
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 0000; 00:1–28
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/spe

Scenarios-based testing of systems with distributed ports

Robert M. Hierons1∗, Mercedes G. Merayo2 and Manuel Núñez2

1Department of Information Systems and Computing
Brunel University, Uxbridge, Middlesex, UB8 3PH United Kingdom
2Departamento de Sistemas Informáticos y Computación

Universidad Complutense de Madrid, Madrid, Spain

SUMMARY

Distributed systems are usually composed of several distributed components that communicate with
their environment through specific ports. When testing such a system we separately observe sequences
of inputs and outputs at each port rather than a global sequence and potentially cannot reconstruct
the global sequence that occurred. Typically, the users of such a system cannot synchronise their
actions during use or testing. However, the use of the system might correspond to a sequence of
scenarios, where each scenario involves a sequence of interactions with the system that, for example,
achieves a particular objective. When this is the case there is the potential for there to be a significant
delay between two scenarios and this effectively allows the users of the system to synchronise between
scenarios. If we represent the specification of the global system by using a state-based notation, we
say that a scenario is any sequence of events that happens between two of these operations. We can
encode scenarios in two different ways. The first approach consists of marking some of the states
of the specification to denote these synchronisation points. It transpires that there are two ways to
interpret such models and these lead to two implementation relations. The second approach consists
of adding a set of traces to the specification to represent the traces that correspond to scenarios. We
show that these two approaches have similar expressive power by providing an encoding from marked
states to sets of traces. In order to assess the appropriateness of our new framework, we show that
it represents a conservative extension of previous implementation relations defined in the context of
the distributed test architecture: if we consider that all the states are marked then we simply obtain
ioco (the classical relation for single-port systems) while if no state is marked then we obtain dioco

(our previous relation for multi-port systems). Finally, we concentrate on the study of controllable

test cases, that is, test cases such that each local tester knows exactly when to apply inputs. We give
two notions of controllable test cases, define an implementation relation for each of these notions, and
relate them. We also show how we can decide whether a test case satisfies these conditions. Copyright
c© 0000 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: formal testing; systems with distributed ports; scenarios; implementation relations;
controllable testing

1. INTRODUCTION

Software engineering techniques based on a formal foundation are necessary to assist in the
production of reliable software. A first step to ensure that we are developing the correct system

∗Correspondence to: Robert M. Hierons, rob.hierons@brunel.ac.uk

Contract/grant sponsor: Research partially supported by the Spanish MEC project TESIS (TIN2009-14312-
C02-01), the UK EPSRC project Testing of Probabilistic and Stochastic Systems (EP/G032572/1), and the
UCM-BSCH programme to fund research groups (GR58/08 - group number 910606).

Copyright c© 0000 John Wiley & Sons, Ltd.

Prepared using speauth.cls [Version: 2010/05/13 v3.00]

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Brunel University Research Archive

https://core.ac.uk/display/338365?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

is to have a formal specification of its behaviour. In order to make sure that this model is sound,
it is necessary to verify the specification with respect to the requirements of the system. In
this line, model checking [1, 2] represents an appropriate technique to decide whether the
specification fulfils the desired requirements. However, a correct specification does not imply
that we will obtain a correct system.
The technique most widely used to assess the correctness of software systems is software

testing [3, 4]. Even though formal methods and testing have been seen as rivals, so that there
was very little interaction between the two communities, these approaches are now seen as
complementary and the last ten years have shown significant progress in the area [5, 6, 7, 8]. The
main advantage of using a formal approach is that many testing processes can be automated
(see [9] for a discussion on the advantages of formal testing and [10] for a survey on formal
methods and testing). In order to formally state what a correct implementation is, we need to
define an implementation relation to relate implementations and specifications. These relations
can be given in terms of the test cases, possibly extracted from a specification, that are
successfully passed by an implementation.
An important class of systems is the one where the system under test (SUT) has physically

distributed interfaces/ports. If we apply testing techniques to these systems, then it is normal
to place a tester at each port. If we consider a black-box framework, there is no global clock,
and the testers cannot directly communicate with each other during testing then we are testing
in the distributed test architecture, which has been standardised by the ISO [11]. It is already
well known that the use of the distributed test architecture reduces test effectiveness (see, for
example, [12, 13, 14, 15, 16, 17, 18, 19]).
Most previous work on testing in the distributed test architecture has considered

Deterministic Finite State Machines (DFSMs). However, the Input Output Transition System
(IOTS) formalism is more general: in a DFSM input and output alternate and DFSMs have a
finite state structure and are deterministic. The last restriction is particularly problematic
since distributed systems are often nondeterministic. While the implementation relation
ioco [20, 21], that is usually used in testing from an IOTS, has been adapted in a number
of ways and extended to cope with issues such as time and probabilities, only recently has
the problem of testing from an IOTS in the distributed test architecture been investigated
[22, 23]. An implementation relation mioco had been defined for testing from an IOTS that
has multiple ports. This implementation relation assumes that there is a single tester that
controls and observes the ports [24] and so observes the global sequence of events that occurs
(a global trace). However, when events occur at physically distributed ports we may instead
observe a set of projections of the global sequence of events that occurred, one projection
(local trace) for each port. As a result, we may not be able to reconstruct the global trace
that occurred and this should be reflected by the implementation relation used. Our previous
work introduced an implementation relation dioco for distributed testing. Under dioco it is
assumed that the local traces that occurred at the different ports can be brought together
once testing has finished. As a result, we are only allowed to compare traces of the SUT and
of the specification when we reach quiescent states, that is, states that are stable in the sense
that they cannot perform any output without receiving additional input. Since it is usually
assumed that quiescence can be observed, the idea is that in quiescent states the local testers
can send the traces collected so far so that they can be put together and checked against the
specification (a longer discussion about this issue can be found in [22]).
It is clear that the distinguishing power of our dioco relation is weaker than the one

corresponding to the classical ioco relation. Let us consider Figure 1. Actions preceded by ?
are inputs while the ones preceded by ! are outputs. For the sake of clarity, most examples
given in this paper consider a distributed architecture with two ports but our running example
considers a system with three ports. In any case, the framework is presented for the general
case where there are n ports. In the examples, we will usually call the ports U and L, and
subindexes will denote at which port the action is performed. We have that M2 (right-hand
side of Figure 1) is not a good implementation of M1 (left-hand side of Figure 1) according

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe



3

?iU

?iL

!oL

?iL

?iU

!oU

?iU

?iU/?iL

?iU/?iL

?iL

?iU/?iL

?iU/?iL

?iU

?iL

!oU

?iL

?iU

!oL

?iU

?iU/?iL

?iU/?iL

?iL

?iU/?iL

?iU/?iL

Figure 1.M1 (left) and M2 (right) are not related under ioco but are related under dioco.

?iL

!oL

!oU

?iU

?iU/?iL

?iU/?iL

?iU/?iL

?iL

!oU

!oL

?iU

?iU/?iL

?iU/?iL

?iU/?iL

Figure 2. M3 (left) and M4 (right) are related under dioco but are not related under sdioco.

to ioco because we can find sequences of actions that can be performed by M2 that cannot
be performed by M1. For example, ?iU?iL!oU is such a sequence. However, M2 is a good
implementation for the distributed version of ioco because we do not simply compare traces,
but compare them up to causality relations in the same port. For example, we consider that
the trace ?iL?iU !oU of M1 is equivalent to the trace ?iU?iL!oU of M2 since in each case we
observe ?iU !oU at port U and ?iL at port L. However, a trace such as ?iL!oU?iU would not
be equivalent to the previous ones because we are changing the order in which certain actions
are performed at port U .
This paper extends the study of distributed testing by allowing additional opportunities to

combine local observations. Our previous work assumed that the different components have
completely independent behaviours. The only way to partially synchronise them was by putting
together the traces observed by local testers at each port when reaching quiescent states. Now
let us suppose that agents A and B interact with the SUT at physically distributed ports.
Under the dioco framework all that A and B know is that the local traces they observe are
projections of the global trace that occurred. Let us suppose, however, that A observes event
a on January 10th and B observes event b on February 5th of the same year. If A and B later
communicate then they can deduce that a occurred before b even if they cannot reconstruct
the global trace. Scenarios allow us to capture the notion of a ‘complete use’ of a distributed
system, the idea being that different complete uses (traces) σ and σ′ can occur sufficiently far
apart in time for us to be able to know that all the events in σ occurred before all of the events
in σ′ even if we cannot construct the global trace that occurred. In this paper we investigate two
ways of representing scenarios: identifying either states or traces. Let us consider, for example,
Figure 2 in which the system M3 (left-hand side of Figure 2) has a marked state. The idea is
that testers (and users) can synchronise in marked states. Therefore, M4 (right-hand side of
Figure 2) is not a good implementation according to the new relation because, for example,
it can perform the sequence ?iL!oU !oL but for the specification to perform an equivalent trace

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe



4

it must perform ?iL!oL!oU and the testers must be able to synchronise after ?iL!oL; in M3 we
cannot do this (we cannot perform a trace equivalent to ?iL!oL). However, M4 conforms to M3

if we consider dioco. An additional motivation is that there are situations when we need all the
components of the system to have performed a certain set of tasks before we let them proceed
with further computations. For example, this happens if we have a central database that has
to be regularly updated: we have to make sure that all the distributed components accessing
the database are not performing queries while the update takes place. If we have a state-based
specification of the system we can mark some of its states so that we force the (distributed)
implementation to perform such a sequence of events, up to the causality relation underlying
dioco, that takes the specification from its initial state to one of these marked states.
The implementation relation introduced in this paper is called sdioco, standing for

scenario-based dioco relation. Intuitively, a scenario is any sequence of events that takes the
specification to one of its marked states. More precisely, scenarios are associated with sequences
that bring the specification from one marked state to another one without traversing any
marked states. Therefore, it seems natural to define an alternative framework by associating a
set of traces with a specification. This set of traces contains each specific scenario that a correct
implementation can show. The idea is that while dioco, our previous implementation relation
where scenarios were not considered, allowed an implementation to produce any permutation
of a trace of a specification as long as the order between actions at the same port did not
vary, in the new setting the implementation will be allowed to produce only a subset of
these permutations. In addition to sdioco, we define two stronger implementation relations
sdioco′ and sdioco′′ that also require states to be marked. We explore the properties of
these implementation relations and demonstrate that sdioco′′, while a natural extension, is
too strong. We define another implementation relation, that we call tsdioco, for the new
specification framework in which we identify traces rather than states and we provide an
algorithm to transform specifications with marked states into specifications with a set of traces.
In order to show that our new relations are suitable extensions of the previously mentioned

implementation relations, we prove that if no state of the specification is marked then sdioco

and dioco coincide while if all the states are marked then sdioco and ioco are equal. A similar
result is given for the tsdioco relation.
We give two notions of test case: a global test case provides a complete testing plan for the

whole system while a local test case contains a specific testing plan for each port, called a local
tester. We define the meaning of an implementation passing a (local or global) test case with
respect to a specification. A particular class of test cases is the one including those test cases
such that there does not exist a situation where a local tester has observed a trace after which
either it should apply an input or wait for output, depending on what has happened at the
other ports. The problem is that in such situations local testers do not know when they have to
apply their input, so that the restriction to controllable test cases is very relevant. We provide
a new notion of controllable test cases for the scenario-based framework and an algorithm to
decide whether a test case is controllable. This algorithm has low-order polynomial complexity
in terms of the size of the composition of the test case and the specification.
This paper represents an enhanced, revised, and extended version of [25]. We have included

new additional explanations and examples to illustrate most of the concepts given in the paper.
We have also added a running example. The implementation relation sdioco′ is entirely new
and we show how sdioco and sdioco′ relate. We explore properties of sdioco and sdioco′

and show that sdioco′ is not compositional in that an implementation might conform to
specifications s1 and s2 but not to specification s1 + s2 that can choose to behave like either
s1 or s2. It transpires that this is a result of an interesting property of these implementation
relations: the marking of states does not provide additional behaviour but instead provides
additional opportunities to observe aspects of the behaviour. We explore an implementation
relation sdioco′′ that is a natural strengthening of sdioco′. We show that sdioco′′ is too
strong: we can have a model s such that s does not conform to itself under sdioco′′. We also
explore the effect of changing the set of marked states when using sdioco and sdioco′ and

