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Abstract. This paper proposes a memory scheme based on abstraction
for evolutionary algorithms to address dynamic optimization problems.
In this memory scheme, the memory does not store good solutions as
themselves but as their abstraction, i.e., their approximate location in
the search space. When the environment changes, the stored abstraction
information is extracted to generate new individuals into the population.
Experiments are carried out to validate the abstraction based memory
scheme. The results show the efficiency of the abstraction based memory
scheme for evolutionary algorithms in dynamic environments.

1 Introduction

As a class of stochastic algorithms, evolutionary algorithms (EAs) work by main-
taining and evolving a population of candidate solutions through selection and
variation. New populations are generated by first selecting relatively fitter in-
dividuals from the current population and then performing variations (e.g., re-
combination and mutation) on them to create new off–spring. EAs have been
applied to solve many stationary optimization problems with promising results.
Usually, with the iteration of EAs, individuals in the population will eventually
converge to the optimal solution(s) due to the pressure of selection. Convergence
at a proper pace is expected for EAs to locate optimal solution(s) for stationary
problems. However, many real world problems are actually dynamic optimization
problems (DOPs), where changes may occur over time. For DOPs, convergence
becomes a big problem for EAs because it deprives the population of genetic
diversity. Consequently, when the environment changes, it is hard for EAs to
escape from the optimal solution of the old environment.

For DOPs, the aim of an EA is no longer to locate a stationary optimum but
to track the moving optima with time. This requires additional approaches to
adapt EAs to the changing environment. In recent years, with the growing inter-
est in studying EAs for DOPs, several approaches have been developed into EAs
to address DOPs [6, 9], such as diversity schemes [7, 16], memory schemes [2, 4,
19], and multi–population approaches [5]. Among these approaches developed for
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EAs in dynamic environments, memory works by retaining and reusing relevant
information, which might be as straightforward as storing good solutions.

This paper proposes a memory scheme based on abstraction. Abstraction
means to select, evaluate and code information before storing. A good solution
is evaluated with respect to physically meaningful criteria and in the result of
this evaluation, storage is undertaken but no longer as the solution itself but
coded with respect to the criteria. Thus, abstraction means a threshold for and
compression of information, see e.g. [8] which proposes similar ideas for reinforce-
ment learning. When an environment change is detected, the stored abstraction
information is extracted to generate new individuals into the population.

The rest of this paper is organized as follows. In the next section, we briefly
review the usage of memory for EAs for DOPs. Sec. 3 describes the dynamic fit-
ness landscape used as the test bed in this paper. Sec. 4 presents the abstraction
memory scheme. The experimental results and their analysis are given in Sec. 5.
Finally, Sec. 6 concludes this paper with discussions on future work.

2 Memory Schemes for Dynamic Environments

The principle of memory schemes for EAs in dynamic environments is to, im-
plicitly or explicitly, store useful information from old environments and reuse it
later in new environments. Implicit memory schemes use redundant encodings,
e.g., diploid genotype [10, 12, 18], to store information for EAs to exploit during
the run. In contrast, explicit memory uses precise representations but splits an
extra storage space to explicitly store information from a current generation and
reuse it later [4, 11, 17].

For explicit memory schemes, usually only good solutions are stored in the
memory as themselves and are reused directly. When a change occurs or every
several generations, the solutions in the memory can be merged with the current
population [4, 11]. This is called direct memory scheme. It is also interesting to
store environmental information as well as good solutions in the memory and
reuse the environmental information when a change occurs. This is called as-

sociative memory scheme. For example, Ramsey and Greffenstette [13] studied
a genetic algorithm (GA) for a robot control problem, where good candidate
solutions are stored in a memory together with information about the current
environment the robot is in. When the robot incurs a new environment that
is similar to a stored environment instance, the associated controller solution in
the memory is re–activated. In [19], an associative memory scheme was proposed
into population based incremental learning (PBIL) algorithms for DOPs, where
the working probability vector is also stored and associated with the best sam-
ple it creates in the memory. When an environmental change is detected, the
stored probability vector associated with the best re–evaluated memory sample
is extracted to compete with the current working probability vector to become
the future working probability vector for creating new samples. Similarly, an
associative memory scheme was developed into GAs for DOPs in [20], where



the allele distribution statistics information of the population is taken as the
representation of the current environment.

