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We report on the inelastic-scattering rate of electrons on phonons and relaxation of electron energy studied by

means of magnetoconductance, and photoresponse, respectively, in a series of strongly disordered superconduct-

ing NbN films. The studied films with thicknesses in the range from 3 to 33 nm are characterized by different

Ioffe-Regel parameters but an almost constant product qT l (qT is the wave vector of thermal phonons and l is the

elastic mean free path of electrons). In the temperature range 14–30 K, the electron-phonon scattering rates obey

temperature dependencies close to the power law 1/τe-ph ∼ T n with the exponents n ≈ 3.2–3.8. We found that in

this temperature range τe-ph and n of studied films vary weakly with the thickness and square resistance. At 10 K

electron-phonon scattering times are in the range 11.9–17.5 ps. The data extracted from magnetoconductance

measurements were used to describe the experimental photoresponse with the two-temperature model. For thick

films, the photoresponse is reasonably well described without fitting parameters, however, for thinner films, the

fit requires a smaller heat capacity of phonons. We attribute this finding to the reduced density of phonon states

in thin films at low temperatures. We also show that the estimated Debye temperature in the studied NbN films

is noticeably smaller than in bulk material.

DOI: 10.1103/PhysRevB.102.054501

I. INTRODUCTION

Energy relaxation of nonequilibrium electrons plays an

essential role in the physics of superconducting detectors. The

most important relaxation processes are inelastic electron-

phonon scattering and phonon escaping since they determine

directly timing metrics in the performance of practical de-

tectors. Advanced theoretical models, e.g., those of super-

conducting nanowire single-photon detectors (SNSPDs) [1]

or hot-electron bolometers (HEBs) [2,3], involve not only

electron-phonon scattering time τe-ph, and phonon escape time

τesc, but also a few other key parameters: the ratio between

electron and phonon heat capacities ce/cph, the density of

electronic states at the Fermi level, and the diffusivity of elec-

trons. Together with scattering times, they affect the energy

transfer from electrons to surroundings.

Electron-phonon scattering in bulk and clean metals is

thoroughly described theoretically [4] while the acoustic

mismatch model describes the escape of isotropic, three-

dimensional (3D) Debye phonons from metal to dielectric

through a plane boundary [5]. However, practical devices

usually exploit thin and disordered superconducting films.

For instance, the SNSPD with a record detection efficiency

of 94% utilizes NbN film with a normal-state resistivity

5.7 × 103 � nm [6] that is much larger than the resistiv-

ity ≈550 � nm of crystalline stoichiometric NbN films [7].

In clean metals at low temperatures, the rate of electron

phonon-scattering obeys power-law temperature dependence

1/τe-ph ∝ T n with the exponent n = 3. The most advanced

theory of electron-phonon scattering in disordered metals

was developed by Sergeev and Mitin (SM) [8]. It predicts

modification of the electron-phonon scattering by disorder

and impurities that generally makes n temperature dependent.

Around a fixed temperature, n depends on the degree of

disorder and the kind of impurities and may have any value

between 2 and 4. Furthermore, the phonon spectrum in an

ultrathin film necessarily deviates from the Debye spectrum,

which is commonly assumed in theories but is inherent only

in bulk crystalline solids. In thin films at low temperatures,

the mean free path and the wavelength of phonons become

comparable or even larger than the film thickness that destroys

isotropy of the phonon spectrum and reduces phonon density

of states. The reduced density of states affects the strength

of electron-phonon scattering and modifies its temperature

dependence [9,10] while reduced isotropy obstructs phonon

escaping. The degree of phonon anisotropy depends not only

on the phonon wavelength and phonon mean free path but also

on the acoustic mismatch between the film and the substrate
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[5,9,11–13] via the angle of total internal reflection. Attempts

to account explicitly for phonon anisotropy and reduced

density of states were made phenomenologically in Refs. [5],

[14], and [13] and microscopically in Ref. [12]. The author

of Ref. [5] introduced an effective transmission coefficient for

phonons, which is an angle average of the angle-dependent

transmission coefficient. The authors of Ref. [13] divided

phonons into two groups and assigned them different but

constant heat capacities and abilities to leave the film. The

approach is referred to as the three-temperature model. Its

results agree with the prediction of the microscopic model

[12] where the distribution functions of electrons and phonons

were computed. Another approach is called ray tracing [14].

The authors of Ref. [14] took into account breaking of Cooper

pairs by phonons along with phonon scattering at nonpaired

electrons and traced phonons over several scattering events

and reflections from the film surfaces. They showed that

phonon trapping slows down the energy transfer from elec-

trons to the substrate and that for sufficiently thin films the

rate of the energy transfer does not decrease anymore with the

further decrease in the film thickness.

It is important to note that the photoresponse of a detector

is rather described by the relaxation time of electron energy

via electron-phonon interaction, τEP, which is proportional

but not equal to the inelastic (single-particle) electron-phonon

scattering time τe-ph used in the theory [8]. The proportionality

coefficient between these times depends on the exponent n at

a given temperature.

Niobium nitride, a conventional detector material, has been

widely studied by means of various experimental techniques.

However, significant discrepancies are present between data

that have appeared in the literature over the past three decades.

It is not entirely surprising. Over the years, the deposition

regime of NbN films has been optimized that definitely re-

sulted in variations of material parameters [15]. Moreover,

material parameters of films, which are used for practical

devices, can hardly be predicted theoretically. Knowledge of

these parameters has to be acquired experimentally.

Undoubtedly, it is necessary to revise parameters of en-

ergy relaxation in modern thin superconducting NbN film.

To achieve this goal, we first analyzed energy relaxation

rates in NbN films reported in the literature (subsection A

below) as well as the experimental techniques and models

which the authors used to describe their data (subsection

B). Second, employing various experimental techniques, we

measured the scattering and relaxation rates and relevant

parameters in two series of NbN films, which were deposited

with different regimes on different substrates. In Sec. II,

we describe these regimes and properties of specimens used

for our study. Sections III A and III B describe results of

transport and magnetoconductance measurements from which

we extract values of electron-phonon scattering times and

their temperature dependences. Section III C contains data

on energy relaxation rates obtained with the time-domain

photoresponse technique. Energy relaxation rates obtained

from the photoresponse in the frequency domain are described

in Sec. III D. We analyze our data in Sec. IV. Section IV A

contains a comparison between our experimental data and

predictions of the SM theory. Fitting experimental data with

the SM theory allows us to extract the acoustic parameters

of our films. With these parameters we evaluate (Sec. IV B)

transmission coefficients for phonons at the film interfaces and

estimate escape times for phonons in the framework of the

acoustic mismatch model. We further use these times in Sec.

IV C to describe photoresponse data and estimate electron and

phonon heat capacities. We summarize our results in Sec. V.

A. Reported electron-phonon energy relaxation

rates in NbN films

In Table I we present published electron-phonon relax-
ation times, phonon escape times, and heat-capacity ratios
for NbN films with various thicknesses on different dielectric
substrates. The data have been obtained by means of different
experimental techniques. We also include publications report-
ing exclusively on transport parameters that were obtained via
Hall and magnetoconductance measurements.

For all films in Table I, the resistivity RSNd (RSN is the
resistance of the film square, d is the film thickness), is
much larger than the resistivity ≈550 � nm of crystalline
stoichiometric NbN films [7]. Although magnitudes of τe-ph

are close for different films, the exponent n in the temperature
dependence of τe-ph

−1 varies from 1 to 3. Since for reported
films the magnitudes of inelastic (electron-phonon) scattering
time, τe-ph ≫ τ , where τ is the elastic scattering time of
electrons, they are supposed to exhibit the phenomenon of
weak electron localization [34]. The elastic mean free path
l is of the order of the interatomic distance in stoichiometric
NbN (0.44 nm) and the electron diffusivity in the normal state
stays in the range 0.2 � D � 1 cm2/s.

Quantities related to the metal-insulator transition (Ioffe-
Regel parameter kFl) and the impact of disorder on the
electron-phonon coupling fall in the intervals 1.5 � kFl � 7.1
and 0.015 � qTl � 0.54, respectively, where kF is the wave
vector of electrons at the Fermi energy and qT is the wave
vector of the thermal phonon. This classifies the films from
Table I as disordered films (qTl ≪ 1) close to the Anderson
localization limit kFl = 1.

Numerical simulations have shown that the condition
kFl ≈ 1 converts a superconductor into a granular system
where superconducting grains (islands) are immersed in an
insulating sea and interconnected by Josephson junctions
[35–37]. The granular morphology of thick NbN film was
observed in Ref. [38]. An unusually small value of the electron
diffusion coefficient in thick films reported in Ref. [19] indi-
cates either a presence of defects (vacancies or impurities) or
pronounced granularity [25] that should definitely affect the
inelastic-scattering rate of electrons [39].

From the values of the phonon escape time shown in
Table I, we estimated the product η̄ū = 4d/τesc in the frame-
work of the classical isotropic acoustic mismatch model [5].
Here η̄ is the mean transmission of the film/substrate inter-
face for phonons, and ū is the mean sound velocity in the
film (Sec. IV B). For the NbN/MgO interface we obtained
η̄ū ≈ 0.5 nm/ps, for NbN/Si3N4 η̄ū ≈ 0.17 nm/ps, and for
NbN/Al2O3 η̄ū ≈ 0.3–0.37 nm/ps.

B. Electron energy relaxation: Measuring

techniques and models

There are several experimental methods that allow find-

ing the magnitude and the temperature dependence of the

relaxation rate of the electron energy. We divide all of them
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TABLE I. Reported characteristics of NbN films: Tc transition temperature, d film thickness, RSN resistance of the film square at T > Tc.

Transport parameters of electrons in the normal state are diffusivity D, elastic mean free path l , and elastic scattering time τ . AMAR: absorption

of modulated (amplitude) sub-THz radiation [16]; 2T: two-temperature model for electrons and phonons; MC: magnetoconductance.

d , Tc, RSN, τe-ph (T), τesc, D, l , τ , Experimental technique

nm K � ps n ce/cph(T) ps Substrate cm2/s nm fs and analysis Ref.

