, the MT method has seen intensive developments and applications

of 3-D EM forward modelling and inversion algorithms. The development history

of 3-D algorithms for the method follows the description given in Chapter 1. Two

particular example studies, for instance, that reflect the pattern of MT algorithm

development are Zhdanov et al. (1997) and Miensopust et al. (2013). In Zhdanov

et al., the authors summarized major modelling algorithms for MT data at that time,

which were mostly based on the IE method, and proposed a number of benchmark

2-D and 3-D conductivity models for which solutions using different algorithms can be

compared against. Miensopust et al., in an uncommon instance, compared modelling

and inversion results of 3-D synthetic MT data using various 3-D codes that had been

developed by different researchers over the previous two decades. In this comparison

study, it was found that most of the available codes were based on algorithms of FD

method. In the recent ten years, a new trend is that FE method-based modelling

and inversion algorithm developments have been increasingly popular and routine, if

not dominant, in 3-D MT studies (e.g., Liu et al., 2008; Farquharson & Miensopust,

2011; Grayver & Burg, 2014; Usui, 2015; Kordy et al., 2016; Jahandari & Farquhar-

son, 2017), which is likely because of the acknowledgement of the advantages of FE

modelling methods in dealing with complex Earth models.

In this chapter, the meshfree PHS RBF-FD is extended and applied to modelling

3-D MT data. While the gravity potential function is high order smooth in nature,

the EM field due to a general 3-D inhomogeneous conductivity model can be dis-

continuous. The feasibility and applicability of using RBF-FD in dealing with 3-D
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conductivity models are presented here.

4.2 A-ψ potential scheme with Coulomb gauge con-

dition

EM fields propagating within a general Earth model are described by Maxwell’s equa-

tions and constitutive relations between physical properties (i.e., electrical conduc-

tivity σ, electrical permittivity ϵ and magnetic permeability µ) and the EM fields.

In the frequency domain, the EM fields change harmonically in time and Maxwell’s

equations can be written as

∇× E = −iωB, (4.1)

∇×H = Jc + iωD+ Jexter, (4.2)

∇ ·B = 0, (4.3)

∇ ·D = ρ. (4.4)

In eqs (4.1)-(4.4), i is the imaginary unit, ω = 2πf is angular frequency (the time

dependence eiωt is implied here), E is the electric field, H is the magnetic field, D is

displacement electric current density vector, and B is magnetic induction vector. Jc

is conductive current density that only exists in a conductive medium, and Jexter is

the EM source term expressed in the form of an electric current density (Jexter is zero

for the MT case). Finally, ρ is the volume density of electric charges which in the

case of MT method is only nonzero at the conductivity jumps of an Earth model.
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The interactions between the EM fields and the medium through which the fields

propagate are described by the constitutive relations. In this thesis, the physical

properties (σ, ϵ, µ) of the medium are assumed to be only dependent on the spatial

position (r) and thus the medium is isotropic, nondispersive (i.e, frequency indepen-

dent) and linear (the physical properties are not affected by the applied EM fields),

etc. In this case, the constitutive relations are expressed in the simple form as

Jc = σE, (4.5)

D = ϵE, (4.6)

B = µH. (4.7)

For numerical modellings of EM data for a general conductivity model, there are

many different derived forms of Maxwell’s equations that can be used (Hohmann,

1983). A commonly used form is the Helmholtz equation for the E field, which is

derived by substituting eq (4.1) into eq (4.2) and taking advantage of the relations in

eqs (4.5)-(4.7). The E field Helmholtz equation is thus given as

∇× µ−1∇× E+ iωσE− ω2ϵE = 0. (4.8)

For the MT method here, the frequency is very low such that the high order term

ω2ϵE can be neglected, which is the case of the quasi-static approximation (Ward

& Hohmann, 1988). Further, the magnetic permeability can be assumed to be the

constant value of free air if only the conductivity structure of an Earth model is

involved. As a result, the modified Helmholtz equation for the E field that is used
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for a numerical solution is given as

∇×∇× E+ iωµσE = 0. (4.9)

The E-field Helmholtz equation has the vector E field as the unknown function.

The total E field can be discontinuous in the computational domain for a given

modelling problem, posing a difficulty in discretizing the equation. In mesh-based

methods such as staggered-grid based FD, FV and vector FE, this difficulty is avoided

by taking the degrees of freedom as the tangential E fields along the edges of the

mesh, which are always continuous throughout the domain. In the scalar FE method,

for example, the degrees of freedom would be all three scalar components of the E

field associated with the vertices in the mesh if eq (4.9) is used to derive a numerical

solution. However, the scalar FE method forces all three components to be continuous

even at the conductivity jumps, and thus violates the physical behaviours of a possibly

discontinuous E field function. Similarly, if using meshfree approaches together with

the E-field Helmholtz equation, the same violation of the physical nature of the E

field would occur, since the degrees of freedom are all defined at the points in the

meshfree discretization.

To avoid the discretization difficulty in the case of meshfree numerical methods,

equations of continuous functions need to be used. When considering only the con-

ductivity as the changing physical property, there are at least two options available.

One is to use EM potential functions as the unknowns. It is well known that EM

potential functions are smoother than the E and H fields (Biro & Preis, 1989, 1990;

Badea et al., 2001). The other is to use the H field-based Helmholtz equation where
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the magnetic field is the unknown function (Mackie et al., 1994; Siripunvaraporn

et al., 2002). The H field-based equation systems would involve the same solution

discontinuities in H if an Earth model has abrupt magnetic material jumps, that is

jumps of the physical property µ. In this chapter, the A-ψ EM potential system of

equations (e.g., Biro & Preis, 1989), with A the magnetic vector potential and ψ the

electric scalar potential, is used in the frame of PHS RBF-FD meshfree method.

4.2.1 A-ψ potential equations

In the A-ψ scheme, the E and H fields are represented by A and ψ. According to

eq (4.3), the vector field B is solenoidal and can be represented by the curl of a vector

potential function A:

B = ∇×A. (4.10)

Substituting eq (4.10) into eq (4.1) and using the Helmholtz decomposition theorem

for the vector field E (Harrington, 2001), one obtains

E = −iωA−∇ψ, (4.11)

where ψ here is an arbitrary and sufficiently differentiable scalar function (thus called

electric scalar potential). ∇ψ is needed here to uniquely decompose E. Subsequently,

the Helmholtz equation for A can be obtained by substituting eq (4.11) into the

E-field Helmholtz equation of eq (4.9):

∇×∇×A+ iωµσA+ σµ∇ψ = 0. (4.12)
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In order to determine a solution to eq (4.12), an additional equation is required. Here,

the equation of conservation of charge for A and ψ is used (Biro & Preis, 1989; Badea

et al., 2001). It is obtained by taking the divergence of eq (4.12):

∇ · (iωµσA+ σµ∇ψ) = 0. (4.13)

In deriving eq (4.12) and eq (4.13), the vector identities ∇×∇f = 0 and ∇·∇×F = 0

for any arbitrary and sufficiently differentiable functions f and F have been used.

The A-ψ scheme solves eqs (4.12) and (4.13) first, then computes the E and H

(H = 1
µ
B) fields by the relations in eq (4.10) and eq (4.11). The numerical solution

to eqs (4.12) and (4.13) is however not unique. The non-uniqueness is caused by only

specifying the curl part of the vector potential A, which is eq (4.10), and leaving

the divergence part of A undetermined (Stratton, 2007). A common way to obtain

a unique numerical solution for the A-ψ scheme is to use gauge conditions (Biro &

Preis, 1989; Harrington, 2001). In this thesis study, the Coulomb gauge condition

∇ ·A = 0 is explicitly introduced in the form of ∇(∇ ·A) to eq (4.12) (e.g., Badea

et al., 2001). The gauged Helmholtz equation for A then becomes

∇×∇×A−∇(∇ ·A) + iωµσA+ σµ∇ψ = 0, (4.14)

which can be further recast as

−∇2A+ iωµσA+ σµ∇ψ = 0, (4.15)

according to the vector identity ∇ × ∇ × A = ∇(∇ · A) − ∇2A. The Coulomb
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gauged A-ψ scheme solves the pair of eqs (4.15) and (4.13). It can be shown that

(Appendix B), by solving these two equations, eqs (4.15) and (4.13), with appropriate

boundary conditions for the potentials, the divergence condition ∇ · A = 0 will be

forced to hold everywhere in the computational domain.

In implementing the PHS RBF-FD for solving eqs (4.15) and (4.13), the component-

wise form is used:

−∇2Ax + iωµσAx + σµ
∂ψ

∂x
= 0, (4.16)

−∇2Ay + iωµσAy + σµ
∂ψ

∂y
= 0, (4.17)

−∇2Az + iωµσAz + σµ
∂ψ

∂z
= 0, (4.18)

iωµσ(
∂Ax

∂x
+
∂Ay

∂y
+
∂Az

∂z
) + σµ∇2ψ = 0. (4.19)

In eq (4.19), the condition ∇σ = 0 has been implied, indicating dealing with regular

regions of constant conductivity distribution. For possible non-constant conductivity

regions, the term ∇σ needs to be incorporated into the implementation. The three

scalar components of A (Ax, Ay, Az) and ψ are the degrees of freedom that are associ-

ated with each point in a meshfree point discretization. The RBF-FD approximations

of the differential operators in eqs (4.16)-(4.19) ( ∂
∂x
, ∂

∂y
, ∂

∂z
and ∇2) are described in

Section 2.4.1.
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The matrix form of eqs (4.16)-(4.19) is given as

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

D1 0 0 D2

0 D1 0 D3

0 0 D1 D4

iωD2 iωD3 iωD4 D5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ax

Ay

Az

ψ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (4.20)

where the expressions for differential operators Dj, (j = 1, · · · , 5) are detailed in

Table 4.1. Once Dj are approximated as RBF-FD weights, a compact matrix form of

the resulting linear system of equations can be obtained as the following

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

D1 0 0 D2

0 D1 0 D3

0 0 D1 D4

iωD2 iωD3 iωD4 D5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ax

Ay

Az

ψ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

R1

R2

R3

R4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (4.21)

where the block matrices Dj, (j = 1, · · · , 5) contain the assembled RBF-FD weights

for approximating Dj. The right-hand side block matrices Rj, (j = 1, · · · , 4) are the

results of incorporating boundary values of A and ψ into the linear system. The

coefficient matrix in eq (4.21) is a complex-valued, asymmetric sparse matrix.

4.2.2 MT impedance response

The MT impedance tensor, or electric transfer function, Z, is considered here as the

modelling data. The impedance tensor is dependent on the conductivity distribution

in the subsurface and the EM source frequency. It can be numerically computed from
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Table 4.1. Differential operators used in eq (4.20).

Term expression

D1 −∇2 + iωµσ

D2 µσ ∂
∂x

D3 µσ ∂
∂y

D4 µσ ∂
∂z

D5 µσ∇2

the ratio information of E and H fields. In the case of 3-D MT problems, Z can be

obtained by solving twice the forward modelling under two different and orthogonal

plane-wave source polarization modes. Since in the MT method the source fields, Es

and Hs, are also orthogonal for each mode, the polarization mode with Es aligned

with x direction (thus, the source magnetic field, Hs, is aligned with y direction) in

a Cartesian coordinate system is denoted as E-x mode. Similarly, the polarization

mode with Es aligned with y direction (thus, the source magnetic field, Hs, is aligned

with x direction) is denoted as E-y mode. In each mode, there are corresponding

induced E and H field measurements at the surface as a result of the source field.

The components of the 2 × 2 impedance tensor are then given by solving the

following matrix equation

⎛⎜⎝Ex1 Ex2

Ey1 Ey2

⎞⎟⎠ =

⎛⎜⎝Zxx Zxy

Zyx Zyy

⎞⎟⎠
⎛⎜⎝Hx1 Hx2

Hy1 Hy2

⎞⎟⎠ , (4.22)

where the indices 1 and 2 denote the numerical solutions of E and H from the forward

modelling under the E-x and E-y modes, respectively. The subscripts x and y indicate
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the two perpendicular horizontal components of each field. The computed tensor

components (Zxx, Zxy, Zyx, and Zyy), which are complex-valued, are often plotted as

the apparent resistivity (ρ) and phase curves which are obtained by

ρkj =
1

ωµ
|Zkj|2, (4.23)

ϕkj = tan−1

(
ImZkj

ReZkj

)
, k = x, y; j = x, y. (4.24)

4.2.3 Boundary condition

The computational domain in the following examples of MT modelling is set to be a

rectangular box. Each plane side of the boundary of the domain needs to be assigned

with proper boundary values of A and ψ. In the PHS RBF-FD method, there is

always some amount of points distributed on the boundary. Here, Dirichlet-type

boundary values of the potentials are prescribed at the points for obtaining a unique

numerical solution. The 1-D method described in Weaver (1994) is used for 3-D

conductivity models with a 1-D background model such as a half-space (including an

air layer) or a layered model. The formulation for computing the boundary values of

the electric field using the 1-D method is discussed in Appendix C.

