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ABSTRACT

In this study we analysed the impact of water regime and soil nutrients on the clonal
diversity and genetic variation of the sedge Carex nigra in a central alpine fen. For
our analysis, we established 16 study plots randomly distributed over the fen. We
determined the exact elevation of each plot as an indicator for the water regime and
measured the content of phosphorous and potassium in the soil of each plot. Clonal
diversity and genetic variation of C. nigra were assessed with nuclear microsatellites
using leaf material collected in 20 subplots along a diagonal cross within each study
plot. The influence of water regime and soil mineral nutrients on clonal diversity and
genetic variation was estimated by Bayesian multiple regression. Our study revealed
a clear impact of soil nutrient conditions on clonal diversity and genetic variation of
C. nigra, which increased with the concentration of phosphorous and decreased with the
concentration of potassium. Key background to these findings seems to be the relative
offspring success from generative as compared to clonal propagation. Phosphorous
acquisition is essential during seedling establishment. Clonal diversity and genetic
variation increase, therefore, at sites with higher phosphorous contents due to more
successful recruitment. High levels of clonal diversity and genetic variation at sites of low
potassium availability may in contrast be mainly caused by increased plant susceptibility
to abiotic stress under conditions of potassium deficiency, which brings about more
gaps in C. nigra stands and favors the ingrowth from other clones or recruitment from
seeds.

Subjects Biodiversity, Ecology, Genetics, Genomics, Plant Science
Keywords Microsatellites, Carex nigra, Clonality, High alpine fen, Soil nutrients

INTRODUCTION

Clonal growth is one of the most remarkable characteristics of plants and is widely
distributed among alpine (Bliss, 1971; Weppler ¢ Sticklin, 2005) and wetland species
(Sosnovd, Van Diggelen & Klimesova, 2010; Sosnovd et al., 2011; Van Groenendael et al.,
1996). Plants benefit from clonal reproduction for various reasons: First, clonal growth
may compensate potential deficits in sexual reproduction caused by the limited success
of pollination, seed dispersal and seedling recruitment. Thereby, individual persistence
increases and the mortality risk of specific genotypes is reduced thus decreasing the loss of
genetic variation (Van Groenendael et al., 1996). Second and maybe even more important,
clonal growth allows the exploitation of heterogeneously distributed, limiting resources
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(Hutchings & De Kroon, 1994). Environmental heterogeneity is a key feature of natural
ecosystems and affects plants at different spatial and temporal scales (Jackson ¢ Caldwell,
1993; Price & Marshall, 1999). Clonal plants often form long-lived systems consisting of
interconnected ramets, which allow them to use heterogeneously distributed resources
such as nutrients, light or water (Liu, Liu ¢» Dong, 20165 Price ¢ Marshall, 1999). Previous
studies revealed that clonal plants may respond in very different ways to environmental
heterogeneity such as physiological integration (Liu, Liu ¢ Dong, 2016), division of labour
(Liu, Liu & Dong, 2016), shifting the balance of clonal and sexual reproduction (Jacquemyn
et al., 2005) or plastic changes in morphology (Hutchings ¢» De Kroon, 1994).

In fens, environmental heterogeneity is mainly caused by water regime and nutrient
conditions (Ellenberg, 1988). Depending on substrate topography the water regime
strongly varies among different parts of a fen (Johnson, 1995; Listl & Reisch, 2012). Areas
at lower elevation are wetter than areas at higher elevation and the water regime changes,
consequently, along elevational gradients in fens, which can have a strong impact for
example on plant reproduction (Warwick ¢ Brock, 2003) or community diversity (Raulings
etal., 2010).

Moreover, soil mineral nutrients are heterogeneously distributed in fens. Generally,
acidic fens on siliceous bedrock are mesotrophic to oligotrophic ecosystems (Peterka et al.,
2017) containing low levels of nitrogen, potassium and especially phosphorous (Bedford ¢
Godwin, 2003). However, alpine fens are always surrounded by mountains and the influx
of minerals via ground-water, source creeks from the slopes around the fens (Chimner,
Lemly & Cooper, 2010; Cooper, 1990; Cooper & Andrus, 1994; Johnson ¢ Steingraeber, 2003)
and by terrestrial dust from surrounding calcareous mountains (Bragazza, Gerdol & Rydin,
2003) creates a mosaic of different mineral nutrient conditions across the habitat. Nutrients
in fens are, therefore, often patchily distributed (Poor et al., 2005).

