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Abstract— Addressing dynamic optimization problems has
attracted a growing interest from the evolutionary algorithm
community in recent years due to its importance in the
applications of evolutionary algorithms in real world problems.
In order to study evolutionary algorithms in dynamic environ-
ments, one important work is to develop benchmark dynamic
environments. This paper proposes two continuous dynamic
problem generators. Both generators use linear transformation
to move individuals, which preserves the distance among
individuals. In the first generator, the linear transformation of
individuals is equivalent to change the direction of some axes
of the search space while in the second one it is obtained by
successive rotations in different planes. Preliminary experiments
were carried out to study the performance of some standard
genetic algorithms in continuous dynamic environments created
by the proposed generators.

I. INTRODUCTION

Evolutionary algorithms (EAs) have been widely applied
for solving stationary optimization problems. However, the
environments of real world optimization problems are often
dynamic, where the fitness function, design variables, and/or
environmental conditions may change over time. In recent
years, there has been a growing interest in studying EAs for
dynamic optimization problems (DOPs) due to its importance
in real world applications [1].

In order to study EAs in dynamic environments, one im-
portant work is to develop benchmark dynamic environments.
Over the years, researchers have developed a number of DOP
generators to create dynamic test environments to compare
the performance of EAs in dynamic environments. They
can be roughly divided into two types. For the first type,
the environment is just switched between several stationary
problems or several states of a problem. For example, many
researchers have tested their EAs on a time varying knapsack
problem where the total capacity of the knapsack changes
over time, usually oscillating between two or more fixed
values [2], [3]. Cobb and Grefenstette [4] constructed a
significantly changing environment that oscillates between
two different fitness landscapes. For this type of generator,
the environmental dynamics is mainly characterized by the
speed of changes, usually measured in EA generations.

The second type of DOP generators starts from a prede-
fined fitness landscape, which will be changed to construct
dynamic environments. For example, the stationary landscape
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can be defined in n-dimensional real space with a number of
component peaks, which can change independently [5], [6],
[7]. Each peak has its own morphology with such parameters
as height, slope and location. The center of the peak with
the highest height is taken as the optimum solution of the
landscape. From this stationary landscape, dynamic problems
can be created through changing the parameters of each peak.
In [8], [9] a DOP generator that can generate DOPs from any
binary encoded stationary problem was proposed based on an
exclusive-or (XOR) operator, see Section II for more details.
For this type of generators, the environmental dynamics
is characterized by the speed of changes and severity of
changes.

This paper proposes two continuous dynamic problem
generators. The first generator is an extension of the XOR
generator proposed in [8], [9] for binary encoded problems.
In this generator, each individual of the current population
is moved to a new location in the fitness landscape before
being evaluated. In the second generator, the individuals are
moved to new locations only when a change occurs. Both
generators use linear transformation to move individuals,
which preserves the distance among individuals. In the first
generator, the linear transformation of individuals is equiva-
lent to change the direction of some axes of the search space
while in the second one it is obtained by successive rotations
in different planes. Based on the proposed generators, some
preliminary experiments were carried out to study some
genetic algorithms in continuous dynamic environments.

The rest of this paper is outlined as follows. The next
section briefly describes the XOR DOP generator proposed
in [8], [9] and shows some analysis regarding its properties.
Section III presents the proposed continuous DOP generator
for EAs in dynamic environments, which is a simple ex-
tension of the XOR DOP generator. Section IV describes
another continuous DOP generator proposed in this paper.
The experimental study and relevant analysis are presented in
Section V. Section VI concludes this paper with discussions
on relevant future work.