Once the boundary E field is obtained, the boundary values for the potentials

can be determined according to eq (4.11). Since in most situations the 3-D inhomo-

geneities are far away from the boundary sides, there is no electric charge built up at

the boundaries. Thus, ∇ψ = 0 holds at the boundaries, making ψ a constant function
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(set to be ψ = 0 here1). The boundary values for A are then given as

(Ax, Ay, Az, ψ) = (− 1

iω
Ex, 0, 0, 0), (4.25)

for the E-x mode. Similarly, the boundary values for the E-y mode are given as

(Ax, Ay, Az, ψ) = (0,− 1

iω
Ey, 0, 0). (4.26)

The Dirichlet boundary conditions in eqs (4.25) and (4.26) fulfill the divergence con-

dition ∇ ·A = 0 at the boundaries.

4.3 Challenge of discontinuities

The PHS RBF-FD meshfree method presented in Chapter 3 is applicable to solve

any differential equations that have sufficiently smooth functions (e.g., C1 continuous

functions) as the unknown quantities. Such situations include for example Poisson’s

equations for gravity (as demonstrated in the previous chapter), Navier-Stokes equa-

tions for fluid flows and dynamics (Wu & Liu, 2003; Wright et al., 2010), geophysical

seismic wave field modelling (Takekawa et al., 2015; Martin et al., 2015), and 2-D MT

modelling (Wittke & Tezkan, 2014). However, a standard meshfree method such as

RBF-FD faces a major difficulty in faithfully reproducing possible discontinuous func-

tions when applied to modelling 3-D EM fields in general. In geophysical diffusive EM

data simulation, discontinuities of the electric field arise when the conductivity dis-

1Unlike the unique determination of the vector potential A, the Coulomb gauged A-ψ scheme
determines a unique ψ up to a constant C since ∇(ψ+C) = ∇ψ, i.e., the scheme uniquely determines
a pair of (A,∇ψ).
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tribution has sudden changes or jumps, which are common for a geological model fea-

turing different rock units with sharp contrasts in their homogeneous conductivities.

The difficulty is caused by the nature of constructing a standard meshfree function

approximation, in which the approximant is guaranteed to be high order smooth (at

least C1 continuous) everywhere in a meshfree subdomain (Belytschko et al., 1996).

As a result, spurious solutions will occur if applying such standard meshfree methods

in solving the 3-D EM field simulation problems (Herault & Marechal, 1999).

In the mesh-based methods, the function discontinuities in EM data simulation

are dealt with by aligning the material discontinuities (i.e., conductivity jumps) with

elemental interfaces in the mesh. In the meshfree case, there is however no explicit

geometry of the meshfree subdomains, which are mostly overlapping (Fig 4.1). To

remove the spurious meshfree solutions related to the function discontinuities, two

groups of approaches are typically used. In the first group, the idea is to firstly con-

struct meshfree subdomains by ignoring the material jumps (conductivity interfaces),

which may or may not intersect the subdomains, and then modify the standard mesh-

free function approximation over any subdomain that is indeed cut by the interfaces.

The purpose of the modification of function approximation is to reproduce the de-

sired discontinuities in the approximated function or its derivatives. Among these

modification methods, the most popular method is to enrich the standard meshfree

approximant with additional C0 basis functions having the discontinuities in deriva-

tives at the interfaces (Cordes & Moran, 1996; Krongauz & Belytschko, 1998; Batra

et al., 2004; Xu & Belytschko, 2005; Joyot et al., 2005). This is suitable for EM poten-

tial functions sinceA and ψ are continuous themselves but their first-order derivatives

may not be so. Another option is, instead of a partial enrichment, to construct the
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meshfree approximant entirely using C0 basis functions (Yu & Chen, 2011). The main

drawback in the modification approaches is that such modification is highly depen-

dent on the geometry of the physical property interfaces. For example, if the normal

discontinuity in function derivatives is desired, the normal directions at all the inter-

facial points are then required. The determination of these normal directional vectors

can be computationally expensive for a set of scattered points located on complex

3-D surfaces, and can be even impossible if the 3-D surface is not smooth (e.g., the

tips of the surface of a rectangular prism). Another issue of these approaches, albeit

less severe, is that extra degrees of freedom are introduced in the meshfree function

approximation (Xu & Belytschko, 2005). Due to the (derivative) discontinuities in

the constructed approximant, the algebraic equations for the interfacial points must

be obtained by using weak form integrals, which are evaluated numerically and are

typically carried out using high-order Gauss quadrature methods after partitioning

the integration domain into multiple regular regions (the partition often means a local

or global mesh needs to be constructed, although solely for quadrature, see Krongauz

& Belytschko, 1998).

In the second group, the idea is to never form any meshfree subdomain that

intersects the physical property interfaces. This can be done by, for example, trun-

cating any subdomain that is cut by an interface into two new subdomains along

the interface, each of which thus has a homogeneous physical property. Over these

two new subdomains, standard meshfree approximations can then be used (Li et al.,

2003; Nicomedes et al., 2011; Lima et al., 2012; Jalušić et al., 2017). One promi-

nent advantage of this idea is that it is capable of dealing with arbitrarily shaped

interfaces in a model. As there is no link of the continuity requirements between the

83



  
support point

1

20

support point

2

ρsource

ρbackground

meshfree subdomain

7

103

50

18

Figure 4.1. Schematic illustration of different meshfree subdomains
for different points. Points on the boundaries of the problem do-
main and on the interfaces are coloured blue, and interior points are
coloured black.

two subdomains, the approximated function may have both normally and tangen-

tially discontinuous derivatives, which is undesirable in the EM problem (Herault &

Marechal, 1999). To enforce the physical continuities, the continuity or discontinuity

equations (such as E∥,1 = E∥,2 for the tangential component and σ1E⊥,1 = σ2E⊥,2

for the normal component of the electric field) at the interface need to be explicitly

incorporated into the linear system resulting from discretizing PDEs.

A common method of such incorporation is to use a Lagrange multiplier in the

form of a weak-form integral for each continuity equation (Herault & Marechal, 1999;

Li et al., 2003; Lima et al., 2012). The Lagrange multipliers inevitably introduce

extra degrees of freedom. Also, the integrals need to be numerically evaluated, as in

the first group of approaches. Another method of incorporation is to directly enforce

the continuity equations at the interface points in a strong form. In the case of A-ψ
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Figure 4.2. Different meshfree subdomains in the partitioned re-
gions. Shown above are two different physical regions with the re-
sistivities ρ1 and ρ2. Meshfree points are distributed in both regions
and at their interface. Subdomains for those support points far away
from the interface (e.g., A and D) include only the points belonging
to the same region as the support points. Subdomains for those
support points close to the interface (e.g., B and C) include some
interfacial points as well as interior points, but not any points on
the other side of the interface.

potential schemes, this can be done by applying the following equations

− iωA∥,1 − (∇ψ)∥,1 = −iωA∥,2 − (∇ψ)∥,2, (4.27)

− iωσ1A⊥,1 − σ1(∇ψ)⊥,1 = −iωσ2A⊥,2 − σ2(∇ψ)⊥,2, (4.28)

for each point at the interface. The A-ψ equations above are based on the continuity

equations of the electric field (E = −iωA−∇ψ). The subscript 1 (or 2) denotes that

the potential functions are approximated using the meshfree points located in the

subdomain in region 1 (or 2, see Fig 4.2). σ1 and σ2 are the homogeneous conductiv-

ities from regions 1 and 2, respectively. As there are often more than one continuity

equation for each interfacial point, the same degrees of freedom (unknowns) associ-
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ated with a point are repeated in the linear system of equations when incorporating

the continuity equations into the linear system, as if they were additional unknowns.

Because of this, the layer of interfacial points is said to be ‘doubled’ or ‘tripled’, de-

pending on the number of continuity equations for each point. This incorporation

method is sometimes called the double-layer method (Nicomedes et al., 2011). An

obvious advantage of this method is that integrals, and thus numerical quadrature,

are completely avoided in enforcing the continuity conditions. However, there are at

least two important issues left to be addressed: (1) the physical interactions between

the E andH fields (e.g., Faraday’s law) at the interface are not numerically translated

into the linear system of equations, and (2) the linear independence among the added

continuity equations is not guaranteed.

To address the discontinuity issue in the PHS RBF-FD method, a hybrid RBF-

FD meshfree method that incorporates a weak-form treatment for the interfacial

points is proposed in this study. The key idea of the hybrid RBF-FD method is

to use a local mesh to construct the integrals that can be carried out analytically.

To do this, the computational domain is partitioned firstly into different sub-regions

with homogeneous or continuously varying conductivity values. This partition is

typically done in the process of building up an Earth model in the first place and

before a forward modelling is considered. Then, a desired number of meshfree points

are generated with some of them located at the material interfaces. The meshfree

subdomains are formed in the same way as those in the second group of approaches

mentioned above, namely, the RBF-FD subdomains for non-interfacial points are

never cut through by the interfaces (Fig 4.2). To facilitate the formations of the

subdomains in different sub-regions, a separate k-dimensional tree of 3-D points for
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each sub-region is created. As a result, the RBF-FD approximation using the standard

RBF-based interpolations can be used without issues.

For the interfacial points, their meshfree subdomains are firstly formed in a stan-

dard way as if there were no interface, as in the aforementioned modification ap-

proaches. Then, a local mesh containing the meshfree points in the subdomain is

formed. This is a novel part compared to previous studies that employ weak form

integrals to handle discontinuities, which use either modifications of meshfree approx-

imant or Lagrange multipliers. In those methods, the integrals based on the meshfree

function approximation are formed firstly, which does not need any local mesh. How-

ever, the resultant integrands are often high-order rational functions and thus the

volume integrations of them cannot be carried out analytically. A sophisticated do-

main partitioning (i.e., local mesh construction) and/or mappings are then required

to numerically carry out the evaluation of integrals with accuracy (Belytschko et al.,

1994; Krongauz & Belytschko, 1998; Atluri et al., 1999; Dolbow & Belytschko, 1999;

Jia & Hu, 2006; Wittke & Tezkan, 2014; Hillman & Chen, 2016). The numerical

quadrature process becomes more complicated and expensive in dealing with 3-D

problems (Li et al., 2003). In the hybrid method proposed here, the weak form inte-

grals are formed in an opposite way: a local 3-D mesh within the formed subdomain

overlapping with the interfaces (Fig 4.3) is constructed first. Then, a mesh-based

function approximation is carried out. For the unstructured points, a local tetra-

hedral mesh can be used. Over the tetrahedral elements, the standard linear finite

element (FE) Galerkin method is chosen in this study to form the integrals. Here,

the purpose of the local meshes for interfacial points is to allow for a weak form dis-

cretization of the PDEs (e.g., A-ψ equations), whereas the purpose of them in the
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Figure 4.3. Demonstration of the incorporation of the weak-form
integration in the hybrid RBF-FD method. There are three steps
in forming the local subdomain for an interfacial support point: (i)
construct a normal meshfree subdomain as if there is no interface
(panel 1); (ii) construct a local mesh among the points within the
subdomain (panels 2 and 3); and (iii) select the required sub-mesh
from the mesh formed in Step 2 by excluding unnecessary points,
depending on the weak form method (panel 4).
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aforementioned previous approaches is to facilitate numerical integrations.

The rationales behind this hybrid method for dealing with discontinuities of func-

tion derivatives are threefold. First, it is well known that the integration from FE

methods using common types of element (e.g., prisms and tetrahedra) can be analyt-

ically carried out, effectively circumventing computationally expensive quadrature.

Second, since the local meshfree points for a subdomain are already available, the

construction of the small, local mesh within that subdomain is significantly easier

than the counterpart when numerically carrying out a meshfree volume integration

for that subdomain’s support point. In the latter, the region to be meshed, or the

integration domain, may be much larger than the subdomain’s occupying volume

(i.e., the smallest sphere containing all the points) since the meshfree shape functions

may not be compactly supported (Dolbow & Belytschko, 1999). Third, the RBF-FD

meshfree discretization can be easily coupled with that of grid-based FD and scalar

FE/FV methods when the unknowns are defined at the points. It is worth noting that

in the second rationale, the local mesh only serves as providing a bounded and com-

pact integration region and is constructed based on the existing points in a meshfree

subdomain (30 to 50 points in solving 3-D EM modellings here). As such, the local

mesh generation does not face the difficulty of conforming to irregular geometries of

the interface while still ensuring quality cells in a traditional mesh-based method.

The procedure of deriving algebraic equations using the local meshes for interfacial

points, for which a graphical demonstration is shown in Fig 4.3, is the same as that

described in Badea et al. (2001), for example. For each interfacial point that has

nl−1 (nl > 2) neighbouring points used in the weak form integration, the derived FE

weights, cj, in discretizing any of the differential operators in Table 4.1 are obtained
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by the approximation

< u,Dkf >=

nl∑
j=1

cjfj, 1 ⩽ k ⩽ 5, k ∈ N, (4.29)

where <,> denotes a bilinear form of the inner product with u as the test function in

the Galerkin FE method, and fj denotes the function values of one of the potential

function components (Ax, Ay, Az and ψ) at the nl points. In the linear FE method,

f is approximated as a linear function within each tetrahedral cell before the inner

product in eq (4.29) is evaluated:

f ≈ a+ bx+ cy + dz =
4∑

j=1

Nj(x, y, z)fj, (4.30)

where Nj are the FE shape functions and the coefficients (a, b, c, d) are obtained by

a Lagrange interpolation (Badea et al., 2001; Jin, 2014).