It has been demonstrated in previous studies that clonal plants may react plastically
on heterogeneous nutrient conditions. The modification of their growth pattern allows
clonal plants to identify habitat patches containing high concentrations of nutrients
and to concentrate most of their biomass in these patches (Hutchings ¢ De Kroon, 1994;
Slade & Hutchings, 1987). In nutrient-rich environments the branching intensity of clonal
plants increases and internode length decreases while under nutrient-poor conditions
linear growth is more prevalent, with longer internodes and a less frequent branching
(d’Hertefeldt, Falkgren-Grerup & Jonsdottir, 2011; Dong, During & Werger, 1996; Poor et al.,
2005). This approach enables clonal plants to ‘get out’ of nutrient-poor conditions (Poor et
al., 2005) and to place their ramets in more favourable microhabitats (Pigueras, Klimes ¢
Redbo-Torstensson, 1999). Clonal plants may therefore switch from phalanx strategy under
nutrient-rich to guerrilla strategy under nutrient-poor conditions (Sticklin, 1992).

Clonal diversity and genetic variation within plant populations depends on the balance
of clonal and sexual reproduction (Watkinson ¢ Powell, 1993). Besides the magnitude of
clonal growth, in particular seedling recruitment has a large impact on clonal diversity and
genetic variation within populations (Jacquemyn et al., 2005). Even low levels of seedling
recruitment increase the level of genetic variation, whereas genetic variation can only
decline when any addition of new genotypes via seedling recruitment is failing (Watkinson

Reisch et al. (2020), PeerJ, DOI 10.7717/peerj.8887 2117


https://peerj.com
http://dx.doi.org/10.7717/peerj.8887

Peer

¢ Powell, 1993). The establishment of new individuals originating from sexual reproduction
depends, however, on environmental conditions (Jacquemyn et al., 2005). The availability
of light, water and nutrients has a strong impact on the survival of seedlings (Harper,
1977). Consequently, seedling recruitment in fens may differ between nutrient-rich and
nutrient-poor habitat patches or between patches subjected to different water regimes.
Moreover, the clonal growth form in itself may have an impact on seedling recruitment
since the vegetation gaps, necessary for seed germination and seedling establishment are
often not available in dense stands of rhizomatous-growing clonal species (Araki ¢ Kunii,
2008; Deng et al., 2015).

In the study presented here, we analysed the impact of water regime and mineral nutrient
conditions on the clonal diversity and genetic variation of the widespread alpine sedge
Carex nigra in a highly heterogeneous alpine fen. The study species is a very plastic, clonal
species with creeping rhizomes producing a large number of ramets and internodes of
variable length (Jiménez-Mejias et al., 2012). At the same time, the species is well capable
to reproduce sexually. Given this high potential flexibility both in reproductive system and
in clonal spread we supposed that clonal and genetic diversity of C. nigra could be highly
responsive to environmental heterogeneity in alpine fens. Specifically we hypothesize
that C. nigra shows more successful seedling recruitment at higher altitudes and under
nutrient-rich conditions. This would likely be accompanied by differences in the type of
clonal spread. Clonal diversity and genetic variation of C. nigra should, therefore, increase
with altitude and nutrient level.

MATERIAL & METHODS

Species description and study design
Carex nigra (L.) Reichard is a wind-pollinated and perennial sedge native to European
and Siberian wetlands (Tutin et al., 1964). C. nigra grows in fens and wet meadows (Adler,
Oswald & Fischer, 1994; Tutin et al., 1964) and reaches a maximum height of about 20 cm.
The species is reported to be more or less self-incompatible (Faulkner, 1973). Seeds are
mainly dispersed via autochory, but partly also by wind, water and birds (Bonn & Poschlod,
1998). C. nigra is morphologically (Roalson, 2008) and genetically (Jiménez-Mejias et al.,
2012) highly variable and the intraspecific classification is, therefore, problematic (Kosnar,
Stech & Koutecky, 2012). The species spreads clonally with rhizomes but the degree of
clonality ranges from plants with creeping rhizomes to plants forming dense tussocks,
which have also been considered as distinct subspecies or even species (Jimnénez-Mejias et
al., 2012).

