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Abstract 

 

We present extensive testing in order to find the optimum balance among errors 

associated with time integration, spatial discretization, and splitting for a fully spectral 

semi implicit scheme of the phase field crystal model. The scheme solves numerically 

the equations of dissipative dynamics of the binary phase field crystal model proposed by 

Elder et al. [Elder et al, 2007]. The fully spectral semi implicit scheme uses the operator 

splitting method in order to decompose the complex equations in the phase field crystal 

model into sub-problems that can be solved more efficiently. Using the combination of 

non-trivial splitting with the spectral approach, the scheme leads to a set of algebraic 

equations of diagonal matrix form and thus easier to solve. Using this method developed 

by the BCAST research team we are able to show that it speeds up the computations by 

orders of magnitude relative to the conventional explicit finite difference scheme, while 

the costs of the pointwise implicit solution per timestep remains low. Comparing both the 

finite difference scheme used by Elder et al [Elder et al, 2007] to the spectral semi 

implicit scheme, we are also able to show that the finite differencing cannot compete 

with the spectral differencing in regards to accuracy. This is mainly due to numerical 

dissipation in finite differencing. In addition the results show that this method can 

efficiently be parallelized for distributed memory systems, where an excellent scalability 

with the number of CPUs. We have applied the semi-implicit spectral scheme for binary 

alloys to explore polycrystalline dendritic solidification. The kinetics of transformation 

has been analysed in terms of Johnson-Mehl-Avrami-Kolmogorov formalism. We show 

that Avrami plots are not linear, and the respective Avrami-Kolmogorov exponents 

(P
AK

) vary with the transformed fraction (or time). Using the semi-implicit spectral 

scheme we have been able to provide extensive numerical testing of methods in solving 

the single component case. This has been demonstrated by using unconditional time 

stepping with comparable simulations using conditional time stepping. We show the 

accuracy of the solution for unconditional time stepping is not compromised and 

furthermore computational efficiency can be significantly increased with the introduction 

of this scheme. Finally we have investigated how the composition of the initial liquid 

phase influences the eutectic morphology evolving during solidification. This is the first 

study that addresses this question using the dynamical density functional theory.  
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Chapter 1 

 

INTRODUCTION 

 

1.1 Background and Approach 

Field theoretical models relying on coarse-grained order parameters and gradient free 

energy are used widely for describing phase transitions in complex systems, including 

magnetic phase transitions, condensation, phase separation and crystallization ([Gunton 

et al, 1983], [Langer, 1992], [Bray, 1994], [Cahn, Hilliard, 1958], [Allen, Cahn, 1979], 

[Shih et al, 1987], [Rogers et al, 1988], [Oono, S.Puri, 1998] and [Wu et al, 2006]). 

Molecular approaches based on the dynamic extension of the density functional theory 

(DDFT) of classical particles have also in use for similar purposes for some time 

[Oxtoby, 1991], however, the accessible system size limits the range of problems they 

can address. A promising recent theoretical approach to crystalline freezing in 

undercooled liquids is the Phase Field Crystal (PFC) method [Elder et al, 2002], [Elder et 

al, 2004]. It is an atomistic theory which is considerably simpler from the viewpoint of 

numerical implementation than the full Dynamical Density Functional Theory (DDFT), 

and thus can be used to address crystallization in systems containing a few millions of 

atoms [Elder et al, 2002]. The PFC can be regarded as a simplified classical Density 

Functional Theory (DFT). Its free energy functional can be derived from the perturbative 

DFT of Ramakrishnan and Yussouff [Ramakrishnan, Yussouff, 1979] after 

simplifications, such as Taylor expanding both the ideal gas term in the free energy, and 

the two-particle direct correlation function in the interaction term [Elder et al, 2004]. The 

resulting free energy functional can be transformed into a Swift-Hohenberg/Brazowskii 

form [Swift, Hohenberg, 1977], [Brazowskii, 1975]. Since the order parameter, the time-

averaged number density of molecules, used here is a conserved quantity, and only slow 

transitions are considered for the sake of simplicity, conserved dynamics taken in the 
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overdamped limit applies [Elder et al, 2004]. The advantage of this atomistic approach 

relative to conventional phase-field techniques is that it automatically incorporates the 

crystal structure with the associated anisotropy of the interfacial free energy (and other 

properties), the elasticity, and various lattice defects including dislocations. The PFC also 

has advantage over the traditional atomistic simulations (Molecular Dynamics), as PFC 

simulations can be conducted on the diffusive time scale. Finally, it is able to address 

crystallization on a considerably larger size-scale than the full DDFT.  

 

The main objective of this thesis is to provide a numerically efficient method to solve the 

equations of dissipative dynamics for both the single component and binary PFC method. 

In addition, we will use this PFC model to analyse various aspects of solidification such 

as polycrystalline freezing and the formation of eutectic structures. Solution of the PFC 

model is numerically demanding. This is especially true for the binary PFC due to the 

variable coefficients that appear in the equations of motion. There are different strategies 

to address these problems. An appealing possibility is the combination of a coarse-

grained formulation, which can be obtained using the renormalization group technique 

[Goldenfel et al, 2005] with adaptive gridding (local refining and coarsening of the 

computational mesh as required [Provatas et al, 2005], [Athreya et al, 2007]). While this 

approach has been implemented successfully for the single component case, its extension 

for the binary case is not without difficulties due to the different size scales appearing 

(due to the difference of the interatomic distances A-A, A-B, and B-B). Another 

possibility is to use a numerical algorithm that is sufficiently efficient. One of the 

promising candidates is the operator splitting method, a numerical technique that has 

been successfully used to solve the Navier-Stokes equations [Christov, Marinova, 2001], 

[Mimura et al, 1984], the Hamilton-Jacobi equations [Jakobsen et al, 2001], [Karlsen, 

Risebro, 2002], advection-diffusion problems [Karlsen et al, 2001], [Marinova et al, 

2003] and is considered to be one of the most efficient methods for solving complex 

PDEs in applied physics [Strang, 1968], [Marchuk, 1988].  

 

In the present thesis, we apply the latter approach for solving the coupled equations of 

motions of the binary PFC model. Following the philosophy of operator splitting the 

main problem is split into sub-problems (represented by appropriate sub-operators), 
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which can be solved numerically efficiently. The errors associated with the operator 

splitting method have been investigated in detail [Farago, Havasi, 2005a]. Other sources 

of error are the numerical methods used for solving the sub-problems. The respective 

numerical error can be split into two contributions, firstly the error produced by the time 

integration and secondly the error originating from spatial discretization. To avoid 

accumulation of these errors that would lead to order reduction and unnecessary loss of 

accuracy, one needs to choose carefully the method of discretization. P. Csomos and I. 

Farago have discussed this problem in detail [Csomos, Farago, 2008]. Nevertheless, even 

with these types of errors, the operator splitting method appears to be one of the most 

efficient techniques in dealing with high order PDEs. 

 

1.2 Thesis overview 

The thesis has been organized as follows: This introductory chapter summarizes the 

context, motivation and main contributions of this thesis, in addition, it lists the 

publications I co-authored during my work. A literature review on previous work done 

on the PFC model is presented in Chapter 2; it also formulates the motivations for the 

present work. Chapter 3 outlines the numerical techniques applied for solving the 

governing equations of the single component and binary PFC models. The results of the 

work are presented in Chapter 4; The first part of the chapter demonstrates the 

preliminary results for the PFC; In the second part of the chapter I present the numerical 

test of methods I applied for solving the single component PFC. I have moved on to 

address the binary case where I demonstrate the numerical stability of the proposed 

numerical scheme, investigate its computational efficiency in parallel environment, and 

apply it for the exploration of polycrystalline dendritic solidification in binary alloy. 

Chapter 4 also includes an investigation of eutectic solidification that addresses the 

composition dependence of eutectic pattern formation. In Chapter 5 I present my 

discussion for all the respective results. Chapter 6 is a summary of the main conclusions 

of the thesis and in Chapter 7 I have suggested further work that can be carried out. 
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Chapter 2 

 

LITERATURE REVIEW 

 

 

Introduction 

The Molecular Dynamics (MD) technique and field-theoretic models relying on coarse-

grained order parameters (often termed as phase-field models) are widely used for 

simulations of crystal growth. In the case of Molecular Dynamics, the simulations are 

restricted to atomic sizes and photonic time scales (picoseconds ps). The coarse-grained 

field theories overcome these limitations to some extent at the expense that many of the 

microscopic details (such as anisotropy, elasticity, etc.) are lost and have to be 

incorporated “by hand”. A recently developed theoretical approach named the Phase 

Field Crystal (PFC, which can be considered as a simple dynamical density functional 

theory) model offers a microscopic description which describes crystallization of liquids 

on a diffusive time scale that can be many orders of magnitude longer than the range 

accessible for molecular dynamics which can be seen in Figure 2.1. Being a density 

functional theory, the model naturally incorporates elastic and plastic deformations, 

multiple orientations, anisotropies, etc., and offers an efficient atomistic description of 

crystal growth from the melt. The PFC equation tries to find a path along the free energy 

where the energy is minimized through the equation of motion, this results a path where 

the free energy of the system is monotonic and decreasing (a function which increases but 

decreases).  
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Figure 2.1: A schematic illustration of various approaches for modeling materials 

Phenomena [Athreya, 2006] 

 

2.1  Review of publication for the PFC 

 

2.1.1 PFC 

The PFC model was first introduced by Elder et al. [Elder et al, 2002]. It relies on a 

Swift-Hohenberg (SH) type free energy functional and an overdamped conservative 

equation of motion in describing the time evolution of the field  that represents the 

reduced local particle density. The SH form of the free energy produces periodic states. 

The work was focused on the two-dimensional form of the PFC for both the single 

component and binary case. Several methods were used to validate the model. Firstly the 

PFC was compared to Read and Shockley‟s prediction of grain boundaries [Read, 
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Shockley 1950]. It was found that PFC fitted closely to Read and Shockley‟s predictions 

for small angles. The other method used for validating the model was an investigation of 

morphological instability in epitaxial growth. Here the PFC was used to calculate the 

critical height Hc at which dislocations eventually nucleate. Hc was then compared to 

results from the equation by Matthews and Blakesless [Matthews, Blakesless 1975]. It 

was found that the PFC results were consistent with the theoretical relationship. In 

addition, Elder et al deduced the time scales accessible to the PFC simulations. It was 

concluded that the PFC could simulate a diffusion controlled process in 1000 time steps 

as opposed to Molecular Dynamics which needs approximately 1012 time steps for the 

same process. 

 

Elder et al reported further work that displayed several applications, which included 

epitaxial growth, material hardness, grain growth, reconstructive phase transition and 

crack propagation [Elder et al 2004]. In addition to this, basic properties of the PFC 

model, such as the phase diagram, linear elastic constants and the vacancy diffusion 

constants were also calculated analytically. Elder et al evaluated the grain boundary 

energy for the PFC and compared it with the experimental data of systems like tin, lead 

and copper [Aust, Chalmers, 1952], [Gjostein, Rhines, 1959]. The PFC was found to have 

good agreement and in part provided evidence that the interaction between dislocations is 

correctly captured. Simulations were conducted for epitaxial growth using an Euler 

discretization scheme for the time derivative and the “spherical Laplacian” approximation 

to calculate all the Laplacian operators. From the simulations it could be seen that the 

film initially grew in a uniform manner before becoming unstable due to buckling or 

mound instability; then the film nucleated dislocations in the valleys where the stress was 

largest. After the dislocations nucleated, the interface grew in a regular fashion. Material 

hardness was investigated and a significant distortion at the grain boundary was 

discovered, however, small strains and grain boundary locations were relatively 

unaffected. The influence of grain sizes on the stress-strain relationship was also 

investigated for four-grain sizes. Elder et al reported that the PFC approach was able to 

reproduce the inverse Hall-Petch effect [Schiotz et al 1998], [Schiotz et al 1999]. This 
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work has provided evidence that the PFC can simulate the solidification process 

accurately for a wide variety of processes. 

 

2.1.2 Multi-scale approach PFC 

The multi-scale approach for simulating polycrystalline materials relying on the PFC 

theory was first developed by Goldenfield. They used the renormalization group (RG) 

[Provatas et al, 2005] and transformed systematically to coarse-grain the PFC model that 

Elder et al presented. The basic idea was to obtain a set of renormalization group 

equations of motion for the complex amplitudes of the periodic density field. From the 

complex amplitude the atomic-scale density field can be reconstructed within the one-

mode approximation. Comparing the grain boundary energies for both the original PFC 

and the coarse-grained version demonstrated the accuracy of the method. It was 

concluded that the RG equations closely follow the trends the PFC predicted for low 

angle grain boundaries, in fact the maximum difference in the free energy's between the 

two methods was approximately 1.6%. Following this the computational efficiency was 

also demonstrated. It was found that the RG form of the PFC showed a speed up close to 

a factor of 10 compared to the original PFC, while the error in the free energy was still 

less than 0.1%. 

 

Further work by Athreya et al in 2006 [Goldenfeld et al, 2006], [Athreya et al, 2007] 

presented a hybrid numerical implementation that combined cartesian and polar 

representation of the complex amplitude with adaptive mesh refinement, allowing a 

multi-scaled modelling of complex polycrystalline materials microstructure to be 

possible. Athreya et al solved the renormalization group equations using a C++ adaptive 

mesh refinement algorithm that uses a finite difference scheme [Fan et al, 2006]. It was 

shown that depending on the application, the scheme could be anywhere between one to 

three orders of magnitude faster than the equivalent uniform grid implementation of the 

PFC equation on a single processor machine. While this approach has been implemented 
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successfully for the single component case, its extension for the binary case is not without 

difficulties due to the different size scales appearing. 

 

 

2.1.3 The PFC and elastic interaction 

Stefanovic et al in 2006 suggested that the simplified PFC did not contain a mechanism 

for simulating elastic interactions sufficiently and provided an alternative method called 

the Modified Phase Field Crystal (MPFC) [Stefanovic et al, 2006]. This method included 

both diffusive dynamics and elastic interaction that used wave modes, which propagated 

on time scale slower than atomic vibrations; however it was still faster than diffusive time 

scale. Stefanovic et al performed simulations for grain growth and elastoplastic 

deformation, which was consistent with properties of nanocrystals. First Stefanovic et al 

simulated isothermal solidification using the MPFC. It was found that during the 

simulation the effect of the first term in the MPFC equation was small but significant. 

Comparing the MPFC results to the PFC results, it was found that the grain growth and 

morphology was indistinguishable. The elastic relaxation present in the MPFC was 

demonstrated by simulating a one-dimensional single crystal, which was under uniaxial 

tension. The displacement along the one-dimensional sample at three different times was 

found to be consistent with elasticity theory. It was shown that the MPFC becomes visco-

elastic as the damping is increased. This provides evidence that the PFC alone cannot 

adequately describe elastic responses in strained crystals at finite strain rates. The MPFC 

naturally incorporates this. 

 

2.1.4 Modeling bcc-interfaces with the PFC 

Kuo-An Wu and Alain in 2006 [Wu et al, 2006] investigated body-centered-cubic (bcc) 

structures to find the physical origin and quantitative predictions of anisotropy. They 

formed a system using Ginzburg-Landau (GL) theory where amplitudes of density waves 

corresponded to reciprocal lattice vectors. Earlier work for the formulation of the 

Ginzburg-Landau (GL) theory was introduced by Shih et al in 1987 [Shih et al, 1987]. 
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Using both these theories, Wu and Karma fitted the model parameters to experimental 

data of iron and comparisons were made with molecular dynamic simulations, which 

used an embedded-atom-method (EMA) with the potential of MH(SA)
2 

 [Mendelev et al, 

2003]. It was concluded that the theory Wu and Karma proposed in 2006 was able to 

predict the anisotropy of the interfacial energy and the density wave structure of the 

interface with good agreement to the results obtained by the molecular dynamic 

simulation. 

 

In 2007 Wu and Karma extended their work from 2006 to investigate the equilibrium 

properties of bcc-liquid interface with the PFC [Wu, karma, 2007]. The PFC model used 

was based on the reformalisation of the Swift-Hohenberg equation [Swift, Hohenberg, 

1977], which conserved the dynamics introduced by Elder et al in 2002 and 2004. Using 

this form Wu and Karma constructed the phase-diagram, which corresponded to bcc-

liquid coexistence and derived the amplitude equations for the PFC from a multiscale 

expansion. The amplitude equations described the equilibrium of the crystal density 

waves in the interface region. This allowed the PFC amplitude equations to be made 

comparable to the previous Ginzburg-Landau (GL) theory in 2006 [Wu et al, 2006]. Using 

both these theories Wu and Karma fitted parameters to experimental data in iron and 

comparisons were made with molecular dynamic simulations, which used an embedded-

atom-method (EMA) with the potential of MH(SA)
2 

 [Mendelev et al, 2003]. It was 

concluded that for both the PFC amplitude and the Ginzburg-Landau (GL) theory the 

amplitude profile and interatomic widths that were predicted were almost 

indistinguishable. The numerical results also showed that both methods gave similar 

predictions for  . 

