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ABSTRACT 

 

This paper analyses two well-known features of interest rates, namely their time 

dependence and their cyclical structure. Specifically, it focuses on the monthly Euribor 

rate, using monthly data from January 1994 to May 2011. Models based on fractional 

integration at the long run or zero frequency, although adequately describing the 

persistent behaviour of the series, do not take into account its cyclical structure. 

Therefore, a more general cyclical fractional model is considered. Future directions for 

research in this context are also discussed. 
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1. Introduction 

The choice of appropriate models for interest rates is a hotly debated issue, as it is unclear 

whether they should be modelled as I(0) or I(1) processes. A well-known stylised fact is 

their high persistence. This could be approximated by an AR(1) (I(0)) process with a root 

close to 1. Alternatively, unit root (I(1)) processes could be considered. Earlier studies 

typically focused on whether interest rates can be characterised as an I(0) or I(1) series. 

For instance, Cox, Ingersoll and Ross (1985) concluded that the short-term nominal 

interest rate is a stationary and mean-reverting I(0) process, whereas authors such as 

Campbell and Shiller (1987) assumed a unit root. The drawback of the I(0) models is that 

they imply long-rates which are not volatile enough (Shiller, 1979) whereas the problem 

with the I(1) models is that they imply that the term premium necessarily increases with 

bond maturities (Campbell, Law and MacKinlay, 1997).
1
  

More general I(d)-type specifications provide additional flexibility to model such 

persistent behaviour. In the last two decades some studies have taken this approach. For 

instance, Shea (1991) investigated the consequences of long memory in interest rates for 

tests of the expectations hypothesis of the term structure. He found that allowing for the 

possibility of long memory significantly improves the performance of the model, even 

though the expectations hypothesis cannot be fully resurrected. In a related paper, Backus 

and Zin (1993) observed that the volatility of bond yields does not decline exponentially 

when the maturity of the bond increases; in fact, the decline is hyperbolic, consistently 

with a fractionally integrated specification. Lai (1997) and Phillips (1998) provided 

evidence based on semiparametric methods that ex-ante and ex-post US real interest rates 

are fractionally integrated. Tsay (2000) employed a fractionally ARIMA (ARFIMA) 

model and provided evidence that the US real interest rate can be described as an I(d) 

                                                 
1
 Recently, Gil-Alana and Moreno (2008) have proposed a fractional integration model for the short-term 

interest rate and the term premium. 
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process. Further evidence can be found in Barkoulas and Baum (1997), Meade and Maier 

(2003) and Gil-Alana (2004a,b). Couchman, Gounder and Su (2006) estimated ARFIMA 

models for ex-post and ex-ante interest rates in sixteen countries. Their results suggest that 

for the majority of these countries the fractional differencing parameter lies between 0 and 

1 and is considerably smaller for the ex-post real rates compared with the ex-ante ones. 

Another well-known feature of interest rates is their cyclical structure (see, e.g., 

Kessel, 1965) that is not well captured by I(0), I(1) or I(d) models, the last two of which 

are all characterised by a spectral density function which is unbounded at the origin (i.e. 

the zero frequency). Typically, interest rates exhibit a peak in the periodogram at non-zero 

(as opposed to zero) frequencies indicating a certain degree of cyclical behaviour. This 

cyclical structure can be captured by a simple AR(2) process with complex roots; 

however, such a process is characterised by a very rapid decay in the autocorrelations, 

which is not consistent with the high level of persistence observed in interest rates. A long 

memory cyclical I(d) model can instead overcome this limitation, and the aim of the 

present study is to propose and evaluate such a model for the Euribor rate. 

The paper is organised as follows. Section 2 outlines the concept of long-range 

dependence. Section 3 discusses the main features of the data. Section 4 presents the 

estimation and testing results. Section 5 summarises the main findings and suggests some 

extensions. 

 

2. Long-range dependence and cycles 

 The analysis in this paper is based on the concept of long-range dependence. Given a 

covariance stationary process {xt, t = 0, ±1, … }, with autocovariance function E(xt –

Ext)(xt-j-Ext) = γj, according to McLeod and Hipel (1978), xt displays the property of long 

memory if 
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is infinite. An alternative definition, based on the frequency domain, is the following. 