In the study presented here, we analysed the clonal diversity and genetic variation of
C. nigra in an alpine fen (Hohes Moos, Fig. 1), located in the central Alps (in the Valley of
Stubai near Greitspitze, 47°03’18”N and 11°11'48”E, about 2,400 m above sea level). The
fen is dominated by C. nigra, Carex canescens L. and Eriophorum angustifolium Honck (List!
& Reisch, 2012). For our study we established 16 study plots of 1 m? randomly distributed
over the whole fen (Fig. 1). Using a surveyor’s optical level we determined the exact
elevation of each plot above the sea level as an indicator for the water regime (Table 1) and
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Figure 1 Geographic position of the 16 study plots in the high-alpine fen “Hohes Moos” in the Valley
of Stubai near Greitspitze (Austria). The elevational position of the study plots is given in Table 1.
Full-size &l DOI: 10.7717/peer;j.8887/fig-1

estimated shoot density by counting the total number of shoots (Ss) as well as the number
of flowering shoots (S¢) per plot. Phosphorous and potassium are vitally important limiting
nutrients in poor fens (Bedford, Walbridge ¢ Aldous, 1999; Rozbrojovd ¢ Hdjek, 2008) and
ecosystems of low productivity, such as alpine fens, have become phosphorous instead of
nitrogen limited in the last decades due to nitrogen enrichment (Wassen et al., 2005). We

decided, therefore, to measure the content of phosphorous (P) and potassium (K) in the

soil of each plot as described previously (Karlik ¢» Poschlod, 2009). For molecular analyses,
we collected fresh leaf material ofC. nigra in 20 subplots with a size of 10 x 10 cm along a
diagonal cross (Fig. S1) within each plot. Plant material was placed into plastic bags, which
were kept in a cool box and later stored at —80 °C in a lab freezer.

Microsatellite analysis
Clonal diversity and genetic variation were analysed using microsatellites. From the frozen
leaf material DNA was extracted for molecular analyses following the CTAB protocol from
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Table 1 Study plots with their number (Pl.) and elevation (El.) in m above sea level, content of P and
K in mg per kg soil, total number of Carex nigra shoots (S,), number of flowering shoots (S¢) and the
clonal diversity and genetic variation of the species in the plots measured as number of clones (G),
clonal diversity (R), number of alleles (N,), effective number of alleles (N.), observed heterozygosity
(H,), expected heterozygosity (H.) and Fixation index (F).

Pl. EL P K Ss(m) Sm G R N. N. H, H. F

01 2299.6 114 756.8 565 35 2 0.05  2.20 120 0.05 0.14 0.69
02 22999 16.6  769.1 815 39 1 0.00 1.80 1.29  0.00 0.13 1.00
03 22994 5.8 690.6 730 31 3 0.11  2.20 1.50 0.18 0.29 0.55
04  2299.8 15.3 1007.2 850 55 3 0.11 1.80 145 0.11 026 0.54
05 2299.7 16.3  646.6 510 16 8 0.37  3.00 1.86 024 037 048
06  2300.1 41.5 1357.1 610 3 0.11  2.40 1.59 0.18 034 0.59
07  2300.1 13.5 8234 585 3 0.11  2.80 .72 001 034 098
08  2299.6 293 24413 505 30 1 0.00 1.40 .07 0.00 0.05 1.00
09  2300.1 88.8 1637.4 345 1 6 0.26  2.60 1.88 0.27 038 043
10 2299.6 37.0 9584 430 90 2 0.05  2.20 .51  0.01 029 097
11 2300.1 49.0 1431.7 320 9 2 0.05  2.20 1.48 020 028 0.36
12 2300.1 24.6  751.0 535 30 4 0.16 240 212 023 044 0.53
13 2300.0  30.8 1000.1 395 41 3 0.11  2.20 148 005 026 0.83
14 22994 11.3  940.2 230 4 3 0.11  2.00 1.27 006 0.18 0.56
15 2299.6 10.4  826.1 225 3 0.11  2.00 1.54 0.17 023 025
16 2299.4 19.7  908.0 260 34 1 0.00 1.40 .33 0.00 0.18 1.00
(4] 2299.8 263 1059.1 494 27 3 0.11 216 1.52 0.11 0.26 0.67

Rogers & Bendich (1994) in an adaptation by Reisch (2007). The obtained DNA was diluted
with water to a concentration of 7.8 ng/ ul and then used for microsatellite analysis.

