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Abstract

Portfolio selection is an example of decision making under conditions of uncertainty. In the face

of an unknown future, fund managers make complex financial choices based on the investors

perceptions and preferences towards risk and return. Since the seminal work of Markowitz,

many studies have been published using his mean-variance (MV) model as a basis. These

mathematical models of investor attitudes and asset return dynamics aid in the portfolio

selection process.

In this thesis we extend the MV model to include the cardinality constraints which limit

the number of assets held in the portfolio and bounds on the proportion of an asset held (if any

is held). We present our formulation based on the Markowitz MV model for rebalancing an

existing portfolio subject to both fixed and variable transaction cost (the fee associated with

trading). We determine and demonstrate the differences that arise in the shape of the trading

portfolio and efficient frontiers when subject to non-cardinality and cardinality constrained

transaction cost models. We apply our flexible heuristic algorithms of genetic algorithm,

tabu search and simulated annealing to both the cardinality constrained and transaction cost

models to solve problems using data from seven real world market indices. We show that

by incorporating optimization into the generation of valid portfolios leads to good quality

solutions in acceptable computational time. We illustrate this on problems from literature as

well as on our own larger data sets.
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Chapter 1

Introduction

1.1 Research Objective

Fund (portfolio) management deals with creating, adjusting and implementing an investment

strategy for financial assets of which an integral part is the selection of a portfolio of assets.

Fund managers strive to provide returns for investors by assembling a portfolio of financial

instruments that best represent the investor’s risk level and yield (return) expectation. Over

time, fund managers are under fiduciary obligation to rebalance such portfolios to reflect

current and ongoing changes in a fast-paced financial market. They also where necessary (or

possible), create new portfolios taking advantage of market situations (or available cash) to

provide investors with appropriate returns.

The objective of this thesis is to contribute to the development of efficient and effective

portfolio selection algorithms and their application to portfolio optimisation problems involv-

ing cardinality constraints and transaction cost.

1.2 Research Issues

The Nobel Prize (for Economics) winning work of Markowitz [48] set up a clear quantitative

framework for the selection of a portfolio, summarising the process of portfolio selection as

1
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an allocation of resources so as to tradeoff expected return and risk. Through the use of

statistical measurements of expectation and variance of return (variance being equated to

risk), Markowitz described the benefit and risk associated with an investment.

His approach formulates and solves a parametric quadratic program and has become the

core decision model of many portfolio analytic and planning systems in constructing efficient

frontiers, which can be viewed as the set of Pareto optimal (expected return, variance of return)

combinations under conditions of uncertainty. The beauty of this simplistic unconstrained

risk return model is that it is capable of being extended to capture market realisms such as

cardinality constraints (a fixed number of assets) and transaction cost (fees associated with

trading).

In this thesis, we determine optimal solutions for portfolio optimisation problems with

transaction cost. Our transaction cost model is an extension of the standard Markowitz

model. We model problems involving fixed and variable transaction cost both where there is

no cardinality constraint and where there are cardinality constraints.

Additionally, in this thesis three heuristic techniques are used to solve the portfolio opti-

misation problems involving cardinality constraints and transaction cost. These are genetic

algorithm, tabu search and simulated annealing. Heuristic algorithms have been successfully

applied by many researchers and are attractive because they are independent of the objec-

tive function. This means that a portfolio manager can replace the normal mean variance

objective function with whichever function he considers relevant for the universe of assets he

is considering.

1.3 Thesis Structure

The structure of this thesis is as follows. In Chapter 2 we present a literature review of modern

portfolio theory including work involving cardinality constraints and transaction cost.

In Chapter 3, we give our formulation of the portfolio optimisation problem involving

transaction cost and extend it to include cardinality constraints. We investigate the shape of
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the transaction cost efficient frontier and consider whether discontinuities arise in the transac-

tion cost efficient frontier from either fixed cost or a cash investment. We further consider the

trading portfolio and efficient frontiers for the transaction cost optimisation problem with and

without cardinality constraints. We solve these problems using A Mathematical Programming

Language (AMPL, a modeling language) and CPLEX involving publicly available data sets

drawn from six major market indices. We then present graphical illustrations for the frontiers,

give computational times and compare the models (those with and those without cardinality

constraints).

In Chapter 4, we present the model for the portfolio optimisation problem involving car-

dinality constraints. We develop a subset optimisation problem (a very controlled and simple

partial optimisation which we apply to all potential portfolios) to solve the model. Then, we

present a genetic algorithm, tabu search and simulated annealing heuristics. We continue by

applying our heuristic algorithms to the cardinality constrained optimisation problem (involv-

ing data sets drawn from seven major market indices) and compare them to previous work in

the literature.

In Chapter 5, we apply our heuristic algorithms (described in Chapter 4) of genetic algo-

rithm, tabu search and simulated annealing to the portfolio optimisation problem involving

transaction cost. For the transaction cost model without cardinality constraints and transac-

tion cost model with cardinality constraints, we develop a subset optimisation problem (as was

done in Chapter 4) to solve the model. Then, in each case we present graphical illustrations

of the frontiers (portfolio and efficient), give percentage error results for the efficient frontiers

produced from the unconstrained efficient frontier and compare heuristic algorithm results for

the transaction cost models with and without cardinality constraints.

In Chapter 6, we conclude the thesis presenting a summary of the thesis, our contribution

to knowledge and future directions.



Chapter 2

Literature Review

2.1 Introduction

Portfolio theory is concerned with the allocation of an individual’s wealth among the vari-

ous available risky assets. The pioneering work of portfolio theory was developed by Harry

Markowitz [48, 49] in 1952 and 1956. His work suggested that, for any given level of risk,

the rational investor would select the portfolio with maximum expected return, and for any

given level of expected return, the rational investor would select the portfolio with minimum

risk. The model assumes a perfect market without transaction cost or taxes where short sell-

ing is not permitted, but securities are infinitely divisible and can therefore be traded in any

non-negative fraction. Since the development of the Markowitz model, it has become the core

decision engine of many portfolio analytic and planning systems.

In this Chapter, we describe the history of portfolio theory since Markowitz. Then, we

present and discuss related research in the literature for discrete practical constraints in port-

folio theory, heuristic algorithms and transaction cost. The majority of the studies in these

areas, focus on discrete constraints or discrete constraints with heuristic algorithms but most

do not focus on transaction cost. Papers that focus on discrete constraints tend to focus on

exact solutions with problems involving up to 500 assets. Research in the area of heuristic

algorithms normally use one algorithmic approach, with the majority of papers using five test

4
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problems or less. The papers involving transaction cost tend to use a modified quadratic

programming model, with researchers adopting different mathematical models.

This thesis will consider creating the exact solution of portfolios with discrete constraints

for seven test problems involving up to 1318 assets. We will also present the transaction cost

model using a formulation that involves bounds on buying and selling of assets and constraints

on assets held, the budget and transaction cost. Our formulation considers creating a portfolio

from cash and rebalancing an existing portfolio.

We organize this Chapter in the following way. The Mean-Variance (MV) model of

Markowitz is considered in Section 2.2. Alternatives to the Markowitz Mean-Variance model

are in Section 2.3. The discrete extensions to the MV model of buy-in threshold and car-

dinality constraint are presented in Section 2.4. Heuristic algorithms in portfolio theory are

examined in Section 2.5, while transaction costs in portfolio theory is considered in Section

2.6. The Chapter is concluded with a summary in Section 2.7.

2.2 The Markowitz Mean-Variance Model

Markowitz set up a clear quantitative framework for the selection of a portfolio, summarizing

the process of portfolio selection as an allocation of resources depending on expected return

and risk. Through the use of statistical measurements of expectation and variance of return,

Markowitz describes the benefit and risk associated with an investment. The objective is either

to minimise the risk of the portfolio for a given level of return, or to maximize the expected

level of return for a given level of risk. His model justifies the observable phenomenon of

diversification in investment. He defines the solutions of this single period static portfolio

planning model as efficient. By formulating and solving a parametric quadratic program

(QP), Markowitz determined the efficient portfolio from the investment opportunity set.

Let:

N be the number of assets (securities) available for an investment,

wi be the fraction (0 6 wi 6 1) held of an asset i (i = 1, . . . , N),
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µi be the expected return of asset i (i = 1, . . . , N),

σij be the covariance between the return of asset i and asset j (i = 1, . . . , N ;

j = 1, . . . , N), and

R be the desired level of expected return for the portfolio.

Given these variables and parameters, Markowitz captures the risk averse investor preferences

for portfolio mean and variance. The Markowitz MV model is:

Minimise

N∑
i=1

N∑
j=1

wiwjσij (2.1)

subject to

N∑
i=1

wiµi = R (2.2)

N∑
i=1

wi = 1 (2.3)

wi > 0 i = 1, . . . , N. (2.4)

Equation (2.1), the portfolio variance (σ2), involves the covariance matrix minimising the

volatility associated with the portfolio. This equation is sometimes written as
∑N

i=1

∑N
j=1wiwjρijsisj .

When expressed this way in terms of an asset’s standard deviation, si (i = 1, . . . , N), it makes

use of the correlation coefficient, ρij = σij/(sisj) where |ρij | 6 1. Equation (2.2) is the ex-

pected rate of return of the portfolio; it is found by taking the weighted sum of the individual

rates of return. Equation (2.3) is the budget constraint, i.e. the investor invests the entire

capital available, while equation (2.4) is the non-negativity constraint, prohibiting short selling

from taking place.

Markowitz MV model is based on several assumptions regarding an investor’s behaviour.

These assumptions adopted from Reilly and Brown [58] are listed below.

1. An investor will think about each investment alternative as being represented by a
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particular probability distribution of expected returns over some period.

2. An investor maximizes one-period expected utility and the utility curve demonstrates

diminishing marginal utility of wealth.

3. An investor equates the risk of the portfolio to the variability of expected returns.

4. An investor bases decisions solely on expected return and risk, therefore their utility

curves are a function of the expected variance (or standard deviation) of returns and

expected return only.

5. An investor prefers higher returns to lower returns, for a given level of risk. Similarly,

for a given expected return level, an investor prefers less risk to more risk.

2.2.1 The Efficient Frontier

The set of points that correspond to the least risk portfolios at all possible return levels is

called the feasible set. The feasible set is a parabola and is also called the minimum variance

set or a trading portfolio frontier. On the trading portfolio frontier there exists a point with

the least variance termed the minimum variance point. In Figure 2.1 we illustrate a trading

portfolio frontier.

When considering this Figure, it is clear to see that all portfolios on the trading portfolio

frontier that lie below the minimum variance point are dominated (since for all portfolios on

that line segment there exists another portfolio with the same risk which produces greater re-

turn). By eliminating all dominated portfolios from the trading portfolio frontier, Markowitz

determines the efficient frontier, that is the set of (undominated) portfolios found by min-

imising variance as the desired return is varied. Throughout this thesis we refer to these

non-dominated portfolios as the unconstrained efficient frontier (UEF). Figure 2.2 illustrates

the trading portfolio frontier and the UEF.

In practice, it is common to model the MV trade-off using a parameter λ, 0 6 λ 6 1, as

stated below:
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Risk-Standard Deviation

Return

  Minimum Variance Point

Figure 2.1: A typical Trading Portfolio Frontier

Return

Minimum Variance Point

UEF

Maximum Return Portfolio

Risk-Standard Deviation

Minimum Variance Point

Trading Portfolio Frontier

Figure 2.2: A typical Trading Portfolio Frontier and UEF
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Minimise λ
N∑
i=1

N∑
j=1

wiwjσij − (1− λ)
N∑
i=1

wiµi (2.5)

subject to

N∑
i=1

wi = 1 (2.6)

wi > 0 i = 1, . . . , N. (2.7)

In equation (2.5) the value λ = 1 minimises the variance of a portfolio (irrespective of the

return involved). On the other hand λ = 0 corresponds to maximising the expected return of

a portfolio (irrespective of the risk involved).

As with Markowitz’s model above (minimise equation (2.1) subject to equations (2.2)-

(2.4)) the UEF can be traced out by varying the value of λ between the high risk and low

return portfolios and repeatedly solving equation (2.5) subject to equations (2.6) and (2.7).

To see how this is possible we consider a particular value of λ, for example λ = 1
3 . Then

equation (2.5) becomes, minimise 1
3risk - 2

3return. Considering Figure 2.2 we could plot a

series of isoprofit lines of the form 1
3risk - 2

3return= Z and choose the minimum value of Z.

Rearranging these isoprofit lines for return yields, return =1
2risk -3

2Z. Therefore the slope of

the line is 1
2 and the y-intercept is given by −3

2Z. Hence, minimising Z is the same as choosing

amongst these lines of fixed slope the one with the maximum y-intercept which is only achieved

at the unique point where the line of slope 1
2 is a tangent to the efficient frontier.

In Figure 2.3 we illustrate this point. At risk1, the Z value is minimised at Z3∗ and at

risk2, the Z value is minimised at ZC∗. In each of those cases, Z3∗ and ZC∗ offer the highest

return value for the given level of risk.

Thus, by varying the value of λ between the high risk and low return portfolios and

repeatedly solving equation (2.5) subject to equations (2.6) and (2.7) we would obtain the

same efficient frontier as minimising equation (2.1) subject to equations (2.2)-(2.4) for varying

values of R.
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Risk-Standard Deviation

Return

  Z 1*

  Z A*

  Z 3*

  Z 2*

  Z B*

  Z C*

 risk1
 risk2

Figure 2.3: The UEF traced from Isoprofit Lines

2.3 Alternatives to the Markowitz Mean-Variance Model

The alternatives to the Markowitz Mean-Variance model are in two categories: those that build

on the work of Markowitz (Section 2.3.1) and those which are a departure from Markowitz’s

work (Section 2.3.2). In this Section we examine these two categories.

2.3.1 Developments to the MV Model

Modern portfolio theory has developed in tandem with simplifications to the QP required by

MV analysis. These simplifications centre around linearising the quadratic objective function

or reducing the number of parameters to be estimated. Both approaches involve either an

approximation or a decomposition of the covariance matrix.

Starting in the 1960s, numerous researchers built on the work of Markowitz. Sharpe [61]

proposed a linear programming (LP) formulation known as the single-index, or market model,

as a sufficient model of covariance. In this model, he supposed that there were n assets,

which are indexed by i, and the assets have a rate of return for the period, ri (i = 1, . . . , N)
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and return on the market index for the same period is R∗. The expected excess return on

asset i (i = 1, . . . , N) due to firm specific factors is given by αi, the sensitivity of asset i

(i = 1, . . . , N) to market movements is given by βi, and for the period there are random

quantities representing the fluctuations in return for an asset i called errors represented by ei.

Hence, the return of the single-index model is:

ri = αi + βiR
∗ + ei i = 1, . . . , N

This single–index model is a diagonal model that reduces the computations required to deter-

mine the covariance. In Markowitz’s model the covariance of the securities within a portfolio

must be calculated using historical returns, and the covariance of each possible pair of se-

curities in the portfolio must be calculated independently. In the single–index model the

covariance of assets i and j (i = 1, . . . , N ; j = 1, . . . , N) can be found by multiplying the be-

tas of those assets and the market variance, σij = βiβjσ
2
m, (σ2

m is the market variance). With

this equation, only the betas of the individual securities and the market variance need to be

estimated to calculate covariance. Thus, the index model reduces the number of calculations

that would otherwise have to be made for a large market.

Sharpe [62], Lintner [43] and Mossin [52] independently developed the capital asset pricing

model (CAPM) which decomposes a portfolio’s risk into specific and systematic risk. Specific

risk represents the component of an asset’s return which is uncorrelated with general market

moves. It is the risk that is unique to an individual asset. Systematic risk is the risk of holding

the market portfolio. This model considers the excess return on an asset as relating to the

excess return on the market index. It introduces the risk–free interest rate for the period, rf .

Thus, the return is described as:

E(ri) = rf + βiE(R∗ − rf )

where E denotes an expectation. This equation states that the asset’s expected return equals

the risk–free interest rate plus the asset’s beta times the expected return of the market index

minus the risk–free rate. Thus, CAPM estimates an asset’s return according to it’s contribu-
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tion to market risk.

Rosenberg [59] presented a multi-factor model that incorporated industry and other factors.

It introduces to the period, Rj , the return on the index j (where there are a total of J indexes),

and βij , the sensitivity of asset i (i = 1, . . . , N) to index j. The return on the multi-index

model is therefore:

ri = αi +

J∑
j=1

βijRj + ei i = 1, . . . , N.

Ross [60] using factor analysis, developed the arbitrage pricing theory (APT), which is a

multi-index equilibrium model. The APT model says asset prices are mainly driven by several

factor prices that have some fundamental and plausible relationship to the underlying factors.

Index or factor models allow a simplification of the underlying QP. The covariance matrix

can be expressed in a diagonal form and hence a linear approximation of the quadratic objective

function can be obtained (see Sharpe [63]).

2.3.2 Departures from the MV Model

Many researchers question whether the variance is a good measure of the risk for a portfolio.

Consequently, a number of alternative measures of risk have been proposed and investigated.

In many cases these measures are linear, leading to a corresponding simplification in the

computation.

Konno and Yamazaki [36] show that the mean absolute deviation (MAD) model is equiv-

alent to Markowitz MV model, under the assumption of multivariate normal returns (i.e.

under this assumption the sum of the absolute deviations of portfolio returns about the mean

is equivalent to the minimisation of the variance). For this model let rit denote the return of

asset i (i = 1, . . . , N) at time t (assumed to be available through the historical data or from

some future projection). Therefore, the return of MAD model is approximated as:
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ri ≈
1

T

N∑
i=1

T∑
t=1

ritwi (2.8)

and the risk is approximated by

1

T

T∑
t=1

∣∣∣∣ N∑
i=1

(rit − µi)wi
∣∣∣∣. (2.9)

Konno and Yamazaki [36] claim that an advantage to this model is that it limits the number

of assets held, allowing control of transaction cost. A generalization of the MAD model can be

found in Worzel et al. [70]. Konno et al. [37] extend the MAD approach to include skewness

in the objective function under possible asymmetry of returns.

Linear programming based heuristics are used by Speranza [66], considering the negative

semi–MAD model with cardinality constraints. In that model, the risk associated with the

portfolio is measured by the mean absolute deviation of the return below average instead of

by variance. This negative semi–MAD model is extended in Kellerer, Mansini and Speranza

[33] incorporating fixed costs and then in Mansini and Speranza [45] to incorporate roundlots

(a discrete number of assets taken as the basic unit of investment).

Multi-objective goal programming approaches have also been proposed. Lee [40] first in-

troduced Lexicographic Goal Programming. This model separates the objective into a number

of priority levels where the satisfaction of goals with higher priority is regarded as infinitely

more important than the satisfaction of lower level goals. Tamiz et al [69] using a factor model

of stock returns, measure the risk of a portfolio as the sum of absolute deviations of the port-

folio’s factor sensitivities from those of a specified target. To force diversification of the stock

specific risks, they apply a constraint on the holdings allowed in each sector of industry.

To show a simple case of this model, let W1 denote the positive penalty weight associated

with shortfalls in portfolio return below the target, W2 denote the positive penalty weight

associated with excess portfolio risk in relation to the target, Riskp denotes risk associated

with the portfolio, and Riski denotes the risk associated with asset i (i = 1, . . . , N). Then

the decision variables are n1 the negative deviation from the target level of portfolio return,
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n2 the negative deviation from the target risk level, p1 the positive deviation from the target

level of portfolio return, and p2 the positive deviation from the target risk level.

The WGP model is therefore

Minimise W1n1 +W2p2 (2.10)

subject to

N∑
i=1

wiµi + n1 − p1 = ρ (2.11)

N∑
i=1

Riskiwi + n2p − p2p = Riskp p = 1, . . . , P (2.12)

N∑
i=1

wi = 1 (2.13)

n1, n2, p1, p2 > 0 (2.14)

wi > 0 i = 1, . . . , N. (2.15)

Young [74] employs a minimax investment rule measuring risk as the minimum return

(maximum loss) that the portfolio would have achieved over all of the past observation periods.

The minimum return that could have incurred in the past is used as the risk measure. To

present the model we introduce the variable Mp which represents the minimum return achieved

by the portfolio over all observations periods. The Minimax model is therefore:

Maximise Mp (2.16)

subject to
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N∑
i=1

wirit >Mp t = 1, . . . , T (2.17)

N∑
i=1

wiµi = ρ (2.18)

N∑
i=1

wi = 1 (2.19)

wi > 0 i = 1, . . . , N (2.20)

Young [74] also proposes an alternative formulation to this model that maximises the

expected return for the portfolio subject to a given lower bound on the portfolio return for

every observation period.

Risk measures concerned with the left tails of the distributions (the extremely unfavorable

outcomes) have also been studied. The most widely used of these distributions is Value–

at–Risk (VaR). VaR leads to non-convex which can be computationally intractible therefore

CVaR (conditional value–at–risk) which controls the magnitude of losses beyond VaR and is

easy to optimise is theoretically attractive. CVaR measures the expected loss corresponding

to a number of worst cases, depending on the chosen confidence interval. Roman et al. [56]

propose a model for portfolio selection which uses both variance and CVar for the decision

making process.

2.4 The Buy-in Threshold and Cardinality Constraint

A salient feature of financial portfolios is that any additionally included securities might con-

tribute to the diversification of risk while increasing the expected return. This results in

an investor seeking an optimal ratio between risk and risk premium (the return in excess of

the risk-free rate of return that an investment is expected to yield), within the Markowitz

framework, by seeking to include as many different risky assets as possible. However, many

investors prefer portfolios with a limited number of assets and Maringer [46] shows that most
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diversification can be achieved without using all of the assets in the market index. Hence,

to capture these realisms of portfolio planning a number of discrete restrictions have been

considered by different researchers. In this Section, we model two of them: buy-in threshold

in Section 2.4.1 and the cardinality constraint in Section 2.4.2.

2.4.1 Buy-in Threshold

A buy-in threshold sets limits on the amount of capital to be invested in each asset and avoids

small investments in an asset. This means the portfolio weights behave as semi–continuous

variables (Beale and Forest [5]) and are modeled using finite variable upper and lower bounds,

li and ui respectively, where we must have 0 6 li 6 ui 6 1 associated with each asset

i (i = 1, . . . , N). In reality it can be meaningful to place bounds on holdings because of

institutional restrictions, to reduce unrealistic trades, to limit exposure of the portfolio to

asset i (i = 1, . . . , N) or to control the transaction cost. Along with these limits, a decision

variable, δi, is incorporated transforming the QP to a quadratic mixed-integer programming

(QMIP) problem that is NP-hard (Moral-Escudero et al., [51]).

Let

δi =


1 if any of asset i (i = 1, . . . , N) is held,

0 otherwise.