II. THE XOR DOP GENERATOR AND ITS ANALYSIS

The XOR DOP generator proposed in [8], [9] can generate
DOPs from any binary encoded stationary problem. Given a
stationary problem with fitness function f(x(t)) and x(t) ∈
{0, 1}l, the fitness function g(x(t)) of an environment that
is periodically changed every τ generations is formulated as
follows:

g(x(t)) = f
(
x(t) ⊕ m(k)

)
, (1)
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where ⊕ is the bitwise exclusive-or (XOR) operator, t is the
generation index, k = �t/τ� is the period index, and m(k)
is a binary mask for period k that is incrementally generated
by:

m(k) = m(k − 1) ⊕ p(k), (2)

where p(k) is a binary template randomly created for period
k containing �ρ × l� ones, and {ρ ∈ R | 0.0 ≤ ρ ≤ 1.0}
controls the degree of change for the DOP. If ρ = 0.0, the
problem stays stationary, while if ρ = 1.0, the extreme fitness
landscape change in the sense of Hamming distance occurs.
For the first period, m(1) is equal to the zero vector.

The main characteristic of the XOR DOP generator is that
each individual of the current population is moved to a new
location in the fitness landscape before being evaluated. Each
individual x(t) is moved according to the rule:

z(t) = x(t) ⊕ m(k) (3)

If the vector x(t) ∈ [0, 1]l is normalized to xn(t) ∈ [−1, 1]l,
the transformation represented by Eq. 3 can be written as

zn(t) = A(k)xn(t), (4)

where zn(t) ∈ [−1, 1]l is the normalized vector z(t) ∈
[0, 1]l, and the linear transformation A(k) is given by

A(k) =

⎡
⎢⎢⎢⎣

A1(k) 0 . . . 0
0 A2(k) . . . 0

. . .
0 0 . . . Al(k)

⎤
⎥⎥⎥⎦ , (5)

where

Ai(k) =

{
1 if mi(k) = 0
−1 if mi(k) = 1

(6)

for i = 1, . . . , l, and mi(k) is the i-th element of the vector
m(k).

It can be observed that the matrix A(k) is orthogonal, i.e.,
A(k)TA(k) = A(k)A(k)T = I, where A(k)T denotes the
transpose of A(k) and I is the identity matrix. An orthogonal
matrix has some important properties [10], e.g.

i) if A and B are orthogonal, then AB is orthogonal too.
ii) if λ is an eigenvalue of the orthogonal matrix A, then

|λ| = 1.
iii) if A is an orthogonal matrix, then ‖Ax‖2 = ‖x‖2 for

every vector x, where ‖x‖2 denotes the Euclidean norm
of the vector x.

A geometrical interpretation of item (iii) is that the linear
transformation A(k) preserves the angles and magnitudes,
i.e., the linear transformation behaves like a rotation in the
space.

The following properties of the XOR generator can be
observed by analyzing Eqs. 3 and 4 and the properties of an
orthogonal matrix:

• The individuals of the population are rotated in order
that the i-th gene of each individual is changed when
mi(k) = 1. This rotation is equivalent to change the
direction of the i-th axis of the fitness space.
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Fig. 1. Individuals (binary encoded) in a planar space with transformations
defined by: (a) m(k) = [ 0 0 ]T (original individuals); (b) m(k) =
[ 0 1 ]T; (c) m(k) = [ 1 0 ]T; (d) m(k) = [ 1 1 ]T.

• The magnitudes of the individuals of the population are
preserved after the environmental change.

• The distances among the individuals in the current
population remains unaltered after the transformation
imposed by Eq. 3. In this way, the environmental change
imposed by the XOR Generator preserves the properties
of the population before the change.

• The properties of the fitness landscape are not changed
after the environmental change.

The last item implies that the properties of the problem
are preserved after the environmental changes, which is very
interesting when we want to investigate the performance
of different algorithms in several kinds of DOPs. However,
the use of only the XOR generator is not interesting when
we want to investigate the performance of algorithms in
DOPs where the fitness landscape changes. It is important to
observe, however, that the XOR generator can be combined
to other problems generators in order to allow changes in the
fitness landscape.

In Fig. 1, the three possible transformations caused by the
XOR Generator for all possible individuals in a planar space
are illustrated. It can be observed that the individuals are
rotated in the space after the environmental changes.