4.4 Numerical examples

4.4.1 COMMEMI model 3D-1A

The conductivity model for this first example is the benchmark model COMMEMI2

3D-1A (Zhdanov et al., 1997). The model has a single rectangular conductor (σ = 2.0

S/m) embedded in the more resistive background subsurface (σ = 0.01 S/m). The

conductor has the dimensions as −0.5 ⩽ x ⩽ 0.5 km, −1.0 ⩽ y ⩽ 1.0 km, and

−2.25 ⩽ z ⩽ −0.25 km. Perspective views of the model are shown in Fig 4.4.

2COMMEMI stands for Comparison Of Modelling Methods for ElectroMagnetic Induction.
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Figure 4.4. Plan (a) and section (b) views of the COMMEMI 3D-1A
conductivity model. The conductor is indicated by the shaded block.
Two perpendicular measurement lines are located at the air-Earth
surface (z = 0 km) and are denoted as dotted lines in the plan view.
The x-directed measurement sites are indicated by triangles in the
section view.

The air-Earth surface is set to be flat in this example and is at z = 0 m. The air

layer was assigned the small conductivity value σ = 10−8 to stabilize the numerical

solution. Two perpendicular and horizontal measurement lines that are located at

the air-Earth surface are used to examine the numerical solution of MT impedance

components, as indicated in Fig 4.4(a). One line is along the x direction and has the

coordinates −4 ⩽ x ⩽ 4 km and y = 0 (line1). The other line is along the y direction

and has the coordinates −4 ⩽ y ⩽ 4 km and x = 0 (line2). To ensure a sufficient

approximation of the 1-D boundary condition, the computational domain was set to

be Ω = {(x, y, z)| − 5 ⩽ x ⩽ 5 km,−5 ⩽ y ⩽ 5 km,−5 ⩽ z ⩽ 2 km}.

An unstructured meshfree discretization consisting of N = 73, 630 points was used

to obtain an accurate numerical solution. In this discretization, the points were locally

refined both within the conductor (with the average internodal distance hs ≈ 35 m)

and at the measurement lines (hs ⩾ 30 m) and becomes gradually sparser towards the
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computational boundaries. For the PHS RBF-FD method, the stencil size for non-

interfacial points is n = 30 and quadratic polynomials are enriched for the numerical

examples hereinafter, unless otherwise stated. For this discretization, the resulting

sparse matrix in the linear system of equations has the dimension of 294, 520 and has

Nnon = 18, 441, 072 non-zero entries. The impedance tensor, Z, was calculated for

the two frequencies: 0.1 Hz and 10 Hz, for which the off-diagonal components (Zxy

and Zyx) are plotted as apparent resistivity and phase curves in Fig 4.5 and Fig 4.6,

respectively (the diagonal components, Zxx and Zyy, have the apparent resistivities

of the order of 10−5 to 10−3 and are not shown here).

It is observed that the meshfree solution agrees well with other mesh-based nu-

merical solutions that include FV, grid-based FD and IE solutions (see Jahandari,

2015; Zhdanov et al., 1997) for each frequency. In order to examine the details of

reproducing possible discontinuous EM fields in this example, a horizontal test line

within the cross section at y = 0 that is perpendicular to the facets of the conductor

was used to compute the normal components of the electric field. The test line is

shown in Fig 4.7. The electric field is expected to be discontinuous along this line

at the intersections with the conductor, since the normal electric field, Ex, with re-

spect to the facets of the conductor in the x-y plane is not continuous. Fig 4.8 shows

the semi-log plots of Ax, ψ, (∇ψ)x, and Ex (= −iωAx − (∇ψ)x) along the test line.

It is observed here that the potentials (Ax and ψ) are indeed continuous across the

conductivity jumps, whereas the normal component of the scalar potential, (∇ψ)x,

and Ex are discontinuous, both of which are physically anticipated. Note that in the

plots of ψ, the discontinuities appearing in the curves at x = 0 indicate the cut-off

positions of positive and negative ψ values, rather than the function’s discontinuities.
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Figure 4.5. Computed impedance components Zxy and Zyx at the
frequency of 0.1 Hz for line 1 (panel a, b) and line 2 (panel c, d)
using the meshfree method, compared with a finite volume solution
(Jahandari, 2015) and other mesh-based solutions (error bars, Zh-
danov et al., 1997). For each panel, the top shows the apparent
resistivity, and the bottom shows the phase curves. The error bars
represent the standard deviations and mean values of the numerical
results reported in Zhdanov et al. (1997). Only the error bars for
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Figure 4.6. The same plots as Fig 4.5, but for the case of 10 Hz.
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Figure 4.7. A 2-D section view of the COMMEMI 3D-1A model at
y = 0. The solid cyan line is along the x direction (−1.2 ⩽ x ⩽ 1.2
km, z = −1.25 km), and intersects the conductive block (in red) at
x = −0.5 km and x = 0.5 km.

The same continuity behaviours of these components are also plotted with the

numerical results computed by the standard PHS RBF-FD meshfree method with-

out incorporating the continuity condition (referred to as the continuous version of

the RBF-FD meshfree method in the following) for comparison, which are shown in

Fig 4.9. It is clearly seen from Fig 4.9 that, while the computed potentials (Ax and

ψ) are continuous as expected, the computed (∇ψ)x and Ex are also smooth across

the conductivity jumps, which is unphysical and causes the spurious solutions in the

calculated MT impedance responses as shown in Fig 4.10. This is because of the

intrinsic smoothness of a standard meshfree function approximation, as mentioned

before. In addition, due to the forced smoothing effect, the computed potentials in

the continuous RBF-FD version deviate from the correct ones when compared to the

results in Fig 4.8.

The continuity behaviours are further examined by computing the E field in the

horizontal plane with z = −500 m using the meshfree method. The 2-D vector arrow
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Figure 4.9. The same continuity plots as Fig 4.8 but with the
impedance results calculated using the continuous version of the
RBF-FD meshfree method.
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Figure 4.10. The same plots of the off-diagonal impedance compo-
nents as Fig 4.5 but with the impedance results calculated using the
continuous version of the RBF-FD meshfree method.
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plots of the electric field are shown in Fig 4.11 and provide a graphical illustration of

the overall discontinuity behaviours of E across the conductivity jumps. In Fig 4.11,

the 3-D vector E fields projected on the 2-D plane (z = −500 m) for both source

polarization modes at the frequency of 0.1 Hz are displayed. Here, abrupt changes of

the magnitude of the normal electric field are clearly observed over the conductivity

discontinuities. Also observed are anticipated channelling effects of the electric field

along the conductivity contrasts that are parallel to the source electric field (Es), or

the polarization direction. These physical behaviours are, however, not captured in

the numerical solution using the continuous version of the RBF-FD meshfree method,

as shown in Fig 4.12.

The gauge condition applied to the vector potential, ∇ · A = 0, is implicitly

imposed when solving the pair of eqs (4.15) and (4.13). However, ∇ · A = 0 will

not be satisfied exactly, but will rather be satisfied approximately in a numerical

solution. To demonstrate this, Table 4.2 lists the computed normalized l2 norm of

∇·A for coarse to finer quasi-uniform discretizations (i.e., uniform unstructured points

without local refinements throughout the computational domain). The normalized l2

norm of ∇ · A is computed by firstly calculating the values of ∇ · A at each point

of the meshfree discretization. Then the square sum of the resulting vector values is

normalized in the square root:

||∇ ·A||2 =

√ 1

N

N∑
j=1

(∇ ·A)2j , (4.31)

where N is the total number of points. It is seen in Table 4.2 that for both frequencies

(0.1 Hz and 10 Hz) considered here, ||∇ ·A||2 has mostly the order of magnitude of
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Figure 4.11. 2-D vector arrow plots of the E field in the horizontal
plane z = −500 m for the COMMEMI 3D-1A model. The results
were calculated using the mixed RBF-FD meshfree method for the
frequency f = 0.1 Hz (the plots for f = 10 Hz are similar). The
“Ex mode” in the labels means the external electric field of the MT
source is parallel to the x direction (i.e., E-x polarization), and “Ey
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shown here. The magnitude of the E field is indicated by the colour
bar.
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Figure 4.12. The same 2-D vector arrow plots as Fig 4.11 but with
the results calculated using the continuous version of the RBF-FD
meshfree method.

101



10−9 to 10−8. These values are numerically zero, especially when they are compared

with the values of ∇·(∇ψ) (see the following discussion). Note that by increasing the

density of points from a very coarse discretization (1st) to a very fine discretization

(5th), the order of magnitude and the overall pattern of changes of ||∇ ·A||2 are not

significantly affected, although using a finer discretization improves the numerical

accuracy. This confirms the effectiveness of the boundary conditions in fulfilling the

gauge condition. The numerical solution of the impedance using the discretization

with 58, 044 points in total in Table 4.2 is comparable to that shown in Fig 4.5 (see

Appendix D for plots). But the computed impedance has obvious fluctuations when

the total number of points is reduced to 7, 414 (Appendix D). The similar accuracy

difference can also be observed in the calculated ∇·A using these two discretizations.

Fig 4.13 and Fig 4.14 show plots of ∇ ·A, ∇ · (iωA) and ∇ · (∇ψ) in the horizontal

plane z = −500 m, which cuts through the conductor in the background half space,

for the two frequencies of 0.1 Hz and 10 Hz, respectively. It is observed that the

use of the finer discretization clearly enhances the numerical accuracies. Another

observation here is that the divergence of A has uniform values, although subject to

numerical errors, within the computational domain which are small as predicted by

the gauge condition. The comparison between ∇ · (iωA) and ∇ · (∇ψ) shows that

the main contribution to ∇ · E = ∇ · (−iωA − ∇ψ) comes from ∇ · (∇ψ) at the

conductivity jumps (i.e., the interface between the conductor and the background

earth here). This is due to the build up of charges at the conductivity jumps.
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Figure 4.13. Coloured images of computed ∇ · A, ∇ · (iωA) and
∇ · (∇ψ) in the horizontal plane z = −500 m for the COMMEMI
3D-1A model. The frequency is 0.1 Hz. The source polarization
mode is E-x polarization (the results for the Ey polarization mode
are similar). Panels (a)-(f) show the divergence results using the
first discretization in Table 4.2 (hence ‘Discret-1’) with 7,414 points.
Similarly, panels (h)-(m) show the results using the 4th discretiza-
tion in Table 4.2 (‘Discret-4’) with 58,044 points. The magnitudes
of the values are indicated by the colour bar. The highest value in
the colour bar is -3.6.

103



−4

−2

0

2

4

Y
 (

k
m

)

−4 −2 0 2 4

(a) ∇⋅A, Re

−4

−2

0

2

4

−4 −2 0 2 4

(b) ∇⋅A, Im

−4

−2

0

2

4

Y
 (

k
m

)

−4 −2 0 2 4

(c) ∇⋅(iωA), Re

−4

−2

0

2

4

−4 −2 0 2 4

(d) ∇⋅(iωA), Im

−4

−2

0

2

4

Y
 (

k
m

)

−4 −2 0 2 4

X (km)

(e) ∇⋅(∇ψ), Re

−4

−2

0

2

4

−4 −2 0 2 4

X (km)

(f) ∇⋅(∇ψ), Im

Discret−1

−4

−2

0

2

4

Y
 (

k
m

)

−4 −2 0 2 4

(h) ∇⋅A, Re

−4

−2

0

2

4

−4 −2 0 2 4

(i) ∇⋅A, Im

−4

−2

0

2

4

Y
 (

k
m

)

−4 −2 0 2 4

(j) ∇⋅(iωA), Re

−4

−2

0

2

4

−4 −2 0 2 4

(k) ∇⋅(iωA), Im

−4

−2

0

2

4

Y
 (

k
m

)

−4 −2 0 2 4

X (km)

(l) ∇⋅(∇ψ), Re

−4

−2

0

2

4

−4 −2 0 2 4

X (km)

(m) ∇⋅(∇ψ), Im

Discret−4

−10 −8 −6 −4

Log10(f) (V/m2)

Figure 4.14. The same coloured image plots as in Fig 4.13, but for
the frequency of 10 Hz. The highest value in the colour bar is -2.8.
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Table 4.2. Calculated values (complex numbers) of normalized
||∇ · A||2 with different discretizations. The mode is E-x polar-
ization. The results are for the two frequencies: 0.1 Hz and 10 Hz,
respectively.

Discretization Total number of points
||∇ ·A||2

f = 0.1 Hz f = 10.0 Hz

1 7414 9.1773e-9 1.4605e-8 4.3377e-7 9.4274e-7
2 20 311 3.0622e-9 3.8686e-9 7.9899e-8 1.1412e-7
3 31 049 3.3176e-9 3.6113e-9 1.1036e-7 7.3346e-8
4 58 044 3.3007e-9 3.2470e-9 4.0938e-8 5.6948e-8
5 123 768 3.1723e-9 2.9054e-9 3.0538e-8 2.6884e-8

4.4.2 COMMEMI model 3D-2A

In this example, the conductivity model is the COMMEMI 3D-2A model (Zhdanov

et al., 1997), which is more complicated than the 3D-1A model. The 3-D model has

4 different conductivity layers along the depth (including the air layer). A diagram

of the model is shown in Fig 4.15. The three layers in the subsurface from top to

bottom have the conductivities 0.1 S/m, 0.01 S/m and 10 S/m, respectively. In the

very top layer, there is one embedded conductor (conductivity σ = 1 S/m) having the

dimension of −20 ⩽ x ⩽ 0 km, −20 ⩽ y ⩽ 20 km and −10 ⩽ z ⩽ 0 km. A rectangular

resistive intrusion from the second subsurface layer having the same extents as the

conductor is also located in the first layer and is adjacent to the conductor, as shown

in Fig 4.15. The main task in this example is to simulate the MT impedance in the

presence of strong effects of shallow inhomogeneities.

