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We study a queuing system which is equipped with a stand-by server in addition to the main
server. The stand-by server provides service to customers only during the period of absence
of the main server when either the main server is on a vacation or it is in the state of repairs
due to a sudden failure from time to time. The service times, vacation times, and repair times
are assumed to follow general arbitrary distributions while the stand-by service times follow
exponential distribution. Supplementary variables technique has been used to obtain steady state
results in explicit and closed form in terms of the probability generating functions for the number
of customers in the queue, the average number of customers, and the average waiting time in the
queue while the MathCad software has been used to illustrate the numerical results in this work.

1. Introduction

Due to their wide applications in flexible manufacturing or computer communication sys-
tems, M[X]/G/1 queueing system with vacations and M[X]/G/1 queueing system with
breakdowns have been studied by several authors including [1–8]. Recently the authors of
[9] have studied some queueing systems with vacations and breakdowns.

In this work, we study an M[X]/G/1 queueing system with Bernoulli schedule
vacations and random breakdowns with an additional significant assumption that the system
deploys a stand-by server during the vacation periods and the repair periods of the main
server.

Madan [10] studied the steady state behavior of a queuing system with a stand-by
server which provides service to costumers only during the repair period. In that work, repair
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times were assumed to follow an exponential distribution. The present paper considers both
vacations and breakdowns with additional assumptions of deployment of a standby during
the vacation periods and repair periods. We generalize results obtained not only by Madan
[10] but also the results obtained by Maraghi et al. [9]. Most importantly, we assume that the
service times, vacation times, and repair times have different general (arbitrary) distributions
while the stand-by service times follow exponential distribution. Out of five distributions in
this model we assume that four are a generally distributed, this is very important because all
the other distributions such as exponential, deterministic, and Erlang-k distributions will be
included.

The rest of this paper is arranged as follow. Section 2 gives the assumptions underlying
the considered queueing system. Related definitions and used notations are given in
Section 3. Equations governing the system are formulated in Section 4. In Section 5, we give
the solution of the equations formulated in the previous section to find the queue size
distribution at a random epoch. The average queue size and the average waiting time are
given in Section 6. In Section 7, we consider a numerical example to illustrate application of
our results.

2. Assumptions

Customers arrive at the system in batches of variable size in a compound Poisson process.
Let λciΔt (i = 1, 2, 3, . . .) be the first order probability that a batch of i customers arrives at the
system during a short interval of time (t, t + Δt), where 0 ≤ ci ≤ 1 and

∑∞
i=1 ci = 1 and λ > 0 is

the mean arrival rate of batches. The customers provided service one by one on a “first come-
first served basis.”

The service times of the main server follow a general (arbitrary) distribution with dis-
tribution function G(s) and density function g(s). Let μ(x)Δx be the conditional probability
density of service completion during the interval (x, x + Δx], given that the elapsed service
time is x, so that

μ(x) =
g(x)

1 −G(x)
, (2.1)

and, therefore

g(s) = μ(s)e−
∫s
0 μ(x)dx. (2.2)

On completion of a service, the server may take a vacation of random length with pro-
bability P , or may stay in the system providing service with probability 1−P , where 0 ≤ P ≤ 1.

The server’s vacation times follow a general (arbitrary) distribution with distribution
function B(v) and density function b(v). Let β(x)Δx be the conditional probability of a
completion of a vacation during the interval (x, x + dx) given that the elapsed vacation time
is x, so that

β(x) =
b(x)

1 − B(x)
, (2.3)
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and, therefore

b(v) = β(v)e−
∫v
0 β(x)dx. (2.4)

The system may break down at random, and breakdowns are assumed to occur
according to a Poisson stream with mean breakdown rate α > 0. Further we assume that
once the system breaks down, the customer whose service is interrupted comes back to the
head of the queue but it is instantly taken up for service by the stand-by server.