III. EXTENDING THE XOR GENERATOR TO CONTINUOUS

PROBLEMS

By analyzing the geometrical interpretation of the XOR
Generator discussed in last section, it is very easy to extend
it to real-valued optimization problems. Given a stationary
problem where the fitness function is f(x(t)) and each ele-
ment of vector x is xi ∈ {xmin

i , xmax
i } for i = 1, . . . , l, the

fitness function g(x(t)) of an environment that is periodically
changed every τ generations is formulated as follows:

g(x(t)) = f
(
z(t)

)
, (7)

where the vector z(t), with elements zi ∈ {xmin
i , xmax

i } for
i = 1, . . . , l, is obtained by unnormalizing the vector

zn(t) = A(k)xn(t), (8)
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Fig. 2. Individuals (real encoded) in a planar space with transformations
defined by: (a) m(k) = [ 0 0 ]T; (b) m(k) = [ 0 1 ]T; (c) m(k) =
[ 1 0 ]T; (d) m(k) = [ 1 1 ]T. The individuals before and after the
transformation are respectively represented by ‘x’ and ‘o’.

where zn(t) ∈ [−1, 1]l, xn(t) ∈ [−1, 1]l is the normalized
vector x(t), and the linear transformation A(k) is given by
Eq. 5 and 6. The binary mask m(k) is defined as described
in Section II.

The XOR dynamic problem generator for real-valued
optimization problems has the same properties of the binary
version. Like the previous version, the individuals of the
population are rotated in order that the i-th gene of each
individual is changed when mi(k) = 1. This rotation is
equivalent to change the direction of the i-th axis of the
fitness space.

However, the generator for real-valued optimization prob-
lems has a drawback. When mi(k) = 1, the changes in the
vectors close to the center of the i-th axis are smaller than
the changes in the vectors far from the center of this axis.
In this way, if the individuals of the population are located
close to the center of the i-th axis, the changes produced by
the XOR generator will be smaller than when they are far
from the center of this axis. This property can be observed
in Fig. 2, where the three possible transformations caused
by the XOR Generator for 10 random individuals in a planar
space are illustrated. It can be seen that the individuals are
rotated in the space after the environment changes.

IV. A CONTINUOUS DYNAMIC PROBLEM GENERATOR

WITH CONTROL OF ROTATION OF INDIVIDUALS

It can be observed that other transformation matrices A(k)
can be defined for the dynamic problem generator described
in the last section. In order to maintain the property of the
invariance of the distances among the individuals after the
environmental changes, the matrix A(k) must be orthogonal.
A natural choice for a new matrix is a rotation matrix
composed by multiplying simple planar rotation matrices.
It is important to observe that the idea of using rotation
matrices to generate dynamic problems is not new. In [11],
planar rotation matrices were employed to generate rotating
environments for EAs.

A simple planar rotation defined by the matrix Rij is
obtained by rotating the projection of x(t) in the plane i− j
by an angle θ from the i-th axis to the j-th axis. After the
rotation, the elements of the vector x(t) remains fixed, with
exception of the i-th and j-th elements i and j. The matrix
Rij is obtained as follows [10]:

• replace the element (i, i) of the identity matrix I by
cos(θ).

• replace the element (i, j) of I by -sin(θ).
• replace the element (j, i) of I by sin(θ).
• replace the element (j, j) of I by cos(θ).

For example, the rotation matrix R13 in a three-
dimensional space is given by:

R13 =

⎡
⎣ cos(θ) 0 −sin(θ)

0 1 0
sin(θ) 0 cos(θ)

⎤
⎦ (9)

It is easy to check that Rij is orthogonal.
We propose here the following transformation matrix A(k)

(for simplicity, we consider that l is even):

A(k) = Rr1r2
(k)Rr3r4

(k) . . .Rrl−1rl
(k) (10)

where the vector rT = [r1 r2 . . . rl] is obtained by randomiz-
ing the vector rT = [1 2 . . . l] in the beginning of each period
k. In other words, the matrix A(k) is obtained by successive
rotations in different planes (and with different axis). As the
rotations are independent, the matrix A(k) can be directly
computed. A method to compute A(k) in the beginning of
each period k is presented in Algorithm 1.