Suppose that xt has an absolutely continuous spectral distribution function, and hence a 

spectral density function, denoted by f(λ), and defined in terms of the autocovariances as 
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Then xt displays the property of long memory if the spectral density function has a pole at 

some frequency λ in the interval [0, π], i.e., 

).,[,as,)(f **  0  

Most of the empirical literature has focused on the case where the singularity or 

pole in the spectrum occurs at the smallest (zero) frequency. This is the standard case of 

I(d) models of the form: 

,...,,t,ux)L( tt
d 101     (1) 

where L is the lag operator (Lxt = xt-1) and ut is I(0) defined, for the purpose of the present 

paper, as a covariance stationary process with a spectral density function that is positive 

and bounded at all frequencies. Thus, if d = 0 in (1), xt = ut, the process is short memory 

and it could be a stationary and invertible ARMA sequence, when its autocovariances 

decay exponentially; however, it could decay at a much slower rate than exponentially (in 

fact, hyperbolically) if d is positive. When d = 0 xt is also said to be ―weakly 

autocorrelated‖ as opposed to the case of ―strongly autocorrelated‖ if d > 0. Moreover, if 

0 < d < 0.5, xt is still covariance stationary, but its lag-j autocovariance γj decreases very 

slowly, at the rate of j
2d-1

 as j → ∞, and so the γj are absolutely non-summable.
2
 The 

                                                 
2
 Note that these two conditions, which can be expressed as γj ~ c j

2d-1
 as j → ∞, and f(λ) ~ c

*
λ

-2d
 as λ → 0

+
 , 

for 0 < c, c
*
 <  ∞, are not always equivalent but Zygmund (1995, Cap. V, Section 2) and Yong (1974) in a 

more general case give conditions under which both expressions are equivalent. 
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variable xt is then said to have long memory given that f(λ) is unbounded at the origin.
3
 

Also, as d in (1) increases beyond 0.5 and through 1 (the unit root case), xt can be viewed 

as becoming ―more nonstationary‖ in the sense, for example, that the variance of the 

partial sums increases in magnitude. Processes of the form given by (1) with positive non-

integer d are called fractionally integrated, and when ut is ARMA(p, q) xt is known as a 

fractionally ARIMA (or ARFIMA) model. This type of model provides a higher degree of 

flexibility in modelling low frequency dynamics which is not achieved by non-fractional 

ARIMA models. 

As previously mentioned the above processes are characterised by a spectral 

density function which is unbounded at the zero frequency. However, a process may also 

display a pole or singularity in the spectrum at a frequency away from zero. In this case, it 

may still display the property of long memory but the autocorrelations exhibit a cyclical 

structure that is decaying very slowly. This is the case of the Gegenbauer processes 

defined as: 

,...,2,1,)cos21( 2  tuxLLw tt

d

r   (2)  

where wr and d are real values, and ut is I(0). For practical purposes we define wr = 2πr/T, 

with r = T/s, and thus s will indicate the number of time periods per cycle, while r refers to 

the frequency that has a pole or singularity in the spectrum of xt. Note that if r = 0 (or s = 

1), the fractional polynomial in (2) becomes (1 – L)
2d

, which is the polynomial associated 

with the common case of fractional integration at the long-run or zero frequency. This type 

of process was introduced by Andel (1986) and subsequently analysed by Gray, Zhang 

and Woodward (1989, 1994), Giraitis and Leipus (1995), Chung (1996a,b) and Dalla and 

Hidalgo (2005) among many others. 

                                                 
3
 Such processes were first considered in the 1960s by Granger (1966) and Adelman (1965) who pointed out 

that for most aggregate economic time series the spectral density function increases sharply as the frequency 

approaches zero and that differencing the data leads to overdifferencing at the zero frequency. 
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 Gray et al. (1989, 1994) showed that the polynomial in (2) can be expressed in 

terms of the Gegenbauer polynomial, such that, denoting μ = cos wr, for all d ≠  0, 

,)()21(
0

,
2 j

j
dj

d LCLL  




   (3) 

where )(, djC  are orthogonal Gegenbauer polynomial coefficients recursively defined as:  

,1)(,0 dC   ,2)(,1 dC d    

....,3,2,)(1
1

2)(1
1

2)( ,2,1, 






















  jC

j

d
C

j

d
C djdjdj  , 

(see, for instance, Magnus et al., 1966, Rainville, 1960, etc. for further details on 

Gegenbauer polynomials). Gray et al. (1989) showed that xt in (2) is (covariance) 

stationary if d < 0.5 for │μ = cos wr│< 1 and if d < 0.25 for│μ│= 1.
4
 

These processes (of the form given by the equations (1) and (2)) will be employed 

for the empirical analysis in Section 4. 