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe



5

show how some of the possible changes can be seen as forms of refinement. The alternative
view based on a set of traces is completely new and so, naturally, is the transformation from
a specification with marked states to a specification with traces. Finally, the part of the paper
dealing with controllable test cases has been extended and improved. In particular, we provide
a new algorithm to decide whether a test case is weakly controllable† and this did not appear
in [25].
Concerning related work, as we already mentioned, the introduction of scenarios is a novel

and useful extension of our previous work on dioco [22, 23]. As far as we know, previous
work on the distributed testing architecture did not consider any possibility similar to our
scenarios: either there was no control over the actions performed at different ports (such as
our dioco relation) or, by using synchronisation mechanisms, there was a complete control on
the order in which actions were performed at different ports. Our scenarios give the freedom
of determining how much control the specifier would like to have. This is the main novelty and
advantage of the approach reported in this paper. As already discussed, previous work has
defined an implementation relation mioco [24] but this implementation relation assumes that
global traces are observed. There has also been work on distributing testers [26] but again this
assumes that global observations are made. The notion of CSP refinement has been explored
for the case where observations are distributed [27] but this work does not consider scenarios.
Recent work has described models for distributed systems in which each transition has a partial
order involving inputs and outputs rather than a single input or output [28, 29]. Again, this
work did not consider the potential role of scenarios. Finally, there has been work on testing
systems that interact with their environment through queues [30] and this is conceptually
related to distributed testing since we cannot know the actual order of events that the SUT
produced since outputs are observed after they are sent.
The rest of the paper is structured as follows. In Section 2 we provide preliminary definitions.

Section 3 gives our formalism to define distributed systems with scenarios by marking states
and three implementation relations that use marked states, two of these implementation
relations being new. In Section 4 we present an alternative characterisation of the previous
framework by adding a set of traces to specifications. We show that the two approaches have
similar expressive power and relate them. In Section 5 we show how test cases are applied to
SUTs, study the notion of controllability in the new framework, and give a new implementation
relation based on controllable test cases, that is, tests cases where the order of application
of inputs at different ports is completely determined. Finally, in Section 6 we present our
conclusions and some lines for future work.

2. DEFINITION OF SYSTEMS AND IMPLEMENTATION RELATIONS

This section defines Input Output Transition Systems and associated notation, outlines the
distributed test architecture, and introduces the new formalism to specify systems with
scenarios in the distributed test architecture.

2.1. Input Output Transition Systems

We use Input Output Transition Systems to describe systems. These are labelled transition
systems in which we distinguish between inputs and outputs [20, 21].

Definition 1

An Input Output Transition System (IOTS) is defined by M = (Q, I,O, T, qin) in which Q
is a countable set of states, qin ∈ Q is the initial state, I is a countable set of inputs, O is
a countable set of outputs, and T ⊆ Q× (I ∪O)×Q is the transition relation. A transition

†A test case being weakly controllable differs from it being controllable in that we can take advantage of the
marking of the states.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe



6

(q, a, q′) means that from state q it is possible to move to state q′ with action a ∈ I ∪O. We
let IOTS(I, O) denote the set of IOTSs with input set I and output set O.
Any state q ∈ Q induces an IOTS derived from M by setting the initial state to q, that is,

abusing the notation we consider q = (Q, I,O, T, q).
We say that state q ∈ Q is quiescent if from q it is not possible to produce output without

first receiving input. We can extend T to Tδ by adding (q, δ, q) for each quiescent state q. We
let Act = I ∪O ∪ {δ} denote the set of actions. We say that M is input-enabled if for all q ∈ Q
and ?i ∈ I there exists q′ ∈ Q such that (q, ?i, q′) ∈ T . We say that M is output-divergent if it
can reach a state in which there is an infinite path that contains outputs only. ⊓⊔

Let us note that processes and states are effectively the same since we can identify a process
with its initial state and we can define a process corresponding to a state q ofM by making q the
initial state. Thus, in this paper we use states and processes and their notation interchangeably.
As stated in the introduction, we use the normal notation in which we precede the name of an
input by ? and the name of an output by !. We assume that all processes are input-enabled
and are not output-divergent. The intuition behind the first restriction is that systems should
be able to respond to any signal received from the environment. In fact, this restriction is
usually imposed on implementations, while specifications are sometimes allowed to break this
restriction. However, if we assume that all processes are input-enabled then some definitions
are simplified, while this restriction does not lead to a significant reduction in the expressive
power of specifications. Regarding the second restriction, in distributed testing quiescent states
can be used to combine the traces observed at each port and reach a verdict. This is because we
assume that quiescence can be observed and, in addition, the testers can choose to stop testing
in a quiescent state. If a process is output-divergent then it can go through an infinite sequence
of non-quiescent states, so that local traces cannot be combined. In addition, the presence of
a state from which we can take an infinite sequence of outputs is normally undesirable and is
similar to a livelock. Let us note that formal testing approaches based on ioco assume that
quiescence can be observed just as any regular output. This fact is better explained by using
timed extensions of ioco: if an output is not observed soon, then we can consider that we have
reached a quiescent state.
Traces are sequences of visible actions, possibly including quiescence, and are often called

suspension traces. Since they are the only type of trace we consider, we call them traces. The
following is standard notation in the context of ioco.

Definition 2

Let M = (Q, I,O, T, qin) be an IOTS.

1. If (q, a, q′) ∈ Tδ, for a ∈ Act, then we write q a−−→ q′.

2. We write q
σ

==⇒ q′ for σ = a1 . . . am ∈ Act∗ if there exist q0, . . . , qm ∈ Q, with q = q0 and

q′ = qm, such that for all 0 ≤ i < m we have that qi
ai+1

−−−−→ qi+1.

3. We write M
σ

==⇒ if there exists q′ ∈ Q such that qin
σ

==⇒ q′ and we say that σ is a trace

of M . We let T r(M) denote the set of traces of M .

Let q ∈ Q be a state and σ ∈ Act∗ be a trace. We consider

1. q after σ = {q′ ∈ Q|q
σ

==⇒ q′}

2. out(q) = {!o ∈ O ∪ {δ}|q !o−−→}
3. Given a set Q′ ⊆ Q, we consider that Q′ after σ = ∪q∈Q′ q after σ and out(Q′) =

∪q∈Q′out(q).

⊓⊔

In testing from a single-port IOTS it is usual to use the ioco relation [20, 21] to establish
what a good implementation is. Intuitively, an SUT correctly implements a specification if it
does not invent behaviours that are not allowed by the specification. Since inputs alone cannot
be used to differentiate two processes, implementation relations will usually depend on the set
of outputs that the compared systems can perform after a given sequence.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe



7

Figure 3. The local and distributed test architectures.

Definition 3

Given M,M ′ ∈ IOTS(I, O) we write M ′ ioco M if for every trace σ ∈ T r(M) we have that
out(M ′ after σ) ⊆ out(M after σ). ⊓⊔

Example 1

Let us consider the systems M1 and M2 (left-hand side and right-hand side of Figure 1,
respectively). We have that M2 is not a good implementation of M1 according to ioco. For
example, out(M2 after ?iL?iU ) = {!oL} 6⊆ {!oU} = out(M1 after ?iL?iU ). ⊓⊔

3. MULTI-PORT IOTSs WITH MARKED STATES

This section describes multi-port IOTSs with marked states and implementation relations
sdioco, sdioco′ and sdioco′′. It explores properties of these implementation relations and
discusses the notion of refinement through changing the set of marked states.

3.1. Introduction

The two standard (ISO) test architectures are shown in Figure 3. In the local test architecture
a global tester interacts with all of the ports of the SUT. In the distributed test architecture
there is a local tester at each port [11]. We use the term mIOTS when there are multiple
ports and we are considering marked states to denote scenarios; when there is only one port
we use the term single-port IOTS.

Definition 4

We will denote by P the set of ports. A marked IOTS (mIOTS) is a pair Mm = (M,Q),
where M = (Q, I,O, T, qin) is an IOTS and Q ⊆ Q is the set of marked states. We partition
I into pair-wise disjoint sets Ip, for all p ∈ P , containing those inputs that can be received
at port p. Similarly, O is partitioned into pair-wise disjoint sets Op, for all p ∈ P , containing
those outputs that can be produced at port p.
We let mIOTS(I, O) denote the set of mIOTSs with input set I and output set O. ⊓⊔

Inputs and outputs will often be labelled in a manner that makes their port clear. For
example, ?iU is an input at U and !oL is an output at L. In order to avoid unnecessary
definitions, we will use in the context of mIOTSs the concepts introduced in Definitions 1
and 2 for IOTSs. For example, if Mm = (M,Q) then we will say that σ is a trace of Mm if σ
is a trace of M .

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe



8

s1 s2 s3 s4

s5 s6 s7 s8

s9 s10 s11 s12

s13 s14 s15 s16

s17 s18

s19 s20

s21 s22 s23

s24 s25

s26 s27 s28

?app smear test !date smear test ?smear test

?app mammography

?app ultrasound

!date mammography !date ultrasound

?mammography ?ultrasound

?app ultrasound

!date ultrasound

?app mammography

!date mammography

?ultrasound ?mammography

!test lab results

!test lab results!test image results

?app X ray

?app blood test

!date X ray !date blood test

?X ray ?blood test

!test image results !test lab results

?app doctor

!date doctor

?diagnosis

?test presc

?prescription

Figure 4. Specification of the appointments protocol.