For explicit memory schemes, since the memory space is limited, we need to
update information stored in the memory. A general strategy is to select one
memory point to be replaced by the best individual from the population. As
to which memory point should be updated, there are several strategies [4]. For
example, the most–similar strategy replaces the memory point closest to the best
individual from the population. Though memory schemes have been shown to
be beneficial for EAs in dynamic environments, so far they are only a promising
option for regular and predictable dynamics, such as cyclic or translatory, but
not for irregular dynamics, such as chaotic or random dynamics. The abstraction
memory scheme proposed in Sec. 4 is an attempt to overcome this shortcoming.

3 Description of the Dynamic Test Problem

As dynamic fitness landscape, we use a moving n–dimensional “field of cones
on a zero plane”, where N cones with coordinates ci, i = 1, 2, ..., N are initially
distributed across the landscape and have randomly chosen heights hi and slopes
si. We introduce discrete time k ∈ N0 and consider the coordinates ci(k) to be
changing with it. So, the dynamic fitness function is:

f(x, k) = max
{

0 , max
1≤i≤N

[hi − si‖x− ci(k)‖]
}

. (1)

Hence, the DOP is max
x∈M

f(x, k) = max
{

0 , max
1≤i≤N

[hi − si‖x− ci(k)‖]
}

, k ≥ 0

whose solution xs(k) = arg max
{

0 , max
1≤i≤N

[hi − si‖x− ci(k)‖]
}

forms a solu-

tion trajectory in the search space M ⊂ R
n. This means that for every k ≥ 0

the problem might have another solution, which we intend to find using an EA.
In the experiments we report the dynamics of c(k) that starts from randomly
chosen c(0) and is either regular (cyclic) or chaotic or random (normally and
uniformly distributed).

The EA we use has a real number representation and λ individuals xj ∈ R
n,

j = 1, 2, . . . , λ, which build the population P ∈ R
n×λ. Its dynamics is described

by the generation transition function ψ : R
n×λ → R

n×λ, see e.g. [1], p.64–65.
It can be interpreted as a nonlinear probabilistic dynamical system that maps
P (t) onto P (t+ 1). It hence transforms a population at generation t ∈ N0 into
a population at generation t + 1, P (t + 1) = ψ (P (t)) , t ≥ 0. Starting from an
initial population P (0), the population sequence P (0), P (1), P (2), ... describes
the temporal movement of the population in the search space. Both the time
scales t and k are related by the change frequency γ as

t = γk. (2)

For γ = 1, apparently, the dynamic fitness function is changing every generation.
For γ > 1, the fitness function changes every γ generations. The change frequency
is an important quantity in dynamic optimization and will be the subject of the
experimental studies reported in Sec. 5.



4 The Abstraction Memory Scheme

The main idea of the abstraction based memory scheme is that it does not store
good solutions as themselves but as their abstraction. We define an abstraction
of a good solution to be its approximate location in the search space. Hence,
we need to partition the search space. This can be obtained by partitioning the
relevant (bounded) search space into rectangular (hyper–) cells. Every cell can
be addressed by an element of a matrix. So, we obtain for an n–dimensional
search space M an n–dimensional matrix whose elements represent search space
sub–spaces. This matrix acts as our abstract memory and will be called memory
matrix M. It is meant to represent the spatial distribution of good solutions.
Such ideas have some similarity to anticipating the dynamics of the DOP [3].

