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Abstract: In this paper, we propose a high performance Two-Stream spectral-spatial Residual
Network (TSRN) for hyperspectral image classification. The first spectral residual network (sRN)
stream is used to extract spectral characteristics, and the second spatial residual network (saRN)
stream is concurrently used to extract spatial features. The sRN uses 1D convolutional layers to fit
the spectral data structure, while the saRN uses 2D convolutional layers to match the hyperspectral
spatial data structure. Furthermore, each convolutional layer is preceded by a Batch Normalization
(BN) layer that works as a regularizer to speed up the training process and to improve the accuracy.
We conducted experiments on three well-known hyperspectral datasets, and we compare our results
with five contemporary methods across various sizes of training samples. The experimental results
show that the proposed architecture can be trained with small size datasets and outperforms the
state-of-the-art methods in terms of the Overall Accuracy, Average Accuracy, Kappa Value, and
training time.

Keywords: hyperspectral image classification; two stream residual network; deep learning;
Batch Normalization

1. Introduction

Hyperspectral imaging has received much attention in recent years due to its ability to capture
spectral information that is not detected by the naked human eye [1]. Hyperspectral imaging
provides rich cues for numerous computer vision tasks [2] and a wide range of application areas,
including medical [1], military [3], forestry [4], food processing [5], and agriculture [6].

One of the main challenges when analyzing Hyperspectral Images (HSIs) lies in extracting
features, which is challenging due to the complex characteristics, i.e., the large size and the large
spatial variability of HSIs [7]. Furthermore, HSI is composed of hundreds of spectral bands, in which
wavelengths are very close, resulting in high redundancies [7,8]. Traditional machine learning methods
are less suitable for HSI analysis because they heavily depend on hand-crafted features, which are
commonly designed for a specific task, and are thus not generalizable [9]. In contrast, deep learning
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techniques can capture characteristic features automatically [9,10], thus constituting a promising
avenue for HSI analysis.

Several deep learning architectures have been proposed to classify HSIs. Many architectures, such
as one-dimensional convolutional neural network (1D-CNN) [11,12], one-dimensional generative
adversarial network (1D-GAN) [13,14], and recurrent neural network (RNN) [15,16], have been
proposed to learn spectral features. Other works, e.g., Reference [17–19], have shown that adding
spatial features can improve the classification performance. Numerous spectral-spatial network
architectures have been proposed for HSIs [19–28].

A number of methods argue that extracting the spectral and spatial features in two separate
streams can produce more discriminative features [25,29,30]. Examples of such methods include
stacked denoising autoencoder (SdAE) and 2D-CNN [30], plain 1D-CNN and 2D-CNN [25],
spectral-spatial long short-term memory (SSLSTMs) [27], and a spectral-spatial unified network
(SSUN) [23]. In terms of the spectral stream, the work of Reference [27] used a LSTM, which considers
the spectral values of the different channels as a sequence. However, using LSTM on hundreds of a
sequence of channels is complex; thus, [23] tried to simplify the sequence by grouping them. One of the
grouping strategies is dividing the adjacent band into the same sequence following the spectral orders.
The work in Reference [30] considered spectral values as a vector with noise and used a denoising
technique, SdAE, to encode the spectral features. These networks, based on LSTM and SdAE, are
all shallow. To increase the accuracy, Reference [25] tried to make a deeper network by employing a
simpler layer, based on 1D convolution. The work in Reference [31] considered that the HSI bands
have a different variance and correlation. Hence, they cluster the bands into some groups based on
their similarity, then extracted the spectral features of each cluster using 1D convolution. Different
from Reference [31], the study in Reference [32] considered that different objects have different spectral
reflection profiles; hence, they used 2D convolution with a kernel size of 1x1 to extract the spectral
features. For the spatial stream, Reference [27] also used LSTM, and due to its complexity, thus used
a shallow network. Other approaches [23,25,30] used 2D convolution with a plain network, which
could be made deeper, while Reference [31,32] used 2D convolution with a multi-scale input to extract
multi-scale spatial features.

Other works claim that extracting spectral and spatial features directly using a single stream
network can be more beneficial as it leverages the joint spectral-spatial features [28,33,34]. Most that
adopt this approach utilize 3D convolutional layers [12,19,34,35] because they are naturally suited
to the 3D cube data structure of HSIs. Reported experiments show that deep 3D-CNN produces
better performance compared with 2D-CNN [18]. However, 3D-CNN requires large memory size and
expensive computation cost [36]. Moreover, 3D-CNN faces over-smoothing phenomena because it fails
to take the full advantage of spectral information, which results in misclassification for small objects
and boundaries [23]. In addition, the labeling process of HSIs is labor-intensive, time-consuming,
difficult, and thus expensive [37]. Using a complex deep learning architecture, in which parameters
are in the millions, to learn from a small labeled dataset may also lead to over-fitting [38]. Moreover,
adjusting millions of parameters during the deep-learning training process consumes a lot of time.
Devising a deep learning architecture, which can work well on complex data of HSI, in which labeled
datasets are small, is desirable.

Another issue with HSI classification based on deep learning is the depth of the network.
The deeper the layer is, the richer the features will be, where the first layer of the deep network extracts
general characteristics, and the deeper layers extract more specific features [39,40]. However, such
deep networks are prone to the vanishing/exploding gradient problem, which occurs when the layers
are deeper [41,42]. To solve this problem, Reference [40] reformulated the layers as learning residual
functions with reference to the layer inputs. This approach is called a residual network (ResNet),
which has become popular because of its remarkable performance on image classification [43]. For HSI
classification, a single stream ResNet has been used by Reference [19,44–46].
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Another problem related to HSI feature extraction is that the spectral values are prone to noise [47].
However, most of the previous research, which focus on the extraction of spectral features with
deep-networks, have not taken noise into account. They usually use a pixel vector along the spectral
dimension directly as their spectral network input [23,25,27,29,30], without considering that noise can
worsen the classification performance.

Considering the aforementioned challenges and the limitations of existing network architectures,
associated with HSI feature extraction and classification, we propose an efficient yet high performance
two-stream spectral-spatial residual network. The spectral residual network (sRN) stream uses 1D
convolutional layers to fit the spectral data structure, and the spatial residual network (saRN) uses 2D
convolutional layers to fit the spatial data structure. The residual connection in the sRN and saRN
can solve the vanishing/exploding gradient problem. Since proceeding the convolutional layer with
Batch Normalization (BN) layer and full pre-activation rectified linear unit (ReLU) generalizes better
than the original ResNet [48], in each of our residual unit, we use BN layer and ReLU layer before the
convolutional layer. We then combine our sRN and saRN in a parallel pipeline. As shown in Figure 1,
given a spectral input cube Xs

ij of a pixel xij, the sRN extracts its spectral features. Concurrently,
given a spatial input cube Xsa

ij of a pixel xij, the saRN will extract its spatial characteristics. Since the
sRN and the saRN use different input sizes and different types of convolution layers, they produce
different sizes of feature maps. The gap between the number of spectral feature maps and the number
of spatial feature maps can worsen the classification accuracy. To make the number of feature maps
in each network proportional, we add an identical fully connected layer at the end of each network.
Subsequently, we employ a dense layer to fuse the spectral features and the spatial features. Finally,
we classify the joint spectral-spatial features using a softmax layer (Figure 1).

In summary, the main contributions of this research are:

• We propose TSRN, a Two-Stream Spectral-Spatial network with residual connections, to extract
spectral and spatial features for HSI classification. The identity shortcut in the residual-unit is
parameter-free, thus adding shortcut connections into a residual-unit does not increase the number
of parameters. Furthermore, the use of 1D convolutional layers in the sRN and 2D convolutional
layers in the saRN results in few trainable parameters. We can, therefore, construct a deeper and
wider network with fewer parameters, making it particularly suitable for HSI classification when
the amount of available labeled data is small.