 

2.1.5 PFC vs. classical density functional theory of freezing 

The density functional theory (DFT) for freezing was first formulated by Ramakrishnan 

and Yussouff [Ramakrishnan, Yussouff, 1979]. The classical DFT techniques have been 

reviewed by Singh [Singh, 1991] and Evans [Evans, 1979]. In 2007 Elder et al [Elder et 
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al, 2007] used this previous work to make the connection between the correlation 

function that enters the DFT and the free energy functional, which is used in the PFC. 

This connection was then exploited to develop a binary PFC model. Here the free energy 

expansion was truncated by the two-point correlation function which then could be 

characterized by three parameters: lattice constant, bulk modulus of the crystal and the 

isothermal compressibility of the liquid. In addition a binary PFC has been developed. 

The binary PFC was used to perform simulations for eutectic and dendritic 

microstructures. It was also concluded by Elder et al that the binary PFC was able to 

model phase segregation, grain growth, elastic and plastic deformation in anisotropic 

systems with multiple crystal orientation on the diffusive time scale. 

 

Following this work Berry et al in 2008 investigated freezing and glass formation in 

monatomic liquids using the PFC method [Berry et al, 2008]. The model was able to 

capture the relevant behavior. A semi-implicit pseudospectral algorithm was used to 

solve the equation of motion in three dimensions with periodic boundary conditions. The 

algorithm was reported to improve the computational efficiency in the order of one to two 

orders of magnitude compared to the real space finite difference Euler scheme. 

 

2.2 Classical phase-field approach to polycrystalline 

solidification 

Over the last several decades there has been an intensive amount of work within the area 

of polycrystalline solidification however there is a large amount that still needs to be 

understood. Various methods have been developed to model polycrystalline solidification 

which are level set [Tryggvason et al, 2002] [Tan, Zabaras, 2006, 2007], cellular 

automata [Zhu, Hong, 2002], [Beltram-Sanchez, Stefanescu, 2004] and [Zhu et al, 2008]. 

Other front tracking techniques have been investigated Schmidt, Steinbach et al and Jacot 

and Rappaz [Schmidt, 1996], [Steinbach et al, 1999], [Jacot, Rappaz, 2002]. Another 

method is the phase-field approaches; this scheme connects the thermodynamic and 

kinetic properties with microstructure through a transparent mathematical formalism. 

Therefore this method has been preferred over the others stated above. There have been 



Literature Review 12 

 
several reviews on this model which I would like to draw the reader‟s attention to 

[Boettinger et al, 2002], [Chen, 2002], [Hoyt et al, 2003], and [Gránásy et al, 2004a]. In 

order to model the polycrystalline solidification within the phase field model the 

inclusion of homogeneous and/or heterogeneous nucleation is required. This is done for 

field theoretical models by adding Langevin noise to the equation of motion which can be 

seen in [Gunton et al, 1983]. However crystallographic orientation is required to be 

incorporated in the model to describe the impingent process of a large number of 

crystallites that grow anisotropically. The reason for this, crystallographic orientation 

allows the specification of the preferred growth directions of growth. First simulations to 

incorporate this were conducted by Morin et al [Morin et al, 1995]. They relied on a free 

energy density that had n wells which corresponded to n crystallographic orientations, 

thus breaking the rotational symmetry of the free energy.  

 

Another approach was realized by the multi-phase-field theory [Steinbach et al, 1996], 

[Fan, Chen, 1996], [Tiaden et al, 1998], [Diepers et al, 2002], [Krill, Chen, 2002] which 

was used to address the formation of particles with random crystallographic orientations. 

This approach introduced separate phase field for every crystal grain. The advantage of 

this was that the model offered more flexibility however this was at the expense of 

enhanced mathematical and numerical complexity. Using the MPFT approach, studies in 

to polycrystalline dendritic and eutectic/peritectic solidification have been conducted. 

Furthermore MPFT has been successfully applied for describing the time evolution of 

multigrain structures. However, the large number of phase fields applied in these 

approaches leads to difficulties, when nucleation is to be modelled by Langevin noise. 

Noise-induced nucleation can be substituted by inserting nuclei by „hand‟ into the 

simulations. However when structures that require the nucleation of different 

crystallographic orientations at the growth front are to be addressed this procedure 

becomes non-trivial. Furthermore this treatment rules out possible interactions between 

the orientation of new grains and diffusion. Therefore growth front nucleation in the 

MPFT model is not straight forward. In order to model complex polycrystalline structures 

(especially the polycrystalline growth forms) it seems that another method is required 
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which relies on an orientation field to monitor the crystallographic orientation. Such a 

model has been provided by Kobayashi et al, (1998) [Kobayashi et al, (1998)] to model 

polycrystalline solidification in 2D. Here they have used a non-conserved scalar field to 

monitor crystallographic orientation. The energy density of fori = HT|θ| (fori is the 

orientation free energy), where the H coefficient has a minimum at the position of the 

interface, the minimization of free energy leads to a stepwise variation of θ(r), a 

behaviour approximating reasonably the experimental reality of stable, flat grain 

boundaries. (Such minimum can be realized making the coefficient H dependent on the 

phase field, by introducing the factor 1 − p (φ) (p (φ) is the phase interpolation function) 

into fori [Gránásy et al, 2002]). For the problems which include solid-solid and solid-

liquid interfaces, successful modifications to the approach above have been made by 

Kobayashi et al and Warren et al [Kobayashi et al, 1998, 2000] and [Warren et al, 2003]. 

Furthermore Gránásy et al [Gránásy et al, 2002] have provided an extension of the 

orientation field to the liquid state, where it has been made to fluctuate in time and space. 

This allows handling of such polycrystalline growth forms as disordered dendrites, 

spherulites, axialites, and fractal like growth forms [Gránásy et al, 2003; 2004b]. 

 

In order to provide information on polycrystalline solidification I am going to apply the 

PFC for multi-grain crystallization in a binary liquid alloy. My aim is to investigate the 

behaviour of the Avrami-Kolmogorov exponent as a function of the number density of 

the initial crystal seeds. This kinetic exponent is often used for characterizing the time 

evolution of crystallization. 

 

2.3 Numeric Methods 

 

2.3.1 Meshes 

Meshes are discrete locations where variables are calculated. The location is defined by a 

numerical grid which is essentially a discrete representation of geometric domain. There a 
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four major grids and in the following sub-section I am briefly going to explain them and 

identify the advantages and disadvantages of each. 

 

2.3.1.1 Block structured grid 

They consist of several rectangular grids which are combined together. The joining points 

of two grids share the same common neighbour. The key point to remember is that the 

structure may be irregular but they may not overlap one another. The advantage of this 

grid is its flexibility; also it allows regions to have finer grids where greater resolution is 

required. However due to the complexity of the grids one can find it difficult to generate 

the mesh. I have demonstrated such a grid in Figure 2.2; this was taken from 

[inf.bauwesen]. 

 

 

Figure 2.2: Example of a block-structured grid taken from [inf.bauwesen]. 

 

2.3.1.2 Regular (structured) mesh 

This is the simplest grid structure out of the four since it‟s logically equivalent to a 

Cartesian grid. The mesh is a uniform rectangular grid, which can be distorted to fit any 

shape and was used for our simulations.  One of the key advantages for the mesh is that it 

is easy to implement and a large number of solvers can be used in developing a solution 
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technique. However they can only be used for geometrically simple solution domains and 

furthermore it is difficult to control the distribution of grid points. I have provided an 

example of such a mesh in Figure 2.3 which was taken from [rspa]. This type of mesh 

was used for our simulations because the FFT that was used was available for the regular 

mesh. 

                        (a)                                                 (b) 

                                           

 

Figure 2.3: (a) Example of a 2D uniform rectangular grid [Ferziger, Peric, 2002], (b) 

Distorted rectangular grid taken from [rspa]. 

 

 

 

Figure 2.4: Example of a 2D overlapping grid taken from [psc.edu]. 
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2.3.1.3 Overlapping  

This type of mesh is sometimes called composite or chimera grid. Essentially the mesh 

contains several grids with the girds overlapping one another. In these overlapping 

regions the boundary conditions for one of the blocks can be obtained by interpolating the 

solution from the other (overlapped) block, Figure 2.4 shows a typical example and was 

taken from [psc.edu]. The disadvantage of these grids is that conservation is not easily 

enforced at the block boundaries. However one advantage is that it can be used for 

complex domains. 

 

2.3.1.4 Unstructured mesh 

It is best suited for Finite Element (FE) and Finite Volume (FV) approaches, in practice 

the grids are made up of triangles and quadrilaterals in 2D and tetrahedral or hexahedral 

in 3D. A simple example of this type of mesh in 2D is illustrated in Figure 2.5, this was 

taken from [vidi.cs].  

 

  

 

Figure 2.5: Example of a 2D unstructured grid taken from [vidi.cs] 
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This type of mesh can be used for very complex geometries, due to the mesh being the 

most flexible type it can fit any solution domain boundary. With this in mind it can be 

said that the mesh can be used with any discretization scheme. Furthermore I would like 

to raise the point that due to the irregularity of the data structure, each nodes location and 

neighboring connections would need to be explicitly specified. This in turn causes the 

matrix of the algebraic equations not to diagonally dominate. This result makes the 

solvers for the algebraic equations slower in comparison to the regular mesh. 

 

2.3.2 Discretization Method 

Discretization methods are used to approximate PDEs by a system of algebraic equations. 

The main methods that are employed are finite differences (FD), finite volume (FV), 

finite element (FE) and spectral schemes. With each method the desired characteristics of 

the mesh may differ. However in general, for all types of mesh there are certain 

characteristics to be controlled. 

 

 Local density of grid points: Density of points gives you more accuracy however 

the computation takes a longer time. 

 Smoothness of point distribution: Large variations in the grid or shape can cause 

numerical diffusion. This can lead to inaccurate results and instabilities. 

 The shape of grid volumes: For instance, in Finite element (FE) triangular 

elements are used, in order to prove convergence under strict conditions. 

 

2.3.2.1 Finite Difference scheme 

This scheme is commonly used for solving differential equations. They are based on 

approximations that replace the PDE by the finite difference equation. These 

approximations are in algebraic form and the solution relates to grid point. The key steps 
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for the finite difference scheme are firstly to divide the solution into grid nodes. Secondly 

approximate the PDE by the equivalent finite difference that relates to the solution on the 

grid. Thirdly solve the PDE subject to prescribed boundary/initial conditions. The 

approximations come directly from the Taylor expansion. To elaborate I am going to 

demonstrate this with a 2-D Taylor series expansion. From Figure 2.6 if we consider the 

function u and Taylor series expanded about the point (x, y) we obtain equations 2.3.1 

and 2.3.2. Now considering a regular grid of points shown in Figure 2.7 we can use the 

notation u(x, y) = ui, j, u(    , y) = ui + 1, j and u(x,     ) = ui, j +1, substituting this 

notation back into equations 2.3.1 and 2.3.2 we can obtain the equations 2.3.3 and 2.3.4. 

From equations 2.3.3 and 2.3.4 we can then make the finite difference approximations. 

The approximations can be classed into three forms forwards; backwards and central and 

have been defined below: 

 

 Forward Difference (first order derivative): By taking the positive of the 

Taylor‟s expansion and truncating it to the terms including second order and 

higher we can then rearrange it so we get the following expression in equation 

2.3.5. 

 Backwards Difference (first order derivative): By taking the negative of the 

Taylor‟s expansion and truncating it to the terms including second order and 

higher we can then rearrange it so we get the following expression in equation 

2.3.6. 

 Central Difference (first order derivative): This is obtained truncating both 

equations 2.3.3 and 2.3.4 terms higher than the second derivative. Then by 

subtracting them from one another and rearranging them in terms of the first order 

derivative so we get the expression in equation 2.3.7 

 

In order to obtain the second order central difference we truncate both equations 2.3.3 

and 2.3.4 terms higher than the second derivative. Then by adding them together and 

rearranging them in terms of the second order derivative we can obtain the second order  
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Figure 2.6: A grid representation function u Taylor series expanded about the point (x, y) 

to obtain equations 2.3.1 and 2.3.2 

 

                      
  

  
  

 

  
     

   

   
         

(2.3.1) 

                      
  

  
  

 

  
     

   

   
         

(2.3.2) 

 

Figure 2.7: A regular grid of points to show that we can use the notation u(x, y) = ui, j, 

u(    , y) = ui + 1, j and u(x,     ) = ui, j +1, 
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(2.3.8) 

central difference equation 2.3.8. It is worth noting that higher order finite difference 

approximations can be obtained by taking more terms in the Taylor series expansion. By 

substituting these approximations into the PDE for the differentials we arrive at the 

discretized equation of the PDE. There are several methods that are used to solve the 

discretized equations such as explicit method, implicit and semi implicit method however 

this will be discussed later in the chapter. It is worth pointing out that the boundary nodes 

can take two forms: firstly Dirichlet conditions where variable values are given and no 

equation is needed, and secondly Neumann conditions which involve derivatives. For 

both conditions it must be discretized to contribute to the equations that must be solved. 

Furthermore the advantage of using the FD scheme is that it‟s easy to implement and it‟s 

easier to obtain higher order derivatives. However the method is confined to only using a 
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structured grid which may not be conserved. 

 

2.3.2.2 Finite Volume 

The finite volume scheme is similar to the finite difference and finite element where the 

values are calculated on discrete places on a mesh. It is based on small control volumes 

where each volume encloses a grid node; this can be seen in Figure 2.8 (which was drawn 

by myself).  

 

 

 

 

 

 

                                               Control Volumes 

                         Nodes placed at the centre of the control volume 

 

                                                                          N      

                                                                     n 

                                                  W       w      P      e        E 

                                                   k                              

                                                            h       s    

                                                                           S 

                                                               Control volume  

 

Figure 2.8: Shows the grid generation of finite volume method with control volumes 

(CV) and compass notations. 
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The scheme utilizes the fact that volume integrals in a PDE contains a divergent, using 

the divergence theorem shown in equation 2.3.9 we are able to relate the flow on the 

surface of the control volume to the interior.  

 

                 
  

 

(2.3.9) 

By approximating the flow on the surface of each control volume we are then able to 

calculate a solution for the dependent variable at each grid node. Furthermore I would 

like to note, due to the flux entering a given volume is identical to the flux leaving the 

adjacent volume the scheme is conserved. To generate the grid we place nodes across a 

domain and control volumes around them. Control volumes faces (boundaries) are placed 

midway between adjacent nodes. For the case of boundary nodes it is common practice to 

ensure that the boundary lies on a control volume face. Compass notations are usually 

used to denote each control volume face, e.g. central control volume is (P) and its East 

and West neighbors are (E) and (W). The East and the West faces of the control volume 

(P) are (e) and (w) respectively (Figure 2.8). One of the advantages of the finite volume 

scheme compared to the finite difference method is that it can be used on unstructured 

meshes and still be conserved, which is not true for the finite difference scheme where a 

structured mesh is required. However there are difficulties in approximating higher order 

derivatives for the finite volume scheme unlike the finite difference method. 

 

2.3.2.3 Finite Element 

The basic idea behind the finite element method is that the unknown u(x,y) forms the 

surface over a domain. The finite element method approximates this surface using a 

piecewise linear function which is comprised of polynomials of fixed degree. The finite 

element method typically requires the minimisation of functional involving integrals. In 

practice it also requires the solution of a large linear system for the Ui  at the mesh nodes  
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 Ui(x1,y1) = a + bx1 + cy1 

 Ui(x2,y2) = a + bx2 + cy2 

 Ui(x3,y3) = a + bx3 + cy3 

 

Figure 2.9: Example of triangle used to approximate u(x,y) over the element by the linear 

function 

 

 

Figure 2.10: This image demonstrates mesh refinement. The image was taken from 

[mathworks] 
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(the corners of each triangle). The domain is made up of triangles Ti (the elements) and 

uses a linear function, Ui  on each triangle. Thus u(x,y) is approximated over the element 

by the linear function Ui(x,y) to give Ui(x,y) = a + bx + cy, where a, b and c are constants 

and calculated by the method (also see Figure 2.9). The collection of triangular elements 

is known as an unstructured mesh, the elements can also be rectangles or other shapes 

providing they fit together well and cover the domain. Mesh refinement is commonly 

used for the finite element method to improve the accuracy; the easiest way is to divide 

each triangle into four smaller triangles by bisecting each edge (Figure 2.10). 

 

2.3.2.4 Spectral methods 

For the case of spectral methods the spatial derivatives are evaluated using Fourier series, 

the simplest method deals with periodic functions where values are uniformly spaced 

points. Therefore its function can be represented by a discrete Fourier series: 

 

                    

 
 

  

      

 

(2.3.10) 

        

          

            

 

Re arrangement of equation 2.3.10 can lead to the form: 

 

        
 

 
       

      

 

   

 

(2.3.11) 
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Equation 2.3.11 can be used to interpolate f (x) and this is what makes these series useful, 

hence the continuous variable x can replace the discrete variable xi, therefore f (x) is then 

defined for all x, not just the grid points. Next the choice of the range of q is very 

important as different sets of q produces different interpolation, it is important to choose a 

set which gives rise to the smoothest interpolation. After defining the interpolation one 

can differentiate it to give a Fourier‟s series for derivatives. For our case it gives rise to: 

 

  

  
                 

 
 

  

      

 

(2.3.12) 

Therefore this method allows one to evaluate the derivative. A key advantage of this 

method is that higher derivatives can be easily generalized and the error in computing the 

derivatives decay exponentially with N when the number of grid points N is larger than f 

(x). This property makes spectral methods more accurate than finite difference method. 