(2.21)

The buy-in threshold is represented by

liδi 6 wi 6 uiδi i = 1, . . . , N. (2.22)

Equations (2.21) and (2.22), make certain that if an asset is not invested in, δi = 0, the

resulting weight, wi, (i = 1, . . . , N) is zero. If an asset is held, δi = 1, then its weight must

lie between the upper and lower limits, li 6 wi 6 ui (i = 1, . . . , N).
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2.4.2 Cardinality Constraint

The cardinality constraint allows investors to specify the number of unique assets in the

portfolio for monitoring purposes to reflect the existence of fees, diversification or regulatory

issues. The constraint is achieved by extending the buy-in model to restrict the sum of the

binary variables to be equal to K,

N∑
i=1

δi = K, (2.23)

where K represents the number of assets to be in the portfolio. The cardinality constraints and

buy-in threshold are intrinsically linked. For example, an lower limit on the buy-in threshold of

10% of the value of a portfolio implies that at least 10 assets can be bought. The cardinality

constrained mean-variance model would therefore be to minimise equation (2.1) subject to

equations (2.2)-(2.4), and equations (2.21)-(2.23).

The Cardinality Constrained Efficient Frontier

Through the introduction of the buy-in threshold and cardinality constraint, discontinuities are

seen in an otherwise continuous efficient frontier. Figure 2.4 shows the N = 4 assets example

of Chang et al. [13] the UEF and the cardinality constrained efficient frontier (CCEF) where

K = 2. Note that although the UEF is continuous, the CCEF is not.

CCEF in Portfolio Theory

Since the work of Chang et al. [13] there have been 94 citations of his work in the Web of

Science. In this Chapter we will refer to papers in the literature that have cited Chang et al.

[13]. The research papers are categorized according to papers within portfolio theory that

deal with the cardinality constraint (below), or cardinality constraint and heuristic algorithms

(Section 2.5.4), or transaction cost (Section 2.6). We begin with the work of Chang et al. [13].

Chang et al. [13] illustrate the discontinuous nature of the efficient frontier in the presence
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Risk – Standard Deviation 

Figure 2.4: The UEF and CCEF for a Four Asset Example

of cardinality restrictions and present three heuristic algorithms based upon genetic algorithm,

tabu search and simulated annealing for finding the cardinality constrained efficient frontier.

Computational results are presented for five test problems (that are publicly available) involv-

ing up to 225 assets.

Li et al. [41] present an approach for the exact solution of the cardinality constrained

portfolio optimisation problem when the amounts to be invested in each asset must be in

specified lots. Any money not invested in assets is invested at a risk–free rate. Computational

results are given for one problem involving 30 assets taken from the Hong Kong market.

Corazza et al. [16] deal with a quadratic mixed-integer programming problem which they

formulate in terms of quantities of asset lots. They provide conditions for the existence of

a non-empty mixed-integer feasible set and present some rounding procedures for finding, in

a finite number of steps, a feasible mixed-integer solution. The computational experiment

involved 100 simulations for portfolios of various sizes (5, 10, 25, 50, 100 and 250 assets).

Shaw et al. [64] present a lagrangean relaxation based procedure for the exact solution of

the cardinality constrained portfolio optimisation problem. The cardinality constraint (equa-
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tion (2.23)) is an inequality rather than an equality. In their approach the covariance matrix

is decomposed into a diagonal asset risk matrix and a covariance matrix for the F factors

adopted. This reduces the size of the quadratic term in the objective from N2 to F 2. A

well-known US equity model has F = 68 for example. Computational results are reported for

eight test problems involving up to 500 assets. They report that CPLEX (version 8.1) failed

to solve any of these problems to proven optimality in four hours of computation. By contrast

their approach solved seven of the eight test problems.

Bertsimas and Shioda [8] present an approach for the exact solution of the cardinality con-

strained portfolio optimisation problem. In their approach the cardinality constraint (equation

(2.23)) is an inequality rather than an equality. They use Lemke’s pivoting algorithm (Lemke

and Howson, [38]) to solve successive subproblems in the search tree. Computational results

are presented for their approach as well as for CPLEX on problems involving up to 500 as-

sets. One feature of their results is that for all of the portfolio optimisation test problems

considered both their approach and CPLEX (version 8.1) failed to find even a single provably

optimal solution within the computational time limit they allow (either two minutes or one

hour depending on the size of the problem).

Gulpinar et al. [31] introduce the difference of convex functions programming and de-

velop a difference of convex algorithm for the exact solution of the cardinality constrained

portfolio problem. They illustrate worst-case portfolio selection with rival risk and return

scenario specifications ensuring robustness by considering the optimal strategy in view of mul-

tiple rival scenarios and evaluating the portfolio simultaneously with the worst-case scenario.

Computational results for K = 5 to 20 are compared to those produced by CPLEX (Version

10.1).

2.5 Heuristic Algorithms

The beauty of Markowitz simplistic unconstrained risk-return model is that it is capable of

being extended to capture market realism. As the problem increases in size and becomes

computationally complex, Section 2.4.1 showed that the introduction of a single binary, δi,
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changes the classical quadratic optimization model to a QMIP which is NP-hard. As a result,

many researchers have applied heuristics to study this area. But, what exactly is a heuristic?

To get a good description of what a heuristic is we consider the following definitions.

A “rule of thumb”based on domain knowledge from a particular application,

that gives guidance in the solution of a problem...Heuristics may thus be very

valuable most of the time but their results or performance cannot be guaranteed.

(Oxford Dictionary of Computing, 1996)

A heuristic technique (or simply heuristic) is a method which seeks good (i.e.

near-optimal) solutions at a reasonable computational cost without being able

to guarantee optimality, and possibly not feasibility. Unfortunately, it may not

even be possible to state how close to optimality a particular heuristic solution is.

(Reeves, [57])

Heuristics are often used in tackling many types of complex problems, particularly those

of a combinatorial nature. In this Section, we will examine some heuristic methods available

namely: genetic algorithm (Section 2.5.1), tabu search (Section 2.5.2) and simulated anneal-

ing (Section 2.5.3). This will be followed by a review of heuristics algorithms for portfolio

optimisation subject to cardinality constraint in Section 2.5.4.

2.5.1 Genetic Algorithms

Genetic Algorithms (GA) are a powerful stochastic global search mechanism which mimics

the principles of natural selection and genetics. They work with a collection of solutions

employing Darwin’s principle of “survival of the fittest”. At each generation, the quality of

the population is expected to be better than the previous generation. The fittest solutions are

selected and breed together using operators borrowed from biological evolution. The process

leads to the creation of populations of individuals that are better suited to their environment

than the individuals that they were created from.

This heuristic having it’s theoretical foundations from Holland [32] is widely acknowledged.
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Various chapters have been devoted to and books have been written on GA. Examples include

Holland [32], Goldberg [27], Michalewicz [50], Glover and Kochenberger [28] and Burke and

Graham [11]. Web tutorials focusing on genetic algorithms include

http://www.ai-junkie.com/ga/intro/gat1.html and

http://www.obitko.com/tutorials/genetic-algorithms/.

Genetic Algorithm Operators

In GA, the solutions are represented by their genetic make-up called genotypes. The decision

variable of a search problem is encoded into finite-strings referred to as chromosomes, for

which the standard representation is bits of zeros and ones. These strings are made up of a

finite length of alphabets called genes. The responsibility for the variation in the hereditary

characteristics lies in the hand of alleles.

To implement natural selection and evolve good solutions, the chromosomes are evaluated

by a fitness criteria. The measure could be an objective function as in a computer simulation

or a mathematical model, or it can be a subjective function in which humans choose better

solutions over worse ones.

Genetic Algorithms typically rely on a candidate population of fixed cardinality, which

it maintains throughout each iteration. GAs use four main operators of selection, crossover,

mutation and replacement. The population experiences gradual changes through repetition

of these operators, with stronger fitter genes dominating weaker ones. Each generation is

expected to inherit the “good”characteristics from the previous generation.

The operators of GA are detailed below.

1. Population Initialization. The method by which individuals are chosen in the popu-

lation along with it’s size are important factors affecting the scalability and performance

of the GA heuristic. A small population may lead to premature convergence, substan-

dard solutions and insufficient room for exploring the search space. Conversely, a large

population can lead to excessive computational times. Thus, population size leads to a

trade-off of between efficiency and effectiveness. Initial populations are normally gen-
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erated randomly with the size usually being a user-specified parameter. However, in

generating the initial population domain specific knowledge or other information can be

incorporated.

2. The Fitness Function. The fitness measure determines a candidate solution’s relative

fitness, which will subsequently be used by the GA to guide the evolution solutions.

Fitness is calculated according to the chosen objective function. High fitness increases

the chances of being reproduced while, low fitness could ultimately lead to extinction.

3. Selection. The selection operator allocates more copies of those with higher fitness

values and thus the preference of better solutions to worse ones. Two broad probabilis-

tic methods of selection are fitness proportionate selection and ordinal selection. The

fitness proportionate selection includes methods such as roulette-wheel and stochastic

universal selection; the ordinal selection methods are those such as tournament selection

and truncation selection.

4. Crossover. The main purpose of the crossover operator is to select good strings in

the population to form the mating pool. This operator combines two or more parental

solutions to create offspring. In it simplest form, reproduction can take place by di-

viding two parents in half and then recombining a half from each parent to create two

children. Other ways to merge information from parents include k-point crossover or

uniform crossover.

5. Mutation. Mutation is an important secondary genetic operator that alters one or

more gene values in a chromosome from its initial state. This simple operator performs

a random walk in the vicinity of a candidate solution resulting in entirely new gene

values being added to the gene pool and helping to prevent the population from stag-

nating at any local optima. With these new gene values, the genetic algorithm has the

opportunity of creating an even better solution than that which was previously possi-

ble; it provides an opportunity for diversification and exploration of more of the search

space. Mutation occurs during evolution according to a user-definable mutation proba-
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bility usually set fairly small to ensure the benefits of selection and crossover are not lost.

6. Replacement. The offspring population created by selection, crossover and mutation

needs to be introduced to the original parental population. This can take one of the

following forms: delete–all, steady–state or steady–state no duplicates. Delete-all re-

places all members of the current population and replaces them with the same number

of chromosomes that have just been created. Steady-state deletes a specified number of

old members and replaces them with an equal number of new members. Then, steady-

state no duplicates operates in the same manner as steady state but it has the additional

criteria of ensuring each member placed in the population does not have the same chro-

mosomal make up as any other member already present in the population.

The termination criteria for GA is decided by one of the following processes:

• Generation Number. The user specifies the maximum number of generations to be run.

• Evolution Time. The elapsed evolution time exceeds the user-specified maximum evo-

lution time.

• Fitness Threshold. The best fitness in the current population becomes less than the

user-specified fitness threshold and the objective is set to minimise the fitness.

• Fitness Convergence. In fitness convergence two filters of different lengths are used to

smooth the best fitness across the generations. The fitness is assumed as converged and

the evolution terminates, when the smoothed best fitness from the long filter is less than

a user specified percentage away from the smoothed best fitness from the short filter.

• Population Convergence. A population is supposed converged when the average fitness

across the current population is less than the user-specified fitness.

• Gene Convergence. A user-specified percentage of the genes that make up a chromosome

are deemed as converged.

The operators are brought together in the following simple step by step GA procedure laid

out below.
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Choose an initial population

Evaluate the fitness of each individual in the population

Repeat

Select parents from the population

Crossover parents to produce offspring’s (and mutate the children)

Evaluate the fitness of the children

Replace some or all members of population by the children

Until the termination criteria are met.

2.5.2 Tabu Search

Tabu Search (TS) is a local search heuristic that uses deterministic control. This heuristic

proposed by Glover [29] is widely recognized. Various chapters have been devoted to and

books have been written on TS. Examples include Glover [30], Glover and Kochenberger [28]

and Burke and Graham [11]. Web tutorials focusing on tabu search include

http://neo.lcc.uma.es/EAWebSite/web/TabuSearch.html and

http://www.ifi.uio.no/infheur/Bakgrunn/Intro to TS Gendreau.htm.

Components of Tabu Search

TS starts with a initial solution and searches the neighbourhood of solutions to find a better

solution. Each time a neighbourhood is generated and a new current solution is selected, we

call the change from a current solution to a better solution a move.

A key concept in TS is that it uses a flexible memory which could be short term or longer

term memory.

The short term memory guides the search to escape local minima. Within this memory

structure the tabu list records the history of the search. The list is made of tabus (forbidden

moves) which are used to prevent reversals and cycling when moving away from local optima

through non–improving moves. Each member of the short term memory is given a tabu tenure

i.e. they are given a fixed number of iterations (usually 7 to 20) to be tabu.
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At times, tabus are too powerful. They can prohibit attractive moves even when there is

no danger of cycling or they may lead to an overall stagnation of the search process. It is thus

necessary to employ algorithmic devices that will allow one to revoke tabus. These devices

are called aspiration criteria. They override a solution’s tabu status, thereby including an

otherwise excluded solution in the allowed set. A commonly used aspiration criterion is to

allow solutions which produce better objective function values than the currently best known

solution.

Sometimes neighbourhoods are very large and one may wish to reduce the number of

solutions visited, hence a candidate list. A candidate list reduces the number of solutions

visited on an iteration isolating regions of the neighbourhood containing moves with desirable

attributes.

To bring the TS heuristic algorithm to an end the following termination criteria are com-

monly used: a user-defined number of iterations (or a fixed amount of CPU time), or after

some number of iterations without an improvement in the objective function value, or when

the objective reaches a pre-specified threshold value.

The components discussed thus far are brought together in the following simple step by step

TS procedure laid out below.

Randomly generate an initial solution

Initialise tabu status

Repeat

Search a set of neighbourhood solutions of the current solution

Obtain the objective function values of the neighbourhood solutions

Employ the aspiration criterion (or candidate list)

Pick the best solution among the non-tabu solutions

Replace current solution by the best solution

Update tabu status

Until the termination criteria are met.

The longer term memory expands the neighbourhood to include solutions not found
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during a short term memory process. This course of action involves two important com-

ponents namely: intensification and diversification. The intensification strategy is based on

modifying choice rules to encourage move combinations and solution features previously found

good. They may also initiate a return to attractive regions to search them more thoroughly.

Conversely, the diversification strategy encourages the search process to examine new regions

and to generate solutions that differ in various significant ways from those seen before. From

the forgoing, it can be seen how both strategies enhance tabu search within the longer term

memory process.

2.5.3 Simulated Annealing

Kirkpatrick et al [34] and independently �Cerný [12] proposed solving combinatorial optimisa-

tion problems using the simulated annealing (SA) heuristic algorithm, as a mechanism that

performs a stochastic neighborhood search of the solution space. The SA heuristic algorithm

was given it’s name because it emulates the process of physical annealing with solids. This

procedure (physical annealing with solids) heats a crystalline solid and then allows it to cool

very slowly until it achieves it’s minimum lattice energy state, hence making it free of crystal

defects. If the cooling schedule is allowed to be sufficiently slow, the final product is a solid

with superior structural integrity. For a discrete optimization problem, SA provides a heuristic

algorithm with a means to exploit the connection between thermo dynamic behaviour and the

search for a global minima.

Book chapters have been devoted to SA, examples include Glover and Kochenberger [28]

and Burke and Graham [11]. Web tutorials focusing on simulated annealing include

http://www.autonlab.org/tutorials/hillclimb.html and

http://www.rosswalker.co.uk/tutorials/amber workshop/Tutorial seven/section5.htm.

Simulated Annealing Concepts

Simulated annealing is a local search concept that avoids the iterative improvement approach,

which gets easily trapped in a local optima, by accepting solutions that lead to a deterioration
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of the objective function. It begins with a single starting solution and continues exploring the

neighbourhood for a solution with a lower cost. SA incorporates a statistical component in

that moves to worse solutions are accepted with a specified probability that decreases over the

course of the algorithm.

The annealing process has two phases: the liquid phase and the solid phase. In the liquid

phase all particles arrange themselves randomly while in the ground state of the solid the

particles are arranged in a highly structured lattice. The ground state is obtained only if the

maximum state of the solid is sufficiently high and the cooling is performed sufficiently slowly.

Otherwise, the solid will be frozen into a meta-stable state rather than into the true ground

state. The energy of the current state is Ei and the energy of the next state is Ej . The state

j is accepted as the current state with a probability given by e((Ej−Ei)/(kbT )) where T denotes

the temperature of the cooling bath, the energy difference Ej − Ei 6 0 and kb is a physical

constant called the Bolzmann constant.

The process of controlling this probability is referred to as the cooling schedule. This

cooling schedule specifies the initial temperature, and the rate at which temperature decreases.

After each stage the temperature is multiplied by a constant factor α (0 < α < 1). Therefore

the temperature at the state Ej is given by Tj = αTi.

The termination of the SA heuristic is the same as the termination of the TS above (Section

2.5.2).

The concepts of the annealing process are brought together in the following simple step by

step SA procedure laid out below.

Randomly generate an initial solution

Determine a suitable starting temperature and cooling factor

Repeat

Randomly select a neighbourhood solution of the current solution

Subtract the function value of the neighbourhood solution from the current solution

If the value is positive, then replace the current solution with the neighbourhood

solution
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Else, calculate the acceptance probability and draw a random probability

If the random probability is greater than the acceptance probability, then re-

place the current solution with the neighbourhood solution

Else, keep the current solution

Using a specific rule, cool the temperature

Until the termination criteria are met.

2.5.4 Heuristic Algorithms for Cardinality Constrained Portfolio Optimi-

sation

Heuristic methods are attractive because, while being a robust method for large size practical

portfolio problems, they are independent of the objective function and offer solutions in a

reasonable time. In this Section, a review of some previous portfolio management papers

using heuristics for the cardinality constrained portfolio optimisation problem is given.

Crama and Schyns [17] present a simulated annealing approach. As well as a cardinality

constraint they include constraints on turnover and trading related to the presence of an

existing portfolio. Constraint violations are dealt with using a penalty function related to the

magnitude of the violation raised to a power. Computational results are given for one test

problem involving 151 assets.

Derigs and Nickel [19] present a simulated annealing based heuristic algorithm. In their

approach stock returns and covariances are derived from a linear multi-factor model, where

the factors are based on macro-economic variables. They present a case study based around

an investment trust tracking the German DAX30 index. Their investment universe, some

202 assets, was taken from the DAX30 and STOXX200. Limited computational results are

presented. More details of their work can be found in Derigs and Nickel [20].

Maringer and Kellerer [47] present an approach based on combining simulated annealing

with evolutionary ideas. They maintain a population of portfolios that are improved in a

simulated annealing fashion. As is normal in evolutionary approaches, poor portfolios in the

population are replaced by better portfolios. Computational results are presented for two test
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problems involving 30 and 96 assets.

Ehrgott et al. [22] present an approach using multi-criteria decision making. In their prob-

lem they have a number of additional portfolio objectives (for example relating to dividends

paid and Standard and Poors rating) and these are combined via weighted utility functions.

They apply four different heuristic algorithm solution techniques (local search, simulated an-

nealing, tabu search, genetic algorithm) to four test problems, involving up to 1416 assets.

Moral-Escudero et al. [51] present a genetic algorithm for the problem that uses two

different crossover operators (random respectful recombination and random assorting recom-

bination). Computational results are presented that make use of the test problems provided

by Chang et al. [13].

Streichert and Tanaka-Yamawaki [68] combine a multi-objective evolutionary algorithm

with QP local search. In their algorithm a variety of portfolios, each containing K assets,

are generated. The proportion invested in each of the K assets is decided by solving a QP.

Computational results are given for two of the five test problems used in Chang et al. [13]

involving up to 85 assets.

Fernandez and Gomez [24] apply a Hopfield neural network to the problem. They also

implement (albeit with minor changes) the three heuristics given in Chang et al. [13]. Com-

putational results are presented that make use of the test problems provided by Chang et al.

[13] which indicate that no one heuristic outperforms the others.

Branke et al. [10] use a multi–objective evolutionary algorithm in conjunction with the

critical line algorithm of Markowitz [48]. They include a constraint (involving additional zero-

one variables) based on German investment law. Computational results are given for three of

the five test problems from Chang et al. [13], as well as for one further problem involving 500

assets.

Fieldsend et al. [25] use multi-objective evolutionary heuristics to determine the cardinality

constrained frontiers. They provide empirical results on emerging markets and the S&P 100,

for up to K = 10 assets. They compare their results to the UEF.
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Cura [18] presented an approach based on particle swarm optimisation. In their heuristic

each particle represents a portfolio. If a portfolio does not contain the appropriate number of

assets then assets are added or deleted from the portfolio. Computational results are presented

that make use of the test problems provided by Chang et al. [13]. They also report results for

the same test problems using a genetic algorithm, tabu search and simulated annealing which

indicate that no one heuristic outperforms the others.

Pai and Michel [54] apply a clustering approach to choosing the assets to include in the

portfolio, thereby eliminating the cardinality constraint. They use an evolutionary strategy

approach to decide the proportion to be invested in each of the assets. Computational results

are presented for data drawn from the Bombay and Tokyo stock markets involving up to 225

assets.

Soleimani et al. [65] present a genetic algorithm for the problem. Their model includes

constraints on the proportion invested in sectors (sets of assets). They present computational

results for a number of test problem involving up to 2000 assets.

Anagnostopoulos and Mamanis [2] adopt a tri-objective view of the problem and apply

three multiobjective evolutionary optimisation algorithms, specifically the Non-dominated

Sorting Genetic Algorithm II (NSGA-II), the Strength Pareto Evolutionary Algorithm 2

(SPEA2) and the Pareto Envelope-based Selection Algorithm (PESA). Computational results

are presented for two randomly generated problems involving 200 and 300 assets.

2.6 Portfolio Theory with Transaction Cost

Within the existing literature, the mathematical model for the transaction cost problem usu-

ally involves trying to move from a current portfolio to a new portfolio (or creating a new

portfolio from cash) while the transaction costs are subtracted from expected returns. Many

of the models call for the introduction of at least one additional binary variable as well as

bounds on the portfolio. As a result of all these components for the transaction cost model the

complexity of the problem increases. In this Section we consider papers found in the literature

on transaction cost; the first four are those that cite Chang et al. [13] and the remaining seven
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are from the wider literature.

Angelelli et al. [3] consider solving a mixed integer linear programming model, involving

transaction cost, heuristics and a cardinality constraint, with MAD model and the CVaR

model. Historical data from Milan, Paris and Frankfort Stock Exchange is used with N =

200, 300, 400, and 600 assets and K = 10 or 20. with CPLEX (version 9) being used as the

solver.