• We achieve the state-of-the-art performance on HSI classification with various sizes of training
samples (4%, 6%, 8%, 10%, and 30%). Moreover, compared to networks based on 3D convolutional
layers, our proposed architecture is faster.
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Figure 1. Proposed Two-Stream Spectral-Spatial Residual Network (TSRN) architecture. The details
of spectral residual network (sRN) and spatial residual network (saRN) sub-networks are shown in
Figure 2.
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Figure 2. The detailed network of the (a) sRN, (b) saRN, and (c) the detail process of 2D convolution
on 3D input.

2. Technical Preliminaries

2.1. CNN

Convolutional Neural Networks (CNNs) have been increasingly used for HSI analysis. A number
of works aimed at improving the performance of Deep CNNs (DCNNs) have focused on different
aspects, e.g., the network architecture, the type of nonlinear activation function, supervision methods,
regularization mechanisms, and optimization techniques [4,49,50]. Based on the network architecture,
specifically on the convolutional layers, there are different types of CNNs, namely 1D-CNN, 2D-CNN,
and 3D-CNN. The 1D-CNN has one-dimensional filters in its convolutional layers which are naturally
fit to the spectral data structure. Consider the case when the size of the input is K × 1, and the
kernel size is B× 1, with K representing the number of HSI bands, B is the kernel size, and B << K.
Wei Hu et al. [11] used 1D convolutional layers to extract the spectral features of HSI. Their network
input is an HSI pixel vector, with size (K, 1). This research initiated the use of multiple convolutional
layers for HSI classification. Compared to 2D convolution and 3D convolution, the process of 1D
convolution, which is shown in Equation (1), is the simplest one.
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A 2D-CNN has two-dimensional filters in its convolutional layers. It has been widely used to
solve several computer vision problems, such as object detection [51], scene recognition [52], and image
classification [51], because of its ability to extract features from a raw image directly. For the HSI
classification problem, 2D convolutions have been used to extract spatial features [25,30]. In contrast to
RGB images, HSI has a much larger number of channels. Applying 2D convolutions along the hundreds
of channels results in more learned parameters [18]; hence, several studies on HSIs, which employ 2D
convolutions, do not use all of the channels. Most of them use a dimensionality reduction technique as
a preprocessing step with their network [53–55] or use the average of all the images over the spectral
bands of the HSI [25].

A 3D-CNN employs 3D convolutions in its convolutional layers. 3D-CNNs are popular for
video classification [36], 3D object reconstruction [56], and action recognition [57]. For the case of
HSIs, the form of the 3D filter suits the data structure of the HSI cube. Some research papers on
HSI classification use 3D convolutional layers to extract the spectral-spatial features directly [18,33].
Their research shows that 3D-CNN outperforms both 1D-CNN and 2D-CNN. However, as shown in
Equation (3), the process of 3D convolution requires more parameters, more memory, and requires
a higher computational time and complexity compared to 1D convolution in Equation (1) and 2D
convolution in Equation (2).

vz
ij = f (∑

m

Bi−1

∑
b=0

kb
ijmvz+b

(i−1)m + rij), (1)

vxy
ij = f (∑

m

Hi−1

∑
h=0

Wi−1

∑
w=0

kwh
ijmv(x+h)(y+w)

(i−1)m + rij), (2)

vxyz
ij = f (∑

m

Bi−1

∑
b=0

Hi−1

∑
h=0

Wi−1

∑
w=0

kwhb
ijm v(x+h)(y+w)(z+b)

(i−1)m + rij), (3)

where: i is the layer under consideration, m is the index of feature map, z is the index that corresponds
to the spectral dimension, vz

ij is the output of the ith layer and the jth feature map at position z ,

kb
ijm is the kernel value at index b on the layer i and feature map j, rij is the bias at layer i and feature

map j. For the 1D convolution in Equation (1), Bi is the size of the 1D filter in layer i, while, for the 3D
convolution in Equation (3), Bi is the depth of 3D kernel. Wi and Hi are the width and height of the
kernel, respectively, for both 2D and 3D convolutions.

The expensive computational cost and memory demand of 3D convolution has led studies to
investigate alternative network architectures based on (2D + 1D) convolutions. For instance, in the
case of action recognition, a study in Reference [58] proposed to replace 3D convolution with m
parallel streams of n 2D and one 1D convolution. This study empirically showed that their network,
which is based on (2D + 1D) convolution, achieves around 40% reduction in model size and yields
a drastic reduction in the number of learning parameters compared to another network with 3D
convolution. In Reference [36], a simplified 3D convolution was implemented using 2D and 1D
convolutions in three different blocks: 2D followed by 1D, 2D and 1D in parallel, and 2D followed
by 1D with skip connections. These blocks were subsequently interleaved using a sequence network.
The proposed architecture has a depth of 199 and a model size of 261 MB, which is much lighter
compared to the 3D-CNN, in which model size is 321 MB when the depth is 11. The architecture
was also shown to be faster than its 3D-CNN counterpart [36]. Using (2D + 1D) convolutions
instead of 3D convolutions allows the network to be deeper without significantly increasing the
number of parameters. Such deep networks can extract richer features and have been shown to
outperform 3D-CNN architectures [36,58,59]. Because the model size and the number of parameters
grow dramatically as the network becomes deeper, the training of deep 3D-CNNs is extremely difficult
with the risk of overfitting.
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2.2. Residual Network

Deeper CNN can extract richer features [39]. In some cases, when the networks are deeper, their
accuracy degrades because of the vanishing/exploding gradients problem [60]. Hence, He et al. [40]
proposed to use a shortcut connection to perform identity mapping without adding extra parameters
or extra computational time. The shortcut connection outputs are added to the output of the stacked
layers, and a ReLU is applied as the activation function. This network is named ResNet. It has
achieved outstanding classification accuracy on some image benchmark datasets, such as ImageNet,
ILSVRC 2015, and CIFAR-10.

He et al. [48] followed up their work on ResNet by analyzing the propagation formulation
behind the residual unit. Their analysis has shown that a “clean” information path in the skip
connection results in the lowest training loss compared to those with scaling, gating, and convolution.
Regarding the position of the ReLU activation function in the residual building blocks, they proved
that putting ReLU and BN before the add function (full pre-activation) generalizes better than the
original ResNet [40], which used ReLU after the add function (post-activation). The difference between
pre-activation and post-activation in the residual building blocks is shown in Figure 3.
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Figure 3. (a) Original residual unit with clear short-cut connection. (b) rectified linear unit (ReLU)-only
pre-activation with dropout short-cut connection. (c) Full pre-activation with clear short-cut connection.

For the use of ResNet for HSI classification, Zhong et al. [44] proved that with the same
size of convolutional layers, ResNet achieves better recognition accuracy than a plain CNN. Then,
they explored ResNet by applying more various kernel sizes to sequentially extract the spectral features
and the spatial features [19]. Roy et al. [61] used 3D convolutional layers followed by 2D convolutional
layers in their residual network. Their network achieved high performance with 30% training samples.
Meanwhile, Reference [45] explored ResNet by implementing a variable number of kernels in each
convolutional layer. The kernel number was set to increase gradually in all convolutional layers like a
pyramid to increase the diversity of the spectral-spatial features. In contrast to Reference [19,45,61],
which focus on exploring the convolutional layer, Reference [46] improved the ResNet architecture by
combining it with a dense convolutional network, which helps the ResNet to explore new features.
These various works all improve ResNet performance by using a single network to extract both spectral
and spatial features. Our proposed architecture extracts the spectral and spatial features from two
separate stream networks to produce distinctive spectral and spatial features.

3. Proposed TSRN Network

The flowchart of the proposed TSRN is displayed in Figure 1. From the diagram, we can see that
TSRN has two important residual network streams: a sRN and a saRN. Since the number of bands in
the spectral dimension is very large (hundreds of channels), and thus comprises much redundancy,
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we first apply PCA to extract the first K principal components. Then, for each pixel, we take a 3× 3
cube alongside the spectral direction, which is centered at that pixel, as the input of the sRN stream to
learn the spectral features. Similarly, we take an n× n× K cube and feed it to the saRN streams to
extract the spatial features. In this method, we propose to use the same number of spectral and spatial
features. Hence, we need to ensure that their feature map sizes at the output of the sRN and the saRN
networks are the same. To this end, we have applied a dense layer with the same number of units
in each stream. Then, we apply a fully connected layer to fuse the spectral features and the spatial
features. Finally, we use a softmax layer to classify the features. In the next subsection, we will explain
in more detail both spectral and spatial networks.