Example 2

The specification depicted in Figure 4 represents a simplified version of the diagnosis protocol
of a hospital management system. This protocol improves the response time to the demands
of patient care because it automates the process of collecting, collating, and retrieving patient
information. We focus on the functionality associated with the process that begins at the
moment a patient makes a date with the doctor and receives a diagnosis. The global idea
is represented in Figure 5. A patient visits the doctor that can either prescribe some tests
or diagnose an illness. In the first case, the patient must go to the laboratory and/or image
diagnosis section and make the corresponding appointments. Once the results of the tests are
available, the patient will visit the doctor. If the results of the tests provide enough information,
then the doctor will diagnose the patient and prescribe the appropriate medication. However,

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe



9

Figure 5. Overview of a hospital management system.

the doctor may need more tests to give a final diagnosis and then the patient will begin the
cycle again.
The specification is in fact based on the protocol that a patient must follow in most of the

hospitals of the Spanish Public Health-Care System. Thus, it is very close to a real system. The
system presents three different ports that correspond to the laboratory, the image diagnosis
section, and the surgeries. All of them are connected to the central server where the information
related to each patient is stored. In order to simplify the presentation we only consider three
possible batteries of tests. The first one requires only a blood test, the second one an X-
ray test, and the last one consists of an ultrascan, a mammography and a smear test. The
appointments for the different kind of services (laboratory tests, image tests and surgeries)
are made at different offices. Once the doctor prescribes the tests, the patient must go to the
corresponding office(s) for making the appointments. After the test results are received in the
doctor’s office and the patient makes an appointment, the patient will visit the doctor for a
diagnosis.
The lines of the transitions associated to the different ports are drawn in different ways:

solid for doctor’s office port, dashed for image diagnosis office and dotted for laboratory office.
Marked states have a double circle while the initial state s21 is shaded. As we previously
commented, marked states restrict the possible behaviours of the system. In our example, the
system is not allowed to produce and register the results of tests prescribed by the doctor for
a patient, before the patient makes the corresponding appointments for each of the tests and
the tests are performed. This requirement is represented by means of different scenarios. ⊓⊔

In order to be consistent with the ioco theory, we consider that specifications and
implementations are defined by using the same formalism, that is, input-enabled, non output-
divergent mIOTSs. However, we will not use the set of marked states associated with

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe



10

implementations (equivalently, we can consider that it is empty). The idea is that if the
implementation is treated as a black-box, we cannot know its current state. Therefore, we
cannot know whether that state belongs to the set of marked ones.
A global tester observes all the ports and so observes a trace in Act∗, called a global trace.

However, we will usually have a set of local testers. Therefore, we will use the local traces that
can be obtained from a global trace.

Definition 5

Let σ ∈ Act∗ and p ∈ P . We let πp(σ) denote the projection of σ onto p; this is called a local

trace. The function πp can be defined by the following rules.

1. πp(ǫ) = ǫ.
2. If z ∈ (Ip ∪Op ∪ {δ}) then πp(zσ) = zπp(σ).
3. If z ∈ Iq ∪Oq, for q 6= p, then πp(zσ) = πp(σ).

Given global traces σ, σ′ ∈ Act∗ we write σ ∼ σ′ if σ and σ′ cannot be distinguished
in the distributed test architecture. Formally, σ ∼ σ′ if and only if for all p ∈ P we have
πp(σ) = πp(σ

′). ⊓⊔

It is trivial to prove that ∼ is an equivalence relation. This relation will play a crucial role in
defining implementation relations for the distributed architecture: We should always compare
traces up to the ∼ relation. Intuitively, we have σ ∼ σ′ if the order between actions when we
restrict to each of the ports is kept. For example, ?iU !oU?iL ∼?iU?iL!oU while none of these
traces is equivalent to !oU?iU?iL. The idea is that two global traces are equivalent under ∼ if
they look identical to all of their testers. Next we define the dioco implementation relation
for input-enabled specification [22].

Definition 6

Let MSpec
m ,MSUT

m ∈ mIOTS(I, O). We write MSUT
m dioco MSpec

m if for every trace σ such

that MSUT
m

σδ
==⇒ , there exists a trace σ′ ∈ T r(MSpec

m ) such that σ′ ∼ σ. ⊓⊔

Only traces reaching quiescent states, that is, traces ending with δ, are considered in dioco

since these allow us to put together the local traces at a point where local testers know that
the component that they are testing is stable [22].

Example 3

Let us consider the specification presented in Example 2. If we replace some of its transitions
by the subgraph depicted in Figure 6 we obtain an alternative protocol. This new protocol does
not conform to the original one with respect to ioco, since there has been a change concerning
the order in which certain actions are performed. However, this modification is not relevant if
we take into account that this change does not modify the original causality relations between
actions at the same subsystem and, therefore, this alternative protocol does conform to the
original one if we use dioco.
At a more abstract level, let us consider again the processesM1 andM2 given in the left-hand

side and right-hand side of Figure 1. We have that M2 dioco M1. Even though M2 has traces
that cannot be performed by M1, for example, ?iL?iU !oL, we overcome this problem as soon as
we let M1 simulate each (quiescent) trace ofM2 up to ∼. For instance, the previous problematic

trace of M2 can be simulated by ?iU?iL!oL, a trace of M1, since ?iL?iU !oL ∼?iU?iL!oL. ⊓⊔

Let us note that we have not used marked states in the previous definition since this is a
feature relevant only for our new relation. Therefore, dioco applies in the same way tomIOTS
or its associated IOTS.

3.2. An implementation relation using marked states

As we discussed in the introduction, the dioco relation does not capture synchronisation points
since at such points we have to check that the traces that reach marked states are implemented,
up to the ∼ relation. We can define an implementation relation for mIOTSs that uses marked
states.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe



11

s1 s2

s7 s8

s′7 s′8

s′′7 s′′8

s11 s12

s15 s16

?app smear test

?app mammography

!date smear test

?smear test

!date mammography

?mammography

?app ultrasound

!date smear test

?smear test

!date ultrasound

?ultrasound

Figure 6. A variant of the appointments protocol.

Definition 7

Let MSpec
m ,MSUT

m ∈ mIOTS(I, O), where MSpec
m = (M,Q). We write MSUT

m sdioco MSpec
m if

for every trace σ such that MSUT
m

σδ
==⇒ , there exists a trace σ′ = a1, . . . , as ∈ T r(MSpec

m ) such
that the following two conditions hold:

• σ′ ∼ σ.
• There is a derivation MSpec

m

a1−−→ q1
a2−−→ q2 · · · qs−1

as−−→ qs in which J = {j1, . . . , jr} ⊆
{1, . . . , s} is the maximal set of indexes such that qji ∈ Q for all 1 ≤ i ≤ r and

σ′
1, . . . , σ

′
r+1 are the sequences such that σ′ = σ′

1 · · ·σ
′
r+1 and MSpec

m

σ′

1

==⇒ qj1
σ′

2

==⇒

qj2 · · · qjr
σ′

r+1

===⇒ qs. In addition, σ = σ1 . . . σr+1 for some sequences σ1, . . . , σr+1 such
that for all 1 ≤ j ≤ r + 1 we have that σ′

j ∼ σj .

⊓⊔

In the previous definition, if the initial state of the specification is marked we assume that
an additional index j0 is added to J so that qj0 corresponds to the first occurrence of the

initial state, so that we have a derivation such as qj0
σ′

1

==⇒ q1
σ′

2

==⇒ q2 · · · . Let us note that J
is the set of indexes corresponding to the marked states of the derivation. Therefore, it may
happen that there exist several indexes corresponding to the same state of the specification.
Intuitively, we have thatMSUT

m is a good implementation ofMSpec
m under the sdioco relation

if in addition to not inventing any behaviours (first condition, similar to dioco) we have that
marked states that can be traversed in the specification while performing the analysed trace
are respected in the implementation. In other words, the second condition ensures that all of
the subtraces that MSpec

m performs to complete the whole trace can also be performed, up
to ∼, by MSUT

m . It is sufficient for this condition to hold for one possible way in which MSpec
m

can perform the trace while, due to possible nondeterminism, there may be several possible
ways in which MSpec

m can perform the trace. Another possibility would be to consider that

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe



12

the specifier has defined a set of behaviours, that include markings, and wants all of them to
be implemented. In this case, the there exists path quantification should be replaced by a for

all path statement, and this would lead to another implementation relation. In Section 3.3 we
explore two such ways of strengthening sdioco.

Example 4

We can use our running example to show that the implementation relation sdioco is
stronger than dioco. For example, let us consider an implementation where the original

transitions s5
!date X ray

−−−−−−−−−−→ s9 and s13
!test image results

−−−−−−−−−−−−−−−→ s21 are substituted by the transitions

s5
!test image results

−−−−−−−−−−−−−−−→ s9 and s13
!date X ray

−−−−−−−−−−→ s21. This implementation does not conform to
the specification under sdioco. That it is due to the fact that the marked state requires
the transition labelled by !date X ray to be performed before the transition labelled by
!test image results. In contrast, if we consider the dioco conformance relation, then this
implementation conforms to the specification because the exchange affects transitions in
different ports, that is, it does not modify the order in which the actions are performed in
the ports. However, this implementation would allow the system to produce the results of an
X-ray test even before the patient has received the date to get the test. This example clearly
shows that even though dioco has its merit as an implementation relation for distributed
systems, it also has drawbacks if we need to consider situations where the order of the actions
performed at different ports is relevant. ⊓⊔

The next result indicates that our new relation sdioco is an appropriate extension of
previous relations. Specifically, if we consider that none of the states is marked we have dioco
while if all the states are marked then we have ioco. This result represents a good sanity

check to increase our confidence regarding the suitability of sdioco as a good implementation
relation for distributed systems.

Proposition 1

Let MSpec
m ,MSUT

m ∈ mIOTS(I, O), where MSpec
m = (M,Q) and M = (Q, I,O, T, qin). Then,

• If Q = Q then MSUT
m ioco MSpec

m if and only if MSUT
m sdioco MSpec

m .
• If Q = ∅ then MSUT

m dioco MSpec
m if and only if MSUT

m sdioco MSpec
m .

Proof

We start by assuming that Q = Q and prove that MSUT
m ioco MSpec

m if and only if
MSUT

m sdioco MSpec
m .

First, we assume that MSUT
m ioco MSpec

m and prove that MSUT
m sdioco MSpec

m , but this
follows immediately by noting that since MSUT

m ioco MSpec
m and MSpec

m and MSUT
m are input

enabled we trivially have that every trace of MSUT
m is also a trace of MSpec

m .
Now, let us assume that MSUT

m sdioco MSpec
m and that σ is a trace of MSpec

m and
so we have to prove that out(MSUT

m after σ) ⊆ out(MSpec
m after σ). Let us suppose that

a ∈ out(MSUT
m after σ) and so that MSUT

m

σa
==⇒ . Since MSUT

m sdioco MSpec
m we must have

some σ′ ∼ σa = a1, . . . , ar such that MSpec
m

σ′

==⇒ . In addition, since all states of MSpec
m are

marked, there exist sequences σ′
1, . . . , σ

′
r such that MSpec

m

σ′

1...σ
′

r

=====⇒ and for all 1 ≤ j ≤ r we

have that σ′
j ∼ aj . Therefore, for all 1 ≤ j ≤ r we have σ′

j = aj . Thus, M
Spec
m

σa
==⇒ and so

a ∈ out(MSpec
m after σ) as required.