The abstract storage process consists of two steps, a selecting process and
a memorizing process. The selecting process picks good individuals from the
population P (t) while the EA runs. In general, selecting has to be done in terms
of (i.) the amount and choice of considered individuals, ideally sorted according
to their fitness, from the population and (ii.) points in the run–time of the EA,
ideally sorted according to changes in the environment detected by, for instance,
a falling sliding mean of the best individual. For the individuals either only the
best or a few best from the population could be used. In terms of the run–time
between changes only the best over run–time or the best over a few generations
before a change occurs could be taken. We define the number of the individuals
selected for memorizing as well as the number of generations where memorizing
is done.

In the memorizing process, the selected individuals are sorted according to
their partition in the search space which they represent. In order to obtain this
partition, we assume that the search space M is bounded and in every direction
there are lower and upper bounds, xi min and xi max, i = 1, 2, . . . , n. With the
grid size ǫ, which is a quantity we will examine in the numerical experiments
given in Sec. 5, we obtain for every generation t the memory matrix M(t) ∈
R

h1×h2×...×hn , where hi = ⌈xi max−xi min

ǫ
⌉. In the memory M(t) the entry of each

elementmℓ1ℓ2...ℓn
(t) is a counter countℓ1ℓ2...ℓn

(t), ℓi = 1, 2, . . . , hi, which is empty
for initialization. That is, countℓ1ℓ2...ℓn

(0) = 0 for all ℓi. For each individual
xj(t) ∈ P (t) selected to take part in the memorizing, the counter of the element
representing the partition that the individual belongs to is increased by one.
That is, we calculate the index ℓi = ⌈

xi j−xi min

ǫ
⌉ for all xj = (x1j , x2j , . . . , xnj)

T

and all 1 ≤ i ≤ n and increment the corresponding countℓ1ℓ2...ℓn
(t). Note that

this process might be carried out several times in a generation if more than one
individual selected belongs to the same partition. The abstraction storage process
retains the abstraction of good solutions by accumulating locations where good
solutions occur. In this way, we encode and compress the information about good
solutions. As the matrix M is filled over run–time, the memorizing process can
be seen as a learning process in both its figurative and literal meaning.

After a change has been detected (for instance if the sliding mean of the best
individual is falling), the abstract retrieval process is carried out. It consists of
two steps. First, a matrix Mµ(t) is calculated by dividing the matrix M(t)



by the sum of all matrix elements, that is Mµ(t) = 1
P

hi
M(t)M(t). Hence,

the sum of all elements µℓ1ℓ2...ℓn
(t) in Mµ(t) adds up to one. Each element

in Mµ(t) contains an approximation of the natural measure µ ∈ [0, 1] belonging
to the corresponding partition cell Mℓ1ℓ2...ℓn

of the search space M . This natural
measure can be viewed as the probability of the occurrence of a good solution
within the partition over time of the dynamic environment. Secondly, we fix a
number of individuals to be created by τ , 1 ≤ τ ≤ λ and create these individuals
randomly such that their statistical distribution regarding the partition matches
that stored in the memory Mµ(t). Therefore, we first determine their number for
each cell by sorting the µℓ1ℓ2...ℓn

(t) according to their magnitude and producing
the number ⌈µℓ1ℓ2...ℓn

(t) · τ⌉ of new individuals for high values of µ and the
number ⌊µℓ1ℓ2...ℓn

(t)·τ⌋ for low values, respectively. The rounding needs to ensure
that

∑

⌈µℓ1ℓ2...ℓn
(t)·τ⌉+

∑

⌊µℓ1ℓ2...ℓn
(t)·τ⌋ = τ . Then, we fix the positions of the

new individuals by taking realizations of a random variable uniformly distributed
within each partition cell Mℓ1ℓ2...ℓn

. That means the τ individuals are distributed
such that the number within each cell approximates the expected value for the
occurrence of good solutions, while the exact position within partition cells is
random. These individuals are inserted in the population P (t) after mutation has
been carried out. This abstract retrieval process can create an arbitrary number
of individuals from the abstract memory. In the implementation considered here
we upper bound this creation by the number of individuals in the population. As
the abstract storage can be regarded as encoding and compressing of information
about good solutions in the search space, abstract retrieval becomes decoding
and expansion.

