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Abstract—This work introduces the so-called Modular Passive
Tracking Controller (MPTC), a generic passivity-based con-
troller, which aims at independently fulfilling several subtask
objectives. These are combined in a stack of tasks (SoT) that
serves as a basis for the synthesis of an overall system controller.
The corresponding analysis and controller design are based on
Lyapunov theory. An important contribution of this work is the
design of a specific optimization weighting matrix that ensures
passivity of an overdetermined and thus conflicting task setup.
The proposed framework is validated through simulations and
experiments for both fixed-base and free-floating robots.

I. I NTRODUCTION

Simultaneous control of multiple tasks has emerged as a
major research topic in robotic control. While initial works
considered the simpler case of a single task and its nullspace
for a kinematically redundant robot, nowadays there exist
several well established frameworks for handling multiple
tasks with and without priorities. In the literature one may
distinguish between works that solve the task coordination
problem first on akinematic level, and works that formulate
the controldirectly for the dynamics. Another important clas-
sification can be done based on the use ofstrict task priorities
via hierarchic controllers as compared to controllers which
apply asoft prioritizationvia task weighting.

At the kinematics level, hierachical controllers based on
either successive or augmented nullspace projections have
been proposed in order to ensure a strict task hierarchy
[18, 2]. For the handling of task singularities, a singularity
robust inverse kinematics has been proposed [4]. However, this
singularity robust inverse destroys the strict task hierarchy and
effectively generates a weighting among different tasks.

Other frameworks handle multiple tasks at thedynamics
level. The operational space approach has been extended in
this direction with applications in humanoid robotics [22,23].
Other Inverse Dynamics (ID) based controllers use hierarchic
quadratic programs (QP) [20, 11, 3]. Most of these works aim
at a strict task decoupling.

The presented work is inspired by the family of Inverse Dy-
namics based tracking controllers that softly trade off a set of
tasks (collected in a stack of tasks (SoT)) via a single weighted
QP [13, 15, 10]. Such controllers are straightforward to write
and stand out due to their high flexibility. Yet, compared to
passivity-based approaches such as [19, 5, 12, 16, 6], they
are less robust w.r.t. modeling errors and contact uncertainties

[10, 6]. This causes real-world issues such as vibrations, which
are often addressed using heuristic approaches [13, 10].

Furthermore, the weighting based multi-objective controller
in [3] and the strictly hierarchical passivity-based controller
from [6] served as inspiration for this work. Similar to [3] we
use a QP to combine individual control actions from separate
task space controllers. However, in [3] each separate control
action is computed based on ID with the unit matrix as the de-
sired inertia (feedback linearization). In contrast, the individual
task controllers presented here use the concept of passivity and
avoid inertia shaping, i.e. we aim at a PD+ like closed-loop
for each task [19]. Compared to [6], which also preserves
the natural inertia, we use a weighted QP formulation (soft
prioritization), which allows us to blend an arbitrary number
of different tasks and in certain situations (e.g. when a single
task becomes singular) behaves less aggressively.

In this work, we derive a control architecture that is based on
nominally passive subtask controllers, the so-called Modular
Passive Tracking Controllers (MPTC). These are combined
and traded off via a stack of tasks, which is solved via
a single weighted pseudo-inverse or QP, respectively. The
control framework combines the advantages of both Inverse
Dynamics controllers and passivity-based controllers, namely:
ease of implementation and use, task space tracking capabili-
ties, passivity and contact robustness, and natural redundancy
handling. The corresponding stability analysis is based on
Lyapunov theory. For the non-conflicting case, the overall
controller is found to be asymptotically stable and passive. An
important contribution of the presented work is the derivation
of a specific optimization weight that additionallypreserves
passivity even in the over-determined(i.e. conflicting) case.
For competing tasks and corresponding inconsistent task refer-
ences, multiple simulations show evidence of MPTC’s stability
and robustness even in the tracking case, while a formal
stability proof is missing so far.

The paper is organized as follows: Section II derives the
Modular Passive Tracking Controller (MPTC) at task level,
while section III provides the corresponding overall closed-
loop analysis and controller derivation. Section IV compares
MPTC to Inverse Dynamics (ID) and PD+ based controllers,
and presents the wide range of possible decoupling levels.
Section V provides simulation results for both fixed-base and
free-floating robots, while section VI concludes the paper.
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II. D ERIVATION OF MODULAR PASSIVE TRACKING

CONTROL (MPTC)

This work considersnT tasks, each having its own individual
objective. To satisfy the single-task objectives, this section
derives Modular Passive Tracking Controllers (MPTC), which
are combined into different overall controllers in Sec. III.