The second part, which is that if Q = ∅ then MSUT
m dioco MSpec

m if and only if
MSUT

m sdioco MSpec
m , follows from the definitions of dioco and sdioco. ⊓⊔

Intuitively, quiescent states are checked in the definition of dioco since a quiescent state
of the SUT has to be simulated by a quiescent state of the specification; otherwise, the SUT
would be able to perform the δ output action while the specification could not. It may thus
appear that if we only mark quiescent states we simply obtain dioco but this is not the case.

Example 5

Let us consider Figure 7 with an implementation MSUT
m , given in the left-hand side, and a

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe



13

?iU

?iL

!oU

?iL

?iU

?iU/?iL

?iU/?iL

?iL

?iU

!oU

?iU

?iL

?iU/?iL

?iU/?iL

Figure 7. Quiescence alone does not capture marked states.

specification MSpec
m , given in the right-hand side. The marked states of MSpec

m coincide with its
quiescent states. We obviously haveMSUT

m dioco MSpec
m . If we consider the trace σ =?iU?iL!oU

of MSUT
m we have that this trace corresponds, up to ∼, only to the trace σ′ =?iL?iU !oU of

MSpec
m . Since the state reached in MSpec

m after performing ?iL is marked, we have to decompose
σ in such a way that σ1 ∼?iL, σ2 ∼?iU !oU and σ = σ1σ2. Since this is not possible, we do not
have that MSUT

m sdiocoMSpec
m . ⊓⊔

3.3. Alternative stronger implementation relations

Under sdioco, for each quiescent trace σ in the implementation there must be an equivalent
trace σ′ in the specification such that there is a derivation of the specification with trace σ′

that is consistent with σ′ given the synchronisation points. There may be several possible
derivations of the specification with trace σ and we could instead say that each corresponds
to a possible set of synchronisations that might occur and we require that σ is consistent with
σ′ for all of these. This results in the following implementation relation.

Definition 8

Let MSpec
m ,MSUT

m ∈ mIOTS(I, O), where MSpec
m = (M,Q). We write MSUT

m sdioco
′ MSpec

m

if for every trace σ such that MSUT
m

σδ
==⇒ , there exists a trace σ′ = a1, . . . , as ∈ T r(MSpec

m )
such that the following two conditions hold:

• σ′ ∼ σ.
• For every derivation MSpec

m

a1−−→ q1
a2−−→ q2 · · · qs−1

as−−→ qs in which J = {j1, . . . , jr} ⊆
{1, . . . , s} is the maximal set of indexes such that qji ∈ Q for all 1 ≤ i ≤ r and

σ′
1, . . . , σ

′
r+1 are the sequences such that σ′ = σ′

1 · · ·σ
′
r+1 and MSpec

m

σ′

1

==⇒ qj1
σ′

2

==⇒

qj2 · · · qjr
σ′

r+1

===⇒ qs we have that σ = σ1 . . . σr+1 for some sequences σ1, . . . , σr+1 such
that for all 1 ≤ j ≤ r + 1 we have that σ′

j ∼ σj .

⊓⊔

Proposition 2

Let MSpec
m ,MSUT

m ∈ mIOTS(I, O), where MSpec
m = (M,Q) and M = (Q, I,O, T, qin). If

MSUT
m sdioco′ MSpec

m then we must have that MSUT
m sdioco MSpec

m . However, we might
have that MSUT

m sdioco MSpec
m but that MSUT

m sdioco′ MSpec
m does not hold.

Proof

The first part follows immediately from the definitions since the only difference is that
under sdioco

′ we require all possible derivations with a trace σ′ to satisfy the required
condition while under sdioco it is sufficient for one such derivation to satisfy this condition.
For the second part, let us consider the processes in Figure 8, in which the implementation

MSUT
m is on the left-hand side and the specification MSpec

m is on the right-hand side. Let

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe



14

!oL

!oU

!oU

!oL

!oU

!oL

Figure 8. Processes that are not related under sdioco′ but are related under sdioco.

us also consider the trace σ =!oL!oU of the implementation. This is allowed by MSpec
m under

sdioco since it has a trace σ′ =!oU !oL such that σ′ ∼ σ and a derivation with σ′ that includes
no marked states. However, under sdioco

′ we need to consider both possible derivations of
MSpec

m with trace σ′ and one has a marked state after !oU . We can therefore see that MSUT
m

does not conform to MSpec
m under sdioco′ as required. ⊓⊔

This example illustrates an interesting point. We can see the specification as being of the
form s1 + s2 in which s1 is the left-hand branch of the specification and so can do !oU !oL but
has the state after !oU marked, while s2 is the right-hand branch of the specification and so
can do !oU !oL and has no marked states. Clearly, under sdioco and sdioco′ we have that if
an implementation conforms to s1 then it must conform to s2 but the converse is not the case.
In this case, an implementation conforms to s1 + s2 under sdioco if and only if it conforms
to s2 under sdioco. In addition, an implementation conforms to s1 + s2 under sdioco′ if and
only if it conforms to s1 under sdioco′.
Naturally, we can strengthen sdioco′ further by using universal quantification over the

σ′ ∼ σ that are traces of the specification. This leads to the following implementation relation.

Definition 9

Let MSpec
m ,MSUT

m ∈ mIOTS(I, O), where MSpec
m = (M,Q). We write MSUT

m sdioco′′ MSpec
m

if for every trace σ such that MSUT
m

σδ
==⇒ , there exists a trace σ′ ∈ T r(MSpec

m ) such that σ′ ∼ σ
and for all σ′ ∼ σ such that σ′ = a1, . . . , as is a trace of MSpec

m , the following condition holds:

• For every derivation MSpec
m

a1−−→ q1
a2−−→ q2 · · · qs−1

as−−→ qs in which J = {j1, . . . , jr} ⊆
{1, . . . , s} is the maximal set of indexes such that qji ∈ Q for all 1 ≤ i ≤ r and

σ′
1, . . . , σ

′
r+1 are the sequences such that σ′ = σ′

1 · · ·σ
′
r+1 and MSpec

m

σ′

1

==⇒ qj1
σ′

2

==⇒

qj2 · · · qjr
σ′

r+1

===⇒ qs we have that σ = σ1 . . . σr+1 for some sequences σ1, . . . , σr+1 such
that for all 1 ≤ j ≤ r + 1 we have that σ′

j ∼ σj .

⊓⊔

Now let us consider the specification given in Figure 9 and the trace σ =!oL!oU of this
specification. Then, the specification also contains the trace σ′ =!oU !oL where the state after
!oU is marked. If we consider σ and σ′ in Definition 9 we see that the specification does not
conform to itself under sdioco′′. Thus, sdioco′′ is not a suitable implementation relation.

3.4. Refinement through changing marked states

The set of marked states defines the ability of the environment to make additional observations
through synchronising. Thus, we change the observational power when we change the set of
marked states. This gives us a simple notion of refinement through changing the set of marked
states. The following results are clear from the definitions of sdioco and sdioco′.

Proposition 3

Let MSpec
m ,MSUT

m ∈ mIOTS(I, O), where MSpec
m = (M,Q). If MSUT

m sdioco MSpec
m and

Q′ ⊆ Q then we have that MSUT
m sdioco (M,Q′). ⊓⊔

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe



15

!oU

!oL

!oL

!oU

Figure 9. A specification that shows the unsuitability of sdioco′′.

Proposition 4

Let MSpec
m ,MSUT

m ∈ mIOTS(I, O), where MSpec
m = (M,Q). If MSUT

m sdioco′ MSpec
m and

Q′ ⊆ Q then we have that MSUT
m sdioco′ (M,Q′). ⊓⊔

These results concern what happens when we reduce the number of marked states. At times
we will want to increase the set of marked states. We now investigate the situation in which
an implementation conforms to both (M,Q1) and (M,Q2), under sdioco or sdioco′ for some
Q1 6= Q2. The following is clear from the definitions of sdioco and sdioco′ and allows us to
increase the set of marked states in some circumstances.

Proposition 5

Let MSUT
m ∈ mIOTS(I, O) be an implementation and (M,Q1), (M,Q2) ∈ mIOTS(I, O) be

specifications. Further, let us suppose that for every trace σ ∈ (I ∪O ∪ {δ})∗ we have that at
least one of the following hold:

1. There does not exist σ′ ∼ σ such that M has a derivation with trace σ′ that includes a
state from Q1.

2. There does not exist σ′ ∼ σ such that M has a derivation with trace σ′ that includes a
state from Q2.

If Q3 = Q1 ∪ Q2 then we have the following results.

1. If MSUT
m sdioco (M,Q1) and MSUT

m sdioco (M,Q2) then MSUT
m sdioco (M,Q3).

2. If MSUT
m sdioco′ (M,Q1) and MSUT

m sdioco′ (M,Q2) then MSUT
m sdioco′ (M,Q3).

⊓⊔

Naturally, there will be other conditions under which we can extend the set of marked states
but this is a topic of future work. Let us note that if we do not place restrictions on Q1 and
Q2 then this result need not hold.

Proposition 6

Let MSUT
m ∈ mIOTS(I, O) be an implementation and (M,Q1), (M,Q2) ∈ mIOTS(I, O) be

specifications. If Q3 = Q1 ∪ Q2 then we have the following results.

1. It is possible that MSUT
m sdioco (M,Q1) and MSUT

m sdioco (M,Q2) but that we do
not have that MSUT

m sdioco (M,Q3).
2. It is possible that MSUT

m sdioco′ (M,Q1) and MSUT
m sdioco′ (M,Q2) but that we do

not have that MSUT
m sdioco′ (M,Q3).

3. It is possible that MSUT
m sdioco′ (M,Q1) and MSUT

m sdioco′ (M,Q2) but that we do
not have that MSUT

m sdioco (M,Q3).

Proof

For all the parts we can consider the implementation and two specifications s1 and s2
given in Figure 10. Let us consider the trace σ =!o1!o2!o3 of the implementation. We have
that this is acceptable for s1 by examining the path with trace σ1 =!o1!o3!o2 and no marked
states. We have that this is acceptable for s2 by examining the path with trace σ2 =!o2!o1!o3

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe



16

!o1

!o2

!o3

!o1

!o3

!o2

!o2

!o1

!o3

!o1

!o3

!o2

!o2

!o1

!o3

Figure 10. An implementation (left) and two specifications s1 (center) and s2 (right).

and no marked states. Further, we only have one derivation with trace σ1 and only one
derivation with trace σ2. It is therefore clear that we have that the implementation conforms
to both s1 and s2 under sdioco and sdioco′. However, if we take the union of the sets of
marked states then we find that σ1 and σ2 pass through marked states and this results in the
implementation failing to conform under sdioco and also under sdioco′. The result therefore
follows. ⊓⊔

The proof of this result reveals an interesting feature of sdioco′: it is not compositional
under choice. Specifically, we have that MSUT

m sdioco
′ s1 and MSUT

m sdioco
′ s2 but we

do not have that MSUT
m sdioco′ s1 + s2, where s1 + s2 denotes the process that can choose

to behave like either s1 or s2. This might appear to be counter-intuitive: typically, if we
add behaviours to the specification then we can allow additional implementations to conform
to the new specification but do not eliminate conforming specifications. What is happening
here is that the marking of states does not represent behaviours of the specification but the
opportunity for the environment to make additional observations regarding the behaviour of
the implementation. By adding such opportunities we can make it harder for an implementation
to conform to the specification.