15–30 11.0–12.0 200–60 20(10)a 1a Al2O3 AMAR and 2T [17]

5 8.5 450 115 Si/Si3N4 time domain and 2T [18]

200–300 10.3 34–20 7.2(10)b 1.64 Si/SiO2 0.2 MC [19]

2.5–10 1000–70 32.5–130 Al2O3 AMAR and 2T [20]

20 8.2 360 17(8)c 0.3(8) 160 MgO time domain and 2T [21]

7 11.0 500 12(7)a 1.6a Al2O3 0.4 0.1 AMAR and 2T [22]

3.5 10.6 400–500 10(10)c 38 Al2O3 time domain and 2T [23]

3.2–14.4 9.9–15.3 831–81 Al2O3 0.51–0.66 0.58–0.83 2.16–3.86 ellipsometry [24]

12 14.96 85 Al2O3 0.83 0.2 Hall measurements [25]

2.16–15 6.7–15.0 2377–107 Al2O3 tunneling spectroscopy [26]

>50 9.99–16.11 189.2–76.6 MgO 0.207–0.396 Hall and transport [27]

measurements

6 12.63 431 0.544 [28]

2–20.5 2.6–15.0 1200–40 MgO 1.04–0.76 0.13–0.27 0.1 MC [29]

5.2 11.15 257.7 3 MgO 0.9 MC [30], [31]

5.5 13.51 280 MgO 0.92 Hall and transport [32]

measurements

7 7.71 803 Si/SiO2 0.47

5.5 7.84 800 0.7(8) Si/SiO2 0.35 resistive thermometry [33]

and 2T

aThe authors identified measured decay times of the photoresponse τε with the electron-phonon energy relaxation time τEP. The exponent n

relates to the temperature dependence of the photoresponse time.
bThe inelastic electron-phonon scattering time τe-ph.
cThe electron-phonon energy relaxation time τEP.

into two distinct groups, magnetoconductance (MC) [34] and

photoresponse methods, according to whether the method

does not imply or does imply electron heating. Depending on

whether the intensity of radiation is modulated periodically

or by forming short pulses, the photoresponse is measured in

the time domain or the frequency domain, respectively. Cor-

responding experimental techniques are usually referred to as

photoresponse either in the frequency domain to amplitude-

modulated radiation (FDAM) in the spectral range from sub-

THz (AMAR) [16] to optics [40] or in the time domain to

pulses (TDP) of radiation.

It is worth mentioning here assumptions that FDAM and

TDP techniques imply. The measurements rely on a radiation-

induced change in the resistance, which deals with either the

concentration of free vortices (occurring in the BKT theory) or

the size of a normal domain along the current path, but the re-

sponse is described in terms of quasiparticles and Cooper pairs

(the theory of nonequilibrium superconductivity). The FDAM

and TDP techniques are applied under similar operating con-

ditions, i.e., the current-carrying microbridge is kept at the

superconducting transition and is illuminated by electromag-

netic radiation with varying intensity. The intensity of incident

electromagnetic radiation is modulated either periodically

(FDAM) or by forming pulses (TDPs). The measured quantity

is the voltage drop over the current path in the microbridge

that changes when the resistance of the microbridge changes.

The change in resistance is caused by variation in the absorbed

power of electromagnetic radiation. Absorbed energy is partly

accumulated by electrons and increases their temperature, but

it doesn’t change the resistance. The resistance is determined

by the density of free vortices or by the size of the normal

domain. It is assumed that the vortex density or the size of the

domain instantly follows the electron temperature, which in its

turn is controlled by the rate of absorption of electromagnetic

energy and the rate of relaxation of electron energy. Crucial

to these techniques is small absorbed energy that ensures the

linearity of the photoresponse and exponential relaxation of

the electron energy.

The MC technique allows finding the phase-breaking rate

of the electron wave function for conductors in the quan-

tum diffusive regime when electrons undergo multiple elastic

(phase preserving) scattering events before the coherence

(phase) of the wave function is randomized due to any

inelastic (phase breaking) scattering event. In this regime,

conducting electrons experience quantum interference leading

to an enhanced probability for backscattering (returning to

the initial position after several elastic-scattering events). This

quantum phenomenon is called weak localization (WL) and

results in a negative correction to the normal Drude conduc-

tivity. The magnitude of this correction increases when the

temperature decreases. In the presence of magnetic field, wave

functions (corresponding to clockwise and counterclockwise

trajectories along the same loop) acquire different phase shifts

and interfere at the initial point destructively. Hence, magnetic
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TABLE II. Parameters of studied NbN films. R300 K/R20 K is the ratio of the resistances at 300 and 20 K, N(0) is the total density of states

for electrons at the Fermi energy.

d TC RSN D N(0)

Sample (nm) (K) (�/sq) (10−4 m2/s) (eV−1 m−3) R300K/R20K

M-2259 5.0 10.74 529.5 0.474 4.98 × 1028 0.793

M-A853 6.4 8.35 954.0 0.339 3.02 × 1028 0.709

M-A854 7.5 10.84 387.9 0.453 4.74 × 1028 0.809

M-A855 9.5 10.94 330.6 0.418 4.75 × 1028 0.788

K-1 3.2 12.70 0.83

K-2 4.2 12.90 450 0.53 6.5 × 1028 0.90

K-3 5.8 14.60

K-4 7.5 14.80 1.000

K-5 8.6 15.35

K-6 9.9 10.80 90 1.025

K-7 14.9 16.00

K-8 21.6 16.35 1.023

K-9 33.2 16.35

field destroys the enhanced backscattering. Since the maxi-

mum length of trajectories contributing to WL is limited to

the inelastic-scattering length, this length can be evaluated by

measuring the field that suppresses WL. The corresponding

phase-breaking rate is a sum of rates of all inelastic-scattering

processes. Electron-phonon scattering dominates in phase

breaking at temperatures well above Tc. In the vicinity of

Tc, phase breaking and the correction to the conductivity

are additionally affected by superconducting fluctuations (see

details in Sec. III B).

With respect to e-ph scattering, the phase-breaking rate is

identical to the inelastic single-particle e-ph scattering rate at

the Fermi energy [41], τ−1
e-ph, which is considered in the SM

theory. Because the photoresponse technique implies electron

heating, the e-ph energy relaxation rate τ−1
EP extracted by

means of this technique differs from the single-particle scat-

tering rate. The energy relaxation rate is just an average of the

single-particle scattering rate over the range of electron states

∼ kBT . The relationship between these rates was obtained in

[42] as follows:

τ−1
EP =

3(n + 2)Ŵ(n + 2)ς (n + 2)

2π2(2 − 21−n)Ŵ(n)ς (n)
τ−1

e-ph, (1)

where Ŵ(n) is the gamma function, n is the exponent in the

temperature dependence of the scattering rate τ−1
e-ph ∝ T n, and

ς (n) is the Riemann zeta function.

Data analysis in AMAR, FDAM, and TDP methods is

based on the two-temperature (2T) model [43], which is an

extension of the Rothwarf-Taylor model [44] for temperatures

close to Tc. The 2T model implies that electrons and phonons

are instantly in the internal equilibrium and are described

by their equilibrium distribution functions with two different

effective temperatures, which are slightly larger than the am-

bient temperature. The evolution of the effective temperatures

caused by external excitation is described by a system of two

coupled time-dependent equations. It is assumed that the rate

of the decay of the excess phonon energy is a sum of rates

τ−1
esc and τ−1

PE associated with escaping of phonons from the

film into the substrate and with phonon-electron scattering,

respectively. The 2T model accounts for phonon trapping,

i.e., the angle of total internal reflection of phonons at the

film/substrate interface, θmax, by assigning to all phonons

the same escape rate τ−1
esc . This mean escape rate is less than

the escape rate for phonons hitting the interface at angles θ <

θmax. The principle of detailed balance [44] requires that in

equilibrium the energy flow from electrons to phonons equals

the backward flow. This equality relates the heat capacity

ratio to the ratio of energy relaxation times for electron and

phonons as ce/cph = τEP/τPE [43].

II. SPECIMENS AND PARAMETERS

We studied thin NbN films with different thicknesses and

different degrees of disorder. The specimens are listed in

Table II. Films of the M series (2559, A853, A854, and A855)

were magnetron-sputtered onto silicon substrates on top of

a thermally prepared layer of silicon oxide with a thickness

of 250 nm. Magnetoconductance measurements (Sec. III B)

were carried out with nonstructured approximately squared

1 × 1 cm2 NbN films. TDP measurements (Sec. III C) were

carried out with the same films, which were shaped in the

form of microbridges. The lengths of microbridges varied

from 3.6 to 7 μm, and the widths from 0.615 to 0.69 μm.

The sizes were chosen in order to match the normal square

resistance of each microbridge to the electrical impedance

of the readout circuit (Z0 = 50 �). FDAM measurements

(Sec. III D) were carried out with NbN microbridges of K

series on sapphire substrates (K-1–K-9). They had thicknesses

in the range from 3.2 to 33.2 nm. Films of K series were also

magnetron sputtered. The sputtering regime was optimized

for the largest Tc. The fabrication process of these K films

is described in detail in Refs. [40] and [15]. Measurements

of the density of electronic states, transition temperature, and

diffusivity are described below in Sec. III A.

As seen from Table II, the films of similar thicknesses

M-2259, M-A853, and K-2 are characterized by different

degrees of disorder in terms of the Ioffe-Regel criterion [45].

For the film K-2, kFl = 3Dme/h̄ ≈ 1.37, while for films of

the M series kFl varies from 0.88 to 1.22 (t). To compute

Ioffe-Regel parameter, we use hereafter the free electron mass,
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FIG. 1. Temperature variation of the square resistance for four

exemplary films with different thicknesses around their supercon-

ducting transitions. Solid lines represent the best fits obtained with

Eq. (2) in the vicinity of Tc and extrapolated to 30 K. The inset shows

resistances in the broader temperature range up to 300 K.

me, and the experimental values of the diffusion coefficient; h̄

is the reduced Plank constant. Values of the electron mean free

path are evaluated independently in Sec. IV A. Furthermore,

the diffusion coefficient, the transition temperature, and the

total density of electronic states, N(0), of the film K-2 are

larger while the square resistance, RSN, is lower than these

parameters of the films from the M series. The numbers

indicate, see Ref. [46] and Chap. 3 in Ref. [15], that the com-

position NbNx of the film K-2 is characterized by x ≈ 1.04

and a higher content of niobium than the composition of films

of the M series with x ≈ 1.18. Stoichiometric composition

corresponds to x = 1. Films M-2259, M-A854, M-A855 have

close values of the electron diffusion coefficient, electron

density of states, and transition temperature. These parameters

are noticeably smaller for the film M-A853, while its square

resistance and resistivity (RSNd) are much larger as compared

to others. Correspondingly, among films of the M series, the

film M-A853 has the largest degree of disorder, kFl = 0.88.

It is close to the superconductor-insulator transition [35] and

may additionally have an enhanced degree of granularity (see

Sec. IV A). We have to note here that the parameters of the

films of the K series are close to those reported for similar

films in Ref. [24].