A. General robot model

The general robot equation of motion can be written as

M(q) q̈ + C(q, q̇) q̇ + τg(q) = τ , (1)

where q ∈ R
n denotes the generalized coordinates1, M(q),

C(q, q̇) and τg(q) are the inertia matrix, Coriolis and cen-
trifugal matrix, and gravitational torques2, respectively, and

τ = ST (τ j + τint) + LT
all wall

︸ ︷︷ ︸

τext

(2)

denotes thegeneralized forces. These are composed of joint
motor torquesτ j and internal perturbation torquesτint acting in
the robot joints (e.g. joint friction), which are both mapped to
τ via the joint selection matrixS,3 and of external torquesτext.
The latter are composed of all wrencheswall = [wT

1 , ...,w
T
nL
]T

acting on thenL robot links, which are mapped toτ via the
stack of link JacobiansLall = [LT

1 , ...,L
T
nL
]T . While the single

elements of (2) will be used in section III-E, in the following
we will simply useτ to represent arbitrary generalized forces.

Solving (1) for the generalized accelerationsq̈ yields

q̈ = M−1
(

τ − C q̇ − τg

)

. (3)

B. Task space quantities

1) Task space velocities and accelerations:In robotic con-
trol, for typical task spaces4 a task velocity vector

ẋk = Jk q̇ (4)

can be formulated. The indexk indicates that such a mapping
exists for all nT tasks, i.e.k ∈ {1, ..,nT}. Here,Jk ∈ R

nT,k×n

denotes the corresponding task Jacobian, with the dimension-
ality nT,k of the k-th task. Differentiating (4) with respect to
time and inserting (3), we find the task space acceleration

ẍk = J̇k q̇ + Jk q̈ = Jk M
−1

(

τ − τg

)

− Qk q̇ , (5)

where
Qk = Jk M

−1 C − J̇k . (6)

For the design of a tracking control law (see Sec. II-C), the
corresponding task velocity error

˙̃xk = ẋk,re f − Jk q̇
︸︷︷︸

ẋk

(7)

1These are simply the joint coordinatesq j in case of fixed-base robots
(i.e. q = q j ), while additionally containing the robot base coordinates xb (i.e.
q = [xT

b ,q
T
j ]

T ) in case of free-floating robots (e.g. humanoids).
2Note: dependencies onq and q̇ will be omitted below.
3Note:S is a unit matrix for fixed base robots, while for free-floating robots

S = [0nact×6,Inact×nact ], wherenact denotes the number of actuated robot joints.
4Typical tasks are joint level control, Cartesian end effector control, etc.

and task acceleration error

¨̃xk = ẍk,re f −
(

Jk M
−1

(

τ − τg

)

− Qk q̇
)

︸ ︷︷ ︸

ẍk

(8)

are of particular interest. Here,ẋk,re f andẍk,re f denote the task
reference velocity and acceleration, respectively.

2) Task space inertia and its derivative:Using Jk, the
inertia matrixM can be projected into the task space [17]:

Mk = (Jk M−1 JT
k )

−1
. (9)

Differentiating (9) yields

Ṁk = −Mk

(

J̇kM
−1JT

k −JkM
−1

C+CT

︷︸︸︷

Ṁ M−1JT
k

+ JkM
−1J̇T

k

)

Mk

= Ck + CT
k , (10)

with the task space Coriolis and centrifugal matrix

Ck = Mk Qk T
T
k . (11)

The matrix
Tk = Mk Jk M

−1 (12)

is the dynamically consistent pseudo-inverse ofJT
k .

C. Modular Passive Tracking Controller (MPTC)

This section derives the proposed Modular Passive Tracking
Controller (MPTC). It is written in generic form, serving as
template for arbitrary specific controllers (e.g. Cartesian or
joint controllers). For each one of thenT tasks, we use a
separate Lyapunov functionbased on the task-related relative
kinetic energyEkin,k and relative potential energyEpot,k :

Vk =
1
2

˙̃x
T
k Mk

˙̃xk

︸ ︷︷ ︸

Ekin,k

+
1
2
x̃T

k Kk x̃k

︸ ︷︷ ︸

Epot,k

, (13)

where the positive definite, symmetric matrixKk denotes the
task stiffness. This Lyapunov function is positive definitein
the task position error̃xk and the task velocity error̃̇xk.

Now we differentiate (13) and insert (8), which yields:

V̇k = ˙̃x
T
k

(

Mk
¨̃xk +

Ṁk

2
˙̃xk + Kk x̃k

)

(14)

= ˙̃x
T
k

(

Mk Jk M
−1

︸ ︷︷ ︸

Tk

(τg−τ ) + Mk Qk q̇

+Mk ẍk,re f + Ck
˙̃xk + Kk x̃k

)

.

Here, we made use of the equality

Ṁk

2
=

CT
k +Ck

2
=

CT
k −Ck

2
︸ ︷︷ ︸

skew-symmetric

+Ck , (15)

which allows us to rewritė̃x
T
k

Ṁk
2

˙̃xk as ˙̃x
T
k Ck

˙̃xk, since the
skew-symmetric term cancels.