For the numerical tests, three EM frequencies are used: 0.1, 0.01 and 0.001 Hz.

The computational domain was set to be Ω = {(x, y, z)| − 80 ⩽ x ⩽ 80 km,−80 ⩽

y ⩽ 80 km,−120 ⩽ z ⩽ 30 km}. A measurement line (y = 0, −60 ⩽ x ⩽ 60 km)
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Figure 4.15. Plan (a) and section (b) views of the COMMEMI 3D-
2A conductivity model. The subsurface (z < 0) has three layers with
different conductivities as shown in the panel (b). In the first layer
(the top layer, σ = 0.1 S/m), there are one rectangular conductor
(σ = 1 S/m) and one intrusion block from the second more resistive
layer (σ = 0.01 S/m). The red dotted line at y = 0 (plan view panel)
represents the measurement sites at the air-Earth surface (z = 0)
used to calculate the MT response for the model.

with 100 synthetic measurement sites, which is shown in Fig 4.15(a), was designed to

compare the meshfree solutions to other numerical solutions. A point discretization

with the total number N = 96, 637 was used to compute the impedance for all three

frequencies. In this discretization, the conductor and the intrusion part in the first

layer were refined with hs ≈ 1.25 km. The measurement sites were refined with

hs ⩾ 300 m. A perspective 3-D view of the point discretization is shown in Fig 4.16.

The computed off-diagonals of the impedance tensor are plotted in Figs 4.17,

4.18 and 4.19 for the three frequencies 0.1 Hz, 0.01 Hz and 0.001 Hz, respectively.

It is shown that the meshfree solution agrees well with other independent mesh-

based solutions for each of the three frequencies. The linear system of equations

for this discretization has the dimension of 386, 548 and the number of non-zeros as

23, 839, 450. The peak memory storage used for each frequency was about 33.2 GB.
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Figure 4.16. A 3-D perspective view of the meshfree point discretiza-
tion of the COMMEMI 3D-2A model. The points are within the
domain Ω = {(x, y, z)| − 80 ⩽ x ⩽ 80 km,−5 ⩽ y ⩽ 5 km,−120 ⩽
z ⩽ 30 km}.
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Figure 4.17. Computed Zxy (panel a) and Zyx (panel b) compo-
nents of the impedance tensor for the COMMEMI model 3D-2A
using the hybrid meshfree method. The frequency is f = 0.1 Hz.
Also plotted are a FV solution (Jahandari, 2015) and an IE solution
(Wannamaker, 1991) for comparison.
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Figure 4.18. The same plots as in Fig 4.17, but for the case of
f = 0.01 Hz.
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Figure 4.19. The same plots as in Fig 4.17, but for the case of
f = 0.001 Hz.
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4.4.3 Dublin Test model-1

The third example for the MT data modelling is the Dublin test model 1 (DTM-1)

from the comparison study of Miensopust et al. (2013). The model has large con-

ductivity contrasts among its three rectangular prisms embedded in the subsurface

(σb = 0.01 S/m). The geometries, resistivities and dimensions of the prisms, as well

as the locations of synthetic measurement sites, are illustrated in Fig 4.20. Addi-

tionally, 3-D perspective views of the model are shown in Fig 4.21 (panels a and

b). For this example, 59 MT sites evenly distributed along the four measurement

lines (Fig 4.20) were originally designed to compare modelling results from various

codes/algorithms, as reported by Miensopust et al.. A total number of 21 frequencies

that are logarithmically equispaced in the range of f ∈ [10−4, 10] Hz (i.e, the period

range T ∈ [0.1, 10000] seconds) are used for calculating the MT impedance responses.

For the hybrid meshfree solutions, the computational domain was set to be Ω =

{(x, y, z)|−40 ⩽ x ⩽ 40 km,−40 ⩽ y ⩽ 40 km,−60 ⩽ z ⩽ 20 km}. A single meshfree

point discretization of the model was used for all frequencies. The discretization, as

shown in Fig 4.21(c), has N = 120, 598 points in total, of which 1, 428 points are on

the domain’s boundaries. The points around the measurement sites were refined with

hs ⩾ 300 m, and the three prisms were appropriately refined (hs ≈ 1.4 km) to ensure

an accurate solution. This generates a linear system of equations with the dimension

of 482, 392 and the number of nonzeros as 31, 060, 412.

The computed impedance responses at the origin site for the 21 frequencies are

plotted in Fig 4.22. Also shown here are a number of other mesh-based solutions from

Miensopust et al. (2013). It is observed that for this particular discretization, which
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Figure 4.20. Section (a) and plan (b) views of the Dublin Test Model
1 (DTM-1). There are three rectangular prisms attached together in
the subsurface with different resistivities (ρ1, ρ2, ρ3) as shown above.
The background subsurface has the conductivity of σb = 0.01 S/m
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Figure 4.21. Perspective 3-D views of the DTM-1 model at the
section x = 0. Panels (a) and (b) show the plane of the cross section
and the three blocky targets at two different angles. Panel (c) shows
the meshfree point discretization (−10 ⩽ x ⩽ 10 km) that was used
in the meshfree calculation. The air-Earth surface is at z = 0.
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Figure 4.22. Computed meshfree results of impedance components compared with various other
numerical solutions (Miensopust et al., 2013) for the period range T ∈ [0.1, 10000] sec at the origin site
(see Fig 4.20) for the DTM-1 model. The first column of the curves shows the solutions corresponding
to the first column of the User/algorithm list at the bottom; the same corresponding relation also
applies to the second and third columns of the curves.
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has a moderate number of degrees of freedom compared to those of other numerical

solutions, the meshfree solution has a good agreement with other solutions for all

impedance components. The deviations in the solution of diagonal components (Zxx

and Zyy) for high frequencies (f > 0.1 Hz) are due to insufficient point discretization

in the shallow part of the subsurface, where the EM fields are expected to change

more rapidly than those of lower frequencies.

The peak memory usage for this example is about 47 GB. With the employed

computer resource (16-core Intel Xeon E5-2670 CPU with 2.6 GHz), the running

time of the computation for all 21-frequency MT responses is listed in Table 4.3. The

majority of computation is that of assembling and solving the linear system of equa-

tions. It is noted that for the first frequency, the computation time is approximately

1 min longer than that of all subsequent frequencies. This is because of the need to

calculate RBF-FD weights and FE weights in the assembling, which is only required

once for the same discretization. The formation of the coefficient matrix of the linear

system of equations for subsequent frequencies can be done by simply modifying the

frequency value in eq (4.21). The difference between the assembling time and solv-

ing time, as shown in Table 4.3, suggests that the most computationally expensive

part in the meshfree method is the matrix equation solving process for moderate- to

large-scale discretizations of models, which is typically observed in more traditional

mesh-based methods.
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Table 4.3. Computation time for the DTM-1 MT model. The com-
putation running time includes the time amount of assembling and
of solving the linear system of equations.

No. of frequency Computation time

1st frequency 14 mins 18 s
the remaining 20 frequencies 4 hrs 25 mins 55 s (in average 13 min 17.7 s for each

frequency)

4.5 Chapter summary

The PHS RBF-FD meshfree method incorporated with a Galerkin weak form ap-

proach to solve the difficulty of faithfully modelling possible function discontinuities

is applied to simulate MT impedance data. The discontinuity issue is faced by stan-

dard meshfree numerical methods because standard meshfree function approximants

are high order continuous. The numerical examples here show that the proposed dis-

continuity treatment is effective in reproducing possible discontinuities in the electric

field over conductivity jumps or at the interfaces of high conductivity contrasts. The

discontinuity treatments are not needed if the function of interest in a PDE is globally

smooth or high-order continuous, of which some examples in the case of geophysical

EM method are: 2-D MT data modelling regardless of the conductivity distribution,

3-D EM field simulation for a continuously changing or constant conductivity model,

etc. In the case of continuously changing conductivity distribution, for example a

smooth model constructed from a minimum structure style inversion, ∇σ is not zero

and will be present in the governing EM potential equation (eq 4.19), and a stan-

dard meshfree implementation without the discontinuity treatments will suffice to

accurately model the EM field.
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Chapter 5

Simulation of controlled-source EM

data using PHS RBF-FD

5.1 Introduction

In the frequency-domain controlled-source EM (CSEM) survey method, the EM

source signals are man-made EM fields energized from EM transmitters. In prac-

tice, an EM transmitter can be a finite-length grounded wire source, or a loop wire

source that is not grounded. In either case, the source carries an alternating electric

current that generates the EM fields in the ground.

For numerically modelling the CSEM responses over a conductivity model, the

same quasi-static (i.e, neglecting the displacement current term) Maxwell’s equations

described in the MT case are used. The only addition is that now the source terms

are not zero. Therefore, the Coulomb gauged A-ψ scheme is used in this chapter and

is discretized the same way as in the MT case to forward model CSEM data.
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Figure 5.1. Schematic illustration of the model separation in a
primary-secondary field approach: (a) an original inhomogeneous
conductivity model with EM transmitter (TX) and receiver (RX),
(b) a 1-D half space model that is chosen as the background
model and (c) the anomalous conductivity distribution in which
σanomaly = σoriginal − σbackground as a result of the choice of the
background model. The anomalous conductivity distribution acts
as the source term when numerically solving for the scattered sec-
ondary EM field (see details in Appendix E)

The EM source functions are singular current density functions in a mathematical

sense. Physically, this means that the total EM field in the frequency domain exhibits

singularities or discontinuities at the places occupied by the wire sources. Although

such singularities do not affect any real-life EM data measurements, since the mea-

surement sites are never coincident with the source wire, they do pose a difficulty

in numerically modelling the EM field. The difficulty is due to the non-trivial effort

in accurately approximating the rapidly changing EM field near the source and the

singular EM field at the source, as the function approximation in most numerical

PDE-solving methods can only handle finite-valued functions.

A commonly used approach to tackle the above singularity issue in numerical

methods is to separate the EM field into a primary part and a secondary part (called

primary-secondary field approach, e.g., Coggon, 1971; Alumbaugh et al., 1996; Weiss

& Constable, 2006; Streich, 2009; Puzyrev et al., 2013). The primary part is the

EM field due to a controlled source over some simple background model (such as
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1-D layered models), and the secondary part is called scattered EM field which is

the difference between the total EM field for the original 3-D inhomogeneous model

and the primary EM field for the background model. In this way, only the secondary

EM field, which has no singularity, needs to be numerically solved. The primary

field still has singularities at the source but now can be sought by analytical or semi-

analytical ways because of the very ideal background conductivity distribution (Ward

& Hohmann, 1988). Using the primary-secondary field approach, if the EM source

is located outside the conductivity anomalies (i.e., the difference between the 3-D

original conductivity distribution and the 1-D counterpart, see Fig 5.1), the scattered

secondary field will be smoother than the total field near the source, thus circum-

venting the source singularity issue. However, if the EM source is located within

the interested conductivity anomalies, the singularity issue cannot be avoided. Note

that the 3-D anomalous conductivity distribution can also be complex, depending on

the choice of the background conductivity model. Complex anomalous conductivity

distributions appear when the original 3-D conductivity model is very different from

the 1-D background model, such as a marine conductivity model with bathymetry.

One disadvantage of the primary-secondary approach is that analytical solutions may

not be available, resulting in non-trivial efforts in calculating the primary EM field.

This can be due to either practical EM sources being used (e.g., arbitrarily shaped

loop sources) or a lack of 1-D idealized background models (e.g., when the EM source

resides on uneven topography or bathymetry).

The total-field approach incorporates the source terms in the mathematical equa-

tions and solves directly for the total field (Ansari & Farquharson, 2014; Jahandari &

Farquharson, 2014). In the total-field approach, the source can be positioned wherever
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it is needed for practical survey scenarios, making the approach more straightforward

and more general than the primary-secondary field approach. The main challenge in

the total-field approach lies in the proper approximation of the numerical singularity

of source functions, resulting in a need of distributing small cells or elements in a 3-D

mesh around the EM source in order to ensure numerical accuracy as well as efficiency.

Generation of such non-uniform meshes nowadays can be accomplished more easily

than it was done in the past (e.g., a decade ago) by adopting third-party open-source

mesh generating software (e.g., Fabri et al., 2000; Si, 2015). Both primary-secondary

and total-field approaches in the frame of PHS RBF-FD hybrid meshfree method are

investigated here.

5.2 A-ψ potential equations with source terms

The sameA-ψ equations described in Section 4.2.1 are used for modelling CSEM data

with either electric type (electric dipole, finite-length grounded wires) or magnetic

type (magnetic dipole, loop wires) EM sources. They are written with the source

current terms as

−∇2A+ iωµσA+ σµ∇ψ = µJs +∇×Ms, (5.1)

∇ · (iωµσA+ σµ∇ψ) = ∇ · (µJs), (5.2)

where Js is the electric source current density, and Ms is magnetic source induction

vector (magnetic moment vector) which satisfies ∇ · Ms = 0. For a grounded wire

source or a loop source, only Js is present and Ms vanishes (for loop sources, ∇ · Js
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Figure 5.2. A diagram illustrating (a) a horizontal electric dipole
source (the induced electric currents in the subsurface are repre-
sented as thin lines with arrow) and (b) a magnetic loop source.

also vanishes). For a magnetic dipole source, only Ms is present and Js and its

divergence would vanish. The spatial discretization of the eqs (5.1) and (5.2) is the

same as that for the MT case, but now the source terms need to be incorporated into

the discretization as well.