III. EXPERIMENT AND RESULTS

A. DC transport and superconducting properties

Transport measurements were carried out by the standard

four-probe technique in a Physical Property Measurement

System (PPMS) manufactured by Quantum Design. Applied

bias currents were less than 100 μA. The square resistance

RS was measured with the van der Pauw method that elimi-

nates the effect of the planar geometry for 2D specimens. In

Fig. 1 we show RS(T ) dependencies for four NbN films of

M series with different thicknesses. As seen in the inset, for

each film RS increases with the decrease in temperature from

300 K down to approximately 20 K that is most likely due to

Anderson localization. At lower temperatures, the RS(T ) de-

pendencies flatten, the square resistance of each film reaches

a plateau, and then goes down to zero value within a finite

transition region caused by superconducting fluctuations.

We fit our experimental RS(T ) data with the theory of

fluctuation conductivity of Aslamazov and Larkin (AL) [47]

and Maki and Thompson (MT) [48,49]. For two-dimensional

films, the theory predicts

RS(T ) =
RSN

1 + RSNϒ 1
16

e2

h̄

(
Tc

T −Tc

) , (2)

ϒ is the numerical factor, e is the elementary charge, Tc is

the BCS mean-field transition temperature, and RSN is the

normal-state square resistance at a temperature right above the

superconducting transition.

We used Tc, RSN, and ϒ as fitting parameters to fit exper-

imental data in a very narrow temperature range for which

the inequality ln(T/Tc) ≪ 1 holds. Best-fit values of Tc and

RSN are listed in Table II. Normal-state resistances extracted

from the fits are slightly larger than the measured at 20 K. The

fitting parameter ϒ varies between 1.9 and 2.6 for all films.

The presence of two types of excitation, topological (mag-

netic vortices) and electronic (quasiparticles), complicates the

definition of the superconducting transition temperature in

two-dimensional (2D) films. It turns out that highly resistive

2D superconducting films exhibit two transition temperatures.

One of them, TBKT (Berezinskii-Kosterlitz-Thouless), controls

unbinding of vortex-antivortex pairs that provides emergence

and an exponential rise of the resistance with increasing

density of free vortices. The other controls the energy gap.

It is known as the mean-field transition temperature and

doesn’t cause the emergence of the resistance. In Ref. [28] it

was reported that for NbN film with RSN = 431 �/sq these

temperatures are related as TBKT = 0.85Tc. Anyway, right

above the superconducting transition, our experimental RS(T )

dependencies are well described by AL and MT fluctuations.

Applying external magnetic field perpendicularly to the

film surface, we measured RS(T ) dependences for a set of

magnetic fields. The preset field was taken as the second

critical field at the temperature which corresponds to the

midpoint of the transition, i.e., RS = RSN/2. This procedure

gives the second critical magnetic field, BC2, as a function of

temperature for the temperature range below Tc. For all our

films, we found almost linear behavior of BC2 vs T in the range

Tc/2 < T < Tc and used the slope for computing the electron

diffusion coefficient as [50]

D =
4kB

πe

(
dBc2

dT

)−1

. (3)

The values of D are listed in Table II along with the total

electron density of states at the Fermi energy N(0), which we

computed using Einstein relation N (0) = 1/(e2RSNdD).

B. Magnetoconductance

Films of M series represent disordered 2D systems suitable

for the MC method. We use the same PPMS apparatus as

for DC measurements, to acquire square resistance RS(B, T )

at different fixed temperatures in the range from Tc to 3Tc

by varying magnetic field in the range from 0 to 9 T. The

dimensionless change in the conductance per sample square
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FIG. 2. Field induced change in the conductance [Eq. (3)] for

the film M-2259 vs magnetic field. Different colors correspond to

different temperatures. Solid black curves are fits with Eqs. (4)–(7).

induced by the field at the fixed temperature T was determined

according to

δσ (B, T ) =
2π2h̄

e2

[
1

RS(B, T )
−

1

RS(0, T )

]
.

Experimental data are shown in Fig. 2. Since dependen-

cies δσ (B, T ) are monotonous and look pretty similar for

all studied specimens, we plot in Fig. 2 data for only one

representative film.

The contribution to the magnetoconductance δσ (B, T ) due

to the effect of weak localization has the form [51]

δσ WL(B, T ) =
3

2
ψ

(
1

2
+

B2

B

)
−

1

2
ψ

(
1

2
+

Bi

B

)

+
3

2
ln

(
B

B2

)
−

1

2
ln

(
B

Bi

)
, (4)

where ψ (x) is the digamma function, Bi = h̄/(4eDτϕ ) is

the inelastic magnetic fields, τϕ is the phase-breaking time,

B2 = Bi + 4
3
Bs.o., Bs.o. = h̄/(4eDτs.o.), and τs.o. is the spin-

orbit scattering time. The WL correction provides a positive

contribution to δσ (B, T ); its magnitude increases with the

increase of magnetic field.

Superconducting fluctuations (stochastic formation of

Cooper pair) decrease the time that electrons remain normal,

i.e., decrease their mean concentration and increase effective

conductance. This causes the broadening of the supercon-

ducting RS(T ) transition at T > Tc. Since the increase in

conductivity due to fluctuations is reduced by the external

magnetic field, fluctuations provide a negative contribution to

δσ (B, T ). The effect is commonly denoted as the Aslamazov-

Larkin correction to magnetoconductance. In the 2D limit and

in the immediate vicinity of Tc, where the AL contribution

dominates δσ (B, T ), it has the form [47,52]

δσ AL(B, T ) = −
π2

8 ln
(

T
Tc

)
[

8

(
B̃C

B

)2{
ψ

(
1

2
+

B̃C

B

)

−ψ

(
1 +

B̃c

B

)
+

B

2B̃C

}
− 1

]
. (5)

Here B̃C is the characteristic field defined by the relation

B̃C = CkBT /(πeD)ln(T/Tc). In different publications, the nu-

merical factor C was assigned values from 2 to 6 [53–57].

The Maki-Thompson correction to magnetoconductance

accounts for stochastic, for a time shorter than τϕ , pairing

of two electrons, which are about to simultaneously (coher-

ently) scatter at the same scattering center. Paring eliminates

scattering that effectively increases the electron mean free

path and weakens the effect of localization. Since in the

2D limit localization causes correction to conductance δσ ∝
−ln(Lϕ/l ), where Lϕ = (Dτϕ )1/2 is the phase-breaking length,

such events give a negative contribution to δσ (B, T ). The MT

correction [48,49] for the 2D limit was elaborated by Larkin

[58]. The contribution is given by

δσ MT
(∗) (B, T ) = −βL(T )

[
ψ

(
1

2
+

Bi

B

)
+ ln

(
B

Bi

)]
, (6)

where βL(T ) = π2/[4 ln(T/Tc)] at ln(T/Tc) ≪ 1. The MT

contribution was further modified by Lopes dos Santos and

Abrahams (LSA) for the temperatures close to Tc (ln(T/Tc) ≪
1) [59] as

δσ MT
(mod)(B, T ) = − βLSA(T, δ)

[
ψ

(
1

2
+

Bi

B

)

− ψ

(
1

2
+

B̃C

B

)
− ln

(
B̃C

Bi

)]
, (7)

where βLSA(T, δ) = π2/{4 [ln(T/Tc) − δ]} and δ =
πeDBi/(2kBT ) is the MT pair-breaking parameter [60–62].

At the first stage, we fit experimental data in Fig. 2 with

a sum of WL contribution and contributions due to MT and

AL fluctuations as σ (B, T ) = δσ WL(B, T ) + δσ AL(B, T ) +
δσ MT(B, T ). Although βLSA is defined via Bi, we used βLSA,

Bs.o., and Bi as independent fitting parameters. This was

done in order to account for possible contribution from DOS

(density of electronic states) fluctuations [63,64]. From the

best-fit values of Bi we found τϕ = h̄/(4eDBi) for a set of

fixed temperatures. The electron diffusion coefficient was

taken from the magnetotransport measurements. In Fig. 3(a)

we show 1/τϕ as a function of temperature.
The total phase-breaking rate extracted from magneto-

conductance measurements is the sum of rates affiliated
with independent inelastic interactions in which electrons are
involved. They are electron-electron interaction (e-e) [65],
electron-phonon interaction (e-ph), and electron-fluctuation
interaction (e-fl) [66]. Although phase breaking occurs due
to inelastic scattering, the phase-breaking rate may differ
from the inelastic-scattering rate. The difference is most pro-
nounced for scattering processes in which the change in the
electron energy is smaller than thermal energy. The phase-
breaking rate due to electron-electron scattering is dominated
at low temperatures by Nyquist noise, i.e., scattering with
small energy transfer. In the two-dimensional case, both rates
have the same temperature dependence ∝ T but different
magnitudes [65,67]. For our quasi-two-dimensional films, the
phase-breaking rate is one to two orders of magnitude larger
than the electron-electron scattering rate with small energy
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7.31 Tphe ∝
−

−

FIG. 3. (a) Phase-breaking rate vs temperature (symbols) extracted from magnetoconductance measurements in the double logarithmic

scale. Solid lines are fits made with the sum of all three terms in Eq. (8). The inset shows the best-fitting curve for the film M-A855 (thick

green line) and separately all three terms (thin black lines). (b) e-ph scattering time vs temperature extracted from magnetoconductance

measurements (symbols) in the double logarithmic scale. Solid lines are fits obtained with the second term in Eq. (8). Fitting parameters are

listed in Table III.

transfer. At temperatures larger than the crossover temperature
h̄/(kBτ ) [68], where τ is the elastic-scattering time, the phase-
breaking rate is dominated by Landau scattering, i.e., the
electron-electron scattering with large energy transfer. In this
latter case the phase-breaking rate equals the electron-electron
scattering rate τ−1

e-e ∝ T 2ln(T −1) [69]. For our strongly disor-
dered NbN films τ < 5 fs [24] and the crossover is expected
to occur at temperatures larger than 103 K. Furthermore, at
the upper boundary of our temperature range the magnitudes
of τ−1

ϕ due to Nyquist noise and due to Landau scattering
differ by two orders of magnitude. Therefore in Eq. (8) we
retain only one contribution to the phase-breaking rate which
is affiliated with Nyquist noise. For e-ph interaction, the
electron-phonon scattering rate and the phase-breaking rate
due to this interaction are identical [41].

Phase breaking via electron fluctuations is associated with

the loss of the electron energy and phase coherence due to

recombination of electrons into superconducting pairs [66].