We now define the (actual)task force5 fk as:

fk = Tk τ . (16)

By choosing thedesired task force6 fk,des as

fk,des = Tkτg+MkQk q̇+Mk ẍk,re f +(Ck+Dk) ˙̃xk+Kk x̃k

(17)

and rewritingTk τ as

Tk τ = fk = fk,des− (fk,des−fk)
︸ ︷︷ ︸

f̃k

, (18)

the single task Lyapunov rate from (14) becomes

V̇k = − ˙̃x
T
k Dk

˙̃xk
︸ ︷︷ ︸

V̇k,des, purely dissipative

+ ˙̃x
T
k f̃k

︸ ︷︷ ︸

˙̃Vk

. (19)

Note that the controlled system (at task level) is passive with
respect to inputf̃k, output ˙̃xk and the storage functionVk

from (13). While the desired Lyapunov ratėVk,des is purely
dissipative for a positive definite damping matrixDk, the term
˙̃Vk may be non-zero, depending on factors including unknown
perturbations, under-actuation and other actuation limits, task
inconsistencies and prioritization. While the desired Lyapunov
rateV̇k,des is purely dissipative for a positive definite damping
matrixDk, the term˙̃Vk may be non-zero, depending on factors
including unknown perturbations, under-actuation and other
actuation limits, task inconsistencies and prioritization. Finally,
we premultiply (8) byMk, insert (18) and (17), simplify and
reorder to obtain a task dynamics of the form

Mk
¨̃xk +

(

Ck+Dk

)

˙̃xk + Kk x̃k = f̃k . (20)

Note that the task related Coriolis term (i.e.Ck
˙̃xk) has not

been cancelled, which is a prerequisite for passivity. If the
desired task force is achieved (i.e.̃fk = 0), equation (20)
corresponds to a spring-mass-damper dynamics for taskk. For
non-conflicting tasks, one can show asymptotic stability ofall
trajectories. That can be achieved, for example, by invoking
the ε-method [17], to obtain a strong Lyapunov function with
negative definite time derivative, similar to [6].

Otherwise, e.g. in case of under-actuation or other actuation
limits, unexpected external perturbations or task inconsisten-
cies, (20) corresponds to a compliance7 behavior [7]. For such
cases, further analysis may become necessary. In this work,we
focus on the problem of task inconsistencies, which will be
addressed in the subsequent section.

5Note: depending on the task, the task force may contain linearforces,
torques, wrenches, etc.

6Note: this desired task forcefk,des will be used as task-specific controller
objective in section III. Also note: in Sec. IV-B, we providean alternative (yet
equivalent) controller formulation (55), which better unveils the controller’s
similarity to a PD+ formulation.

7Remember: compliance means an impedance behavior with natural inertia
(no inertia shaping).

III. OVERALL CLOSED-LOOP ANALYSIS AND CONTROL

In this section, we derive controllers for the overall system
of subtask controllers, i.e. for the complete set of desiredtask
forces fk,des from (17) for k∈ {1, ..,nT}, and analyze their
closed-loop behaviors by applying Lyapunov theory.

A. Definition of different task force errors

Stacking all desired task forcesfk,des from (17) for
k∈ {1, ..,nT} yields

fdes =






f1,des

...
fnT ,des




 . (21)

Similarly, we stack (16) fork∈ {1, ..,nT} to obtain





f1

...
fnT






︸ ︷︷ ︸

f

=






T1

...
TnT






︸ ︷︷ ︸

T

τ . (22)

This is the mapping from the actual generalized forcesτ to the
stack of actual task forcesf via the corresponding collected
task mapping matrixT ∈ R

nT,all×n, where the sum over all

subtask dimensionalities is denoted bynT,all =
nT

∑
k=1

nT,k. Now,

we define thestack of actual task force errors

f̃ = fdes − f = fdes − Tτ . (23)

Next, to facilitate discussions aboutcommanded task forces
and corresponding errors, we evaluate (22) for thecommanded
generalized forcesτcmd from some controller8, which yields

fcmd =






f1,cmd

...
fnT ,cmd




 = T τcmd = T U

︸︷︷︸

Tu

ucmd , (24)

with the stack of commanded task forcesfcmd. For certain
control problems (including under-actuation, see Sec. III-E),
τcmd may result from the given optimization variablesucmd,
which are mapped to corresponding generalized forces via the
actuation mapping matrixU , i.e. τcmd =U ucmd.

Finally, subtracting (24) from (21), we obtain the corre-
sponding stack of task force command errors:

f̃cmd = fdes− fcmd = fdes− T τcmd = fdes− Tu ucmd . (25)

B. Definition of overall system Lyapunov function, and its
actual and commanded derivatives

In this section, we will analyze the stability and passivityof
complete sets of modular task space controllers(and thus the
stability of the complete robot system dynamics, if all robot
DOF are covered by the collection of task coordinates). To

8Possible controllers may, for example, use pseudo-inverse based optimiza-
tion as in (36) for unconstrained control problems or quadratic programming
(QP) based optimization (see Sec. III-E) to handle inequality constraints.



this end, we combine all single task Lyapunov functions (13)
to construct the following overall Lyapunov function