Also the accuracy of the spectral scheme translates into fewer unknowns, therefore 

greater speed and less memory is obtained for the same accuracy in comparison to the FD 

scheme. Furthermore FFT can be performed easily which means implicit time stepping 

can be implemented. Lastly in comparison to the FD method the spectral methods 

typically produce smaller artificial dissipation and dissipation. Generally Pseudo-spectral 

method is used for evaluating PDE‟s using a spectral scheme.  

 

2.3.3 Numerical methods applied 

 

2.3.3.1 Explicit Scheme 

This is one of the simplest methods where all fluxes and sources are evaluated using 

known values at tn only. For the equations of control volume or grid points at the new 
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time line the value at that node only is the unknown, hence all the neighbouring values 

are evaluated at previous time levels. Therefore one can calculate the new value of the 

unknown node explicitly. I will demonstrate the method for the finite difference scheme 

by considering equation 2.3.13, which is a one dimensional PDE. By replacing the first 

order derivative on the LHS by the forward difference and the second order derivative on 

the RHS by the second order central difference we get equation 2.3.14.  

 

  

  
   

   

   
 

(2.3.13) 

            

  
    

                     

   
 

(2.3.14) 

                                                              
   

    

                     

                     Time (j+1)                          Time (j)                                                               

(2.3.15) 

                                                                           

                                                j+1                            

                                                   j                           

                                                                          

                                                j-1              

                                                              

                                                                 i-1        i          i+1 

 

Figure 2.11: The grid demonstrates which nodes are required to calculate the explicit 

finite difference (the blue nodes are used to calculate the unknown node red node). 
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As the explicit method calculates values of the current time step only from the known 

values at the previous time step we can rearrange equation 2.3.14 so that on the LHS we 

have all the ui, j+1 and on the RHS we have all the other terms, we get equation 2.3.15.  

The grid representation Figure 2.11 shows which nodes (blue nodes) are used to calculate 

the unknown node (red node) explicitly for equation 2.3.15. The advantage of this 

scheme is it‟s easy to implement and solve, however the disadvantage is that there are 

restrictions on the time step for stability.   

 

2.3.3.2 Implicit Scheme 

The key difference from the explicit method is that the implicit scheme uses more than 

one node at time step j + 1. Hence the unknown values at the current time step depend on 

known values at the previous time step and on each other. The scheme is always 

numerically stable and convergent however it is more numerically intensive than the 

explicit method. This is due to the method solving a system of numerical equations on 

each time step. The errors are linear over the time step and quadratic over the space step. 

I will demonstrate the method for the finite difference scheme by considering equation 

2.3.13. By replacing the first order derivative on the LHS by the backwards difference 

and the second order derivative on the RHS by the second order central difference at j + 1 

we get equation 2.3.16.  

            

  
    

                           

   
 

(2.3.16) 

 

                                                                      
   

    

                                

                                   Time (j+1)                          Time (j) 

(2. 3.17) 
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                                                j+1                            

                                                  j                           

                                                                          

                                                j-1              

                                                              

                                                                 i-1        i          i+1 

 

Figure 2.12: The grid demonstrates which nodes are required to calculate the implicit 

finite difference (the blue nodes are used to calculate the unknown node red node). 

 

As the implicit method calculates values of the current time step on known values at the 

previous time step and each other we can rearrange equation 2.3.16 so that on the RHS 

we have all the ui, j and on the LHS we have all the other terms, we get equation 2.3.17.  

The grid representation Figure 2.12 shows which nodes (blue nodes) are used to calculate 

the unknown node (red node) from the implicit equation 2.3.17. The advantage of using 

the implicit method is that larger time steps can be used; however the method requires the 

solution of system of equation. 

 

2.3.3.3 Crank-Nicholson 

This method can also be considered as a semi-implicit scheme, the method not only uses 

known values at tn, but it also uses more than one node at time step j + 1. The scheme 

approximates the derivative at midpoints in (i, j+0.5) and is based on central difference in 

space and trapezoidal rule in time, giving second-order convergence in time. This scheme 

requires a small increase in computational effort compared to the first order implicit 

scheme. Furthermore using the Von Neumann stability analysis it can be shown that the 

Crank-Nicholson scheme is unconditionally stable and for oscillatory solutions larger 
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time steps are possible. The errors that are associated with this method are quadratic over 

the time step and formally are of the fourth degree regarding the space step.  

 

 

            

        
   

 

 
  

                     

    
                           

      

     Central difference                        Central difference                          Central difference 

     at (i, j + 0.5)                                 at (i, j)                                             at (i, j +1) 

(2. 3.18) 

 

                                                                           
   

   
   

(2. 3.19) 

 

                                                                           

                                                j+1                            

                                                  j                           

                                                                          

                                                j-1              

                                                              

                                                                 i-1        i          i+1 

 

Figure 2.13: The grid demonstrates which nodes are required to calculate the Crank-

Nicholson scheme (the blue nodes are used to calculate the unknown node red node). 
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I will demonstrate the method for the finite difference scheme by considering equation 

2.3.13 for the last time. I begin by approximating the derivatives at the mid-point in time 

(i, j + 0.5) so we get the equation 2.3.18. We can rearrange equation 2.3.18 so that on the 

RHS we have all the time j and on the LHS we have all the other terms, we get equation 

2.3.19. The grid representation Figure 2.13 shows which nodes (blue nodes) are used to 

calculate the unknown node (red node) from the Crank-Nicholson equation 2.3.19. 

 

2.3.3.4 Pseudo-spectral method 

The reason why this method is preferred is due to the fact that it obtains maximum 

flexibility while retaining good convergence properties of the spectral approximation. 

Furthermore the method can be applied to PDE‟s with variable coefficients, nonlinearities 

and inhomogeneities. The spatial derivatives are evaluated by using Fourier series. The 

simplest methods deal with periodic functions where values are uniformly spaced points. 

Thus the function can be represented by a discrete Fourier series. Below I have shown an 

example of differentiating in spectral space and the forward and backward Euler time 

stepping in equations 2. 3.24 and 2.3.25. 

 

Consider the operator: 

   
  

   
 

(2. 3.20) 

Using the spectral expansion: 

              

 

                   

(2. 3.21) 
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The second derivative in spectral space is a multiplication by    
 

. Therefore the 

second order derivative matrix in spectral space is defined as: 

 

 

Implementing this in spectral space using Fast Fourier‟s Transformations FFT in an 

individual steps can be seen below: 

 

LU = FFT
-1    FFT U 

(2. 3.22) 

Forward Euler time stepping: 

 

  

  
  

        

  
     

 

Then it becomes equation 2.3.23 where I is the identity matrix: 

 

                     

(2. 3.23) 

                           

(2. 3.24) 
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Backward Euler time stepping: 

 

                              

(2. 3.25) 

2.3.3.5 Operator Splitting 

Operator splitting techniques are considered as being amongst the most efficient methods 

for solving complex PDEs applied in physics. The basic concept is that the spatial 

differential operator is split into a sum of sub-operators that have simpler forms and can 

be handled easier. Accordingly, the original problem is replaced by a sequence of sub-

problems solved numerically. The method can be generalized in the following steps taken 

from [Farago, 2007]: 

 

 Select a small positive time step ( τ ) and then divide the whole time interval into 

sub-intervals of length τ ; 

 On each sub-interval you consecutively solve the time dependent problems, each 

of which involves only one physical process; 

 Then pass to the next time sub-interval. 

 

There are three traditional operator techniques that can be implemented which are 

Sequential splitting, Strang-Marchuk splitting and symmetrically weighted sequential 

splitting. In addition to this, two new techniques for splitting have been suggested by I. 

Farago [Farago, 2007], that are called Iterated splitting and Adaptive splitting. An 

example of sequential splitting that demonstrates the basic properties of the technique is 

presented below [Farago, Geiser, 2006] and in [Farago, Havasi, 2005b]. 

 

Let us consider the case of two linear operators: 
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(2.3.26) 

The sequential operator split of A-B can be represented as: 

      

  
                                             

  

(2.3.27) 

       

  
                                                   

(2.3.28) 

For n = 0, 1, …, N –1 where     
      is given by (2.3.26), the approximated split 

solution at the point t = t
n+1

 is then defined as    
              . 

We applied this approach for solving the coupled equations of motion of the binary PFC 

model, which has not previously been done. The team have specifically used spectral 

scheme and splitting the discretization as this leads to leads to diagonal matrices.  
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Chapter 3 

 

PHASE FIELD CRYSTAL (PFC) METHOD  

 

Introduction 

The Phase Field Crystal (PFC) method is a simple dynamical density functional theory 

which offers microscopic description and describes crystallisation of the liquid on the 

diffusive timescale. Being a density functional theory, the model naturally incorporates 

elastic and plastic deformation, multiple orientations and anisotropies and offers an 

atomistic description of the crystal growth for the melt. The PFC equation of motion is 

formulated so that it finds the minimum free energy path during time evolution. 

 

3.1 Single component  PFC 

 

3.1.1 Single component (pure material) PFC 

The following subsection shows the derivation of the free energy functional for the single 

component case as proposed by Elder et al in 2006. For a detailed derivation the reader is 

advised to read through Appendix A which shows the full derivation given in [Elder et al, 

2006]. Within this subsection I am also going to provide the numerical scheme that was 

used to solve the equation of motion to provide the simulations in the first part of chapter 

4. The reader should note the numerical scheme was developed by my research team; 



Phase Field Crystal (PFC) 36 

 
however I have used this as a tool for the subsequent simulations shown in the early part 

of the results chapter. 

 

The starting point in defining the equations for the PFC is the Classical Density 

Functional Theory (DFT). In this theory the characterization of the local physical state is 

given by time-averaged densities which are uniform in the liquid and periodic in the 

solid, rigorous mathematical proof of this has been provided by Ramakrishnan and 

Yussouff [Ramakrishnan, Yussouff, 1979]. As being part of the perturbative DFT, which 

uses the homogeneous liquid as a reference, the free energy of the solid is then Taylor 

expanded relative to the liquid to give equation 3.1.1.  

 

 

  
          

 

  
   

       

                                     

 (3.1.1) 

 

 K is the Boltzmann’s coefficient. 

         
   

this is assumed to be a small quantity. 

          is the two particle direct correlation function of the referenced liquid. 

 

 

Equation 3.1.1 is a non-local functional; therefore, the equation of motion is an integro-

differential equation. The next step is to simplify the mathematical task, so we introduce 

the rescaled density via equation 3.1.2 and substitute it into equation 3.1.1. Finally we 

Taylor expand the logarithmic term in   up to
4n  which gives equation 3.1.3. 
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    (    
   

    
   

 

(3.1.2) 

 

  
   

  
         

     
   

  

 
    

  

 
  

  

  
     

(3.1.3) 

Next we Taylor expanded the direct correlation function in Fourier space giving equation 

3.1.4. 

                
       

     

 (3.1.4) 

       has the first peak at       . 

   is the inter particle distance. 

 

Then equation 3.1.4 is transformed back to real space, yielding 

 

             
       

               

(3.1.5) 

All physical information concerning the solidifying system is buried into the expansion 

coefficients of the two-point correlation function, which can be related to measurable 

properties such as the compressibility of the liquid, the bulk modulus of the crystal and its 

lattice constant. Figure 3.1(a) shows the liquid state lying on the liquidus line of the solid-

liquid which is for a pure material. The coexistence region is represented by the shaded 

area. Also Figure 3.1 (b) shows the typical liquid state two-point correlation function 

compared to the power series approximation. One can see that the approximation is 
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reasonably close to the experimental two-point correlation function allowing the 

evaluation of the parameters of the PFC model: 

1. The isothermal compressibility of the liquid           
   

     , which is     when 

K = 0 in Figure 3.1b. 

2. The bulk modulus of the crystal       
   

   
 /|      , which is associated with the 

height of the first peak     in Figure 3.1b. 

3. The lattice constant        /|     
 
   , which is the position of the first peak     in 

Figure 3.1b. 

 

 

 

 

Figure 3.1 (a) A sample phase diagram, representing the coexistence region by the 

shaded area (   is the average number density). (b) Two-point direct correlation 

function at liquid state is also shown together with the approximation made in the 

PFC (dashed line).[Elder et al, 2007]. 
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Substituting 3.1.5 into 3.13 the PFC free energy takes the form: 

 

 

  
   

  
       

 

 
           

               
  

 
  

  

  
  

(3.1.6) 

 

            Which is the equivalent to (1/  )/(  
   

   ), where   is the 

compressibility. 

 BS = |b2|
2
/(4|b4|), Which is the equivalent to K/(  

   
  ), where K is the bulk 

modulus of the crystal. 

 R =   (2|b4|/|b2|)
1/2

. 

 One should note that the v term in equation 3.1.6 accounts for the 0
th

 order 

contribution from the 3 particle correlation function.  

 bj =        
 , where     are the coefficients of the polynomial expression for the 

Fourier’s transformation      . 

 

By introducing dimensionless variables, one may obtain a dimensionless form of the PFC 

free energy, which is equivalent to the Brazowskii/Swift-Hohenberg free energy 

functional equation 3.1.7, as shown by Elder in the following papers [Elder et al, 2002, 

2004]. 

 

Introduced dimensionless variable: 
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We obtain: 

          
 

 
                       

  

 
 
  

 
  

(3.1.7) 

In the above equation,   is the reduced number density,    
     

   
 

  
   , and r* is an 

effective temperature, expressible as a combination of the Taylor coefficients of the two-

particle correlation function and related to the measurable quantities previously 

described: 

 

1. Compressibility of the liquid. 

2. Bulk modulus of the crystal. 

3. Lattice constant. 
 

 

   is a local functional, therefore, the equation of motion is a partial differential equation 

(PDE). It is also worth noting that the Swift-Hohenberg model differs from the PFC 

model by assuming non-conserved dynamics (equation 3.1.8); whereas in the PFC model 

Elder et al has assumed conserved dynamics described by equation 3.1.9. 

 

  

   
    

   

  
 

(3.1.8) 

  

   
     

   

  
    

(3.1.9) 
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 M  is the mobility. 

   is a Gaussian stochastic noise term. 

 

The motivation of this is that   is a reduced number density, therefore, its integral (total 

number of particles) is conserved throughout the time evolution of the system (mass 

conservation). The respective equation of motion for the single-component case reads as:   

 

  

   
                                  

(3.1.10) 

The initial parameters of the model are as follows: 

 

    =   /   = (1+ |b0|)/[|b2|
2
/(4|b4|)]

-1
 which is the reduced temperature. 

   is the reduced number density,   
     

   
 

  
    

 

Because    = 0 the final form of the equation of motion stands as: 

 

 

  

   
                            

(3.1.11) 

 

The reader should be aware of the phase diagram for the single-component system, which 

is shown in Figure 3.2. Here there are three phases that are of interest: 

 

 Region 1 – Is the striped phase. The respective region in the phase diagram is of 

interest only for polymer studies. 
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 Region 2 – Is the 2d hexagonal crystal phase. The respective region in the phase 

diagram is where the stable phase is the crystal and where my simulations (to be 

presented in the next chapter) have been conducted. 

 Region 3 – Is the homogenous liquid phase. 

 

There are two more areas in the phase diagram labelled as Region 4 and Region 5 which 

stand for the coexistence regions between the striped and hexagonal phases (Region 4 on 

the left) and the homogenous liquid and crystal (Region 5 on the right). 

 

 

Figure 3.2 Displays the phase diagram of the single-component PFC model 

described above (The figure was taken from [Provatas et al, 2007]), r is the reduced 

temperature and    is the average number density. 
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3.1.2 Numerical scheme for the single component (pure material) 

PFC 

First I would like to mention that there exist several splitting procedures [Strang, 1968], 

[Marchuk, 1988], [Farago, Havasi, 2005a], [Csomos, Farago, 2008], [Hundsdorfer, 

Verwer, 2003], [Havasi, 2005b] and [Csomos et al, 2005]. For simplicity, the numerical 

procedure used in solving the equation of motion was sequential splitting. This was 

deployed in order to make the calculations more manageable. While its advantages are 

perhaps less apparent in the case of the single-component model, they are evident in the 

case of the binary version, which will be discussed in subsection 3.2.2. The concept 

behind the method is to split the spatial differential operator into sub-operators, which 

have simpler structure. The split can be seen below in 3.1.13 and 3.1.14, where 3.1.13 is 

the collection of the non-linear terms and 3.1.14 is the collection of linear terms. For our 

simulations A1 is solved by explicit spectral scheme and A2 is solved by implicit spectral 

scheme.  