Hence, the total phase-breaking rate is given by τϕ
−1 =

τ−1
(e-e) + τ−1

e-ph + τ−1
(e-fl). Brackets are used to stress the difference

between electron scattering rates and respective contributions

to the phase-breaking rate. The contributing rates are

τ−1
(e-e) =

kBT

h̄

1

2C1

ln (C1)

τ−1
e-ph = C2(T/Tc)n

τ−1
(e-fl) =

kBT

h̄

1

2C1

2 ln(2)

ln(T/Tc) + C3

(8)

where C1 = π h̄/(RSNe2) and C3 = 4 ln(2)/

[
√

ln(C1)2 + 128C1/π − ln(C1)] [66].

At the second stage, we fit the temperature dependence of

the experimental phase-breaking rate τϕ
−1(T ) with the sum

of contributions [Eq. (8)] of different scattering processes.

We assume arbitrary but temperature-independent n and use

C2 and n as fitting parameters. As has been noted in other

publications [30,31], it is not possible to fit experimental

data for τϕ
−1(T ) at temperatures close to the superconducting

transition. The reason is not clear and goes beyond the scope

of our study. To circumvent the problem, we included in the

fitting procedure only the data obtained at temperatures above

TABLE III. Parameters of NbN on Si/SiO2 substrate. Heat-capacity ratios refer to the transition temperatures.

Transport measurements MC technique TD technique

(Sec. III A) (Sec. III B) (Sec. III C)

Sample d (nm) Tc (K) RSN (�/sq) D(10−4 m2/s) N (0) (eV−1 m−3) τe-ph
a (10 K) (ps) nτe-ph

−1 ∼ T n τEP
b (Tc) (ps) τesc

c (ps) ce/cph (Tc)

M-2259 5.0 10.74 529.5 0.474 4.98 × 1028 11.9 3.53 1.4 25.9 0.83 ± 0.18

M-A853 6.4 8.35 954.0 0.339 3.02 × 1028 12.4 3.21 4.2 39.0 0.25 ± 0.03

M-A854 7.5 10.84 387.9 0.453 4.74 × 1028 15.9 3.75 1.5 39.0 0.35 ± 0.05

M-A855 9.5 10.94 330.6 0.418 4.75 × 1028 17.5 3.77 1.6 51.3 0.11 ± 0.03

aThe phase-breaking time due to e-ph scattering is identical with the single-particle e-ph scattering time [41].
bThe e-ph energy relaxation time [Eq. (1)].
cThe phonon escape time is derived in Sec. IV B.
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TABLE IV. Best-fit values of the parameters in the SM theory.

l ρ ut

Sample (nm) (g/cm3) (m/s)

M-2259 0.13 7.8 2.42 × 103

M-A853 5.2 2.2 × 103

M-A854 0.14 7.5 2.4 × 103

M-A855 0.12 7.5 2.37 × 103

14 K. The result is shown in Fig. 3(a) for four different films.

The best-fit values of n are listed in Table III and C2 are

10.8 × 1010, 4.6 × 1010, 8.48 × 1010, and 8.02 × 1010 s−1 for

M-2259, M-A853, M-A854, and M-A855, respectively. The

inset in Fig. 3(a) shows the total rate 1/τϕ (T ) for the film

A855 (thick green curve) and all three contributions separately

(black thin curves). It is clearly seen that at T ≫ Tc the term

τ−1
e-ph dominates and defines both the temperature dependence

and the magnitude of the total scattering rate. Contrarily,

close to Tc the term τ−1
(e-fl) dominates and controls the up-

turn in the τϕ
−1(T ) dependence. Subtracting (e-e) and (e-fl)

contributions [Eq. (8] from the experimental phase-breaking

rate, we obtained the electron-phonon scattering rate τ−1
e-ph for

each specimen. Figure 3(b) shows corresponding values of

τe-ph in the temperature range from 14 to 30 K. Solid lines

represent temperature dependencies predicted by the second

term in Eq. (8) with the best-fit values of C2 and n for each

specimen. The values of τe-ph extrapolated to 10 K according

to Eq. (8) are listed in Table III. Data in Table III show that

the magnitude of τe-ph and the exponent n in its temperature

dependence extracted with the MC technique slightly vary

with the film thickness and the sheet resistance.

As it was mentioned above, the e-ph scattering time ob-

tained by means of the MC technique can be directly com-

pared with the e-ph scattering time predicted by the SM

theory. We apply this theory to independently fit experimental

data shown in Fig. 3(b) and to extract acoustic parameters

for each film of the M series. The SM theory predicts e-

ph scattering time τe-ph(u, ρ, l, N (0), T ) as a function of

temperature and four material parameters. Among them, u and

ρ are the sound velocity and the mass density, respectively.

Mathematical details are presented in Sec. IV A along with the

best-fit values of u, ρ, and l (Table IV). The variation of the

exponents n obtained with the SM theory in the temperature

range of Fig. 3(b) is less than 1% while the mean values

coincide with the best-fit values obtained with Eq. (8). We,

therefore, do not explicitly show the best-fit curves obtained

in the framework of the SM theory.

We use acoustic parameters, along with the phonon veloc-

ities in substrates, to compute transmission coefficients and

escape times for phonons at studied film-substrate interfaces

(Sec. IV B). The thus obtained escape times are used in the

next two sections as seed values for modeling the photore-

sponse of our films in the frameworks of the 2T model.

C. Photoresponse in the time-domain

We studied photoresponse of superconducting micro-

bridges to subpicosecond pulses with a wavelength of 800

nm at a repetition rate of 80 MHz. Microbridges were made

from films of the M series listed in Table II. They were

mounted in a continuous flow cryostat with optical access

through a quartz window. Microbridges were kept in the

resistive state at an ambient temperature T � Tc and biased

by small DC current. The photoresponse of the bridge in the

form of a voltage transient was amplified within a limited fre-

quency band 0.1–5 GHz and recorded with a sampling scope.

Figure 4 shows voltage transients recorded by the oscillo-

scope. Transients delivered by microbridges with different

thicknesses look similar. They all exhibit identical rising

times. Obviously, this time is limited to the bandwidth of

the readout, while the falling parts of the transients still

contain valuable information. Impedance matching between

the microbridge and the readout is not perfect. Mismatch

causes multiple reflections (signal ringing), which are poorly

seen in Fig. 4(a). In Fig. 4(b), we plot the transients in the

logarithmic scale that emphasizes the ringing. We found the

ringing period of approximately 250 ps that corresponds to

the propagation time of the transient over a 2.5-cm electrical

path between the microbridge and the first SMA connector at

the microbridge holder.

In order to extract intrinsic relaxation times, we apply

equations of the two-temperature model with pulse excita-

tion [21]. This approach is commonly used to describe the

nonequilibrium state created by an optical pulse in a resistive

or superconducting film [23]. With dimensionless units for

time and energy, equations of the 2T model look as follows:

dTe(ξ )

dξ
= −Ŵ1[Te(ξ ) − Tph(ξ )] +

τ0

d ce

PRF(ξ ) +
τ0

ce

PDC

dTph(ξ )

dξ
= Ŵ2[Te(ξ ) − Tph(ξ )] − Ŵ3[Tph(ξ ) − T0], (9)

where Te and Tph are temperatures of the electron and phonon

subsystems, T0 is the bath temperature, Ŵ1 = τ0/τEP, Ŵ2 =
Ŵ1ce/cph, Ŵ3 = τ0/τesc, ξ = t/τ0 is the dimensionless time

PRF(t ) = m3ξ 2e−mξ E0/τ0 is an analytical expression describ-

ing instantaneous power of the excitation pulse. For m = 3.4,

τ0 represents the full width at half maximum, and E0 is the

total pulse energy absorbed by the unit area of the film. PDC is

the Joule power dissipated in the unit volume of the film. The

magnitude of PDC was extremely small in our measurements,

and therefore we neglected it. Solving Eqs. (9), we obtain

time-dependent Te(ξ ) and Tph(ξ ) in the form

Te(ξ ) − T0

T0

= A1

(χ1 + Ŵ2 + Ŵ3)

Ŵ2

eχ1ξ + A2

(χ2 + Ŵ2 + Ŵ3)

Ŵ2

× eχ2ξ + Q1(ξ )e−mξ ,

Tph(ξ ) − T0

T0

= A1eχ1ξ + A2eχ2ξ + Q2(ξ )e−mξ (10)

with parameters given by

χ1,2 = −
1

2

⎛
⎜⎝

3∑

i=1

Ŵi ∓

√√√√
(

3∑

i=1

Ŵi

)2

− 4Ŵ1Ŵ3

⎞
⎟⎠,

A1,2 = ±
Ŵ2E0m3

d ceT0

1

(χ1 − χ2)(m + χ1,2)3
,
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FIG. 4. (a) Voltage transient for the microbridge M-2259 in the linear scale. (b) Voltage transients for NbN microbridges with four

different thicknesses in the semilogarithmic scale. Black curves are best fits according to Eqs. (9)–(13) with parameters: for M-2259

ce/cph = 0.83 ± 0.18, τesc = 25.9 ps; for M-A853 ce/cph = 0.25 ± 0.03, τesc = 39 ps; for M-A854 ce/cph = 0.35 ± 0.05, τesc = 39 ps; and

for M-A855 ce/cph = 0.11 ± 0.03, τesc = 51.3 ps, for each bridge τEP was fixed at the value obtained for original film from MC measurements

and further averaged according to Eq. (1). Legends specify film from Table II.

Q2 =
Ŵ2 E0m3

d ceT0

(a ξ 2 + b ξ + c),

χ1,2 = −
1

2

⎛
⎜⎝

3∑

i=1

Ŵi ∓

√√√√
(

3∑

i=1

Ŵi

)2

− 4Ŵ1Ŵ3

⎞
⎟⎠,

A1,2 = ±
Ŵ2E0m3

d ceT0

1

(χ1 − χ2)(m + χ1,2)3
,

Q2 =
Ŵ2 E0m3

d ceT0

(a ξ 2 + b ξ + c),

Q1 =
E0m3

d ceT0

[(Ŵ2 + Ŵ3 − m)(a ξ 2 + b ξ + c) + 2 a ξ + b],

a =
1

2 γ1 γ2

; b =
(γ1 + γ2)

(γ1 γ2)2
;

c =
(
γ1

2 + γ1 γ2 + γ2
2
)

(γ1 γ2)3
; γ1,2 = m + χ1,2. (11)

Here in the case of double sign ∓ or ±, the first index

corresponds to the upper sign and the second to the lower.

The photoresponse Vin(ξ ) is proportional to Te(ξ ) − T0

[Eq. (10)], the steepness of the superconducting transition at

the operation point, and the bias current. This initial transient

is modified by the readout electronics (cables, bias T, am-

plifiers, and sampling oscilloscope) with the finite bandpass.