V =
nT

∑
k=1

(

ψk Vk

)

, (26)

which for positive scalar weights9 ψk > 0 is positive definite
(just like its input elementsVk). Correspondingly, the overall
Lyapunov function derivativėV is obtained by combining the
single task Lyapunov derivativeṡVk from (19):

V̇ =
nT

∑
k=1

(

ψk V̇k

)

=
nT

∑
k=1

(

ψk V̇k,des

)

︸ ︷︷ ︸

V̇des

+
nT

∑
k=1

(

ψk
˙̃Vk

)

︸ ︷︷ ︸

˙̃V

. (27)

The termV̇des is negative semi-definite if allψk > 0, since all
desired task Lyapunov rateṡVk,des are negative semi-definite.
The actual overall Lyapunov rate erroṙ̃V can be written as

˙̃V = ˙̃x
T






ψ1I · · · 0

...
.. .

...
0 · · · ψnT

I






︸ ︷︷ ︸

Ψ

f̃ , (28)

where ˙̃x
T
=
[

˙̃x
T
1 , ...,

˙̃x
T
nT

]

. Note: ˙̃V is a function off̃ , and thus
also of the actual generalized forcesτ .

We will now additionally examine the effect of the stack of
commandedtask force errors̃fcmd. Adapting (28) correspond-
ingly, we find thecommandedoverall Lyapunov rate error

˙̃Vcmd = ˙̃x
T
Ψ f̃cmd , (29)

which corresponds to the commanded overall Lyapunov rate

V̇cmd = V̇des +
nT

∑
k=1

(

ψk
˙̃Vk,cmd

)

︸ ︷︷ ︸

˙̃Vcmd

, (30)

where ˙̃Vk,cmd = ˙̃x
T
k f̃k,cmd. Finally, we reformulate (28) as

˙̃V = ˙̃x
T
Ψ

(
f̃

︷ ︸︸ ︷

fdes − f
)

(31)

= ˙̃x
T
Ψ

(
f̃cmd

︷ ︸︸ ︷

fdes − fcmd

)

︸ ︷︷ ︸

˙̃Vcmd

+ ˙̃x
T
Ψ

(
f̃real

︷ ︸︸ ︷

fcmd − f
)

︸ ︷︷ ︸

˙̃Vreal

,

which corresponds to the overallactual Lyapunov derivative

V̇ = V̇des +
˙̃Vcmd +

˙̃Vreal (32)

that relates to thereal system behavior. Here,

˙̃Vreal = ˙̃x
T
Ψ

(
f̃real

︷ ︸︸ ︷

fcmd − f
)

(33)

denotes the component of the Lyapunov rate error that corre-
sponds to deviations̃freal of the commanded task forcesfcmd

from the actual onesf .

9Note: These positive scalar weightsψk are equivalent to the optimization
weights used in (34), (41).

C. Overall cost function

Based onf̃cmd from (25), we formulate an overall cost function

G =
1
2
f̃T

cmd W f̃cmd (34)

=
1
2
τ T

cmdT
TWTτcmd−fT

desWTτcmd+
1
2
fT

desWfdes

=
1
2
uT

cmdT
T
u WTuucmd−fT

desWTuucmd+
1
2
fT

desWfdes .

Here,W denotes an arbitrary symmetric and positive-definite
weighting matrix. This cost functionG will be minimized by
the different controllers presented in sections III-D and III-E.

D. Unconstrained and fully actuated case

1) Pseudo-inverse based general analytical optimization:
This section considers the fully actuated, unconstrained and
potentially conflicting case. The lack of inequality constraints
facilitates an analytical solution via weighted pseudo-inverse,
while the full actuation guarantees controllability and allows
to directly use the commanded generalized forcesτcmd as
optimization variables. In this case, to optimize the cost
function (34, second line), we differentiateG w.r.t. τcmd :

dG
dτcmd

= τ T
cmd T

T W T − fT
desW T . (35)

The cost function (34) is minimized by setting (35) to zero
and solving for the controller torquesτcmd

τcmd =
(

T T W T
)−1

T T W fdes , (36)

which are the optimal torque commands for the given problem
statement. Inserting (36) in (25)

f̃cmd =
(

I − T
(

T T W T
)−1

T T W
)

︸ ︷︷ ︸

ET

fdes , (37)

whereET denotes thetask force trade-off matrix.
2) Non-conflicting case:If T is square and invertible (i.e.

all subtasks are independent from each other and thus non-
conflicting), the trade-off matrix from (37) becomesET = 0,
and the task force command errors becomef̃cmd = 0. In this
case,˙̃Vcmd from (29) is also zero, and thuṡV from (32) becomes

V̇ = V̇des +
˙̃Vreal . (38)

3) Conflicting case:If, in contrast,T is non-invertible (e.g.
in over-determined controller setups), the trade-off matrix ET

is non-zero. Inserting (37) into (29), we find the corresponding
commanded overall Lyapunov rate error

˙̃Vcmd = (ẋT
re f − q̇T JT)ΨET fdes . (39)

Here,J = [JT
1 , ...,J

T
nT
]T is a stack of single task Jacobians.