 

3. The Euribor Rate: Empirical Features 

The series analysed is the monthly Euribor rate for the time period 1994m1 - 2011m5. 

Figure 1 suggests that it might have a cyclical structure, although this is less apparent in 

the case of the first differenced data.  

[Figures 1 – 3 about here] 

Figure 2 displays the first 100 values of the sample correlogram for the original 

and the first differenced data. A cyclical structure again seems to be present, although a 

longer time appears to be required to complete a cycle, at least for the original data. The 

periodogram of the series in both levels and first differences is displayed in Figure 3. One 

can see in both cases a peak at frequency 3 which corresponds to T/3, i.e. approximately 

                                                 
4
 Note that if │μ│< 1 and d in (2) increases beyond 0.5, the process becomes ―more nonstationary‖ in the 

sense, for example, that the variance of the partial sums increases in magnitude. 



 6 

70 periods per cycles, which is 5.83 years per cycle. This may be related to the existence 

of cycles in economic activity, business cycles generally being defined as having a 

periodicity ranging between 5 and 8 years.
5
  

 

4. Empirical Results 

As a first step we investigate the degree of persistence of the series by estimating the order 

of integration. Initially, we carry out standard unit root tests (ADF, Dickey and Fuller, 

1979; PP, Phillips and Perron, 1988; Elliot et al., 1996; and others). The results (not 

reported here)  strongly support the hypothesis that the series is I(1), although this finding 

may simply reflect the low power of these tests against fractional alternatives.
6
 

 We consider the case of fractional integration at the long run or zero frequency, 

and specifically the following model, 

,2,1,)1(;  tuxLxty tt

d

tt    (4) 

where yt is the observed time series, α and β are unknown coefficients corresponding to 

the intercept and a linear time trend, d is a real value number and ut is assumed to be I(0) 

as previously defined. We estimate d using a Whittle parametric function in the frequency 

domain, allowing ut to follow different processes. First, we assume that it is white noise. 

Then, we model it as a weakly autocorrelated process, in particular AR(1), AR(2), 

seasonal (monthly) AR(1), and finally we use the exponential spectral model of 

Bloomfield (1973). The latter is a non-parametric approach that produces autocorrelations 

decaying exponentially as in the AR(MA) case. In addition to the estimation, we carry out 

Lagrange Multiplier (LM) tests of the null hypothesis: 

                                                 
5
 Burn and Mitchell (1946), Romer (1986, 1994), Stock and Watson (1998), Diebold and Rudebusch (1992), 

Canova (1998), Baxter and King (1999), King and Rebelo (1999) among others showed that the average 

length of the cycle is approximately six years. 
6
 Diebold and Rudebusch (1991), Hassler and Wolters (1994), and Lee and Schmidt (1996) inter alia have 

shown that standard unit root tests have very low power against fractional alternatives. 
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,: oo ddH       (5) 

in (4) for a grid of real-values do  for each type of I(0) disturbances using a methodology 

devised by Robinson (1994).
7
 

[Insert Table 1 about here] 

Table 1 displays the estimates of d based on the Whittle function along with the 

95% confidence band of the non-rejection values of d using Robinson’s (1994) 

parrametric  approach. We present the results for the three standard cases of no regressors 

(i.e., α = β = 0 in (4), an intercept (α unknown and β = 0), and an intercept with a linear 

time trend in (4). We note first that all the estimated values of d are above 1 and this 

happens for the three types of regressors used and the alternative ways of modelling the 

I(0) disturbances. In fact, there is only one case where the unit root null cannot be rejected, 

namely that with no regressors and Bloomfield-type disturbances. In all the other cases, 

the unit root null hypothesis is rejected in favour of higher degrees of integration, implying 

a high degree of dependence in the data when using the specification given by equation 

(4). 

 Note, however, that the above specification does not consider the possibility of 

cycles. In fact, only the AR(2) model for the disturbances might incorporate cycles if the 

roots of the short-run (AR) dynamics are of a complex form. Alternatively, another 

specification can be considered, based on the Gegenbauer processes as described in 

Section 2. 