3.1. Spectral Residual Network

Although we have minimized the data redundancy of the HSI by using PCA, the spectral values
can still be noisy. In the sRN, we propose to compute the mean of the reflectance in each spectral
band before inputting the spectral cube into the sRN to minimize the effects of the noise. Given a
pixel xij, we choose a spectral cube Xs

ij ∈ R3×3×K, which is centered at xij and K is the number of PCA
components. Then, we compute the mean reflectance of each band by using Equation (4), where k ∈ K,
Xs

ij = {xs
ij1, xs

ij2, ..., xs
ijK}, and Xs

ij ∈ R1xK .

xs
ijk =

∑
h=j+1
h=j−1 ∑

g=i+1
g=i−1 xs

g,h,k

9
. (4)

Then, we input the mean of the spectral value (Xs
ij) into the sRN. In this proposed architecture,

we use three full pre-activation with clear skip connection residual units inspired by Reference [48]. It
has been shown that these residual units are better than the traditional residual units. These residual
units consist of three different layers.

• One-dimensional convolutional layers, which perform a dot product between every small window
of input data (1× Bi) and the kernel’s weights and biases (see Equation (1)).

• BN layer that normalizes the layer inputs of each training mini-batch to overcome the internal
covariate shift problem [62]. The internal covariate shift problem is a condition which occurs
when the distribution of each layer’s inputs in deep-network changes due to the change of the
previous layer’s parameters. This situation slows down the training. Normalizing the layer’s
inputs stabilizes its distribution and thus speeds up the training process.

• ReLU is an activation function, which learns the non-linear representations of each feature map’s
components [63].

In the full pre-activation residual unit, the BN layer and the ReLU activation layer are established
before the convolution layer, as shown in Figure 2a. From that figure, we can see that an Average
Pooling layer, a Dropout layer, and a Dense layer have been applied at the end of the sRN. The Average
Pooling layer and the Dropout layer are used as a regularizer to minimize the over-fitting problem
due to the small number of training samples, while the Dense layer is used to perform the high-level
reasoning to produce 128 spectral features.

3.2. Spatial Residual Network

The saRN is devised to extract the spatial features of a pixel xij. The input is an n× n× K cube,
centered at pixel xij. Then, the input is processed by the full pre-activation residual unit. As shown in
Figure 2b, the rest of the layers architecture of this saRN are similar to those of sRN. The main difference
between them is that the saRN uses 2D convolutional layers, while the sRN uses 1D convolutional
layers. In the end of this network, 128 spatial features are extracted.

Figure 2c illustrates the 2D convolution process with a spatial cube in which size is n× n× K,
where K is the number of channels or the input depth. Since the input is 3D then the kernel is also 3D,
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i.e., the kernel depth must be the same as the input depth. Hence, in this case, the kernel depth must
be K. So, we can only select the kernel width and height. The convolution process is performed along
the x and y-direction and produces a 2D matrix as output [64].

Given a pixel xij, the spectral features Fs
ij produced by sRN and the spatial features Fsa

ij produced
by saRN are given by Equations (5) and (6), respectively.

Fs
ij = sRN(Xs

ij), (5)

Fsa
ij = saRN(Xsa

ij ). (6)

Using Fs
ij and Fsa

ij , we implement a fully connected layer to obtain the joint spectral-spatial features

Fssa
ij using the formula in Equation (7), where W f cl and b f cl are the weight vector and the bias of the

fully connected layer, respectively, and ⊕ is the concatenation operation.

Fssa
ij = f (W f cl · {Fs

ij ⊕ Fsa
ij }+ b f cl). (7)

After obtaining the joint spectral-spatial feature Fssa
ij , we use a softmax regression layer (SRL) to

predict the class probability distribution of the pixel xij by using Equation (8). Here, N is the number
of classes, and P(xij) is a vector consisting of the probability distribution of each class on pixel xij. In
the end, the label of the pixel xij is decided using Equation (9).

P(xij) =
1

∑N
n=1 ewsrl

n .Fssa
ij


ewsrl

1 .Fssa
ij

ewsrl
2 .Fssa

ij

:

ewsrl
N .Fssa

ij ,

 (8)

label(xij) = argmaxP(xij). (9)

4. Experiments

4.1. Experimental Datasets

We evaluated the proposed architecture on three publicly available HSI datasets, which are
frequently used for pixel-wise HSI classification. These datasets are Indian Pine (IP), Pavia University
(PU), and Kennedy Space Center (KSC). These datasets were captured by different sensors, thus
having different spatial resolutions and a different number of bands. Each dataset has a different
category (class), and each class has a different number of instances. The details of the datasets are
provided below:

1. IP Dataset: IP dataset was acquired by Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)
hyperspectral sensor data on 12 June 1992, over Purdue University Agronomy farm and nearby
area, in Northwestern Indiana, USA. The major portions of the area are Indian Creek and
Pine Creek watershed; thus, the dataset is known as the Indian Pine dataset. The captured
scene contains 145× 145 pixels with a spatial resolution of 20 meters per pixel. In other words,
the dataset has 21,025 pixels. However, not all of the pixels have ground-truth information.
Only 10,249 pixels are categorized between 1 to 16 (as shown in Table 1a), and the remaining pixels
remain unknown (labeled with zero in the ground truth). Regarding the spectral information, the
entire spectral band of this dataset is 224, with wavelengths ranging from 400 to 2500 nm. Since
some of the bands cover the region of water absorption, (104–108), (150–163), and 220, they are
removed, so only 200 bands remain Reference [65].

2. KSC Dataset: Same as the IP dataset, the KSC dataset was also collected by AVIRIS sensor in 1996
over the Kennedy Space Center, Florida, USA. Its size is 512× 614; thus, this dataset consists of
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314,368 pixels, but only 5122 pixels have ground-truth information (as shown in Table 1b). The
dataset’s spatial resolution is 18 meters per pixel, and its band number is 174.

3. PU Dataset: The PU dataset was gathered during a flight campaign over the campus in Pavia,
Northern Italy, using a Reflective Optics System Imaging Spectrometer (ROSIS) hyperspectral
sensor. The dataset consists of 610× 610 pixels, with a spatial resolution 1.3 meters per pixel.
Hence 207,400 pixels are available in this dataset. However, only 20% of these pixels have
ground-truth information, which are labeled into nine different classes, as shown in Table 1c. The
number of its spectral bands is 103, ranging from 430 to 860 nm.

Table 1. Detailed categories and number of instances of Indian Pines dataset (The colours represent the
colour labels that are used in the figures of Section 4.3).

Label Category Name # Pixel
(a) Indian Pines Dataset

C1 Alfafa 46
C2 Corn-notil 1428
C3 Corn-mintill 830
C4 Corn 237
C5 Grass-pasture 483
C6 Grass-trees 730
C7 Grass-pasture-mowed 28
C8 Hay-windrowed 478
C9 Oats 20
C10 Soybean-notil 972
C11 Soybean-mintill 2455
C12 Soybean-clean 593
C13 Wheat 205
C14 Woods 1265
C15 Building-Grass-Tress 386
C16 Stone-Steel-Towers 93

(b) KSC Dataset
C1 Scrub 761
C2 Willow swamp 253
C3 Cabbage palm hammock 256
C4 Cabbage palm 252
C5 Slash pine 161
C6 Oak 229
C7 Hardwood swamp 105
C8 Graminoid marsh 431
C9 Spartina marsh 520
C10 Cattail marsh 404
C11 Salt marsh 419
C12 Mud flats 503
C13 Water 927

(c) Pavia University Dataset
C1 Asphalt 6631
C2 Meadows 18,649
C3 Gravel 2099
C4 Trees 3064
C5 Painted metal sheets 1345
C6 Bare soil 5029
C7 Bitumen 1330
C8 Self-Blocking Bricks 3682
C9 Shadows 947

4.2. Experimental Configuration

In our proposed model, we do standardization (a technique to rescale the data to have a
mean of 0 and a standard deviation of 1) in advance, before dividing the data into training and
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testing. Hyperparameters are initialized based on previous research or optimized during experiments.
We initialized the convolution kernel by using the “He normal optimizer” [66] and applied l2 (0.0001)
for the kernel regularizer. We use 1D convolutional kernels of size 5 in the sRN sub-network and 2D
convolutional kernels of size 3 × 3 in the saRN sub-network. For the number of filters, we use the
same size of filters in each convolution layer, 24. We apply 1D average pooling layer with pool size 2
and 2D average pooling layer with pool size 5× 5 in the sRN and saRN, respectively. Furthermore,
a 50% dropout is applied in both sub-networks. Then, we trained our model using Adam optimizer
with a learning rate of 0.0003 [67].