5.3 Treatment of EM sources

The current density of an electric grounded wire source is a singular function. In

the case of a horizontal electric dipole that injects a time-varying current into the

subsurface (Fig 5.2) and that aligns with x direction, the current density Js can be

mathematically represented as (Ward & Hohmann, 1988)

Js = I0 [H(x− x1)−H(x− x2)] δ(y − y0)δ(z − z0)ux, (5.3)

where I0 is the current intensity, H(x) is Heaviside function, |x2 − x1| is the length

of the source wire, ux is the unit vector along +x direction, and δ is the Dirac delta
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function, which is singular. The divergence of Js is given as

∇ ·Js = I0[δ(x− x1)− δ(x− x2)]δ(y− y0)δ(z− z0) = I0δ(r− r1)− I0δ(r− r2), (5.4)

where r1 and r2 are the two points of the injections. It is seen here that the singularity

of Js occurs in the directions perpendicular to the source line, and the singularity in

∇ · Js is point-based.

In discretizing eqs (5.1) and (5.2) using the RBF-FD meshfree method, large

errors near the source in a numerical solution can occur if Js and ∇ · Js are not

approximated with an adequate accuracy (Long & Farquharson, 2017). On the other

hand, it is anticipated by physics that the EM fields due to an electric source exhibit

discontinuities at the two ends of the source wire where the current is injected into

the subsurface, which poses a difficulty for a standard meshfree technique such as

that investigated in the previous chapter of MT data simulation.

The field discontinuity at the EM source (mainly electric types) is different from

the field discontinuity incurred by abrupt conductivity variations. In the former, the

electric field at the two ends of a grounded wire source exhibits a point-based dis-

continuity of singularity in space (Fig 5.3a), while in the latter the field discontinuity

only occurs in the normal direction for the conductivity interfaces (Fig 5.3b) in a

quasi-static regime.

Based on these observations, a variation of the FE weak-form treatment for con-

ductivity interfaces is proposed to handle the discretization of source terms in the

total-field hybrid meshfree RBF-FD approach. This is in addition to the Galerkin

FE treatment applied to any interfacial points in the conductivity model. The imple-
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(a) Discontinuous E at an end of 
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(b) Discontinuous E at a conductivity 

interface 

σ1

σ2

Figure 5.3. Different situations of E field discontinuity: (a) E is dis-
continuous at the ends of an electric dipole source in all directions
and (b) E is discontinuous in the normal direction at the conductiv-
ity interfaces but continuous in the tangential direction in the case
of σ1 ̸= σ2. In the diagram, the length of an arrow represents the
magnitude of E field.

L1 Li

Li i-th source segment:

points in regular regions

points on the source line ("source point")

Js

flows of current density

r

meshfree subdomain

Figure 5.4. Schematic illustration of dealing with electric dipole
source in the hybrid RBF-FD method. Shown above is a local mesh
for the source point where EM fields are expected to be discontinu-
ous.

120



mentation of the FE-coupled meshfree method (again referred to as hybrid meshfree

solution hereinafter) then follows the procedure:

1. For all regular interior points in the meshfree discretization, use the PHS RBF-

FD to approximate equations.

2. For any point that resides on the interfaces (if applicable), construct a local

mesh and switch to scalar FE discretization.

3. For any point whose regular meshfree subdomain, as determined in the first

step, intersects with points along the source wire (these points are denoted as

“source points”), construct a local mesh and switch to scalar FE discretization.

4. For boundary points, use the homogeneous Dirichlet boundary condition (A, ψ) =

(0, 0).

For the primary-secondary field approach, there is no singular source function in

the equations and therefore the above step of handling source terms is not needed.

The implementation of the primary-secondary field approach is discussed later and is

detailed in Appendix E.

5.4 Numerical examples

5.4.1 Total-field approach

In the total-field approach, the CSEM singular source functions are retained during

the discretization of the equations. To allow for arbitrary shapes and positioning

of a practical wire source (potentially with arbitrary geometry, either grounded or
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loops) and efficient volume integration of the source function terms in an unstructured

tetrahedral mesh, the wire is partitioned into a number of straight line segments,

each of which is aligned with the edges of tetrahedra in the mesh. The number of the

segments can be as many as needed. The implementation of the source terms in the

scalar FE method is elaborated in Appendix F.

To examine the effectiveness of the proposed hybrid meshfree method for CSEM

data modelling, analytical solutions (over simple and idealized models) and a scalar

FE numerical solution are developed. The scalar FE method employs the total-field

approach and unstructured tetrahedral meshes. The total-field FE algorithm is first

validated so that it can be used as a benchmark solution for assessing hybrid meshfree

solutions.

Validity of total-field FE implementation: whole space model

The conductivity model is the ideal homogeneous model, also called whole space

model. The conductivity is uniform in this case, and analytical formulae for calcu-

lating EM fields due to an electric dipole or magnetic dipole are available. For an

x-directed horizontal electric dipole source, the resulting electric field at the position

r =
√
x2 + y2 + z2 can be calculated via (eq 2.40 in Ward & Hohmann, 1988):

E(r) =
I0

4πσr3

[
(
x2

r2
ux +

xy

r2
uy +

yz

r2
uz)(−k2r2 + 3ikr + 3) + (k2r2 − ikr − 1)ux

]
,

(5.5)

where k =
√
−iωµ0σ is wave number, ω = 2πf is angular frequency, uk (k = x, y, z)

are unit vectors, and I0 is the electric current intensity. In eq (5.5), the centre of the

dipole is located at the origin (x, y, z) = (0, 0, 0).
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In this example, the uniform conductivity was chosen as σ = 1.0 S/m. The

grounded wire of length ls = 200 m was used, which is x-directed (the electric current

flows from x = −100 m to x = 100 m) and has its two poles at (−100, 0, 100) m and

(100, 0, 100) m, that is, the source wire is located at y = 0, z = 100 m. The synthetic

measurement sites are at z = 0.

The mesh used for this example is a tetrahedral mesh with 144, 601 nodes and

901, 084 elements. The computational domain is Ω = {(x, y, z)| − 105 km ⩽ x, y ⩽

105 km,−102 km ⩽ z ⩽ 105 km}. The 200 metre long wire source consists of 40

small segments, each of which is 5 m long. A local refinement at the source was

applied such that the minimum edge length (MEL) in this region is l = 5 m. At the

synthetic measurement locations that extend from x = −14 km to x = 14 km, a local

refinement using a MEL of 10 m was also applied.

The computed Ex component of the electric field using the FE implementation at

the frequencies f = 1.0, 0.1 and 10−4 Hz is shown in Fig 5.5. An analytical solution

based on eq (5.5) was also plotted here. The analytical solution in the figure was

obtained by scaling the solution in eq (5.5) by the length of the actual wire source,

which is 200 m. It is observed that the FE results become increasingly more consistent

with the analytical solution for the considered offsets as the frequency decreases. This

is due to the same mesh discretization used for all frequencies. At high frequencies,

the EM field oscillates and attenuates more rapidly in space, and therefore more

refinements of the mesh would be required in order to obtain a comparable numerical

accuracy to that of the low frequency solutions.

The formula in eq (5.5) is valid for a dipole source, namely, the calculated EM

field response will be accurate for positions far away from the centre of the source
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Figure 5.5. Comparison of the calculated Ex responses for the whole
space model (σ = 1 S/m) using the total-field FE approach and
the analytical approach. Positive and negative values are indicated
by “+” and “-”, respectively, in the figure’s legends in addition to
different colours of the symbols. Real and imaginary components
of Ex are denoted by different symbols. The results are for three
different frequencies: (a) 1 Hz, (b) 0.1 Hz and (c) 10−4 Hz.
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for which the dipole geometry assumption of the source is valid. This is evident from

Fig 5.6 which shows the same plots of Ex as in Fig 5.5 but for much shorter offsets

from the wire source. At offsets that are more than 200 m away from x = 0, the FE

solutions have excellent agreements with the scaled analytical ones.

Validity of total-field FE implementation: half space model

The second validation example for the total-field FE method is the so-called half space

model where a uniform conductive layer is overlaid with a more resistive air layer.

As before, the air layer’s conductivity is approximated as 10−8 S/m in the diffusion

regime. The conductive subsurface has the conductivity σ = 0.01 S/m, a common

average value for near-surface Earth materials. To assess the numerical solutions, a

number of measurement sites were distributed at the flat surface (z = 0) of the two

layers.

Again, for this idealized case, analytical expressions for calculating the electric

field at the surface are available. The Ex due to an x-directed horizontal electric

dipole source can be calculated as (eq 4.159 in Ward & Hohmann, 1988)

Ex =
I0

2πσr3

[
1 + (ikr + 1)e−ikr − 3y2

r2

]
, (5.6)

where the meanings of the symbols are the same as those in eq (5.5).

For the FE discretization, a tetrahedral mesh with 63, 823 nodes and 395, 298

elements was used. The computational domain is Ω = {(x, y, z)| − 40 km ⩽ x, y, z ⩽

40 km}. The dipole source was represented by a 1 m grounded wire in the mesh

that extends from x = −0.5 m to x = 0.5 m, which was refined with a MEL as 0.2
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Figure 5.6. Same comparison plots as in Fig 5.5, but for shorter
offsets from the source.
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Figure 5.7. Vertical section of the unstructured tetrahedral mesh
used for the half space model.

m. The measurement sites (−13 km ⩽ x ⩽ 13 km) were locally refined with a MEL

of 30 m. A 3-D view of the mesh is shown in Fig 5.7. The computed Ex results

using the total-field FE and the analytical means (eq (5.6)) at f = 1 Hz are shown in

Fig 5.8. Again, the FE results are observed to match the analytical ones, validating

the total-field FE algorithm.

Accuracy of total-field meshfree method: half space model

In order to assess the effectiveness of the implemented hybrid PHS RBF-FD meshfree

method, the same half space model with appropriate local refinements as in the

previous FE example was used. The grounded electric dipole source at the surface is

extended to be 200 m long (from x = −100 m to x = 100 m) as a first attempt to

investigate the effectiveness of the source implementation in the meshfree case. Since

both dipole source and measurement sites are at the surface, discontinuities at the
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Figure 5.8. Total-field FE result of Ex component for the half space
model compared with analytical solution. The source is a horizontal
electric dipole. Positive values are indicated by coloured symbols,
and negative values are indicated by black symbols. The frequency
is f = 1 Hz.

source poles are expected in the numerical results for the electric field.

To compare the hybrid meshfree results to those of the total-field FE approach, a

tetrahedral mesh was generated such that the MEL at the measurement locations is

l = 30 m. The dipole source was represented by 40 straight line segments (5 m long

each), where a MEL of 5 m was used for local refinements at the source points. This

gives 26, 027 vertices and 158, 269 tetrahedral elements in the mesh. The meshfree

point set is the vertices that were extracted from the mesh used for the FE method.

(i) Direct FE coupling with minimum FE discretizations

In this case, the FE discretization of equations is only used for the meshfree

points whose subdomain intersects with the CSEM source points1, as described in

Section 5.3. This corresponds to the minimum amount of FE treatments for the

1Without explicit illustration otherwise, FE-like treatment is always used for meshfree points
residing on the conductivity interfaces in a model.
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Figure 5.9. Hybrid meshfree (MM) numerical result of Ex com-
ponent for the half space model compared with the total-field FE
result. The frequency is f = 1 Hz. Minimum FE treatments for
source points (SP) were used in the meshfree solution.

source term. The computed meshfree result along with the total-field FE result for

the Ex component are shown in Fig 5.9. It is evident that the hybrid meshfree

solution does have two discontinuities at exactly the source poles of the dipole source.

However, the overall meshfree solution does not match exactly with that of the FE

method. The stair-like pattern in the FE solution here (also in the following FE

solutions) is due to the linear basis functions employed in each element (this means

that the gradient of a function, e.g., Ex, within an element is a constant).

(ii) More FE treatments in direct FE-meshfree coupling

In this test, more FE-like treatments in discretizing the equations are used. The

FE-like treatment region was increasingly extended from the source’s centre. The

points within −Rs ⩽ x, y, z ⩽ Rs(Rs > 0) from the source centre were treated with

the FE discretization, and were directly coupled with the rest of the points, which

were treated with meshfree RBF-FD discretization. The calculated results in the case
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Figure 5.10. Hybrid meshfree numerical result of Ex component
for the half space model compared with the total-field FE re-
sult. The frequency is f = 1 Hz. In the meshfree solution, FE
treatments for source points were applied for any points within
Rs = max{|x|, |y|, |z|} = 150 m in the meshfree point discretiza-
tion.

of Rs = 150 m, 1 km and 3 km are shown in Figs 5.10, 5.11 and 5.12, respectively.

It is seen that with more FE couplings, the hybrid meshfree result becomes more

accurate. Fig 5.13 shows the comparison of the hybrid meshfree solutions and FE

solutions over extended offsets in the case of Rs = 3 km.