Chen and Cai [14] consider a generalization of the Markowitz MV model to include trans-

action cost and the buy-in threshold constraint. The transaction cost are assumed to be a

known quantity at the beginning of the period, paid at the end of the period and a V-shaped

function of difference between an existing and new portfolio. They compute the efficient fron-

tier using the particle swarm optimization (PSO) heuristic. Eight different securities were

used from the securities market in China.

Baule [9] considers the transaction cost model where short–selling is included. The model

assumes transaction cost to be a non-convex function and it considers having a risk-free

asset for which transaction cost is not incurred. They present results for a universe of 50

assets showing that for smaller investment volumes (up to 2000 Euros) the optimal number

of assets could be just one asset while for larger investment volumes (above 20,000 Euro), the

transaction costs become the major part of the total costs.

Chen et al. [15] present a possibilistic mean and variance portfolio selection model that in-

cludes changeable transaction costs which are assumed as a non-convex-non-concave function.

PSO heuristic is proposed for this problem. Numerical results for five assets are given.

Adcock and Meade [1] considered incorporating variable transaction costs (via a weighting

factor) into a mixed quadratic objective portfolio optimisation formulation. Computational

results were presented for a tracking portfolio of 200 assets.

Yoshimoto [73] assumes transaction cost to be a V-shaped function of difference between an

existing and new portfolio. He constructs a non–linear programming model for the portfolio

problem with maximization of a quadratic utility function. He analyzes the effect of the

transaction cost on the derived portfolio problem showing that inefficient portfolios are created
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by ignoring the transaction cost. The paper uses two securities from stock markets in Japan,

the UK, the US, Germany, Canada, and France.

Perold [55] and Mulvey [53] estimate a transaction cost function using a piece-wise linear

convex function. Konno and Wijayanayake [35] employ the MAD model for a branch and

bound algorithm with concave transaction cost and minimal transaction unit constraints.

Computational results for 200 assets chosen from the NIKKEI 225 Index are presented.

Li et al. [42] assume transaction cost to be a V-shaped function of difference between the

existing and the new portfolio. They use a QP model to study the optimal portfolio selection

problem with transaction cost and provide numerical results with three risky assets. This

work is then extended by Xia et al. [71] to include a risk–free asset allowing short selling.

Computational results are presented using 40 assets.

Lynch and Balduzzi [44] use dynamic programming to examine the decisions of the constant

relative risk averse investors in the presence of proportional and fixed transaction cost. They

consider two assets (the risky asset and the risk free asset) to show how portfolio choice and

rebalancing behaviour are affected by return predictability.

Xue [72] presents a modified version of the Markowitz model to include concave transaction

cost. The resulting model is a difference of two convex functions. To solve the model a branch

and bound algorithm is designed. A series of numerical experiments for up to nine assets

taken from the Shan Xi province in China is presented.

2.7 Summary

This Chapter gave a review of previous research in portfolio theory with particular focus on

the cardinality constraint, heuristic algorithms and transaction cost. We began by presenting

the MV model of Markowitz and discussing the several assumptions of the behavior of an

investor. The efficient frontier for the MV model was considered and an alternative model

used to obtain the efficient frontier was also given.

Next we presented alternatives to the Markowitz model divided into two categories: de-
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velopments to the MV model and departures from the MV model. Within the first category

(advances to the MV model), the single–index model of Sharpe [61], multi–factor model of

Rosenberg [59], the CAPM model (independently developed) by Sharpe [62], Lintner [43] and

Mossin [52] and the APT model of Ross [60] were all discussed. Then, in the second category

(departures from the MV model), the portfolio return and portfolio risk of the MAD model

by Konno and Yamazaki [36], the WGP model by Tamiz et al. [69] and the Minimax model

by Young [74] were examined.

Then in Section 2.4, the discrete extensions to the MV model of buy-in threshold and

cardinality constraint and the frontier produced by these extensions were presented. In the

Section 2.5, a definition for heuristics was given and we presented the three heuristic techniques

of genetic algorithm, tabu search and simulated annealing. In the final Section, transaction

cost, a description of the mathematical model was given and we gave a review of the work

found in the literature.

We noted that the focal point of most of the literature on the cardinality constraint and

heuristic algorithms was from the work of Chang et al. [13] (with 94 citations in the Web of

Science). As mentioned earlier the majority of the work used only one heuristic and considered

only the data set used in Chang et al. [13].

As a result of our literature review above, we observed that for the transaction cost model,

there was not a single mathematical perspective for the problem, because within the literature

most authors adopted their own model. Computational results were often not detailed while

computational times were missing and most authors used very few assets.



Chapter 3

Transaction Cost: Optimal

Solutions

3.1 Introduction

Each time an investor buys or sells an asset an expense is incurred. In the classical work of

Markowitz, the expenses associated with trading equities, were excluded from his QP model

(minimise equation (2.1) subject to equations (2.2)-(2.4)). But today, the importance of

integrating the transaction cost in a new portfolio and also in revising an existing portfolio

are well acknowledged. Transaction cost should be desirably low, thus a portfolio manager

must carefully consider trading and it’s resulting cost. Transaction cost can be classified into

two types: fixed and variable costs.

Fixed costs are paid on all transactions irrespective of the volume of the transaction.

They consist of brokerage commissions and transfer fees.

Variable costs are dependent on the transaction volume. These costs are proportional

to the volume traded when buying or selling an asset. They comprise of execution costs and

opportunity costs. Execution costs can be further divided into market impact (the movement

in the price of an asset that is the result of a trade plus the market-maker’s spread: also called

34
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price impact) and market timing costs (the movement in the price of an asset at the time

of a transaction that can be attributed to other market participants; it can be positive or

negative). Opportunity costs are classified as the shortfall of an investment strategy resulting

from a failure to execute all desired trades at the desired time.

In this Chapter, we expand on Markowitz’s work to include transaction cost (both fixed

and variable costs) and as well as an extension for cardinality constraints on the number of

assets in the portfolio, bought, sold and traded.

The Chapter is organized as follows. In Section 3.2 we state the formulation of the problem

which extends Markowitz’s MV model to incorporate fixed and variable transaction cost. In

Section 3.3 we present the cardinality extension to the transaction cost model. Computational

considerations are next in Section 3.4. This is followed by Section 3.6 where we consider

transaction cost frontiers. In Section 3.7 we show non-cardinality constrained transaction cost

frontiers and in Section 3.8, we display cardinality constrained transaction cost frontiers. The

Chapter is concluded with a summary in Section 3.9.

3.2 Formulation

In this Section, we present the mathematical notation (Section 3.2.1), problem constraints

(Section 3.2.2), the objective function (Section 3.2.3) needed to solve the transaction cost

optimization problem and then end the Section with a few remarks on our complete transaction

cost formulation (Section 3.2.4).

3.2.1 Notation

In this Section, some of the notation is common with that adopted in Chapter 2, but for ease

of reading we present it again below.

Let:

N be the total number of assets available to be invested in,
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µi be the expected return of asset i (i = 1, . . . , N),

σij be the covariance between the return of asset i and asset j (i = 1, . . . , N ; j =

1, . . . , N),

R be the desired level of expected return,

Pi be the current price (value) of one unit (share) of asset i (i = 1, . . . , N),

Xi be current portfolio holding of asset i (i = 1, . . . , N) in terms of number of

units,

V new be new cash that can be invested in the current portfolio, (if V new > 0 then we

have new cash to be invested in the current portfolio, if V new < 0 then we have

cash to be taken out of the current portfolio),

f bi be the fixed transaction cost (> 0) paid if we carry out any buying of asset i

(i = 1, . . . , N),

fsi be the fixed transaction cost (> 0) paid if we carry out any selling of asset i

(i = 1, . . . , N),

csi be the variable transaction cost (> 0) for each unit of asset i (i = 1, . . . , N)

that is sold,

cbi be the variable transaction cost (> 0) for each unit of asset i (i = 1, . . . , N)

that is bought,

When the price at which we can buy (sell) an asset i (i = 1, . . . , N) differs from its current

market price Pi, we have a bid–offer spread (the difference between the price available for an

immediate bid (sale) and an immediate offer (purchase); also known as the bid–ask spread).

This situation is an example of a market timing cost; consequently it is captured in the

variable transaction costs, csi and cbi . For example, suppose the current market price of an

asset i (i = 1, . . . , N) is 100, i.e. Pi = 100, the price at which we can sell asset i is 98 and

the price at which we can buy asset i is 103 (we assume there are no other trading costs for

simplicity). Therefore, csi = 100 − 98 = 2 and cbi = 103 − 100 = 3 captures this bid–offer
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spread since each unit sold costs us 2 (we have turned an asset valued at 100 into 98 in cash),

each unit bought costs us 3 (we pay 103 for an asset that is then valued at 100).

D be the transaction cost limit, therefore the total transaction cost must be 6 D,

li (> 0) be the minimum proportion of the total investment held in asset i (i =

1, . . . , N), if any investment is made in asset i,

ui (> 0) be the maximum proportion of the total investment held in asset i (i =

1, . . . , N), if any investment is made in asset i (so 0 6 li 6 ui 6 1),

Lbi be the minimum number of units of asset i (i = 1, . . . , N) we must buy if we

carry out any buying of asset i,

Lsi be the minimum number of units of asset i (i = 1, . . . , N) we must sell if we

carry out any selling of asset i,

U bi be the maximum number of units of asset i (i = 1, . . . , N) we can buy if we

carry out any buying of asset i (so U bi >Lbi), and

U si be the maximum number of units of asset i (i = 1, . . . , N) we can sell if we

carry out any selling of asset i (so U si >Lsi ).

The decision variables are:

xi the number of units of asset i (i = 1, . . . , N) in the new portfolio,

Gi (> 0) the total transaction cost (fixed and variable) incurred in trading (buying

or selling) an asset i (i = 1, . . . , N),

ysi the number of units of asset i (i = 1, . . . , N) sold,

ybi the number of units of asset i (i = 1, . . . , N) bought,

αsi =1 if we sell any of asset i (i = 1, . . . , N),

=0 otherwise, and
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αbi =1 if we buy any of asset i (i = 1, . . . , N),

=0 otherwise.

Although the variables xi, y
s
i and ybi should strictly be integer, without significant loss of

generality since the sums invested are likely to be large, we regard them as continuous variables.

3.2.2 Constraints

In this Section, the constraints of the transaction cost portfolio optimization model are given

below. As this model has not been presented in the literature before we give a detailed

explanation of each constraint.

The return equation is

∑N
i=1 µiPixi∑N
k=1 Pkxk

= R (3.1)

where Pixi is the invested amount in asset i (i = 1, . . . , N) for an expected return of µi.

The numerator is the total interest income, while the denominator represents the total invest-

ment made. Equation (3.1) relates to the expected return from the chosen portfolio and the

assumption is that this expected return will continue over time.

The appropriate limits to the number of units bought or sold are given by the following

equations:

Lsiα
s
i 6 ysi 6 U si α

s
i , i = 1, . . . , N, (3.2)

Lbiα
b
i 6 ybi 6 U bi α

b
i , i = 1, . . . , N, (3.3)

where αsi = 0 means that none of asset i is sold while αsi = 1 requires that the number of units

sold would be between the upper and lower bounds of selling, i.e. Lsi 6 ysi 6 U si . Similarly,

αbi = 0 means that none of asset i is bought while αbi = 1 requires that the number of units

bought would be between the upper and lower bounds of buying, i.e. Lbi 6 ybi 6 U bi .

The equation
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αsi + αbi 6 1, i = 1, . . . , N, (3.4)

makes certain that the selling and buying of an asset i (i = 1, . . . , N) cannot simultaneously

happen. This constraint does allow us not to trade the asset i when the binary decision

variable for buying and selling of i are both zero (so αsi = αbi = 0).

The balance constraint on the number of shares in the portfolio is

xi = Xi + ybi − ysi , i = 1, . . . , N. (3.5)

Equation (3.5) states that the number of units in the new portfolio is equal to the number of

units in the old portfolio plus any units bought minus any units sold of asset i (i = 1, . . . , N).

A budget is arguably the most important tool for a fund manager. It puts in perspective an

individual’s ideas about risk and the resources available providing a game plan for operating

a portfolio. The constraints relating to the budget limit the degree of total market exposure

assumed by an investor, by requiring that the total value of the portfolio to be less than or

equal to the available wealth. Properly used, a budget can help fund managers to meet their

goals, create more profitable portfolios giving them the edge through tough financial times.

Equations (3.6)-(3.8) all relate to the portfolio budget.

Gi = csiy
s
i + cbiy

b
i + fsi α

s
i + f bi α

b
i , i = 1, . . . , N, (3.6)

says that the total transaction cost for asset i equals the variable transaction cost plus the

fixed transaction cost incurred in buying and selling an asset i (i = 1, . . . , N).

N∑
i=1

Gi 6 D (3.7)

is the transaction cost limit constraint. It states that the sum of the transaction cost (fixed

and variable) is less than or equal to the transaction cost limit.
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Then,

N∑
i=1

Pixi =
N∑
i=1

PiXi + V new −
N∑
i=1

Gi (3.8)

represents the monetary balance constraint that ensures that the monetary value of the new

portfolio is equal to the monetary value of the current portfolio, plus any new cash, minus the

total transaction cost for each asset i (i = 1, . . . , N).

3.2.3 The Objective Function

The objective function is

Minimise
N∑
i=1

N∑
j=1

σijwiwj . (3.9)

This risk objective seems to be the same as for the Markowitz model (equation (2.1)) where

the summation involves terms written as the covariance multiplied by the proportion invested

in each asset i (i = 1, . . . , N). But, here the proportion invested in an asset i is equal to

Pixi/
∑N

k=1 Pkxk. Consequently, wi is a nonlinear term since the value of the denominator is

not constant due to the effect of transaction cost.

From the monetary balance constraint (equation (3.8)) we have that
∑N

i=1 Pixi ≈
∑N

i=1 PiXi+

V new provided that the total transaction cost (
∑N

i=1Gi) is relatively small compared to the

sums invested. Hence, we set the “proportion” (wi) invested in asset i to be defined as

wi =
Pixi∑N

k=1 PkXk + V new
, i = 1, . . . , N, (3.10)

where the denominator is now a known constant. This seems a reasonable assumption to make

in order to achieve a quadratic objective.

Although we have referred to “proportion” above, unlike the Markowitz budget constraint
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(
∑N

i=1wi = 1, equation (2.1)), in general in our transaction cost model the wi do not sum to

one, i.e.
∑N

i=1wi 6= 1. In fact we have that wi actually underestimates the true proportion

invested in asset i in the new portfolio.

From equation (3.10), we have wi = Pixi∑N
k=1 PkXk+V new

while, the monetary balance con-

straint, equation (3.8) states
∑N

i=1 Pixi =
∑N

i=1 PiXi + V new −
∑N

i=1Gi. Therefore,

N∑
i=1

wi =

∑N
i=1 PiXi + V new −

∑N
i=1Gi∑N

k=1 PkXk + V new

= 1−
∑N

i=1Gi∑N
k=1 PkXk + V new

N∑
i=1

Gi > 0 and

N∑
k=1

PkXk + V new > 0

< 1

Therefore in general, we have
∑N

i=1wi < 1.

Although we have approximated the proportion invested in an asset for the purposes of

achieving a quadratic objective, if we have li and ui as the proportion limits on asset i in the

new portfolio then these can be represented exactly using:

li 6
Pixi∑N
k=1 Pkxk

6 ui, i = 1, . . . , N. (3.11)

In practice li and ui are just guides as to the value the investor wishes to see. As asset values

(prices) in the portfolio fluctuate, fluctuations occur in the value of the portfolio and thus, the

actual proportions devoted to each asset also fluctuates.

3.2.4 The Complete Transaction Cost Formulation

Our complete formulation of the transaction cost optimization problem is
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Minimise
N∑
i=1

N∑
j=1

σijwiwj (3.12)

subject to

∑N
i=1 µiPixi∑N
k=1 Pkxk

= R, (3.13)

Lsiα
s
i 6 ysi 6 U si α

s
i , i = 1, . . . , N, (3.14)

Lbiα
b
i 6 ybi 6 U bi α

b
i , i = 1, . . . , N, (3.15)

αsi + αbi 6 1, i = 1, . . . , N, (3.16)

xi = Xi + ybi − ysi , i = 1, . . . , N, (3.17)

Gi = csiy
s
i + cbiy

b
i + fsi α

s
i + f bi α

b
i , i = 1, . . . , N, (3.18)

N∑
i=1

Gi 6 D, (3.19)

N∑
i=1

Pixi =
N∑
i=1

PiXi + V new −
N∑
i=1

Gi, (3.20)

wi =
Pixi∑N

k=1 PkXk + V new
, i = 1, . . . , N, (3.21)

li 6
Pixi∑N
k=1 Pkxk

6 ui, i = 1, . . . , N, (3.22)

wi, xi, y
s
i , y

b
i , Gi ≥ 0, i = 1, . . . , N, (3.23)

αsi , α
b
i ∈ [0, 1], i = 1, . . . , N. (3.24)

There are a number of remarks we can make with respect to this formulation:

1. One equation (equation (3.13)) in our formulation is nonlinear, but can be easily lin-

earised by multiplying both sides of the equation by the denominator.

2. Our formulation, a mixed integer program, is useful for all assets that have return values

over time and can be handled by standard solvers such as CPLEX.
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3. Our formulation aids the investment policy plan of portfolio managers. The formulation

is a strategic asset allocation model in that it is useful in determining the long–term

policy asset weights in a portfolio. It is not a tactical asset allocation model because it

does not adjust for up to the minute changes in the relative values of the various asset

classes.

4. Any computational solution times within reason does not pose any problem because

they can be justified by the following:

(a) given the operational allocation nature of our problem the investor decides which

asset mix is appropriate for their needs during the planning phase.

(b) given the long term nature of the investment any decision as to whether (or not)

to change to a new portfolio are made relatively infrequently.

(c) it is conceivable that fund managers could devote many computers to compute a

new portfolio.

3.3 Cardinality Extension

Restrictions relating to the number of assets in the portfolio can also be incorporated in our

transaction cost optimisation model. Once again, some of the notation is the same as in earlier

chapters but, for ease of reading we present it below.

Let:

K be the desired number of distinct assets we wish to hold,

KS be the maximum number of assets we can sell,

KB be the maximum number of assets we can buy,

KT be the maximum number of assets we can trade (buy or sell),

and a decision variable,
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δi = 1 if we hold asset i (i = 1, . . . , N) in the new portfolio,

= 0 otherwise.

Then the constraints to represent these cardinality restrictions are:

N∑
i=1

δi = K, (3.25)

N∑
i=1

αsi 6 KS , (3.26)

N∑
i=1

αbi 6 KB, (3.27)

N∑
i=1

(αsi + αbi ) 6 KT , (3.28)

wi 6 δi i = 1, . . . , N. (3.29)

Equation (3.25) (as was the case in equation (2.23)), restricts the number of assets to be held to

the desired cardinality of the investor. Equation (3.26) restricts the decision variable relating

to selling to be less than or equal to the maximum number specified by the investor. Similarly,

equation (3.27) restricts the decision variable relating to buying to be less than or equal to

the maximum number specified by the investor. Equation (3.28) ensures that the number of

assets bought or sold is not greater than the trading limit. Constraint (3.29) ensures that only

assets in the portfolio have a weight; if an asset i (i = 1, . . . , N) is not in the portfolio then

δi = 0 means wi = 0 and given the equality equation for wi (equation (3.10)) then this means

that xi = 0 also.

When revising an existing portfolio (Xi, i = 1, . . . , N) to create a new portfolio (xi, i =
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1, . . . , N) we include the following constraints:

xi > Lbiδi if Xi = 0, i = 1, . . . , N, (3.30)

ybi > Lbiδi if Xi = 0, i = 1, . . . , N, (3.31)

αbi > δi if Xi = 0, i = 1, . . . , N, (3.32)

ysi > Xi(1− δi) if Xi > 0, i = 1, . . . , N, (3.33)

αsi > 1− δi if Xi > 0, i = 1, . . . , N. (3.34)

Equations (3.30)-(3.32) states that if we currently hold none of asset i (so Xi = 0) and we have

it in our chosen portfolio (so δi = 1), the new holding and the amount bought (ybi ) must be at

least the minimum amount we can buy (Lbi) and the zero/one buy decision variable must also

be one (so αbi = 1). In a similar fashion, if we currently hold some of asset i (so Xi > 0), but

we choose not to have it in our new portfolio (so δi = 0), we must sell the current holding (ysi )

and the decision variable for selling must be one (so αsi = 1). This leads to the constraints in

equations (3.33) and (3.34).

These constraints (equations (3.30) -(3.34)) would be implied in any optimal solution to

the complete transaction cost cardinality formulation. However, adding these constraints po-

tentially improves computational performance (via improvement of the continuous relaxation),

which is why they are added here.

3.3.1 The Complete Transaction Cost Cardinality Formulation

Our complete formulation of the transaction cost optimization problem with cardinality re-

strictions is

Minimise

N∑
i=1

N∑
j=1

σijwiwj (3.35)

subject to
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∑N
i=1 µiPixi∑N
k=1 Pkxk

= R, (3.36)

Lsiα
s
i 6 ysi 6 U si α

s
i , i = 1, . . . , N, (3.37)

Lbiα
b
i 6 ybi 6 U bi α

b
i , i = 1, . . . , N, (3.38)

αsi + αbi 6 1, i = 1, . . . , N, (3.39)

xi = Xi + ybi − ysi , i = 1, . . . , N, (3.40)

Gi = csiy
s
i + cbiy

b
i + fsi α

s
i + f bi α

b
i , i = 1, . . . , N, (3.41)

N∑
i=1

Gi 6 D, (3.42)

N∑
i=1

Pixi =

N∑
i=1

PiXi + V new −
N∑
i=1

Gi, (3.43)

wi =
Pixi∑N

k=1 PkXk + V new
, i = 1, . . . , N, (3.44)

li 6
Pixi∑N
k=1 Pkxk

6 ui, i = 1, . . . , N, (3.45)

N∑
i=1

δi = K, (3.46)

N∑
i=1

αsi 6 KS , (3.47)

N∑
i=1

αbi 6 KB, (3.48)

N∑
i=1

(αsi + αbi ) 6 KT , (3.49)

wi 6 δi, i = 1, . . . , N, (3.50)
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xi > Lbiδi if Xi = 0, i = 1, . . . , N, (3.51)

ybi > Lbiδi if Xi = 0, i = 1, . . . , N, (3.52)

αbi > δi if Xi = 0, i = 1, . . . , N, (3.53)

ysi > Xi(1− δi) if Xi > 0, i = 1, . . . , N, (3.54)

αsi > 1− δi if Xi > 0, i = 1, . . . , N, (3.55)

wi, xi, y
s
i , y

b
i , Gi ≥ 0, i = 1, . . . , N, (3.56)

δi, α
s
i , α

b
i ∈ [0, 1], i = 1, . . . , N. (3.57)

There are a number of remarks we can make with respect to this formulation:

1. All points presented in Section 3.2.4 also, apply to this formulation. In particular we

can use CPLEX to solve the problem.