Regarding batch-size, a constant batch-size sometimes results in a tiny mini-batch (see Figure 4a).
Meanwhile, in a network with BN layers, there is dependency between the mini-batch elements
because BN uses mini-batch statistics to normalize the activations during the learning process [68].
This dependency may decrease the performance if the mini-batch is too small [68,69]. Some approaches
can be applied to overcome this problem. The first is to ignore the samples in the last mini-batch.
This approach is not viable for the IP dataset because the number of training samples in a category
can be very small; for example, with 10% training samples, we only have two training samples in
Oats category. Performance will be badly affected if the removed samples are from this category
(see Figure 4a). The second approach is by copying other samples from the previous mini-batch.
This technique will make some samples appear twice in the training process, and these samples will
have more weight. Another approach is by dividing the training size over the intended batch number.
For example, if we intend to have three batches so the batch size = training size/3. However, when the
training sample is too large, the batch size will be large and thus prone to an out of memory problem.
If the training size is too small, the batch size will also be small, having a tiny batch size can decrease
the performance. Therefore, in our experiment, we used Equation (10) to compute the batch-size prior
to the training process to prevent the occurrence of a tiny mini-batch, where sb is the standard batch, tr
is the training size, and th is the threshold (the allowed smallest mini-batch, see Figure 4b). We used
sb = 256 and th = 64 in this paper.

batchsize =

sb, if tr mod sb > th.

sb +
tr mod sb

int( tr
sb
)

, otherwise.
(10)

(a) (b)

Figure 4. Example condition when the batch size cannot divide the training size evenly: (a) the latest
mini-batch size is one, and (b) the latest mini-batch size is more than threshold (if the threshold
is seven).

In the sRN, we used a 3× 3 spectral cube and computed its mean instead of using a pixel vector
directly to minimize the effect of spectral noise. In contrast to sRN, saRN focus is to get the spatial
features; hence, the region size of the input cube gives an impact on the spatial feature representation.
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In this research, in order to find the optimum saRN input region size, n, we experiment on a variable
set of n {21, 23, 25, and 27} with the number of PCA components set to 30 by using 10% random
training samples and repeat the experiment 10 times. Table 2 shows the results of the Overall Accuracy
mean and standard deviation, and from this table, we can conclude that each dataset has a different
optimum number n. For the PU, IP, and KSC dataset, the optimum n is 21, 25, and 27, respectively.

We then use the optimum value of n to find the optimum number of PCA components,
K. We experiment with different size of K {25, 30, 35, and 40}. The Overall Accuracy (OA)-mean
with different values of K and 10% training samples are shown in Table 3. The table shows that the
optimum K of KSC dataset is 25, while, for the IP dataset and PU dataset, the optimum K is 35.

Table 2. Overall Accuracy of each dataset based on various patch sizes (SoP). The number in bold is
the best Overall Accuracy.

SoP 21 23 25 27

IP 98.73 ± 0.22 98.66 ± 0.29 98.77 ± 0.32 98.75 ± 0.16
KSC 97.73 ± 0.47 97.95 ± 1.12 96.74 ± 1.43 98.51 ± 0.31
PU 99.87 ± 0.06 99.46 ± 0.02 99.65 ± 1.28 99.82 ± 0.39

Table 3. Overall Accuracy based on PCA number. The number in bold is the best Overall Accuracy.

nPCA 25 30 35 40

IP 98.74 ± 0.24 98.77 ± 0.32 98.82 ± 0.38 98.80 ± 0.15
KSC 99.15 ± 0.18 98.51 ± 0.31 98.29 ± 0.82 98.10 ± 0.88
PU 99.72 ± 0.50 99.87 ± 0.06 99.91 ± 0.02 99.72 ± 0.47

Given the optimal parameters for our proposed method, we perform two experiments to
understand the impact of each module of our proposed architecture. The first is an experiment
to discover the effect of using the mean in the sRN sub-network. Second, we perform an experiment to
evaluate the performance of sRN, saRN, and our proposed architecture.

To demonstrate the effectiveness of our proposed method, we compare our method with
the state-of-the-art architectures, which focus on exploring the spectral-spatial features of HSI,
namely 3D-CNN [34], SSLSTMs [27], SSUN [23], spectral-spatial residual network (SSRN) [19], and
hybrid spectral convolutional neural network (HybridSN) [61]. The SSLSTMs and the SSUN explore
the spectral and the spatial features using two different streams, while the 3D-CNN, the SSRN,
and the HybridSN extract features using a single stream network based on 3D convolutional layer.
The implementation codes of the 3D-CNN (https://github.com/nshaud/DeepHyperX), the SSUN
(https://github.com/YonghaoXu/SSUN), the SSRN (https://github.com/zilongzhong/SSRN), and
the HybridSN (https://github.com/gokriznastic/HybridSN) are publicly available, letting us execute
the codes to produce the classification results with all datasets. For the SSLSTMs, even though
the implementation code is not accessible, we wrote the code based on their paper architecture and
parameters. To confirm that our implemented code is correct, we tested it on 10% of the training dataset
and verified our results with the work of Reference [27]. All experiments except the 3D-CNN were
conducted on X299 UD4 Pro desktop computer with the GeForce RTX 2080 Ti Graphical Processing
Unit (GPU). The experiment of the 3D-CNN was conducted on Google Colab server because 3D-CNN
used the Pytorch framework.

To validate the performance of the proposed model with respect to the training size of each
compared model, we performed three different experiments. In all of these experiments, we used
10-fold cross-validation. To guarantee that all of the techniques use the same training indices and
testing indices, we created a module to generate the training indices and testing indices by using
StratifiedShuffleSplit function available in Keras. The input of this function is the training size
percentage and the number of the fold/group (k). The output is k fold training indices and testing
indices, where each fold is made by preserving the percentage of samples for each class. We then

https://github.com/nshaud/DeepHyperX
https://github.com/YonghaoXu/SSUN
https://github.com/zilongzhong/SSRN
https://github.com/gokriznastic/HybridSN
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saved the training indices and testing indices of each fold in a file. Those files were read by each
method during the experiment. Following the protocol in Reference [19], we use the same number of
training epoch, 200, for all of the experiments. Regarding the hyperparameters, we used the optimum
parameter of each model that has been provided in their respective paper. For the hyperparameters
of this proposed approach, we used the optimum settings that have been optimized on 10% training
samples, which were provided by Tables 2 and 3.

In conclusion, we divided the experiments into two groups. The first group (experiments 1
and 2) is an ablation analysis to understand the impact of using the mean, and concatenating sRN and
saRN in the proposed method with respect to the overall performance accuracy. The second group
(experiments 3, 4, and 5) are experiments to understand the effectiveness of the proposed method
compared to other previous studies. The details of these experiments are as follows:

1. To evaluate the effect of the mean operation in the sRN sub-network input, we performed
experiments on our proposed architecture with two case scenarios. First, the sRN input is the
mean of a 3× 3 spectral cube. Second, the sRN input is a spectral vector of a pixel xij without the
mean operation. We performed experiments with 4%, 6%, 8%, 10%, and 30% training samples for
IP dataset, PU dataset, and KSC dataset. We use the rest of the data that is not used in training
for testing. In each run, we use the same data points for the training of both “with mean” and
“without mean” setups.