Once the system breaks down, its repairs start immediately and the duration of repairs
follows a general (arbitrary) distributionwith distribution function F(r) and density function
f(r). Let γ(x)Δx be the conditional probability density of repair completion during the
interval (x, x + Δx], given that the elapsed repair time is x, so that

γ(x) =
f(x)

1 − F(x)
, (2.5)

and, therefore

f(r) = γ(r)e−
∫r
0 γ(x)dx. (2.6)

The stand-by server starts serving the customers as soon as the main server breaks
down or as soon as the main server leaves for a vacation after completing a service. The
stand-by service times follow an exponential distribution with stand-by service rate δ > 0
and mean stand-by service time 1/δ.

We further assume that the main server joins the system immediately after the com-
pletion of its vacation or completion of its repairs, and the customer being served by the
stand-by server is immediately transferred to the main server to start a service afresh.

All stochastic processes involved in the system are independent of each other.

3. Notations

We let

(i) Pn(t, x): probability that at time t, there are n ≥ 0 customers in the queue excluding
one customer in the service served by the main server, and the elapsed service time
of this customer is x. Accordingly, Pn(t) =

∫∞
0 Pn(t, x)dx denotes the probability

that there are n ≥ 1 customers in the queue excluding one customer in service
irrespective of the value of x;

(ii) Vn(t, x): probability that at time t, there are n ≥ 0 customers in the queue (and
one customer is being served by the stand-by server), and the main server is on
vacation with elapsed vacation time x. Accordingly, Vn(t) =

∫∞
0 Vn(t, x)dx denotes

the probability that at time t, there are n ≥ 0 customers in the queue and the server is
on vacation irrespective of the value of x. As soon as the vacation starts the stand-by
server starts serving the customers in the system;
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(iii) Rn(t, x): Probability that at time t, there are n (n ≥ 0) customers in the queue (and
one customer is being served by the stand-by server) while the system is under
repair with elapsed repair time x. Accordingly, Rn(t) =

∫∞
0 Rn(t, x)dx denotes the

probability that at time t, there are n ≥ 0 customers in the queue and the server is
under repair irrespective of the value of x;

(iv) Q(t): probability that at time t, there are no customers in the system and the server
is idle but available in the system.

Assuming that the steady state exists, we let

lim
t→∞

An(t, x) = An(x), lim
t→∞

An(t) = lim
t→∞

∫∞

0
An(t, x)dx = An,

lim
t→∞

dAn(t)
dt

= 0, where A = P, V, R,

lim
t→∞

Q(t) = Q.

(3.1)

4. Equations Governing the System

According to the assumptions mentioned above, we have four possible states of our system
during a short time interval (t, t+Δt): the first state is that themain server is providing service,
the second is that the main server is on vacation and the stand-by server is providing service,
the third state is that the main server is inactive due to a system breakdown and is under
repair and the stand-by server is providing service, the last possible state is that the server
is idle (there are no customers in the system) but available in the system. By discussing the
probabilities of every situation and finding the limit as Δt → 0, we obtain the following set
of differential-difference equations

∂

∂x
Pn(x) = −(λ + μ(x) + α

)
Pn(x) + λ

n−1∑

i=1

ciPn−i(x), n ≥ 1, (4.1)

∂

∂x
P0(x) = −(λ + μ(x) + α

)
P0(x), (4.2)

∂

∂x
Vn(x) = −(λ + β(x) + δ

)
Vn(x) + λ

n∑

i=1

ciVn−i(x) + δVn+1(x), n ≥ 1, (4.3)

∂

∂x
V0(x) = −(λ + β(x) + δ

)
V0(x) + δV1(x), (4.4)

∂Rn(x)
∂x

= −(λ + γ(x) + δ
)
Rn(x) + λ

n∑

i=1

ciRn−i(x) + δRn+1(x), n ≥ 1, (4.5)

∂R0(x)
∂x

= −(λ + γ(x) + δ
)
R0(x) + δR1(x), (4.6)

λQ =
∫∞

0
R0(x)γ(x)dx +

(
1 − p

)
∫∞

0
P0(x)μ(x)dx + (1 − r)

∫∞

0
V0(x)β(x)dx. (4.7)
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The following boundary conditions will be used to solve the above equations:

Pn(0) =
(
1 − p

)
∫∞

0
Pn+1(x)μ(x)dx +

∫∞

0
Vn+1(x)β(x)dx

+
∫∞

0
Rn+1(x)γ(x)dx + λcn+1Q, n ≥ 0,

(4.8)