 

  

   
          

 (3.1.12) 

               

 (3.1.13) 

                             

 (3.1.14) 

We will use explicit Euler time stepping for the sub-operator A1 and implicit time 

integration for A2, yielding the following equations: 
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 (3.1.15) 

               
     

 (3.1.16) 

In order to obtain an accurate solution, which is free of dissipation in handling the non-

linear contributions, we have repeatedly applied Fast Fourier Transformation (FFT) by 

differentiation in spectral space and then inverse Fast Fourier Transformation (IFFT). The 

explicit time integration applied for 3.1.15 produces algebraic equations, which are 

written in a diagonal matrix form; therefore, they could be solved point-wise using back-

substitution. For the sub-operator containing constant coefficients terms A2, the 2D spatial 

discretisation has been made spectrally. Note that the 2D Laplacian discretised in Fourier 

space corresponds to a     (  
     

  , where    and    are the discrete wave numbers. 

The final form of the splitting equations is shown by equations 3.1.17 and 3.1.18. 

 

 

                  
   

 (3.1.17) 

                                         

 (3.1.18) 

The above equations realize a conditional time stepping however in the results chapter we 

make comparison to unconditionally stable time stepping. The difference from 

unconditionally stable time stepping is that we have treated the fourth order term 

explicitly in order to make the solution stable. The respective equation of motion in 

dimensionless terms is equation 3.1.11 and the split is displayed in equations 3.1.19 and 

3.1.20. 
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 (3.1.19) 

       
 
         

 
      

 (3.1.20) 

The discretised Laplacian in 2D Fourier space corresponds to a     (  
     

  , where 

   and    are the discrete wave numbers. Thus the final forms can be seen below in 

equations 3.1.21 and 3.1.22. 

 

 

                  
   

 (3.1.21) 

       
    

          
 
         

 
          

 (3.1.22) 

 

3.2  Binary PFC 

 

3.2.1  Binary alloy PFC 

The binary case differs from the single component case in that it considers A and B 

atoms, still the starting point is the same as for the single component case, the Classical 

Density Functional Theory. Here the homogeneous binary liquid is used as a reference. 

The free energy of the solid is Taylor expanded relative to the liquid yielding equation 

3.2.1 
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(3.2.1) 

 (L)  Corresponds to the referenced homogeneous binary liquid. 

     is the number density of the i
th

 species 

      is the two-particle partial direct correlation function 

               

 
 
 

 

Analogously to the single component case, the direct correlation function is Taylor 

expanded up to the 4th order in Fourier Space: 

 

          
       

         
       

 (3.2.2) 

Then this is transformed back into real space as 

 

          
       

         
                         

(3.2.3) 

The partial direct correlation functions     can be related to experimental or computed 

partial structure factors [Woodhead-Galloway, Gaskel, 1968] and related in turn to: 
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1. Compressibility of the liquid. 

2. Bulk modulus of the crystal. 

3. Lattice constant. 
 

By introducing new variables that represent the partial number density differences shown 

in 3.2.4 and 3.2.5 to 3.2.1, one can expand the resultant equation around      and 

    thus obtaining the free energy in the form shown in equation 3.2.6 (note that 

coefficients t and v follows from the power series expansion): 

 

          

(3.2.4) 

             
  
     

  

  
 

 (3.2.5) 

    
      

 

  
 

    
      

 

  
 

The Free Energy form (note that with exception to   and    the rest of the coefficients 

comes from the expansion of the direct correlation function): 

 

 

     
            

 

 
           

              

  
 

 
    

 

 
            

 

 
        

 

 
       

  
  

 
                

 (3.2.6) 



Phase Field Crystal (PFC) 48 

 
The initial parameters of the model are as follows: 

 n corresponds to the number density. 

    corresponds to the total number density. 

    is related to the compressibility of the liquid. 

    is the Bulk modulus of the crystal. 

 R is the inter-atomic distance. 

 v is a constant from the Taylor expansion of   . 

 t is a constant from the expansion of   , however it can be changed to incorporate 

3- particle correlation to 0
th

 order. 

   is the coefficient of the linear terms and comes from the expansion. 

    is the coefficient of the square-gradient term that is related to the chemical 

contribution to the phase boundaries. 

     magnitude and sign will decide whether there is phase separation in the 

liquid; with appropriate signs they can produce a double well free energy as a 

function of     

 

As in the single component case, Elder has assumed conserved dynamics for the particle 

densities, yielding equation 3.2.7 as the equation of motion for total particle density, and 

equation 3.2.8 as the equation of motion for the particle density difference (related to 

concentration). 

 

  

  
    

 
  

  
 

 (3.2.7) 

     

  
    

 
  

     
 

(3.2.8) 
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In order to produce the equation of motion and concentration from equation 3.2.6, we 

need equation 3.2.9 that defines the functional derivative in case of higher differential 

operators [see e.g. Musicki, 1978]: 

 

  

  
  

  

  
           

  

     
 

(3.2.9) 

The form for n: 

  

  
  

  

  
           

  

     
 

The form for   : 

  

  
  

  

     
           

  

        
 

 

Equation 3.2.9 is the first functional derivative of the free energy with respect to  , where 

  is the integrand of equation 3.2.6. Next we expand the coefficients   ,    and R in 

terms of powers   : 

      
     

       
     

      
     

       
     

                 
  

(3.2.10) 
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Assume that only   
 ,   

 ,   
 ,    and    differ from zero, then insert the respective form 

into equations 3.2.7 and 3.2.8, after straightforward manipulation of the equations, the 

motions for the binary PFC model take the following form: 

 

 

  

  
     

      
     

                

   
  

 

 
                                 

  
  

 

 
                                        

(3.2.11) 

     

  
    

    
        

     
                  

                   
    

                             

(3.2.12) 

 

3.2.2 Numerical scheme for the Binary PFC 

In solving the equation of motion and the equation of concentration we have used 

sequential splitting, which has previously been deployed for the single component case. 

The advantage of using this scheme can be clearly seen in the case of the binary PFC: by 

decomposing the sixth order PDE, which contains both linear and non linear terms, into 

sub-problems which are easier in form, we are able to solve both equations of motions 

numerically efficiently. I would like to note the specific split that was proposed by 

György Tegze in conjunction with appropriate spatial discretization reduces the 

computation time significantly. The sub-operators A1 and B1 can be solved using explicit 
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finite differencing or a spectral scheme, while A2 and B2 can be dealt with by using an 

implicit spectral scheme. For our case we have opted to solve A1 and B1 using a fully 

spectral approach in order to retain a high level of accuracy. 

 

  

  
           

(3.2.13) 

     

  
              

(3.2.14) 

Where the sub-operators take the following form: 

 

              
     

               

         
              

  
 
     

       

  
 

 
             

  
 
     

         
              

  
 
   

       

  
 

 
             

  
 
   

          
        

(3.2.15) 

        
       

       
   

(3.2.16) 
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(3.2.17) 

                               

(3.2.18) 

The coefficients C1, C2 and C3 are simply constants which are used to ensure stability of 

the scheme, and will be discussed in detail in the later part of this subsection. The next 

step is to implement the sequential splitting procedure and discretization. This is done by 

using Euler time stepping for sub-operators A1 and B1 while first order implicit time 

integration has been used for the sub-operators A2 and B2, which leads to the following 

equations: 

 

             
  

(3.2.19) 

                 
      

(3.2.20) 

                        

(3.2.21) 

                                

(3.2.22) 

The equations for    and       contain the non-linear variables coefficients and, as in the 

single component case, the 2D spatial discretization has been made using spectral 

differencing for the constant coefficients A2 and B2. Furthermore, the explicit time 
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integration applied for 3.2.19 and 3.2.21 produces algebraic equations, which are written 

in a diagonal matrix form, therefore it has been solved pointwise using back substitution. 

Here           and      
         represent the discrete Fourier transformation of      and 

     . Thus one arrives to the final forms shown in equations 3.2.23 and 3.2.24. 

 

          
                

           
       

    
   

     
       

     
   

    
    

     
       

     
   

     
   

    
      

(3.2.23) 

     
       
           

        
                 

    
   

     
         

     
   

    
      

(3.2.24) 

Due to the mix of explicit and implicit formulations in the present scheme we were able 

to fine tune the stability criteria via the choice of constants C1, C2 and C3. In this respect, 

Csomos and Farago [Csomos, Farago, 2008] have pointed out that due to possible 

interactions of the errors,  fine tuning is necessary for the stability of time stepping with 

the individual sub-operators, which however does not automatically guarantee the 

stability of the full scheme. The appropriate choice of C1, C2 and C3 is discussed below.  

 

From the result of sequential operator splitting and spectral implicit treatment of the 4
th

 

order term in the equation of motion for concentration (equation 3.2.12) one obtains 

          as opposed to           applying to the fully explicit scheme, making the 

proposed splitting scheme more favourable. Next, we have analysed the stability of time 

stepping and the consistency of the explicit and implicit time stepping for the equation of 
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motion (equation 3.2.11). After straightforward manipulation one obtains the form shown 

below (equation 3.2.25), which displays the terms added to the fully explicit 

discretization equation. From this one observes that as    tends to zero the extra terms 

tend to zero as well, which demonstrates that the consistency of the scheme was ensured.  

 

         
                 

                 
             

(3.2.25) 

Next we discuss the stability of time stepping. We define the coefficients C1, C2 and C3, 

as specified by equations 3.2.26, 3.2.27 and 3.2.28. As previously stated, the proper 

choice of these coefficients allow us to modify the stability criteria, thus for every time 

step and mesh spacing we are able to choose these coefficients so that the stability of the 

explicit terms is retained. This choice of the coefficients forces the maximum of the 

variable coefficients 2
nd

 and 6
th

 order terms into a range, where the differencing terms are 

stable for given time step and mesh space. The 4
th

 order term was not required to ensure 

stability, as all the variable coefficients are positive in practice. The choices of C1 and C3 

shown below ensure the stability of explicit time stepping: 

 

 

         
     

            

(3.2.26) 

         
                  

(3.2.27) 

        
                 

(3.2.28) 
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Nevertheless one should consider implicit time stepping and ensure its stability. With 

regards to this the BCAST research team suggested that the stability is dependent on the 

wave factor k which has been formulated so that the condition restricts the coefficient C2 

value. This can be seen in the equation below. 

 

 

        
      

    
       

      
    

  
 
     

      
    

  
 
      

(3.2.29) 

One should note that, where possible, the mixing of explicit and implicit terms within 

numerical schemes should be avoided due to splitting errors that may occur. In this work 

we have utilized the fact that the coefficient varies only slightly due to the composition 

dependence of inter atomic distance represented by             , which is typically 

small itself. Therefore, as C2 is represented by equation 3.2.27, the dominant terms are the 

variable coefficients, which are then treated in an implicit manner and the explicit part is 

used as small correction. Thus the representation of C2 (equation 3.2.27) satisfies the 

implicit stepping stability condition.  

 

The reader should also be aware that we have used spherical spectral filtering [Levin et 

al, 1997] on the non-linear terms in equation 3.2.12. The main reason for this is to avoid 

accumulation of errors at high frequencies, which can come from the non-linear 

instabilities of the numerical solution due to various choices of model parameters, as the 

equation of motion is highly non-linear in nature. The filter has been applied by 

cancelling frequencies that satisfy the condition   
     

      where k is a constant 

which is defined empirically. 

 

I am going to compare the proposed semi-implicit spectral scheme to the explicit finite 

difference method in respect to the accuracy, stability and overall computational 
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efficiency in a parallel environment. For the explicit finite difference method I am going 

to use the compact finite difference discretization of the Laplacian shown below 

(equation 3.2.30 taken from [Levin et al, 1997]). 

 

 

                                          

 
                                     

 
               

  

(3.2.30) 

 

3.2.3 Thermal Fluctuations 

Within statistical mechanics we represent random deviations from the equilibrium of the 

system by thermal fluctuations. As temperature increases the thermal fluctations become 

more frequent and larger. Furthermore as the temperature approaches absolute zero the 

thermal fluctuations disappear. Therefore thermal functions are a consequence of the 

temperature and if the system is not at absolute zero then the systems do not stay in 

equilibrium microscopic state. However the thermal fluctuations sample all possible 

states by the probabilities by the Boltzmann distribution. Thermodynamic variables, for 

example pressure, temperature, or entropy, all undergo thermal fluctuations and are a 

source of noise in many systems. In order to represent thermal fluctuations within our 

simulation, we have added coloured conserved Gaussian noise to the governing equation 

in Fourier space which was similarly done in [Garcia-Ojalvo et al, 1992]. In addition to 

this the amplitude scales with the time step and the cut-off wavelength which is shown in 

[Sancho et al, 1998]. Furthermore, to avoid the appearance of unphysical small 

wavelengths shorter than the inter-atomic distance, we have applied an appropriate cut-

off in the Fourier space. In the case for the binary PFC simulations the cut-off for 

wavelengths was for wavelengths smaller than λ = 7Δx. 
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Chapter 4 

 

RESULTS 

 

Background 

Our research team has produced and implemented a parallel C code for the Phase Field 

Crystal model, which relies on a MPI protocol. The MPI protocol is a message passing 

interface which allows computers to communicate to one another. This protocol is generally 

used for super computers or a cluster of computers.  This code is then used to solve the 

governing equation specified in chapter 3 on a N  N rectangular grid. To optimise the 

numerical performance of the code, György Tegze has developed a Fast Fourier 

Transformation code, which is based on the FFTW3 library [Frigo, Johnson, 2005].  

The numerical investigation presented in this thesis has been performed using two PC 

clusters.  

 

1. One hosted at the Research Institute for Solid State Physics and Optics (RISSPO), 

Budapest, Hungary. This cluster consists of 24 PCs; equipped with two 2.33 GHz Intel 

processors of four CPU cores (192 CPU cores). The 24 nodes are connected by 10 

Gbit/s communications (Infiniband). 

2. The other is located at the Brunel Centre for Advanced Solidification Technology 

(BCAST), Brunel University, West London, UK. This cluster consists of 20 similar 

nodes (160 CPU cores), however, with 1 Gbit/s (standard GigaBit Ethernet) 

communication in between. 
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4.1  Preliminary-results: Application to Dendritic and Eutectic 

growth 

In order to illustrate the types of problems, for the solution of which the code developed by 

our research team can be applied, we investigate how dendrites and eutectic structures form 

in computer simulations performed with this new semi-implicit PFC scheme. Firstly, we 

prescribe the initial conditions. The simulation window has been filled uniformly with an 

appropriate total number density nn   and number density difference NN  )( . The initial 

conditions and model parameters used are displayed in Table 4.1. Owing to difficulties to set 

other kind of boundary conditions, we have prescribed periodic boundary conditions at the 

perimeters of the simulation window. Next, I have placed a crystal seed into the simulation 

box. In the case of the dendritic structure, a small crystalline cluster has been used, which 

consisted of 13 peaks placed on a hexagonal lattice of suitable atomic spacing. In the case of 

eutectic solidification I have placed 2 seeds of different compositions i.e. )( N = -0.3 and 

0.3, respectively. Each of these seeds consisted of 7 density peaks (central atom plus the first 

neighbour shell) and they have been placed in contact with one another in the centre of the 

simulation window.  

I note that these preliminary-results are here to demonstrate the potential of the scheme that I 

will be using in the following subsections. To explore the sensitivity of the growth 

morphology to the conditions/parameter settings, I have grown two dendrites under different 

thermodynamic driving forces tuned by varying the initial number density of the liquid 

phase. Next I have grown a eutectic structure, for which I changed the initial number density 

difference of the liquid. The respective simulation parameters can be seen in Table 4.1. The 

code has the built-in facility (developed by G. Tegze) of adding conserved Gaussian noise to 

the equations of motion to mimic the thermal fluctuations. This function of the code includes 

a cut-off for wavelengths that are smaller than the inter-atomic distance (i.e., λ = 7Δx) to 

avoid the high frequencies integrated into the free energy functional. The time and spatial 

steps I have used in these simulations are x = x0 = 1.1 and t = 32t0 = 0.16. The results 

of these illustrative simulations for crystalline solidification in binary alloys are displayed in 

Figure 4.1. Here the four panels represent the following: 
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 (a) Shows the number density difference )( N  map for the solute dendrite.    

 (b) Shows a magnified view of the small square section of the dendrite in (a), which 

was taken from the downward pointing arm of the dendrite. 

 (c) Shows a compact dendrite that develops when a higher driving force is used, this 

was done by increasing the initial liquid density. 

 (d) Shows a eutectic structure. I have reduced the initial number density n and 

number density difference N relative to panel (a). 