In total we investigated 320 samples using six microsatellite loci (Table S2), which have
been established in a previous study on C. scoparia (Hipp et al., 2009) and also worked with
C. nigra. PCR was carried out in a volume of 10 pl containing 6.15 ul H,0O, 0.1 pl forward
Primer (1 pMol/pl), 0.15 pl reverse Primer (10 pMol/ul), 1.0 pul Buffer S (15 mM MgCl,
10x), 0.4 pl ANTPs (5 mM) 0.05 pl Tag-Polymerase (PeqLab; 5 U/ul) and 2 pl template
DNA (7.8 ng/ pnl). Thermal cycling conditions were 94 °C for 5 min; 34 cycles of 94 °C for
60 s, 50 °C for 60 s, and 72 °C for 60 s; and a final extension of 72 °C for 8 min. Amplified
PCR fragments were analysed by capillary gel electrophoresis on an automated sequencer
(GeXP, Beckmann Coulter).

Statistical analysis

The length of each amplified microsatellite fragment was determined using the software
Genome Lab (Beckmann Coulter). Based upon the length of the fragments the number
of different multilocus genotypes was assessed. Samples with the same genotype were
considered as originating from the same clone and the distribution of the multilocus
genotypes within the plots was mapped (Fig. S2). We determined the number of clones (G)
per plot and calculated the clonal diversity (R) in each plot as R = (G-1) / (N-1), where
N is the number of individuals sampled (Arnaud-Haond ¢ Belkhir, 2007; Dorken ¢ Eckert,
2001; Ellstr ¢~ Roose, 1987). Furthermore we calculated the number of alleles (N,), effective
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number of alleles (N.), observed and unbiased expected heterozygosity (H,, He), and the
fixation index (F) per plot in GenAlEx 6.5 (Peakall ¢ Simouse, 2006).

Since the sampling plots were distributed irregularly throughout the fen, spatial
predictors using Moran’s Eigenvector Maps (MEMs) were generated to account for spatial
trends in our dataset. To this end, we chose a spatial weighting matrix by maximising the
adjusted R? of the resulting spatial model using Euclidean distances between plots using
the R packages ade4 V. 1.7.13, adespatial V. 0.3.7, maptools V. 0.9.2 and spdep V. 0.7.7
(Bivand & Lewin-Koh, 2017; Bivand ¢ Piras, 2015; Dray et al., 2018; Dray & Dufour, 2007).
Based on the chosen model we then generated spatial predictors and used the significant
ones to remove spatial autocorrelation from the dependent variables. For de-trending, we
used linear models of each variable of interest with the spatial predictors and extracted the
residuals from each. The influence of altitude and soil nutrients (P, K) on the (spatially
de-trended) shoot density (Ss, S¢), clonal diversity (G, R) and genetic variation (N,, N,
H,, He, F) was estimated by Bayesian multiple regression using the rjags R package V. 4.6
(Plummer, 2016) as well as utility functions provided by Kruschke (2015). JAGS models
were run in four parallel Markov chain Monte Carlo (MCMC) simulations with 500
adaption and 1,000 burn-in steps. For inference, 20,000 steps were saved, while the amount
of necessary total steps for the different dependent variables was adjusted by thinning
to achieve a minimum effective sample size of 10,000 for all relevant model parameters.
All models were checked for chain convergence using Gelman, trace and autocorrelation
plots. The data were standardised and modelled as being t-distributed with normality and
precision parameters estimated from vague exponential and uniform priors, respectively.
The t-distribution was used in order to reduce the impact of possible outliers on the
regression results. The regression parameters for the independent variables were estimated
from weakly informed normal-distributed priors with a precision parameter set to 4 . This
was intended to keep the regression parameters close to zero unless enough evidence to
obtain a credibly non-zero estimate was available. Credibility of regression parameters
was checked using 90% highest density intervals (HDIs) of the MCMC chains produced
by JAGS. A model parameter was considered credibly non-zero when both the lower and
upper limit of the HDI were below or above zero. Furthermore, we considered parameters
to exhibit a trend when more than 90% of the posterior distribution was found either
below or above zero.