Vn(0) = p

∫∞

0
Pn(x)μ(x)dx, n ≥ 0, (4.9)

Rn(0) = α

∫∞

0
Pn−1(x)dx, n ≥ 1, (4.10)

R0(0) = 0. (4.11)

5. Queue Size Distribution at a Random Epoch

Defining the following probability generating functions

Aq(x, z) =
∞∑

n=0

znAn(x), Aq(z) =
∞∑

n=0

znAn,

A = P, V, R,

C(z) =
∞∑

i=1

zici,

(5.1)

we multiply (4.1) by zn, take summation over n from 1 to ∞, adding to (4.2) then by sim-
plifying and using (5.1)we get

∂

∂x
Pq(x, z) +

(
λ − λC(z) + μ(x) + α

)
Pq(x, z) = 0. (5.2)

Using the same process, from (4.3), (4.4) and (4.5), (4.6) we get, respectively,

∂

∂x
Vq(x, z) +

(

λ − λC(z) + β(x) + δ − δ

z

)

Vq(x, z) = 0, (5.3)

∂

∂x
Rq(x, z) +

(

λ − λC(z) + γ(x) + δ − δ

z

)

Rq(x, z) = 0. (5.4)
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Multiply (4.8) by zn+1, sum over n from 0 to ∞, and use the generating functions defined in
(5.1), we get

zPq(0, z) =
(
1 − p

)
∫∞

0
Pq(x, z)μ(x)dx +

∫∞

0
Vq(x, z)β(x)dx +

∫∞

0
Rq(x, z)γ(x)dx + λC(z)Q

−
[
(
1 − p

)
∫∞

0
P0(x)μ(x)dx + (1 − r)

∫∞

0
V0(x, z)β(x)dx +

∫∞

0
R0(x, z)γ(x)dx

]

.

(5.5)

From (4.7), we have

zPq(0, z) =
(
1 − p

)
∫∞

0
Pq(x, z)μ(x)dx +

∫∞

0
Vq(x, z)β(x)dx +

∫∞

0
Rq(x, z)γ(x)dx

+ λQ(C(z) − 1).

(5.6)

Multiply (4.9) by zn and sum over n from 0 to ∞, we get

Vq(0, z) = p

∫∞

0
Pq(x, z)μ(x)dx. (5.7)

Similarly, from (4.10) we get

Rq(0, z) = αz

∫∞

0
Pq(x, z)dx = αzPq(z), n ≥ 0. (5.8)

Integrating (5.2) from 0 to x yields

Pq(x, z) = Pq(0, z)e−(λ−λC(z)+α)x−
∫x
0 μ(t)dt, (5.9)

where Pq(0, z) is given by (5.6). Let us consider a = λ − λC(z) + α.
Integrating equation (5.9) by parts with respect to x yields

Pq(z) = Pq(0, z)
(
1 −G∗(a)

a

)

, (5.10)

where G∗(a) =
∫∞
0 e−axdG(x) is the Laplace-Stieltjes transform of the service time G(x).

Now multiplying both sides of (5.9) by μ(x) and integrating over x we get

∫∞

0
Pq(x, z)μ(x)dx = Pq(0, z)G∗(a). (5.11)
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Using (5.11), from (5.7) we get

Vq(0, z) = pPq(0, z)G∗(a). (5.12)

Similarly, we integrate (5.3) from 0 to x, we get

Vq(x, z) = Vq(0, z)e−(λ−λC(z)+δ−δ/x)x−
∫x
0 β(t)dt. (5.13)

Substituting by the value of Vq(0, z) from (5.12) in (5.13)we get

Vq(x, z) = pPq(0, z)G∗(a)e−(λ−λC(z)+δ−δ/z)x−
∫x
0 β(t)dt. (5.14)

Let us consider b = λ − λC(z) + δ − δ/z now integrating (5.14) by parts with respect to
x we get

Vq(z) =
pPq(0, z)G∗(a)(1 − B∗(b))

b
, (5.15)

where B∗(b) =
∫∞
0 e−bxdB(x) is the Laplace-Stieltjes transform of the vacation time B(x).