4. AN ALTERNATIVE CHARACTERISATION OF SCENARIOS

A scenario is any sequence of events that takes the specification to one of its marked
states. More precisely, scenarios are associated with sequences that bring the specification
from one marked state to another one without traversing any marked states. Therefore, it
should be possible to alternatively define our new relation by associating a set of traces
with a specification. In this section we give an alternative characterisation of scenarios in
the distributed architecture based on a set of traces.

4.1. Multi-port IOTSs with scenarios based on traces

We use the term tIOTS when we are describing systems with multiple ports and we are
considering a set of traces to denote scenarios. Intuitively, the set of traces associated with a
machine represents the behaviours allowed when scenarios are considered.

Definition 10

A traced IOTS (tIOTS) is a pair Mm = (M, T ), where M = (Q, I,O, T, qin) is an IOTS and
T ⊆ (I ∪O)∗ is a set of traces. We partition I into pair-wise disjoint sets Ip, for all p ∈ P ,
containing those inputs that can be received at port p. Similarly, O is partitioned into pair-wise
disjoint sets Op, for all p ∈ P , containing those outputs that can be produced at port p.
We let tIOTS(I, O) denote the set of tIOTSs with input set I and output set O. ⊓⊔

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe



17

In the previous definition, the set T will be used to represent the traces after which the
users or tests can synchronise. We will use in the context of tIOTSs the concepts introduced
in Definitions 1 and 2 for IOTSs. In addition, we will adopt the same hypotheses over
specifications and implementations, that is, they are defined using the same formalism, they
are input-enabled and non output-divergent tIOTSs, and the set of traces is empty for
implementations.
As we discussed in the introduction, the dioco relation does not capture synchronisation

points, or alternatively traces defining scenarios, since at such points we have to check that
the traces that reach marked states are implemented, up to the ∼ relation. Therefore, a
new implementation relation among mIOTSs, that we called sdioco, was introduced in the
previous section. Next, we define a similar implementation relation among tIOTSs.

Definition 11

Let MSpec
t ,MSUT

t ∈ tIOTS(I, O), where MSpec
t = (M, T ). We write MSUT

t tsdioco MSpec
t if

for every trace σ such that MSUT
t

σδ
==⇒ , there exists a trace σ′ ∈ T r(MSpec

t ) such that σ′ ∼ σ
and σ ∈ T . ⊓⊔

In addition to the first condition that establishes that the implementation cannot invent any
behaviours, the second condition in the definition of tsdioco ensures that the trace performed
in the implementation is accepted by the specification. There exist several ways in which a
trace σ′ that can be performed by MSpec

m is allowed to be produced by an implementation.
Those behaviours that are accepted are collected in the set of traces T .
The next result indicates that our new relation is an appropriate extension of previous

relations. Specifically, if we consider that only the traces of the specification are included in T
then we have ioco, while if the set T contains all the traces of the specification that reach a
quiescent state and all the traces related to them up to ∼, we have dioco. The proof of the
result is very similar to the proof of Proposition 1 and therefore we omit it.

Proposition 7

Let MSpec
t ,MSUT

t ∈ mIOTS(I, O), where MSpec
t = (M, T ) and M = (Q, I,O, T, qin). Then,

• If T = T r(MSpec
m ) then MSUT

t ioco MSpec
t if and only if MSUT

t tsdioco MSpec
t .

• If T = {σ′|∃σ ∈ (I ∪O)∗ : σ ∼ σ′ ∧MSpec
t

σδ
==⇒} then MSUT

t dioco MSpec
t if and only

if MSUT
t tsdioco MSpec

t .

⊓⊔

Example 6

Let us consider the two systems depicted in Figure 11: M5 is given on the left-hand side while
M6 is given on the right-hand side. We have M6 dioco M5. Depending on the set of traces
associated to M5 we can have the conformance of M6 with respect to tsdioco or not. If we
consider that the associated set contains all the possible traces, that is, the set T1, then we know
that tsdioco and dioco coincide and therefore we have (M6, ∅) tsdioco(M5, T1). However, if
we consider the set T2 then we do not have the conformance of (M6, ∅) with respect to (M5, T2)
since, for example, the trace ?iL!oL!oU does not belong to T2. ⊓⊔

4.2. Transformation from mIOTSs to tIOTSs

In this section we present an algorithm to transform an mIOTS into an equivalent tIOTS.
Intuitively, the algorithm considers all the derivations in the mIOTS that reach a quiescent
state. Then, the trace associated to each derivation is divided into subtraces taking into account
the marked states in the derivation and all the possible traces that can be obtained by the
concatenation of indistinguishable subtraces, up to the ∼ relation, are produced. Algorithm 1
is shown in Figure 12. We will denote by trans(Mm) the tIOTS obtained from the application
of the algorithm to an mIOTS Mm.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe



18

?iL

!oU

!oL

?iU

iU/?iL

?iU/?iL

?iU/?iL

?iL

!oL

!oU

?iU

?iU/?iL

?iU/?iL

?iU/?iL

R1 = ?iUR1|ǫ
R2 = ?iLR21

R21 = ?iUR21|?iLR21|!oUR22

R22 = ?iUR22|?iLR22|ǫ
R3 = !oLR31

R31 = ?iUR31|?iLR31|ǫ

T1 = (I ∪O)∗

T2 = {σ′
1σ

′
2σ

′
3|∃σi ∈ Ri : σi ∼ σ′

i}

Figure 11. (M5, T1) and M6 are related under tsdioco but (M5, T2) and M6 are not related.

Input : An mIOTS Mm = (M,Q).
Output : A tIOTS Mt = (M, T ).

{Initialisation}
Let Trδ be the set of derivations of Mm ending in quiescence and without occurrences of δ;
{Main loop}

For each derivation Mm
a1−−→ q1

a2−−→ q2 · · · qs−1

as−−→ qs ∈ Trδ do

• σ := a1;
• For j := 1 to s− 1 do

If qj ∈ Q then tr∼j := {σ′|σ′ ∼ σ} ; σ := aj+1

else tr∼j := {ǫ}; σ := σ · aj+1;

• tr∼s := {σ′|σ′ ∼ σ};

T := tr∼1 · tr∼2 . . . tr∼s ;
output (M, T ) and terminate.

Figure 12. Algorithm 1: translation from mIOTSs to tIOTSs.

Theorem 1

Let Mm = (M,Q) ∈ mIOTS(I, O) and I = (MI , ∅) be an implementation. Then,
I sdioco Mm if and only if I tsdioco trans(Mm).
Proof

First, we assume that I sdioco Mm and prove that I tsdioco trans(Mm). Therefore,

we need to prove that for every trace σ such that I
σδ

==⇒ , there exists a trace σ′ ∈ T r(M) such
that σ′ ∼ σ and σ ∈ T . The first required condition follows immediately from the definitions
of sdioco and tsdioco. Now, let us assume that σ is a trace that can be performed by
I and so, we have to prove that σ ∈ T . Since I sdioco Mm we have that there exists a

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe



19

derivation M
a1−−→ q1

a2−−→ q2 · · · qs−1

as−−→ qs in which J = {j1, . . . , jr} ⊆ {1, . . . , s} is the set
of indexes such that qji ∈ Q for all 1 ≤ i ≤ r and σ′

1, . . . , σ
′
r+1 are the sequences such that

σ′ = σ′
1 · · ·σ

′
r+1 and M

σ′

1

==⇒ qj1
σ′

2

==⇒ qj2 · · · qjr
σ′

r+1

===⇒ qs. By applying the algorithm given
in Figure 12 we generate, for all 1 ≤ i ≤ r, the sets tr∼ji = {σ′′

i |σ
′′
i ∼ σ′

i} and the additional
set tr∼s = {σ′′

r+1|σ
′′
r+1 ∼ σ′

r+1}. In addition, we have that σ = σ1 . . . σr+1 for some sequences
σ1, . . . , σr+1 such that for all 1 ≤ j ≤ r + 1 we have that σ′

j ∼ σj . Therefore, by construction,
we have that σi ∈ tr∼ji for all 1 ≤ j ≤ r and σr+1 ∈ tr∼s due to the fact that T is obtained by
the concatenation of the traces in these sets, in particular, we have that σ = σ1 . . . σr+1 is a
trace in T . Therefore, I tsdioco trans(Mm).
Now, let us assume that I tsdioco trans(Mm) and we will prove that I sdioco Mm. Let us

consider a trace σ such that I
σδ

==⇒ and σ ∈ T . Therefore, we have that σ = σ1 . . . σr for some

sequences σ1, . . . , σr such that for some derivation M
σ′

1

==⇒ q1
σ′

2

==⇒ q2 · · · qr−1

σ′

r

==⇒ qr where
qj ∈ Q for all 1 ≤ j < r and σ′

j ∼ σj for all 1 ≤ j ≤ r. Therefore, I sdioco Mm. ⊓⊔

5. DEFINITION AND APPLICATION OF TEST CASES: GLOBAL VS. LOCAL

A test case is a process with a finite number of states that interacts with the SUT and it usually
corresponds to a test objective: it may be intended to examine some part of the behaviour of
the SUT. When designing test cases it is thus simpler to consider global test cases, that is, test
cases that can interact with all of the ports of the system. However, in the distributed test
architecture we do not have a global tester that can apply a global test case: instead we place
a local tester at each port. The local tester at port p only observes the behaviour at p and can
only send input to the SUT at p. Therefore, a local test case is a collection of local testers,
one at each port. The idea is that we will have a global test case that we will use to produce
a local test case, so that each of its components can be applied by a local tester. Therefore,
a global test case is an mIOTS that has the same input and output sets as its associated
specification; a local test case is a tuple containing a test case for each of the available ports
and has the inputs and outputs sets corresponding to its port.
In this section we consider only specifications with marked states. The adaption of the

concepts introduced in this section to the formalism introduced in Section 4 is straightforward
and we therefore omit it.

Definition 12

Let Mm ∈ mIOTS(I, O) and P = {1, . . . , n} be the set of ports. A global test case t for Mm is
a process from mIOTS(I, O ∪ {δ}). A local test case for Mm is a tuple tl = (t1, . . . , tn) such
that for all p ∈ P we have that tp ∈ mIOTS(Ip, Op ∪ {δ}). Each of the components of a local
test case is called a local tester.
As usual, (global or local) test cases cannot block output from the SUT: if the SUT produces

an output then the test case should be able to record this situation. Thus, for every state q of a
global test case t (resp. local tester tp) and output !o ∈ O ∪ {δ} (resp. output !op ∈ Op ∪ {δ})

we have that q !o−−→ (resp. q
!op
−−→).