2. The formulation presented above is sometimes referred to as a rebalancing or a revision

problem because our aim is to move from the existing portfolio to a new one. Yet, our

formulation includes the case where we wish to create a new portfolio from cash with

V new > 0 and Xi = 0 i = 1, . . . , N .

3. Our formulation addressees the problem, “if we revise the present portfolio now, what are

the optimal portfolios that can be found given the present market conditions?”In other

words, through solving our formulation, investors and fund managers have information

to answer the following questions:

(a) “should we rebalance our current portfolio now or leave it unchanged?”

(b) “which assets in particular should be purchased for the portfolio to improve it’s

performance?”

3.4 Computational Considerations

Although the transaction cost models (minimise equation 3.12 subject to equations (3.13)-

(3.24) and minimise equation 3.35 subject to equations (3.36)-(3.57)) are valid there are a

number of additional steps we have taken to tighten the continuous relaxation, hence poten-
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tially improving the computational performance. These are:

1.

If Xi = 0 set αsi = ysi = 0 i = 1, . . . , N.

This declaration statement says that if we do not have any of asset i in our portfolio,

we set the binary variable for selling and the amount units to sell to zero.

2.

Set U si = min[U si , Xi] i = 1, . . . , N.

In this statement we declare that the upper limit for selling is at most the current holding

of asset i.

3. Consider selling asset i (i = 1, . . . , N), assuming Xi > 0. If we sell ysi of asset i we incur

the transaction cost fsi + csiy
s
i which cannot exceed the transaction cost limit D (i.e. we

must have that f si + csiy
s
i 6 D). Therefore, we can update the upper limit U si on the

amount of asset i that can be sold using

U si = 0 if fsi > D,

U si = min[U si , (D − fsi )/csi ] if csi > 0 and fsi 6 D.

4. A similar argument (to 3.) can be applied to buying asset i (i = 1, . . . , N). If we buy

ybi of asset i we incur the transaction cost f bi + cbiy
b
i and this must be less that the limit

on transaction cost D (i.e. f bi + cbiy
b
i 6 D). We can update the upper limit U bi on the

amount of asset i that can be bought using

U bi = 0 if f bi > D,

U bi = min[U bi , (D − f bi )/cbi ] if cbi > 0 and f bi 6 D.
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3.5 Data Sets

We tested the performance of our transaction cost problem using publicly available test prob-

lems relating to six major market indices, available from OR-Library (Beasley, [6]).

Five of our market indices were the Hang Seng (Hong Kong), DAX 100 (Germany), FTSE

100 (UK), S&P 100 (USA) and the Nikkei 225 (Japan), as taken from

http://people.brunel.ac.uk/∼mastjjb/jeb/orlib/portinfo.html. The remaining market index

was the S&P 500 (USA), as taken from

http://people.brunel.ac.uk/∼mastjjb/jeb/orlib/indtrackinfo.html. The size of our six test

problems ranged from N = 31 (Hang Seng) to N = 457 (S&P 500). We used V new = 0,

li = 0, ui = 1 (i = 1, ..., N) and K = 10. The values for Xi, Pi, L
s
i , L

b
i , U

s
i , U bi , fsi , f bi , csi and

cbi for all i = 1, . . . , N are found on the CD accompanying this thesis.

Our transaction cost models were implemented using AMPL and its associated script

language. The solver we used was CPLEX (version 11.0). The system runs under Windows

NT and in our computational work we used an Intel Core2 pc with a 2.40 GHz processor and

3.24 GB RAM.

3.6 Transaction Cost Frontiers

One aspect of transaction cost optimization that appears to have received no attention in the

literature is the fact that in the presence of constraints of the type we have considered above

the frontier produced is markedly different from the UEF. In this Section we answer several

questions:

1. Is the transaction cost efficient frontier discontinuous?

2. Are fixed transaction costs (in themselves) sufficient to make the transaction cost efficient

frontier discontinuous even when there are no cardinality restrictions?

Here we note, the Figures represented in this Section (and throughout this Chapter) usu-

ally contain the trading portfolio frontier (the set of points that correspond to the least risk
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portfolios at all feasible return levels) for the market index in dark blue, the original portfolio

in red, the trading portfolio frontier for the original portfolio in green and the efficient frontier

for the original portfolio in pink.

3.6.1 Comparing Transaction Cost to the Unconstrained Problem

Before we are able to answer any of the questions raised above, we make a comment on com-

paring the transaction cost problem to the unconstrained problem. For the unconstrained case

risk and return are calculated using the standard Markowitz equations, where the proportions

used add to one (i.e.
∑N

i=1wi = 1, equation (2.1)). In Section 3.2.3 we state that in general

the proportions do not sum to one (i.e.
∑N

i=1wi < 1). As a result, in order to compare the

new portfolio (xi, i = 1, . . . , N) that results from the transaction cost optimization problem

(e.g. graphically) we need to calculate its risk and return in an analogous way.

Hence, for the purpose of comparing with the unconstrained case the risk is

N∑
i=1

N∑
j=1

σij
PiPjxixj

(
∑N

k=1 Pkxk)
2

(3.58)

and the return is
N∑
i=1

µi
Pixi∑N
k=1 Pkxk

. (3.59)

Here [Pixi/
∑N

k=1 Pkxk] has been used to represent the proportion of the invested portfolio

(which is not the same as the original money available as transaction cost has been incurred)

invested in asset i (i = 1, . . . , N).

3.6.2 Fixed and Variable Transaction Cost Efficient Frontier

To answer the question, Is the transaction cost efficient frontier (TCEF) discontinuous?, we

consider creating the efficient frontier based on the transaction cost model: minimise equation

(3.12) subject to equations (3.13)-(3.24). We do this using all N = 31 assets from the Hang

Seng market index, V new = 0, li = 0 (i = 1, . . . , N), ui = 1 (i = 1, . . . , N), D = 13210 and in



CHAPTER 3. TRANSACTION COST: OPTIMAL SOLUTIONS 51

the Appendix (Table 7.1) we give the values for Pi, Xi, L
s
i , L

b
i , U

s
i , U bi , fsi , f bi , csi and cbi for

all i = 1, . . . , N .

In Figure 3.1, we show the trading portfolio frontier (for the Hang Seng market index),

TCEF (for the original portfolio) and the original portfolio. The TCEF is based upon 1000

equally spaced return levels from minimum average return to maximum average return. The

Figure shows that the TCEF is discontinuous.

3.6.3 Four Asset Example

In order to answer our second question above: Are fixed transaction costs (in themselves, i.e.

a Gi with fsi > 0, f bi > 0 and csi = cbi = 0) sufficient to make the transaction cost efficient

frontier discontinuous even when there are no cardinality restrictions?, we consider the small

four asset example shown in Table 3.1, drawn from the FTSE data set (Chang et al. [13]

also used this data set to illustrate the discontinuities in the cardinality constrained efficient

frontier).

Asset Return Standard Correlation Matrix
(weekly) Deviation 1 2 3 4

1 0.004798 0.046351 1 0.118368 0.143822 0.252213
2 0.000659 0.030586 1 0.164589 0.099763
3 0.003174 0.030474 1 0.083122
4 0.001377 0.035770 1

Table 3.1: A Four Asset Example

Consider the transaction cost model: minimise equation (3.12) subject to equations (3.13)-

(3.24), in which there are no variable costs (so csi = cbi = 0 resulting in Gi = fsi α
s
i + f bi α

b
i ) and

we examine 1000 equally spaced return levels from Rmin (minimum average return) to Rmax

(maximum average return). We let Xi = 100 (i = 1, 2, 3, 4), the limit on transaction cost to

be two (i.e. D = 2), then for every i = 1, 2, 3, 4, Pi = 10, Lsi = Lbi = 0, U si = U bi = ∞ and

fsi = f bi = 1. We illustrate this for the following three cases:
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Figure 3.1: An example of the TCEF for the Hang Seng Market Index
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Case 1: Zero Cash Investment

In this scenario, there are no exogenous cash injections, (i.e. V new = 0). With no new money

available to invest in the portfolio the monetary balance constraint, equation (3.8), becomes∑N
i=1 Pixi =

∑N
i=1 PiXi −

∑N
i=1Gi. This would then imply that the monetary value of our

new portfolio is decreased by the transaction cost payment. In other words, equation (3.8)

assumes that when cash is not available for a new portfolio (xi, i = 1, . . . , N) the cost of

transacting is taken from our existing portfolio (Xi, i = 1, . . . , N).

In Figure 3.2, we graphically present the trading portfolio frontier and in Figure 3.3 the

efficient frontier produced from our original portfolio as a result of no cash inflows or outflows.

The Figures show that fixed costs in themselves are sufficient to produce discontinuous trading

portfolio and efficient frontiers even when there are no explicit cardinality restrictions for the

case V new = 0.

Case 2: Positive Cash Investment

A positive cash investment means there is new money to invest in the portfolio, (i.e. V new > 0).

Figure 3.4 shows the trading portfolio frontier while Figure 3.5 depicts the efficient frontier

produced from our original portfolio when V new = 1.1
∑N

i=1 PiXi (i.e. the original portfolio’s

value is increased by 10%). With cash available to invest, the current portfolio’s (Xi, i =

1, . . . , N) outlook is more favourable. For instance, when money added to the portfolio is

greater than or equal to the transaction cost, (i.e. V new >
∑N

i=1Gi), the current portfolio

value can be maintained or increased in the new portfolio (xi, i = 1, . . . , N). In essence, the

case V new > 0 can offset transaction cost.

In Figure 3.4 and Figure 3.5, we can see the trading portfolio and efficient frontiers pro-

duced from our original portfolio as a result of a positive cash investment are discontinuous.

Therefore fixed costs in themselves are sufficient to produce discontinuous frontiers even when

there are no cardinality restrictions for the case V new > 0.
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Figure 3.2: A Four Asset Example Trading Portfolio Frontier for V new = 0
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Figure 3.3: A Four Asset Example Trading Portfolio Efficient Frontier for V new = 0
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Figure 3.4: A Four Asset Example Trading Portfolio Frontier for V new > 0
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Case 3: Negative Cash Investment

No investor wants to be in a position where their current portfolio is losing value. In recent

times the world markets have been volatile. For instance, after starting the year 2008 with

6,500 points, the FTSE 100 index of top UK companies had fallen by 3,000 points by the end

of October. This situation causes money to be withdrawn from the portfolio, ( i.e. V new < 0,

where 0 represents the starting position of the portfolio). With the portfolio value suffering a

reduction and the loss of monetary value from transacting, the investor wishes to make certain

that any transaction would result in a more efficient portfolio.

Figure 3.6 and Figure 3.7 depict the trading portfolio and efficient frontiers (respectively)

produced from our original portfolio when V new = 0.9
∑N

i=1 PiXi. The original portfolio

experiences a 10% drop in value and rebalancing takes place. The Figures show that fixed costs

in themselves are sufficient to produce discontinuous trading portfolio and efficient frontiers

even when there are no cardinality restrictions for the case V new < 0.

Implications of The Three Cash Investment Scenarios

1. In each case (i.e. V new < 0, V new > 0 and V new = 0) the trading portfolio frontier

produced is a discontinuous curve.

2. All three cases of V new (i.e. V new < 0, V new > 0 and V new = 0) produce a fixed

transaction cost efficient frontier (FTCEF). As is the case with the trading portfolio

frontier, the FTCEF is also discontinuous. Hence, when faced with only fixed transaction

cost, there will be returns which no rational investor could consider.

3. Figure 3.8 graphically depicts all three cash investment strategies i.e. V new < 0 (purple),

V new > 0 (green) and V new = 0 (blue) trading portfolio frontiers. It demonstrates that

there are return levels which are most beneficial to the investor because of different V new

representations. For instance

(a) A portfolio at a return level A in Figure 3.8 would be better off if money is taken

out of the portfolio (so V new < 0).

(b) A portfolio at a return level B in Figure 3.8 would be better off if money is placed

into the portfolio (so V new > 0).
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Figure 3.6: A Four Asset Example Trading Portfolio Frontier for V new < 0
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(c) A portfolio at a return level C in Figure 3.8 could be achieved if the present portfolio

is rebalanced with no exogenous cash investments (so V new = 0).
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Figure 3.8: A Four Asset Example with V new = 0, V new > 0 and V new < 0

3.7 Non-Cardinality Constrained Transaction Cost Frontiers

In this Section, we present the non-cardinality constrained transaction cost trading portfolio

frontier. By this we mean a trading portfolio frontier from an original portfolio (containing

10 randomly generated assets) in which any asset can be included to create a more efficient

portfolio. These frontiers have not been seen before in the literature; researchers have focused

their work on a single portfolio (for example minimum variance with transaction cost) not

an efficient frontier. For these frontiers, we use V new = 0, li = 0 and ui = 1 based on

the transaction cost model: minimise equation (3.12) subject to equations (3.13)-(3.24) and

(3.30)-(3.34). We ran the Hang Seng, DAX 100, FTSE 100, S&P 100, the Nikkei 225 and

S&P 500 Market Indices’ data set for 1000 equally spaced return levels from Rmin to Rmax.

In Table 3.5 we state the market indices, the number of assets, the computational times
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in seconds taken to create the non-cardinality constrained transaction cost trading portfolio

frontier and the average time (in seconds) per return level. From Table 3.5 we see for instance

that the FTSE 100 having N = 89 assets took a total of 1273 seconds to calculate which is an

average computational time per return level of 1.273 seconds.

Market Total Average time
Index N Computational (seconds)

Time (seconds) per return level

Hang Seng 31 70 0.070
DAX 100 85 271 0.271
FTSE 100 89 1273 1.273
S&P 100 98 1309 1.309
Nikkei 225 225 1490 1.490
S&P 500 468 6016 6.016

Table 3.2: Non-Cardinality Constrained Transaction Cost Trading Portfolio Frontier Times

In Figures 3.9 to 3.20 we illustrate the original portfolio with the non-cardinality con-

strained transaction cost trading portfolio frontier and non-cardinality constrained transaction

cost efficient frontier (respectively) for the Hang Seng, DAX 100, FTSE 100, S&P 100, Nikkei

225 and S&P 500 market indices respectively. In Figures 3.19 and 3.20 the efficient frontier

for the S&P 500 market index is shown rather than the trading portfolio frontier because

of numeric issues in AMPL (due to the size of the problem the solver was unable to solve

the problem, which resulted in AMPL crashing). Figures 3.9 to 3.20 show that the trading

portfolio frontier and the efficient frontiers to be discontinuous and in some cases contains

clusters of portfolios. Here and elsewhere in this thesis, we give the first two figures as full

page figures to aid the reader, other figures are smaller for reasons of space.

In Table 3.3 we present for each of our data sets: the mean, median, maximum and

minimum percentage errors for the non-cardinality constrained efficient frontier (which is

different from the UEF). From this Table we see that the FTSE 100 market index has the

smallest mean and median percentage error (1.4661% and 1.3628% respectively). Each of the

market indices had minimum percentage errors below 6% with the S&P 100 having a minimum

percentage error as low as 0.0188%. The highest maximum percentage error came from the

S&P 500 being 26.4100%.
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Figure 3.9: Hang Seng Transaction Cost Non-Cardinality Constrained Trading Portfolio Fron-
tier
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Figure 3.10: Hang Seng Transaction Cost Non-Cardinality Constrained Trading Portfolio
Efficient Frontier
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Figure 3.11: DAX 100 Transaction Cost Non-Cardinality Constrained Trading Portfolio Fron-
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Figure 3.12: DAX 100 Transaction Cost Non-Cardinality Constrained Trading Portfolio Effi-
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Figure 3.13: FTSE 100 Transaction Cost Non-Cardinality Constrained Trading Portfolio Fron-
tier
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Figure 3.14: FTSE 100 Transaction Cost Non-Cardinality Constrained Trading Portfolio Ef-
ficient Frontier
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Figure 3.15: S&P 100 Transaction Cost Non-Cardinality Constrained Trading Portfolio Fron-
tier
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Figure 3.16: S&P 100 Transaction Cost Non-Cardinality Constrained Trading Portfolio Effi-
cient Frontier
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Figure 3.17: Nikkei 225 Transaction Cost Non-Cardinality Constrained Trading Portfolio
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Figure 3.18: Nikkei 225 Transaction Cost Non-Cardinality Constrained Trading Portfolio
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Figure 3.19: S&P 500 Transaction Cost Non-Cardinality Constrained Trading Portfolio Fron-
tier
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Figure 3.20: S&P 500 Transaction Cost Non-Cardinality Constrained Trading Portfolio Effi-
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3.8 Cardinality Constrained Transaction Cost Frontiers

In this Section, we present the cardinality constrained transaction cost trading portfolio fron-

tier to answer the question: What does the optimal solution for the cardinality constrained

transaction cost optimisation model look like?. To create these frontiers we began with the

same randomly generated portfolio used in the non-cardianlity constrained transaction cost

frontiers section (Section 3.7), using K = 10, V new = 0, li = 0 and ui = 1 based on the trans-

action cost model: minimise equation (3.35) subject to equations (3.36)-(3.46) and equations

(3.50)-(3.57). We ran the Hang Seng, DAX 100, FTSE 100, S&P 100 and the Nikkei 225

Market Indices’ data set for 50 equally spaced return levels from Rmin to Rmax. As was the

case with the non-cardinality constrained problem, these frontiers have not been seen before

in the literature.

Market Total Average time
Index N Computational (seconds)

Time (seconds) per return level

Hang Seng 31 72 1.44
DAX 100 85 348 6.96
FTSE 100 89 3426 68.52
S&P 100 98 127746 2554.92
Nikkei 225 225 566537 11330.74

Table 3.5: Cardinality Constrained Transaction Cost Trading Portfolio Frontier Times

In Table 3.5 we state the market indices, the number of assets, the computational times in

seconds taken to create the cardinality constrained transaction cost trading portfolio frontier

and the average time (in seconds) per return level. Therefore, the Nikkei 225 which contains

225 assets took a total of 566537 seconds (almost 7 days) which gives an average computational

time per return level of 11330.74 seconds (a little more than 3 hours).

If we compare the average time per return levels in Tables 3.2 and 3.5, we see that the

non-cardinality constrained case is calculated more quickly per return level. For instance, the

S&P 100 takes 1.309 seconds per return level in the non-cardinality case while it takes 2554.92

seconds per return level in the the cardinality constrained case which is approximately 1952

times longer.
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Table 3.4 shows the mean, median, maximum and minimum percentage errors for the

cardinality constrained efficient frontier for the Hang Seng, DAX 100, FTSE 100, S&P 100

and the Nikkei 225 Market Indices’ data set. If we are to consider a market index in the Table,

say the DAX 100, we see that the mean, median, minimum and maximum percentage error

was 11.4983%, 11.2493%, 8.7803% and 14.6783% respectively.

Considering both Tables 3.3 and 3.4 we note that all percentage errors (mean, median,

minimum and maximum) are increased when one considers cardinality constraints. This would

be expected because the non-cardinality constrained efficient frontier places no restrictions on

the number of assets in a portfolio when moving from the considered original portfolio.

In Figures 3.21 to 3.30 we illustrate the original portfolio, cardinality constrained transac-

tion cost trading portfolio frontier then the cardinality constrained transaction cost efficient

frontier along with the trading portfolio frontier for the Hang Seng, DAX 100, FTSE 100,

S&P 100 and Nikkei 225 market indices respectively. Each Figure shows that the frontiers

(portfolio and efficient) are discontinuous.

3.9 Summary

This Chapter presented optimal solutions for transaction cost model. We first presented our

formulation of the problem which extended the Markowitz model to include fixed and variable

cost. In that Section we included an explanation of the benefits of our formulation.

In Section 3.3 we presented the cardinality extension to our formulation in which we placed

restrictions on the assets in the portfolio, as well as those assets bought, sold or traded. We

went on to give more equations that would be necessary for revising an existing portfolio.

Then we highlighted the benefits of our cardinality constrained transaction cost formulation.

In Section 3.4 we presented some computational considerations which can contribute to

better computational times. In Section 3.5 we gave the data sets for our test problems. In

Section 3.6 we spoke of the transaction cost frontiers. We showed not only that the transaction

cost efficient frontier was discontinuous but, fixed transaction costs (in themselves) were suf-
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Figure 3.21: Hang Seng Transaction Cost Cardinality Constrained Trading Portfolio Frontier
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Figure 3.22: Hang Seng Transaction Cost Cardinality Constrained Trading Portfolio Efficient
Frontier
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Figure 3.23: DAX 100 Transaction Cost Cardinality Constrained Trading Portfolio Frontier
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Figure 3.24: DAX 100 Transaction Cost Cardinality Constrained Trading Portfolio Efficient
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Figure 3.25: FTSE 100 Transaction Cost Cardinality Constrained Trading Portfolio Frontier
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Figure 3.26: FTSE 100 Transaction Cost Cardinality Constrained Trading Portfolio Efficient
Frontier
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Figure 3.27: S&P 100 Transaction Cost Cardinality Constrained Trading Portfolio Frontier
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Figure 3.28: S&P 100 Transaction Cost Cardinality Constrained Trading Portfolio Efficient
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Figure 3.29: Nikkei 225 Transaction Cost Cardinality Constrained Trading Portfolio Frontier
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ficient to make the efficient frontier discontinuous even when there are no explicit cardinality

restrictions. We presented a four asset example that showed positive, negative and zero cash

investments causes discontinuities in the trading portfolio and efficient frontiers.

In Sections 3.7 and 3.8 we considered the non-cardinality and cardinality constrained

transaction cost frontiers. In these two sections we showed that, given an original portfolio,

each market index has a unique trading portfolio and efficient frontier. The non-cardinality

constrained trading portfolio frontier (unlike the trading portfolio frontier of the market index)

is not a smooth parabola and it could contain clusters. The non-cardinality constrained trading

portfolio frontier is capable of being solved in a quicker time frame and the non-cardinality

constrained has a smaller percentage error from its unconstrained efficient frontier than the

transaction cost cardinality constrained case.



Chapter 4

Heuristic Algorithms for the CCEF

4.1 Introduction

As billions of dollars (pounds sterling) are invested in markets around the world, investors

must not only consider maximising their expected return, but also minimising the volatility

that results from expected fluctuations in the value of their investment portfolios. Increasingly,

portfolio managers are seeking more robust asset selection (portfolio formation) strategies to

create desirable portfolios (ones that potentially gives a good tradeoff between investment risk

and return) for their investors. The Markowitz MV model introduced in Section 2.2 serves as

a major guideline for financial portfolio optimisation. However, in order to incorporate real

market situations, it has become necessary to introduce discrete constraints such as buy-in

threshold and a cardinality constraint. These two discrete constraints allows the investor to

specify the limits on the proportions and the number of assets in their portfolios. In this

Chapter, we present our heuristic algorithms for determining the CCEF.