An advantage of such a memory scheme is that it leads to a reduction of the
information content, which is typical for abstraction. Naturally, this depends on
the coarseness of the partitioning, which will be an important quantity to study.
This also means that the number of individuals that take part in the memorizing
and the number of individuals that come out of the memory and are inserted
in the population are completely independent of each other. So, in contrast to
explicit schemes, memory space and memory updating are not topics that need
to be addressed. Another attribute of the proposed memory scheme is that in
the memory matrix not the good solutions are stored but the event of occurrence
of the solution at a specific location in the search space.

5 Experimental Results

We now report numerical experiments with an EA that uses tournament selec-
tion of tournament size 2, fitness–related intermediate sexual recombination, a
mutation operator with base mutation rate 0.1 and the proposed abstraction
memory scheme. The performance of the algorithms is measured by the Mean
Fitness Error (MFE), defined as:

MFE =
1

R

R
∑

r=1

[

1

T

T
∑

t=1

(

f
(

xs, ⌊γ
−1t⌋

)

− max
xj(t)∈P (t)

f
(

xj(t), ⌊γ
−1t⌋

)

)

]

, (3)



where max
xj(t)∈P (t)

f
(

xj(t), ⌊γ
−1t⌋

)

is the fitness value of the best–in–generation in-

dividual xj(t) ∈ P (t) at generation t, f
(

xs, ⌊γ
−1t⌋

)

is the maximum fitness value
at generation t, T is the number of generations used in the run, and R is the num-
ber of consecutive runs. Note that f

(

xs, ⌊γ
−1t⌋

)

and max
xj(t)∈P (t)

f
(

xi(t), ⌊γ
−1⌋t

)

change every γ generations according to Eq. (2). The parameters we use in all
experiments are R = 50 and T = 2000. We consider the dynamic fitness function
(1) with dimension n = 2 and the number of cones N = 7. We study four types
of dynamics of the coordinates c(k) of the cones; (i.) chaotic dynamics generated
by the Hénon map, see [14, 15] for details of the generation process, (ii.) random
dynamics with c(k) being realizations of a normally distributed random variable,
(iii.) random dynamics with c(k) being realizations of a uniformly distributed
random variable, and (iv.) cyclic dynamics where c(k) are consequently forming
a circle. As dynamic severity is an important factor in dynamic optimization, for
all considered dynamics, severity is normalized and hence has no differentiating
influence. In a first set of experiments, the abstraction memory scheme (AM) is
tested and compared with a direct memory scheme (DM), which stores the good
solutions as themselves and inserts them again in a retrieval process, and with
an EA with no memory (NM), that uses hypermutation with the hypermutation
rate set to 30, see Fig. 1. Here, as well as in the other experiments, we fixed
the upper and lower bounds of the search space at x1 min = x2 min = −3 and
x1 max = x2 max = 3. The best three individuals of the population take part in
the memorizing process for all three generations before a change in the environ-
ment occurs. Further, we set the grid size to ǫ = 0.1. We used a fixed population
size of λ = 50 and inserted τ = 20 individuals in the retrieval process for one gen-
eration after the change. In Fig. 1 we give the MFE over the change frequency γ
for all four types of dynamics considered. Also, the 95% confidence intervals are
given. We observe that the memory schemes outperform the no memory scheme
for all dynamics. This is particularly noticeable for small change frequencies γ
and means that by memory the limit of γ for which the algorithm still performs
reasonably can be considerably lowered. Also, it can be seen that the AM gives
better results than the DM for irregular dynamics, that is, chaotic and random.
For chaotic dynamics, this is even significant within the given bounds. For reg-
ular, cyclic dynamics we find the contrary, with DM being better than AM. In
a second set of experiments, we examine the effect of different amount τ of indi-
viduals inserted from the abstract memory, see Fig. 2, where the MFE is given
for the four types of dynamics and the change frequencies γ = 10 and γ = 30,
over the percentage of individuals τ retrieved and inserted in the population
of size λ = 50, that is τ