Algorithm 1 Transformation Matrix
1: generate the vector r

2: for i = 1 to i = l − 1 with step i = i + 2 do
3: replace the element (ri, ri) of the identity matrix I by cos(θ).
4: replace the element (ri, ri+1) of I by -sin(θ).
5: replace the element (ri+1, ri) of I by sin(θ).
6: replace the element (ri+1, ri+1) of I by cos(θ).
7: end for

Defining ρ = θ/180, where θ is given in degrees, the
parameter ρ can be employed to control the degree of change
for DOPs. If ρ = 0.0, the problem stays stationary, while if
ρ = 1.0, the extreme changes occur. For small values of ρ,
the individuals of the current population are rotated by small
angles in the planes defined by r, while they are rotated by
large angles when ρ is large. In Fig. 3, four transformations
A(k) = R12(k) caused by different values of ρ for 10
random individuals in a planar space are illustrated. It can
be observed that the transformations presented in Figs. 3 c)
and d) are equivalent to those presented in Figs. 2 c) and d).

As in the generator presented in the last section, changes
in the vectors close to the middle of the search space are
smaller than changes in the vectors far from the center of this
axis. This problem must be considered when the generator is
applied, which is specially important in problems where the
global optimum is located in the middle of the search space.
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Fig. 3. Individuals (real encoded) in a planar space with transformations
defined by: (a) ρ = 0.1 (or θ = 18o); (b) ρ = 0.3 (or θ = 54o); (c)
ρ = 0.5 (or θ = 90o); (d) ρ = 1.0 (or θ = 180o).

This DOP generator has the following advantage when
compared to the generator presented in the last section.

• all elements of the vector x(t) are moved by the linear
transformation A(k). In the generator presented in the
last section, only �ρ × l� elements are moved. In this
new generator, ρ is related to the angle that the planes
are moved, and not to the number of changed elements
as the generator presented in the last section.

However, this new generator has the following disadvantages:

• the linear transformation A(k) utilized in this new
generator can produce an element xi of the vector
x(t) out of the range defined by {xmin

i , xmax
i } for

i = 1, . . . , l. A procedure must be adopted to deal with
this problem.

• the computational implementation of the linear trans-
formation of x(t) applied in every generation is more
expensive for this new generator.

The last disadvantage can be minimized by applying the
linear transformation only in the beginning of each period k
and not in every generation. In this case, all the population
is moved by the linear transformation and the fitness is
computed in the usual form. Adopting this strategy means
that the individuals are not moved to new positions before
being evaluated, but moved only in the beginning of the
period. In this way, the fitness function is given by:

g(x(t)) = f(x(t)) (11)

In the beginning of each period k, i.e. when t/τ = �t/τ�,
each individual x(t) of the current population is moved to
the position z(t) obtained by unnormalizing the vector zn(t)
given by Eq. 8 with A(k) computed by Algorithm 1.

As a result of applying the linear transformation only in
the beginning of each period k, the computational imple-
mentation of this new generator is less expensive because
it is not necessary to change the position of each individual
before each fitness evaluation, like in the generator presented
in Section III.

In comparison to other continuous dynamic problem gen-
erators, the continuous dynamic problem generators proposed
here have the following properties:

• It is easy to change the speed and degree of the
environmental change;

• They do not change the properties of the problem fitness
landscape. In this way, they can be used to investigate
the performance of different EAs in any real-valued
problem, including well studied benchmark optimiza-
tion problems. In this way, they can be employed to
investigate the performance of EAs in problems known
by a particular difficulty, like a large number of local
optima or with a particular fitness landscape. They can
also be applied to investigate the performance of EAs in
dynamic problems generated from real-world stationary
problems, e.g., they can be employed to investigate
the performance of EAs in artificial neural network
optimization;

• They can be combined with other dynamic problem
generators. When combined with other generators, they
can be employed to investigate EAs in changing fitness
landscapes;

• All possible solutions, i.e., individiuals located in any
place of the seach space, present the same rotation after
a change in the problem. In some dynamic problem
generators, when the limit values of an axis is reached
by the changing global optimum, it may bounce back,
which implies in an easier optimization step.