This Chapter is organised as follows. In Section 4.2, we consider the optimisation problem

(denoted the subset optimisation problem) that underlies each of our heuristic algorithms. In

Section 4.3, our implementation of the heuristic algorithms (of GA, TS and SA) for finding

the CCEF is presented. This is followed by Section 4.4 where we present the computational

results for our heuristic algorithms and finally we conclude the Chapter in Section 4.5 with a

77
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summary.

4.2 Subset Optimisation

In this thesis, the heuristic algorithms we present make use of subset optimisation. This is an

optimisation model that allows us to specify subsets of assets for which we know their status

(either in or out of the chosen portfolio). We accomplish this by introducing Sin as a subset

of assets that must be included in the chosen portfolio, and Sout as the subset of assets that

must be excluded from the chosen portfolio. Sin and Sout have no assets in common, thus

Sin ∩ Sout = ∅. Given these subsets we optimise for any remaining assets to determine if they

are to be included in, or excluded from, the chosen portfolio. For every asset i (i = 1, . . . , N)

in the portfolio the proportion invested in that asset i is decided by the solver through the

subset optimisation process.

Early computational experience indicated that attempting to find a portfolio with precisely

K assets and precise return R was relatively time-consuming, even if the number of assets

from which we were choosing was small. Consequently, in the subset optimisation problem

(equations (4.1)-(4.8), below) we relax the desired return constraint (i.e. equation (2.2),∑N
i=1 µixi = R) such that desired return is allowed to be in a specific range as opposed to the

return being precisely specified. As a result, we are content with a portfolio bounded by a

lower limit on return, RL, and an upper limit on return, RU .

The notation used in the subset optimisation problem is common with that of the previous

two chapters, therefore we have have chosen not to give them again because of space.

The subset optimisation problem that we solve is:

Minimise

N∑
i=1

N∑
j=1

σijwiwj (4.1)
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subject to

RL 6
N∑
i=1

µiwi 6 RU (4.2)

N∑
i=1

wi = 1 (4.3)

liδi 6 wi 6 uiδi i = 1, . . . , N (4.4)

N∑
i=1

δi = K (4.5)

∑
i∈Sin

δi = min[|Sin|,K] (4.6)

δi = 0 ∀i ∈ Sout (4.7)

δi = 0 or 1 i = 1, . . . , N (4.8)

wi ≥ 0 i = 1, . . . , N (4.9)

Equations (4.1), (4.3)-(4.5) and (4.9) are as in the cardinality constrained model (equations

(2.1)-(2.4), and equations (2.21)-(2.23)). Equation (4.2) constrains the chosen portfolio’s

expected return to be within the desired return range, [RL,RU ]. Equation (4.6) forces all

assets in Sin into the portfolio if |Sin| 6 K, and chooses K assets from Sin if |Sin| > K.

Equation (4.7) ensures that assets in Sout are not placed in the chosen portfolio while, equation

(4.8) declares that the binary variables are zero or one.

This subset optimisation problem (equations (4.1)-(4.9)) like the cardinality constrained

model (equations (2.1)-(2.4), and equations (2.21)-(2.23)) is a QMIP, and provided that the

number of assets for which we have to make a decision as to whether they are to be included

in or excluded from the chosen portfolio is small (i.e. N −|Sin∪Sout| is small) it can be solved

relatively quickly to proven optimality.

For simplicity of notation in the heuristic algorithms we present in Section 4.3 we refer to

the subset optimisation problem (equations (4.1)-(4.9)) as F(Sin, Sout). In the computational

results reported later in Section 4.4 we use both [RL = 0.9R,RU = 1.1R], i.e. a portfolio

within ten percent of the desired return level, and [RL = −∞, RU = +∞], where we disregard
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desired return.

4.3 Heuristic Algorithms

In this Section, we present our implementation of the three heuristic algorithms based upon

genetic algorithm (Section 4.3.1), tabu search (Section 4.3.3) and simulated annealing (Section

4.3.4) that we have developed for finding the CCEF. Also included in this Section is an

illustrative example as to how the GA heuristic algorithm works (Section 4.3.2).

Here we note that one of the potential practical advantages of our heuristic algorithm

implementations is that any additional (user specified) constraints on the composition of the

chosen portfolio can be included in the subset optimisation problem. Such constraints might

include, for example:

• class or sector constraints which specify minimum or maximum exposure to certain

sectors (sets of assets),

• lot size constraints which specify that the amount invested, and in any asset must be an

integer multiplier of a known constant.

The heuristic algorithms outlined below are applicable, without significant change, to problems

of these types.

4.3.1 A Genetic Algorithm Heuristic

In our GA we use a population, P , of fixed size |P | = 100, i.e we have 100 portfolios. Given the

desired return of R, each member of the initial population is generated by randomly choosing

max[2K, 20] assets to be in Sin, with the other [1, ..., N ] − Sin assets being in Sout and then

solving the subset optimisation problem F(Sin, Sout). In order to try and ensure that the

subset optimisation problem is feasible in making a random choice of assets, we include in

Sin some assets i (i = 1, ..., N) that have expected return greater than or equal to the desired



CHAPTER 4. HEURISTIC ALGORITHMS FOR THE CCEF 81

return, i.e. µi ≥ R, and some assets i (i = 1, ..., N) that have expected return less than or

equal to the desired return, i.e. µi ≤ R.

In our GA we use parent sets. We first select two parents sets, Q1 and Q2 (each of fixed

size q, in our computational results presented later in Section 4.4 we use q = 5). We create

the parent sets by sorting the members of the population into increasing risk (variance) order.

Take the first 2q portfolios in this ordered list and assign the first portfolio to Q1, the second

to Q2, the third to Q1, etc in an alternate fashion. These two sets collectively contain the 2q

fittest members of the population (i.e. they represent the lowest risk portfolios).

In order to produce children (offspring) we consider all pairs of portfolios, one portfolio

from Q1, the other from Q2, hence in the crossover operator we produce q2 parent portfolio

pairs in total. For each parent portfolio pair a single child is produced using crossover. In our

crossover procedure if an asset is present in both of the parent portfolios it is present in the

child (and therefore in Sin); if it is absent from both of the parent portfolios it is absent in the

child (and so in Sout); if it is present in one of the parent portfolios (absent in the other) then

its presence (or absence) in the child will be decided as a result of the subset optimisation

process.

Mutation is standard within GAs and introduces a degree of stochastic variation. We

employ it to alter offspring portfolios with a very low probability. Offspring portfolios are

subject to mutation with a probability of mp. Our GA mutates a child by randomly selecting

one asset in the child portfolio and replacing it by a random asset not present in the child

portfolio. This process is applied in generation g∗ to each child portfolio. In our computational

results presented later in Section 4.4 we ran our GA heuristic algorithm for four generations,

with mutation occurring in the third generation (i.e. g∗ = 3) with mp = 0.03.

Each child (for which the sets Sin and Sout have been decided after crossover and mutation)

is optimised by solving F(Sin, Sout). Note here that we cannot guarantee that we get a feasible

solution when we solve this subset optimisation problem, i.e. it is possible that there is no

feasible child given the choice that has been made of Sin and Sout via crossover and mutation.

In the event that the offspring solution is infeasible it is disregarded.



CHAPTER 4. HEURISTIC ALGORITHMS FOR THE CCEF 82

In our GA to generate a new population we combine the |P | members of the current

population with the set of feasible children, sort the portfolios in this combined set into

increasing risk (variance) order and take the first |P | members of this ordered list to constitute

the new population for the next generation. At the end of the GA process the |P | portfolios

in the final population contribute to the cardinality constrained efficient frontier (though note

here that we do eliminate at this stage any portfolios that are dominated by others in the final

population). Our GA heuristic algorithm is given in psuedocode in Algorithm 1.
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Rmin be the minimum expected return for all assets, thus Rmin = min[µi|1, ..., N ]

Rmax be the maximum expected return for all assets, thus Rmax = max[µi|1, ..., N ]

Oxy be the offspring of x ∈ Q1 and y ∈ Q2, and consists of

O∗ be the set of feasible offspring

P ∗ be the set of feasible offspring and current generation members

G the number of iterations

begin
for R := Rmin, ..., Rmax do /examine R values equally spaced in [Rmin, Rmax]/

Q1, Q2, O
∗, P ∗ := ∅

initialise P := {P1, ..., P100} /random initialisation, Sin = max[2K, 20] assets/

determine Sout := [1, ..., N ]− Sin ∀p ∈ P
solve F(Sin, Sout) ∀p ∈ P and sort by variance /subset optimisation/

for g := 1, ..., G do /G iterations in all/

select Q1, Q2 ∈ P by selection criteria
for x ∈ Q1 and y ∈ Q2 do /crossover to produce offspring/

Sin := {i ∈ (1, ..., N)|i ∈ x ∩ y}
Sout := {i ∈ (1, ..., N)|i /∈ x ∪ y}

if g := g∗ then /mutation/

for i ∈ Sin and j ∈ Sout do
Sin := Sin ∪ [j]− [i]
Sout := Sout ∪ [i]− [j]
end for

end if
solve F(Sin, Sout) /subset optimisation/

if F(Sin, Sout) is feasible then /evaluate solution/

O∗ := O∗ ∪Oxy /collects feasible offsprings/

end if
end for
P ∗ := P ∪O∗ and sort by variance /combine offspring with current population/

P := first |P | in P ∗ /new population/

end for
end for
end

Algorithm 1: GA heuristic algorithm psuedocode
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4.3.2 A Genetic Algorithm Heuristic Example

To illustrate how our GA heuristic algorithm minimises risk in a portfolio, we created a ten

asset problem. For illustrative purposes we use different parameter values than those given

in Section 4.3.1. In this example, we use ten assets (i.e. {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}), an initial

population of size 7 with each portfolio containing six assets using our GA heuristic algorithm

selection criteria. Those seven portfolios undergo the subset optimisation process where they

are reduced to the defined cardinality of K = 3, and we determine the portfolio risk (in terms

of variance) and portfolio return for the specific Rmin and Rmax values.

In Table 4.1, we display our selection results for Rmin = 0.003953 and Rmax = 0.004376,

along with the parent set selections (using q = 2). If we consider portfolio P2 in Table 4.1, it

has a random selection of 2K assets {1, 3, 5, 7, 8, 9}. Those randomly selected assets undergo

subset optimisation which results in the portfolio {1, 5, 7} having a portfolio return of 0.004011

and portfolio risk (variance) of 0.021050. P2 has been placed in the parent set Q1 because

it has one of the four lowest portfolio risk values, while a portfolio such as P4 has not been

chosen for a parent set because it has one of the highest portfolio risk (variance) values.

Portfolio Random Portfolio Portfolio Portfolio Parent
Generation Assets Return Risk Set

(after subset (variance)
optimisation)

P1 {1,2,4,7,9,10} {2,7,10} 0.003936 0.023011
P2 {1,3,5,7,8,9} {1,5,7} 0.004011 0.021050 Q1

P3 {2,3,5,7,9,10} {3,5,9} 0.003953 0.021174 Q2

P4 {3,4,6,7,8,10} {4,6,8} 0.003953 0.022154
P5 {2,4,5,6,8,10} {5,6,10} 0.004169 0.022908
P6 {1,2,4,7,8,9} {4,5,10} 0.003953 0.019497 Q1

P7 {2,3,5,8,9,10} {3,8,10} 0.003987 0.020258 Q2

Table 4.1: GA Heuristic Algorithm Selection Example

Once the selection process is completed the parental portfolios are subject to crossover

and mutation. In Figure 4.1 we illustrate this process for the parent portfolios of P6 and P7

given in Table 4.1. Figure 4.1 shows that once the parental sets have been decided Sin and

Sout are determined. In this case, Sin={10} because asset 10 is in both portfolios P6 and
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P7, while Sout={1,2,6,7,9} because these assets are not present in either portfolios P6 or P7.

Subset optimisation is next. This process results in an offspring portfolio {3,4,10} that has

return 0.003953 and risk (variance) 0.018247.

 

 Parent Sets                         

   

Crossover Process                Sin ={10}  

                                                   Sout ={1,2,6,7,9} 

                                                  solve F(Sin, Sout)   

 

Offspring Portfolio   

Offspring Portfolio Return   0.003953 

Offspring Portfolio Risk    0.018247 

              (Variance) 

          

 Mutation Process   Sin ={3,4,10}       Sout ={1,2,5,6,7,8,9} 

           3є Sin                          9є Sout 

      Sin ={4,9,10}       Sout ={1,2,3,5,6,7,8} 

                                                  solve F(Sin, Sout)   

 

Mutated Offspring 

       Portfolio 

Mutated Offspring Portfolio Return   0.003953 

Mutated Offspring Portfolio Risk   0.017951 

                       (Variance) 

 

P6={4,5,10} P7={3,8,10} 

{4,9,10} 

{3,4,10} 

Figure 4.1: GA Heuristic Algorithm Crossover and Mutation Example

In the mutation process Sin and Sout are once again determined. Sin being all assets in the

offspring portfolio and Sout representing those assets not present in the offspring portfolio. An

asset is randomly chosen from the offspring (in this case 3) and an asset is randomly chosen

from Sout (in this case 9). Those assets are then interchanged (i.e. 3 is placed in Sout while 9 is

placed in Sin), then subset optimisation takes place to obtain the new portfolio risk (variance)

and return levels of the mutated child (consisting of {4, 9, 10}). Note here that although

the assets in the portfolios have not changed, subset optimisation also determines optimal

proportions to be invested in each asset. The mutated child (being a feasible solution) would
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then be added to the original population. The seven portfolios with the lowest risk (variance)

would be chosen to form the next generation. In this example, when the child portfolio

produced by portfolios P6 and P7, OP6P7 , is added to the population of all portfolios, P1 has

the highest portfolio risk (variance), and would therefore be removed from the population.

The process would then be continued until the termination criteria have been met.

4.3.3 A Tabu Search Heuristic Algorithm

In our TS heuristic algorithm, given the desired return of R, we first generate |P | = 100

different portfolios, as for our GA, and then select the portfolio with the lowest risk (variance)

as the initial starting solution. Let Sin be the set of assets in this initial solution.

In our approach we have a candidate list C of assets that can be considered for inclusion

in the current solution, and a tabu list T of assets that cannot be considered. Initialise C with

the N/3 assets with the highest return (excluding assets in Sin). Initialise T with the assets

in [1, ..., N ]− Sin ∪ C.

In our TS heuristic algorithm, we at each iteration, randomly select an asset i in the

current portfolio and replace it by a randomly selected asset j in the candidate list C. Then

we solve the subset optimisation problem F(Sin, Sout) with Sout = [1, ..., N ] − Sin. If the

resulting portfolio from this optimisation is better (of lower risk) than the current solution

then it replaces the current solution and asset i is added to the tabu list T . However, if the

resulting portfolio from this optimisation is not better than the current solution then asset j

is added to the tabu list T . The candidate list is then updated by adding assets from the tabu

list that are no longer tabu, i.e. those assets who have served their tabu tenure are placed in

the candidate list. We terminate our TS heuristic algorithm after a fixed number of iterations

and use a tabu tenure of 7. Our TS heuristic algorithm is given in psuedocode in Algorithm

2.
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S∗ be the initial solution

S∗c be the current solution

S∗p be the resulting portfolio from the subset optimisation

begin
for R := Rmin, ..., Rmax do /examine R values equally spaced in [Rmin, Rmax]/

initialise P := {P1, ..., P100} /random initialisation, Sin = max[2K, 20] assets/

determine Sout := [1, ..., N ]− Sin ∀p ∈ P
solve F(Sin, Sout) ∀p ∈ P /subset optimisation/

S∗ := {p ∈ P |minσ2
p} /initial solution/

initialise C:={the N/3 assets with highest

return excluding assets in S∗}
initialise T := {[1, ..., N ]− S∗ ∪ C}

for g := 1, ..., G do /G iterations in all/

S∗c := S∗

randomly select i ∈ S∗c and j ∈ C
Sin := S∗c ∪ [j]− [i] /neighbourhood solution/

Sout := [1, ..., N ]− Sin
solve F(Sin, Sout) /subset optimisation/

if F(Sin, Sout) is feasible then /evaluate solution/

if σ2
S∗p
< σ2

S∗c
then

S∗ := S∗p /move/

T := T ∪ [i] /update tabu list/

else
S∗ := S∗c /no move/

T := T ∪ [j] /update tabu list/

end if
end if
if F(Sin, Sout) is infeasible then /evaluate solution/

T := T ∪ [j] /update tabu list/

end if
check T and update C /determine assets who have served

tabu tenure and place in C/

end for
end for
end

Algorithm 2: TS heuristic algorithm psuedocode
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4.3.4 A Simulated Annealing Heuristic Algorithm

In our SA heuristic algorithm, given the desired return of R, we generate an initial starting

solution (a set Sin of assets in the portfolio) in the same manner as in our TS heuristic

algorithm above.

At each iteration we randomly select an asset i in the current solution Sin and swap it with

a randomly selected asset j not in the current solution (therefore j 6∈ Sin). Then we solve the

subset optimisation problem F(Sin, Sout) with Sout = [1, ..., N ]−Sin. If the portfolio resulting

from this optimisation is better (of lower risk) than the current solution then it replaces the

current solution. If it is worse than the current solution then it is accepted (so replacing the

current solution) with probability e−(difference in solution risk values)/(current temperature). The

current temperature is reduced by a constant (cooling) factor at each iteration.

We terminate our SA heuristic algorithm after a fixed number of iterations. In the compu-

tational results given in Section 4.4 we use a cooling factor of 0.95 and an initial temperature

derived from the objective function value of the initial starting solution. Our SA heuristic

algorithm is given in psuedocode in Algorithm 3.



CHAPTER 4. HEURISTIC ALGORITHMS FOR THE CCEF 89

Temp be the current temperature

α be the cooling factor

begin
for R := Rmin, ..., Rmax do /examine R values equally spaced in [Rmin, Rmax]/

initialise P := {P1, ..., P100} /random initialisation, Sin = max[2K, 20] assets/

determine Sout := [1, ..., N ]− Sin ∀p ∈ P
solve F(Sin, Sout) ∀p ∈ P /subset optimisation/

S∗ := {p ∈ P |minσ2
p} /initial solution/

Temp := min[σ2
p|p ∈ P ]/10 /initialise SA parameters/

α := 0.95
for g := 1, ..., G do /G iterations in all/

S∗c := S∗

randomly select i ∈ S∗c and j /∈ S∗c
Sin := S∗c ∪ [j]− [i]
Sout := [1, ..., N ]− Sin
solve F(Sin, Sout) /subset optimisation/

if F(Sin, Sout) is feasible then /evaluate solution/

if σ2
S∗p
< σ2

S∗c
then S∗ := S∗p /move/

else
r:= a random number from [0, 1]

if r > exp
−(σ2

S∗c
−σ2

S∗p
)/Temp

then /criteria for accepting worse portfolio/

S∗ := S∗p
end if

end if
Temp := αTemp /update temperature/

end for
end for
end

Algorithm 3: SA heuristic algorithm psuedocode
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4.4 Computational Results

In this Section we present the data sets (Section 4.4.1), CPLEX results (Section 4.4.2), percent-

age deviation calculations (Section 4.4.3), the heuristic algorithms’ parameter values (Section

4.4.4), and the heuristic algorithms’ results for the CCEF (Section 4.4.5).

4.4.1 Data Sets

We tested the performance of our GA, TS and SA heuristic algorithms for finding the car-

dinality constrained efficient frontier using publicly available test problems relating to seven

major market indices, available from the OR-Library (Beasley, [6]).

Five of our market indices were the Hang Seng (Hong Kong), DAX 100 (Germany), FTSE

100 (UK), S&P 100 (USA) and the Nikkei 225 (Japan), as taken from

http://people.brunel.ac.uk/∼mastjjb/jeb/orlib/portinfo.html. All of these problems were pre-

viously considered by Chang et al. [13]. The remaining two market indices were the S&P 500

(USA) and Russell 2000 (USA), as taken from

http://people.brunel.ac.uk/∼mastjjb/jeb/orlib/indtrackinfo.html. The size of our seven test

problems ranged from N = 31 (Hang Seng) to N = 1318 (Russell 2000). We used li = 0.01,

ui = 1 (i = 1, ..., N) and K = 10.

As we are interested in the cardinality constrained efficient frontier our results below are

for tracing out this frontier using 50 equally spaced desired return levels R between the return

level associated with the minimum variance unconstrained portfolio Rmin and the return level

associated with the maximum asset return Rmax = max[µi|i = 1, ..., N ].

Our heuristic algorithms were implemented using AMPL and its associated script language.

The solver we used was CPLEX (version 11.0). The system runs under Windows NT and in

our computational work we used an Intel Core2 pc with a 2.40 GHz processor and 3.24 GB

RAM.
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4.4.2 CPLEX Results

Before using the heuristic algorithm approaches presented above to solve the CCEF we in-

vestigated using CPLEX to test how effectively it could determine CCEFs. Potentially, for

example, should CPLEX be able to optimally solve for the CCEF, i.e. to optimally solve

the CCEF QMIP (minimise equation (2.1) subject to equations (2.2)-(2.4), and equations

(2.22)-(2.23)), there may be no need for any heuristic algorithm approaches.

We considered two cases for the cardinality constraint: one in which equality is considered

(thus
∑N

i=1 δi = K as in equation (2.23)) and the other where the equality in equation (2.23)

is replaced by inequality, hence
∑N

i=1 δi ≤ K.

We tested CPLEX (version 11.0) on one of the smaller test problems (DAX 100, N=85

assets) and the results are shown in Table 4.2. As mentioned above in Section 4.4.1 these

results are for 50 equally spaced return levels. Therefore, for example, in this Table we have

that for the DAX with K = 5 and equality in terms of the number of chosen assets to trace

out the CCEF at these 50 return levels required 58336 seconds (over 16 hours).

K=2 K=3 K=4 K=5

Equality case
(precisely K assets in the portfolio) 62 527 6984 58336

Inequality case
(6 K assets in the portfolio) 19 50 106 138

Table 4.2: Computation time (seconds) for the DAX CCEF using CPLEX

It is clear from Table 4.2 that the inequality case (for the DAX at least) is computationally

far easier than the equality case. We also attempted to solve the largest test problem (Russell

2000, N=1318 assets) for the same set of eight cases (K = 2, 3, 4, 5 and equality/inequality)

as shown in Table 4.2. CPLEX was unable to solve even a single one of these eight cases (not

even K = 2, inequality) within a time limit of 7200 seconds (2 hours).