We denote by ⊥ the global test case that cannot send input to the SUT and thus whose
traces are all elements of (O ∪ {δ})∗. We let ⊥p denote the corresponding local tester for port
p, whose set of traces is (Op ∪ {δ})∗.
As usual, global test cases and local testers have a tree-like structure, that is, the induced

graph is acyclic except for those loops created by occurrences of ⊥ and ⊥p. ⊓⊔

In Figure 13 we show a global test case for our running example and its three associated
local testers, one local tester for each of the three considered ports. In the graph, arrows still
indicate the port where the actions are performed, with the exception of the double arrow
appearing in the global test case that indicate outputs at any port.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe



20

O ?app doctor

O1 !date doctor

O ?test presc

O ?app smear test

O2 !date smear test

O ?app ultrasound

O ?smear test

O3 !date ultrasound

O ∪ {δ}

O ∪ {δ}

O ∪ {δ}

O ∪ {δ}

O ∪ {δ}

O ∪ {δ}

O ∪ {δ}

O ∪ {δ}

OD ?app doctor

OD1
!date doctor

OD ?test presc

OD ∪ {δ}

OD ∪ {δ}

OD ∪ {δ}

OL ?app smear test

OL1
!date smear test

OL ?smear test

OL ∪ {δ}

OL ∪ {δ}

OL ∪ {δ}

OI ?app ultrasound

OI1 !date ultrasound

OI ∪ {δ}

OI ∪ {δ}

whereO is the total set of outputs of the system, O1 = O \ {!date doctor} ∪ {δ}, O2 = O \ {!date smear} ∪ {δ},

O3 = O \ {!date ultrasound} ∪ {δ}, OD, OL and OI are the sets of outputs in the ports of the doctor

office, the laboratory and the image diagnosis office, respectively, OD1
= OD \ {!date doctor} ∪ {δ}, OL1

=

OL \ {!date smear} ∪ {δ}, and OI1
= OI \ {!date ultrasound} ∪ {δ}.

Figure 13. Global (left) and local (right) test cases.

The following function, an adaption of the one given in [22], takes a global test case and
returns local testers. In this definition, for a set A we have that 2A denotes the powerset of A.
The approach used is similar to the standard method for constructing a deterministic finite
automata from a non-deterministic one.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe



21

Definition 13

Let P be a set of ports, t = (Q, I,O ∪ {δ}, T, qin) be a global test case and p ∈ P be a port. We
have that localp(t) denotes the local tester at p defined as (2Q, Ip, Op ∪ {δ}, T ′, Qin), where

1. Qin = {q ∈ Q|∃σ ∈ (I ∪O ∪ {δ})∗.qin
σ

==⇒ q ∧ πp(σ) = ǫ}.
2. For a ∈ Ip ∪Op ∪ {δ}, (Q1, a,Q2) ∈ T ′ if and only if Q2 is the set of states q2 ∈ Q such

that there exists q1 ∈ Q1 and σ ∈ (I ∪O ∪ {δ})∗ such that πp(σ) = a and q1
σ

==⇒ q2.

⊓⊔

The first rule says that the initial state of localp(t) is the set of states reachable from the
initial state of t without observations at p. The second rule says that if Q1 is a set of states
of localp(t) then action a ∈ I ∪O ∪ {δ} takes Q1 to the set of states that are reachable from
states of Q1 using sequences in which the only observation at p is the event a.
The previous method can produce local testers with many states. Therefore, if we need

to actually construct local test cases we can use an adaption of the algorithm given in [31],
an extended version of the original framework [23, 22], to construct local test cases from
controllable global test cases that works in low-order polynomial time.
Next we introduce a notion of parallel composition between a system and a (global or local)

test case.

Definition 14

Let P = {1, . . . , n} be a set of ports, Mm ∈ mIOTS(I, O), t be a global test case for Mm and
tl = (t1, . . . , tn) be a local test case for Mm. We introduce the following notation.

1. Mm||t denotes the application of t to Mm. The system Mm||t belongs to mIOTS(I, O ∪
{δ}) and is formed by Mm and t synchronising on all actions (including quiescence).

2. Mm||tl denotes the application of tl toMm. The systemMm||tl belongs tomIOTS(I, O ∪
{δ}) and it is formed from Mm and tl by Mm and tp synchronising on actions in Ip ∪Op,
for all p ∈ P . In addition, Mm, t1, . . . , tn synchronise on δ.

Since Mm||t and Mm||tl aremIOTSs, the notation already introduced can be applied to them.
In particular, we let T r(Mm, t) (resp. T r(Mm, tl)) denote the set of traces that can result from
Mm||t (resp. Mm||tl) and their prefixes. ⊓⊔

The following notation is used in order to reason about the application of test cases to
systems. Let us note that we have two notions of passing a test: taking into account marked
states or not. These definitions are given for the sdioco implementation relation but it is
straightforward to adapt them to sdioco′ and tsdioco.

Definition 15

Let MSpec
m ,MSUT

m ∈ mIOTS(I, O) and t be a global test case for MSpec
m .

1. A trace σ is a test run for MSUT
m with t if MSUT

m ||t
σδ

==⇒ (and so at the end of this test
run the SUT is quiescent).

2. Implementation MSUT
m passes test run σ with t forMSpec

m if there exists σ′ ∈ T r(MSpec
m )

such that σ′ ∼ σ. Otherwise MSUT
m fails σ with t for MSpec

m .
3. Implementation MSUT

m passes test run σ with t for the scenarios given by MSpec
m if there

exists a quiescent trace σ′ = a1, . . . , am such that the following hold:

(a) MSpec
m

σ′

==⇒ and σ′ ∼ σ.

(b) There is a derivation MSpec
m

a1−−→ q1
a2−−→ q2 . . . qm−1

am−−−−→ qm in which J =
{j1, . . . , jr} ⊆ {1, . . . ,m} is the maximal set of indexes such that qji ∈ Q for all

1 ≤ i ≤ m. Let σ′
1, . . . , σ

′
r+1 be sequences such that σ′ = σ′

1 · · ·σ
′
r+1 and MSpec

m

σ′

1

==⇒

qj1
σ′

2

==⇒ qj2 . . . qjr
σ′

r+1

===⇒ qm. Then, there exist sequences σ1, . . . , σr+1 such that for
all 1 ≤ j ≤ r + 1 we have that σ′

j ∼ σj and σ = σ1 · · ·σr+1.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe



22

Otherwise MSUT
m fails σ with t for the scenarios given by MSpec

m .
4. Implementation MSUT

m passes test case t for MSpec
m if MSUT

m passes every possible test
run of MSUT

m with t for MSpec
m and otherwise MSUT

m fails t for MSpec
m .

5. Implementation MSUT
m passes test case t for the scenarios given by MSpec

m if MSUT
m

passes every possible test run of MSUT
m with t for the scenarios given by MSpec

m and
otherwise MSUT

m fails t for the scenarios given by MSpec
m .

⊓⊔

Let us note that our way of defining how to pass test cases is not standard since our test cases
are not equipped with pass/fail states. Therefore, we need the specification to decide whether
a test run is expected by the specification. Naturally, we are just using the specification as an
oracle as commonly done in model-based testing.

5.1. Deterministic and controllable test cases

When applying test cases to SUTs, it is important to restrict ourselves to deterministic test
cases. A local test case t is said to be deterministic for a specification s if the interaction
between s and t cannot reach a situation in which more than one input can be sent [22]. In
particular, there cannot be situations in which more than one local tester is capable of sending
input since, in such a situation, the order in which these inputs are received by the SUT is
unknown.

Definition 16

LetMSpec
m ∈ mIOTS(I, O) be a specification. We say that the local test case tl is deterministic

for MSpec
m if there do not exist traces σ1 and σ2, with σ2 ∼ σ1, and ?i1, ?i2 ∈ I, with ?i1 6=?i2,

such that MSpec
m ||tl

σ1?i1
=====⇒ and MSpec

m ||tl
σ2?i2

=====⇒ . ⊓⊔

It is easy to show that the local testers being deterministic does not guarantee that the
corresponding local test case is deterministic. For example, two or more deterministic local
testers could start by sending input to the SUT.
But even restricting to deterministic test cases is not enough in the distributed test

architecture to have a controllable testing framework. Let us consider a specification MSpec
m

such that T r(MSpec
m ) is given by the set of prefixes of ?iU !oL!oU?iL plus the traces obtained by

completing this to make it input-enabled. We could have a local test case (tU , tL) in which tU
sends ?iU and expects to observe !oU and tL sends ?iL after observing !oL. Then tL does not
know when to send ?iL and this is a form of nondeterminism. We obtain the same problem with
the corresponding global test case if we wish to apply it in the distributed test architecture.
The following is based on the definition of a test case being controllable, which is taken

from [23], and is a necessary and sufficient condition under which we avoid this form of
nondeterminism (when states are not marked). This essentially corresponds to the testers
not taking the opportunity to synchronise in marked states and so we use the term strongly
controllable.

Definition 17

A global test case t is strongly controllable for Mm ∈ mIOTS(I, O) if there does not exist
port p ∈ P , σ1, σ2 ∈ T r(Mm, t) and ?ip ∈ Ip with σ1?ip ∈ T r(Mm, t), σ2?ip 6∈ T r(Mm, t) and
πp(σ1) = πp(σ2). ⊓⊔

If there are marked states then the local testers can synchronise in these states and in effect
this adds additional observational power that can be used to make test cases controllable.
Thus, a test case t is weakly controllable for Mm if when a global trace σ ∈ T r(Mm, t) has
been produced, when synchronising in marked states, then at each point every local tester
always knows what to do next (apply an input or wait for output).

Definition 18

A global test case t is weakly controllable for Mm ∈ mIOTS(I, O) if there do not exist port

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe



23

p ∈ P and ?ip ∈ Ip such that there is a derivation Mm||t
σ1

==⇒ q1
σ2

==⇒ . . .
σr

==⇒ qr
σr+1

===⇒ qr+1

in which q1, . . . , qr are the only traversed marked states and a derivation Mm||t
σ′

1

==⇒ q′1
σ′

2

==⇒

. . .
σ′

r

==⇒ q′r
σ′

r+1

===⇒ q′r+1 in which q′1, . . . , q
′
r are the only marked states such that σj ∼ σ′

j for

all 1 ≤ j ≤ r, πp(σr+1) = πp(σ
′
r+1), qr+1

?ip
−−−−→ and there is no q′ such that q′r+1

?ip
−−−−→ q′. In

such a situation we will usually say that we are synchronising in marked states. ⊓⊔

The main difference between weak and strong controllability is that we can compare the
global traces between marked states using ∼ and so, in effect, the local tester at p can be
aware of the global traces that occurred between the marked states (up to ∼). After the
last marked state qr, the tester at p can only observe the projection at p of the global trace
that occurred after qr. In some situations this requirement is not realistic since it effectively
requires that synchronisation always happens when it is allowed but where this is the case we
can instead use strong controllability. Throughout the rest of this section we investigate the
situation in which the local testers know when they can synchronise and so can take advantage
of such synchronisation. Later we discuss conditions under which this is the case.
It has been shown that without scenarios, if a test case is controllable then, as long as no

failures occur in testing, each input is supplied by a local tester at the point specified in the
test case [23]. A similar result holds in the current framework, but with the advantage that
scenarios reduce the set of traces that can occur.