RESULTS

The elevation of the study plots ranged from 2299.4 to 2300.1 m above sea level indicating
a maximum topographical difference of 70 cm among the plots across the whole fen
(Table 1). The concentration of soil nutrients differed strongly between the study plots.
Phosphorous concentration (P) ranged from 10.4 mg/kg to 88.8 mg/kg, whereas potassium
concentration (K) varied between 646.6 mg/kg and 2441.3 mg/kg.

The total number of shoots per plot (Ss) ranged 225 to 850, and the number of flowering
shoots (Sf) from 1 to 90. In the microsatellite analysis, 15 alleles at six loci were revealed.
Four alleles per locus were amplified at the loci S08, $S245 and S175. In contrast, only one
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allele was found at the loci $180, S102 and S119. Locus S180 produced null alleles at 11
samples and was, therefore, deleted from the analysis. The 320 analysed samples resulted in
14 different multilocus genotypes (A-N). The number of clones (G) per plot ranged from
1 to 8 (Table 1) and clonal diversity (R) from 0.00 and 0.37. The number of alleles (N,)
per plot was minimum 1.40 and maximum 3.00, whereas the effective number of alleles
(N.) per plot ranged from 1.07 to 2.12. Observed (H,) heterozygosity varied between 0.00
and 0.27 whereas expected (H.) heterozygosity ranged from 0.05 to 0.44. The inbreeding
coefficient (F) was minimum 0.25 and maximum 1.00.

The Bayesian regression models revealed no credible influence of elevation and nutrient
content on shoot density. We also found no significant impact of elevation on clonal
diversity and genetic variation. However, the phosphorus (P) as well as the potassium (K)
content of the soil showed a credible impact or a trend for an impact on the number of
clones (G) per plot, the number of alleles (Na), the effective number of alleles (Ne) and the
expected heterozygosity (He) (Table 2 and Table S1). In all cases the correlation of P with
the given index was positive while that of K with the indices was mostly negative (Fig. 2).

DISCUSSION

The level of genetic variation we detected for C. nigra in our study (mean Hg = 0.26
and mean Hpo = 0.11) was notably lower than reported previously for other widespread,
long-lived and outcrossing plant species (mean Hg = 0.56—0.65 and mean Hp = 0.57-0.63)
(Nybom, 2004), which can clearly be attributed to the effects of clonality and our small
scale sampling design with 1 m? plots. Other studies on clonal Carex species revealed a
wide range of clonal diversity when the whole habitat was sampled. For C. scabrifolia this
range was e.g., 0.07-0.71 (Hodoki, Ohbayashi ¢ Kunii, 2014) and for C. rugulosa 0.00-0.99
(Ohbayashi, Hodoki ¢~ Kunii, 2012). However, when sampling grids were applied like we
did, comparable levels of clonal diversity were detected. In C. kobomugi, for example, clonal
diversity in 2 m? and 4 m? plots was 0.15 and 0.23 (Ohsako, 2010), which is only marginally
higher than the clonal diversity we found here (0.11).

In our study clonal diversity as well as the number of clones and the number of alleles
present at a site were clearly related to phosphorus and potassium contents (Table 2). We can
assume that relative offspring success from generative as compared to clonal propagation is
key background to these findings (Eriksson, 1993). Successful recruitment from seed would
result in individuals with recombined genotypes, while clonal offspring involves no genetic
recombination. Recruitment from seed would therefore increase the number of clones,
the clonal diversity, and the number of alleles encountered. Interestingly, the mentioned
variables of genetic and clonal diversity are positively correlated with phosphorus contents,
and negatively correlated with potassium contents (Table 2 and Table S1). Here, we discuss
mechanistic and ecophysiological explanations. While phosphorus and potassium are both
essential macronutrients, they are involved in different ecophysiological processes, and
their respective shortage leads to distinct deficiency symptoms (Table 3).

