
Faceting and Branching in 2D Crystal Growth
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Using atomic scale time-dependent density functional calculations we confirm that both diffusion-

controlled and diffusionless crystallization modes exist in simple 2D systems. We provide theoretical

evidence that a faceted to nonfaceted transition is coupled to these crystallization modes, and faceting is

governed by the local supersaturation at the fluid-crystalline interface. We also show that competing

modes of crystallization have a major influence on mesopattern formation. Irregularly branched and

porous structures are emerging at the crossover of the crystallization modes. The proposed branching

mechanism differs essentially from dendritic fingering driven by diffusive instability.
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Avast variety of natural crystals, including minerals and
snowflakes, display flat, smooth surfaces. Faceting is also
present in advanced, technologically important materials,
such as ceramics [1], semiconductors [2], polymers [3],
metallic nanostructures [4], colloid suspensions [5], and
monolayers of various surfactant molecules [6,7]. The
amazing complexity of faceted patterns has been generat-
ing considerable interest for decades. Various crystal
shapes; compact symmetric, dendritic, ramified fractal
and needlelike morphologies have been investigated ex-
perimentally [1–5]. While robust theoretical interpreta-
tions of faceted equilibrium shapes exist, the dynamical
aspects of faceted pattern formation are less understood.
The main difficulty in establishing a theoretical description
lies in the multiscale nature of faceted crystal growth, the
mesoscale behavior is influenced by the local arrangement
of the particles. Russel et al. [8] have identified some
mesoscale characteristics of crystal growth kinetics: (i) a
diffusion-controlled (or ‘‘slow’’) growth mode that may
lead to diffusive instability and dendritic branching in
monodisperse colloids [8,9], and (ii) a diffusionless (or
‘‘fast’’) steady growth mode, in which crystalline ordering
takes place without significant density change. The exis-
tence of these modes is verified experimentally by inves-
tigating crystallization kinetics in hard-sphere suspensions
[10,11]. Besides, in some organic glasses discontinuous
enhancement of crystal growth is observed [12–14], which
is associated with diffusionless crystallization [15].
Although various theories have been developed to explain
the existence of diffusion-controlled and diffusionless
rapid modes [14–16], none of them predicts a faceted-
nonfaceted morphological transition often associated
with different crystallization modes, when interpreting ex-
periments [3]. Growth mode (i) and mode (ii) have also
been observed in simple mean-field models [17], although
these theories address anisotropic crystal growth in a phe-
nomenological way. In contrast, molecular theories based
on the classical density functional technique (DFT) predict

not only the anisotropic bulk crystal properties, such as the
crystal structure and elastic constants, but also anisotropic
surface properties (e.g., surface tension [18]). A simple
dynamical DFT [19], the phase-field crystal (PFC) model
[20] is able to address crystallization kinetics up to the
mesoscale [21]. While the phase-field crystal model rep-
resents the average of the microscopic states over a coarse
graining time, it does describe crystal defects. Grain
boundaries and dislocations can be observed directly in
simulations [20], while diffusing point defects (i.e., vacan-
cies) are time averaged and are represented by a lower
filling factor (lower integral density) at the lattice sites
[22]. The Kirkendall effect that assumes vacancy diffusion
has also been investigated in the binary PFC model [23]. It
has also been shown that the crystal growth anisotropy is
inherent in the PFC model [24].
In this Letter we investigate faceting during crystal

growth using the PFC model, and interpret crystalline
pattern formation in terms of two basic crystal growth
mechanisms [type (i) and (ii)]. Although we simulated
surface diffusion-coupled 2D crystallization (relevant di-
rectly for 2D colloids, surfactant monolayers and island
formation on substrates, etc.), the conclusions we are going
to draw are more generic. None of the underlying processes
(e.g., faceting, and diffusion-controlled growth) are spe-
cific to these systems.
The PFC model we use relies on the time-averaged

particle density �, and applies on the diffusional time scale.
The dimensionless free energy of the inhomogeneous sys-
tem relative to a homogeneous reference state of density
�ref
L can be derived [25] from the Ramakrishnan-Yussouff

type DFT [26]:

F ¼
Z

dr

�
c

2
½�þ ð1þr2Þ2�c þ c 4

4

�
; (1)

where c / ð�� �ref
L Þ=�ref

L is the scaled density difference
relative to �ref

L . The model parameter � can be connected to
such physical properties as the bulk moduli of the fluid and
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crystalline phases at the reference density and temperature.
In two dimensions, the homogeneous fluid and the hex-
agonal crystal can coexist [20]. The transition layer be-
tween these coexisting phases can be either thin or several
atomic layers thick. The interface thickness is tuned by the
model parameter �. Crystallization and the diffusional
transport are described by the time evolution of the particle
density (c ), and governed by a diffusive equation of
motion:

@c

@�
¼ r2 �F

�c
þ �; (2)

where � is the dimensionless time, and � represents a
colored Gaussian noise characterized by the correlator
h�ðr; �Þ�ðr0; �0Þi ¼ ��r2gðjr� r0j; �Þ�ð�� �0Þ. Here �
controls the magnitude of the thermal fluctuations relative
to the free energy barriers and gðjr� r0j=�Þ is a high
frequency cutoff function [27] for wavelengths shorter
than the lattice spacing (�).

First, we investigate the dynamic properties of the
crystal-fluid interface as a function of the thermodynamic
driving force. For the sake of simplicity, we set the noise
correlator to zero (� ¼ 0), and choose � ¼ �0:75 to en-
sure faceted equilibrium shape. Crystal growth has been
initiated using a crystal seed, while the initial particle
density (c 0) of the fluid phase has been used to tune the
thermodynamic driving force of the phase transition.

Some of the crystallization kinetics dependent interface
properties are summarized in Fig. 1. At low crystal growth
rate, the interface is fairly thin and faceted [Fig. 1(a)],
while at high growth rate it extends to several atomic layers
and shows rounded corners [Fig. 1(b)]. Dynamical reduc-
tion of the growth anisotropy has also been observed in
molecular monolayers and proved to be mainly of kinetic
origin [28].

The time evolution of the coarse-grained particle density

( ~c ) profile shows distinct characteristics for faceted and

nonfaceted interfaces. ( ~c has been obtained by two-
dimensional finite impulse response filtering [29].) At
low driving forces the time dependence of the interface

velocity is parabolic (v / ��1=2). Crystal growth is con-
trolled by diffusive transport through an extending deple-
tion layer [growth mode (i), see Fig. 1(c)]. At high
supersaturations crystal growth is limited by the rate of
particle rearrangement at the interface from liquid state to
solid state [growth mode (ii)]: here the diffusion layer
shows a steady profile [Fig. 1(d)] and the interface velocity
is constant. As opposed to growth mode (i), the density
difference between the crystalline and liquid phases is
substantially reduced, which can be interpreted as ‘‘va-
cancy trapping’’ into the crystal, analogously to the phe-
nomenon of ‘‘solute trapping’’ in rapidly solidifying
alloys. The concentration of the quenched-in vacancies
[30] can be characterized by the average crystal density.
Following Aziz [31], we have defined an effective partition

coefficient using the average solid and liquid densities

at the interface as keff ¼ ~c S= ~c L and we have fitted

keff ¼ k1=ð1þv=vDÞ
0 to our data. In the formula k0 ¼

~c E
S= ~c

E
L ¼ 0:649 is the equilibrium partition coefficient
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FIG. 1 (color online). Two modes of interface propagation:
Close-up view of the density map at the interface for the (a) -
diffusion-controlled ‘‘slow’’ (c 0 ¼ �0:53) (b) diffusionless
‘‘fast’’ (c 0 ¼ �0:5032) growth modes. The coarse-grained den-
sity profiles ( ~c ) are shown at different times for (c) the slow
(c 0 ¼ �0:53) and (d) the fast (c 0 ¼ �0:5032) modes. Minima
of the curves correspond to the fluid density at the interface
( ~c L), while the density steps left to the minima represent the
density change across the fluid-crystalline interface. ~c S is the
solid density at the interface. (e)–(g) Merged data for c 0 ¼
�0:53; �0:5035; �0:503 375; �0:503 35; �0:5032 are plotted:
(e) keff vs velocity. (f) ~c L vs time. (g) The interface thickness, d,
and diffusion length, dD vs velocity.
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defined by the phase diagram of the system [20], v is the
interface velocity, while vD is the fitted characteristic
interface velocity for point-defect trapping. The effective
partition coefficient vs interface velocity data are merged
into master plots [Fig. 1(e)] for a sequence of simulations
(c 0 ¼ �0:53; �0:5035; �0:503 375; �0:503 35 and
�0:5032). This master plot shows that the solid-liquid
density difference at the interface decreases as the growth
rate increases (keff increases towards 1 at high interface
velocities). The density of the crystalline phase is dynami-
cally adjusted to the fluid density, making steady growth
feasible. The Aziz formula is in convincing agreement with
our data which implies that the density change corresponds
to defect trapping. Similar behavior has been observed in
simple field theoretic models [32].