 
 

Table 4.1: Parameters used in computing Figure.4.1, description for them can be seen in 

subsection 3.2.1 

 

 



Results 60 

 

 

 

Figure 4.1: Illustrative phase-field crystal simulations for solidification in binary 

alloys. (a) Is a snapshot taken at 92, 160 time steps and shows the number density 

difference )( N  map for the solute dendrite; panel (b) shows the solid-liquid interface 

of the small squared section in section (a) on the downward pointing dendrite arm; 

panel (c) shows a compact dendrite that was formed in order to compare with (a) to 

demonstrate the sensitivity of the parameters (snapshot was taken at 55, 000 time steps) 

and lastly panel (d) demonstrates the eutectic structure that is produced with the 

proposed PFC, the snapshot was taken at 498, 000 time steps. 
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4.2 The Single Component Case 

Background 

The motivation for this investigation is to identify whether unconditional time stepping can 

be applied to the revised semi-implicit spectral scheme for the single component case which 

has been described in chapter 3. In short, I have treated the fourth order term explicitly in 

order to make the solution stable. To make comparison to the unconditional time stepping I 

have conducted conditional time stepping simulations and made comparisons between both 

schemes in terms of their relative errors. The simulations have been performed on the 

computer cluster of the Brunel Centre for Advanced Solidification Technology. 

 

4.2.1 Parameters/initial conditions used in the simulations 

The choice of parameters/initial conditions I have used in the simulations is given in Table 

4.2. These values refer to a region of the phase diagram, in which dendritic solidification has 

been observed, and have been chosen inside the crystal-fluid coexistence region of the phase 

diagram by [Elder et al, 2006]. 

 

Table 4.2: Parameters used in computing the single component case for both conditional 

and unconditional time stepping simulations (description of parameters are presented 

subsection 3.2.1) 
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I began the simulations by first filling the simulations window with the appropriate uniform 

number density. Then I placed a small crystalline cluster of 19 density peaks on a hexagonal 

lattice (atom + first and second neighboring shells) with suitable atomic spacing in the center 

of the simulation window, which acted as a crystal seed. To avoid stochastical inaccuracies 

that may originate from the noise, and to make a quantitative comparison between 

computations at different time and spatial steps easier, the noise representing the thermal 

fluctuations has been switched off in these simulations. 

 

4.2.2  Method of evaluation 

In this investigation, I have used the diameter d of the crystal to characterize the solution as 

it provides information on the average growth rate and also monitors the kinetics of the 

phase transition. In evaluating the diameter, I have followed the same process as I have done 

with the binary case; the reader is advised to read the subsection 4.3.2. However, I 

summarize briefly the applied procedure: I have connected the maxima of the neighboring 

total number of density peaks along the horizontal centerline of the particles (lying on a 

crystal plane) by a straight line at dimensionless time t = 768. From this, I have taken the 

intersection of the resulting peak envelope with an arbitrarily chosen fixed threshold of n = 

0.075, where the position has been then used as the limit between the solid and liquid 

phases. (Choice of other threshold values would lead to different data for the diameter; 

however, the results would remain qualitatively the same.) The uncertainty of the peak 

position is 2∆x on both ends of the diameter, which for our case is ∼113∆ x
0
. The relative 

error for the diameter then becomes ±2∆ x / (113∆ x
0
), which varies in the range from 

± 0.9% to ± 1.8 % for the single component case. Unlike the binary case, we have not 

found any perceptible variation in the position of the density peaks thus I didn’t evaluate the 

inter-atomic distance. 
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Figure 4.2: Effect of the spatial and time resolution on the numerical results obtained 

with the unconditional and conditional time stepping. (a) Shows diameter d Vs ∆x, the 

points correspond to the smallest ∆t where the error bars relate to the relative error. (b) 

Diameter d Vs ∆t for both the conditional and unconditional time stepping. (c) Is the 

graph for unconditional time stepping for all 3 different meshes that were used. 
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Figure 4.3: Shows the difference between the structure for conditional and 

unconditional time stepping. The images correspond to t = 768. Panel (a) displays the 

result from conditional time stepping at ∆x = ∆x0 with the smallest time step; panel (b) 

shows the respective result from unconditional time stepping for ∆x = ∆x0 with the 

smallest time step. The contents of the box placed to the left hand edge of the crystal 

in panels (a) and (b) are shown magnified in panel (c) for the conditional time stepping 

and panel (d) for unconditional time stepping. The two methods lead to fairly identical 

results.   
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4.2.3  Initial set values for simulation and results 

For our study, we have set ∆x0 = 0.785375 and ∆t = 0.05, while the spatial steps used were 

∆x = (1, 2/3 and 1/2) × ∆x0. In the case of conditional time stepping, the following 

simulations have been performed with the time steps ∆t = ¼ × 2j ×∆t0, where j = 0, 1, 2, ..., 

5. In turn, for unconditional stepping, we have performed simulations with time steps of 

∆t = ¼ × 2
 j 

×∆t0, j = 0, 1, 2, ..., 10. The diameter d
0 = 88.45 × (1.0 ± 0.0009) from the 

computation with the finest spatial and time resolution has been chosen as the reference. 

 

4.2.3  Initial set values for simulation and results 

Firstly, I would like to compare the conditional time stepping and the unconditional time 

stepping schemes regarding the spatial and time resolution on the numerical results. This is 

displayed in the Figures 4.2 (a), (b) and also in Figure 4.2 (c). Figure 4.2 (a) displays how 

the diameter of the crystal depends on the spatial resolution. Figure 4.2 (c) displays 

how the diameter of the crystal depends on the time steps ∆t. I have normalised the 

diameter in order to identify the true variance between the conditional and 

unconditional schemes. In addition, I have provided further evidence of the difference 

between the solid liquid interfaces for both schemes in Figure 4.3. 

 

4.3 Binary case 

Background 

The motivation behind this investigation is to firstly identify whether there exists a limiting 

solution which the SIS solution converges to for decreasing x  and t . In order to conduct 

this investigation, I have used an empirical convergence test (see e.g. [Budd et al, 2006]). 

The rationale behind this choice is that I am unaware of any non-trivial analytical solution 

which could be used as a point of reference when computing the numerical error. Secondly it 

is commonly known that the stability criterion is severely restricted with regards to the 



Results 67 

 

explicit discretization as 
6)( xt  . With these limitations a sufficiently accurate explicit 

finite difference computation, which can potentially be used as a reference point, could not 

be obtained thus the only option available to me was to conduct empirical convergence tests.  

After identifying the limiting solution, I have then used this as the point of reference in 

defining and calculating the numerical error, furthermore, I will investigate if the SIS 

scheme converges to the EFD scheme for simulations within our range for spatial resolution 

and time steps. The simulations have been performed by me on the computer cluster of the 

Brunel Centre for Advanced Solidification Technology.  

 

4.3.1 Parameters used in the simulations 

I start with investigating the effect of the spatial and time resolution on the numerical 

solution obtained by the proposed SIS scheme. For the setup of the simulations in this 

section, similar to the previous one, we switch off the noise. The reason is similar: I wish to 

avoid differences of stochastic origin. Secondly the simulation window for the following 

sub-sections has been set to a small physical domain of dimensionless area 281.6 x 281.6 

unless specified otherwise. The size of the simulation window contains approximately 6,600 

atoms which provides a good compromise so that it’s enough space to produce a crystal 

large enough at dimensionless time t = 768 to display bulk crystalline properties inside, 

however it is still small enough to allow refinement steps in the spatial resolution for both 

the SIS and EFD schemes. The parameters that were set for these simulations can be found 

in Table 4.1 (a). The simulations for the SIS scheme have been performed using the spatial 

steps = x  (1/4, 1/3, 1/2, 2/3, 3/4, and 1) x x 0, also for each individual spatial step I have 

performed simulations with time steps t  = 2 j   x t 0, where j = 0, 1, 2, ..., 8. As I am 

interested in making comparisons to the SIS scheme, I have made EFD computations with 

the same spatial steps; however, I have used the largest time steps allowed by the numerical 

stability of the explicit scheme. The crystal seed that initiated growth of the dendrite was 

placed in the centre of the simulation window. Crystallization has been started by a 

crystalline seed of 13 atoms, described above. 
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Figure 4.4: High resolution SIS solution used as reference obtained on a  1,024 × 

1,024 grid with spatial and time steps of x  = x 0/4 and ∆t = t 0. Panel (a) 

presents a snapshot of the total number density at time t = 768, while panel (b) shows 

the respective total number density n distribution along the horizontal centerline. 
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4.3.2 Method of analysis 

For characterizing the simulated crystal clusters I have used two quantities: a local one, the 

inter-atomic distance a, associated with the crystal structure and a global one, the diameter 

of the crystal d, which reflects the growth rate. The reason why I have chosen these 

measurable quantities is because the inter-atomic distance reflects the atomic interaction, 

while the diameter of the crystal can be used to calculate the average growth rate that 

monitors the kinetics of the phase transition.  Some care is required when defining the 

diameter of the crystalline particle due to the atomic nature of the crystal structure and the 

gradual transition observed between the homogeneous liquid and the crystal. In the 

following, the linear size of the crystalline particle is determined by connecting the 

neighboring total number density peaks along the horizontal centerline of the particle (lying 

on a crystal plane) by straight lines and taking the intersection of the resulting peak envelope 

with an arbitrary threshold. I have set this arbitrary threshold between the solid and liquid 

phases as n = 0.075, and this is marked by the dashed horizontal line in Figure 4.4 (b). 

Furthermore Figure 4.4 (a) is a snapshot of the total number density at time t = 768 which was 

used for Figure 4.4 (b). I would like to note the number density profiles produced in 

molecular dynamic simulations [Davidchack, Laird, 1998], [Sun et al, 2004], [Morris, 2002] 

and [Ramalingam et al, 2002] display a close similarity to the diffuse solid-liquid interface 

shown in Figure 4.4 (b). I have used the diameter d of the crystal at dimensionless time t = 

768 as a measure for the growth rate which reflects the time evolution of the solutions. The 

uncertainty of the peak positions on both ends of the diameter is approximately 2 x  which 

can be represented as ~175 x 0, thus the diameters relative error is defined as ±2∆x/ 

(175∆x0), which ranges from ±0.3% to ±1.1%. As I am going to use the inter-atomic 

distance a to characterize the atomic level periodic nature of the solution in the crystal I need 

to define its relative error also. To do this I have measured 10 density waves in the crystal 

plane which is represented by 10a ≈ 68∆x0, however for the whole length of 10a the reading 

error is ~ 2 x . Therefore the relative error can be defined as ~±∆x/ (68∆x0), ranging 

between ±0.4% and ±1.5%. I would like to remind the reader once again the significance of  
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Figure 4.5: Effect of the spatial resolution on the numerical results obtained with the 

semi-implicit spectral (SIS) and explicit finite difference (EFD) methods. (a) Displays 

the dependence of the normalised inter-atomic distance against the spatial resolution, (b) 

shows the dependence of the normalized diameter (d/d0) on the spatial step, ∆x. The 

reference states are a0 = 7.435 × (1.0 ± 0.004), and d0 = 192.0 × (1.0 ± 0.0003) which 

correspond to the lattice constant and particle diameter and was obtained from the SIS 

computation with the smallest ∆x and ∆t. 
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Figure 4.6: Displays the normalized diameter (d/d0) versus the time step ∆t, d0 = 192.0 

× (1.0 ± 0.0003) which corresponds to the particle diameter and was obtained from the 

SIS computation with the smallest ∆x and ∆t. 
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the two quantities: the diameter of the crystal characterizes the growth kinetics of the phase 

transition, whereas the inter-atomic distance reflects the local crystal periodicity.  

 

4.3.3 Numerical results 

Firstly, I would like to compare the explicit finite difference scheme and the semi implicit 

scheme regarding the spatial and time resolution on the numerical results. This is displayed 

in the figures 4.5 (a), (b) and also in figure 4.6. I have shown in figure 4.5(a) the normalised 

inter atomic distance against the spatial resolution i.e. (a/a0) Vs (∆x/∆x0) in order to 

identify if there is a dependence of the inter-atomic distance on the spatial resolution. Figure 

4.5(b) displays how the diameter of the crystal depends on the spatial resolution. Figure 

4.6 displays how the diameter of the crystal depends on the time steps ∆t. I have 

normalised both the inter-atomic distance and the diameter in order to identify the true 

variance between the EFD and SIS schemes. In addition, I have provided further 

evidence of how the diameter of the crystal depends on spatial resolution in figure 4.7. 

The snapshots shown were taken at dimensionless time t = 768 and are as follows: 

 

(a) Shows the EFD result at ∆t  = ∆t0 and (b) shows the SIS result at ∆t  = ∆t0. Both had 

the spatial steps ∆x = ∆x0. 

(c) Shows the EFD result at ∆t  = ∆t0 / 8 and (d) shows the SIS result at ∆t  = ∆t0. Both 

had the spatial steps ∆x = 3∆x0 / 4. 

(e) Shows the EFD result at ∆t  = ∆t0 /16 and (f) shows the SIS result at ∆t  = ∆t0. Both 

had the spatial steps ∆x = 2∆x0 / 3. 

(g) Shows the EFD result at ∆t  = ∆t0 /16 and (h) shows the SIS result at ∆t  = ∆t0. Both 

had the spatial steps ∆x =∆x0 / 2. 

(i) Shows the EFD result at ∆t  = ∆t0 /729 and (j) shows the SIS result at ∆t  = ∆t0. Both 

had the spatial steps ∆x =∆x0 / 3. 
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Figure 4.7: Demonstrates the difference in the diameter of the crystal for different 

spatial steps for the EFD which are images (a), (c), (e), (g) and (i), SIS images (b), (d), 

(f), (h) and (j). All snapshots were taken at dimensionless time t = 768 and the spatial 

resolution as well as the time steps have been described in the above section. One key 

fact that is shown here is for the SIS the diameter of the crystal d does not vary with 

the spatial resolution, which cannot be said for the EFD. 
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Figure 4.8: Shows the cross sectional profiles (t = 768) for the solid liquid interface 

in SIS simulations. This was performed using three different mesh spacing and t = Δt0. 

Section (a) depicts the number density while section (b) depicts the total number 

density difference. 
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Figure 4.9: Shows the cross sectional profiles (t = 768) for the solid liquid interface in 

EFD simulations. This was performed using three different mesh spacing and to ensure 

numerical stability I have used the maximum time steps that were available. Section 

(a) depicts the number density while section (b) depicts the total number density 

difference. 
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Figure 4.8 shows the cross section of the solid-liquid interface for the semi-implicit scheme, 

the profile was taken at t = 768. Here panel (a) shows the total number density and (b) the 

number density difference as a function of position across the solid-liquid interface; both 

plots have been done with three different mesh spacings at ∆t = ∆t0.  I have also plotted the 

same profiles for explicit finite difference scheme in figure 4.9. To characterize the accuracy 

of the semi-implicit scheme against the explicit finite difference scheme, I have introduced 

the scaled L
2
 difference for the Fourier transform of the semi-implicit scheme solution 

relative to the Fourier transform of the explicit finite difference scheme (equation 4.3.1). 

Theresults are displayed in Table 4.3. The L
2 

difference is no other than the Euclidean 

distance between solutions obtained with the semi-implicit scheme and the explicit finite 

difference scheme: 

    
                

                    
  

             (4.3.1) 

Table 4.3: Scaled L2 difference of the Fourier spectra 

 

 

 

Here       and     are the quantities, number density and the number density difference. 

The hat on the quantities denotes the Fourier transform of the respective fields. The 

numerator of the RHS of equation 4.3.1 is the standard deviation of the explicit and semi 

implicit scheme for every point, min (    ) and max (    ) stand for the minimum and 
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maximum values of       for the whole domain. I would like the reader to note that the 

solutions for the Fourier transforms have been obtained by the 2D FFT. 

 

 

 

 

 

Figure 4.10: Scalability of the numerical solutions obtained by the SIS and EFD 

schemes. (a) Computational cost for an individual time step on a single mesh point vs. 

the number of CPU’s. (b) Computational time is required to perform a simulation vs. 

the number of CPU cores, this has been conducted for three different mesh spaces. 
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Now, I would like to turn the reader’s attention to identifying the computer efficiency and 

scalability of the semi-implicit and explicit finite difference scheme in parallel environment. 

The work described in this section was conducted by the BCAST research team and partly 

by me. I calculated the results for the SIS scheme. The results provide additional evidence 

on the relative efficiency of the two methods. The work for this section was hosted at the 

Research Institute for Solid State Physics and Optics (RISSPO). First, the team determined 

the effective computations time , i.e., the computational time for one time step for a single 

grid point expressible as: 

   
     

      
 

(4.3.2) 

      :  The full computational time. 

   : The number of the time steps. 

 N x N: Grid size. 

 

Using this method we have plotted computational speed (1/ ) against the number of CPU 

cores in figure 4.10 (a). This has been done for both the SIS and the EFD scheme. In 

addition, we have compared the computational time vs number of CPU cores curves 

obtained for three different spatial resolutions ])1([ 0,2
1

,4
1 xx  . This was done to clarify 

for both schemes, how fast one can obtain a solution for the same time step and spatial 

resolution. The results refer to the same physical size and we used the largest stable time 

steps. As a final note, I would like to draw the readers attention to Appendix B, where I have 

provided all the raw data for the interatomic distance, L
2
 test and the diameter of the crystal, 

which has been performed by me. 
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4.4  Eutectic solidification 

Background 

In solidification of a binary eutectic composition, two solid phases form cooperatively from 

the liquid. In the present work, I am going to investigate how the composition of the initial 

liquid phase influences the eutectic morphology evolving during solidification. To my 

understanding this appears to be the first study that addresses this question on microscopic 

ground using dynamical density functional theory. I have conducted the investigation using 

the same semi-implicit spectral scheme, which has been applied previously in this thesis for 

simulating solutal dendrites. I have conducted the eutectic simulations on two rectangular 

grid sizes: 1024  1024 and 2048  2048. The simulations were performed on the PC cluster 

of the Brunel Centre for Advanced Solidification Technology (described in the previous sub-

section) consisting of 160 CPU cores. 