Considering theconflicting regulation case(i.e. ẋre f = 0)
first, we examine the matrixJT

ΨET , which appears in (39):

JT
ΨET = JT

Ψ

(

I−T
(

T TWT
)−1

T TW
)

(40)

= JT
Ψ

(

I−ΛJ
(

JT
ΛWΛJ

)−1
JT

ΛW
)

.



Here, we insertedT =ΛJ M−1, whereΛ is a block-diagonal
matrix with the task space inertia matrices{M1, . . . ,MnT

} as
its diagonal submatrices. For an arbitrary choice ofW ,10 (40)
is a non-zero matrix, such that˙̃Vcmd from (39) is non-zero, even
in the regulation case. However, for the choice

W = Λ
−1

Ψ (41)

equation (40) becomes

JT
ΨET = JT

Ψ−JT
ΨΛJ

(

JT
ΨΛJ

)−1

︸ ︷︷ ︸

I

JT
Ψ = 0. (42)

This means that (independently from the current generalized
velocities q̇ and desired task forcesfdes) for the choice (41)
the commanded Lyapunov ratẽ̇Vcmd from (39) becomes

˙̃Vcmd = 0 (43)

in the regulation case (ẋre f = 0), andV̇ from (32) becomes

V̇ = V̇des +
˙̃Vreal . (44)

Looking at the elements of (44), we find that the overall
controlled system is passive with respect to the inputΨf̃real,
the output ˙̃x (these two being the elements of˙̃Vreal) and
the positive definite storage functionV from (26). Thus, we
conclude passivity of the overall system in the conflicting
regulation case examined here. For the overall system closed-
loop dynamics ofover-determined / conflicting task setups
(regulation case), (41) acts asPassivity Warranting Optimiza-
tion Weight(PWOW). Note: (43) does not mean that the single
task Lyapunov rate errors̃̇Vk,cmd are zero (only their sum).

The overall weighting matrixW = Λ
−1
Ψ from (41) is

symmetric and block-diagonal. Its symmetry property results
from the symmetry of its diagonal sub-matrices

Wk = ψk M
−1
k , (45)

which are a function ofψk and the inverse of the (symmetric)
task inertia matrixMk. Looking at (45), it becomes clear
that each task can still be weighted independently (w.r.t. other
tasks) via its corresponding weighting scalarψk.

Now, we consider theconflicting tracking case. For ẋre f 6= 0

and still applying (41), (39) turns into

˙̃Vcmd = ẋT
re f ΨET fdes , (46)

for which equation (32) becomes

V̇ = V̇des + ẋT
re f ΨET fdes

︸ ︷︷ ︸

˙̃Vcmd

+ ˙̃Vreal . (47)

For inconsistenttask reference velocities,̃̇Vcmd will typically
be non-zero, which renders a formal passivity proof for the
tracking case more difficult (out of the scope of this paper).

10even if it is chosen to be diagonal, as often found in the Inverse Dynamics
(ID) related literature

E. Handling under-actuation and other actuation constraints

The analytical solutions presented in the previous section
are dedicated to control problems that assume fully actuated
robots, whose actuation limits (or other constraints) are not
relevant. This section will treat the cases of under-actuation
and actuation constraints, and propose a solution for such
control problems in the MPTC context.

1) Under-actuation: In contrast to fixed-base robots, the
robot base of free-floating robots (e.g. humanoids) is not
actuated. Instead, in order to achieve a certain degree of con-
trollability, a free-floating robot needs to use its end effectors
to create contact wrenches that compensate for the lack of a
direct base actuation. The corresponding actuation mapping
matrix U from Sec. III-D has the following form:

U = [ST
,LT

EE] . (48)

The related actuation DOF / optimization variables are

ucmd =

[
τ j,cmd

wEE,cmd

]

, (49)

whereτ j,cmd denotes the commanded joint torques andwEE,cmd

are the commanded end effector wrenches. Equations (48) and
(49) are based on elements from equation (2). Note however
that here we replaced the collection of all link JacobiansLall

and link wrencheswall by a selection that corresponds to the
contacting end effectors (”EE”), i.e. byLEE andwEE,cmd.

2) contact and actuation constraints:The commanded end
effector wrencheswEE,cmd just introduced are often subject to
inequality constraints (the so-called ”contact constraints”). As
an example, in walking related applications (see Sec. V-B)
these contact constraints are typically expressed in the form
of unilaterality and friction cone constraints. Omitting such
contact constraints may lead to a failure of the robot. Addi-
tionally, due to the physical limitations of the robot, it often
makes sense to also constrain the commanded joint torques
τ j,cmd. This way, actuator saturation may be avoided.