2. To discover the concatenation effect of the sRN sub-network and the saRN sub-network on
the performance accuracy, we performed experiments on three different architectures, the sRN
network only, the saRN network only, and our proposed method with 30%, 10%, and 4% training
samples. Here, we divided the data into a training set (30%) and a testing set (70%). Then, from
the training set, we used all, one-third, and one-seventh point five for training. For testing, in all
experiments in this part, we used all data in the testing set. The examples of train and test split
on IP dataset with various percentage training samples are shown in Figure 5.

(a) (b) (c) (d)

Figure 5. (a–c) The train split with 30%, 10%, and 4% training size on Indian Pine (IP) dataset (d) the
test split.

3. In our third experiment, this proposed approach is compared to 3D-CNN, SSLSTMs, SSUN,
SSRN, and HybridSN by using 10% training samples. We chose 10% training samples because
the SSLSTMs and other experiments on SSUN, SSRN, and HybridSN have also been conducted
using 10% training samples.

4. In our fourth experiment, we compared all of those methods on the smaller training samples, 4%,
6%, and 8%. Besides, because 3D-CNN has been tested using 4% training samples, the use of
small labeled samples during training can be used to investigate over-fitting issues.

5. In the last experiment, we compared all of those methods on large training samples, 30%. Not only
because HybridSN [61] had been tested on 30% training samples but also to investigate
under-fitting issues with large training samples.
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4.3. Experimental Results

Experiment 1: Table 4 shows the OA-mean and standard deviation of this proposed architecture
in two different cases. In the first case, the sRN input of our network is a 3× 3 cube followed by
mean operations (with mean), and the second case, the sRN input of our network is a spectral vector,
which was not followed by mean operations (without mean). From the table, we can see that, in
11 cases out of 15, the “with mean” slightly outperform the “without mean”. We also found that, in
10 cases out of 15, the “with mean” is more stable than “without mean”.

Table 4. Comparison between with mean and without mean in our proposed network (Bold represents
the best results in the experiment setup).

Training Percentage Indian Pines Pavia University KSC

with Mean w\o Mean with Mean w\o Mean with Mean w\o Mean

4% 95.40 ± 0.79 95.07 ± 0.81 99.85 ± 0.06 99.62 ± 0.55 96.97 ± 0.86 95.32 ± 1.16
6% 97.38 ± 0.58 97.37 ± 0.63 99.44 ± 1.54 99.93 ± 0.03 98.04 ± 0.65 96.62 ± 1.46
8% 98.24 ± 0.50 98.14 ± 0.43 99.78 ± 0.55 99.94 ± 0.05 99.36 ± 0.31 99.02 ± 0.28

10% 98.70 ± 0.26 98.81 ± 0.24 99.86 ± 0.27 99.67 ± 0.74 99.48 ± 0.34 99.20 ± 0.42
30% 99.70 ± 0.10 99.75 ± 0.15 99.89 ± 0.20 99.03 ± 3.04 99.96 ± 0.02 99.93 ± 0.06

Experiment 2: Table 5 displays the OA-mean and standard deviation of sRN, saRN, and TSRN
with various training samples, where the best performance is shown in bold. The table shows that
with 30% training data, saRN’s performance is slightly better than others. With 10% training samples,
TSRN’s performance starts to exceed saRN’s performance. TSRN’s superiority is clearly shown in
4% training samples. When the training size is large (30%), and the train and test sets are sampled
randomly over the whole image, the possibility of the training samples become the testing samples’
neighbor is high. Other spatial features, such as line and shape, are clear, too. See Figure 5a, suppose the
center of the red window is the testing sample, we can easily predict its label by seeing its spatial
features. However, with 10% training samples, predicting the pixel’s label only by using its spatial
features is slightly difficult (see Figure 5b). The prediction problems are more complicated when the
training size is 4%. Figure 5c shows that the spatial features (e.g., neighborhood, shape, line) alone
cannot perform well. Therefore, with 4% training samples, the TSRN, which also use spectral features,
produces much better performance then saRN. Meanwhile, the low performance of sRN on IP dataset
and KSC dataset probably because IP and KSC dataset have significantly low spatial resolution 20 m
per pixel and 18 m per pixel, respectively. For example, in IP dataset, where most classes are vegetation,
one pixel corresponds to the average reflectance of vegetation in 400 m2, which results in a mixture
of ground materials. As a consequence, classifying the objects based on spectral information only
is difficult.

Table 5. Comparison between sRN, saRN, and Proposed (TSRN) with 30%, 10%, and 4%
training samples (Bold represents the best results in the experiment setup).

Training 30% 10% 4%

Dataset sRN saRN TSRN sRN saRN TSRN sRN saRN TSRN

IP 92.16 ± 0.66 99.75 ± 0.18 99.69 ± 0.15 86.61 ± 0.86 98.44 ± 0.26 99.03 ± 0.24 79.94 ± 1.54 94.20 ± 0.43 95.50 ± 0.87
PU 98.96 ± 0.08 99.97 ± 0.02 99.95 ± 0.13 98.05 ± 0.19 99.84 ± 0.05 99.93 ± 0.10 96.68 ± 0.14 99.56 ± 0.11 99.82 ± 0.10

KSC 95.55 ± 0.77 100 ± 0.02 99.95 ± 0.05 92.52 ± 0.86 99.55 ± 0.2 99.52 ± 0.29 82.42 ± 3.48 94.60 ± 1.25 95.62 ± 1.27

Experiment 3: Tables 6–8 show the quantitative evaluations of those compared models with
10% training samples. The tables present three generally used quantitative metrics, i.e., Overall
Accuracy (OA), Average Accuracy (AA), Kappa coefficient (K), and the classification accuracy of
each class. The first three rows show the OA, AA, and K of each method. The following rows show
the classification accuracy of each class. The numbers indicate the mean, followed by the standard
deviation of each evaluation with a 10-fold cross-validation. The bold, the underlined, and the
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italic numbers represent the first-best performance, the second-best, and the third-best performance,
respectively. Subsequently, Figures 6–8 display the false-color image, the ground-truth image, and the
classification map of each method on Indian Pine, Pavia University and KSC datasets.

Table 6. Overall Accuracy, Average Accuracy, Kappa Value, and Class Wise Accuracy of our proposed
method versus other methods on IP dataset when using 10% training samples. The best performance is
in bold, the second-best performance is underlined, and the third-best is in italic.

Label 3D-CNN [34] SSLSTMs [27] SSUN [23] SSRN [19] HybridSN [61] Proposed

OA 85.29 ± 7.24 94.65 ± 0.72 96.79 ± 0.36 98.24 ± 0.29 97.36 ± 0.82 98.70 ± 0.25
AA 81.11 ± 0.12 94.47 ± 1.77 95.78 ± 2.97 91.69 ± 3.46 95.70 ± 1.08 98.71 ± 0.61