[Insert Table 2 about here] 

 Table 2 displays the estimates of d based on the following model, 

,2,1,)cos21(; 2  tuxLLwxty tt

d

rtt   (6) 

                                                 
7
 This method is based on the Lagrange Multiplier (LM) principle. A Wald testing approach (Lobato and 

Velasco, 2007) was also implemented, using the Whittle estimates of d. The results were completely in line 

with those reported here. 
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with wr = 2πT/r, r = 2, ..., T/2, again for the three cases of no regressors, an intercept, and 

an intercept with a linear trend, and using again the Whittle function along with the 

parametric LM method of Robinson (1994). Several features are noteworthy. First, the 

estimated value of r (not reported) is 70, which is consistent with the peak in the 

periodogram detected in Figure 3. Also, all the estimated values of d are now strictly 

smaller than 1 implying mean reversion with respect to this cyclical frequency. The results 

are in virtually all cases in the interval [0.5, 1) suggesting that the series is nonstationary, 

the only cases with values of d smaller than 0.5 being obtained for the approximation with 

the Bloomfield disturbances. 

[Insert Table 3 about here] 

 In Table 3 we report the coefficient estimates of the selected models according to 

the selected specification for the deterministic terms and the disturbances. The time trend 

is required in all cases with a significant negative trend of about -0.013. The estimated 

value of d is about 0.67 for white noise, AR(2) and seasonal AR(1) disturbances. It is 

slightly smaller (0.65) for in the AR(1) case and about 0.54 with the exponential spectral 

model of Bloomfield (1973). We also see that the short-run parameters are very close to 0 

in all cases, suggesting that no additional (short-run) time dependence is required when 

modelling this series. 

[Insert Figures 4 and 5 about here] 

 The upper and lower panels of Figure 4 display the deterministic trend and the 

detrended series respectively; the cyclical structure is apparent, especially if we look at the 

correlogram and the periodogram, which are both displayed in Figure 5. A peak at 

frequency 3 is still very noticeable in the case of the periodogram. 

[Insert Figure 6 about here] 
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 The correlogram and periodogram of the estimated residuals, presented in Figure 6, 

suggest that the cyclically I(d) model with a linear trend may be an adequate specification 

for this series. In fact, serial correlation tests provide strong evidence of no correlation in 

the estimated residuals. 

Finally, in order to establish whether business cycles can account for the cyclical 

behaviour of the Euribor, we include in the model a monthly industrial production (IP) 

index for the euro area as a whole (data source: Eurostat), and estimate the following 

specification: 

,,t,ux)LLwcos(;xgry tt
d

rtktt 2121 2    

where grt-k is the growth rate of IP (computed as the first differences of the log-

transformed data) with k = 0, 1, 2, 3, 4, 5 and 6. The procedure outlined above (see 

Robinson, 1994) can still be implemented under the assumption that grt-k is a (weakly) 

exogenous variable. The estimation results for d, for different types of I(0) disturbances ut, 

were very similar to those reported in Table 2, with the values ranging in the interval (0.5, 

1) in all cases. However, the β coefficient was not found to be statistically significant for 

any value of k, implying that the growth rate is not a relevant variable to explain the 

behaviour of the Euribor. When examining the correlogram and the periodogram of the 

growth rate series, we notice that the peak in the periodogram now occurs at the 5
th

 

frequency, implying cycles of about T/5 = 41.4 = 3.45 years/cycle, which are considerably 

shorter than in case of the Euribor, thus ruling out the possibility of fractional 

cointegration at a given frequency. Further analysis should be conducted to find a variable 

exhibiting a pole at the same frequency in the spectrum as the Euribor. In such a case, the 

possibility of fractional cointegration at a given cyclical frequency can be examined. This 

is an issue that has not been extensively investigated (Gil-Alana, 2009 is one of the few 

exceptions). The idea is that two series which are cyclically I(d) as in (2) with the peak in 
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the spectrum occurring at the same frequency (say r) and the same degree of integration 

(d) may be cointegrated in the sense that there exists a linear combination of the two 

variables which is (cyclically) fractionally integrated of a smaller order than the original 

series at the same frequency r. Alternatively, weakly exogenous regressors that might 

influence the Euribor can also be included in a regression model where the errors are 

cyclically fractionally integrated. 