λ
in %. It can be seen that an increase in the number

of inserted individuals leads to a better performance, but also that a certain
saturation sets in, particularly for random dynamics with normal and uniform
distribution. Further, it can be observed that the AM is a better option than
the DM for chaotic and random, but not for cyclic dynamics. Here, we find that
a large number of individuals inserted results in an even better performance,
which can be attributed to the fact that for a large insertion the best solution is
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Fig. 1. Performance of the EA measured by the MFE over change frequency γ for
different types of dynamics and no memory but hypermutation (NM), direct memory
scheme (DM) and abstraction memory scheme (AM).

most likely among the retrieved. On the other hand, it is extremely unlikely to
retrieve a solution from a DM for chaotic and random dynamics which appears
to be one reason for the better performance of the AM. Finally, we look at the
influence of the grid size ǫ on performance of the AM scheme, see Fig. 3. Here,
the MFE is given over ǫ and different γ on a semi–logarithmic scale while we
again set λ = 50 and τ = 20. For all types of dynamics and all change frequen-
cies we obtain a kind of bathtub curve, which indicates that an optimal grid size
depends on the type of dynamics and the size of the bounded region in search
space which the memory considers. This gives raise to the question whether an
adaptive grid size would increase the performance of the abstraction memory
scheme. Also, it can be seen that a drop in performance is more significant if
the grid is too large. For smaller grid the performance is not decreasing very
dramatically, but the numerical effort for calculation with small grids becomes
considerable.
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Fig. 2. Comparison of performance of direct memory scheme (DM) and abstraction
memory scheme (AM) measured by the MFE over the percentage of individual inserted
from the memory for different types of dynamics and γ = 10 and γ = 30.

6 Conclusions and Future Work

In this paper an abstraction based memory scheme is proposed for EAs to address
dynamic environments. In this scheme, memory is used to store the abstraction
(i.e., the spatial distribution) of good solutions instead of good solutions them-
selves. When an environment change is detected, the stored spatial distribution is
used to generate solutions into the population. A series of experiments were car-
ried out to investigate the performance of the abstraction based memory scheme
against a traditional direct memory scheme for EAs in dynamic environments.
Experimental results show that the abstraction based memory scheme efficiently
improves the performance of EAs for dynamic environments, especially for ir-
regular chaotic and random dynamic environments. For regular cyclic dynamic
environments, a traditional direct memory scheme seems a better choice than
the abstraction based memory scheme. As there is a strong link between the



10
−3

10
−2

10
−1

10
0

10
1

10
2

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

ε

M
F

E

γ = 30
γ = 20
γ = 10

10
−3

10
−2

10
−1

10
0

10
1

10
2

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

ε

M
F

E

γ = 30
γ = 20
γ = 10

(a) chaotic (b) normal

10
−3

10
−2

10
−1

10
0

10
1

10
2

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

ε

M
F

E

γ = 30
γ = 20
γ = 10

10
−3

10
−2

10
−1

10
0

10
1

10
2

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

ε

M
F

E

γ = 30
γ = 20
γ = 10

(c) uniform (d) cyclic

Fig. 3. Comparison of performance of abstraction memory scheme (AM) measured by
the MFE for different grid size ǫ and different types of dynamics and γ = 10, γ = 20
and γ = 30.

proposed scheme and learning, a high–diversity scheme should be used besides
the memory, in particular in the beginning of learning, that is, in the filling of the
memory matrix. In the experiments, the learning curves should be studied. Also,
it could be tested if after the learning, that is, the matrix filling, has reached a
certain degree of maturity, memory should replace high–diversity to obtain the
best results. These topics fall in our future research.
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