V. EXPERIMENTAL STUDY

In order to illustrate the work, the problem generators
described in Sections III and IV, denoted Continuous Dy-
namic Optimization Problem Generator 1 (CDOPG1) and
Continuous Dynamic Optimization Problem Generator 2
(CDOPG2) respectively, were applied in a problem where
the fitness function is defined by:

f(x) =
1

1 + h(x)
, (12)

where h(x) is given by the Sphere model

h(x) =
l∑

i=1

(xi − c)2 (13)

or by the Generalized Griewank function [12]

h(x) = 1 +
1

4000

l∑
i=1

(xi − c)2 −
l∏

i=1

cos

(
xi − c√

i

)
(14)

and c is a constant. In the multimodal function given by
Eq. 14, the number of local minima increases exponentially
with the problem dimension. In this work, we set l = 30
and c = 300 in order that the global optima is not located
in the middle of the search space (see the last section). In
the experiments with the Sphere model, we set l = 30 and
c = 30.
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TABLE I

MEAN BEST-OF-GENERATION FITNESS OF GAS ON THE DYNAMIC SPHERE MODEL CREATED BY CDOPG1.

τ 50 500 1000
ρ 0.1 0.5 1.0 0.1 0.5 1.0 0.1 0.5 1.0

SGA 0.00053 0.00005 0.00012 0.50525 0.06230 0.01363 0.73709 0.33225 0.17264
RIGA 0.00061 0.00006 0.00005 0.50462 0.08077 0.03598 0.73400 0.35445 0.24468
HGA 0.00047 0.00007 0.00005 0.23603 0.05024 0.02181 0.52478 0.27431 0.19776

TABLE II

MEAN BEST-OF-GENERATION FITNESS OF GAS ON THE DYNAMIC SPHERE MODEL CREATED BY CDOPG2.

τ 50 500 1000
ρ 0.1 0.5 1.0 0.1 0.5 1.0 0.1 0.5 1.0

SGA 0.00058 0.00005 0.00013 0.05782 0.05818 0.01263 0.26915 0.32073 0.16799
RIGA 0.00058 0.00006 0.00005 0.06158 0.07907 0.03667 0.28189 0.35032 0.24534
HGA 0.00059 0.00007 0.00005 0.05720 0.04478 0.01898 0.27325 0.27715 0.18927

A. Experimental Design

In the CDOP generators presented in this paper, the fitness
function is periodically changed every τ generations. The
capability of an algorithm to adapt to dynamic environments
under different degrees of convergence can be investigated
by setting τ to different values. Based on experiments on
stationary problems, environments with three different values
of τ were generated. The first two values, τ = 50 and
τ = 500, imply changing the fitness function in the early
and medium stage of the optimization process respectively.
The last value, τ = 1000, implies changing the fitness
function in the late stage of the optimization process. Each
algorithm was executed for 10 periods of environmental
changes in this paper. The degree of change in the dynamic
problem generator is controlled by setting the parameter ρ.
Environments with three different values of ρ were generated
in this paper. These values represent different change levels:
light shifting (ρ = 0.1), medium variation (ρ = 0.5), and
severe change (ρ = 1.0).

In the experiments presented here, we investigate the
performance of the Standard Generational GA (SGA), the
Random Immigrants GA (RIGA) [13], and the Hypermu-
tation GA (HGA) [4]. RIGA is inspired by the flux of
immigrants of a population in nature [13]. In GAs, the flux
of immigrants generally maintains the genetic diversity level
of the population, allowing the population to escape from
local optima caused by occasional environmental changes.
In RIGA, rr randomly chosen individuals of the current
population are replaced by randomly generated individuals in
each generation. HGA was proposed to increase the diversity
of the population by increasing the mutation rate when
the performance of the current best individual of the GA
worsens. In this work, when the performance of the current
best individual of the HGA worsens, the mutation rate is
triggered from pm to phm, and remains in this value for 5
generations.