K × 100% 83.20 ± 0.08 93.89 ± 0.82 96.33 ± 0.41 97.99 ± 0.32 96.99 ± 0.93 98.52 ± 0.28
C1 68.70 ± 0.28 99.32 ± 2.05 99.51 ± 0.98 100 ± 0 97.80 ± 3.53 98.72 ± 3.83
C2 84.30 ± 0.17 93.09 ± 1.71 94.65 ± 1.33 98.63 ± 0.82 96.76 ± 1.44 98.02 ± 1.08
C3 75.50 ± 0.11 86.37 ± 1.81 96.09 ± 1.87 96.82 ± 0.70 96.27 ± 2.58 97.08 ± 1.72
C4 74.50 ± 0.09 89.35 ± 4.41 94.65 ± 4.90 99.20 ± 1.37 96.67 ± 2.44 99.16 ± 1.22
C5 88.80 ± 0.07 93.69 ± 3.10 94.89 ± 2.09 96.95 ± 2.27 94.57 ± 3.93 99.41 ± 0.36
C6 96.00 ± 0.02 95.46 ± 0.92 99.06 ± 0.78 98.19 ± 1.17 98.48 ± 0.70 99.76 ± 0.26
C7 61.90 ± 0.27 99.22 ± 1.57 93.20 ± 4.75 70 ± 45.83 88.80 ± 13.24 99.15 ± 1.71
C8 96.80 ± 0.02 98.16 ± 1.73 99.81 ± 0.49 99.15 ± 2.13 99.81 ± 0.39 99.98 ± 0.07
C9 60.00 ± 0.24 90.70 ± 19.01 86.67 ± 13.19 20.00 ± 40.00 86.11 ± 14.33 98.50 ± 4.50
C10 82.70 ± 0.08 96.50 ± 1.42 95.18 ± 1.92 97.35 ± 1.55 97.34 ± 1.29 98.19 ± 1.10
C11 87.30 ± 0.07 96.73 ± 0.85 98.13 ± 0.38 98.65 ± 0.40 98.22 ± 0.89 99.32 ± 0.46
C12 77.40 ± 0.11 88.92 ± 1.58 92.85 ± 4.39 95.51 ± 1.28 93.82 ± 2.73 97.87 ± 1.82
C13 97.70 ± 0.02 93.83 ± 4.27 99.57 ± 0.22 98.21 ± 2.38 99.02 ± 0.94 98.76 ± 2.15
C14 95.30 ± 0.03 98.07 ± 1.03 98.66 ± 0.54 99.57 ± 0.42 99.39 ± 0.40 98.98 ± 0.91
C15 69.30 ± 0.05 96.63 ± 3.98 97.32 ± 2.91 99.34 ± 0.82 95.48 ± 2.81 98.44 ± 1.74
C16 81.50 ± 0.28 95.48 ± 4.10 92.26 ± 6.74 99.48 ± 0.85 92.74 ± 4.95 98.11 ± 1.20

Table 7. Overall Accuracy, Average Accuracy, Kappa Value, and Class Wise Accuracy of our proposed
method versus other methods on Pavia University (PU) dataset with 10% training samples. The best
performance is in bold, the second-best performance is underlined, and the third-best is in italic.

Label 3D-CNN [34] SSLSTMs [27] SSUN [23] SSRN [19] HybridSN [61] Proposed

OA 94.07 ± 0.86 98.58±0.23 99.53 ± 0.09 99.59 ± 0.72 99.73 ± 0.11 99.86 ± 0.26
AA 96.54 ± 0.01 98.65 ± 0.16 99.18 ± 29.9 99.31 ± 1.48 99.43 ± 0.23 99.77 ± 0.54

K × 100% 92.30 ± 0.01 98.11 ± 0.31 99.38 ± 0.12 99.46 ± 0.95 99.65 ± 0.15 99.82 ± 0.34
C1 96.50 ± 0.01 97.47 ± 0.46 99.29 ± 0.22 99.85 ± 0.17 99.91 ± 0.18 99.94 ± 0.07
C2 95.20 ± 0.01 98.95 ± 0.34 99.91 ± 0.04 99.93 ± 0.07 100 ± 0.01 99.94 ± 0.06
C3 92.20 ± 0.03 98.80 ± 0.59 97.67 ± 0.74 99.56 ± 0.56 99.22 ± 0.81 98.56 ± 4.09
C4 97.20 ± 0.01 98.43 ± 0.46 99.36 ± 0.29 99.66 ± 0.33 98.4 ± 0.96 99.99 ± 0.03
C5 99.90 ± 0 99.87 ± 0.15 99.93 ± 0.07 99.91 ± 0.08 99.97 ± 0.06 99.84 ± 0.10
C6 97.60 ± 0.02 98.92 ± 0.51 99.89 ± 0.12 99.99 ± 0.05 99.99 ± 0.01 100 ± 0
C7 95.50 ± 0.02 98.36 ± 1.03 97.87 ± 1.64 95.67 ± 12.94 100 ± 0 99.73 ± 0.75
C8 95.40 ± 0.02 97.67 ± 0.60 99.19 ± 0.36 99.28 ± 1.11 99.41 ± 0.45 99.92 ± 0.08
C9 99.40 ± 0.01 99.44 ± 0.50 99.54 ± 0.35 99.92 ± 0.12 97.98 ± 0.95 100 ± 0
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Table 8. Overall Accuracy, Average Accuracy, Kappa Value, and Class Wise Accuracy of our proposed
method versus other methods on Kennedy Space Center (KSC) dataset with 10% training samples. The
best performance is in bold, the second-best performance is underlined, and the third-best is in italic.

Label 3D-CNN [34] SSLSTMs [27] SSUN [23] SSRN [19] HybridSN [61] Proposed

OA 82.21 ± 2.96 97.51 ± 0.63 96.22 ± 0.86 98.77 ± 0.75 91.72 ± 1.52 99.48 ± 0.32
AA 71.68 ± 0.12 97.36 ± 0.69 94.65 ± 2.87 98.10 ± 1.13 88.94± 1.53 99.04 ± 0.46

K × 100% 80.20 ± 0.03 97.22 ± 0.71 95.79 ± 0.96 98.63 ± 0.83 90.77 ± 1.69 99.42 ± 0.36
C1 92.40 ± 0.03 96.65 ± 1.73 97.12 ± 0.98 100 ± 0 95.68 ± 4.17 100 ± 0
C2 84.20 ± 0.08 97.57 ± 2.39 94.25 ± 4.04 96.90 ± 7.10 76.99 ± 5.48 99.77 ± 0.43
C3 43.00 ± 0.27 96.75 ± 2.76 95.05 ± 3.41 100 ± 0 90.35 ± 3.60 97.17 ± 4.41
C4 33.50 ± 0.16 98.41 ± 1.38 89.08 ± 5.15 88.86 ± 11.12 70.40 ± 5.30 98.39 ± 2.69
C5 34.70 +- 0.19 97.55 ± 2.52 89.93 ± 8.78 96.66 ± 5.93 97.24 ± 3.26 97.91 ± 4.81
C6 40.90 ± 0.22 97.82 ± 2.84 79.56 ± 3.851 99.90 ± 0.30 81.89 ± 6.60 99.19 ± 1.42
C7 59.30 ± 0.31 96.34 ± 4.93 98.19 ± 1.43 93.56 ± 10.79 82.23 ± 6.73 96.02 ± 4.26
C8 75.60 ± 0.08 95.27 ± 2.83 93.61 ± 2.73 99.54 ± 0.76 93.40 ± 3.81 99.62 ± 0.35
C9 84.10 ± 0.09 96.93 ± 2.34 98.25 ± 2.60 100 ± 0 88.29 ± 4.40 99.62 ± 0.42
C10 94.40 ± 0.04 97.28 ± 3.23 96.95 ± 2.45 100 ± 0 90.08 ± 4.19 99.89 ± 0.33
C11 97.70 ± 0.02 98.21 ± 1.35 98.86 ± 1.11 99.92 ± 0.24 97.19 ± 2.55 99.90 ± 0.32
C12 92.10 ± 0.02 97.06 ± 1.52 99.56 ± 0.83 99.93 ± 0.20 92.50 ± 3.78 100 ± 0
C13 99.90 ± 0 99.88 ± 0.14 100 ± 0 100 ± 0 100 ± 0 100 ± 0

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6. The classification map of IP dataset. (a) False color image, (b) Ground truth, and (c–h)
Prediction classification maps of 3D-Convolutional Neural Network (CNN) (85.29%), spectral-spatial
long short-term memory (SSLSTMs) (95%), spectral-spatial unified network (SSUN) (97.24%), SSRN
(98.29%), HybridSN (97.38%), and our proposed architecture (98.69%).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7. The classification map of Pavia University dataset. (a) False color image, (b) Ground truth,
(c–h) Prediction classification maps of 3D-CNN (94.07%), SSLSTMs (98.50%), SSUN (99.52%), SSRN
(99.88%), HybridSN (99.85%), and our proposed architecture (99.94%).