Based on Table 4.2 and our work with Russell 2000, N=1318 assets we would conclude

that solving the CCEF QMIP (for the equality case) using CPLEX is not a computationally
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effective approach. As such we are justified in adopting heuristic algorithm approaches to the

problem. Note here that these results for CPLEX accord with other results presented in the

literature (Shaw et al., [64]; Bertsimas and Shioda, [8]), albeit those results relate to an earlier

version of CPLEX.

4.4.3 Percentage Deviation Calculations

In general for measuring the quality of a heuristic algorithm, one would like to measure the

deviation of the heuristic algorithm solution from the optimal solution. However for the

CCEF, as the results in Table 4.2 illustrate, the optimal frontier is typically unknown. As

such in measuring the quality of the results produced by our heuristic algorithms we adopt

the same approach as used previously by Chang et al. [13]. This involves calculating the

percentage deviation of points on the heuristically calculated CCEF from the unconstrained

efficient frontier (which can be easily calculated using QP). This method as presented by

Chang et al. [13] is set out below.

Let (xi, yi) be the discrete (x-coordinate: standard deviation, y-coordinate:

return) values on our UEF. For a portfolio with (x∗, y∗) let j correspond to yj =

min[yi|yi > y∗] and k correspond to yk = max[yi|yi 6 y∗] (i.e. yj and yk are the

closest y-coordinates bracketing y∗). Simple geometry enables us to say that the

value x∗∗ associated with the x-direction linearly interpolated point on the UEF

with y = y∗ (i.e. looking horizontally) is x∗∗ = xk + (xj − xk)[(y∗ − yk)/(yj −

yk)]. A convenient percentage deviation error measure for this direction is then

|100(x∗ − x∗∗)/x∗∗| (note here that no value is calculated if either j or k do not

exist).

To derive an expression for linear interpolation in the y-direction: let j cor-

respond to xj = min[xi|xi > x∗] and k correspond to xk = max[xi|xi > x∗] (i.e.

xj and xk are the closest x-coordinates bracketing x∗). Then y∗∗ associated with

the y-direction linearly interpolated point on the UEF with x = x∗ (i.e. looking

vertically) is y∗∗ = yk + (yj − yk)[(x∗ − xk)/(xj − xk)]. A convenient percentage

deviation error measure for this direction is then |100(y∗ − y∗∗)/y∗∗| (note here
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that no value is calculated if either j or k do not exist).

4.4.4 Heuristic Algorithms’ Parameter Values

In creating heuristic algorithms for genetic algorithm, tabu search and simulated annealing an

important step is the assignment of parameter values (e.g. for population size, tabu tenure,

and cooling factor) which pose a trade-off between efficiency and effectiveness. In this Section,

we answer the questions of, Why and How exactly did we decide upon the parameter values?

We investigated parameter values on the smallest data set (Hang Seng, N = 31 assets)

and the results (for mean and median percentage errors as well as the computation time in

seconds) are given in Table 4.3 (for genetic algorithm), Table 4.4 (for tabu search) and, Table

4.5 (for simulated annealing). As mentioned earlier in Section 4.4.1 these results are for 50

equally spaced desired return levels.

Genetic Algorithm Heuristic Algorithm Parameter Values

Within the framework of the GA heuristic algorithm we had to decide parameters that re-

lated to the operators of selection (population size parameter), crossover (parental set size

parameter), and mutation (mutation probability parameter).

We began with the selection operator by varying population sizes. Alander [4] suggested

that a population size around 50 to 200 is suitable for most problems, thus we tested |P | =

50, 100 and 150. The best mean percentage error was given when |P | = 50, which is a

small population and would not allow sufficient room to explore the search space effectively

especially when considering we would be incorporating larger market indices (such as the

S&P 500 with 457 assets or the Russell 2000 having 1318 assets). The difference between the

mean percentage error of |P | = 50 and |P | = 100 is only 0.0005% with |P | = 100 offering

more opportunities to explore the entire search space. The best median percentage error

occurred when |P | = 100, suggesting that there were many low values and the higher mean

percentage error was the result of a few high percentage error values. |P | = 150 was the most

computationally expensive, offering both the highest mean and median percentage errors.
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Using all this information, we decided to use a population size of 100.

With the population size determined (i.e. we are working in a sequential fashion to the

GA heuristic algorithm process to decide parameter values) we next had to determine the

crossover operator parameter value of parental set size. Hence, we tried q = 3, 5 and 7. The

smallest q value of 3 gave the best mean percentage error and times of 0.6959% and 47 seconds,

respectively. This mean percentage error had a difference of 0.1541% with the second best

mean percentage error given by q = 5. The best median percentage error occurred when

q = 5, once again suggesting that there were many low values and the higher mean percentage

error was the result of a few high percentage error values. The most computationally time

consuming parental set was q = 7 which also offered the highest median percentage error of

0.7457% and the second highest mean percentage error of 0.7668%. These results suggested

to us that it would be better to use q = 5 which had the better median percentage error and

gave more chances for crossover than q = 3 in the population.

Our final decision for the GA heuristic algorithm was the assignment of the mutation

probability for the population. As we stated earlier in Section 2.5.1, mutation is a secondary

operator used with low probability. As a result we tried mp values of 0.01, 0.03 and 0.05.

The mutation probability having the best mean percentage error was 0.01, which was only

0.0303% more than the mean percentage error than mp = 0.03. The best median percentage

error was 0.5873% which came from both mp = 0.03 and mp = 0.05. But, mp = 0.05 posted

the worst values on time and mean percentage error. In light of this, we decided that we would

use mp = 0.03 which appeared to best keep the benefits of crossover of the three mutation

probabilities.

In Table 4.3 the parameters values relating to population size, parental set sizes and

mutation probabilities are all given.

Tabu Search Heuristic Algorithm Parameter Values

With the population size already having been determined from the GA heuristic algorithm we

turn our attention to the TS heuristic algorithm and focus on the parameter relating to tabu
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Percentage error Population Sizes Parental Sets Mutation Rates

& time |P | = 50 |P | = 100 |P | = 150 q = 3 q = 5 q = 7 mp = 0.01 mp = 0.03 mp = 0.05

Mean 0.8496 0.8501 0.9100 0.6959 0.8501 0.7668 0.8197 0.8501 0.9089

Median 0.5989 0.5873 0.6105 0.6104 0.5873 0.7457 0.6103 0.5873 0.5873

Time (seconds) 64 76 112 47 76 124 67 76 101

Table 4.3: GA Heuristic Algorithm Parameter Test Values

tenure. For this parameter we tested the three values of 5, 7 and 10.

The tabu tenure of 5 had the best mean percentage error value, while the best median

percentage error occurred with a tabu tenure of 7. The tabu tenure of 10 produced the highest

computational time as well as mean and median percentage error. We decided to use a tabu

tenure of 7 because of two main reasons. The first is because despite the fact that the tabu

tenure of 5 has attractive results with the Hang Seng data, a small tabu tenure can cause

cycling within the search space. Then, secondly our chosen tabu tenure would be in keeping

with Glover and Languana [29] who suggested a minimum tabu tenure of 7. The tabu tenure

of 10, although not very large we felt may cause appealing moves to be forbidden and lead to

the exploration of lower quality solutions. In Table 4.4 the tabu tenure test parameter values

are all given.

Percentage error Tabu Tenure
& time 5 7 10
Mean 0.7645 0.8234 1.1529

Median 0.4173 0.3949 0.5169
Time (seconds) 69 76 84

Table 4.4: TS Heuristic Algorithm Parameter Test Values

Simulated Annealing Heuristic Algorithm Parameter Values

For the SA heuristic algorithm the parameter we needed to decide is the constant factor α

which relates to the cooling schedule. The typical range for this value is between 0.90 and

0.99. For this parameter we tested three α values of 0.90, 0.95 and 0.975. After examining

the results we decided to use α = 0.95 because it gave the best mean and median percentage
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error in a reasonable time.

In Table 4.4 the cooling schedule test parameter values are all given.

Percentage error Constant Factor
& time α = 0.90 α = 0.95 α = 0.975
Mean 1.5806 1.0589 1.0913

Median 1.5791 0.5355 0.9094
Time (seconds) 67 76 86

Table 4.5: SA Heuristic Algorithm Parameter Test Values

4.4.5 Heuristic Algorithms’ Results for the CCEF

We have divided this Section into two parts: trade-off curves and tabular heuristic algorithms’

results for the CCEF. In the first Section we consider only the DAX 100 Market Index trade-off

curves. Then in the second Section we consider all of the Market Indices mentioned in Section

4.4.1. Within each Section we show how our results compare to those of Chang et al. [13].

The computational results reported (as mentioned above) examine 50 equally spaced return

levels.

Trade-off Curves

In creating portfolios, the decision maker is faced with a different CCEF trade-off curve for

each value of K and thus must consider the tradeoff between risk, return and the number of

assets in the portfolio when deciding which portfolio to adopt. In this Section, we graphically

depict the UEF, the tradeoff curves (for K = 2, 3, 4, 5) that we were able to obtain for our

GA heuristic algorithm and those tradeoff curves Chang et al [13] obtained for the same K

values using their pooled heuristic algorithms (GA, TS and SA) results from the DAX 100

Market Index. In both Chang et al. [13] and our work we use li = 0.01 and ui = 1.

Figure 4.2 illustrates the DAX trade-off curves for K = 2 and K = 4, while Figure 4.3

illustrates the DAX trade–off curves for K = 3 and K = 5. If we consider K = 5 in Figure

4.3, we can see portfolios at return levels which appeared to be discontinuities in the Chang
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et al. [13] results. The same is true also for all K values. Pictorially it is seen that in all cases

of K, our results gives the investor more risk-return choices and better quality solutions to

use for making a decision.

Tabular Heuristic Algorithms’ Results for the CCEF

With regard to the number of iterations, which is the termination criteria for both our TS

and SA heuristic algorithms, we used 100 iterations at each return level for the TS heuristic

algorithm and 50 iterations at each return level for the SA heuristic algorithm. Our GA

heuristic algorithm was repeated for 4 generations (as was stated earlier).

In Table 4.6 we show for each of our data sets and each of our heuristic algorithms: the

mean, median, maximum and minimum percentage errors as well as the computation time

in seconds. Also presented in Table 4.6 are the mean and median percentage errors and

computation time for the five smaller test problems as given in Chang et al. [13] using their

GA, SA and TS heuristic algorithms.

In Figure 4.4 we display the undominated points obtained for each of our heuristic algo-

rithms for the Russell 2000 Index Market. The figure shows that the GA and TS heuristic

algorithms were able to produce many portfolios for estimating the UEF while, the SA heuris-

tic algorithm produce few portfolios and did not have the same quality of solution as the GA

and TS heuristic algorithms.

Considering our GA, TS and SA heuristic algorithms as presented in this thesis, labeled

(Woodside-Oriakhi in Table 4.6), it seems reasonable to conclude from the values presented

at the foot of Table 4.6 (in the row Average, all problems) that SA heuristic algorithm is not

competitive with GA and TS heuristic algorithms. Our TS heuristic algorithm (on average)

gives better quality results than our GA heuristic algorithm but at the expense of more com-

putation time. For example, over all problems, the mean error for our TS heuristic algorithm

is only 0.8512% in an average of 351 seconds, compared to a mean error of 1.3163% in an

average of 125 seconds for our GA heuristic algorithm. However for all heuristic algorithms

the computation time is not excessive, the largest computation time (given by the SA heuristic
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Figure 4.2: DAX 100 Trade-off Curves for K = 2 and K = 4
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Figure 4.4: Russell 2000 GA, TS and SA Heuristic Algorithms’ Results
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algorithm for the Russell 2000) seen in Table 4.6 being 868 seconds, approximately 15 minutes.

Comparing, for the five smaller test problems, our results with the results for the GA,

SA and TS heuristic algorithms of Chang et al. [13] it seems reasonable to conclude from the

averages over these five test problems that our GA and TS heuristic algorithms give solutions

of significantly better quality than the GA and TS heuristic algorithms of Chang et al.. For

example, over all five smaller test problems: our GA heuristic algorithm has a mean error of

0.4827%, the GA heuristic algorithm of Chang et al. [13] a mean error of 1.2269%; our TS

heuristic algorithm has a mean error of 0.7510%, the TS heuristic algorithm of Chang et al.

[13] a mean error of 1.9022%; our SA heuristic algorithm has a mean error of 1.4391%, the

SA heuristic algorithm of Chang et al. [13] a mean error of 1.5774%.

Moreover for these five test problems it seems that our GA heuristic algorithm outperforms

our TS heuristic algorithm, both with respect to solution quality and computation time. Our

GA heuristic algorithm has a mean error of 0.4827% in an average of 90 seconds, our TS

heuristic algorithm has a mean error of 0.7510% in an average of 213 seconds.

With regard to computation time the times given for the work of Chang et al. [13] relate

to different hardware than we have used. Utilising Dongarra [21] it is possible to make an

approximate estimate of the relative speed of the hardware involved. On this basis the

computation times for the work of Chang et al. [13] as shown in Table 4.6 should be divided by

a factor of 70 to be comparable with the hardware we have used. As such we can conclude that

for these smaller test problems our GA heuristic algorithm takes longer, but gives better quality

results in a reasonable time (less than two minutes), than any of the heuristic algorithms of

Chang et al. [13].

As we have a number of results from different heuristic algorithm approaches we can pool

results, i.e. combine together the efficient portfolios from each of the heuristic algorithms and

eliminate any portfolios that are dominated. In Table 4.7 we show the pooled results as given

in Chang et al. [13] and present the pooled results for our three heuristic algorithms.

Comparing the averages at the foot of Table 4.7 (in the row Average, all problems) it

seems clear that there is little advantage to including results from our SA heuristic algorithm in
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pooling, rather the best pooled results come from pooling our GA and TS heuristic algorithms.

Comparing pooled results for GA and TS heuristic algorithms with the individual results for

GA and TS as presented at the foot of Table 4.6 it seems clear that the quality of results are

improved considerably by pooling. For example, the mean error from pooling our GA and

TS heuristic algorithms is 0.5506%, our GA and TS heuristic algorithms individually have

mean errors of 1.3163% and 0.8512% respectively. In Figure 4.5 we display the UEF and the

undominated pooled heuristic algorithms results for the Russell 2000 Index Market. From

Table 4.7, we notice that the pooled results of the GA, TS and SA heuristic algorithms is the

same as the pooled results of GA and TS heuristic algorithms for the Russell 2000 indicating

that all the SA heuristic algorithm results were dominated by those of either the GA or the

TS heuristic algorithms. This example shows there was no advantage in including the SA

heuristic algorithm.

For the five smaller test problems the pooled results from our GA and TS heuristic al-

gorithms are of better quality than the pooled results for all three of the Chang et al. [13]

heuristic algorithms, the mean error from pooling our GA and TS heuristic algorithms for

these test problems is 0.4760%, the mean error from the pooled Chang et al. [13] heuristic

algorithms is 1.1569%.

4.5 Summary

In this Chapter we presented heuristic algorithms for finding the cardinality constrained ef-

ficient frontier. We began in Section 4.2 by presenting an optimisation model that allowed

us to specify subsets of assets for which we knew whether they were to be included in or

excluded from the chosen portfolio. We called this model the subset optimisation problem

which underlies each of our heuristics.

Then, in Section 4.3, we outlined our heuristic algorithm implementation of genetic al-

gorithm, tabu search and simulated annealing for finding the CCEF. This was followed by

Section 4.4 where we gave computational results for our heuristic algorithms on test problems

considered previously in the literature, as well as on two larger test problems involving 457
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and 1318 assets.

Within the computational results we justified our use of heuristic algorithms for finding the

CCEF and explained how and why we used our chosen parameter values. We then went on to

highlight how our results for the DAX 100 Market Index trade-off curves and those for finding

the CCEF compared to those of Chang et al. [13]. We showed that in both cases our results

gives more risk-return choices and a better quality solution than previous heuristic algorithms

presented in the literature, albeit at the expense of more computation time. However, in all

cases, our computation times were reasonable and were never more than fifteen minutes on a

modern computer, even for the largest problem.



Chapter 5

Transaction Cost: Heuristic

Algorithms

5.1 Introduction

In Chapter 3 we presented optimal solutions for the transaction cost optimisation model then,

in Chapter 4 we applied heuristic algorithms to the cardinality constrained efficient frontier.

This Chapter builds upon that work by applying the heuristic algorithms of Chapter 4 to the

transaction cost models of Chapter 3 to rebalance an existing portfolio. In other words, in

this Chapter we use heuristic algorithms to create the portfolio (and efficient) frontier for the

non-cardinality and cardinality constrained transaction cost optimisation models.

The remainder of this Chapter is organized as follows. In Section 5.2 we give the subset

optimisation problem. This is followed by the heuristic algorithms and data sets in Sections 5.3

and 5.4 respectively. The non-cardinality constrained transaction cost heuristic algorithms’

results are provided in Section 5.5 while, the cardinality constrained transaction cost heuris-

tic algorithms’ results are made available in Section 5.6. The Chapter is concluded with a

summary in Section 5.7.

107
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5.2 Subset Optimisation

As was stated in Chapter 4, in this thesis the heuristic algorithms make use of subset opti-

misation, that allows us to specify subsets of assets for which we know their status (either

in or out of the chosen portfolio). Each of the transaction cost models (non-cardinality and

cardinality constrained) has their own subset optimisation model. Below we state the subset

optimisation for the cardinality constrained transaction cost problem and in the discussion

that follows state the difference which occurs with the two models.

The notation is the same as was adopted in previous chapters, so they are not repeated

here.

Minimise
N∑
i=1

N∑
j=1

σijwiwj (5.1)

subject to

RL 6

∑N
i=1 µiPixi∑N
k=1 Pkxk

6 RU , (when linearised), (5.2)

Lsiα
s
i 6 ysi 6 U si α

s
i , i = 1, . . . , N, (5.3)

Lbiα
b
i 6 ybi 6 U bi α

b
i , i = 1, . . . , N, (5.4)

αsi + αbi 6 1, i = 1, . . . , N, (5.5)

xi = Xi + ybi − ysi , i = 1, . . . , N, (5.6)

Gi = csiy
s
i + cbiy

b
i + fsi α

s
i + f bi α

b
i , i = 1, . . . , N, (5.7)

N∑
i=1

Gi 6 D, (5.8)

N∑
i=1

Pixi =

N∑
i=1

PiXi + V new −
N∑
i=1

Gi, (5.9)

wi =
Pixi∑N

k=1 PkXk + V new
, i = 1, . . . , N, (5.10)

li 6
Pixi∑N
k=1 Pkxk

,6 ui, (when linearised), i = 1, . . . , N, (5.11)
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N∑
i=1

δi = K, (5.12)

N∑
i=1

αsi 6 KS , (5.13)

N∑
i=1

αbi 6 KB, (5.14)

N∑
i=1

(αsi + αbi ) 6 KT , (5.15)

∑
i∈Sin

δi = min[|Sin|,K], (5.16)

δi = 0, ∀i ∈ Sout, (5.17)

δi = 0 or 1, i = 1, . . . , N, (5.18)

wi 6 δi, i = 1, . . . , N, (5.19)

xi > Lbiδi ifXi = 0, i = 1, . . . , N, (5.20)

ybi > Lbiδi ifXi = 0, i = 1, . . . , N, (5.21)

αbi > δi ifXi = 0, i = 1, . . . , N, (5.22)

ysi > Xi(1− δi) ifXi > 0, i = 1, . . . , N, (5.23)

αsi > 1− δi ifXi > 0, i = 1, . . . , N, (5.24)

wi, xi, y
s
i , y

b
i , Gi ≥ 0, i = 1, . . . , N, (5.25)

αsi , α
b
i ∈ [0, 1], i = 1, . . . , N. (5.26)

Equations (5.1), (5.3)-(5.12) and (5.19)-(5.26) are as in the cardinality constrained trans-

action cost model (minimise equation (3.35) subject to equations (3.36)-(3.46) and equations

(3.50)-(3.55)). Equation (5.2) constrains the chosen portfolio’s expected return to be within

the desired return range, [RL,RU ]. Equation (5.16) forces all assets in Sin into the portfolio

if |Sin| 6 K and chooses K assets from Sin if |Sin| > K. Equation (5.17) ensures that assets

in Sout are not placed in the chosen portfolio while, equation (5.18) declares that the binary

decision variables are zero or one.

For the non-cardinality constrained transaction cost subset optimisation problem we re-
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move the cardinality constraint (equation (5.12)) and replace equation (5.16) with

∑
i∈Sin

δi = |Sin| (5.27)

This equation forces all assets in Sin to be in our portfolio. Equations (5.1)-(5.11) and (5.17)-

(5.24) remain the same for the non-cardinality constrained transaction cost subset optimisation

problem.

The non-cardinality and cardinality constrained transaction cost subset optimisation prob-

lem (equations (5.1)-(5.11) and (5.17)-(5.27) and equations (5.1)-(5.24) respectively) like the

cardinality constrained model (equations (2.1)-(2.4) and equations (2.21)-(2.23)) and the sub-

set optimisation problem for finding the CCEF (equations (4.1)-(4.9)) are all QMIP. They

can be solved relatively quickly to proven optimality, provided that the number of assets for

which we have to make a decision as to whether they are to be included in or excluded from

the chosen portfolio is small (i.e. N − |Sin ∪ Sout| is small).

5.3 Heuristic Algorithms

The three heuristic algorithms based upon genetic algorithm, tabu search and simulated an-

nealing are the same as was represented in Chapter 4 (sections 4.3.1, 4.3.3 and 4.3.4 that we

have developed for finding the CCEF). This is owing to the fact that our structure in

Chapter 4 is so general it can be applied to the transaction cost model. The only

change required is to the subset optimisation problem.

With regard to the number of iterations, we use the same criteria as before (in Chapter 4

Section 4.4.5). That is we use 100 iterations at each return level for the TS heuristic algorithm,

50 iterations at each return level for the SA heuristic algorithm and our GA heuristic algorithm

was repeated for 4 generations.
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5.4 Data Sets

We tested the performance of our GA, TS and SA heuristic algorithms for finding the non-

cardinality and cardinality constrained transaction cost trading portfolio frontier using pub-

licly available test problems relating to six major market indices, available from OR-Library

(Beasley, [6]).