 

5. Conclusions 

This paper analyses two well-known features of interest rates, namely their time 

dependence and their cyclical structure.  Specifically, it focuses on the Euribor rate, using 

monthly data from January 1994 to May 2011. Models based on fractional integration at 

the long-run or zero frequency, although adequately describing the persistent behaviour of 

the series, do not take into account the cyclical structure of the series. Therefore, a more 

general cyclical fractional model is considered.  We use an approach that is based on the 

Gegenbauer processes and that produces autocorrelations decaying hyperbolically with a 

cyclical pattern. The results indicate that this model fits the data well, with an order of 

integration ranging between 0.5 and 1, which indicates nonstationary mean-reverting 

behaviour. The model implies that the cycle repeats itself every 6 years approximately, 

which might be related with the business cycles underlying the economy. Future research 

will focus on finding economic variables that might explain the cyclical structure of the 

Euribor and be possibly cyclically fractionally cointegrated with this variable. 
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Figure 1: Time series data: Euribor and its first differences 

i) Original time series data 
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Figure 2: Correlograms of the Euribor in levels and first differences 

i) Original time series data 
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ii) First differenced data 
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The thick lines refer to the 95% confidence band for the null hypothesis of no autocorrelation. 
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º 

Figure 3: Periodograms of the Euribor and its first differences 

i) Original time series 
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ii) First differenced data 
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The horizontal axis refers to the discrete Fourier frequencies λj = 2πj/T, j = 1, …, T/2. 
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Figure 4: Time series data: Euribor, deterministic trend, and detrended series 

i) Original time series data and the time trend 
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Figure 5: Correlogram and periodogram of the detrended sereis 

i) Correlogram
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*
The thick lines refer to the 95% confidence band for the null hypothesis of no autocorrelation. 

**
The horizontal axis refers to the discrete Fourier frequencies λj = 2πj/T, j = 1, …, T/2. 
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Figure 6: Correlogram and periodogram of the residuals 

i) Correlogram
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*
The thick lines refer to the 95% confidence band for the null hypothesis of no autocorrelation. 

**
The horizontal axis refers to the discrete Fourier frequencies λj = 2πj/T, j = 1, …, T/2. 
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Table 1: Estimates of d and 95% confidence intervals using model (4) 

Frequency No regressors An intercept A linear time trend 

White noise 
1.105 

(1.023,   1.211) 
1.449 

(1.347,   1.578) 

1.448 

(1.347,   1.578) 

AR (1) 
1.428 

(1.107,   1.624) 
1.314 

(1.173,   1.533) 

1.316 

(1.175,   1.532) 

AR (2) 
1.973 

(1.724,   2.241) 
1.304 

(0.829,   1.939) 

1.304 

(0.821,   1.936) 

Seasonal AR (1) 
1.104 

(1.021,   1.210) 
1.453 

(1.349,   1.584) 

1.453 

(1.349,   1584) 

Bloomfield (m = 1) 
1.119 

(0.963,   1.333) 
1.283 

(1.069,   1.527) 

1.283 

(1.069,   1.527) 

In bold the significant coefficients. 
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Table 2: Estimates of d and 95% confidence interval using model (6) 

Disturbances  No regressors An intercept A linear trend 

White noise 
0.762 

(0.686,   0.840) 

0.695 

(0.631,   0.781) 
0.677 

(0.610,   0.766) 

AR (1) 
0.737 

(0.674,   0.801) 

0.671 

(0.623,   0.734) 
0.658 

(0.609,   0.722) 

AR (2) 
0.760 

(0.684,   0.826) 

0.683 

(0.549,   0.805) 
0.675 

(0.552,   0.797) 

Seasonal AR (1) 
0.691 

(0.628,   0.777) 

0.691 

(0.628,   0.776) 
0.678 

(0.612,   0.765) 

Bloomfield (m = 1) 
0.484 

(0.419,   0.572) 

0.474 

(0.351,   0.657) 
0.544 

(0.439,   0.707) 

In bold the significant coefficients. 
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Table 3: Estimates of the coefficients in the selected models using equation (6) 

Disturbances d α β Autoc.1 Autoc.2 

White noise 
0.677 

(0.610,   0.766) 

5.22275 

(8.644) 

-0.01380 

(-2.787) 
------ ----- 

AR (1) 
0.658 

(0.609,   0.722) 

5.17654 

(9.151) 

-0.01348 

(-2.920) 
0.045 ----- 

AR (2) 
0.675 

(0.552,   0.797) 

5.21762 

(8.733) 

-0.1377 

(-2.807) 
0.036 -0.058 

Seasonal AR (1) 
0.678 

(0.612,   0.765) 

5.22533 

(8.663) 

-0.01382 

(-2.788) 
0.017 ----- 

Bloomfield 
0.544 

(0.439,   0.707) 

5.08093 

(33.527) 

-0.01287 

(-10.619) 
0.339 ----- 

 

 

 