Now multiplying both sides of (5.14) by β(x) and integrating over x we get

∫∞

0
Vq(x, z)β(x)dx = pPq(0, z)G∗(a)B∗(b). (5.16)

Now integrating (5.4) from 0 to x, yields

Rq(x, z) = Rq(0, z)e−(λ−λC(z)+δ−δ/z)x−
∫x
0 γ(t)dt. (5.17)

Substituting by the value of Rq(0, z) from (5.8) in (5.17) we get

Rq(x, z) =
αzPq(0, z)(1 −G∗(a))

a
e−(λ−λC(z)+δ−δ/z)x−

∫x
0 γ(t)dt, (5.18)

integrating (5.18) by parts with respect to x we get

Rq(z) = αzPq(0, z)
(
(1 −G∗(a))(1 − F∗(b))

ab

)

, (5.19)

where F∗(b) =
∫∞
0 e−(λ−λC(z)+δ−δ/z)xdF(x) is the Laplace-Stieltjes transform of the repair time

F(x).
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Now multiplying both sides of (5.18) by γ(x) and integrating over x we get

∫∞

0
Rq(x, z)γ(x)dx = αzPq(0, z)

(
1 −G∗(a)

a

)

F∗(b). (5.20)

Now using (5.11), (5.16) and (5.20), (5.6) becomes

Pq(0, z) =
−acQ

a
(
z −G∗(a)

(
1 − p + pB∗(b)

)) − αz(1 −G∗(a))F∗(b)
, (5.21)

where c = λ − λC(z), from (5.21) equations (5.10), (5.15) and (5.19) become, respectively,

Pq(z) =
−cQ(1 −G∗(a))

a
(
z −G∗(a)

(
1 − p + pB∗(b)

)) − αz(1 −G∗(a))F∗(b)
,

Vq(z) =
−acQpG∗(a)(1 − B∗(b))

ab
(
z −G∗(a)

(
1 − p + pB∗(b)

)) − αzb(1 −G∗(a))F∗(b)
,

Rq(z) =
−αzcQ(1 −G∗(a))(1 − F∗(b))

ab
(
z −G∗(a)

(
1 − p + pB∗(b)

)) − αzb(1 −G∗(a))F∗(b)
.

(5.22)

Let Sq(z) denote the probability generating function of the queue size irrespective of the state
of the system. That is, Sq(z) = Pq(z) + Vq(z) + Rq(z).

Then adding (5.22) we obtain

Sq(z) =
−cQ(1 −G∗(a)){b + αz(1 − F∗(b))} − acQpG∗(a)(1 − B∗(b))

ab
(
z −G∗(a)

(
1 − p + pB∗(b)

)) − αzb(1 −G∗(a))F∗(b)
. (5.23)

In order to find Q, we use the normalization condition

Sq(1) +Q = 1. (5.24)

Note that if z = 1 then b = 0 and c = 0, so Sq(1) is indeterminate of 0/0 form. Therefore, we
apply L’Hopitals Rule twice on (5.23), we get

Sq(1) = lim
z→ 1

N ′′(z)
D′′(z)

, (5.25)
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where N(z) and D(z) are the numerator and denominator of the right hand side of (5.23)
respectively. Double primes in (5.25) denote the second derivative at z = 1. Carrying out the
derivatives at z = 1 we have

N ′′(1) = −2QλE(I)(λE(I) − δ)
{
(1 −G∗(α)){1 + αE(R)} + αpG∗(a)E(V )

}
, (5.26)

D′′(1) = 2(λE(I) − δ){(1 −G∗(a))(λE(I) + α{1 + (λE(I) − δ)E(R)})

−α(1 − p(λE(I) − δ)G∗(a)E(V )
)}

,
(5.27)

where C(1) = 1, C′(1) = E(I) is the mean batch size of the arriving customers, B∗(0) = 1, and
B∗′(0) = −E(V ) the mean vacation time, and F∗(0) = 1, and F∗′(0) = −E(R) is the mean repair
time.

Therefore, adding Q to (5.25) and equaling to 1 and simplifying we get

Q =
α
(
1 − p(λE(I) − δ)G∗(a)E(V )

) − (1 −G∗(a))(λE(I) + α{1 + (λE(I) − δ)E(R)})
α
{
δE(R)(1 −G∗(α)) +G∗(α)

(
1 + pδE(V )

)} .