Regarding phosphorus, we found that higher contents of phosphorus correlate positively
with clonal diversity (Fig. 2) as well as with the number of alleles. Especially during
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Table 2 Credible results of the Bayesian multiple regressions on clonal diversity and genetic variation
within the study plots. The most probable values (MPV) are given together with the effective sample size
(ESS) of all parameters. A 90% highest density interval (HDI) was computed for each model parameter
(HDI,, and HDIy: lower and upper limits of the interval). PDist is the percentage of the posterior distribu-
tion that is larger than zero. A credible impact of soil nutrients on clonal diversity and genetic variation is

indicated by superscript a and a trend for the impact is indicated by superscript b.

Model Parameter MPV ESS HDI, HDIy PDist

G Intercept —0.05 18695 —0.45 0.35 41.95
elevation —0.09 16379 —0.61 0.38 37.08
P 0.65 14053 —0.02 1.27 93.59°
K —0.58 15464 —-1.12 —0.10 3.33%
scale 0.82 13583 0.48 1.29 -
normality 5.84 10650 1.00 65.06 -

Na Intercept 0.02 19346 —0.39 0.40 49.27
elevation 0.08 16593 —0.45 0.53 59.20
P 0.47 14482 —0.14 1.03 90.46°
K —0.74 16433 —1.25 —0.24 1.447
scale 0.82 15251 0.57 1.27 -
normality 9.65 14804 1.15 72.61 -

Ne Intercept —0.01 20000 —0.35 0.32 49.15
elevation 0.17 16502 —0.23 0.60 76.65
P 0.58 14833 0.11 1.10 97.34%
K —0.82 16701 —-1.20 —0.35 0.42*
scale 0.70 15852 0.48 1.06 -
normality 10.81 15217 1.15 73.33 -

He Intercept 0.03 20709 —0.30 0.34 57.27
elevation 0.15 16758 —0.23 0.54 74.03
P 0.68 14408 0.20 1.14 98.59%
K —0.87 16713 —1.23 —0.42 0.29*
scale 0.64 14676 0.42 1.03 -
normality 7.26 12429 1.00 68.16 -

seedling establishment, which is vital for a site’s clonal and genetic diversity, phosphorus

acquisition is essential (Lynch ¢ Brown, 2001; Marschner, 2011). Sites of low P contents

would thus be poor in recruitment from seed. This scenario is all the more likely, because

the seedlings surely lack mycorrhizal support. Carex nigra is principally able to form

arbuscular mycorrhizal symbiosis (Cooke ¢ Lefor, 1998), which would enable the plant

to better access P. However, especially in systems like alpine fens, mycorrhizal fungi are

very scarcely available (Rickerl, Sancho & Ananth, 1994). Instead of seedling establishment,

single to seldom events of establishment via clonal integration would be prevalent at

sites of low P availability. Here, clonal integration would be the decisive advantage, since

P translocation from connected clonal modules are a P source that is else unavailable
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Figure 2 Relationship between (detrended) clonal diversity and phosphorous/potassium in the soil
displayed as two-dimensional scatter plots based upon the results of the hierarchical Bayesian multiple
regression. Dashed lines represent twenty randomly chosen steps.

Full-size Gl DOI: 10.7717/peer;j.8887/fig-2

Table 3 Different ecophysiological implications related to the plant mineral nutrients phosphorus and potassium.

phosphorus potassium references
mobility in soil very low usually low, but high in organic soils Moilanen, Saarinen & Silfverberg
(2010).
importance of mycorrhiza high uptake can be improved by mycor- Garcia & Zimmermann, 2014

during uptake

translocation potential from
senescing shoots

typical deficiency symptoms

rhiza. The ecological importance of
this is yet unclear, but likely minor to
the case of phosphorus.

high (90%) relatively high (70%), but prior losses Morton (1977) and Chapin II1
due to leaching can be very substan- (1980)
tial.
stunted growth, reduced leave increased susceptibility to abiotic Wang et al. (2013) and references
expansion, impeded flowering / stress like cold stress, hypoxya, therein; Marschner (2011);
fruiting. anoxya. Effects on cell size, but little Chapin III (1980).

effects on plant size.