In addition, three more remarks can be made from these observations: (1) the di-

rect coupling of scalar FE and scalar meshfree RBF-FD can give continuous functions

(A and ψ here) as well as continuous derivatives of the function (Ex) at the coupling

boundary (e.g. x = ±150 m and x = ±1 km); (2) the FE coupling region for the

controlled source does not need to be very large in order to obtain satisfactory overall

numerical results; and (3) the direct coupling treatment for the source indeed enables

the hybrid meshfree method to faithfully reproduce possible field discontinuities at

the source, as predicted by the FE method. This is impossible in a standard meshfree
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Figure 5.11. Same plots as in Fig 5.10, but with Rs = 1 km in the
hybrid meshfree method.

method.

(iii) FE coupling for the homogeneous region containing the source

In this test, the horizontal 200 metre long dipole source is located at a depth of

500 m from the surface and the synthetic measurement locations are at the surface,

which resembles borehole-to-surface EM surveys. The unstructured FE treatment was

used for the conductive subsurface region containing the source, while the standard

RBF-FD was used for the air layer. The calculated electric field responses (Ex) at

the surface (y = 0, z = 0) using the hybrid meshfree and the total-field FE methods

are shown in Fig 5.14. Again, the vertices of the unstructured tetrahedral mesh used

by the FE method were employed as the meshfree point discretization. The stair-like

feature in the FE solution is due to the use of linear basis functions which can be

improved and smoothed if using finer local refinements at the measurement locations.

The higher accuracy and better smoothness in the hybrid meshfree solution is due to

the high-order accuracy in meshfree function approximation. An excellent agreement
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Figure 5.12. Same plots as in Fig 5.10, but with Rs = 3 km in the
hybrid meshfree method.

between these two solutions is evident.

One issue remaining however is about the direct coupling with minimum FE point

treatments, which gives unsatisfactory numerical results in the tests. One may try

the trial-and-error method to determine the optimal direct coupling boundary for a

particular problem if using as few FE treatments as possible is preferred. However,

being able to determine this boundary prior to solving the problem would be useful.

The main reason behind this issue is, at this stage, suspected to be the difference

between meshfree shape functions and scalar linear FE shape functions. The shape

functions in these two cases are constructed from different functional spaces. More

investigations are needed to address this issue.
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Figure 5.13. Same plots as in Fig 5.12, but over extended offsets
and using more frequencies: (a) 1 Hz, (b) 0.1 Hz and (c) 10−4 Hz.
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Figure 5.14. Hybrid meshfree (MM) numerical result of Ex com-
ponent for the half space model compared with the total-field FE
result. The 200 m long dipole source is located at z = −500 m. The
frequency is f = 1 Hz.

5.4.2 Primary-secondary field approach

In the primary-secondary (PS) approach, a primary EM field response over some

simple background conductivity model is first sought, for which analytical or semi-

analytical formula are frequently used. A secondary EM field, or scattered field,

is then caused only by the anomalous conductivity distribution σano = σoriginal −

σbackground (see Fig 5.1), which is the conductivity difference between the original

conductivity distribution and the background conductivity model. The choice of the

background model is subject to the user’s discretion as long as the primary fields

can be accurately and efficiently calculated. For a given discretization of the original

conductivity model, the primary EM fields at the degrees of freedom where σano

is not zero are required before seeking a numerical solution for the secondary EM

fields. Derivations of mathematical equations and algorithm implementations of the
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PS approach in the frame of Coulomb-gauged A-ψ potential scheme are presented in

Appendix E. The main steps for a PS approach-based numerical solution are:

1. Determine a background conductivity model, and calculate the primary EM

response due to a controlled source over the background model for all measure-

ment sites and for all regions where σano is not zero.

2. Discretize the original conductivity model domain with appropriate meshes or

meshfree points, and solve Maxwell’s equations (here, A-ψ potential equations)

for the secondary EM response.

3. Compute the total EM response due to the controlled source by summing up

the primary and secondary EM responses.

Note that in a PS method, the singular CSEM source functions are avoided at the

equation level. Here, scalar FE and hybrid scalar meshfree implementations using

PS approach are developed. In this case, even the meshfree method does not face

the difficulty caused by field discontinuities at the source. The FE PS implemen-

tation is investigated in order to provide an additional check on the PS algorithm

implementations.

Validity of PS FE implementation

To first verify the validity of the PS approach-based FE implementation, the marine

hydrocarbon disk model (also known as canonical disk model, Constable & Weiss,

2006; Ansari & Farquharson, 2014) is considered here. The model is graphically

depicted in Fig 5.15. The model has a sea water layer at the top with conductivity
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σ = 3.2 S/m, and a seabed layer beneath the sea water (σ = 1.0 S/m). A circular disk

of resistive medium, which could be hydrocarbons or other less conductive materials,

is embedded 1 km below the sea floor and has the radius of 1 km. The thickness of

the disk (along z direction) is 100 m. This gives the centre of the disk as (x, y, z) =

(0, 0,−1000) m in the coordinate system here. A grounded electric dipole source2 is

typically used in the marine environment (Chave et al., 1991). In this example, an

x-directed electric dipole source extending from -100 m to 0 m is adopted and is set

to be at a height of 100 m above the sea floor.

In order to use the PS approach, a background model needs to be prescribed.

Here, a homogeneous conductivity model with σ = 3.2 S/m is employed. The back-

ground model is simple enough such that the primary EM response can be efficiently

computed. The analytical electric field is calculated by eq (5.5).

The measurement sites in a marine CSEM survey are normally distributed at the

sea floor (z = 0) to maximize the signal amplitude from the exploration targets within

the seabed due to the rapid attenuation of the EM field in sea water. For an actual

grounded 100 m long line source, the field responses can be obtained from the dipole

source response scaled by the length ls = 100 m. Since in this example, the synthetic

measurement sites and the regions where σano ̸= 0 are sufficiently far away from the

source, the scaled responses from the dipole source are adequate for approximating

the primary field.

The total electric field over the disk model was calculated using the PS FE ap-

proach (with the above scaling method for calculating the primary field) and the

total-field FE method. The comparison between the two solutions of the Ex com-

2In this case, the electric current is injected into the conductive sea water.
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Figure 5.15. Diagram of the marine hydrocarbon disk model. The
disk is located in the sea bed layer.
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Figure 5.16. Comparison of the calculated Ex responses for the
canonical disk model using the primary-secondary (PS) FE approach
and total-field FE approach. In both implementations, the linear
systems of equations were solved using a direct solver (“DR”). Posi-
tive and negative values are indicated by “+” and “-”, respectively,
in the figure in addition to different colours of the symbols. The
frequency is f = 1 Hz.

ponent from these two implementations is shown in Fig 5.16 (1 Hz) and Fig 5.17

(10−4 Hz). The mesh discretization of the model is the same for both cases. The

computational domain is Ω = {(x, y, z)| − 10 km ⩽ x, y, z ⩽ 10 km}, which was

discretized using an unstructured tetrahedral mesh. The mesh has local refinements

at the synthetic measurement line (−6.5 km ⩽ x ⩽ 6.5 km, y=0, z=0) with a MEL

of 5 m. The source and the disk were also refined to improve numerical accuracy for

the total-field FE approach and PS FE implementations, respectively. The maximum

edge length of tetrahedra in these regions was ltra ≤ lskin
10

where lskin is the approxi-

mate skin depth assuming a uniform space of conductivity σ = 2.0 S/m. This results

in 1, 773, 558 elements and 281, 387 nodes in the mesh.

The PS FE and total-field FE solutions have a good agreement with each other, as
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Figure 5.17. Same comparison plots as in Fig 5.16, but for the
frequency f = 10−4 Hz.

shown in the figures, confirming the accuracy of the PS FE implementation. Although

a much coarser mesh would be adequate for low frequencies (such as 10−4 Hz here),

the result of the low frequency using the fine mesh is presented here for confirmation

of the stability of the implemented PS FE algorithm. The PS FE solution is further

compared with a vector FE solution from the literature (Ansari & Farquharson, 2014),

which uses a total-field approach, and the match is displayed in Fig 5.18. It is seen

that the PS FE solution is consistent with the independent vector FE solution.

Accuracy of PS meshfree method

To examine the accuracy of the PS meshfree method, the same Ex component over the

canonical disk model was calculated and compared first with the vector FE solution

(Ansari & Farquharson, 2014) at 1 Hz. The meshfree discretization uses the same set

of points (vertices) generated for the FE mesh. Fig 5.19 shows the comparison. From

Fig 5.18 and Fig 5.19 it is seen that both the PS meshfree and PS FE solutions are
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Figure 5.18. Scatter plot of the primary-secondary (PS) scalar FE
solution of Ex in a comparison with a total-field vector FE solution
(Ansari & Farquharson, 2014) for the frequency f = 1 Hz. Symbols
of the vector FE solution are indicated as “vFE”.

consistent with the vector FE solution, especially at offsets near the wire source. The

meshfree solution at 1 Hz is found to be less accurate at far offsets in this example.

To further examine the accuracy of PS meshfree solution, the meshfree solution is

compared against that of the PS scalar FE implementation for different frequencies.

At high frequency (100 Hz), it is found that both numerical solutions are noisy. This

is due to insufficient spatial discretization in the mesh or meshfree points. As the

frequency decreases, in which case the EM field oscillates more slowly, both solutions

become increasingly more accurate. The match between the PS meshfree and PS

FE solutions is displayed in Fig 5.20 which shows the comparison for three lower

frequencies. The case of 10−8 Hz corresponds to extremely low frequency or near static

situation (i.e. DC case). In DC resistivity surveys (f = 0 Hz), the measured signals

of electric potential (and therefore electric field) become real-valued measurements.

This is the reason why the imaginary part of the solutions in Fig 5.20 is rapidly

approaching 0 as f → 0.
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Figure 5.19. Scatter plot of the primary-secondary (PS) meshfree
(“MM”) solution of Ex in a comparison with a total-field vector FE
(“vFE”) solution (Ansari & Farquharson, 2014) for the frequency
f = 1 Hz.
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Figure 5.20. Comparison plots of the primary-secondary (PS) mesh-
free (“MM”) solution and PS FE solution of Ex in the canonical disk
model for three different frequencies f = 0.1, 10−4 and 10−8 Hz.
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5.5 Chapter summary

The hybrid PHS RBF-FD meshfree method is further extended to solve CSEM for-

ward modelling in this chapter. The modelling difficulty introduced by EM controlled

sources is the infinity discontinuities, or singularities, at the source which are differ-

ent from the field discontinuities encountered in the MT case. To overcome the

difficulty, both total-field and primary-secondary field approaches in the frame of

RBF-FD meshfree method are investigated. In the total-field approach, direct cou-

pling with FE treatment is proposed and tested. It shows that the strong-weak form

coupling scheme works if the coupling domain is appropriate. The primary-secondary

approach does not face the singularity issue inherently. The primary-secondary mesh-

free method is shown to be able to synthesize correctly the CSEM responses using

dipole sources.
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Chapter 6

Discussion

This thesis attempts to address the fundamental problems encountered when devel-

oping new meshfree algorithms that are capable of modelling EM data over complex

conductivity models. The novelties of the work include introducing a new class of

RBFs in applying the RBF-FD method for modelling geophysical data, the use of 3-D

completely unstructured meshfree points in discretizing models, a new technique for

reproducing discontinuous derivatives in meshfree solutions and the use of meshfree

methods in the frame of both total-field and primary-secondary field approaches for

modelling CSEM data.

In RBF-FD, various RBFs can be employed. The quintic order polyharmonic

(PHS) RBFs studied here have the advantages: (1) they do not have a shape param-

eter that requires extra computational effort to determine an optimal value in each

meshfree subdomain in a set of unstructured points, and (2) the resulting linear sys-

tem of equations in the meshfree interpolation does not become very ill-conditioned.

As such, a standard Lagrange interpolation condition can be used, making the im-
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plementation of Dirichlet boundary conditions straightforward and efficient. The use

of the strong-form RBF-FD method also avoids numerical integration when discretiz-

ing continuous PDEs into algebraic equations, a computationally costly procedure in

common weak-form meshfree methods.

Other PHS RBFs can also be used in principle, as long as they are capable of ap-

proximating the highest order derivatives. In this thesis, the quintic order PHS RBFs

are sufficient to approximate the second-order differential operators. Using higher

order RBFs would increase the computation in meshfree interpolation by increasing

arithmetic operations.

There are other means to generate 3-D unstructured points. The way used here

(Tetgen, Si, 2015) is certainly not the most efficient one, but it provides a means

to also generate an unstructured tetrahedral mesh with which comparison studies, in

terms of algorithm implementation and computational efficiency, with other numerical

algorithms (e.g., FE) are allowed. The use of unstructured model discretizations is a

key requirement during the development of the meshfree techniques here. This is the

reason that all example meshfree discretizations have used unstructured points, even

though the considered geophysical models are sometimes simple and ideal (e.g., EM

models). More examples of discretizing realistically complex models using meshfree

points are presented in Long & Farquharson (2019a).

It would be reasonable to argue that the accuracy of a meshfree numerical solution

depends on the quality or regularity of the meshfree points, just as the solution of

mesh-based methods (e.g., FE, FV, grid-based FD) depends on the mesh quality. A

quantitative analysis of the effect of the point regularity on accuracy has not been

addressed here. Part of the reason for this is that there is still a lack of accessible
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software to generate point discretizations tuned for meshfree methods. The tool used

here (Tetgen, Si, 2015) was originally designed for generating meshes. The criteria for

a quality mesh are different from those for a set of quality points. This means that

the vertices from a quality tetrahedral mesh are not necessarily of good quality when

used for a meshfree solution. As such, it is inconsistent to ensure a set of quality

points by generating a quality mesh.