A transient characteristic of the readout, which is the output

voltage transient in response to the unit vertical voltage step

at the input, can be sufficiently well described as

h(ξ ) =
(
1 − e−2

√
2 fCτ0ξ

)
e−2

√
2 fSτ0ξ , (12)

where fS and fC are the lower and the upper frequencies of

the bandpass. Knowing Vin(ξ ), one can compute the voltage

transient at the oscilloscope with the Duhamel integral as

Vout(ξ ) =
∫ ξ

0

V̇in(ξ ′)h(ξ − ξ ′)dξ ′. (13)

We used the formalism described by Eqs. (9)–(13) to fit

voltage transients recorded by the oscilloscope. The ringing

was simulated by adding a series of equidistant identically

shaped pulses with decreasing magnitudes. The best-fit curves

are shown in Fig. 4 with solid lines. There are four inde-

pendent parameters: the heat-capacity ratio ce/cph, the e-ph

energy relaxation time, τEP, the phonon escape time, τesc, and

the normalized pulse energy P0/ce. The latter changes only

the magnitude of the transient and does not affect its shape.

For each bridge, we fixed τEP at the value resulted from aver-

aging over the electron states [Eq. (1)] of the e-ph scattering

rate, which was obtained by MC measurements (Table III).

We also fixed phonon escape times at the values computed

for each bridge in the framework of the acoustic mismatch

model (for details see Sec. IV B). This leaves only one fitting

parameter ce/cph. The best-fit values of ce/cph together with

computed values of τesc are listed in Table III. Heat-capacity

ratios ce/cph scatter in the range of 0.1–0.83. These values

agree reasonably well with the previously reported data. In

Sec. III C, we compare the best-fit values of ce/cph with

predictions of the Debye and Drude models.

D. Photoresponse in the frequency domain

Frequency-domain measurements were done for K series

of NbN microbridges on sapphire substrates (Table II samples

K-1–K-9). Film thickness varied from 3.2 to 33.2 nm. Data

obtained with the frequency domain technique were partly

reported in Refs. [15] and [40]. The technique in detail

was described in Ref. [15]. Shortly, the microbridge was

cooled down to an operating temperature within the resistive

transition and biased by a small DC current. Beams of two

continuous-wave near-infrared lasers (wavelength 850 nm)

with the controllable difference between radiation frequencies
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FIG. 5. Response time τε vs thickness for NbN microbridges on

sapphire substrates (symbols). The black line represents the linear fit

τε = 11.5d that corresponds to the computed phonon escape time

vs film thickness. The inset shows a representative experimental

δP( f ) curve (symbols) for the sample K-8. The black curve is the

fit described in the text.

were overlapped on the microbridge. The power of radiation

that is absorbed by the microbridge alternates periodically

at the beating frequency f (the difference between frequen-

cies of two lasers) and causes sinusoidal modulation of the

electron temperature with the amplitude δTe( f ). This leads to

periodic sinusoidal variations in the photoresponse with the

amplitude δU ( f ) ∼ δTe( f ). Oscillations in the photoresponse

are amplified and controlled with a spectrum analyzer in

the range of beating frequencies from 10 MHz to 10 GHz.

Below we refer to the squared amplitude of these oscillations

as the photoresponse magnitude δP( f ) ∼ δU 2( f ) which is

expressed in decibels. A similar approach (AMAR) described

in Ref. [32] differs only in radiation frequencies, which were

in the sub-THz frequency range. The roll-off frequency f0

in the dependence of the photoresponse magnitude on the

beating frequency is the frequency at which the magnitude

decreases to one-half of its value at small frequencies 1
2
δP(0).

In the inset in Fig. 5 we show representative experimental data

δP( f ) for the microbridge K-8 with the thickness 21.6 nm

(open symbols) and the best fit (solid curve) obtained with

the expression δP( f ) = δP(0)/(1 + f 2/ f 2
0 ). For each mi-

crobridge operated at T ≈ Tc, the roll-off frequencies were

obtained from the best fit, and the response times were found

as τε = (2π f0)−1. In Fig. 5 we plot the response time τε as

a function of the film thickness. The response time varies

from 124 ps for the thinnest film to 421 ps for the thickest

film. Generally, τε decreases when d decreases. However, the

rate of the decrease is noticeably less for microbridges with

smaller thicknesses.

To obtain heat-capacity ratios in the framework of the

FDAM technique, we describe experimental response times

τε with the 2T model. We use Eq. (9) where we neglect

dissipated Joule power and substitute periodic excitation in the

form PRF(t ) = P0e− j2π f t ( j =
√

−1) for the pulse excitation.

Here P0 is the radiation power absorbed per unit area of the

film. The solution for periodic excitation in the frequency

domain was obtained by Perrin and Vanneste [16] and is given

by

δTe( f ) = P0

1

d ce

τ2τ3

τ1

∣∣∣∣
(1 + j2π f τ1)

(1 + j2π f τ2)(1 + j2π f τ3)

∣∣∣∣, (14)

where characteristic times are τ1 = (Ŵ2 + Ŵ3)−1 and

τ2,3 = χ1,2
−1 as defined in Eqs. (11) with Ŵ1 = τEP

−1, Ŵ2 =
Ŵ1ce/cph, and Ŵ3 = τesc

−1. The spectrum of the photoresponse

[Eq. (14)] crucially depends on the heat-capacity ratio ce/cph.

For instance, if ce ≫ cph or τEP ≫ τesc inclusively, Eq. (14)

reduces to δTe( f ) ≈ P0τ2(d ce)−1[1 + (2π f )2τ2
2]−1/2,

with τ2 ≈ τEP + (ce/cph )τesc. Exactly this limiting case

is valid for thin Nb films [70]. It was also used for

thin NbN films in several works [20,22]. However, for

NbN the required inequalities are not satisfied. Indeed,

the ratio ce/cph estimated from our measurements

(Sec. III C) as well as the ratios obtained in Ref. [33]

(for 5.5 nm NbN film at TC) and in Ref. [21] all give ce < cph.

At the same time, even for the thinnest films τEP � τesc.

This is why we used the full solution [Eq. (14)] to fit our

experimental data.

As it follows from MC measurements (Sec. III B, Table III)

for films of the M series, τe-ph as well as the exponent n do

not vary much with the degree of disorder. For films K-1–K-9

having a slightly less degree of disorder than films of the

M series we therefore expect close values of n and close

values of τe-ph at 10 K. We assigned to all films of the K

series the mean values of the mass density (ρ = 7.5 g/cm3),

the phonon velocity (ut = 2.4 × 103 m/s), and the electron

mean free path (l = 0.13 nm) found for films of the M series

except the most disordered film M-A853 (Tables III and IV).

Applying the SM formalism (Sec. IV A), we computed values

of τe-ph at the actual transition temperatures for each film

of the K series. The values of τe-ph were further averaged

according to Eq. (1) for the mean value n = 3.85. These

averaged values, τEP(TC), fall into the range 0.33–0.13 ps. To

get the theoretical dependence δTe( f ), we used these fixed

values of τEP(TC) and set escape times at the values τesc(ps) =
11.5d (nm) computed in the framework of the acoustic mis-

match model [5] (computational details for τesc are presented

in Sec. IV B). We obtained the theoretical response times

τr within the 2T model [Eq. (9)] from Eq. (14) using the

relation δT 2
e (2π/τr ) = 1

2
δT 2

e (0). This approach leaves us the

only one fitting parameter ce/cph. The best-fit values of ce/cph,

i.e., those providing the theoretical response times equal to

the experimental response times (τr = τε), vary monotonously

from 0.1 for the thickest film with d = 33.2 nm to 2.15 for the

thinnest film with d = 3.2 nm. We cross checked these results

by applying the three-temperature (3T) model [13]. Although

the 3T model differently accounts for phonon trapping as

compared to the 2T model, the best-fit values of ce/cph were

found to be very close to those provided by the 2T model.

It is worth mentioning here that the accuracy of extracting

best-fit values is different for FDAM and TDP techniques.

For the range of fitting parameters typical for NbN, the same

variation in the fitting parameters results in similar changes

in fitting curves. However, in the TDP transients this change
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is more pronounced in the area with the lowest noise around

the peak, while in the FDAM spectra changes occur mostly

beyond the roll-off frequency in the area with largest noise.

IV. DATA ANALYSIS

Our results contain two important findings. First, the in-

elastic electron-phonon scattering rate depends on temper-

ature as 1/τe-ph ∝ T n with a weakly varying exponent n ≈
3.2–3.8. In the next subsection, we analyze experimental

τe-ph(T ) dependencies with the SM theory of electron-phonon

interaction in dirty metal films [8]. Second, in the framework

of the 2T model, we obtained the best-fit values for the ratio

ce/cph for films with thicknesses in the range 3.2–33.2 nm. In

Sec. IV C, we compare these values with the predictions of the

Drude and Debye models.

A. Inelastic electron-phonon scattering time

According to the SM theory [8] the impact of disorder

on the electron-phonon coupling is controlled by the product

qTl , where qT = kBT/(h̄u) is the wave vector of the thermal

phonon and u is the sound velocity. In a strongly disordered

metal with qTl ≪ 1, the exponent n in the temperature de-

pendence of the electron-phonon scattering rate τ−1
e-ph ∝ T n is

itself temperature dependent and can take any value between

2 and 4, depending on the degree of disorder and the property

of elastic scatterers.

The inelastic-scattering rate of an electron at the Fermi sur-

face due to the interaction with longitudinal phonons (we use

indices l and t to denote values associated with longitudinal

and transverse phonon modes) is given by [8]

τ−1
e-ph(l) =

7πς (3)

2h̄

βl(kBT )3

(pF ul)
2

Fl

(
qT(l)l

)
. (15)

In the expression above, ς (n) is the Riemann zeta function

and β is the dimensionless coupling constant. For both phonon

modes it is given by βl,t = (2EF/3)2[N (0)/(2ρu2
l,t )]. Here

EF = pF
2/(2me) is the Fermi energy, pF = N (0)π2h̄3/me is

the Fermi momentum, me is the electron mass, ρ is the mass

density, and ul,t is the phonon velocity for a particular mode.