Each algorithm was executed 30 times (with 30 random
seeds) for each of the twelve combinations of the environ-
mental dynamics parameters τ and ρ. For each run of an
algorithm on a DOP, the individuals of the initial population
were randomly chosen with uniform distribution in the range

[-600, 600] in the experiments on the Generalized Griewank
function and in the range [-100, 100] in the experiments
on the Sphere model. In each generation, two individuals
of the population were selected according to elitism and
the remaining individuals were selected according to roulette
wheel sampling. Gaussian mutation with rate pm = 0.01 and
two-point crossover with rate pc = 0.7 were employed. The
population size was set to 100. Within RIGA, rr = 20 and
within HGA, phm = 0.3.

B. Experimental Results

The experimental results of the best-of-generation fitness
averaged over 30 runs in the experiments on the dynamic
Sphere model created by CDOPG1 and CDOPG2 are pre-
sented in Tables I and II respectively. Fig. 4 shows the results
of the mean best-of-generation fitness in the experiments with
CDOPG1 for τ = 50 and τ = 1000, and Fig. 5 shows the
corresponding results for CDOPG2. The experimental results
of the best-of-generation fitness averaged over 30 runs in the
experiments on the dynamic Generalized Griewank function
created by CDOPG1 and CDOPG2 are presented in Tables III
and IV respectively. Fig. 6 shows the results of the mean best-
of-generation fitness in the experiments with CDOPG1 for
τ = 50 and τ = 1000, and Fig. 7 shows the corresponding
results with CDOPG2. In these figures, SGA is plotted by
a solid line, RIGA by a dashed line, and HGA by a dotted
line.

From these tables and figures, several results can be
observed and are analyzed as follows.

First, it can be observed that the mean best-of-generation
fitness of GAs generally decreases when the value of ρ is
increased and when the value of τ is decreased with both
DOP generators. This fact can be observed more clearly
in the experiments on the Sphere model, which has only
one optimum in the fitness landscape. This result is easy
to understand. When a change occurs, the individual with
the best fitness is moved to a new position with a distance
proportional to the value of ρ. The bigger the value of ρ, the
severer the change and the greater the challenge to GAs. On
the other hand, smaller τ means faster changes and hence
GAs have fewer time to explore a new environment.
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Fig. 4. Mean best-of-generation fitness of GAs on the dynamic Sphere model created by CDOPG1 with τ = 50 and τ = 1000 (SGA: solid line; RIGA:
dashed line; HGA: dotted line).
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Fig. 5. Mean best-of-generation fitness of GAs on the dynamic Sphere model created by CDOPG2 with τ = 50 and τ = 1000.

Second, comparing the performance of GAs on the dy-
namic test problems, it can be seen that RIGA outperforms
HGA and SGA in those DOPs with severe environmental
changes (ρ = 1.0). This result agrees with that presented
in [4], where the performance of RIGA, HGA, and SGA
were compared in DOPs constructed from changing land-
scapes produced by hills that are shaped using mathematical
functions, e.g., sine functions. This result can be explained
by the fact that RIGA prepares the population well for
possible catastrophic changes due to the increase of the

genetic diversity level and more new solutions far from the
current best solution are explored by random immigrants. It
can be observed that better results for RIGA appear when τ
is set to big values instead of 50, i.e., 500 and 1000. This can
be explained by the fact that the algorithm had more time to
explore good immigrants.

However, the performance of RIGA is worse than that
of SGA on some DOPs with slight environmental changes.
This fact is explained by the increase in the probability of
losing information by replacing individuals that are generally
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TABLE III

MEAN BEST-OF-GENERATION FITNESS OF GAS ON THE DYNAMIC GENERALIZED GRIEWANK FUNCTION CREATED BY CDOPG1.

τ 50 500 1000
ρ 0.1 0.5 1.0 0.1 0.5 1.0 0.1 0.5 1.0

SGA 0.00941 0.00211 0.01306 0.41673 0.19437 0.08652 0.57851 0.34321 0.27136
RIGA 0.00169 0.00541 0.00517 0.44388 0.28559 0.27292 0.61415 0.39427 0.38441
HGA 0.00159 0.00271 0.00257 0.35539 0.21497 0.12334 0.45183 0.34972 0.29606

TABLE IV

MEAN BEST-OF-GENERATION FITNESS OF GAS ON THE DYNAMIC GENERALIZED GRIEWANK FUNCTION CREATED BY CDOPG2.