Proposition 8

LetMSUT
m ,MSpec

m ∈ mIOTS(I, O) and t be a weakly controllable test case for the specification
MSpec

m so that synchronising in marked states occurs when applying t. If an input ?i is sent
after σ ∈ T r(MSpec

m , t) then σ?i ∈ T r(t).
Proof

We prove the result by contradiction: we assume that ?i is sent after σ ∈ T r(MSpec
m , t)

but σ?i 6∈ T r(t). Further, let us suppose that ?i is supplied at port p and so there exists a
trace σ′?i ∈ T r(MSpec

m , t) such that σ and σ′ are indistinguishable to the tester at p even
when synchronising at marked states. We therefore must have that the following hold:

1. σ = σ1 . . . σr+1, where σ1 . . . σr are the prefixes of σ that reach marked states in MSpec
m ,

and
2. σ′ = σ′

1 . . . σ
′
r+1, where σ′

j ∼ σj , for 1 ≤ j ≤ r, and πp(σ
′
r+1) = πp(σr+1).

But, since t is weakly controllable, if ?i can be sent after σ′ then we must have that ?i can
be sent after σ, providing a contradiction as required. ⊓⊔

This result proves that using weakly controllable test cases and synchronising in marked
states is sufficient to ensure that inputs are sent at the expected/specified time. Thus, we
know that we do not require a test case to be strongly controllable: it is sufficient for it to be
weakly controllable.
Even though the notion of controllability is restrictive, it is important since it appropriately

captures the idea of the local testers knowing when to apply input. However, there is another
issue to consider that is illustrated by the following situation.

1. A specification Mm in which the only possible transition is from the initial state to a
different state through output !oU . In addition, all inputs are available in both states,
producing a loop.

2. A global test case t that after !oU can apply input ?iL at port L and that after !o′U can
apply input ?i′L at port L.

When t and Mm synchronise, t cannot send input ?i′L since it cannot receive output !o′U from
Mm. However, if we take the projections of t then the resultant local tester at port L can
send input ?i′L. This situation is caused by there being parts of t that cannot be ‘reached’
when synchronising with Mm and so we define a (desirable) condition under which this cannot
happen.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe



24

Definition 19

Let Mm be an mIOTS(I, O). A global test case t is said to be reduced for Mm if there do not
exist a trace σ ∈ Act∗ and an input ?i such that σ?i ∈ T r(t) \ T r(Mm).

Clearly, if a global test case t is not reduced for Mm, when testing from Mm we can remove
parts of it in order to produce a reduced global test case t′ such that T r(Mm, t) = T r(Mm, t′)
and so we lose nothing in restricting attention to reduced global test cases.
Let us note that it is not enough to have that specifications are input-enabled to ensure that

global test cases are reduced. In fact, we can consider a trace σ that cannot be performed by
Mm (therefore, it must contain at least one output) and such that σ?ip ∈ Tr(t). In addition,
controllability does not imply that the test case will be reduced. For example, let us consider
a global test case t in which input ?iU only occurs after !oL but Mm cannot produce !oL in its
initial state. The test case t is controllable for Mm. We have that ?iU is irrelevant when we
apply t to Mm but when we take projections suddenly the local tester can apply ?iU to Mm

(when it is in its initial state).
The next result answers the question of whether we can always implement a controllable

global test case by using a weakly controllable test case.

Proposition 9

Let P = {1, . . . , n} be the set of ports and Mm ∈ mIOTS(I, O). If t is a reduced global test
case for Mm and tl = (local1(t), . . . , localn(t)) then:

1. T r(Mm, t) ⊆ T r(Mm, tl).
2. T r(Mm, tl) ⊆ T r(Mm, t) if and only if t is weakly controllable for Mm.

Proof

Let T r(tl) denote the set of traces formed from interleavings of traces from
T r(local1(t)), . . . , T r(localn(t)). It is straightforward to prove that for all σ ∈ T r(t)
and p ∈ P there exists σp ∈ T r(localp(t)) such that σp = πp(σ). In addition, we also have that
T r(Mm, t) = T r(Mm) ∩ T r(t) and T r(Mm, tl) = T r(Mm) ∩ T r(tl), and so T r(t) ⊆ T r(tl).
This completes the proof of the first part of the result.
Concerning the second part of the result, we begin with the right to left implication. Let

us assume that t is weakly controllable for Mm. We will prove that for all σ ∈ T r(Mm, tl) we
have that σ ∈ T r(Mm, t). We will prove the result by induction on the length of σ. Clearly
the result holds for the base case σ = ǫ. Thus, let us assume that the result holds for all traces
of length less than k > 0 and σ has length k. Thus, σ = aσ′ for some a ∈ Act. We distinguish
two cases:

1. a = δ. Then tp
δ−−→ t′p for all p ∈ P and t δ−−→ t′, t′p = localp(t

′), and t′ is weakly

controllable for the process M ′
m such that Mm

δ
==⇒ M ′

m. The result thus follows from
the inductive hypothesis.

2. a ∈ Ip ∪Op for port p. In this case there exists t′p such that tp
a−−→ t′p. Since tp = localp(t),

it must be possible to have a at p in t before any other event at p and before any marked
states. Let σp be the shortest sequence in ((I \ Ip) ∪ (O \Op))

∗ such that σpa ∈ T r(t)
and no path of Mm with label σp contains marked states. But πp(σp) = πp(ǫ) and neither
contains marked states and so, since t is weakly controllable for Mm, we have that σp = ǫ.
Thus, there exists t′ such that t a−−→ t′. In addition, t′p = localp(t

′), tp′ = localp′(t′) for

p′ ∈ P \ {p}, and t′ is weakly controllable for the process M ′
m such that Mm

a
==⇒ M ′

m.
The result thus follows from the inductive hypothesis.

In order to prove the left to right implication, we assume that T r(Mm, tl) ⊆ T r(Mm, t) and
will prove that t is weakly controllable for Mm. We use proof by contradiction, assuming that
t is not weakly controllable for Mm and so there exist σ, σ′ ∈ T r(Mm, t) and port p ∈ P such
that the following hold:

1. σ = σ1 . . . σr+1, where σ1 . . . σr are the prefixes of σ that reach marked states in Mm,

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe



25

Input : Specification MSpec
m and a deterministic reduced global test case t.

Output : If t is weakly controllable for Mm then output True else output False.

{Initialisation}
Let N denote the set of nodes of MSpec

m ||t;
For every node n ∈ N and port p, let np be the projection of the trace of MSpec

m ||t reaching n;
{Main loop}
For all n, n′ ∈ N with n 6= n′ and p ∈ P do

• Define σ1, . . . , σr such that the trace of MSpec
m ||t that reaches n is σ1...σr and the marked

states of this path in MSpec
m ||t to n are after the subtraces of the form σ1 . . . σi, 0 ≤ i ≤ r,

with the possible exception of the initial and final states of the path;
• Similarly, define σ′

1, . . . , σ
′
r′ such that the trace of MSpec

m ||t that reaches n′ is σ′
1...σ

′
r′ ;

• If np = n′
p, r = r′, for all 1 ≤ i < r we have that σi ∼ σ′

i, and there is an input ?ip ∈ Ip

such that n
?ip

−−−−→ and we do not have that n′
?ip

−−−−→ then output False and terminate;

output True and terminate.

Figure 14. Algorithm 2: deciding whether a global test case is weakly controllable for a process.

2. σ′ = σ′
1 . . . σ

′
r+1, where σ′

j ∼ σj , for 1 ≤ j ≤ r and πp(σ
′
r+1) = πp(σr+1), and

3. there exists ?ip ∈ Ip such that σ?ip ∈ T r(Mm, t) and σ′?ip 6∈ T r(Mm, t).

We therefore have that the tester at p cannot distinguish between σ1 . . . σr and σ′
1 . . . σ

′
r and

also then between σr+1 and σ′
r+1 (since πp(σr+1) = πp(σ

′
r+1)). Thus, the local tester tp must

be able to have πp(σ
′
r+1)?ip after σ′

1 . . . σ
′
r.

Further, for q ∈ P \ {p}, we have that πq(σ
′) = πq(σ) ∈ T r(tq) and so σ′?ip ∈ T r(tl). Finally,

since σ′ ∈ T r(Mm, t) and Mm is input enabled we have that σ′?ip ∈ T r(Mm, t), providing a
contradiction as required. ⊓⊔

The following result is an immediate corollary from Proposition 9, Definition 16, and a global
test case being deterministic.

Corollary 1

Let Mm ∈ mIOTS(I, O) with set of ports P = {1, . . . , n} and t be a weakly controllable
reduced global test case for Mm. We have that tl = (local1(t), local2(t), . . . , localn(t)) is
deterministic for Mm.

It is desirable to apply weakly controllable test cases since this allows each local tester to
know when to apply an input. Essentially, a global test case is a tree in which each leaf has
a self loop for each output. Algorithm 2 given in Figure 14 simply considers the nodes of
MSpec

m ||t that can be followed by an input and determines whether any two of these define
a situation in which there is a controllability problem. It thus initially forms the tree that
represents MSpec

m ||t. For each pair of nodes n and n′ reached by traces σ and σ′ it then checks
the conditions required under weak controllability. First, is splits σ into σ1, . . . , σr and σ′ into
σ′
1, . . . , σ

′
r′ based on marked states. Thus, each trace is divided into a sequence of scenarios

followed by a final trace (σr and σ′
r′). We can assume that the testers synchronise in marked

states. Thus, for example, at the end of σ each tester knows that there has been a sequence
of r − 1 previous scenarios and knows that the traces of these were equivalent, under ∼, to
σ1, . . . , σr−1. In addition, the tester at p has observed πp(σr) after this sequence of scenarios.
This can only look like σ′, to the tester at p, if σ′ splits into a sequence of equivalent scenarios.
Thus, there is only a problem under weak controllability if we have the same number of

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe



26

scenarios (r′ = r), these are all equivalent under ∼ (for all 1 ≤ i < r we have that σ′
i ∼ σi)

and the observations after the last scenario is the same at p (πp(σ
′
r) = πp(σr). These are the

conditions specified under the definition of weak controllability and the conditions explicitly
checked in Algorithm 2. The following result easily follows.