The market indices remain the same from Chapters 3 and 4. Subsequently, five of our

market indices were the Hang Seng (Hong Kong), DAX 100 (Germany), FTSE 100 (UK),

S&P 100 (USA) and the Nikkei 225 (Japan), as taken from

http://people.brunel.ac.uk/∼mastjjb/jeb/orlib/portinfo.html. The remaining market index

was the S&P 500 (USA), as taken from

http://people.brunel.ac.uk/∼mastjjb/jeb/orlib/indtrackinfo.html. The size of our six test

problems ranged from N = 31 (Hang Seng) to N = 457 (S&P 500). We used V new = 0,

li = 0, ui = 1 (i = 1, ..., N) and K = 10. The original portfolios (Xi) are the same as those

used in Chapter 3 for each market index. The values for Xi, Pi, L
s
i , L

b
i , U

s
i , U bi , fsi , f bi , csi and

cbi for all i = 1, . . . , N are found on the CD accompanying this thesis.

As we are interested in the (non-cardinality and cardinality constrained) transaction cost

portfolio (efficient) frontier our results below are for tracing out this frontier using 50 equally

spaced desired return levels R between the return level associated with the minimum variance

unconstrained portfolio Rmin and the return level associated with the maximum asset return

Rmax = max[µi|i = 1, ..., N ].

As was the case earlier (in Chapters 3 and 4), our heuristic algorithms were implemented

using AMPL and its associated script language. The solver we used was CPLEX (version

11.0). The system runs under Windows NT and in our computational work we used an Intel

Core2 pc with a 2.40 GHz processor and 3.24 GB RAM.
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5.5 Non-Cardinality Constrained Transaction Cost Heuristic

Algorithms’ Results

In this Section, we provide the GA (Section 5.5.1), TS (Section 5.5.2), SA (Section 5.5.3)

and pooled (Section 5.5.4) heuristic algorithms’ results for the non-cardinality constrained

transaction cost trading portfolio frontier.

Within each of the subsections, we make available the total computational time of the

heuristic algorithm(s), the percentage error of the undominated points produced by the heuris-

tic algorithm(s) from the unconstrained efficient frontier of the market index and the difference

in percentage error of the heuristic algorithm(s) efficient frontier and that produced by the

non-cardinality constrained efficient frontier (given in Chapter 3, Section 3.7).

Also included in each subsection are graphical illustrations of some of the results. All the

graphics include the trading portfolio frontier (dark blue) of the particular market index and

the original portfolio (red). Some diagrams contain the non-cardinality constrained trading

portfolio frontier of the original portfolio (blue stars) along with the trading portfolio frontier

produced by the heuristic algorithm (purple crosses) while the other illustrations will contain

the non-cardinality constrained efficient frontier of the original portfolio (purple squares) along

with the efficient frontier produced by the heuristic algorithm (blue crosses). Here we note

that some of the crosses, squares and stars have been made larger to aid the reader in being

able to see them.

5.5.1 Genetic Algorithm

Table 5.1 shows the computational times for the GA heuristic algorithm non-cardinality con-

strained transaction cost model. In the Table, we state the market indices, the number of

assets, the total computational times in seconds taken to create the GA heuristic algorithm

non-cardinality constrained transaction cost trading portfolio frontier and the average time

(in seconds) per return level for each of the GA heuristic algorithm points. Also, included

in Table 5.1 are the total computational time (in seconds) and average time (in seconds) per
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return level taken to compute the optimal solutions (as found in Chapter 3 Table 3.5).

Considering the Hang Seng market index (in Table 5.1) we see that the N = 31 assets

had a total computational time of 70 seconds and the average time per return level was 0.070

seconds for the optimal solution while for the GA heuristic algorithm the total computational

time was 146 seconds and the average time per return level was 3 seconds. Considering the

entire table, we note that each of the optimal solution times were quicker than those of the GA

heuristic algorithm. Hence, when comparing the optimal solution to that of the GA heuristic

algorithm the optimal solution provided the computational efficient way to solve this problem.

Optimal Solution GA Heuristic Algorithm
Market Assets Total Average time Total Average time

Index N Computational (seconds) Computational (seconds)

Time (seconds per return level Time (seconds) per return level

Hang Seng 31 70 0.070 146 3
DAX 100 85 271 0.271 374 7
FTSE 100 89 1273 1.273 551 11
S&P 100 98 1309 1.309 741 15

Nikkei 225 225 1490 1.490 1217 24
S&P 500 457 6016 6.016 5217 104
Average 2 27

Table 5.1: GA Heuristic Algorithm Computational Times for the Non-Cardinality Constrained
Transaction Cost Model

Table 5.2 gives the mean, median, minimum and maximum percentage error results for

the GA heuristic algorithm transaction cost non-cardinality constrained efficient frontier from

the unconstrained efficient frontier for each of the six market indices. Taking a look at the

S&P 100 we see that the mean percentage error is 16.2903%, the median percentage error

is 15.4661% while the minimum and maximum percentage errors are 9.1917% and 31.7860%

respectively.

The values in Table 5.2 are all over estimates because there exists the non-cardinality

constrained efficient frontier between the UEF and the values obtained by the GA heuristic

algorithm. Therefore, to derive an estimate of the percentage error of the heuristic algorithm

we subtract the particular percentage error of the non-cardinality constrained efficient frontier

from the equivalent percentage error of the efficient frontier of the heuristic algorithm. Hence,
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Figure 5.1: Hang Seng GA Heuristic Algorithm Transaction Cost Non-Cardinality Constrained
Trading Portfolio Frontier
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Figure 5.2: Hang Seng GA Heuristic Algorithm Transaction Cost Non-Cardinality Constrained
Trading Portfolio Efficient Frontier
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if we are to once again consider the S&P 100, from Table 3.3 the mean percentage error for

the non-cardinality constrained efficient frontier is given as 4.0098%. Thus, the percentage

error difference is given by 16.2903% (the mean percentage error of the GA heuristic algorithm)

minus 4.0098% (the mean percentage error of the non-cardinality constrained efficient frontier)

which equals 12.2805% (the mean percentage error difference). In a similar fashion, from Table

3.3 the median percentage error difference of the S&P 100 is 2.1712% for the non-cardinality

constrained efficient frontier. Taking 2.1712% from 15.4661% (the median percentage error of

the GA heuristic algorithm) gives 13.2949% (the median percentage error difference).

In Table 5.3 we present the percentage error differences of each of the market indices made

available in Table 3.3 (i.e. the Hang Seng, DAX 100, FTSE 100, S&P 100, Nikkei 225 and S&P

500). From the Table, the average mean percentage error difference for the non-cardinality

constrained case of all six markets for the GA heuristic algorithm was 14.5249% while the

average median percentage error difference (of all six markets) was 15.1069%.

Figures 5.1 to 5.4 graphically exhibit the GA heuristic algorithm non-cardinality con-

strained transaction cost trading portfolio frontier and then the efficient frontier for the Hang

Seng and the S&P 100. In Figures 5.1 and 5.3 we show the non-cardinality constrained trading

portfolio frontier and the trading portfolio frontier produced by the GA heuristic algorithm.

In Figures 5.2 and 5.4 the non-cardinality constrained efficient frontier and the GA heuristic

algorithm efficient frontier is shown. The Figures give a visual picture of the level of accuracy

the GA heuristic algorithm achieved in estimating the trading portfolio and efficient frontier

for the non-cardinality constrained transaction cost model. The graphics show that the ma-

jority of the GA heuristic algorithm portfolios were close to the particular non-cardinality

constrained frontier.

5.5.2 Tabu Search

Table 5.4 provides the TS heuristic algorithm total computational times for the non-cardinality

constrained transaction cost model. When considering how the TS heuristic algorithm per-

formed against the optimal solution, we note that the optimal solution provides a quicker

solution than the TS heuristic algorithm for the non-cardinality constrained problem.
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Now considering the TS heuristic algorithm results, we see that with the exception of

the Hang Seng, the average time per return level for each of the market indices was smaller

than those of the GA heuristic algorithm non-cardinality constrained case. For instance, the

average time per return level in the GA heuristic algorithm for the DAX 100 was 7 seconds,

while the TS heuristic algorithm had an average time per return level of 5 seconds for the

same market index. The S&P 500 had an average time per return level of 104 seconds for

the GA heuristic algorithm and the TS heuristic algorithm average time per return level (for

the S&P 500) was 74 seconds. Therefore, computationally for the non-cardinality constrained

transaction cost problem the TS heuristic algorithm is quicker than that of the GA heuristic

algorithm.

Optimal Solution TS Heuristic Algorithm
Market Assets Total Average time Total Average time

Index N Computational (seconds) Computational (seconds)

Time (seconds per return level Time (seconds) per return level

Hang Seng 31 70 0.070 188 4
DAX 100 85 271 0.271 258 5
FTSE 100 89 1273 1.273 391 8
S&P 100 98 1309 1.309 617 12

Nikkei 225 225 1490 1.490 1125 23
S&P 500 457 6016 6.016 3679 74
Average 2 21

Table 5.4: TS Heuristic Algorithm Computational Times for the Non-Cardinality Constrained
Transaction Cost Model

The percentage errors and the percentage error differences for the TS heuristic algorithm

are given in Tables 5.5 and 5.6 respectively. From Table 5.5 we note that for the TS heuristic

algorithm the average mean percentage error (of all market indices) was 18.7697% and the

average median percentage error (of all market indices) was 18.6186%. Both these values

are less than the average mean and median percentage errors (of all market indices) of the

GA heuristic algorithm for the non-cardinality constrained case (which was 21.0615% and

20.0682% respectively). Therefore, when considering only the GA and TS heuristic algorithms,

the TS heuristic algorithm provided a closer approximation to the non-cardinality constrained

efficient frontier than the GA heuristic algorithm.
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Furthermore, in considering Table 5.5 we note that the TS heuristic algorithm of the

FTSE 100, the Nikkei 225 and S&P 500 were the only three markets which produced better

TS heuristic algorithm results than those produced by the GA heuristic algorithm. In the

case of the FTSE 100 the mean and median percentage error for the GA heuristic algorithm

was 16.8221% and 17.7894% (respectively) and in the case of the TS heuristic algorithm was

14.7862% and 15.6763% (respectively). Consequently, for these three markets (the FTSE 100,

the Nikkei 225 and S&P 500) the TS heuristic algorithm produced better mean and median

percentage errors differences (seen in Table 5.6) than the GA heuristic algorithm.

In Figures 5.5 to 5.8 we graphically present the TS heuristic algorithm results for the FTSE

100 and Nikkei 225. In the Figures, we show the market index trading portfolio frontier, the

original portfolio, the non-cardinality constrained trading portfolio frontier (then it’s efficient

frontier) and the TS heuristic algorithm trading portfolio frontier (then it’s efficient frontier).

The diagrams which include the trading portfolio frontiers show that the TS heuristic produced

a wide range of results; some were close to the non-cardinality constrained trading portfolio

frontier while others appeared to be quite a distance away.

5.5.3 Simulated Annealing

Table 5.7 shows the SA heuristic algorithm computational times for the non-cardinality con-

strained transaction cost model. For every market index the SA heuristic algorithm was able

to produce results in a faster time than both the GA and TS heuristic algorithms for the non-

cardinality constrained case. In fact considering the average return time of all the indices,

the GA heuristic algorithm was 1374 seconds, the TS heuristic algorithm was 1043 seconds

and the SA heuristic algorithm was 431 seconds. Those times meant that the SA heuristic

algorithm was 943 seconds faster than that of the GA heuristic algorithm and 612 seconds

faster than that of the TS heuristic algorithm. Therefore, the SA heuristic algorithm had a

better computational time of our three heuristic algorithms for the non-cardinality constrained

transaction cost problem.

Despite the SA heuristic algorithm posting the best times of the three heuristic algorithms,

Table 5.7 shows that on average the SA heuristic algorithm is almost 5 times slower that of
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Figure 5.5: FTSE 100 TS Heuristic Algorithm Transaction Cost Non-Cardinality Constrained
Trading Portfolio Frontier
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Figure 5.6: FTSE 100 TS Heuristic Algorithm Transaction Cost Non-Cardinality Constrained
Trading Portfolio Efficient Frontier
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Optimal Solution SA Heuristic Algorithm
Market Assets Total Average time Total Average time

Index N Computational (seconds) Computational (seconds)

Time (seconds per return level Time (seconds) per return level

Hang Seng 31 70 0.070 55 1
DAX 100 85 271 0.271 95 2
FTSE 100 89 1273 1.273 240 5
S&P 100 98 1309 1.309 355 7

Nikkei 225 225 1490 1.490 699 14
S&P 500 457 6016 6.016 1142 23
Average 2 9

Table 5.7: SA Heuristic Algorithm Computational Times for the Non-Cardinality Constrained
Transaction Cost Model

the optimal solution. Hence, we can conclude that each of our heuristic algorithms were

slower than the optimal solution for the non-cardinality constrained optimisation problem,

i.e. CPLEX has a quicker solution time than our heuristic algorithms.

Turning our attention to percentage error results from the UEF of each of the market index

for the SA heuristic algorithm, we present the percentage error results in Table 5.7. We note

that the first five market indices’ the SA heuristic algorithm mean and median percentage error

results are greater than those produced by both those of the GA and TS heuristic algorithms.

For instance, the SA heuristic algorithm for the DAX 100 has a mean percentage error of

193.2267% which compares to 23.7485% for the GA heuristic algorithm and 36.9511% for the

TS heuristic algorithm. Maximum percentage error for the SA heuristic algorithm was as high

as 326.8694% (given by the S&P 100) but, in both the GA and TS heuristic algorithms no

maximum percentage error went above 48%.

Table 5.9 gives the percentage error differences for the SA heuristic algorithm. The average

mean percentage error difference of all markets was 75.3167%. This overall average is more

than 60% higher than that of the mean percentage error difference of all markets for the GA

heuristic algorithm and greater than 63% higher than the mean percentage error difference of

all markets for the TS heuristic algorithm. From these results we note that the SA heuris-

tic algorithm was not as effective in calculating the non-cardinality constrained portfolio or

efficient frontier as that of the GA and TS heuristic algorithms.
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Figure 5.9: S&P 500 SA Heuristic Algorithm Transaction Cost Non-Cardinality Constrained
Trading Portfolio Frontier
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Figure 5.10: S&P 500 SA Heuristic Algorithm Transaction Cost Non-Cardinality Constrained
Trading Portfolio Efficient Frontier
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In Figures 5.9 and 5.10 we graphically present the portfolio and then the efficient frontier

for the S&P 500 (the only market index for the SA heuristic algorithm to produce a result

which had mean and median percentage error better than the GA heuristic algorithm but

still less than the TS heuristic algorithm). In Figure 5.9 we illustrate the non-cardinality

constrained trading portfolio frontier and the trading portfolio frontier produced by the SA

heuristic algorithm. In Figure 5.10 we show the non-cardinality constrained efficient frontier

and the SA heuristic algorithm efficient frontier. Each Figure highlights how ineffective the

SA heuristic algorithm was at estimating the portfolio and subsequently, the efficient frontier

for the non-cardinality constrained transaction cost model (despite the S&P 500 being the SA

heuristic algorithm’s best results).

5.5.4 Pooled Heuristic Algorithms

Table 5.10 gives the pooled heuristic algorithm results for the transaction cost non-cardinality

constrained efficient frontier. In the Table we state the market indices, the number of assets

and the pooled heuristic algorithms of (1) GA,TS and SA, (2) GA and TS, (3) GA and SA

and (4) TS and SA. For each of these pooled results, the mean and median percentage error

from the UEF, the percentage error difference between the UEF and the transaction cost non-

cardinality constrained efficient frontier, the total time in seconds and the time per return level

(in seconds) is given. Also, made available in the Table are the average mean and median

percentage error and the average time for the small and for all market indices.

If we consider the pooled heuristic algorithms of GA,TS and SA for the DAX 100 from

Table 5.10 we see that it has a mean percentage error of 23.7485% and a median percentage

error of 24.8043%. The total computational time to compute these results was 727 seconds

which is approximately 15 seconds per return level. Then, the mean and median percentage

error differences for the DAX 100 are given as 12.2520% and 16.0711% respectively.

Examining the values in the Table 5.10, we note that in each of the first five market indices’

pooled heuristic algorithms’ results for the GA,TS and SA was the same as the pooled heuristic

algorithms’ results for the GA and TS. Then, if we look at the pooled heuristic algorithm

columns of GA and SA and TS and SA (for the small market indices), we notice that these
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are the same as the GA heuristic algorithm and TS heuristic algorithm respectively. Thus,

the results for the SA heuristic algorithm played no part in any of the first five market indices’

pooled heuristic algorithms’ results. These results further highlight that the SA heuristic

algorithm was not as valuable as the GA and TS heuristic algorithms at calculating the non-

cardinality constrained efficient frontier for the five small markets.

In Figures 5.11 to 5.22 we graphically represent our pooled heuristic algorithm results for

the non-cardinality constrained transaction cost problem for all six of the market indices. The

pictures illustrate the original portfolio, the non-cardinality constrained transaction cost trad-

ing portfolio frontier (then the non-cardinality constrained transaction cost efficient frontier)

along with the portfolio (then the efficient) frontier of the pooled heuristic algorithms’ results

(GA, TS and SA).

5.6 Cardinality Constrained Transaction Cost Heuristic Algo-

rithms’ Results

In this Section we present the GA (Section 5.6.1), TS (Section 5.6.2), SA (Section 5.6.3) and

pooled (Section 5.6.4) heuristic algorithms’ results for the cardinality constrained transaction

cost trading portfolio frontier.

As was the case in the non-cardinality constrained Section above, within each of the

subsections below, we look at the total computational time of the heuristic algorithm(s), the

percentage error of the undominated points produced by the heuristic algorithm(s) from the

unconstrained efficient frontier of the market index and the difference in percentage error of

the heuristic algorithm(s) efficient frontier and that produced by the cardinality constrained

efficient frontier (given in Chapter 3, Section 3.8).

Also included in each subsection are graphical illustrations of some of the results. All the

pictures include the trading portfolio frontier (dark blue) of the particular market index and

the original portfolio (red). Some pictures will contain the cardinality constrained trading

portfolio frontier of the original portfolio (brown circles) along with the trading portfolio
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Figure 5.11: Hang Seng Pooled Heuristic Algorithms Transaction Cost Non-Cardinality Con-
strained Trading Portfolio Frontier
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Figure 5.12: Hang Seng Pooled Heuristic Algorithms Transaction Cost Non-Cardinality Con-
strained Trading Portfolio Efficient Frontier
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Figure 5.13: DAX 100 Pooled Heuristic Algorithms Transaction Cost Non-Cardinality Con-
strained Trading Portfolio Frontier
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Figure 5.14: DAX 100 Pooled Heuristic Algorithms Transaction Cost Non-Cardinality Con-
strained Trading Portfolio Efficient Frontier
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Figure 5.15: FTSE 100 Pooled Heuristic Algorithms Transaction Cost Non-Cardinality Con-
strained Trading Portfolio Frontier
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Figure 5.16: FTSE 100 Pooled Heuristic Algorithms Transaction Cost Non-Cardinality Con-
strained Trading Portfolio Efficient Frontier
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Figure 5.17: S&P 100 Pooled Heuristic Algorithms Transaction Cost Non-Cardinality Con-
strained Trading Portfolio Frontier
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Figure 5.18: S&P 100 Pooled Heuristic Algorithms Transaction Cost Non-Cardinality Con-
strained Trading Portfolio Efficient Frontier



CHAPTER 5. TRANSACTION COST: HEURISTIC ALGORITHMS 137

-0.002

0

0.002

0.004

0.006

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Return

Trading Portfolio Frontier

Non-Cardinality Constrained

Transaction Cost 

Trading Portfolio  Frontier

Original Portfolio

Pooled Heuristic Algorithms

-0.01

-0.008

-0.006

-0.004

Risk - Standard Deviation

Pooled Heuristic Algorithms

Trading Portfolio Frontier

Figure 5.19: Nikkei 225 Pooled Heuristic Algorithms Transaction Cost Non-Cardinality Con-
strained Trading Portfolio Frontier
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Figure 5.20: Nikkei 225 Pooled Heuristic Algorithms Transaction Cost Non-Cardinality Con-
strained Trading Portfolio Efficient Frontier
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Figure 5.21: S&P 500 Pooled Heuristic Algorithms Transaction Cost Non-Cardinality Con-
strained Trading Portfolio Frontier
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Figure 5.22: S&P 500 Pooled Heuristic Algorithms Transaction Cost Non-Cardinality Con-
strained Trading Portfolio Efficient Frontier
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frontier produced by the heuristic algorithm (orange triangles for the individual heuristics of

GA, TS and SA while pooled heuristic results are blue); the other pictures will contain the

cardinality constrained efficient frontier of the original portfolio (pink squares). Here we note

that some of the crosses, squares and triangles have been made larger to aid the reader in

being able to see them.

5.6.1 Genetic Algorithm

Table 5.11 gives the GA heuristic algorithm total computational times for the cardinality

constrained transaction cost model. Interestingly, the times are almost the same per return

level as those of the GA heuristic algorithm non-cardinality constrained transaction cost model

when only considering the small market indices. For instance, the time per return level for

both transaction cost models (cardinality and non-cardinality constrained) for the FTSE 100

is 11 seconds; the Nikkei 225 non-cardinality constrained problem times were 24 seconds per

return level and 23 seconds per return level for the cardinality constrained problem. But,

when we consider the S&P 500 a time difference in the cardinality constrained model and

the non-cardinality constrained model is revealed. The time per return level for the S&P

500 turned out to be 104 seconds for the non-cardinality constrained case and 147 seconds

for the cardinality constrained case. The average time for all markets was 1704 seconds for

the cardinality constrained model and 1374 seconds for the non-cardinality constrained model.

Hence, the cardinality constrained transaction cost optimisation for the GA heuristic algorithm

took longer than the non-cardinality constrained problem.

When comparing the times of the optimal solution to that of the heuristic algorithm one

notes that for the Hang Seng the times are relatively the same with average time per return

level being 1.44 seconds for the optimal solution to 2 seconds for the GA heuristic algorithm.

But, as we move into larger markets the relative time difference changes significantly. For

instance, the Nikkei 225 market index had a time of 11330.74 seconds per return level for

the optimal solution while the GA heuristic algorithm posted a time of only 147 seconds per

return level.

Table 5.12 gives the GA heuristic algorithm error results for the transaction cost cardinality
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Optimal Solution GA Heuristic Algorithm
Market Assets Total Average time Total Average time

Index N Computational (seconds) Computational (seconds)

Time (seconds per return level Time (seconds) per return level

Hang Seng 31 72 1.44 124 2
DAX 100 85 348 6.96 404 8
FTSE 100 89 3426 68.52 570 11
S&P 100 98 127746 2554.92 613 12

Nikkei 225 225 566537 11330.74 1160 23
S&P 500 457 7355 147
Average 2793 34

Table 5.11: GA Heuristic Algorithm Computational Times for the Cardinality Constrained
Transaction Cost Model

constrained efficient frontier. From the Table, the average mean and median percentage error

of the small markets are given as 15.9408% and 15.7131% respectively. Then for all market

indices the average mean and median percentage error are given as 21.3713% and 19.7337%

respectively. If we were to compare these to the average of the small and all the market indices

of the GA heuristic algorithm non-cardinality constrained case we find that the averages are

almost the same.