 

4.4.1 Parameters used in the simulations 

The initial conditions have been prescribed in the following way; firstly I have filled the 

simulation window with appropriate uniform number density nn   and number density 

difference NN  )( . Other parameters used here have been specified in Table 4.4. 

Following this I have placed two small crystalline clusters of 7 atoms on a hexagonal lattice 

(central atoms + first neighbour shells) with suitable atomic spacing and composition )( N . 

The two clusters have been placed to the centre of the simulation window in contact with 

one another. To model the thermal fluctuations, I have used a conservative Gaussian 

coloured noise characterized by the correlator ζ0 (as described in sub-section 3.2.4), while a 

cut-off for wavelengths smaller than λ = 7Δx has been applied in the Fourier space to avoid 

the non-physical high frequencies (wavelengths smaller than the inter-atomic spacing). The 

noise strength used in this part of the work was 10
-3

. I would also like to state that I have 

used periodic boundary conditions for all the simulation. 
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Table 4.4: Parameters used in computing the eutectic structures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.4.2 Method of analysis 

I have determined the average grain diameter of the eutectic particle as a function of time in 

exactly the same way as done previously for the single component and the binary case. To 

summarize, I have connected the maxima of the neighboring total number of density peaks 

along the horizontal centerline of the particles (lying on a crystal plane) by a straight line at 

dimensionless time t = 768. From this we have taken the intersection of the resulting peak 

envelope with an arbitrary threshold of n = 0.075, which has been chosen as the limit 

between the solid and liquid phases. The average radial growth velocity has then been 

evaluated from this time dependence. Equation 4.4.1 shows how I conducted this.  
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Figure 4.11: Demonstrates the eutectic transition from concentric ring-like lamellar 

structure to irregular dots. Simulations were conducted on a rectangular grid of size 

1024 x 1024. Snapshots taken at the 200,000
th

 time step are shown. (a) has a number 

density difference )( N  = 10
-6

 and this is our reference point. (b) has a number 

density difference )( N  = 0.02, (c) has a number density difference )( N  = 0.04 and 

(d) has a number density difference )( N  = 0.06. 
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Figure 4.12: (a) Shows the grain size for )( N  = 10
-6

, )( N  = 0.02 and )( N  = 0.06 

as a function of time, (b) Shows the average velocity as a function of time with the 

same concentrations as in (a), both results were conducted on a simulation window of        

1024 x 1024. 
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Figure 4.13: (a) Shows the average velocity for )( N  = 10
-6

, )( N  = 0.02 and )( N  

= 0.06 as a function of time, (b) shows the average velocity vs. Composition both 

results were conducted on a simulation window 2048 x 2048. 
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Figure 4.14: Shows the average velocity for )( N  = 0.06 obtained in the simulation 

windows of size 1024 x 1024 and 2048 x 2048 as a function of time. 

 

Figure 4.15 shows the average velocity for )( N  = 0.06 obtained in the simulation 

windows of size 1024 x 1024 and 2048 x 2048 vs. t
1/2

. 

 



Results 86 

 
This average velocity will be used to characterize the kinetics of crystallization the 

simulations predict. 

Average Velocity = Change in position / Elapsed time 

(4.4.1) 

 

4.4.3 Results 

First, I have grown a eutectic particle under the conditions specified in Table 4.4, except 

that the initial composition has been set as )( N  = 10
-6

, and a simulation window of size 

1024  1024 has been used. This computation has been regarded as the reference case for 

subsequent computations. The eutectic structure observed in the reference computation in 

the 200,000
th

 time step is shown in the upper left panel of Figure 4.11. Next, I have 

conducted further simulations varying )( N  to clarify the effect of initial liquid 

composition on the eutectic morphology. In addition to the reference computation in Figure 

4.11, I have provided a range of snapshots also taken at the 200,000
th

 time step 

corresponding to number density differences )( N  = 0.02, )( N  = 0.04 and  )( N  = 0.06. 

These images indicate a transition from a concentric ring-like lamellar structure (observed 

for near eutectic compositions) to irregular dots (appearing at off-eutectic compositions). 

Next I present the time dependence of the size of the eutectic crystallite and the growth 

velocity for these simulations in Figures 4.12, 4.13, 4.14 and 4.15, which may give 

information on the mechanism of crystallization.  

 

4.5 Polycrystalline solidification of a binary alloy in two dimensions 

Background 

The motivation for this investigation is to explore how the above proposed semi-implicit 

spectral scheme produces multi-grained polycrystalline structures. With this example I am 
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going to demonstrate that the PFC model reproduces the kinetic of multi-grain solidification 

properly. The results will be analysed in terms of the Johnson-Mehl-Avrami-Kolmogorov 

theory. This work has been performed at the beginning of my involvement of PFC 

simulations, therefore, only a part of this work has been done by me, and all activities were 

closely supervised by G. Tegze and L. Gránásy, 

 

4.5.1 Parameters used in the simulations 

The choice of parameters that have been used in the simulations is given in Table 4.1, 

column (b). These values lead to dendritic solidification. First, the simulation window has 

been uniformly filled with the appropriate total number density nn   and number density 

difference values NN  )( . Next the crystallization has been initiated by inserting 5, 50 and 

500 randomly orientated and positioned crystalline clusters. Each of these clusters consisted 

of 13 density peaks on a hexagonal lattice (central atom + first and second neighbouring 

shells) with suitable atomic spacing. The computations were perfomed with noise 

representing the thermal fluctuations. These simulations were performed on a rectangular 

grid of size 16,384 × 16,384, which contained roughly 1.6 million atoms inside the 

simulation window.  

 

4.5.2 Method of analysis 

To evaluate the crystalline fraction first the number of atoms (density peaks) found in the 

crystalline regions have been determined by the ImageJ software [Abramoff et al, 2004]. 

The software will only pick atoms that belong to the solid phase by scanning the whole 

simulation window and identifying atoms that have a density peak larger than the average 

values of the bulk liquid and the bulk crystal. Next, the Johnson-Mehl-Avrami-Kolmogrov 

(JMAK) mean-field theory of nucleation and growth has been used to analyse the time 

evolution of crystallization. It describes the time evolution of crystallization in terms of a 

few basic assumptions. 



Results 88 

 

  

  

  

Figure 4.16: These images relate to dendritic growth of 5 crystalline particles, 

snapshots were taken at 1000, 5000, 7500, 10 000, 15 000 and 20 000. The simulations 

have been performed on a 16,384 × 16,384 grid, using a semi-implicit spectral method.  
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Figure 4.17: These images relate to dendritic growth of 50 crystalline particles, 

snapshots were taken at 1000, 3000, 4500, 5000, 7 500 and 10 000. The simulations 

have been performed on a 16,384 × 16,384 grid, using a semi-implicit spectral method.  
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Figure 4.18: These images relate to dendritic growth of 500 crystalline particles, 

snapshots were taken at 250, 500, 625, 750, 1125 and 1500. The simulations have been 

performed on a 16,384 × 16,384 grid, using a semi-implicit spectral method.  
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Figure 4.19: Demonstrates the crystallization kinetics for binary phase-field crystal, 

the top graph shows the number of atoms in the crystalline phase against time; the 

middle is the Avrami plots where the slope of each curve is used for the analysis of 

kinetics. The bottom shows Avrami-Kolmogorov exponent as a function of the 

reduced transformed fraction. 



Results 92 

 

4.5.3 Numerical results 

Firstly I would like to present the resulting multi-grain structures for the 5, 50 and 500 

particle. These have been displayed in figures 4.16, 4.17 and 4.18 where I have shown 

snapshots of the distribution number density difference field. Next I would like to present 

the kinetics of crystallization as predicted by the binary PFC simulations displayed in Figure 

4.19.  In particular: 

(a) Shows the number of atoms in the crystalline phase as a function of the number of 

time steps;  

(b) Shows the Avrami plots (X and Xmax are the transformed fraction and its maximum; 

while the slope of the curve determines the Avrami-Kolmogorov exponent pAK); 

(c) Shows the kinetic (Avrami-Kolmogorov) exponent as a function of the reduced 

transformed fraction. 

 

The upward and downward pointing triangles and squares in Figure 4.19 (a), (b) and (c) 

correspond to 500, 50 and 5 particles, respectively. 
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Chapter 5 

 

DISCUSSION  

 

Background 

This section has been broken into several sub-sections, which evaluate the results in 

chapter 4 and provide a deeper understanding of the PFC model used in this thesis. I 

would like to begin with explaining how dendrites are formed and how this is reproduced 

in the PFC model. Dendrites form when a non-equilibrium liquid solidifies, which can be 

achieved by undercooling, supersaturating the liquid or by changing its pressure. Once 

nucleation has happened, solidification occurs by the propagation of the interface. Since 

either the composition, the density or the temperature of the solid phase differs from the 

respective values in the undercooled liquid, the crystal growth will be governed by the 

respective mass, chemical or thermal diffusion. As the solid grows into a non-

equilibrium liquid (undercooled or supersaturated) the Mullins-Sekerka type diffusional 

instability [Mullins, Sekerka, 1964] sets in and leads to fingering whose directions are 

determined by the anisotropies of the interfacial free energy and/or the kinetic 

coefficient. This then leads to the formation of the arboresque crystallization morphology 

known as the dendrites. In order to provide driving force for solidification in the PFC 

model, one has to either: 

 

1. Lower the temperature       
     

  

2. Increase the number density (i.e. increase in pressure) n 

3. Change the initial composition of the liquid phase     
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4.  Tune the phase diagram via changing the inter-atomic distance by    and 

  , where    determines the composition dependence of the inter-atomic 

spacing. 

5. Tune the phase diagram via changing parameters L, w and u. 

 

5.1 Preliminary-results: Application to Dendritic and Eutectic 

growth 

The initial part of chapter 4 demonstrates how dendrites and eutectic structures are 

formed with the new semi-implicit PFC scheme. To begin with Figure 4.1 (a) was 

conducted on the RISSPO cluster which took approximately 4 days to produce on 160 

CPU’s equipped with InfiniBand inter-node communication. While Figure 4.1 (c) was 

produced using the BCAST cluster on 160 CPU’s (without InfiniBand) and took 

approximately 10 days to produce. As both simulations were conducted on the same 

simulation window size and using the same SIS code, this demonstrates that the speed of 

data transfer between nodes is an important factor. Using these two simulations we can 

evaluate the sensitivity of the initial parameters, Figure 4.1 (c) is a compact dendrite 

which is produced by providing a higher thermodynamic driving force compared to 

Figure 4.1 (a). This has been introduced by increasing the initial liquid density n, and 

keeping all other parameters the same (see table 4.1). By changing the initial liquid 

density by 0.0004 there has been a dramatic difference in the structures that have been 

produced, which demonstrates that the solidification morphology is sensitive to the 

change of driving force. Furthermore in both cases (a) and (c) the dendrite arms 

produced almost perfect six fold symmetry, the lengths of the dendrite arms differ by 

approximately 0.1%. This shows that the lattice anisotropy induced by the discretization 

on a rectangular lattice is negligible using the semi-implicit spectral scheme. In addition 

Figure 4.1 (b) shows the total number density map of the small squared box on the 

downward pointing dendrite arm in the Figure 4.1 (a), displaying both the underlying 

hexagonal crystal structure and the diffuse interface between the solid and liquid phases. 

Lastly Figure 4.1 (d) demonstrates the eutectic structure the PFC model produces when 

reducing the initial number density and number density difference compared to Figure 

4.1(a). The qualitative agreement of these preliminary results with those published by 
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Elder et al [Elder et al, 2002], implies that the present numerical implementation (SIS) 

successfully reproduces results obtained by a different numerical method.  

 

5.2 Binary case 

5.2.1 Convergence of the SIS scheme 

With the binary PFC model stability of the time stepping is very important, as found in 

chapter 3. With the proper choices of the coefficients C1, C2 and C3 the stability criteria 

for the explicit terms have been ensured for the time and spatial steps. Full description of 

the stability issues and their handling are given in sub-section 3.2.2. To investigate the 

reliability of the proposed SIS scheme, the EFD scheme has been used as a reference. 

We begin the discussion by the effect of the spatial and time resolution on the SIS results 

summarized in Figures 4.5 to 4.8. Figure 4.5 (a) displays that the inter-atomic distance is 

virtually independent from spatial steps and time steps. Figure 4.5 (b) and Figure 4.6 

show that the diameter of the crystallite converges at t = 768 as ∆t → 0. They also 

demonstrate that the diameter is independent of spatial steps. Figure 4.8 (a) and (b)  

shows the cross-section profile for the solid-liquid interface for the SIS scheme using 

three different mesh spacing’s at ∆t = ∆t0. Here Figure (a) depicts the total number 

density and Figure (b) displays the number density difference. From these figures it 

follows that the inter-atomic distance is virtually independent from the mesh spacing; for 

both the total number density and the number density difference. The points obtained 

with different spatial resolutions fall on top of one another with a high level of accuracy. 

Furthermore, from this the independence of the SIS solutions from the mesh spacing also 

indicates that there is convergence ∆x → 0, this can be also seen in Figure 4.5 (a). This is 

expected from the exponential convergence of the Fourier-spectral spatial discretization 

[Gottlieb, Orszag, 1977]. However one should note if ∆x >∆x0 there is a possibility that 

we may see deviation from the closely matching solutions in Figures 4.8 (a) and (b). 

Now we turn our attention to the diameter of the crystal, as the diameter can be 

considered as a measure of the average growth rate for the SIS scheme. As stated above, 

the particle diameter at fixed time appears to be independent of the mesh spacing within 

the range we have investigated ∆x  [1/4, 1] ∆x0. This can be seen from Figure 4.5 (b) 

however on closer inspection Figure 4.6 suggests that the diameter depends on the time 
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step. The results clearly show that there is convergence to the limiting value for ∆t → 0. 

In addition to this it can be seen that difference between the two smallest time steps is as 

small as ~ 0.1 %, which is indeed very small. Now comparing time steps ∆t = 32×∆t0 to 

the smallest time step the difference is ~ 3.3% to the limiting value. In summary the 

convergence tests suggests that the SIS scheme converges to the limiting solution for 

both ∆x → 0 and ∆t → 0.  It is noted that the backward Euler time stepping is accurate to 

the first order, which caused the time stepping to dominate the numerical error. To 

improve the accuracy and efficiency of the SIS scheme time stepping methods that are 

accurate to higher orders are to be applied. 

 

5.2.2 Comparison of the SIS scheme to the EFD scheme 

Figure 4.9 shows the cross-sectional profiles for the solid-liquid interface for the EFD 

simulation performed using three different mesh spacing (Δx0/3, Δx0/2, Δx0). Figure 4.9 

(a) shows the number density while (b) depicts the total number difference. To be able to 

make the comparison to the SIS scheme data has been taken at dimensionless time           

t = 768. The results shown in Figure 4.9 were taken from the same region of the 

crystalline particle as in Figure 4.8. Unlike Figure 4.8 we were unable to produce 

simulations for mesh spacing Δx0/4 and below due to the prohibitively large 

computational time. Nevertheless Figure 4.9 shows that the EFD scheme is highly 

dependent on the spatial resolution and convergence is seen only at smaller spatial 

resolutions. This convergence is also reflected in Figure 4.7, which shows snapshots of 

the crystals grown using the SIS and EFD taken at the same time. The time step has been 

varied for the EFD scheme to ensure numerical stability. A comparison of the snapshots 

for the SIS scheme (the right hand side) and the EFD (the left hand side) shows that in 

the EFD finer mesh spacing is required to obtain the same accuracy of the SIS scheme. It 

is noted that in the case of such high order PDEs as required for the PFC model, the EFD 

scheme can only be conducted on systems which have very small physical size, even 

more it can only be used for time scales that are very short. Figure 4.5 (a) compares the 

SIS and the EFD results for the inter-atomic distance. We see that the results of the EFD 

scheme depend on the spatial resolution. In particular, it is observed that EFD results 

converge to those from the SIS scheme. On closer examination the SIS scheme results 
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are consistently close to the limiting solution a0 = 7.435 × (1.0 ± 0.004) unlike the EFD 

which consistently underestimates the inter-atomic-distance. The mesh spacing Δx = Δx0 

the EFD method underestimates the inter-atomic distance by ~ 6%. Even with a mesh 

spacing of Δx = Δx0/3 the EFD scheme underestimates it by ~ 1%. On the other hand 

when the mesh spacing is Δx = Δx0 the solution from the SIS scheme is almost identical 

to the limiting solution. The dependence on the spatial resolution for the EFD scheme 

may affect the physical properties of the system such as the bulk modulus, 

compressibility and the free energy. It is worth noting that in the PFC model the free 

energy of the bulk phases depends on the accuracy of the numerical schemes that have 

been applied. This is not so in the conventional phase field models, where the 

thermodynamic properties of the bulk phases are the input, which makes these properties 

independent of the numerical schemes. Now we shall move to comparing the SIS scheme 

and the EFD in terms of the diameter of the crystalline island. From Figure 4.5 (b) one 

can see that the results from the SIS scheme are almost identical to the limiting solution. 