Theorem 2

Let Mm be an mIOTS(I, O) and t be a reduced deterministic global test case. We have that
t is weakly controllable for MSpec

m if and only if Algorithm 2 returns True for MSpec
m and t. In

addition, this algorithm operates in time that is polynomial in terms of the size of MSpec
m ||t.

When considering weak controllability we have assumed that each local tester knows when
it can synchronise with the other testers. As we observed, when this is not the case we can
instead use controllability but clearly it is beneficial to use weak controllability when possible
since this allows more tests to be applied in a controllable manner. This assumption, that the
local testers know when they can synchronise, is reasonable in at least the following situations.

1. If the local tester at port p can be in the situation in which it can synchronise after the
local trace σp at p then it can always synchronise after observing σp.

2. Each local tester can observe the opportunity to synchronise. Let us suppose, for example,
that scenarios correspond to transactions in a database system in which each user
interacts with the system through a terminal. Then, we might have that a message
appears on the screen of each terminal stating that the transaction has finished. We
could model this type of situation by representing the opportunity to synchronise as a
self-loop transition with a label η that is not in Act and defining the projection function
πp so that η is observed at every port.

5.2. Implementations relations for testing with controllable tests

Once we have studied the main properties of controllable test cases, we can define new
implementation relations if we restrict testing to the use of controllable test cases.

Definition 20

Let MSUT
m ,MSpec

m ∈ IOTS(I, O). We write MSUT
m c-dioco MSpec

m if for every strongly
controllable local test case tl for MSpec

m we have that MSUT
m passes tl for MSpec

m . We write
MSUT

m c-sdioco MSpec
m if for every weakly controllable local test case tl for MSpec

m we have
that MSUT

m passes tl for the scenarios given by MSpec
m . ⊓⊔

We now study how dioco and sdioco relate to c-dioco and c-sdioco, respectively.

Proposition 10

LetMSUT
m ,MSpec

m ∈ IOTS(I, O). We haveMSUT
m diocoMSpec

m impliesMSUT
m c-diocoMSpec

m .
Further, there exists processes Mm and M ′

m such that M ′
mc-dioco Mm but we do not have

that M ′
mdioco Mm.

Proof

The first part follows from the definitions, with c-dioco restricting consideration to
strongly controllable local test cases. Let us consider the processes s1 and i1 shown in
Figure 15 which are incomparable under dioco. The only strongly controllable local test cases
for s1 involve input at no more than one port and for each such test case neither process can
produce output. We therefore have that i1 c-dioco s1 as required.

Proposition 11

Let MSUT
m ,MSpec

m ∈ mIOTS(I, O). We have MSUT
m sdioco MSpec

m implies
MSUT

m c-sdioco MSpec
m . Further, there exists processes Mm and M ′

m such that
M ′

mc-sdioco Mm but we do not have that M ′
msdioco Mm.

Proof

The first part follows again from the definitions, with c-sdioco restricting consideration to
weakly controllable local test cases. In order to show the second part, let us consider the
processes s1 and i1 shown in Figure 15, which are incomparable under sdioco. Again, the

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe



27

?iL

?iU

!oL

?iU

?iU/?iL

?iL

?iU/?iL

?iL

?iU

!oU

?iU

?iU/?iL

?iL

?iU/?iL

Figure 15. Processes s1 (left) and i1 (right).

only weakly controllable local test cases involve input at no more than one port and for each
such test case neither process can produce output. We therefore have that i1 c-sdioco s1 as
required. ⊓⊔

6. CONCLUSIONS

The work reported in this paper represents a continuation of our work on formal testing of
systems with distributed ports. We have introduced two new formalisms that allow us to specify
situations where all the components of a distributed system wait for a certain operation to
happen or where even though a total global trace cannot be constructed it can be inferred
that a certain action took place before another one. We have shown that the two formalism
have similar expressive power and we have given a translation mechanism from one of the
formalisms to the other.
We have introduced three implementation relations, one for the trace-based formalism and

two for the formalism in which we mark states. These represent suitable extensions of previously
established relations. Since we are mainly interested in formal testing frameworks, we have
defined what it means for a system under test to pass a test case under the new conditions.
We have studied the special case of controllable test cases and analysed how the new conditions
affect the notion of controllability.
Even though this paper represents a step forward with respect to our previous contribution

on testing systems with distributed ports and scenarios, there are several lines to continue our
work. First, we have to define a test derivation algorithm so that we only apply those test cases
that are somehow related to the corresponding specification. We will take as initial step the
one for dioco and c-dioco given in [31]. We would also like to take into account some variants
that were sketched in this paper but not fully exploited. For example, an interesting alternative
to marking states in the specification is to mark states in local/global testers extracted from
the specification and forget the marked states of the specification.

REFERENCES

1. Clarke E, Grumberg O, Peled D. Model Checking. MIT Press, 2000.
2. Baier C, Katoen JP. Principles of Model Checking. MIT Press, 2008.
3. Myers G. The Art of Software Testing. 2nd edn., John Wiley and Sons, 2004.
4. Ammann P, Offutt J. Introduction to Software Testing. Cambridge University Press, 2008.
5. Broy M, Jonsson B, Katoen JP, Leucker M, Pretschner A ( (eds.)). Model-based Testing of Reactive

Systems, LNCS 3472. Springer, 2005.
6. Hierons R, Bowen J, Harman M ( (eds.)). Formal Methods and Testing, LNCS 4949. Springer, 2008.
7. Jacky J, Veanes M, Campbell C, Schulte W. Model-Based Software Testing and Analysis with C#.

Cambridge University Press, 2008.
8. Frantzen L, Merayo M, Núñez M. A brief history of A-MOST. Journal of Logic and Algebraic Programming

2009; 78(6):417–424.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe



28

9. Utting M, Legeard B. Practical Model-Based Testing: A Tools Approach. Morgan-Kaufmann, 2007.
10. Hierons R, Bogdanov K, Bowen J, Cleaveland R, Derrick J, Dick J, Gheorghe M, Harman M, Kapoor K,

Krause P, et al.. Using formal methods to support testing. ACM Computing Surveys 2009; 41(2).
11. ISO/IEC JTC 1 JTC. International Standard ISO/IEC 9646-1. Information Technology - Open Systems

Interconnection - Conformance testing methodology and framework - Part 1: General concepts. ISO/IEC,
1994.

12. Sarikaya B, Bochmann Gv. Synchronization and specification issues in protocol testing. IEEE Transactions
on Communications 1984; 32:389–395.

13. Dssouli R, Bochmann Gv. Error detection with multiple observers. 5th WG6.1 Int. Conf. on Protocol
Specification, Testing and Verification, PSTV’85, North-Holland, 1985; 483–494.

14. Dssouli R, Bochmann Gv. Conformance testing with multiple observers. 6th WG6.1 Int. Conf. on Protocol
Specification, Testing and Verification, PSTV’86, North-Holland, 1986; 217–229.

15. Boyd S, Ural H. The synchronization problem in protocol testing and its complexity. Information
Processing Letters 1991; 40(3):131–136.

16. Luo G, Dssouli R, Bochmann Gv. Generating synchronizable test sequences based on finite state machine
with distributed ports. 6th IFIP Workshop on Protocol Test Systems, IWPTS’93, North-Holland, 1993;
139–153.

17. Tai KC, Young YC. Synchronizable test sequences of finite state machines. Computer Networks and ISDN
Systems 1998; 30(12):1111–1134.

18. Rafiq O, Cacciari L. Coordination algorithm for distributed testing. The Journal of Supercomputing 2003;
24(2):203–211.

19. Ural H, Williams C. Constructing checking sequences for distributed testing. Formal Aspects of Computing
2006; 18(1):84–101.

20. Tretmans J. Test generation with inputs, outputs and repetitive quiescence. Software – Concepts and
Tools 1996; 17(3):103–120.

21. Tretmans J. Model based testing with labelled transition systems. Formal Methods and Testing, LNCS
4949, Springer, 2008; 1–38.

22. Hierons R, Merayo M, Núñez M. Implementation relations for the distributed test architecture. Joint 20th
IFIP TC6/WG6.1 Int. Conf. on Testing of Software and Communicating Systems, TestCom’08, and
8th Int. Workshop on Formal Approaches to Software Testing, FATES’08, LNCS 5047, Springer, 2008;
200–215.

23. Hierons R, Merayo M, Núñez M. Controllable test cases for the distributed test architecture. 6th Int.
Symposium on Automated Technology for Verification and Analysis, ATVA’08, LNCS 5311, Springer,
2008; 201–215.

24. Brinksma E, Heerink L, Tretmans J. Factorized test generation for multi-input/output transition systems.
11th IFIP Workshop on Testing of Communicating Systems, IWTCS’98, Kluwer Academic Publishers,
1998; 67–82.

25. Hierons R, Merayo M, Núñez M. Scenarios-based testing of systems with distributed ports. 10th Int. Conf.
on Quality Software, QSIC’10, IEEE Computer Society Press, 2010; 52–61.

26. Jard C, Jéron T, Kahlouche H, Viho C. Towards automatic distribution of testers for distributed
conformance testing. Joint Int. Conf. on Formal Description Techniques and Protocol Specification,
Testing and Verification, FORTE’98, Kluwer Academic Publishers, 1998; 353–368.

27. Jacob J. Refinement of shared systems. The Theory and Practice of Refinement: Approaches to the Formal
Development of Large-Scale Software Systems, McDermid J (ed.). Butterworths, 1989; 27–36.

28. Haar S, Jard C, Jourdan GV. Testing input/output partial order automata. Joint 19th IFIP TC6/WG6.1
Int. Conf. on Testing of Software and Communicating Systems, TestCom’07, and 7th Int. Workshop on
Formal Approaches to Software Testing, FATES’07, LNCS 4581, Springer, 2007; 171–185.

29. Bochmann Gv, Haar S, Jard C, Jourdan GV. Testing systems specified as partial order input/output
automata. Joint 20th IFIP TC6/WG6.1 Int. Conf. on Testing of Software and Communicating Systems,
TestCom’08, and 8th Int. Workshop on Formal Approaches to Software Testing, FATES’08, LNCS 5047,
Springer, 2008; 169–183.

30. Huo J, Petrenko A. On testing partially specified IOTS through lossless queues. 16th Int. Conf. on Testing
Communicating Systems, TestCom’04, LNCS 2978, Springer, 2004; 76–94.

31. Hierons R, Merayo M, Núñez M. Implementation relations and test generation for systems with distributed
interfaces. Submitted 2010.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe


	1 Introduction
	2 Definition of systems and implementation relations
	2.1 Input Output Transition Systems

	3 Multi-port IOTSs with marked states
	3.1 Introduction
	3.2 An implementation relation using marked states
	3.3 Alternative stronger implementation relations
	3.4 Refinement through changing marked states

	4 An alternative characterisation of scenarios
	4.1 Multi-port IOTSs with scenarios based on traces
	4.2 Transformation from mIOTSs to tIOTSs

	5 Definition and application of test cases: global vs. local
	5.1 Deterministic and controllable test cases
	5.2 Implementations relations for testing with controllable tests

	6 Conclusions