Furthermore, if we are to consider Table 5.13 where we subtract the percentage error

difference between the UEF and the cardinality constrained transaction cost efficient frontier,

we realize that each of the small market index is actually closer to it’s cardinality constrained

transaction cost efficient frontier than those in the non-cardinality constrained case for the

GA heuristic algorithm. For instance, the DAX 100 percentage error difference is 0.9118%

for the cardinality constrained problem but only 2.4539% for the non-cardinality constrained

problem; the FTSE 100 has a percentage error difference of 9.3022% when considering the

cardinality constrained problem and this rises to 15.3560% for the non-cardinality constrained

problem. Then considering all the small markets, the average mean and median percentage

error differences of the cardinality constrained case is approximately 4% and 5% (respectively)

lower than for the non-cardinality constrained case. This leads us to conclude that given an

existing portfolio, the GA heuristic algorithm would produce better results on the cardinality

constrained case than the non-cardinality constrained case for the transaction cost model for
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small market indices.

Figures 5.23 to 5.26 graphically depicts the GA heuristic algorithm results for the Hang

Seng and the DAX 100. Figures 5.23 and 5.25 show the trading portfolio frontiers for the

cardinality constrained transaction cost model and the GA heuristic algorithm. Figures 5.24

and 5.26 presents the efficient frontier of the cardinality constrained transaction cost model

and the GA heuristic algorithm. The Figures give a visual idea of the quality of the results

for the GA heuristic algorithm cardinality constrained transaction cost model.

5.6.2 Tabu Search

Table 5.14 provides the TS heuristic algorithm computational times for the cardinality con-

strained transaction cost model. Considering all the market indices the TS heuristic algorithm

was quicker than the GA heuristic algorithm for the cardinality constrained transaction cost

model, with average times per return level being 28 seconds and 34 seconds respectively. When

we compare the TS heuristic algorithm model times per return level for the cardinality con-

strained case to the non-cardinality constrained case on average we see that the cardinality

constrained case produced a higher time: 28 seconds (cardinality constrained problem) to 21

seconds (non-cardinality constrained problem).

Optimal Solution TS Heuristic Algorithm
Market Assets Total Average time Total Average time

Index N Computational (seconds) Computational (seconds)

Time (seconds per return level Time (seconds) per return level

Hang Seng 31 72 1.44 120 2
DAX 100 85 348 6.96 307 6
FTSE 100 89 3426 68.52 583 12
S&P 100 98 127746 2554.92 611 12

Nikkei 225 225 566537 11330.74 1122 22
S&P 500 457 5585 112
Average 2793 28

Table 5.14: TS Heuristic Algorithm Computational Times for the Cardinality Constrained
Transaction Cost Model

When we compare the solution times of the optimal solution to that of the heuristic
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Figure 5.23: Hang Seng GA Heuristic Algorithm Transaction Cost Cardinality Constrained
Trading Portfolio Frontier
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Figure 5.24: Hang Seng GA Heuristic Algorithm Transaction Cost Cardinality Constrained
Trading Portfolio Efficient Frontier
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Figure 5.25: DAX 100 GA Heuristic Algorithm Transaction Cost Cardinality Constrained
Trading Portfolio Frontier
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algorithm solution on average we note that the heuristic algorithm solution performed faster:

2793 seconds (optimal solution) to 28 seconds (TS heuristic algorithm solution).

Table 5.15 gives the percentage errors of the TS heuristic algorithm from the UEF. The

mean average percentage error of all small market indices is 20.6322% and the median average

percentage error of all small market indices is 19.1584%. As was the case with the GA heuristic

algorithm cardinality constrained problem the percentage errors for the TS heuristic algorithm

seem to be higher on average than the TS heuristic algorithm non-cardinality constrained case.

Additionally, if we are to consider the percentage error difference (Table 5.16) we note that

the TS heuristic algorithm had an average small market mean percentage error difference of

9.3143% and an average small market median percentage error difference of 8.3061% over all

small markets. These differences means that in the cardinality constrained problem the mean

percentage error was 2.6577% closer and the median percentage error was 4.6005% closer

than in the non-cardinality constrained problem for all small markets. Therefore, the TS

heuristic algorithm was better for the cardinality constrained case than for the non-cardinality

constrained case.

Comparing the TS heuristic algorithm results to the GA heuristic algorithm results for

the small markets of the cardinality constrained case on average the GA heuristic algorithm

gave better mean and median percentage error differences than the TS heuristic algorithm.

But, the cardinality constrained problem for the TS heuristic algorithm had two markets

indices which produced better results than the GA heuristic algorithm. In this case they are

the FTSE 100 and the S&P 100. The FTSE 100 had a mean and median percentage error

difference of 3.7595% and 3.5802% (respectively) for the TS heuristic algorithm while, they

were 9.3022% and 8.8365% (respectively) for the GA heuristic algorithm. The S&P 100 had

a mean and median percentage error difference of 7.1011% and 7.3239% (respectively) for the

TS heuristic algorithm while, they were 10.8250% and 12.7336% (respectively) for the GA

heuristic algorithm.

In Figures 5.27 to 5.30 we illustrate the two market indices which offered the two low-

est percentage error differences: the FTSE 100 and the Nikkei 225. Each picture shows the

TS heuristic algorithm estimation of the cardinality constrained portfolio or efficient fron-
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tier. Depicted in Figures 5.27 and 5.29 are the trading portfolio frontiers for the cardinality

constrained transaction cost problem and the TS heuristic algorithm. Figures 5.28 and 5.30

presents the efficient frontier of the cardinality constrained transaction cost model and the TS

heuristic algorithm.

5.6.3 Simulated Annealing

Table 5.17 gives the SA heuristic algorithm computational times for the cardinality constrained

transaction cost model. The times are approximately 30% those of the GA and TS heuristic al-

gorithm cardinality constrained model. Thus, computationally the SA heuristic algorithm was

the quickest of the three heuristic algorithms for the cardinality constrained problem. Then

when comparing to the SA heuristic algorithm cardinality and non-cardinality constrained

results, they are relatively the same with both problems taking an average of 9 seconds per

return level.

Comparing the optimal solution to that of the heuristic algorithm solution on average we

note that the heuristic algorithm solution performed faster: 2793 seconds (optimal solution)

to 9 seconds (SA heuristic algorithm solution). In fact, each heuristic algorithms gave much

better solution times than the optimal solution for the cardinality constrained case.

Optimal Solution SA Heuristic Algorithm
Market Assets Total Average time Total Average time

Index N Computational (seconds) Computational (seconds)

Time (seconds per return level Time (seconds) per return level

Hang Seng 31 72 1.44 56 1
DAX 100 85 348 6.96 145 3
FTSE 100 89 3426 68.52 229 5
S&P 100 98 127746 2554.92 260 5

Nikkei 225 225 566537 11330.74 444 9
S&P 500 457 1592 32
Average 2793 9

Table 5.17: SA Heuristic Algorithm Computational Times for the Cardinality Constrained
Transaction Cost Model

Tables 5.18 and 5.19 gives the percentage error and the percentage error differences for
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Figure 5.27: FTSE 100 TS Heuristic Algorithm Transaction Cost Cardinality Constrained
Trading Portfolio Frontier



CHAPTER 5. TRANSACTION COST: HEURISTIC ALGORITHMS 150

0.
00

4

0.
00

6

0.
00

8

0.
01

R
e

tu
rn

T
ra

d
in

g
 P

o
rt

fo
li

o
 F

ro
n

ti
e

r

C
a

rd
in

a
li

ty
 C

o
n

st
ra

in
e

d

T
ra

n
sa

ct
io

n
 C

o
st

 

T
ra

d
in

g
 P

o
rt

fo
li

o

E
ff

ic
ie

n
t 

Fr
o

n
ti

e
r

K
=

1
0

T
a

b
u

 S
e

a
rc

h

T
ra

d
in

g
 P

o
rt

fo
li

o

E
ff

ic
ie

n
t 

Fr
o

n
ti

e
r

-0
.0

020

0.
00

2

0
0.

00
5

0.
01

0.
01

5
0.

02
0.

02
5

0.
03

0.
03

5
0.

04
0.

04
5

R
is

k
 -

S
ta

n
d

a
rd

 D
e

v
ia

ti
o

n

O
ri

g
in

a
l 

P
o

rt
fo

li
o

Figure 5.28: FTSE 100 TS Heuristic Algorithm Transaction Cost Cardinality Constrained
Trading Portfolio Efficient Frontier
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the market indices. Interestingly, the cardinality constrained problem for the SA heuristic

algorithm produced percentage errors which are better than the percentage errors of the non-

cardinality constrained problem (for the SA heuristic algorithm). Subsequently, the percentage

error differences were better (i.e. the results were closer to it’s efficient frontier over the small

market indices); the mean and median percentage error differences was approximately 45%

and 37% (respectively) less than the non-cardinality constrained case. Subsequently, the SA

heuristic algorithm of the cardinality constrained transaction cost model provides a better

approximation for it’s efficient frontier than that of the non-cardinality constrained case (for

the SA heuristic algorithm).

Additionally, despite doing better than the non-cardinality case, the SA heuristic algorithm

was the least effective (of our three heuristic algorithms) at calculating the cardinality con-

strained efficient frontier. Once again as was the case in the non-cardinality constrained case

of the SA heuristic algorithm, the cardinality constrained case of the SA heuristic algorithm

has the highest mean and median percentage error results of the three heuristic algorithms.

Examining the average of the small market indices, the SA heuristic algorithm had average

mean and median error differences of 41.4967% and 42.6630% (respectively); the GA heuristic

algorithm had average mean and median percentage error differences of 6.0305% and 6.2567%

(respectively); the TS heuristic algorithm had average mean and median error differences of

9.3143% and 8.3061% (respectively).

In Figures 5.31 to 5.32 we graphically present the SA heuristic algorithm results for the

S&P 100. In the Figures, we show the market index trading portfolio frontier, the original

portfolio, the non-cardinality constrained trading portfolio frontier (then it’s efficient frontier)

and the SA heuristic algorithm trading portfolio frontier (then it’s efficient frontier). The

pictures illustrate that most results produced by the SA heuristic algorithm are far away from

the trading portfolio frontier.

5.6.4 Pooled Heuristic Algorithms

Table 5.20 gives the pooled heuristic algorithm results for the transaction cost cardinality

constrained efficient frontier. Considering the pooled heuristic algorithms of TS and SA for
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Figure 5.31: S&P 100 SA Heuristic Algorithm Transaction Cost Cardinality Constrained
Trading Portfolio Frontier
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Figure 5.32: S&P 100 SA Heuristic Algorithm Transaction Cost Cardinality Constrained
Trading Portfolio Efficient Frontier
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the Nikkei 225 from the Table we see that it has a mean and median percentage error of

23.1385%. The total computational time to compute these results was 1566 seconds which

is approximately 31 seconds per return level. Then, the mean and median percentage error

differences for the Nikkei 225 are given as 5.6245% and 6.3130% respectively.

In Figures 5.33 to 5.42 we graphically represent our pooled heuristic algorithm results

for the cardinality constrained transaction cost problem. The pictures illustrate the origi-

nal portfolio, the cardinality constrained transaction cost trading portfolio frontier (then the

cardinality constrained transaction cost efficient frontier) along with the portfolio (then the

efficient) frontier for the Hang Seng, DAX 100, FTSE 100, S&P 100 and Nikkei 225 market

indices respectively. Each Figure shows that the pooled heuristic algorithms provided some

solutions which are close approximations to the actual cardinality constrained transaction cost

frontier.

In Figures 5.43 to 5.44 we graphically represent our pooled heuristic algorithm results for

the S&P 500 cardinality constrained transaction cost problem. In these pictures we illustrate

the original portfolio, the efficeint frontier of the S&P 500 and the portfolio (then the efficient)

frontier produced by pooling our heuristic algorithms. The S&P 500 is the only market index

which we were unable to produce the cardinality constrained transaction cost frontier. Still,

we present these pictures because they are of interest.

5.7 Summary

In this Chapter we presented transaction cost: heuristic algorithms. We began in Section

5.2 by presenting the subset optimisation model for the cardinality and non-cardinality con-

strained case of the problem. Also, in Section 5.2, we stated our heuristic algorithm imple-

mentation of genetic algorithm, tabu search and simulated annealing was the same as that

used for the CCEF in Chapter 4. This was followed by data sets (Section 5.4) for our heuristic

algorithms on six test problems considered previously in Chapter 4.

Within the non-cardinality and cardinality constrained computational results we showed

the computational times, presented mean and median percentage error and percentage er-
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Figure 5.33: Hang Seng Pooled Heuristic Algorithms Transaction Cost Cardinality Con-
strained Trading Portfolio Frontier
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Figure 5.34: Hang Seng Pooled Heuristic Algorithms Transaction Cost Cardinality Con-
strained Trading Portfolio Efficient Frontier
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ror difference for each of the heuristic algorithms and for the pooled heuristic algorithms.

Additionally, we gave illustrative results.

We concluded that our GA, TS and pooled GA and TS heuristic algorithms were able to

offer many optimal and near optimal solutions for both the cardinality and non-cardinality

constrained case of the optimisation problem. SA was unable to produce near optimal solutions

and only came into play when pooling for the largest market index.

We showed that when using the CPLEX solver optimal solutions were quicker than when

using heuristic algorithms for the non-cardinality constrained transaction cost portfolio prob-

lem. Then, when we considered the cardinality constrained transaction cost portfolio problem

solutions were obtained quicker using heuristic algorithms than using the CPLEX solver for

the optimal solution. Thus, when considering only computational times the cardinality con-

strained heuristic algorithm technique requires significantly less time than finding the optimal

solution and for the non-cardinality case finding optimal solutions required less time than our

heuristic algorithms.



Chapter 6

Conclusion

6.1 Summary

The aim of this thesis was to contribute to the development of efficient and effective port-

folio selection algorithms and their applications to portfolio optimisation problems involving

cardinality constraints and transaction cost. We have presented quadratic mixed integer pro-

gramming formulations for portfolio optimisation problems involving cardinality constraints

and transaction cost. For these problems, we have created heuristic algorithms and proposed

the subset optimisation problem as a component in the heuristic algorithm solution procedures.

In Chapter 2 we gave a review of previous studies on portfolio optimisation involving

cardinality constraints and transaction cost. Work on cardinality constraints and heuristic

algorithms principally stems from the work of Chang et al. [13] with the majority of the

research using the same data set (as Chang et al. [13]) and focusing only on one heuristic

algorithm. For the work on transaction cost the current work seems disjointed. There is no

single underlying mathematical model, researchers tend only to solve problems with few assets

often not detailing computational results and times, therefore making it impossible to perform

a systematic comparison of the different approaches for the same data set.

Chapter 3, where we presented optimal solutions for the transaction cost model, contains

the first original work in this thesis. We began by giving our model for the portfolio optimi-
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sation problem involving transaction cost, then we extended the model to include cardinality

constraints. For both of these models we highlighted their benefits. We investigated the

shape of the transaction cost trading portfolio and efficient frontiers and concluded that dis-

continuities occurred in both frontiers when there was only fixed transaction cost or there

was cash invested in the portfolio. We further considered the non-cardinality and cardinal-

ity constrained trading portfolio and efficient frontiers for the portfolio optimisation problem

involving transaction cost representing original work from this thesis not seen before in the

literature. We presented graphical illustrations for the frontiers, gave computational times

and compared the models (non-cardinality and cardinality) in terms of time and percentage

error from the unconstrained efficient frontier. Then, from comparing the two transaction cost

models we found that the non-cardinality constrained model produced quicker solution times.

Furthermore, the efficient frontier produced by the non-cardinality constrained transaction

cost model had a smaller mean as well as median percentage error from the unconstrained

efficient frontier than the cardinality constrained transaction cost model.

In Chapters 4 and 5 we applied a genetic algorithm, tabu search and simulated annealing

heuristic algorithm to the portfolio optimisation problem involving cardinality constraints and

transaction cost which represents yet another original piece of work in this thesis. For each

model (cardinality constrained, non-cardinality constrained transaction cost and cardinality

constrained transaction cost) we developed a subset optimisation problem to solve the model.

For portfolio optimisation problems subject to cardinality constraints and transaction cost

with cardinality constraints, we deduced that our heuristic algorithms of genetic algorithm,

tabu search and some of the pooled heuristics (mainly genetic algorithm and tabu search)

provided an efficient and effective way of calculating the efficient frontier (for a particular

problem) offering solutions with generally small percentage errors in a reasonable time. For

portfolio optimisation problems subject to transaction cost with non-cardinality constraints,

we concluded that despite heuristic algorithms offering solutions with relatively low percentage

errors, it was not an efficient way to calculate the efficient frontier because the optimal efficient

frontier could be calculated in less time.

In Chapter 4 we compared our results to those of Chang et al. [13] and extended our

results to larger data sets, showing that our results offered a good quality of solution with
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no market index taking more than fifteen minutes. In Chapter 5 we compared our heuris-

tic algorithms’ results for the non-cardinality and cardinality constrained transaction cost

optimisation problem. The computational results showed that the cardinality constrained

transaction cost model produced results closer to it’s unconstrained efficient frontier than the

the non-cardinality constrained transaction cost model.

6.2 Contribution to Knowledge

Our literature review (in Chapter 2) demonstrated that we have read, and are familiar with,

the relevant scientific literature with regard to portfolio theory. The mathematical and com-

putational work presented in Chapters 3 and 5 as well as the subset optimisation model and

the heuristic algorithms’ psuedocode of Chapter 4 are, to the best of our knowledge, an origi-

nal contribution to knowledge. That is these models presented, and enhancements suggested,

have not been presented elsewhere in the literature.

In Chapter 3 our contribution has been

• the development of a clear mathematical model for the transaction cost problem,

• to present the transaction cost efficient frontier,

• to show the discontinuous nature of the transaction cost efficient frontier,

• to show that discontinuities occurred in the transaction cost frontier when subject to

only fixed costs or cash investments, and

• to illustrate graphically the shapes of the cardinality and non-cardinality constrained

transaction cost trading portfolio and efficient frontiers.

In Chapter 4 our contribution has been

• the development of the cardinality constrained subset optimisation problem,

• the development of effective heuristic algorithms based upon genetic algorithm, tabu

search and simulated annealing,
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• to consider larger test problems than considered previously in the literature, and

• the successful application of heuristic algorithms to computational problems for portfolio

optimisation with cardinality constraints.

A paper based on Chapter 4 has been accepted for publication in the European Journal of

Operational Research.

In Chapter 5 our contribution has been

• the development of the subset optimisation problems for the non-cardinality and cardi-

nality constrained transaction cost models, and

• the successful application of heuristic algorithms to computational problems for portfolio

optimisation involving transaction cost (non-cardinality and cardinality constrained).

• to show that for the non-cardinality constrained transaction cost portfolio optimisation

problems, optimal solutions can be obtained quicker using a solver than when using

heuristic algorithms, and

• to show that heuristic algorithms are better suited for cardinality constrained transaction

cost portfolio optimistation problems than the commercial solver CPLEX.

6.3 Future Work

In this thesis, we have presented work for portfolio optimisation problems with the transaction

cost and cardinality constraints. However, there are a number of areas that can be further

researched some of which we touched upon in this thesis. These include:

• computationally applying restrictions on the amount of assets sold, bought and traded,

• class or sector constraints which specify minimum or maximum exposure to certain

sectors (sets of assets), and
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• lot size constraints which specify that the amount invested in any asset must be an

integer multiplier of a known constant.

These extensions can all be applied to the transaction cost models (from Chapters 3 and

5) and the latter two extensions can be applied to the cardinality constrained model (from

Chapter 4). These further research areas can be formulated in a linear manner by adding

extra variables and/or constraints to the models we have presented. Thus, using standard

solution packages such as CPLEX to determine the optimal solution is a valid approach.

There are also a number of enhancements that could be considered in the heuristic algorithms.

These include:

• for the GA not allowing any duplicate solutions into the population,

• for the TS varying the tabu tenure

• applying variable neighbourhood search to the TS heuristic algorithm, and

• the creation of a hybrid of two of the heuristic algorithms such as GA and TS.



Chapter 7

Appendix
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Asset Pi Xi Lsi Lbi U si U bi f bi fsi csi cbi
1 61 188 19 19 188 94 579 610 0.305 0.305
2 40 180 18 18 180 90 596 585 0.2 0.2
3 29 176 18 18 176 88 590 538 0.145 0.145
4 27 142 14 14 142 71 594 553 0.135 0.135
5 60 191 19 19 191 96 550 642 0.3 0.3
6 70 170 17 17 170 85 640 551 0.35 0.35
7 69 165 17 17 165 83 537 555 0.345 0.345
8 75 200 20 20 200 100 640 612 0.375 0.375
9 36 117 12 12 117 59 629 578 0.18 0.18
10 63 170 17 17 170 85 557 656 0.315 0.315
11 53 122 12 12 122 61 549 564 0.265 0.265
12 32 102 10 10 102 51 560 589 0.16 0.16
13 64 200 20 20 200 100 635 575 0.32 0.32
14 31 179 18 18 179 90 564 592 0.155 0.155
15 60 197 20 20 197 99 550 577 0.3 0.3
16 45 159 16 16 159 80 628 620 0.225 0.225
17 67 150 15 15 150 75 564 568 0.335 0.335
18 55 148 15 15 148 74 641 559 0.275 0.275
19 63 191 19 19 191 96 633 615 0.315 0.315
20 75 158 16 16 158 79 647 640 0.375 0.375
21 34 130 13 13 130 65 633 655 0.17 0.17
22 69 187 19 19 187 94 538 618 0.345 0.345
23 25 155 16 16 155 78 558 631 0.125 0.125
24 70 131 13 13 131 66 602 602 0.35 0.35
25 46 188 19 19 188 94 534 600 0.23 0.23
26 28 194 19 19 194 97 660 572 0.14 0.14
27 66 154 15 15 154 77 579 598 0.33 0.33
28 50 154 15 15 154 77 629 574 0.25 0.25
29 30 198 20 20 198 99 571 590 0.15 0.15
30 57 130 13 13 130 65 608 569 0.285 0.285
31 39 183 18 18 183 92 602 583 0.195 0.195

Table 7.1: Hang Seng parameter values
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