3) solution via quadratic programming (QP):A popular
method that allows us to handle the mentioned problems of
under-actuation, actuation limits and contact constraints is to
set up a quadratic program (QP) of the form11

minimize
ucmd

GQP =
1
2
uT

cmdT
T
u WTuucmd−fT

desWTuucmd ,

subject to contact and joint torque constraints .
(50)

Here, the third line of (34) was adapted for the formulation of
the QP cost functionGQP. It is well-known, that a QP provides
the same solution as a weighted pseudo-inverse based opti-
mization, as long the constraints are not active. We proposeto
use the exact same Passivity Warranting Optimization Weight
(PWOW) that was applied in Sec. III-D for the analytical
optimization, i.e.W = Λ

−1
Ψ. Note however that, as soon

as the constraints become active, passivity can no longer be
guaranteed; even in the regulation case.

11More explicit QP constraint formulations can be found e.g. in[21, 15, 10].



IV. PLACEMENT AMONG RELATED CONTROLLER TYPES

AND GRANULARITY OF TARGETED DECOUPLING

A. Comparison of Inverse Dynamics (ID) and MPTC

In this section, we compare the objectives of Inverse Dy-
namics (ID) based controllers and MPTC-based controllers,
and show major similarities.

Inverse Dynamics (ID):
Inverse Dynamics (ID) based controllers typically implement
a stable second order dynamics of the form

ẍk = ẍk,re f + D̂ID,k (ẋk,re f − ẋk
︸ ︷︷ ︸

˙̃xk

) + P̂ID,k (xk,re f − xk
︸ ︷︷ ︸

x̃k

) , (51)

which enables the tracking of the reference motionxk,re f ,
ẋk,re f , ẍk,re f for positive definite proportional and derivative
gain matricesP̂ID,k and D̂ID,k. These two gain matrices are
typically designed as diagonal matrices in order to obtain a
fully decoupled, linear dynamics. Oftentimes, pole placement
[1] is used to achieve a critically damped transient response.
Inserting the task space accelerationẍk from (5) into (51), and
solving for the term related to the generalized forcesτ yields:

Jk M
−1 τ = Jk M

−1 τg + Qk q̇ (52)

+ ẍk,re f +D̂ID,k
˙̃xk+ P̂ID,k x̃k .

Note that we do not solve forτ directly here, since, depending
on the chosen controller setup,Jk may not be invertible.

Modular Passive Tracking Control (MPTC):
By replacingfk,des in (17) by fk = Tk τ (from (16)), pre-
multiplying the result withM−1

k and reordering, we find the
following desired task control action:

JkM
−1τ = JkM

−1τg + Qkq̇ (53)

+ ẍk,re f+M−1
k (Ck+Dk)

︸ ︷︷ ︸

D̂MPTC,k

˙̃xk+M−1
k Kk

︸ ︷︷ ︸

P̂MPTC,k

x̃k.

When comparing (53) to (52), we find that the basic structure
of the presented Modular Passive Tracking Controller (MPTC)
and Inverse Dynamics (ID) based controllers is the same. They
only differ by the chosen proportional and derivative gain
matrices. For ID based controllers,̂PID,k andD̂ID,k are designed
to be constant, whereas, in case of MPTC,P̂MPTC,k andD̂MPTC,k

are a function of the current task inertiaMk. Additionally,
D̂MPTC,k contains the task Coriolis matrixCk, such that the task
related Coriolis terms are not canceled, which is a prerequisite
for passivity and increases robustness12.

It is important to note, that (52) and (53) are denoted in
task accelerationspace, where for ID we find constant gain
matrices, which correspond to constant system/task eigenval-
ues, while the local eigenvalues of MPTC are configuration-
dependent. If, in contrast, (52) and (53) are transferred into
task force space by premultiplying them withMk, we find
that the perceived damping and stiffness are constant in case
of MPTC, while being configuration dependent for ID.

12due to the reduced number of feedback channels that may cause problems
related to sensor noise and modeling errors.

Remark: The strong similarity between (52) and (53) may
be advantageous with regard to a potential porting of existing
ID-based controller frameworks to the MPTC methodology.

B. Comparison to PD+ control / passivity-based WBC

Reordering those terms in the subtask controller objective
(17) that are related to Coriolis and centrifugal (from hereon
abbreviated as ”CC”) effects, we find the following equality:

Ck
˙̃xk + Mk Qk q̇ = Ck ẋk,re f +Mk Qk

(

I − T T
k Jk

︸ ︷︷ ︸

Nk

)

︸ ︷︷ ︸

Bk

q̇ .