The effect of disorder on the scattering rate is controlled

by the integral Fl(z) = 2
7ς (3)

∫Al

0 dx �l(xz)[N (x) + f (x)]x2,

where N(x) and f (x) are Bose and Fermi distribution func-

tions, and �l(y) = 2
π
{y arctan(x)/[y − arctan(x)] − 3k/y} is

the Pippard function. The upper limit of the integral Fl(z) is

Al, t = (6π2)1/3(l/a)/z, where a is the size of the unit cell

which is assumed for all films to be the same and equal to

0.44 nm. The parameter 1 � k � 0 reveals the character of

electron scatterers; k = 1 corresponds to scatterers vibrating

together with the host lattice, k = 0 corresponds to the static

(i.e., “nonvibrating”) scatterers such as heavy impurities and

rigid boundaries. The inelastic electron scattering rate of an

electron at the Fermi surface due to the interaction with

transverse phonons is given by

τ−1
e-ph(t) = 3π2 βt(kBT )2

(pFut )(pFl )
kFt

(
qT(t) l

)
, (16)

where Ft(z) = 4
π2 ∫At

0 dx �t(xz)[N (x) + f (x)]x, and the Pip-

pard function �t(x) = 1 + k[3x − 3(x2 + 1)arctan(x)]/(2x3).

The apparent electron-phonon scattering rate is the sum of the

two rates τ−1
e-ph = τ−1

e-ph(l) + τ−1
e-ph(t).

We fit our MC data (Sec. III B) using Eqs. (15) and (16).

It turned out that the observed exponent in the temperature

dependence of the scattering rate could only be reproduced

with k = 1 for samples M-2559, M-A854, and M-A855. In

the temperature range where our MC data were acquired, the

scattering rate of electrons via transverse phonons dominates,

and the parameter ul does not affect the result of simulations.

We, therefore, excluded ul from the set of fit parameters

and took it instantly twice as large as ut. The relation ul =
2ut is approximately valid for a large variety of materials.

The remaining fit parameters are l , ρ, and ut. Their best-fit

values are listed in Table IV. We used the density of electron

states computed from the data of transport measurements

(Sec. III A) and the free-electron mass (see Ref. [27] for

verification) to obtain Fermi momentum and energy.

For all samples, the values of the electron mean free path

l are by a factor of 2 smaller than the values obtained by

different groups [25,27,29] from Hall-effect measurements,

and by a factor of 4 to 6 smaller than the values reported in

Ref. [24] where they were computed as (3Dτ )1/2 from the

measured diffusion constant and the elastic-scattering time.

The latter was obtained by means of spectral ellipsometry.

The best-fit values of the velocity of transverse phonons and

the mass density deviate from those reported in Ref. [71]

where for bulk hexagonal NbN these parameters were found

4.5 × 103 m/s and 8.5 g/cm3, respectively. Diversely, ρ and

ut obtained as fitting parameters for NbN are similar to those

for TaN [72]. This finding correlates with remarkable similar-

ity in the superconducting properties of these two materials

[73,74]. A smaller mass density correlates with the excess

nitrogen content with respect to the optimal stoichiometry

while reduced sound velocity is most probably the result of

granularity. For all films of the M series, the product qTl ≪ 1.

It can be presented as qTl = α T where the coefficient α

falls into the range 0.075 ± 0.005 K−1. Hence, the films of

the M series are strongly disordered with a very close degree

of disorder.

Fitting the data for the film M-A853 with k = 1 gives an

enormously large electron mean free path l = 0.31 nm that

contradicts to other parameters (D and RSN). Although the

exact reason is not clear, we have to note that using k ≈ 0.9

results in a reasonably small l . In the SM theory, k < 1

corresponds to the presence of static scatterers. Since the

grain boundaries are a kind of static, nonvibrating scatterer,

experimental data can be qualitatively related to the enhanced

granularity of the film M-A853 as compared to other films

of the M series. The Ioffe-Regel parameter estimated for this

film is kFl � 1 that may also indicate enhanced granularity

[35–37].

B. Phonon escape time

We use the acoustic mismatch model by Kaplan [5] to

compute phonon transmission coefficients for metal/substrate

interfaces NbN/SiO2 and NbN/Al2O3. The model describes

acoustic plane waves associated with different phonon modes,
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which propagate through the interface between two isotropic

semi-infinite media with zero attenuation, and takes into ac-

count mode conversion and total reflection at the interface.

For instance, an incident longitudinal phonon (wave) is re-

flected and transmitted as pairs of longitudinal and transverse

phonons (waves). Reflection and transmission coefficients

depend on the angle of incidence θ , propagation velocities

of the modes in both media, and the difference between their

acoustic impedances Z1,2, i = u1,2,i ρ1,2 which are the prod-

ucts of the mass density of the medium and the propagation

velocity of the particular mode in this medium. Here indices

1 and 2 refer to the film and the substrate, the index i denotes

the mode. Applying boundary conditions, which require con-

tinuity of the mechanical strain and stress at the interface, we

found ratios of amplitudes of reflected and transmitted waves

to the amplitude of the incident wave. Angle dependent trans-

mission coefficients were defined separately for longitudinal,

ηθ l, and two transverse, ηθ ts and ηθ tp, modes as the ratio of

the total energy flux of all transmitted modes to the energy

flux of the incident mode Pi = ω2Z1iA
2
i cos θ/2 where Ai is

the amplitude of the incident mode. Phonon escape time was

defined for a flux of phonons propagating within a narrow

solid angle at an incident angle θ and undergoing multiple

sequential specular reflections at interfaces with the substrate

and vacuum at the other side of the film. We define escape time

for the mode as τesc(θ )i = P(t )[dP(t )/dt ]−1 where P(t ) is the

phonon flux remaining in the film. Right before the reflection

with the number q the relative amount of P(t ) is (1 − ηθ i)
q−1

and decreases after the reflection by the factor 1 − ηθ i. The

time between two sequential reflections equals 2 d/(ui cos θ )

that results in the dimensionless rate of the decrease in the

photon flux τesc(θ )i
−1 = uiηθ i cos θ/(2d ). Integration over

the solid angle gives the escape time per mode τesc,i
−1 =

ui ηi/(4d ) with the angle-averaged transmission coefficient

for a particular mode ηi = 2 ∫θmax,i

0 ηθ i sin θ cos θdθ , where

θmax,i = arcsin(u1,i/u2,i) is the critical angle of total internal

reflection for this mode. Since the decay rate of the photon

energy through the particular mode is proportional to the heat

capacity of the mode, which in turn is inversely proportional to

the cube of the mode velocity, we found total weighted escape

rate τesc
−1 = ηu/4d and ηu =

∑
i u−2

i ηi/
∑

i u−3
i . Weighted

values for the transmission coefficient and mode velocities

were obtained in a similar way as η̄ =
∑

i u−3
i ηi/

∑
i u−3

i

and ū =
∑

i u−2
i /

∑
i u−3

i . We have to note here that although

ηu �= η̄ ū, the difference between two sides of this inequality

for studied interfaces remains less than 10%. Values of mass

densities and sound velocities for substrates we took from Ref.

[5]. For NbN we used values obtained via fitting procedure

in the framework of the SM theory (Sec. IV A) and retained

the assumption that the velocity of longitudinal phonons is

twice as large as that of transverse phonons. We found for

NbN/SiO2 interface η̄ = 0.28, ū1 = 2.54 × 103 m/s, ū2 =
4.35 × 103 m/s and for NbN/Al2O3 interface η̄ = 0.12, ū2 =
6.87 × 103 m/s. For NbN/SiO2 we obtained τesc(ps) = 5.2d

nm and for NbN/Al2O3 τesc (ps) = 11.5d (nm); these values

of phonon escape times are used in Sec. III C, respectively.

Computations including all three modes showed that for

both studied interfaces the energy is dominantly transferred

via transverse modes ηθ ≈ ηθ ts + ηθ tp and that ηθ decreases

FIG. 6. Phonon heat capacities vs film thickness for films of the

M series (left graph) and the K series (right graph) in the semiloga-

rithmic scale. Values cph, Debye (open symbols) were computed with

the 3D Debye model and phonon velocities found in Sec. IV A.

Values cph,2-TM were extracted from the best-fit ratios ce/cph with

values of ce predicted by the Drude model. Error bars in the right

graph show the impact of variations in N(0) and the exponent n

between films of the K series. Error bars in the left graph correspond

to uncertainties in the best-fit values of ce/cph.

very slowly with the angle until the mean angle of total

internal reflection θ̄max = arcsin(ū1/ū2).

C. Discussion

When compared at the same temperatures, the best-fit

values of the heat-capacity ratios for thinnest films of K series

is approximately 25% larger than the ratios obtained for films

of M series. This observation agrees with the Drude and

the Debye models for electrons and phonons, respectively,

if one takes into account temperature dependencies of heat

capacities, ce ∝ N (0) T and cph ∝ T 3, and the difference

between densities of electron states (Table II) for films of the

K and M series.

Let us now compare the absolute values of heat-capacity

ratios predicted by the Drude and Debye models with the

ratios obtained experimentally as best fits in the frame-

work of the 2T model. The Drude model predicts for elec-

trons the heat capacity ce = π2k2
BN (0) T/3. For phonons,

the 3D Debye model predicts the heat capacity cph =
1

15
2π2kB(kB T /h̄)3[2(u1t )

−3 + (u1l)
−3]. Taking N (0) from

Table II, and u1t = u1l/2 = 2.4 × 103 m sec−1 (Table IV) we

obtained ce and cph at the actual critical temperatures of each

studied sample. Computed model ratios ce/cph for very thin

films are less than the values obtained via best fits of FDAM

and TDP data. Let us assume that the electron heat capacity

is described quantitatively well by the Drude model. Then

the phonon heat capacity in thin films is less than the Debye

model predicts. The values of cph computed with the Debye

model are shown in Fig. 6, together with the best-fit values.

To obtain the best-fit values for cph, we assigned to films of

the K series averaged values of N(0) and n. However, as it is

054501-12



ELECTRON ENERGY RELAXATION IN DISORDERED … PHYSICAL REVIEW B 102, 054501 (2020)

seen in Table III and Ref. [24], these parameters vary with the

thickness. Error bars in the right graph of Fig. 6 show expected

uncertainties in the phonon heat capacities. With the decrease

of the film thickness, the difference between the values of cph

obtained via best fits in the framework of the 2T model and

the values predicted by the Debye model increases.

We further estimate the Debye temperature of our films

in the framework of the three-dimensional Debye model

as TD = h̄(6π2)1/3ū1/(kBa). Assuming a = 0.44 and ū1 =
2.54 × 103 m/s (Sec. IV B), we found TD = 172 K. Such

value is typical for Debye temperatures reported for similar

films [27] and is a few times less than the values reported

for bulk NbN. The reduction of the Debye temperature is

usually denoted as “phonon softening” caused by granularity

and weakening of ion bonds on film surfaces [75].

The differences between phonon heat capacities obtained

as the best fits with the 2T model and computed in the frame-

work of the Debye model is most pronounced for thin films.