(Headley, Callaghan ¢ Lee, 1988; Slade ¢~ Hutchings, 1987). Especially in P the potential for
translocation within the plant is high (Chapin 111, 1980; Morton, 1977) as described in Table
3. Prevalence of establishment via clonal integration would promote monodominance of a
single or of few clones. This is also a situation of space pre-emption (Lovett Doust, 1981; Saiz
et al., 2016), where recruitment from seed is inhibited. At sites of more benign P contents,
occasional recruitment from seed would be possible, promoting the observed higher clonal
and genetic diversity. In addition to the above, a typical symptom of P-deficiency is the
inhibition of flowering and fruiting (Chapin III, 1980), which suggests some paucity of C.
nigra seed rain at P-deficient sites and likely augments the processes outlined above.
Regarding potassium, a number of non-exclusive explanations are plausible for the

antithetic effects to phosphorus. The first is connected to mobility of potassium in the soil.
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While it is scantily mobile in most soils, potassium is highly mobile in organic soils such
as in the fen in question (Moilanen, Saarinen ¢ Silfverberg, 2010). Even where potassium
contents is low, seedling establishment would therefore not be as unpromising as in the
case of the highly immobile P. Occasional seedling establishment at such sites would have
positive effects on local clonal and genetic diversity (Watkinson ¢ Powell, 1993).

The second explanation lies in K+-deficiency symptoms and the possible formation of
vegetation gaps. By contrast to P-deficiency, K+-deficiency has merely minor effects on
plant biomass and size (Chapin III, 1980), as mentioned in Table 3. Instead, K+-deficiency
increases plant susceptibility to abiotic stress like cold stress, hypoxya, or anoxya (Wang et
al., 2013). These kinds of stresses can be very harsh in alpine fens. Especially at sites of low
K+-availability, resultant plant damage would bring about more gaps inC. nigra stands.
Such gaps would favour ingrowth from other clones or recruitment from seeds (Edwards ¢
Crawley, 1999; Milton, Dean ¢ Klotz, 1997), again with positive effects for clonal diversity
at sites of scarce K+-contents.

The third explanation for the antithetic effects to phosphorus can be found in the plant’s
lacking potential to translocate K+ from older / senescing plant parts to younger organs. In
contrast to P, the largest part of K+ in senescing leaves is lost to the soil via leaching (Morton,
1977). The support of new ramets via clonal integration is a usually strong advantage in
harsh conditions (Dietz ¢ Steinlein, 2001). But it would be less advantageous under
K+-limitation than under P-limitation, because K+ translocation would be negligible.
This might seem like a minor possible contribution in favouring clonal growth especially
under P-limitation as compared to K+-limitation. However, the vegetative season in alpine
systems is short and it can take years until a bare spot is colonised (Windmaifser ¢ Reisch,
2013). Circumstances like the ones mentioned above, further delaying colonization via
clonal growth, increase the probability for establishment of seeds. This would, again, favour
the genetic diversity of clones present at sites of low K+ availability, which corresponds to
the correlations observed in this study.

CONCLUSIONS

Terrestrial wetlands are often characterized by dominant stands of one or few vegetatively
spreading species like Phragmites australis or Carex ssp. (Moor et al., 2017; Sosnovd, Van
Diggelen ¢» Klimesova, 2010), sometimes with a tendency to monoclonality (Charpentier,
Grillas & Thompson, 2000; Honnay ¢ Bossuyt, 2005). Studies on the genetic structure of
such populations are often of a descriptive nature. Here, clonal and genetic diversity of
C. nigra sensitively responds to small-scale environmental heterogeneity in alpine fens,
and we found that such examination of connection to environmental factors can be quite
fruitful. While water regime has no discernible impact, here, soil contents in phosphorus
and potassium do, and it is conclusive that P and K take their antithetic effects on clonal
and genetic diversity via ecophysiological mechanisms. Higher phosphorus contents but
lower potassium contents directly or indirectly favour processes like seedling recruitment
or establishment of heterogenetic clones. Future studies on the clonality of plant species
should, therefore, always include also environmental data to identify the factors determining
the level of clonal diversity.
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