(54)
Here, Nk denotes a nullspace projector that cancels out all
components ofq̇ that would have an effect on the task-space
velocity ẋk, and the matrixBk collects the corresponding CC
related feedback terms. Inserting (54) in (17), we find an
alternative (yet equivalent) subtask controller formulation:

fk,des = Tkτg+Bkq̇+Mkẍk,re f+Ckẋk,re f+Dk
˙̃xk+Kkx̃k. (55)

As compared to the original subtask controller formulation
from (17), this formulation enables a more straightforward
insight into the CC term cancellation policy of the MPTC
controller: MPTC cancels out allnon-task-related CC feed-
back terms(comparable to off-diagonal terms in [7]) and
provides a task-related feedforward termCkẋk,re f , while not
canceling/utilizing task-related CC feedback terms. The latter
can also be verified by revisiting the nominal subtask closed-
loop behavior (20), in which the task-related CC terms remain
unaffected. Maintaining the task-related CC terms is a prereq-
uisite for passivity, and leads to a higher robustness against
modeling errors as compared to Inverse Dynamics based
controllers. The latter completelycancel all CC effects(based
on the potentially inaccurate robot model), while MPTC-based
controllers cancel only the non-task-related CC terms.

An interesting special case is, when only one task is consid-
ered (combining all subtasks into an overall task by stacking
the corresponding subtask Jacobians) and the task Jacobian
Jk is square and invertible. This requires the subtasks to be
non-conflicting. In this particular case,Bk = 0 and thus (55)
is equivalent to a classic PD+ controller [19] (see Fig. 1) or
(in case of inequality constraints) to more recently introduced
passivity-based whole-body controllers (WBC) [12, 16].

C. Granularity of targeted decoupling

MPTC is a generic controller design tool, both w.r.t. the
choice of sub-controller types (e.g. Cartesian vs. joint control)
and w.r.t. the ”granularity” of the targeted decoupling13. When
speaking about subtasks, we never specified their respective
dimensions, i.e. the number of DOF that each task covers. This

13Note: we are talking here about ”targeted decoupling”. In case of
consistent tasks, MPTC yields a strictly decoupled error dynamics. However,
in case of inconsistencies, a coupling between the respective task error
dynamics is inevitable (at least for soft task prioritization).
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Figure 1: MPTC covers the complete range between Inverse
Dynamics (ID) and PD+ Control.

means there are many conceivable controller configurations.
Collecting different control objectives (e.g. a Cartesianend
effector tracking objective and a joint control one) into a single
stack of tasks (SoT), the question remains open, which parts
of the SoT should be assigned to what MPTC-related subtasks.
As an example: a six-DOF Cartesian task can be defined
as two decoupled (linear and angular) controller subtasks,or
alternatively as a single six-DOF task. In the first case, the
linear and angular error dynamics would be decoupled from
each other, while in the second case they would be coupled.

One may also decide to combine all control objectives into
a single task (resulting in aFully Coupled Passive Tracking
Controller (FC-PTC)), which under certain circumstances is
equivalent to a PD+ controller (see Sec. IV-B and Fig. 1).
Alternatively, one may define a set of multiple natural tasks
(e.g. one task for the left foot, one for the right), which canbe
treated by the standard MPTC framework. Finally, one may
decide to design a maximally granular controller setup, in
which each line of the SoT forms a single task. We refer to
this particular type of controller setup by Fully Decoupled
Passive Tracking Controller (FD-PTC). Out of all possible
MPTC setups, FD-PTC is the one that is most similar to an
Inverse Dynamics controller; both are based on single-DOF
decoupled task dynamics (see Fig. 1). However, FD-PTC can
be expected to behave more robustly due to the absence of
inertia shaping and reduced CC term cancellation.

Remember that there is only one single weighting scalarψk

per task, that allows for (softly) prioritizing the tasks amongst
each other. This decreases the required tuning efforts. Note
however, that to independently increase the priority of a certain
task component (e.g. prefer thez-direction over thex and y
components of a Cartesian task), it needs to be assigned to an
own taskand an appropriate weight (e.g.ψz).
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Figure 2: Transient responses for fully determined and non-
conflicting task setup. Left: joint angles and references. Right:
overall and task-specific Lyapunov function values.
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Figure 3: Transient response for over-determined (and thus
conflicting) task setup.

V. SIMULATIONS AND EXPERIMENTS

In order to validate the performance of our proposed MPTC
framework, we performed several simulations: on the one hand
simple simulations based on a forward integration of (3) that
used the computed controller torques as input, on the other
hand simulations of the full-sized humanoid robot TORO [8]
using OpenHRP [14] as simulation environment.

A. Fixed-base robot simulations

The first presented simulation is designed to examine the
regulation case for a fully actuated, fully determined and thus
non-conflicting task setup. To this end, the six joints of a
fixed-base robot arm (whose kinematics and inertia properties
correspond to one of TORO’s legs) were assigned to two
different joint tasks A and B (each covering three joints, see
Fig. 2). The corresponding joint task stiffness and damping
gains14 were chosen asKA = 300I3×3, DA = diag([40,20,10]),
KB = 40I3×3 and DB = 2I3×3, respectively. Note that the
scalar task weightsψk (here all set to 1) are without effect,
since due to the lack of conflicts all tasks were perfectly
fulfilled anyway. It has to be noted, that the controller did
not require any additional tuning. The presented parameters

14Note: for brevity, the units for stiffness (linear:[N
m, angular: Nm

rad ) and
damping (linear:Ns

m , angular: Nms
rad ) are omitted here.