τ 50 500 1000
ρ 0.1 0.5 1.0 0.1 0.5 1.0 0.1 0.5 1.0

SGA 0.02464 0.00206 0.01560 0.30329 0.18659 0.07615 0.39800 0.33851 0.26338
RIGA 0.02407 0.00545 0.00524 0.30719 0.28702 0.27153 0.40330 0.39470 0.38308
HGA 0.03060 0.00259 0.00271 0.31895 0.20839 0.10702 0.40655 0.34728 0.28810
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Fig. 6. Mean best-of-generation fitness of GAs on the dynamic Generalized Griewank function created by CDOPG1 with τ = 50 and τ = 1000.

exploring the current best solution by random immigrants.
Here, the worse performance of RIGA on DOPs with small
environmental changes (ρ = 0.1) agrees with those results
presented in [4] for DOPs with small changes.

Third, though HGA underperforms RIGA on most dy-
namic test problems, HGA outperforms SGA on many
DOPs. This result validates the benefit of introducing the
hypermutation scheme into GAs in dynamic environments.
However, when the environment changes slightly, e.g., ρ =
0.1, HGA performs worse than SGA on several DOPs. This
happens because under slightly changing environments, when
a change occurs, the higher mutation rate may destroy good
individuals in the previous generation that may also be good
in the new environment.

Finally, when comparing the performance of GAs for
DOPs created by CDOPG1 and CDOPG2, it can be seen that
GAs perform a little better on DOPs created by CDOPG1
than on corresponding DOPs created by CDOPG2.

VI. CONCLUSIONS

Developing benchmark dynamic environments has been
an important work in the research of EAs in dynamic envi-
ronments over the years. A number of DOP generators have
been applied to create dynamic test environments to compare
the performance of EAs. In this paper, two continuous DOP
generators are proposed for evaluating EAs. The first contin-
uous DOP generator is an extension of the XOR generator
proposed in [8], [9] for binary codification problems. In
this generator, each individual of the current population is
moved to a new location in the fitness landscape before
being evaluated. In the second continuous DOP generator,
the individuals are moved to new locations only when the
problem changes.

In both generators, the distances among the individuals
in the current population remains unaltered after the linear
transformation caused by moving the individuals. In the first
generator, the linear transformation is equivalent to change
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Fig. 7. Mean best-of-generation fitness of GAs on the dynamic Generalized Griewank function created by CDOPG2 with τ = 50 and τ = 1000.

the direction of some axes of the search space while in the
second generator, the linear transformation of the individuals
is obtained by successive rotations in different planes. In
the continuous DOP generators proposed here, it is easy to
change the speed of environmental changes by tuning the
parameter τ and the degree of environmental changes by
tuning the parameter ρ.

In order to investigate the feasibility of the two generators,
a set of continuous DOPs were constructed and preliminary
experiments were carried out to investigate the performance
of several standard GA approaches in dynamic environ-
ments. As observed in other works, the experimental results
show that both the hypermutation and random immigrants
schemes are efficient in improving the performance of GAs
in dynamic environments, especially when the environment
involves significant changes. However, when the environment
changes slightly, both the hypermutation and random immi-
grants schemes may have negative effect on the performance
of GAs.

As the proposed continuous DOP generators do not change
the properties of the problem fitness landscape, it can be com-
bined with well studied benchmark optimization problems
and with other dynamic problem generators. This will be an
interesting future work. The use of only the continuous DOP
generators is not interesting when we want to investigate the
performance of EAs on DOPs where the fitness landscape
changes or the global optimum is located close to the middle
of the search space. For DOPs where the global optimum is
located close to the middle of the search space, a relevant
future work is to investigate new transformations to be
applied to the individuals in order to minimize this problem.
Another relevant future work is to investigate the use of
nonlinear transformations in Eq. 8.
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