Unlike the gravity field, the geophysical EM field has well-known discontinuities in

the electric field. In order to faithfully reproduce possibly discontinuous electric field

at the conductivity jumps in a quasi-static regime, a hybrid meshfree discretization

that couples scalar FE discretization of equations for interfacial points is proposed.

This is based on the fact that the electric field, thus the first-order derivative of ψ,

is discontinuous across any conductivity jumps, while the functions approximated

by standard meshfree methods are undesirably smooth everywhere. The coupling

method is proposed with the goal of minimizing the algorithm’s reliance on the infor-

mation of interfacial geometries which are complex in nature for 3-D realistic Earth

models.

The coupling strategy is not needed if the functions in the PDEs are globally

smooth, which is true in the EM scenario if, for example, the conductivity variation is

smooth everywhere (e.g., a smooth model generated by standard minimum-structure

style inversion algorithms that encourage a certain smoothness), or the conductivity

is a 1-D distribution with a plane wave source excitation (i.e., MT). In these cases,

the standard RBF-FD technique, as used in modelling gravity data, would suffice.

In synthesizing CSEM data using the primary-secondary field approach, the singu-

lar source terms are avoided in the equation system and therefore there is no numerical
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singularity in the meshfree solution. However, there are situations where finding a

primary field response becomes difficult or not computationally efficient, as mentioned

in Section 5.1. The total-field approach may thus become the only option. The direct

coupling between the linear FE and RBF-FD discretizations of potential equations is

shown to be able to correctly model CSEM responses. Traditionally, the purpose of

coupling meshfree methods with other numerical methods is to take advantage of the

flexibility of meshfree methods in conforming with irregular geometries. Here, the

main purpose is to take advantage of the better approximation of singular functions

in the FE method.

Another worthy discussion would be about how to apply the meshfree-based mod-

elling solvers in an inversion computation, which is frequently encountered in geo-

physical data interpretation. As the whole problem domain is discretized by points,

the usual, standard cell-based or pixel-based inversion method will not be practical.

Since in the cell-based inversions where the cells’ conductivities (or other physical

properties) are to be inverted, the conductivity jumps arising from iterative changes

of those conductivity values can be arbitrary and thus difficult to predict. However,

the meshfree point discretization is very suitable for an inversion philosophy where

contact surface geometries of rock units are the primary degrees of freedom (Lelièvre

et al., 2012, 2016). The idea is to mainly invert the surface structures such as wire-

frames of lithological units. A closely-related inversion application in the EM case

for this idea is discrete conductor inversion where the conductor is described using

ideal surfaces (e.g., spheres) such that analytical solutions can be used (Vallée, 2015).

Models recovered from a surface inversion have sharp contact surfaces among different

rock units, and are thus more consistent with geological models than those smooth
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models recovered from standard cell-based minimum-structure style inversions.
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Chapter 7

Conclusions

This thesis investigates the feasibility and applicability of RBF-FD meshfree tech-

niques in forward modelling geophysical EM data over 3-D Earth models. Given

the potential advantage of meshfree point discretization in dealing with complicated

real-life Earth models, the thesis is focused on developing numerical meshfree meth-

ods that are capable of faithfully synthesizing EM responses for 3-D inhomogeneous

conductivity models.

RBF-FD method is a strong-form meshfree method, therefore there is no need to

construct any background mesh and no need to carry out numerical integration in dis-

cretizing continuous PDEs into algebraic equations. The quintic order polyharmonic

(PHS) RBFs are employed in this thesis to discretize up to second-order derivatives

in PDEs. A convergence analysis of PHS RBF-FD is presented and demonstrated

numerically in the context of synthesizing geophysical gravity data first. Since the

model discretization uses unstructured points, both global and local point refinements

are considered and it is shown that the meshfree solution converges to the true so-
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lution under both types of refinements (h refinements). The rate of convergence of

the meshfree method under h refinements is shown to be determined by the order

of enriched polynomials. The RBF-FD stencil size, which is defined as the number

of points in a meshfree subdomain, affects the accuracy and computational efficiency

of a numerical solution. Choosing the stencil size approximately as 30 proves to be

adequate for approximating second-order differential operators (e.g., Laplacian) in 3D

while at the same time maintaining the sparsity structure of the global linear system

of equations.

Using PHS RBF-FD (enriched with quadratic polynomials) and linear scalar FE

methods to synthesize gravity and gravity gradient data, it is concluded that both

numerical solutions converge to the analytical solution, but with different conver-

gence rates: the meshfree method has a quadratic convergence rate whereas the FE

method has only a linear convergence rate. The RBF-FD solution however requires

more computational efforts than the FE counterpart, provided the meshfree point

discretization and FE mesh are already available. The capability of dealing with ir-

regular model geometry with the unstructured points used by the meshfree method

is also demonstrated. The RBF-FD method is concluded as an effective numerical

method in forward modelling the smooth gravity field.

In synthesizing MT data by PHS RBF-FD method, Maxwell’s equations in terms

of electric field and magnetic field are transformed into EM potential functions,

namely, the vector magnetic potential (A) and scalar electric potential (ψ). This

allows the PHS RBF-FD, a scalar meshfree method, to be directly used for approxi-

mating globally continuous EM potentials. A hybrid meshfree discretization of equa-

tions coupled with linear scalar FE treatment for interfacial points is proposed to
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overcome the difficulty of possible EM field discontinuities. The effectiveness of the

proposed hybrid RBF-FD meshfree method is verified with three synthetic MT exam-

ples. For all examples, the meshfree solutions are validated with other independent

numerical solutions. The possible discontinuities in the electric field are found to be

faithfully modelled in the meshfree solution. It is also confirmed that the coupling

strategy is capable of dealing with high conductivity contrast in the forward mod-

elling problem. These observations establish the hybrid meshfree method as a new

option in forward modelling MT data over 3-D conductivity models with complex

geometry.

The use of the above hybrid meshfree RBF-FD in synthesizing frequency-domain

CSEM data is also investigated. In this scenario, numerical singularities at the electric

dipole source positions arise in the numerical solution. To overcome this issue in the

meshfree method, both total-field approach and primary-secondary approach have

been experimented.

In the total-field approach, the direct coupling with scalar FE discretization of

equations for source regions is proposed. The FE coupling is direct in the sense

that there is no need to modify FE or meshfree shape functions at the coupling

boundaries. For the direct coupling strategy, different degrees of the FE coupling

are explored and tested. It is found that while in all cases the hybrid meshfree

solution honestly reproduces the numerical singularities in the electric field, the overall

meshfree solution in the case of minimum FE coupling does not match well the correct

solution. The mismatch is resolved by using more FE coupling around the source

region. It is numerically demonstrated that accurate overall meshfree solutions for

CSEM data modelling with an electric dipole source (finite length or point) can be

151



obtained without using too many FE coupling discretizations. However, an optimal

amount of FE couplings in discretizing equations in the hybrid RBF-FD is not clear

yet.

The primary-secondary field approach is also implemented, using both hybrid

meshfree method and more traditional FE method. The implementation of the

primary-secondary field approach in the frame of Coulomb-gauged potential system

is first validated by using scalar FE method for the marine canonical disk model

with a grounded dipole source. The same implementation using the hybrid meshfree

method is then validated by comparing the meshfree solution to the corresponding

FE solution. It is shown that the primary-secondary meshfree solution yields satisfac-

tory numerical accuracies, confirming the capability of the hybrid meshfree method

in accurately synthesizing CSEM data. It is concluded here that in both approaches

(total-field and primary-secondary), the proposed hybrid meshfree method is shown

to be effective in obtaining accurate CSEM responses over the tested models.

The proposed meshfree methods are far from replacing the traditional mesh-based

FE and FD methods for routine 3-D EM modelling tasks. The main concern is the

slower computation in assembling the matrix of the linear system of equations in the

meshfree methods. However, in situations where 3-D quality meshing for complex

geometric features becomes very difficult or even not computationally feasible, the

meshfree methods now become a feasible, and likely the only viable, option. Fur-

ther research in the future in coupling meshfree methods with mesh-based methods

(therefore speeding up the matrix assembling) and in developing 3-D meshfree point

generation software would benefit greatly the geophysical community.
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Lelièvre, P. G., Zheglova, P., Danek, T., & Farquharson, C. G., 2012. Geophysical

inversion for contact surfaces, in SEG Technical Program Expanded Abstracts 2012 ,

pp. 1–5, Society of Exploration Geophysicists.
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Appendix A

Differentiability of 3-D PHS RBFs

In the 3-D case, the Euclidean distance from a position (x0, y0, z0) is

r =
√

(x− x0)2 + (y − y0)2 + (z − z0)2, (A.1)

which is also the expression of a linear polyharmonic (PHS) RBF with its centre at

(x0, y0, z0). To see the differentiability of the linear PHS RBFs up to second order, it

is sufficient to examine the following derivatives

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dr/dx = x−x0

r
, dr/dy = y−y0

r
, dr/dz = z−z0

r
,

d2r/dx2 = r−(x−x0)∗(dr/dx)
r2

= r−(x−x0)2/r
r2

= r2−(x−x0)2

r3
= (y−y0)2+(z−z0)2

r3
,

d2r/dy2 = (x−x0)2+(z−z0)2

r3
,

d2r/dz2 = (x−x0)2+(y−y0)2

r3
,

∇2r = d2r/dx2 + d2r/dy2 + d2r/dz2 = 2
r
.

(A.2)
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Similarly, for cubic PHS RBFs P = r3, we have

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∇P = 3r2∇r = 3r2[x−x0

r
, y−y0

r
, z−z0

r
] = 3r[x− x0, y − y0, z − z0],

dP/dx2 = d(dP/dx)/dx = 3[dr/dx ∗ (x− x0) + r] = 3[ (x−x0)2

r
+ r],

∇2P = d2P/dx2 + d2P/dy2 + d2P/dz2 = 12r.

(A.3)

For quintic PHS RBFs Q = r5, we have

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∇Q = 5r4∇r = 5r3[x− x0, y − y0, z − z0],

d2Q/dx2 = d(dQ/dx)/dx = 5[(x− x0)dP/dx+ r3] = 5[3r(x− x0)
2 + r3],

∇2Q = d2Q/dx2 + d2Q/dy2 + d2Q/dz2 = 30r3.

(A.4)

Note that 1/r has singularities at the centre (x0, y0, z0), therefore only the quintic PHS

RBFs are completely free of singularities in the derivatives up to second order. For

the cubic PHS RBFs, although their Laplacian derivatives are continuous, they have

singularities in their second-order partial derivatives and thus cannot approximate all

differential operators in the EM modelling problem.
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Appendix B

Implied divergence condition ∇ ·A = 0

In the Coulomb gauged A-ψ system, the pair of eqs (4.15) and (4.13), which is

re-written here for convenience as

−∇2A+ iωµσA+ σµ∇ψ = 0, (B.1)

∇ · (iωµσA+ σµ∇ψ) = 0, (B.2)

is numerically solved. Following the discussions of Morisue (1982) and Biro & Preis

(1989), taking the divergence of eq (B.1) and subtracting eq (B.2) from it results in

∇2(∇ ·A) = 0. (B.3)

Eq (B.3) indicates that ∇ · A satisfies Laplace’s equation in the computational do-

main, or equivalently, ∇ · A is a harmonic function. It is well known that for a

harmonic function f , if f = 0 holds at the computational boundaries, then it also

holds everywhere within the computational domain. This means that the divergence

condition ∇ ·A = 0 will be implicitly imposed everywhere within the computational

domain for a numerical solution if it is satisfied at the boundaries. The condition
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∇ ·A = 0 at the boundaries is fulfilled by using Dirichlet boundary conditions for A

and ψ with 1-D background models in which the boundary is far from inhomogeneities

of the model.
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Appendix C

Formulation for computing 1-D MT boundary values

In the case of 1-D conductivity models, the EM fields in the MT method propagate

downwards in the subsurface as a plane wave. When the 1-D model consists of only

an air layer (the air conductivity is approximated as the small value 10−8 S/m) and

a uniform subsurface, which is so-called half space model, the analytical formulations

from Weaver (1994, eqs 2.211-2.213)

f(z) = − 1

α
√
i

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 + zα

√
i (0 ⩽ z < hs)

ezα
√
i (z < 0)

, (C.1)

and

Ex = −2iωB0f(z), (C.2)

are used to compute the E field under the E-x mode which is regarded as boundary

values on the computational boundaries of 3-D models. In eqs (C.1) and (C.2), the +z

direction is upwards in the Cartesian coordinate system. The air layer (0 < z < hs)

has a thickness of hs. The air-Earth surface of the half space model is located at

z = 0. α =
√
ωµσs and σs is the conductivity of the subsurface, with i, ω and
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µ already defined in the text in Section 4.2. B0 is the initial magnetic induction

amplitude at the top of the computational domain, i.e., at z = hs in this case. B0

is set to be µI0 with the predefined current intensity I0 = 1.0 A for all numerical

examples (B0 > 0 can be set to be any positive numeric values without affecting the

MT impedance computation). It is noted that Ex only depends on z and is uniform

in the x-y plane. The computation of the electric field under E-y mode is exactly the

same as above, but with Ex being replaced by Ey.