We attribute this difference to changes in the phonon spec-

trum. There are at least two effects that may cause a decrease

in the phonon heat capacity in thin films. One is the depletion

of the transverse phonon modes in thin films specifically

for the mode with polarization along the normal to the film

[75]. Another one is an increase in the phonon wavelength

at low temperatures. As a consequence, in thin films at low

temperatures, the phonon wavelength becomes comparable

or even larger than the film thickness. This effect eliminates

low-energy phonons propagating at small angles θ and hence

destroys isotropy of the phonon spectrum and reduces phonon

density of states. Using the 3D density of states from the

Debye model and the average kinematic velocity for phonons

u = 4u1t/3 we arrive at λ ≈ 2π h̄u/(kBT ) ≈ 12 nm at 13 K.

This value is four times the thickness of the thinnest film in

the K series. The condition λ � d restricts available directions

of the phonon wave vectors most efficiently within the cone

with plane angle θ̄max around the normal to the interface where

ηθ > 0 and where phonons can only escape from the film. The

reduction in the phonon spectrum emitted perpendicularly

to the film/substrate interface with the decrease of the film

thickness was observed and modeled in [76]. The authors

showed that in the restricted direction, the phonon spectrum is

modified. Phonon states with small frequencies are forbidden

that resulted in discrete, sharp steps in the number of excited

phonons.

V. CONCLUSION

We have studied inelastic scattering and energy relaxation

of electrons by means of magnetoconductance and photore-

sponse, respectively, in a series of superconducting NbN films

on Si/SiO2 and Al2O3 substrates with thicknesses in the range

from 3 to 33 nm. Our main results are as follows:

(a) In studied NbN films in the temperature range from 10

to 30 K, the inelastic electron-phonon scattering rate defined

by magnetoconductance technique depends on temperature as

1/τe-ph ∝ T n with the exponent n ≈ 3.2–3.8. The magnitude

of τe-ph at 10 K falls into the range 11.9–17.5 ps. In this

temperature range, the films are strongly disordered. They are

characterized by close values of the product qTl = α T ≪ 1,

which controls the impact of disorder on the electron-phonon

coupling. The coefficient α falls into the range 0.075 ±
0.005 K−1, while the Ioffe-Regel parameter kFl varies in the

range from 0.88 to 1.22.

(b) The Debye temperature in our films is noticeably

smaller than the Debye temperature of bulk NbN material.

We attribute this to phonon softening caused by granularity

and weakening of ion bonds at film surfaces.

(c) Experimental photoresponse data for thicker films are

described reasonably well in the framework of the 3D Debye

model and the 2T model with the film parameters extracted

from magnetoconductance measurements. Photoresponse of

thinner films can only be described with a heat capacity of

phonons smaller than the Debye model predicts. We attribute

this finding to the reduced density of phonon states in thin

films with thicknesses comparable or smaller than the wave-

length of thermal phonons.

ACKNOWLEDGMENTS

M.S. acknowledges support by the Helmholtz Research

School on Security Technologies, M.M. acknowledges sup-

port by the Russian Foundation for Basic Research (Project

No. 19-32-90083). The work was partly supported by the Ger-

man Federal Ministry of Education and Research (Program

ERA.Net RUS Plus, Project ID: 88) and the Russian Science

Foundation (Project No. 16-12-00045). The authors would

like to thank D. Henrich for providing raw experimental

data.

[1] D. Yu. Vodolazov, Single-Photon Detection by a Dirty Current-

Carrying Superconducting Strip based on the Kinetic-Equation

Approach, Phys. Rev. Appl. 7, 034014 (2017).

[2] T. M. Klapwijk and A. V. Semenov, Engineering physics of

superconducting hot-electron bolometer mixers, IEEE Trans.

Terahertz Sci. Technol. 7, 627 (2017).

[3] A. D. Semenov and H.-W. Hübers, Bandwidth of a hot-electron

bolometer mixer according to the hot-spot model, IEEE Trans.

Appl. Supercond. 11, 196 (2001).

[4] A. A. Abrikosov, Fundamentals of the Theory of Metals

(Elsevier, Amsterdam, 1988).

[5] S. B. Kaplan, Acoustic matching of superconducting films to

substrates, J. Low Temp. Phys. 37, 343 (1979).

[6] K. Smirnov, A. Divochiy, Y. Vakhtomin, P. Morozov, P.

Zolotov, A. Antipov, and V. Seleznev, NbN single-photon

detectors with saturated dependence of quantum efficiency,

Supercond. Sci. Technol. 31, 035011 (2018).

[7] D. Hazra, N. Tsavdaris, S. Jebari, A. Grimm, F. Blanchet,

F. Mercier, E. Blanquet, C. Chapelier, and M. Hofheinz,

Superconducting properties of very high quality NbN thin

films grown by high temperature chemical vapor deposition,

Supercond. Sci. Technol. 29, 105011 (2016).

054501-13



MARIIA SIDOROVA et al. PHYSICAL REVIEW B 102, 054501 (2020)

[8] A. Sergeev and V. Mitin, Electron-phonon interaction in dis-

ordered conductors: Static and vibrating scattering potentials,

Phys. Rev. B 61, 6041 (2000).

[9] J. Liu and N. Giordano, Electron-phonon scattering times in

thin Sb films, Phys. Rev. B 43, 3928 (1991).

[10] J. J. Lin, T.-J. Li, and T. M. Wu, Electron-phonon scattering

times in three-dimensional disordered Sb film, Phys. Rev. B 61,

3170 (2000).

[11] G. Bergmann, W. Wei, Y. Zou, and R. M. Mueller, Nonequilib-

rium in metallic microstructures in the presence of high current

density, Phys. Rev. B 41, 7386 (1990).

[12] A. I. Bezuglyj and V. A. Shklovskij, Kinetics of electron cooling

in metal films at low temperatures and revision of the two tem-

perature model, J. Phys.: Condens. Matter 30, 295001 (2018).

[13] M V. Sidorova, A. G. Kozorezov, A. V. Semenov, Yu. P.

Korneeva, M. Yu. Mikhailov, A. Yu. Devizenko, A. A. Korneev,

G. M. Chulkova, and G. N. Goltsman, Nonbolometric bottle-

neck in electron-phonon relaxation in ultrathin WSi films, Phys.

Rev. B 97, 184512 (2018).

[14] W. Eisenmenger, K. Laßmann, H. J. Trumpp, and R. Krauß,

Quasiparticle recombination and 2 �-phonon-trapping in super-

conducting tunneling junctions, Appl. Phys. 11, 307 (1976).

[15] D. Henrich, Influence of material and geometry on the perfor-

mance of superconducting nanowire single-photon detectors,

Ph.D. thesis, Karlsruhe Institute of Technology, 2013.

[16] A. Kardakova, A. Shishkin, A. Semenov, G. N. Goltsman, S.

Ryabchun, T. M. Klapwijk, J. Bousquet, D. Eon, B. Sacepe, Th.

Klein, and E. Bustarret, Relaxation of the resistive supercon-

ducting state in boron-doped diamond films, Phys. Rev. B 93,

064506 (2016).

[17] G. N. Gol’tsman and A. D. Semenov, Y. P. Gousev, M. A. Zorin,

I. G. Godidze, E. M. Gershenzon, P. T. Lang, W. J. Knott, and

K. F. Renk, Sensitive picosecond NbN detector for radiation

from millimetre wavelengths to visible light, Supercond. Sci.

Technol. 4, 453 (1991).

[18] K. V. Smirnov, A. V. Divochiy, Yu. B. Vakhtomin, M. V.

Sidorova, U. V. Karpova, P. V. Morozov, V. A. Seleznev, A.

N. Zotova, and D. Yu. Vodolazov, Rise time of voltage pulses

in NbN superconducting single photon detectors, Appl. Phys.

Lett. 109, 052601 (2016).

[19] Y. Pellan, G. Dousselin, J. Pinel, and Y. U. Sohn, Temperature

and magnetic field dependence of NbN film resistivity: 3D weak

localization effects, J. Low Temp. Phys. 78, 63 (1990).

[20] S. Cherednichenko, P. Yagoubov, K. Il’in, G. Gol’tsman, and

E. Gershenzon, Large bandwidth of NbN phonon-cooled hot-

electron bolometer mixers on sapphire substrates, Eighth Inter-

national Symposium on Space Terahertz Technology (Harvard

University, Cambridge, MA, 1997).

[21] A. D. Semenov, R. S. Nebosis, Yu. P. Gousev, M. A. Heusinger,

and K. F. Renk, Analysis of the nonequilibrium photoresponse

of superconducting films to pulsed radiation by use of a two-

temperature model, Phys. Rev. B 52, 581 (1995).

[22] Yu. P. Gousev, G. N. Gol’tsman, A. D. Semenov, and E.

M. Gershenzon, R. S. Nebosis, M. A. Heusinger, and K.

F. Renk, Broadband ultrafast superconducting NbN detec-

tor for electromagnetic radiation, J. Appl. Phys. 75, 3695

(1994).

[23] K. S. Il’in, M. Lindgren, M. Currie, A. D. Semenov, G. N.

Gol’tsman, R. Sobolewski, S. I. Cherednichenko, and E. M.

Gershenzon, Picosecond hot-electron energy relaxation in NbN

superconducting photodetectors, Appl. Phys. Lett. 76, 2752

(2000).

[24] A. Semenov, B. Günther, U. Böttger, H.-W. Hübers, H. Bartolf,

A. Engel, A. Schilling, K. Ilin, M. Siegel, R. Schneider, D.

Gerthsen, and N. A. Gippius, Optical and transport properties

of ultrathin NbN films and nanostructures, Phys. Rev. B 80,

054510 (2009).

[25] D. Destraz, K. Ilin, M. Siegel, A. Schilling, and J. Chang,

Superconducting fluctuations in a thin NbN film probed by the

Hall effect, Phys. Rev. B 95, 224501 (2017).

[26] Y. Noat, V. Cherkez, C. Brun, T. Cren, C. Carbillet, F.

Debontridder, K. Ilin, M. Siegel, A. Semenov, H.-W. Hübers,

and D. Roditchev, Unconventional superconductivity in ultra-

thin superconducting NbN films studied by scanning tunneling

spectroscopy, Phys. Rev. B 88, 014503 (2013).

[27] S. P. Chockalingam, M. Chand, J. Jesudasan, V. Tripathi,

and P. Raychaudhuri, Superconducting properties and Hall

effect of epitaxial NbN thin films, Phys. Rev. B 77, 214503

(2008).

[28] H. Bartolf, A. Engel, A. Schilling, K. Il’in, M. Siegel, H.-W.

Hübers, and A. Semenov, Current-assisted thermally activated

flux liberation in ultrathin nanopatterned NbN superconducting

meander structures, Phys. Rev. B 81, 024502 (2010).