While at first glance mode switching in the dynamics is
hidden, the faceted to nonfaceted transition associated with
this phenomenon is quite spectacular. A microscopic ex-
planation of faceting can be given considering the local
thermodynamic conditions at the interface. Close to equi-
librium, in the faceted growth regime, the crystal grows
layerwise; filling of a lattice site in an existing crystal layer
is preferred to new layer formation via nucleation. At the

interface ~c L oscillates in time [Fig. 1(f)], where each
breakdown from a local maximum corresponds to the
nucleation of a crystal layer. Figure 1(f) also shows that

increasing ~c L at the interface results in a vanishing barrier
for crystal layer nucleation, the interface becomes rough on
the atomic scale, and as a consequence, faceted to non-
faceted transition occurs. Also note that for layer-by-layer
growth vacancy trapping is hardly feasible since the filling
of sites in the existing layers is preferred to new layer
formation.

Besides faceting, surface roughening [33] is manifested
in dynamical interface broadening [34] as the growth rate
increases [see Fig. 1(g)]. Figure 1(g) also shows that the
interface thickness crosses the diffusion length as the inter-
face velocity increases. The mode switching occurs at the
crossover of these curves, at high driving forces the inter-
face layer and the depleted zone overlap, due to trapping of
vacancies into the interface layer.

Next, we examine mesoscale patterning near mode
switching, and compare the simulations to micrographs
of 2D colloid crystals. The free growth of single crystals
has been investigated in the presence of thermal fluctua-
tions (� ¼ 4� 10�3). In the diffusion-controlled regime
faceted dendritic mesopatterns evolve [Fig. 2(c)]; branch-
ing is driven by diffusive instability [35]. At higher super-
saturations thermal fluctuation driven random switching
from fast to slow mode is observed along the interface.
The coexisting slow and fast mode interfaces outline
fractal-like mesopatterns [Figs. 2(d) and 2(e)]. Contrary
to diffusive instability driven branching, fractal-like arms
are due to the difference in the propagation velocity for
slow and fast mode interfaces. Pore formation via consecu-

tive branching and merging of fractal arms has also been
observed [see Fig. 2(e)], which is not common when
branching is driven by diffusive instability. Such Swiss-
cheese-like patterns are often observed in monolayers
[5,36]. Simulations show a striking resemblance to mor-
phologies observed in optical micrographs of colloid single
crystals [5] [see Fig. 2(a) and 2(b)], and fractal-like growth
in molecular monolayers [28].
We note that the fast and slow modes can coexist even

in the zero noise limit (� ¼ 0). In this case, vacancy
trapping and mode selection are governed by the local
atomic arrangement at the solid-liquid interface that varies
with crystallographic orientation. Increasing the noise

FIG. 2 (color online). Single crystal growth patterns in the
presence of thermal fluctuations: (a),(b): dendritic and fractal-
like 2D colloid crystals (micrographs by Skjeltorp [5]). (c),(d):
Coarse-grained density maps for dendritic (c 0 ¼ �0:505) and
fractal-like branched patterns (c 0 ¼ �0:504) in PFC simula-
tions. (e) Fractal branching mechanism: Close-up view of mode-
switching along the interface. Density waves in the liquid
inherent to the fast mode, while depleted layer (dark) indicates
slow mode interface propagation.
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amplitude, the fast mode becomes increasingly preferred,
while branching events become more frequent and the
porosity of the growing crystal increases.

Summarizing, using a microscopic theory, symbiosis of
faceting with growth mode selection is predicted: if faceted
growth exists at a temperature (�), the slow mode, which
exhibits decreasing supersaturation necessarily leads to
layer-by-layer growth. Also layerwise growth largely pre-
vents excess vacancy trapping into the crystal; thus, the
dynamical adjustment of crystal density and the ‘‘fast’’
mode interface propagation are not feasible. We have in-
vestigated crystallization kinetics dependent interface
properties: the dynamical reduction of crystal growth an-
isotropy and interface broadening shown are in agreement
with previous reports [34]. Ultimately, we have shown that
the slow and the fast propagation modes can coexist along
the interface of the crystal. The thermal fluctuation driven
random mode switching leads to a new branching mecha-
nism that explains irregular fractal-like growth of single
crystals for the first time.
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