For a n-layer (n > 2) 1-D conductivity model, the analytical formulae in Ward &

Hohmann (1988, p194 - p197) are used to compute the electric field at an arbitrary

position. The process comprises the following basic steps:

1. Compute characteristic impedance within each layer and the apparent impedance

at the top interface of the 1-D model.

2. Compute Ex (and Hy) fields at subsequent interfaces of the 1-D model using

the recursive relations therein, for a chosen initial Ex value at the top interface

(At this interface, if Ex (or Hy) is given, then Hy (or Ex) can be determined

using the apparent impedance).

3. Calculate Ex field at an arbitrary position between two consecutive interfaces us-

ing the field decomposition formula for a Helmholtz solution (Ward & Hohmann,

1988, p195, eq 3.101).
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Appendix D

Additional plots for MT COMMEMI 3D-1A model
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Figure D.1. Computed impedance components Zxy and Zyx at the
frequency of 0.1 Hz for line 1 (panel a, b) and line 2 (panel c, d)
using the hybrid meshfree method for the 1st discretization (total
number of points equal to 7,414) in Table 4.2. Also shown are a
finite volume solution and other mesh-based solutions (see Fig 4.5).

179



1

10

100

A
p

p
 R

e
s
 (

Ω
m

)

(a) Zxy −line1

−140

−130

−120

−110

−100

P
h

a
s
e

 (
d

e
g

)

−4 −2 0 2 4

X (km)

1

10

100

(b) Zyx −line1

40

60

80

100

−4 −2 0 2 4

X (km)

1

10

100

A
p

p
 R

e
s
 (

Ω
m

)

(c) Zxy −line2

−140

−130

−120

−110

−100

P
h

a
s
e

 (
d

e
g

)

−4 −2 0 2 4

Y (km)

1

10

100

(d) Zyx −line2

40

60

80

100

−4 −2 0 2 4

Y (km)

freq = 0.1Hz

meshfree Finite volume solution (H. Jahandari, PhD thesis) Error bar (Zhdanov et al,1997)

Figure D.2. The same plots as in Fig D.1 but using the 4th dis-
cretization (total number of points equal to 58,044) in Table 4.2.
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Appendix E

Primary-secondary field approach for CSEM modelling

The A-ψ equations for the total potentials, with σ = σp + σs (σs = σ − σp is the

conductivity difference between the total conductivity model σ and the primary, or

background, conductivity model σp), are

−∇2A+ iωµ(σp + σs)A+ (σp + σs)µ∇ψ = µJs +∇×Ms, (E.1)

∇ · [iωµ(σp + σs)A+ (σp + σs)µ∇ψ] = ∇ · (µJs). (E.2)

Similarly, the A-ψ equations for the primary potentials (Ap, ψp) are

−∇2Ap + iωµσpAp + σpµ∇ψp = µJs +∇×Ms, (E.3)

∇ · (iωµσpAp + σpµ∇ψp) = ∇ · (µJs), (E.4)

since both the primary EM fields over the background conductivity model and the

total EM fields over the total conductivity model are induced by the same source. By

using the relations A = Ap + As and ψ = ψp + ψs and subtracting eqs (E.3)-(E.4)
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from corresponding eqs (E.1)-(E.2), one obtains

−∇2As + iωµ(σsAp + σAs) + µ(σs∇ψp + σ∇ψs) = 0, (E.5)

∇ · [iωµ(σsAp + σAs)] +∇ · [µ(σs∇ψp + σ∇ψs)] = 0. (E.6)

In eqs (E.5) and (E.6), since σ, σs, Ap and ψp are known before solving for a numerical

solution for the secondary potentials (As, ψs), they are re-arranged as

−∇2As + iωµσAs + µσ∇ψs = −iωµσsAp − µσs∇ψp, (E.7)

∇ · (iωµσAs) +∇ · (µσ∇ψs) = −∇ · (iωµσsAp)−∇ · (µσs∇ψp). (E.8)

It is seen here that only the secondary potentials need to be numerically solved. Also,

it is noted that the primary electric field, Ep, satisfies

Ep = −iωAp −∇ψp, (E.9)

eqs (E.7) and (E.8) can be further re-arranged in terms of Ep as

−∇2As + iωµσAs + µσ∇ψs = µσsEp, (E.10)

∇ · (iωµσAs) +∇ · (µσ∇ψs) = ∇ · (µσsEp). (E.11)

By using eqs (E.10) and (E.11), computation of the Coulomb-gauged primary vector

potential is avoided and calculation of the primary fields is thus simplified. Once the

secondary electric field (Es) and magnetic field (Hs) are numerically computed from
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As and ψs, the total electric field and magnetic field are obtained as

E = Ep + Es, (E.12)

H = Hp +Hs. (E.13)

The system of eqs (E.10) and (E.11) can be solved in a number of numerical ways.

Here, scalar FE using unstructured tetrahedral meshes and scalar hybrid meshfree

(RBF-FD) methods are employed.

FE discretization

For the FE method, the standard Galerkin method and linear basis functions are

used. The mesh comprises tetrahedral elements. The discretization of the left-hand

side of eqs (E.10) and (E.11) is the same as that in total-field FE method. The

integration of the right-hand side in eq (E.10) with a test function, v, is

∫
Ωtest

v(µσsEp,k) dV = µ
n∑

j=1

∫
ej

vjσs,jẼj dV, k = x, y, z. (E.14)

In eq (E.14), n is the number of elements whose union is the support of the test

function v, vj is the part of v over the element ej, and similarly, σs,j and Ẽj are

the residual conductivity and primary electric field component (Ep,k, k = x, y, z),

respectively, over the element ej. In each element, σs,j is a constant, but Ẽj is a

continuous scalar function. Here, Ẽj is approximated within each element as a linear

function by taking advantage of the point-based field values at the four vertices of
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the element. Eq (E.14) then becomes

∫
Ωtest

v(µσsEp,k) dV = µ

n∑
j=1

σs,j

∫
ej

vj

4∑
m=1

Nj,mẼj,m dV, (E.15)

where Nj,m = Nj,m(x, y, z) are the FE shape functions over the jth element, Ẽj,m are

the nodal electric field component values on the vertices. Depending on the nodal

connectivity, vj is one of Nj,m in each FE element. Denoting

∫
ej

vj

4∑
m=1

Nj,mẼj,m dV =
4∑

m=1

Ẽj,m

∫
ej

vjNj,m dV =Mj, (E.16)

eq (E.15) is re-written as

∫
Ωtest

v(µσsEp,k) dV = µ
n∑

j=1

σs,jMj. (E.17)

Similarly, the integration of the right-hand side in eq (E.11) with a scalar test

function is

∫
Ωtest

v∇ · (µσsEp) dV =

∫
Ωtest

∇ · (vµσsEp) dV −
∫
Ωtest

µσsEp · ∇v dV

=

∫
∂Ωtest

vµσsEp · ns dS −
∫
Ωtest

µσsEp · ∇v dV (E.18)

In the first term of the right-hand side in eq (E.18), ns is the outward normal unit

vector for the closed surface ∂Ωtest. In the linear scalar FE method with tetrahedral

elements, each test function (associated with nodes) is exactly zero by construction
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at the boundary of Ωtest, therefore the first term vanishes and eq (E.18) becomes

∫
Ωtest

v∇ · (µσsEp) dV = −
∫
Ωtest

µσsEp · ∇v dV

= −
∫
Ωtest

µσs(
∂v

∂x
Ep,x +

∂v

∂y
Ep,y +

∂v

∂z
Ep,z) dV. (E.19)

The calculation of the above integration is then similar to the process described for

eq (E.10):

1. The integration over Ωtest is first broken into parts of integrations over connected

elements for a particular test function vj;

2. Over each element, each component of primary electric field Ep,k (k = x, y, z)

is represented using FE shape functions, and vj is one of the 4 shape functions;

3. Carry out the elemental integrations analytically. The conductivity σs is con-

sidered as a constant over each element.

Hybrid meshfree discretization

For the hybrid RBF-FD method, the combination of strong-form and weak-form

discretizations of eqs (E.10) and (E.11) follows the MT treatment, in which Galerkin

FE discretization of equations is only used for interfacial points. In deriving algebraic

equations in the case of RBF-FD, primary E fields at the degrees of freedom (i.e. the

interior points) are directly used for the right-hand sides of eqs (E.10) and (E.11).
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Appendix F

Integration of source term functions in unstructured meshes

In scalar FE methods, an unknown function is typically approximated within an

element (the cell unit in a mesh) by a complete set of polynomials of some degree:

f(x, y, z) ≈ f̂ =
n∑

j=1

ϕj(x, y, z)cj, (F.1)

where the polynomials ϕj are called basis functions, cj are interpolation coefficients

to be determined. An example set of complete linear polynomials (i.e., degree p =1)

is [1, x, y, z] in the 3-D case. Once a specific type of element is chosen (e.g., triangles

in 2D), the coefficients in eq (F.1) can be determined by using Lagrange interpolation

conditions, and eq (F.1) can then be re-arranged as (Jin, 2014)

f(x, y, z) ≈ f̂ =
n∑

j=1

ϕj(x, y, z)cj =
n∑

j=1

Nj(x, y, z)fj, (F.2)

where Nj are called shape functions, fj are function values at the vertices of the

element.

In the case of using triangular or tetrahedral elements, the volume integrations

involving the source terms can be carried out analytically. To simplify the calculation,
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a wire source (e.g., grounded wires or magnetic loop wires) carrying the electric

current density Js is set to be aligned with the edges of the mesh, as shown in

Fig F.1. In Galerkin FE methods, the test functions, which are associated with the

nodes in the mesh, and the shape functions are constructed from the same function

space. Moreover, the test function for a node j, vj, is the combination of all shape

functions Nj at the node over the elements that share the node; thus, the support of

the test function is the union of the shared elements of the node j, see Fig F.2. This

suggests that the volume integrations involving the source current density are zero

for those nodes that are not residing on the source segments:

∫
Ωtest

v(µJs) dV = 0;

∫
Ωtest

v∇ · (µJs) dV = 0. (F.3)

The support of the test function is denoted as Ωtest in the above. For those nodes

that are residing on the source segments (e.g., node A in Fig F.2), the source term

integrations are non-zero. For the integration of current density with a source segment

from r1 to r2 (assuming the current flows from r1 to r2), it becomes

∫
Ωtest

v(µJs) dV = µ

∫
Ωtest

vJs dV

= µ

∫
Ωtest

vI0 [H(r1)−H(r2)] δ(r, r1, r2)ûs dV

= µ

∫
Ωtest

v′I0 [H(x′1)−H(x′2)] δ(y
′ − y′0)δ(z

′ − z′0)û
′

s dV
′, (F.4)

where δ(r, r1, r2) denotes the 2-D Dirac delta function in the plane that is perpen-

dicular to the orientation of the source segment ûs = r2 − r1. The last identity in

eq (F.4) is derived by rotating the coordinate system (indicated without the prime
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Figure F.1. An illustrative diagram of the CSEM source segments
(shown as bold green line) aligned along the edges of unstructured
triangular (tetrahedral for 3D) meshes.

symbol) such that in the new coordinate system (x′, y′, z′) the x′ axis is aligned with

the source segment orientation. ûs and û
′
s are the unit vectors along the source seg-

ment in the original and the new coordinate systems, respectively. Since v′ changes

exactly the same way as v does in Ωtest and H(x′1)−H(x′2) is only nonzero along the

segment, eq (F.4) is reduced to a 1-D line integral:

∫
Ωtest

v(µJs) dV = µI0

∫ x′
2

x′
1

v′ [H(x′1)−H(x′2)] û
′

s dx
′, (F.5)

with v′ = v′(x′) reduced to be the 1-D test function. The integration result of

the above can be readily obtained when using polynomial-based test functions. For

example, if the linear basis functions are used, then the 1-D test function becomes

v′(x′) =
x′2 − x′

x′2 − x′1
, (F.6)
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Figure F.2. An illustrative diagram of the support of the test func-
tion (v1) for a node in Galerkin FE methods. v1 is only nonzero
within the five triangles connected to node A, or equivalently, the
support of v1 is the union of the five triangles shown above. v1 = 1
at the node A and is zero at all opposite edges of the elements for
the node A. Within each element, v1 linearly changes (assuming lin-
ear basis functions are used) from one at the node A to zero at the
opposite edge. Therefore, v1 also changes the same way from node
A to node B (or C) at the source segment (shown as bold green).

which satisfies v′(x′1) = 1 and v′(x′2) = 0. As a result, eq (F.5) is integrated as

∫
Ωtest

v(µJs) dV = µI0
x′2 − x′1

2
û

′

s = µI0
L12

2
û

′

s = µI0
L12

2
ûs, (F.7)

where L12 is the segment length of the wire source.

The result in eq (F.7) is valid for any arbitrarily oriented source segments for

those nodes residing on the source wire, as shown in Fig F.2. For the integration of

the divergence of Js, it is calculated as

∫
Ωtest

v∇ · (µJs) dV = µI0

∫
Ωtest

v(r)[δ(r− rm)− δ(r− rn)] dV = ±µI0, (F.8)

at the two ends (rm, rn) of the electric wire source. The positive value is valid if the

node is the segment end to which the electric current streams converge (rm), and the

negative value is valid at the end from which the current streams diverge (rn). The
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above divergence integration is zero everywhere else.
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