[29] S. Ezaki, K. Makise, B. Shinozaki, T. Odo, T. Asano, H.

Terai, T. Yamashita, S. Miki, and Z. Wang, Localization and

interaction effects in ultrathin epitaxial NbN superconducting

films, J. Phys.: Condens. Matter 24, 475702 (2012).

[30] B. Shinozaki, S. Ezaki, T. Odou, K. Makise, and T. Asano,

Superconducting Fluctuations above Tc and pair breaking pa-

rameters of two dimensional Niobium Nitride Films, Poster

session presented at 28th International Conference on Low

Temperature Physics, Gothenburg, Sweden, 9–16 August, 2017.

[31] B. Shinozaki, S. Ezaki, T. Odou, K. Makise, and T. Asano,

Superconducting Fluctuations above Tc and pair breaking pa-

rameters of two dimensional Niobium Nitride Films, J. Phys.:

Conf. Ser. 969, 012061 (2018).

[32] L. Zhang, L. You, X. Yang, J. Wu, C. Lv, Qi Guo, W. Zhang,

H. Li, W. Peng, Z. Wang, and X. Xie, Hotspot relaxation time

of NbN superconducting nanowire single-photon detectors on

various substrates, Sci. Rep. 8, 1486 (2018).

[33] E. M. Baeva, M. V. Sidorova, A. A. Korneev, K. V. Smirnov, A.

V. Divochy, P. V. Morozov, P. I. Zolotov, Yu. B. Vakhtomin,

A. V. Semenov, T. M. Klapwijk, V. S. Khrapai, and G. N.

Goltsman, Thermal Properties of NbN Single-Photon Detec-

tors, Phys. Rev. Appl. 10, 064063 (2018).

[34] G. Bergmann, Quantitative analysis of weak localization in thin

Mg films by magnetoresistance measurements, Phys. Rev. B 25,

2937 (1982).

[35] Y. Dubi, Y. Meir, and Y. Avishai, Nature of the superconductor–

insulator transition in disordered superconductors, Nature

(London) 449, 876 (2010).

[36] A. Ghosal, M. Randeria, and N. Trivedi, Role of Spatial Ampli-

tude Fluctuations in Highly Disordered s-Wave Superconduc-

tors, Phys. Rev. Lett. 81, 3940 (1998).

[37] A. Ghosal, M. Randeria, and N. Trivedi, Inhomogeneous pair-

ing in highly disordered s-wave superconductors, Phys. Rev. B

65, 014501 (2001).

[38] R. Chicault and J. C. Villegier, New phonon structures observed

by tunneling in granular NbN films, Phys. Rev. B 36, 5215

(1987).

054501-14



ELECTRON ENERGY RELAXATION IN DISORDERED … PHYSICAL REVIEW B 102, 054501 (2020)

[39] R. Cabanel, J. Chaussy, J. Mazuer, and J. C. Villegier, From

localization to superconductivity in granular niobium nitride

thin films, J. Phys. 49, 795 (1988).

[40] D. Rall, P. Probst, M. Hofherr, S. Wünsch, K. Il’in, U. Lemmer,

and M. Siegel, Energy relaxation time in NbN and YBCO thin

films under optical irradiation, J. Phys.: Conf. Ser. 234, 042029

(2010).

[41] J. Rammer, A Schmid, Destruction of phase coherence by

electron-phonon interactions in disordered conductors, Phys.

Rev. B 34, 1352(R) (1986).

[42] K. S. Il’in, N. G. Ptitsina, A. V. Sergeev, G. N. Gol’tsman,

E. M. Gershenzon, B. S. Karasik, E. V. Pechen, and S.

I. Krasnosvobodtsev, Interrelation of resistivity and inelastic

electron-phonon scattering rate in impure NbC films, Phys. Rev.

B 57, 15623 (1998).

[43] N. Perrin and C. Vanneste, Response of superconducting films

to a periodic optical irradiation, Phys. Rev. B 28, 5150 (1983).

[44] A. Rothwarf and B. N. Taylor, Measurement of Recombination

Lifetimes in Superconductors, Phys. Rev. Lett. 19, 27 (1967).

[45] A. F. Ioffe and A. R. Regel, Non-crystalline, Amorphous and

Liquid Electronic Semiconductors, in Progress in Semiconduc-

tors, Vol. 4 (John Wiley & Sons, Inc., New York, 1960), pp.

237–291.

[46] K. Tanabe, H. Asano, Y. Katoh, and O. Michikami, Ellipsomet-

ric and optical reflectivity studies of reactively sputtered NbN

thin films, J. Appl. Phys. 63, 1733 (1988).

[47] L. G. Aslamazov and A. I. Larkin, The influence of fluctuation

pairing of electrons on the conductivity of normal metal, Phys.

Lett. A 26, 238 (1968).

[48] K. Maki, Critical Fluctuation of the Order Parameter in a

Superconductor. I, Prog. Theor. Phys. 40, 193 (1968).

[49] R. S. Thompson, Microwave, Flux Flow, and Fluctuation Re-

sistance of Dirty Type-II Superconductors, Phys. Rev. B 1, 327,

(1970).

[50] P.-G. de Gennes, in Superconductivity of Metals and Alloys (W.

A. Benjamin, New York, 1966), p. 270.

[51] S. Hikami, A. Larkin, and Y. Nagaoka, Spin-orbit interaction

and magnetoresistance in the two dimensional random system,

Prog. Theor. Phys. 63, 707 (1980).

[52] L. G. Aslamazov and A. I. Larkin, Effect of fluctuations on the

properties of a superconductor above the critical temperature,

Sov. Phys. Solid State 11, 23 (1968).

[53] G. Bergmann, Quantum corrections to the resistance in two-

dimensional disordered superconductors above Tc: Al, Sn, and

amorphous Bi0.9Tl0.1 films, Phys. Rev. B 29, 6114 (1984).

[54] M. H. Redi, Two-dimensional fluctuation-induced conductivity

above the critical temperature, Phys. Rev. B 16, 2027 (1977).

[55] E. Abrahams, R. E. Prange, and M. J. Stephen, Effect of a

magnetic field on fluctuations above Tc, Physica (Amsterdam)

55, 230 (1971).

[56] M. Tinkham, in Introduction to Superconductivity (Krieger,

Malabar, FL, 1980), p. 14.

[57] H. Wiesmann, M. Gurvitch, A. K. Ghosh, H. Lutz, O. F.

Kammerer, and M. Strongin, Estimate of density-of-states

changes with disorder in A−15 superconductors, Phys. Rev. B

17, 122 (1978).

[58] A. I. Larkin, Reluctance of two-dimensional systems, JETP

Lett. 31, 219 (1980).

[59] J. M. B. Lopes dos Santos and E. Abrahams, Superconducting

fluctuation conductivity in a magnetic field in two dimensions,

Phys. Rev. B 31, 172 (1985).

[60] R. S. Thompson, The influence of magnetic fields on the

paraconductivity due to fluctuations in thin films, Physica 55,

296 (1971).

[61] K. Char and A. Kapitulnik, Fluctuation conductivity in

inhomogeneous superconductors, Z. Phys. B 72, 253

(1988).

[62] H. Ebisawa, S. Maekawa, and H. Fukuyama, Pair breaking pa-

rameter of two-dimensional dirty superconductors, Solid State

Commun. 45, 75 (1983).

[63] A. I. Larkin and A. A. Varlamov, Fluctuation phenomena in

superconductors, in The Physics of Superconductors (Springer,

Berlin Heidelberg, 2008), pp. 95–231.

[64] B. Shinozaki, S. Ezaki, T. Odou, T. Asano, and K. Makise,

Anomalous electron inelastic scattering rate probed via super-

conducting fluctuation in epitaxial NbN thin films, Physica C

(Amsterdam, Neth.) 567, 1353547 (2019).

[65] B. L. Altshuler, A. G. Aronov, and D. E. Khmelnitzkii, Effects

of electron-electron collisions with small energy transfers on

quantum localization, J. Phys. C 15, 7367 (1982).

[66] W. Brenig, M. C. Chang, E. Abrahams, and P. Wolfe, Inelastic

scattering time above the superconductivity transition in two

dimensions: Dependence on disorder and magnetic field, Phys.

Rev. B 31, 7001 (1985).

[67] B. L. Altshuler and A. G. Aronov, Electron–electron interac-

tion in disordered conductors, Modern Problems in Condensed

Matter Sciences (Elsevier, 1985), Vol. 10, pp. 1–153.

[68] K. K. Choi, D. C. Tsui, and K. Alavi, Dephasing time and

one-dimensional localization of two-dimensional electrons in

GaAs/AlxGa1−xAs heterostructures, Phys. Rev. B 36, 7751

(1987).

[69] G. F. Giuliani and J. J. Quinn, Lifetime of a quasiparticle in a

two-dimensional electron gas, Phys. Rev. B 26, 4421 (1982).

[70] A. V. Sergeev and M. Yu. Reizer, Photoresponse mechanisms of

thin superconducting films and superconducting detectors, Int.

J. Mod. Phys. B 10, 635 (1996).

[71] Y. Zou, X. Wang, T. Chen, X. Li, X. Qi, D. Welch, P. Zhu,

B. Liu, T. Cui, and B. Li, Hexagonal-structured ε-NbN: Ul-

traincompressibility, high shear rigidity, and a possible hard

superconducting material, Sci. Rep. 5, 10811 (2015).

[72] J. Chang, G.-P. Zhao, X.-L. Zhou, K. Liu, and L.-Y. Lu,

Structure and mechanical properties of tantalum mononitride

under high pressure: A first-principles study, J. Appl. Phys. 112,

083519 (2012).

[73] A. Engel, A. Aeschbacher, K. Inderbitzin, A. Schilling, K.

Il’in, M. Hofherr, M. Siegel, A. Semenov, and H.-W. Hübers,

Tantalum nitride superconducting single-photon detectors with

low cut-off energy, Appl. Phys. Lett. 100, 062601 (2012).

[74] K. Ilin, D. Henrich, Y. Luck, Y. Liang, M. Siegel, and D.

Yu. Vodolazov, Critical current of Nb, NbN, and TaN thin-

film bridges with and without geometrical nonuniformities in

a magnetic field, Phys. Rev. B 89, 184511 (2014).

[75] A. A. Balandin and D. L. Nika, Phononics in low-dimensional

materials, Mater. Today 15 (6), 266 (2012).

[76] W. Frick, D. Waldmann, and W. Eisenmenger, Phonon emission

spectra of thin metallic films, Appl. Phys. 8, 163 (1975).

054501-15