(5.28)

From (5.28) we can find the utilization factor, ρ, where ρ = 1 −Q.
As a particular case if we assume there is no stand by server this means that δ = 0,

b = c = λ − λE(I) using this in the main results of this paper, we get,

Sq(z) =
−Q(1 −G∗(a)){b + αz(1 − F∗(b))} − aQpG∗(a)(1 − B∗(b))

a
(
z −G∗(a)

(
1 − p + pB∗(b)

)) − αz(1 −G∗(a))F∗(b)
, (5.29)

Q = 1 − λE(I)
{

1
αG∗(a)

− 1
α
+

E(R)
G∗(a)

− E(R) + pE(V )
}

. (5.30)

These results agree with results given by [9].

6. The Average Queue Size and the Average Waiting Time

Let Lq denote the mean number of customers in the queue under the steady state. Then

Lq =
d

dz
Sq(z)

∣
∣
∣
∣
z=1

. (6.1)
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Since this formula gives 0/0 form, then using the L’Hopital’s rule four times we obtain

Lq = lim
z→ 1

D′′(z)N ′′′(z) −N ′′(z)D′′′(z)

3(D′′(z))2
, (6.2)

where N ′′(1) and D′′(1) are given in (5.26) and (5.27), respectively, and

N ′′′(1) = −3Qny(1 −G∗(α))(1 + αE(R))

− 6Qym2G∗′(α)[1 + αE(R)]

− 3Qm(1 −G∗(a))
[
x(1 + αE(R)) + 2αyE(R) + αy2E

(
R2

)]

+ 3pQE(V )yG∗(a)
{
2m2 − αn

}

+ 6αpQm2yE(V )G∗′(a)

− 3αpQmG∗(α)
(
y2E

(
V 2

)
+ xE(V )

)
,

(6.3)

D′′′(1) = 3
(
1 −G∗(a)pE(V )y

){
2my − αx

}

+ 6m2yG∗′(α) + 3(1 −G∗(a))
{
ny +mx

}

− 3αyp
(
2G∗′(a)myE(V ) −G∗(a)

(
E
(
V 2

)
y2 + xE(V )

))

+ 6αy2(1 −G∗(a))E(R) + 3α
{
1 + yE(R)

}{
x(1 −G∗(a)) + 2myG∗′(α)

}

+ 3αy(1 −G∗(a))
(
y2E

(
R2

)
+ xE(R)

)
,

(6.4)

where (λE(I(I − 1)) + 2δ) = x, λE(I) − δ = y, λE(I(I − 1)) = n, and λE(I) = m.

7. Numerical Example

To illustrate the results of this chapter numerically we consider that the service times, vacation
times, stand-by service times, and repair times are exponentially distributed. All the values
were chosen so that the steady state condition is satisfied. In Table 1 we will show the effect
of the new contribution of this paper, where we will show the influence of the new parameter
δ (stand-by service rate) on the trends. We choose the following values μ = 7, γ = 3, λ = 2,
β = 7, α = 2, P = 0.5, E(I) = 1, and E(I(I − 1)) = 0, we consider that δ takes the values 0, 1, 4,
6, 8, and 10.
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Table 1: Computed values of various queue performance measures (μ = 7, λ = 2, α = 2, P = 0.5, γ =
3, β = 7).

δ ρ Q Lq Wq L W

0 0.619 0.381 1.4048 0.7024 2.0238 1.0119
1 0.5306 0.4694 0.8064 0.4032 1.3371 0.6685
4 0.3714 0.6286 0.3432 0.1716 0.7147 0.3573
6 0.3095 0.6905 0.2807 0.1403 0.5902 0.2951
8 0.2653 0.7347 0.2617 0.1309 0.527 0.2635
10 0.2321 0.7679 0.2591 0.1295 0.4912 0.2456

Table 1 shows that increasing the value of δ decreases the value of utilization factor,
the mean queue size, and the mean waiting time of the customers while the server idle time
increases. All the trends shown by the table are as expected.
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