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8. The classification map of KSC dataset. (a) False color image, (b) Ground truth, (c–h) Prediction
classification maps of 3D-CNN (82.21%), SSLSTMs (97%), SSUN (97.10%), SSRN (99.27%), HybridSN
(87.46%), and our proposed architecture (99.61%).
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Experiment 4: Figure 9 presents the graphic of AO-mean obtained from our fifth experiment,
where all of those methods are trained on smaller training samples 4%, 6%, and 8%. In the figure,
we include the results of our first experiment, where those methods are trained on the 10% samples.
The performances of all of the compared methods are displayed using a dotted line, while our proposed
method is displayed with a solid line.
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Figure 9. Overall accuracy of each method for different training data sizes of: (a) Indian Pine dataset,
(b) KSC dataset, and (c) Pavia University dataset.

Experiment 5: Tables 9–11 show the OA, AA, and K of each method with 30% training samples.
On large training samples, almost all of the compared methods produce a high accuracy. The difference
is small. Hence, in the table, we report the comparison on each fold for a more detailed comparison.
The bold numbers are the best accuracies produced by these methods.

Table 9. Fold Overall Accuracy, Average Accuracy, and Kappa Value on IP dataset with 30% training
data. The best performance is in bold, the second-best performance is underlined, and the third-best is
in italic.

Fold 1 2 3 4 5 6 7 8 9 10 OA-Mean and Std

OA

Proposed 99.80 99.71 99.61 99.72 99.57 99.54 99.69 99.85 99.68 99.79 99.70 ± 0.10
HybridSN 99.53 99.71 99.57 99.61 99.68 99.75 99.83 99.53 99.67 99.64 99.65 ± 0.09
SSRN 98.89 99.79 99.53 99.26 99.50 99.68 99.04 99.33 99.46 99.48 99.40 ± 0.26
SSUN 99.60 99.48 99.57 99.46 99.57 99.46 99.67 99.61 99.74 99.55 99.57 ± 0.09
SSLSTMs 99.16 99.19 99.07 99.15 98.94 99.23 97.09 98.91 99.4 99.32 98.95 ± 0.64
3D-CNN 95.15 95.89 92.42 95.47 94.51 95.55 95.86 95.26 95.41 95.33 95.09 ± 0.96

AA

Proposed 99.89 99.66 99.68 99.73 99.61 99.58 99.77 99.82 99.65 99.58 99.70 ± 0.10
HybridSN 99.04 99.50 98.82 99.44 99.62 99.69 99.71 99.03 99.61 99.07 99.35 ± 0.31
SSRN 80.29 99.64 92.98 91.55 93.18 93.20 86.22 91.96 92.79 97.99 91.98 ± 5.19
SSUN 99.60 99.14 99.47 99.26 99.34 99.50 99.24 99.61 99.50 99.53 99.42 ± 0.15
SSLSTMs 99.04 99.12 98.26 99.34 98.77 97.10 97.66 98.65 99.55 99.31 98.68 ± 0.75
3D-CNN 96.57 97.33 94.04 95.42 95.20 96.75 97.02 96.81 96.57 96.01 96.17 ± 0.96

K × 100%

Proposed 99.78 99.67 99.56 99.68 99.51 99.48 99.65 99.83 99.63 99.76 99.66 ± 0.11
HybridSN 99.46 99.67 99.51 99.56 99.63 99.71 99.81 99.46 99.62 99.59 99.60 ± 0.11
SSRN 98.73 99.76 99.46 99.16 99.43 99.63 98.90 99.24 99.38 99.41 99.31 ± 0.30
SSUN 99.54 99.41 99.51 99.38 99.51 99.38 99.62 99.56 99.70 99.49 99.51 ± 0.10
SSLSTMs 99.05 99.08 98.94 99.03 98.79 99.13 96.68 98.76 99.32 99.22 98.80 ± 0.73
3D-CNN 94.49 95.33 91.40 94.85 93.75 94.95 95.29 94.61 94.78 94.69 94.41 ± 1.09
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Table 10. Fold Overall Accuracy, Average Accuracy, and Kappa Value on PU dataset with 30% training
data. The best performance is in bold, the second-best performance is underlined, and the third-best is
in italic.

Fold 1 2 3 4 5 6 7 8 9 10 OA-Mean and Std

OA

Proposed 99.96 99.96 99.98 99.98 99.99 99.84 99.34 99.99 99.92 99.95 99.89 ± 0.19
HybridSN 99.97 99.96 99.97 99.96 99.99 100 99.96 99.97 99.92 99.98 99.97 ± 0.02
SSRN 99.93 99.83 99.83 99.92 99.81 99.89 99.82 99.86 97.44 99.58 99.59 ± 0.72
SSUN 99.94 99.95 99.92 99.91 99.91 99.94 99.9 99.91 99.94 99.96 99.93 ± 0.02
SSLSTMs 99.85 99.80 99.83 99.76 99.72 99.79 99.68 99.86 99.70 99.82 99.78 ± 0.06
3D-CNN 95.76 95.80 95.80 95.30 95.75 95.76 94.75 95.94 95.92 94.06 95.48 ± 0.58

AA

Proposed 99.96 99.94 99.94 99.97 100 99.77 98.70 99.99 99.95 99.97 99.82 ± 0.38
HybridSN 99.97 99.93 99.95 99.94 99.97 100 99.93 99.95 99.81 99.96 99.94 ± 0.05
SSRN 99.93 99.74 99.85 99.86 99.81 99.92 99.84 99.74 94.88 99.48 99.31 ± 1.48
SSUN 99.90 99.91 99.81 99.84 99.82 99.92 99.82 99.79 99.87 99.94 99.86 ± 0.05
SSLSTMs 99.88 99.74 99.81 99.79 99.68 99.73 99.66 99.86 99.67 99.85 99.77 ± 0.08
3D-CNN 97.46 97.69 97.54 97.00 97.68 97.54 96.91 97.77 97.79 94.80 97.22 ± 0.86

K × 100%

Proposed 99.95 99.94 99.97 99.98 99.99 99.78 99.12 99.98 99.90 99.93 99.85 ± 0.25
HybridSN 99.96 99.94 99.96 99.95 99.98 100 99.94 99.96 99.90 99.97 99.96 ± 0.03
SSRN 99.91 99.78 99.77 99.90 99.75 99.85 99.77 99.81 96.62 99.45 99.46 ± 0.95
SSUN 99.92 99.93 99.89 99.88 99.88 99.92 99.87 99.88 99.92 99.95 99.90 ± 0.03
SSLSTMs 99.80 99.74 99.77 99.68 99.63 99.72 99.58 99.82 99.60 99.77 99.71 ± 0.08
3D-CNN 94.46 94.50 94.51 93.87 94.45 94.47 93.19 94.69 94.66 92.25 94.11 ± 0.75

Table 11. Fold Overall Accuracy, Average Accuracy, and Kappa Value on KSC dataset with
30% training data. The best performance is in bold, the second-best performance is underlined,
and the third-best is in italic.

Fold 1 2 3 4 5 6 7 8 9 10 OA-Mean and Std

OA

Proposed 99.95 99.97 100 99.95 99.97 99.97 99.92 99.95 99.92 99.95 99.96 ± 0.02
HybridSN 99.01 99.37 99.23 99.48 98.96 98.93 98.85 98.96 99.59 99.26 99.16 ± 0.24
SSRN 99.67 100 100 100 99.84 99.37 98.27 100 99.97 99.64 99.68 ± 0.51
SSUN 99.10 99.31 99.67 98.68 99.56 99.31 99.29 99.29 99.01 99.40 99.26 ± 0.27
SSLSTMs 99.78 99.95 99.56 99.73 99.95 99.10 99.78 99.42 99.26 99.78 99.63 ± 0.27
3D-CNN 94.60 95.39 94.76 95.34 91.89 94.24 94.57 95.45 94.46 93.15 94.39 ± 1.05