In contrast, the EFD scheme underestimates the diameter of the crystalline particle. At 

the spatial resolution Δx = Δx0 the EFD scheme underestimates the diameter by ~ 15 %, 

whereas at the spatial resolution Δx = Δx0/3 the result from the EFD scheme is lower by 

~ 7%, which is quite significant, when compared to result from the SIS scheme. 

Nevertheless, the EFD scheme converges towards the limiting solution. To estimate how 

close the EFD scheme comes to the limiting solution a linear extrapolation of the EFD 

data was conducted. It was shown that the EFD scheme at Δx = 0 mesh spacing 

underestimates the limiting solution once again however with a ~ 4 % for the diameter of 

the crystalline particle. One should note better convergence could be seen if the 

simulations were conducted for smaller spatial steps and this should not be ruled out. 

Furthermore the cumulative rounding-off error may limit the convergence of the 

empirical test, which type of error is enhanced for the EFD scheme at smaller spatial 

steps and time test. 

 

5.2.3 The L
2
 test 

The scaled L
2
 difference data is provided in Table 4.3. This data quantifies the difference 

between the numerical solutions that were obtained by the SIS and the EFD scheme 
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relative to the Fourier transform of the EFD. L

2
 difference takes the Euclidean distance 

pointwise between the solutions obtained with the semi-implicit scheme and the explicit 

finite difference scheme in order to calculate the standard deviation. The quantity has 

been normalised to see the true variation, comparisons were made for all the mesh 

spacing using the smallest time step SIS solution as the reference. From the data 

presented in Table 4.3 it appears that as the spatial step decreases so does the L
2
 

difference for the    and     fields. These data show that there is convergence between 

the EDF and SIS solutions with decreasing spatial step. 

 

5.2.4 Scalability of the numerical solutions obtained by the SIS and 

EFD schemes 

Within this subsection we address the computer efficiency and scalability of both the 

semi-implicit spectral and explicit finite difference schemes. The results were conducted 

by the BCAST research team and partly by me; the role I played was calculating the 

results for the SIS scheme. The results for this section can be seen in Figure 4.10, Figure 

4.10 (a) shows the computational cost for an individual time step on a single mesh point 

against the number of CPU’s. Figure 4.10 (b) shows the computational time required to 

perform a simulation. This relationship has been determined for three different mesh 

spaces. We begin by examining the data in Figure 4.10 (a) computational cost for an 

individual time step on a single mesh point vs. the number of CPU cores. It’s observed 

that the computation cost for the SIS scheme scales roughly linearly with the number of 

CPU cores except for small computations on large number of CPU cores, as one might 

expect. Despite the more complex algorithm, the SIS method is only slightly more costly 

than the simpler EFD algorithm: the computational cost of calculating a single time step 

at one grid point for the EFD scheme is generally smaller by a factor of ~ 2.5. Now we 

compare how fast the solution can be reached by the SIS and EFD schemes for the same 

spatial steps. This shown in Figure 4.10 (b); here the team used 3 different spatial 

resolutions, which were (Δx0/4, Δx0/2 and Δx0). The time steps used in the case of the 

EFD method was the maximum stable one. Here I would like to draw the reader’s 

attention to the fact that the results outline a linear relationship between the computation 

time and the number of CPU cores for both numerical methods with the exception of the 
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SIS results for a small number of grid points and large number of CPU cores. The latter 

is due to the effect of bottlenecking of information as it passes through one node to the 

next. From Figure 4.10 (b) it can be seen that the computational time for the SIS scheme 

is much smaller than the EFD scheme with regards to spatial resolution. At the spatial 

resolution Δx0/4, the SIS scheme is ~ 5 orders of magnitude faster than the EFD scheme. 

Even at the spatial step Δx0/2 the SIS scheme is still ~ 3 orders of magnitude faster than 

the EFD. However at the spatial step Δx0 the SIS scheme is only ~ 1 order of magnitude 

faster than the EFD scheme, this was due to larger time steps being allowed. However, it 

is worth noting that to obtain the same level of accuracy as with the SIS scheme at the 

spatial resolution of Δx0 the EFD scheme is required to use a finer mesh spacing of Δx0/4 

or smaller. This gives the SIS scheme a gain of ~ 6 orders of magnitude over the EFD 

scheme. Also remarkable is that except for small grids on a large number of CPU cores, 

the computation time of SIS scales with the number of the CPU cores as well as for the 

EFD method               
  ). For example, in the case of our largest computations (on 

a 16,384 × 16,384 grid), we have found this type of scaling up to our maximum number 

of CPU cores, 192, connected with high-speed communication. Summarizing, the SIS 

scheme proposed by the research team is highly stable, more accurate and faster than the 

EFD scheme presented by Elder [Elder et al, 2007]. 

 

5.3 The Single Component Case 

The results for the single component case are presented in sub-section 4.2. The 

motivation for this investigation is to identify whether unconditional time stepping can 

be used to the revised semi-implicit spectral scheme for the single component case which 

has been shown in chapter 3. In short, the fourth order term has been treated explicitly in 

order to make the solution stable. To make comparison to the unconditional time 

stepping we have conducted conditional time stepping simulations and made 

comparisons between both schemes in terms of their relative errors. The results have 

been summarised in Figure 4.2, which shows the effect of the spatial and time resolution 

on the numerical results obtained with the unconditional and conditional time stepping. 

Here we have not investigated the behaviour of the inter-atomic distance as it is expected 

to be independent of the spatial resolution as observed in the binary case. Accordingly, 
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we have explored how the diameter of the crystalline particle (which can be considered 

as the average growth rate) varies with the spatial resolution. Figure 4.2 (a) compares the 

normalized diameter (d/d0) against spatial resolution curves for unconditional and 

conditional time stepping. The diameter d0 = 88.45 × (1.0 ± 0.0009) from the 

computation with the finest spatial and time resolution has been chosen as the reference 

the errors displayed correspond to the smallest ∆t. Figure 4.2 (a) indicates that for each 

individual spatial step the unconditional result was directly on top of the conditional time 

stepping, with virtually same relative error. This is also observed in Figure 4.3 which 

shows the difference between the structure for conditional and unconditional time 

stepping (All snapshots were taken at t = 768). Figure 4.3 (a) displays the conditional 

time stepping for ∆x = ∆x0 with the smallest time step; whereas (b) shows the 

unconditional time stepping for ∆x = ∆x0 with the smallest time step. The box to the left 

hand edge of the crystal in panels (a) and (b) incorporates a section of the solid-liquid 

interface which is shown magnified in panels (c) and (d), corresponding to  conditional 

and unconditional time stepping, respectively. We see that the crystal structures obtained 

by conditional and unconditional time stepping are almost identical (Figure 4.3 (a) and 

(b)). Secondly we see convergence for the diameter of the crystalline particle to the 

limiting value for the unconditional time stepping. Also the diameter of the crystal seems 

to be independent of the spatial steps. This can also be seen in Figure 4.2 (c) where for 

each unconditional time step each normalized diameter value (d/d0) for all three spatial 

steps lies on top of one another. Furthermore in Figure 4.2 (a) the relative error remains 

virtually the same as the spatial resolution decreases. The difference between the largest 

and smallest spatial step relative error varies between ± 0.9% to ± 1.8. Next we analyze 

how the diameter of the crystalline particle for conditional and unconditional time 

stepping varies with the time step ∆t. The results are presented in Figure 4.2 (b), where 

we compare the calculations for the unconditional stepping obtained using the largest 

spatial step (Δx = Δx0) with the smallest spatial step calculations (Δx = Δx0/2) for 

conditional stepping, both at the largest time step. Remarkably, for conditional time 

stepping the diameter of the crystal is independent of ∆t and we do see convergence to 

the limiting solution. For the unconditional time stepping we also see convergence to the 

limiting solution ∆t → 0. Furthermore, the average growth rate (the diameter of the 

crystal) is dependent on the time steps but the results for the two smallest time steps are 

virtually indistinguishable. For the conditional time stepping, from ∆t = 64×∆t0 to the 
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smallest time step the difference is ~ 0.2% relative to the limiting value. However 

beyond this point the accuracy begins to decrease. For example at ∆t = 128×∆t0 the 

unconditional time stepping underestimates the limiting value by ~ 5.2%. This suggests 

that calculations with unconditional time stepping can be increased by a factor of eight 

compared to the largest time step calculations for the conditional time stepping with the 

same level of accuracy. However, beyond this point the time convergence becomes 

exponential; this is due to the time integration. In summary the convergence tests suggest 

that the unconditional time stepping scheme converges to the limiting solution for both 

∆x → 0 and ∆t → 0. As well as the scheme can be used to speed up the computation 

significantly (by a factor of 8).  Using this scheme we are able to retain the same level of 

accuracy as the conventional time stepping procedure. 

  

5.4 The Johnson-Mehl-Avrami-Kolmogrov (JMAK) model 

The results obtained for the kinetics of polycrystalline solidification in a binary alloy in 

two dimensions are presented in sub-section 4.5. They have been analysed in terms of the 

Johnson-Mehl-Avrami-Kolmogrov (JMAK) model, which is a formal description of 

crystallization that relates the crystalline fraction (X) to the nucleation and growth rates. 

During the phase transition X is often seen to follow a characteristic sigmoidal profile 

that can be broken down to three stages, which are as follows: 

 

1. The transformation is initially very slow. This is attributed to time required 

for a significant number of nuclei to develop. 

2. In the intermediate stage the crystallites grow freely until they start 

impinging one another. In this phase the transformation is rapid. 

3. In the final stage the transformation becomes slower due to the 

impingement of the crystallites. Furthermore, the amount of untransformed 

material where nucleation can take place tends to zero. 

 



Discussion 102 

 
In stage 1. assuming interface controlled growth (constant growth rate) the infinitesimal 

change of the crystalline fraction can be given as: 

 

dX = I v
d
 dt,  

where I is the nucleation rate, v  the growth rate, d the number of dimensions, while t the 

time. Then the transformed fraction as a function is given by the integral: 

 

                  
 

 

 

 

 
 

 

  

where G0 is a geometrical factor depending on the shape of the crystals (e.g., G0 = 4/3 

for sphere). In the case of constant nucleation and growth rates X = G0Iv
d
t
1+d

 = K t 
n
, 

where n is the Avrami-Kolmogorov exponent.  However, this expression is valid only for 

short time. Later the crystal grains grow so large that they impinge upon each other. 

Then, this expression overestimates the true crystalline fraction Y. A mean-field type 

correction can be made by taking only that part of the infinitesimal change of this 

overlapping crystalline fraction into account, which falls on the non-crystalline regions, 

i.e. by taking 

 

dY = (1  Y) dX. 

Integrating this equation, one finds that Y = 1  exp{X}. Substituting the above 

expression for X and rearranging the expression for Y, one obtains  

 

                             

(5.1) 

Plotting (                 ) versus (   ), one expects a straight line whose slope is the 

Avrami-Kolmogorov exponent, so far as the assumptions made are valid. It is worth 

noting that the derivation of this expression relies on three implicit assumptions: (a) 
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infinite system; (b) spatially homogeneous nucleation and growth rates, (c) convex crystal 

shape. Violation of any of these conditions leads to deviation from the JMAK kinetics. 

One example that violates these conditions is diffusion controlled growth, in which case 

the growth rate is time dependent, and thus crystal grains of different size have different 

growth rates. Nevertheless, even in such case n   1 + d/2 is expected to apply [Christian, 

1981]. We note that if a constant number of nuclei are present, the Avrami-Kolmogorov 

exponent has the following values: n = d for interface controlled growth and n  d/2 for 

diffusion-controlled transformation. A few specific cases: 

 

1 = Diffusion controlled growth (conserved dynamics) of fixed number of nuclei. 

2 = Interface controlled growth of the fixed number of nuclei in 2D. 

3 = The nuclei is pre-formed and thus are present from the beginning and the 

transformation is only due to 3D growth of the nuclei. 

4 = Constant nucleation rate combined with interface controlled growth in 3D. 

 

I would like the reader to note if the distribution of nucleation is non-random the growth 

may severely be restricted to 1 or 2D. Therefore, site saturation may tend to have values 

of 1, 2 or 3 depending on whether nuclei are situated on corners, edges or surfaces. As in 

our simulation the liquid does not solidify fully, we have renormalized the transformed 

fraction by its maximum. 

 

5.5 Polycrystalline solidification of a binary alloy in two 

dimensions 

In order to evaluate the structures and find the solid fraction I have counted the number 

of atoms in the crystalline state by using ImageJ software [Abramoff et al, 2004]. The 

software works on the premise that it will only pick atoms that belong to the solid phase 

by scanning the whole simulation window and identifying atoms that have a density peak 

larger than a preset threshold value. The respective results are displayed in Figures 4.16, 
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4.17 and 4.18. In particular Figure 4.16 shows the snapshots related to dendritic growth 

of 5 crystalline particles taken at 1000, 5000, 7500, 10 000, 15 000 and 20 000 time 

steps. Figure 4.17 displays the snapshots of the growth of 50 crystalline particles, which 

were taken at 1000, 3000, 4500, 5000, 7500 and 10 000 time steps. Lastly Figure 4.18 

presents snapshots that refer to the growth of 500 crystalline particles. The snapshots 

were taken at 250, 500, 625, 750, 1125 and 1500 time steps. Figure 4.19 (a) shows the 

number of atoms in the crystalline phase as a function of the number of time steps for 

crystallization started with 5, 50 and 500 nuclei. Figure 4.19 (a) indicates that in the 500 

particle simulation a higher crystalline fraction has been achieved than in the simulations 

for 5 and 50 particles. Therein particular, for the case of 500 nuclei ~ 1.5 million atoms 

are solid out of the total ~ 1.6 million atoms. In comparison, at the end of the 50 particle 

simulation we see ~ 1.25 million solid atoms, whereas for the 5 particle simulation we 

see ~ 1.2 million atoms that are in the solid phase. This indicates that in the 500 particle 

simulation solute trapping (freezing-in of non-equilibrium composition that is closer to 

the composition of the liquid) is more efficient than in the 50 and 5 particle simulations. 

This can be explained by a faster growth rate in the initial transient phase, which can be 

seen by a steeper gradient in Figure 4.19 (a) for the 500 case in comparison to the 50 and 

5 particle cases. Furthermore, there is supporting evidence for this interpretation in the 

last snapshots shown in Figures 4.16, 4.17, and Figure 4.18 the composition contrast 

evolving by the end of solidification is much larger in the case 5 crystal particles than in 

the much faster solidified 500 particle system. Next, I address the time evolution of 

crystallization, which will be analyzed in terms of the JMAK model. The respective 

results are presented in Figure 4.19 (b) and (c), which display the Avrami plots and the 

kinetic exponent against the reduced transformed fraction. The Avrami-Kolmogorov 

exponents (denoted here as PAK) fall mostly between PAK = d/2 = 1 and PAK = d = 2. 

From the above definitions these values indicate a transition from  interface controlled 

growth of the fixed number in 2D (fast initial nearly diffusionless growth due to a high 

level of solute trapping) and diffusion controlled growth (slow diffusion controlled 

growth yielding dendritic solidification observed at the later stages). However overall we 

can see that the plots are not linear and one can see that the respective Avrami-

Kolmogorov exponents (PAK) varying with the transformed fraction (or time). Another 

process that may potentially influence the transformation kinetics at later stages is that 

being concave particles the dendrites violate condition (c) required for the validity of the 
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JMAK model. Another effect that potentially influences crystallization kinetics, is the 

phenomenon termed blocking. Taking a reference point in the liquid, in the case of 

isotropic growth the closest crystal reaches it the first. In the case of dendrites this is not 

necessarily so as the growth rate strongly depends on the orientation. Accordingly, a 

farther crystal may grow in between the reference point and the crystal (it blocks its 

growth), so that it is not the closest dendrite that solidifies the reference point. It may 

happen though that a third dendrite blocks the blocking dendrite, before it could 

influence the closest crystal, so that the latter reaches the reference point first. Monte 

Carlo studies of such hierarchical random blocking events show that they lead to the 

reduction of the Avrami-Kolmogorov exponent that increases with increasing 

transformed fraction [Pusztai, Gránásy, 1998]. This effect is characteristic to highly 

anisotropic growth, which has been investigated in the following publications [Shepilov, 

1990], [Shepilov, Baik, 1994], [Birnie III, Weinberg 1995], [Pusztai et al, 2005a] and 

[Pusztai et al, 2005b]. Lastly I would like to mention that the results for the 5 dendritic 

particles is in suspect as 5 particles do not provide satisfactory statistics for evaluating 

the kinetic exponent. One solution to this is to perform simulations on a larger scale with 

a greater number of fully developed dendrite than was shown in this study. However the 

stumbling block here is that with current hardware and numerical techniques it cannot be 

easily performed. However I would like to note that the final microstructure for the 500 

particle simulation is commonly shown in experimental results under practical 

solidification conditions. This demonstrates that the PFC model effectively handles 

multi-grained polycrystalline structures with a high number of initial particles 

introduced.  