0

0.2

0.4

0.6

x
f,

x
f,

re
f,

ξ
,
ξ

re
f
[m
]

t [s]

f e
xt
,x
=
−

60
N

DCM x

foot x

foot z
DCM y

DCM ref

DCM actual

foot ref

foot actual

Figure 4: Humanoid robot TORO walking in OpenHRP
simulation (single and double support times:TSS= 0.8s,
TDS = 0.12s). After 2.5s, the left foot is perturbed by an
external force of−60N in x-direction for 0.3s.

were chosen to improve the educational value of figure 2. At
the beginning of the simulation, all joints rapidly converge to
the initial setpoints. After one second, the joints from group
A were subject to a velocity change, resulting in a jump in the
corresponding task error derivatives. Note that, while group A
converges back, group B is completely unaffected due to the
task decoupling. After two seconds, the setpoints of group
B are changed. Again, the corresponding joint coordinates
converge, while now group A is completely unaffected. Note:
the perfect task decoupling observed here was only achievable
due to the consistency of the two joint tasks. Finally, after
three seconds a torque offset ofτint = [20,20,20,5,5,5]Nm
is applied first and then removed at 4 s. Again the observed
controller behavior is good-natured and fulfills our expecta-
tions. Using this simulation, we can verify that the overall
Lyapunov function valueV always decreases, except for the
case of perturbations and setpoint changes (see Fig. 2 (right)).

The second presented simulation evaluates the controller’s
performance for a conflicting task setup, again for the regula-
tion case. This time, a six-DOF Cartesian end effector task
with stiffness Kcart = diag([2000,2000,2000,100,100,100])
and damping Dcart = diag([500,500,500,20,20,20]) was
added to the previously described joint tasks A and B. The
scalar task weightsψk are set to 1. After starting the controller,
the robot converges to an equilibrium position. Note that the
overall Lyapunov function valueV decreases monotonically,
while the weighted subtask Lyapunov function values may also
grow (as for exampleψ jB

·VjB
in Fig. 3).

B. Humanoid robot simulations and experiments

Finally, we performed walking simulations of the humanoid
robot TORO (see Fig. 4), which were based on a hybrid WBC
setup: Inverse Dynamics based torso orientation and overall
posture tasks, a task for Divergent Component of Motion
(DCM) [9] control and angular momentum regularization, and
Cartesian (6-DOF) MPTC-based controllers for foot tracking
were mixed15. Precise tracking of the foot reference trajec-
tories is achieved. After 2.5s, the left foot is perturbed by a

15Note: due to the modularity of MPTC, ID-based and MPTC-based tasks
may be combined in the same overall control setup.

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

x
f,

x
f,

re
f,

ξ
,
ξ

re
f
[m
]

t [s]

DCM x

foot x

foot z DCM y

Figure 5: TORO walking in experiment (single and double
support times:TSS= 0.9s, TDS = 0.3s, step length 0.15m).

force of−60N in x-direction for 0.3s, resulting in a maximum
foot position error of 51mm and a maximum DCM error of
45mm. After the perturbation is removed, the foot converges
fast enough to successfully continue walking.

To evaluate the real-world performance of MPTC, we
conducted several experiments using TORO, including push
recovery (during stance), human-robot interaction and walking
(a video can be found here https://youtu.be/WdF9UQK8aIo).
Here, we present a walking experiment during which TORO
took six steps forward (see Fig. 5 for details).SeparateMPTC-
based controllers were used for controlling the feet (six-DOF
Cartesian tracking), torso (three-DOF rotational tracking), leg
joints, waist joint and upper body joints (the latter three
serving as overall pose control and regularization tasks).As
for the simulations, a DCM-based controller and an angular
momentum regularization controller were additionally applied.
The walking performance was overall robust. However, track-
ing errors can be observed, which we believe are caused by
torque offsets and joint friction. As compared to ID-based
controllers [10], the tuning effort was low, giving evidence
to MPTC’s robustness in real-world settings.

VI. CONCLUSION AND FUTURE WORK

This work introduced the so-called Modular Passive Track-
ing Controller (MPTC). This generic controller, at a first
stage, intends to independently fulfill several subtask objec-
tives. These primarily independent subtask controllers are then
merged into an overall controller. The controller design and
analysis is based upon Lyapunov theory, which facilitates
statements about stability and passivity. One of the major
contributions of this paper is the design of an optimization
weighting matrix that, for fully actuated robots, guarantees the
passivity of a complete set of conflicting subtasks. The pro-
posed control framework was validated in several simulations
and experiments for fixed-based and free-floating robots.

In our future research, we intend to extensively compare the
control concepts of Inverse Dynamics (ID), the proposed Mod-
ular Passive Tracking Control (MPTC) and other passivity-
based controllers, such as the PD+ controller. This extensive
comparison will be based on theoretical analysis, simulations
and hardware experiments.

https://youtu.be/WdF9UQK8aIo
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