AA

Proposed 99.95 99.97 100 99.96 99.97 99.97 99.90 99.95 99.92 99.96 99.96 ± 0.03
HybridSN 98.36 99.18 98.63 99.17 98.33 98.31 98.38 98.42 99.35 98.92 98.71 ± 0.39
SSRN 99.51 100 100 100 99.75 99.09 97.97 100 99.96 99.44 99.57 ± 0.61
SSUN 98.25 98.73 99.27 97.59 99.28 98.61 98.43 98.98 98.26 99.03 98.64 ± 0.50
SSLSTMs 99.74 99.85 99.44 99.62 99.95 98.95 99.66 99.49 99.34 99.78 99.58 ± 0.28
3D-CNN 92.57 93.37 92.01 92.70 87.23 91.71 91.82 93.09 91.58 89.46 91.55 ± 1.77

K × 100%

Proposed 99.94 99.97 100 99.94 99.97 99.97 99.91 99.94 99.91 99.94 99.95 ± 0.03
HybridSN 98.90 99.30 99.15 99.42 98.84 98.81 98.72 98.84 99.54 99.18 99.07 ± 0.27
SSRN 99.63 100 100 100 99.82 99.30 98.08 100 99.97 99.60 99.64 ± 0.57
SSUN 98.99 99.24 99.63 98.53 99.51 99.24 99.21 99.21 98.90 99.33 99.18 ± 0.30
SSLSTMs 99.76 99.94 99.51 99.69 99.94 98.99 99.76 99.36 99.18 99.76 99.59 ± 0.30
3D-CNN 93.99 94.88 94.18 94.81 90.98 93.60 93.97 94.94 93.85 92.39 93.76 ± 1.17

4.4. Discussion

According to the highlighted results in Section 4.3, one of the first apparent points is that the
proposed method is able to produce a high performance for all ranges of training sizes (4%, 6%,
8%, 10%, and 30% training samples). Its OA, AA, and K values are higher compared to 3D-CNN,
SSLSTMs, SSUN, SSRN, and HybridSN. The differences get higher as the training sample size is
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reduced. With large training samples, e.g., 30% training samples, the performances of these methods
are similar.

The quantitative evaluation of those models with 10% training samples are reported in Tables 6–8.
These tables show three standard quantitative metrics, i.e., OA, AA, K; and the classification accuracy of
each class. More specifically, on Indian Pines dataset (see Table 6), in which class sizes are imbalanced,
our proposed method produces the highest OA, AA, and K value, and the proposed approach yields
OA 0.46% higher than the second-best method, SSRN. Considering the AA, the difference between
the proposed architecture and SSRN is much higher, more than 7%. From Table 6, we can see that
TSRN tries to optimize the recognition of each class even though the number of instances in the
class is tiny. Hence, it achieves a high accuracy compared to the other methods when classifying C9
(Oats), in which number of instances is 20, which means C9 training samples is 2. For more detailed
classification accuracy of each class, TSRN yields the best recognition on eight classes out of 16 classes.
Its recognition for the other five classes and two classes are the second- and third-best, respectively.

The results are consistent on the Pavia University dataset, in which characteristics are different
from the Indian Pine dataset. In the PU dataset, the number of data for each class is large, with the
minimum number of instances on Shadows category equal to 947. As shown in Table 7, our proposed
method attains the best OA, AA, and K compared to the other architectures, albeit insignificant
disparity. The small gap between TSRN and the second-best method, HybridSN, shows that those
methods are very competitive for large training samples. For class recognition, the proposed method
achieves the highest accuracy on five out of nine classes in the PU dataset, with an improvement of
less than 1%.

In contrast to the IP and PU datasets, the total number of instances of KSC dataset is relatively
small. From Table 8, we can see that our proposed approach achieves the best performance. Its OA,
AA, and K is ± 0.71, ± 0.94, and ± 0.79 higher compared to the second-best method, SSRN. In contrast,
HybridSN yields performance that is not as good as its performance on IP and PU dataset.

The comparison between the proposed architecture and other methods on smaller training
samples for IP, KSC, and PU dataset is demonstrated in Figure 9a–c, respectively. These figures reveal
that the proposed method achieves the best accuracy even with smaller training samples. The accuracy
gap between our method and the second-best method is high on KSC dataset. With 4% training data,
our method achieves OA ± 2% higher than the second-best method, SSRN. The difference is smaller
on IP dataset and is extremely small on PU dataset. The reason is that the size of the KSC dataset is the
smallest compared to other datasets. Four percent training samples in the experiment correspond to
208 training instances on KSC dataset, 410 instances on IP dataset, and 1711 samples on PU dataset.

The performance of TSRN and the other methods with larger training samples, 30%, is shown
in Tables 9–11 for IP dataset, PU dataset, and KSC dataset, respectively. In IP dataset, out of ten
folds, the proposed method achieves the best OA and K on five-folds, and the best AA on eight
folds. Our method also outperforms HybridSN, which presents the best OA on three folds. In PU
dataset (see Table 10), the HybridSN shows a slightly better OA than the proposed architecture.
HybridSN produces the best OA on six-folds while TSRN produces the best performance within
five-folds. In the 2nd fold and 5th fold, their OA is precisely the same. Regarding AA, the proposed
method achieves the best AA on six-folds when HybridSN achieves the best AA on four-folds. In terms
of K, those two methods yield the best value on five-folds. The same with the result from IP dataset,
with KSC dataset, our proposed approach also produces the best performance or the second-best
performance in each fold (see Table 11). From these results, we can conclude that on large training
samples, those approaches, i.e., TSRN, SSUN, HybridSN, SSRN, SSLSTMs, are very competitive.

Table 12 presents the number of parameters, the model size, the depth, the training time, and the
testing time of the other methods with 10% training samples from IP dataset. We do not report the time
complexity of 3D-CNN because 3D-CNN was tested on a different machine. However, Reference [61]
has shown that 3D-CNN is less efficient compared to HybridSN. Moreover, from Table 12, we perceive
that the proposed method is more efficient than HybridSN. In other words, we can conclude that TSRN
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is much more efficient than 3D-CNN. Compared to 3D convolution-based SSRN [19] and (3D + 2D)
convolution-based HybridSN [61], our proposed network has a faster training time and fewer learning
parameters (Table 12). Our network model size, in which depth is 24, is 3.3 MB. The size is smaller
compared to 61.5 MB of a 7-layer HybridSN and more effective compared to 2.9 MB of a 9-layer SSRN.
Note that an increase in the network depth results in a model size increase. From Table 12, we can
see that our network, which uses (2D+1D) convolution, can be deeper without increasing the number
of parameters by a large number. Such a deeper network can extract richer features. On the other
hand, for 3D convolution, the model size and the number of parameters will grow dramatically as the
network becomes deeper. As a result, training on very deep 3D-CNN becomes challenging with the
risk of overfitting. Our network yields a smaller number of learnable parameters, making it less prone
to the overfitting problem especially when small samples are used for training.

Table 12. Number of parameters, model size, depth, training time, and testing time on IP dataset on
different methods with 10% training samples.

Method SSLSTMs SSUN SSRN HybridSN Proposed

# parameters 343,072 949,648 346,784 5,122,176 239,672
Model Size 6.7 MB 9.6 MB 2.9 MB 61.5 MB 3.3 MB
Depth 4 10 9 7 24
Training Time 300 s 66 s 150 s 120 s 60 s
Testing Time 5.3 s 3.03 s 4.1 s 2.57 s 3.1 s

5. Conclusions

The paper presents a novel two-streams residual network architecture for the classification of
hyperspectral data. Our network improves the spectral and the spatial feature extraction by applying
a full pre-activation sRN and saRN separately. These two networks are similar in their structure but
use a different type of convolutional layer. The convolutional layer of sRN is based on 1D convolution,
which best fits the spectral data structure, while the saRN is based on 2D convolution, which best fits
the spatial data structure of HSI.

Our experiments were conducted on three well-known hyperspectral datasets, versus five
different methods, as well as various sizes of training samples. One of the main conclusions
that arises from our experiments is that our proposed method can provide a higher performance
versus state-of-the-art classification methods, even with various training samples proportion from
4% training samples up to 30% training samples. The high accuracy of our proposed method on
small training samples, 4%, shows that this method does not overfit. Otherwise, the competitive
accuracy of our proposed method with large training samples, 30%, explains that this architecture is
not under-fitting either.
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