 

5.6  Eutectic solidification 

We now discuss the results for eutectic solidification displayed in the sub-section 4.4. 

Here it has been investigated how the composition of the initial liquid phase influences 

the eutectic morphology evolving during solidification. This appears to be the first study 

that addresses this question on microscopic grounds using the dynamical density 

functional theory. We begin by recalling how eutectic structures form. Eutectic reaction 

can be represented by the following reaction equation: 
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(5.2) 

which describes the simultaneous formation of two solid phases α and β from the liquid 

phase below the eutectic temperature TE. At eutectic temperature TE the liquid and two 

solid phases co-exist in equilibrium. TE is lower than the melting point of the pure 

components. As a result of the interplay of diffusion, capillarity, and anisotropies various 

eutectic structures evolve, including ordered structures (rod, lamellar, spiralling, or 

cellular) and disordered structures (such as fish-net, Chinese-script, etc.).  

 

5.7 Investigation of eutectic solidification that addresses the 

composition dependence of eutectic pattern formation 

In my studies, we have tried to model equiaxed formation of eutectic particles, however, 

without modelling explicitly the nucleation of the particles. Starting with two adjacent 

particles of different composition, we were able to grow lamellar eutectic patterns (see 

Figure 4.1 (d)). The eutectic particles grown so that a single seed has been inserted to the 

centre of the simulation window are shown as a function of composition in Figure 4.11. 

They have a compact shape and display a transition from concentric ring-like structure to 

irregular dots as a function of increasing compositional difference from the eutectic 

point. To characterize these morphologies the average grain diameter of the eutectic 

structure has been determined and plotted as a function of time. In addition we have 

determined and plotted the average radial growth velocity as a function of time for the 

number density differences 10
-6

, 0.02 and 0.06. These simulations were conducted in a 

simulation window of 1024 x 1024 and are displayed in Figures 4.12 (a) and (b) 

respectively. In Figure 4.12 (b) the average radial growth velocity decreases with time 

for all three compositions. Figures 4.12 (a) and (b) show that the time dependence of the 

grain size as well as the average velocity are fairly similar for the number density 

differences of 10
-6

 and 0.02. This accords with the snapshots in Figure 4.11 which show 

that the eutectic patterns formed at these compositions are fairly similar showing a 
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dominantly concentric ring-like pattern. However this was not the case for the simulation 

performed at the number density 0.06, where it’s observed (Figure 4.12 (a)) a 

significantly larger grain size and a higher average velocity (Figure 4.12 (b)). This 

implies that the thermodynamic driving force of crystallization increases with increasing 

     for       > 0. From these results it is apparent that steady state has not been 

achieved yet. There might be various explanations for this. One possibility is that size of 

the simulations is too small to establish such a steady state. In order to test this 

possibility, we have repeated the test simulations in a larger simulation box. Here we 

increased the simulation window from 1024 x 1024 to 2048 x 2048. Figure 4.13 (a) 

shows the average velocity for      = 0.05,      = 0.055,      = 0.06 and      = 

0.065 as a function of time. For      = 0.06 a grain size of ~ 380 has been observed at 

the 32500
th

 time step. In comparison to the simulation conducted on the 1024 x 1024 

simulation window at the 40000
th

 time step, the grain size is ~ 375. Furthermore, in 

Figure 4.14, the time dependent average velocities obtained in simulation windows of 

size 1024 x 1024 and 2048 x 2048 are almost identical. A similar relationship applies for 

the grain size: the growth rate decreases as the eutectic structure evolves. The growth of 

eutectic particles and the composition dependence of the average velocity (obtained at 

the 200,000
th

 time step) are shown in Figure 4.13 (b) for larger       values. The trends 

obtained for these cases are consistent with results obtained for smaller      values. 

Lastly plotting the growth rate with respect to t
1/2

, we obtain a linear functional 

relationship (Figure. 4.15). This suggests that the growth process is limited by long-range 

diffusion ahead of the interface. This is rather surprising. Normally, eutectic 

solidification is controlled by lateral diffusion at the solid-liquid interface, which 

establishes the characteristic wavelength of the eutectic pattern, and yields a constant 

growth rate. A possible explanation for this typical behaviour is that while the average 

composition of the crystallite is indeed close to the composition of the initial liquid, the 

average number densities of the crystal and the liquid are different, and this difference 

relaxes diffusively.  This is a consequence of the diffusive equation of motion assumed 

in the PFC model. Such diffusive relaxation of the density differences is realistic in the 

case of colloidal systems. Accordingly, it is expected that the present computations are 

relevant only to eutectic solidification in colloidal systems. Recent experiments on 

charged colloids imply that eutectic solidification is indeed possible in such systems 

[Lorenz et al, 2008, 2009a, 2009b]. A recent publication by Gránásy et al [Gránásy et al, 
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2010] provides supporting evidence for the work I completed a year prior to the 

publication. In the work published it was found that after the initial period of growth the 

growth velocity continuously decreased and confirmed the propagation of the eutectic 

front was controlled by long-range diffusion. Furthermore in this work they have 

demonstrated a 3 dimensional eutectic structure using the PFC model.  

 

 



Conclusions 109 

 

 

Chapter 6 

 

CONCLUSIONS 

 

The results presented in this thesis address four main issues and are summarised below.  

 

1. I have shown the efficient semi-implicit spectral scheme based on a specific operator 

splitting technique for solving numerically the equations of motion of the binary 

phase-field crystal model developed by György Tegze. I have then demonstrated the 

following: 

 

 For decreasing time and spatial steps, the solution obtained with the 

proposed semi-implicit scheme converges to a limiting solution. 

 In the range, where computations with the explicit finite difference scheme 

can be performed, results from the explicit scheme and those from the semi-

implicit spectral scheme converge with decreasing time and spatial steps. 

 Significant acceleration of the computations can be expected if the proposed 

semi-implicit spectral scheme is used, especially if accurate solutions are 

needed, in which case the new method can be several orders of magnitude 

faster than the conventional explicit finite difference scheme. 

 Since the proposed method is implicit in the Fourier space, it can be 

parallelized efficiently: in the investigated size and CPU core number 

ranges, the computational time scales roughly with the inverse of the 

number of the CPU cores. 
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2. For the single component case I have applied the semi-implicit spectral scheme and 

provided numerical testing to clarify whether unconditional time stepping can be used 

to reduce the computational time. The following has been demonstrated: 

 

 The relative error for both the conditional and unconditional time stepping 

are virtually indistinguishable. Accordingly, unconditional time stepping 

can have the same accuracy as the conditional time stepping. 

 The unconditional scheme applied here can be used to speed up the 

computations significantly (by a factor of 8 in our case) relative to 

conventional conditional time stepping. 
 

3. I have applied the SIS scheme to polycrystalline solidification within the binary PFC 

model. The kinetics of transformation has been analyzed in terms of the Johnson-

Mehl-Avrami-Kolmogorov formalism. The following has been established: 

 

 The Avrami-Kolmogorov exponent PAK, that characterizes the 

transformation kinetics, is time dependent and shows a complex behaviour. 

Apart from the (initial and final) transient regimes it falls into the range 

between the values that correspond to the purely interface controlled and 

purely diffusion controlled cases (1 < PAK < 2). 
 

4. I have investigated the morphology evolution during two-dimensional eutectic 

solidification within the binary PFC model as a function of the chemical composition.  

 

 I have observed a gradual transition from a lamellar eutectic structure to 

dotted patterns. 

 The average front velocity increases with N.    
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Chapter 7 

 

FURTHER WORK 

 

We have presented in this thesis, an efficient semi-implicit spectral scheme based on a 

specific operator splitting technique for solving numerically the equations of motion of the 

binary phase-field crystal mode. However we expect by applying higher order time stepping, 

the efficiency of the method can further be improved. Investigations are planned into this 

direction. 

 

In addition to this, the single component case the model can be extended to three dimensions, 

as it has been done recently [Berry et al, 2008; Tegze at al, 2009]. Extension of the binary 

model to three dimensions would open up the way for the first atomistic simulations of three 

dimensional solutal dendritic structures.   

 

The three dimensional PFC model is expected to enable us to investigate the microscopic 

aspects of the formation of fairly complex three dimensional polycrystalline structures, 

including multi-grain dendritic solidification, and the formation of polycrystalline spherulites.  

 

We believe that these modelling tools and their descendants/combinations supported by 

atomistic simulations will find application in various branches of materials science and 

technology. 
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Appendix A 

 

Single component (pure material) PFC 

 

The following subsection shows the derivation of the free energy functional for the single 

component case as given in [Elder et al, 2006]; the starting point is the grand potential 

function for N particles at temperature T being defined to be: 

 

      
       

     

(A.1) 

Where 

   
 

     
                                                

 

   

 

(A.2) 

is the classical operator, with       and        being the position and momentum of the     atom, 

while   the chemical potential and h denotes the Planck’s constant. The N-body 

Hamiltonian can be written as          where: 
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(A.3) 

U denotes the interaction potential between particles in the system (including many body 

interactions), K is the total kinetic energy, with    the mass of the particles ith and      

that represents the interaction of atom ith with the external field. The probability density 

of a particular phase space configuration is given by: 

 

        
       

    

(A.4) 

The number density operator, an N-body system is defined by: 

 

              

 

   

          

(A.5) 

The equilibrium number density is obtained by averaging the density operator with the 

equilibrium probability density: 

 

                       

(A.6) 

The PFC will ultimately yield governing equations for the time evolution of the number 

density (defined by equation A.6) on the diffusive time scale. We note that the 

equilibrium probability density     is the functional of         [Evans, 1979]. For a given 

U, the Helmholtz free energy can be defined as: 



 

                               

(A.7) 

While the grand potential functional is defined by: 

 

                                                

(A.8) 

The grand potential can be put in a more familiar form by substituting equation A.6 into 

[Evans, 1979] and exchanging the order of integration over      and Tr operation. 

Specifically using the result: 

 

                                 

 And  

                                     , 

This then leads to the known statistical mechanics result: 

 

               

(A.9) 

The grand potential can be used to relate the chemical potential to the equilibrium density 

        according to                which gives: 

 

               
     

        
 

           (A.10) 



Equation A.10 is fundamental to the theory of non-uniform fluids and can in principle be 

used to calculate the equilibrium density as shown in [Singh, 1991], [Evans, 1979]. The 

properties of the free energy functional      can be elucidated by writing it as the sum of 

two terms: 

 

               

           (A.11) 

Where    represents the ideal case of non-interacting particles, while ][  represents the 

total potential energy of the interaction between the particles. Note that for a given U,   

is once again a functional of )(


r  Moreover for U = 0 in equation A.7       becomes: 

 

                                       

           (A.12) 

Where     
  

        
 [Evans, 1979]. It will be useful to expand the free energy      for 

periodic phases in equation A.11 about the density, l   which corresponds to the 

liquid side of the solid-liquid co-existence phase diagram (at a given temperature). The 

change in the free energy                  then becomes: 

 

                                  

           (A.13) 

The first term on the right hand side of equation A.13 can be simplified by substituting 

  l  in the non-logarithmic expressions of       giving: 

                                       

           (A.14) 



The interaction term, ])[][( l  can be expanded functionally in )(


r  about l , 

while defining the one-particle, two-particle, etc. direct correlation functions as: 

 

       
           

        
 

                   
   

                    
 

                         
   

                              
 

           (A.15) 

Using equation A.14 and A.15 in equation A.13 you finally get: 

 

   

   
                 

       

  
             

  
 

 
                                                       

  
 

 
                                                                             

      

           (A.16) 

The function    is the two point direct correlation function of an isotropic fluid and it is 

usually denoted             , where                     . The function    is the three point 

correlation, etc. 



 

Appendix B 

Raw Data for the Binary Simulations 

          
Atomic distances for 13 
density peaks         

                          

  
        

time steps for the 
SIS scheme 

        
The EFD 
scheme 

Mesh 
Spacin

g 
0.01

25 
0.02

5 0.05 0.1 0.2 0.4 0.8 1.6 3.2 6.4 12.8 

smallest 
available 
time step 

0.275 
7.43
6613 

7.43
8907 

7.44
3384 

7.43
5874 

7.43
6019 

7.43
5835 

7.44
0144 

7.43
38 

7.43
2975 

7.43
8841 

7.43
9548 

 NA 

0.3666
66667 

7.44
0609 

7.43
9094 

7.43
6779 

7.43
9824 

7.43
6073 

7.44
2259 

7.44
0257 

7.43
2202 

7.43
82 

7.43
7946 

7.43
9747 

7.39344
2221 

0.55 
7.44
3645 

7.44
799 

7.45
7725 

7.44
2232 

7.44
1709 

7.43
0373 

7.44
172 

7.44
062 

7.43
3635 

7.44
403 

7.43
815 

7.31551
5625 

0.7333
33333 

7.43
3866 

7.43
6147 

7.45
3233 

7.46
526 

7.46
0999 

7.46
0765 

7.48
4107 

7.45
1888 

7.45
074 

7.44
2967 

7.48
6431 

7.23516
4442 

0.825 
7.43
0363 

7.42
8218 

7.43
8802 

7.42
269 

7.42
4753 

7.42
1923 

7.42
401 

7.42
3185 

7.43
2838 

7.41
7781 

7.42
5103 

7.16914
8525 

1.1 NA NA 
7.42
742 

7.43
8563 

7.46
064 

7.46
526 

7.44
59 

7.47
89 

7.42
2434 

7.48
066 

7.56
085 

6.93081
4 

                          

                          

          
Grain size for 13 
density peaks           

                          

  
        

time steps for the 
SIS scheme 

        
The EFD 
scheme 

Mesh 
Spacin

g 
0.01

25 
0.02

5 0.05 0.1 0.2 0.4 0.8 1.6 3.2 6.4 12.8 

smallest 
available 
time step 

0.275 NA NA 
191.
5805 

191.
3799 

190.
9809 

190.
1887 

188.
6138 

185.
4132 

178.
267 

167.
7646 

149.
2132 

  

0.3666
66667 NA NA 

186.
5013 

186.
2877 

185.
8577 

184.
9868 

183.
1944 

179.
3333 

173.
4271 

161.
8819 

143.
9324 

177.669
988 

0.55 NA NA 
190.
8673 

190.
6812 

190.
3104 

189.
5725 

188.
1015 

185.
0909 

178.
3092 

167.
0577 

149.
2295 

175.084
642 

0.7333
33333 NA NA 

185.
6958 

185.
456 

184.
9744 

184.
0029 

182.
0083 

177.
7449 

172.
2131 

161.
0075 

143.
9219 

173.407
374 

0.825 NA NA 
189.
3308 

189.
1488 

188.
7846 

188.
0563 

186.
582 

182.
4793 

175.
9072 

164.
7709 

146.
7383 

170.668
044 

1.1 NA NA 
191.
7904 

191.
5895 

191.
1897 

190.
3977 

188.
8247 

185.
6348 

178.
5489 

167.
2675 

146.
7857 

164.484
35 

 



          
Grain size for 19 
density peaks           

                          

          
time steps for the 
SIS scheme 

        
The EFD 
scheme 

Mesh 
Spacin

g 
0.01

25 
0.02

5 0.05 0.1 0.2 0.4 0.8 1.6 3.2 6.4 12.8 

smallest 
available 
time step 

0.275 NA   NA  NA  NA  NA  NA  NA  NA  NA  NA NA  NA 

0.3666
66667 

184.
2231 

184.
1709 

184.
0685 

183.
8611 

183.
4437 

182.
597 

180.
8463 

177.
4453 

172.
4027 

161.
9178 

145.
3338 

177.6699
88 

0.55 
172.
6035 

172.
5611 

172.
4777 

172.
3091 

171.
9719 

171.
2931 

169.
9115 

167.
0209 

161.
6466 

152.
8301 

138.
1168 

175.0846
42 

0.7333
33333 

156.
3511 

156.
3153 

156.
2452 

156.
1045 

155.
8217 

155.
2539 

154.
1042 

151.
7274 

147.
0497 

140.
0399 

127.
4127 

173.4073
74 

0.825 
148.
0012 

147.
9696 

147.
9052 

147.
7775 

147.
5228 

147.
0182 

146.
0241 

144.
0718 

140.
1482 

132.
4205 

120.
3054 

170.6680
44 

1.1 NA NA 
116.
4739 

116.
3762 

116.
1807 

115.
7909 

115.
0241 

113.
5181 

113.
1322 

104.
5442 

97.4
2578 

164.4843
5 

 

L
2
 Test     

      

Mesh Spacing stddev pfc stddev chem 

0.366666667 0.02396937 0.028140669 

0.55 0.055147402 0.061442385 

0.733333333 0.07646277 0.078096489 

0.825 0.092025034 0.098817966 

1.1 0.098451443 0.109165965 
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