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Abstract

In the last decade, people became more aware of the critical situation in space concerning
the space debris. Nowadays, there are plenty of uncontrolled objects located on different
orbits in the outer space. Some of them present the real hazards to the functioning
satellites and to the International Space Station. The researches all over the world are
working on optimal solutions for the space cleaning. There are projects which are directed
to repair the satellites and extend their operational lifetime, or totally remove a no more
useful space object from its orbit. Rendezvous is the one inevitable space operation all
these tasks need. We are able to execute a space operation with a target satellite only if
the servicer satellite approaches it. The goal of this thesis is to develop a visual navigation
system with the Photonic Mixer Device (PMD) sensor for the close rendezvous phase with
a non-cooperative target. The PMD sensor has never been used in space missions so far,
but it has already been tested on the ground.

In order to achieve the goal, this thesis provides two different pipelines for the pose
acquisition and for the pose tracking using the images from the PMD sensor. In this
work we show that the use of the PMD’s amplitude and depth images together brings a
great contribution to the visual navigation system. The pose acquisition is required in
order to initialize a pose (position and orientation) of the non-cooperative space object
before the tracking takes place. This task is very difficult, because we have to deal only
with the PMD images and the known 3D model of the target. We initialize the pose with
the depth image and thereafter improve the obtained pose with the amplitude image.
As soon as we have an initial estimation, the servicer starts to approach the target in a
frame-to-frame mode. The pose for every frame is estimated by a fusion of the states,
which are calculated with the developed techniques for the depth and the amplitude
images correspondingly. This technique shows a stable tracking with low errors of the
estimated pose even if there are some distortions in the depth image. This fact is very
important for the close rendezvous phase, because any failures in Guidance, Navigation
and Control (GNC) system can lead to an unpredictable behavior of the chaser, and in
end effect, create more space debris.

The techniques presented in this thesis are tested with real images of the PMD sensor.
The rendezvous simulations are executed and evaluated with a high accuracy hardware-in-
the-loop simulator. The tests of the visual navigation with a PMD sensor in a closed loop
show promising results. The servicer satellite can smoothly approach the non-cooperative
target by only using the PMD sensor for relative navigation.



Zusammenfassung

Im letzten Jahrzehnt wurde den Menschen die kritische Situation im Weltraum bezüglich
des Weltraumschrotts bewusster. Heutzutage gibt es viele unkontrollierte Objekte auf
verschiedenen Umlaufbahnen im Weltraum. Einige von ihnen stellen eine wirkliche Gefahr
für die sich im Betrieb befindlichen Satelliten und für die Internationale Raumstation dar.
Die Forscher auf der ganzen Welt arbeiten an optimalen Lösungen für die Enfernung
dieser kritischen Objekte aus dem Orbit. Es gibt Projekte, die dazu bestimmt sind, die
Satelliten zu reparieren und ihre Lebensdauer zu verlängern oder ein Weltraumobjekt
vollständig aus seiner Umlaufbahn zu entfernen. Unvermeidbar ist hierfür der Anflug
eines Service-Satelliten an den Zielsatelliten. Das Ziel dieser Arbeit ist die Entwicklung
eines visuellen Navigationssystems mit dem PMD-Sensor (Photonic Mixer Device) für
die enge Rendezvousphase mit einem nicht kooperativen Ziel. Der PMD-Sensor wurde
bisher noch nicht in Weltraummissionen eingesetzt, aber er wurde jedoch bereits am
Boden getestet.

Um dieses Ziel zu erreichen, werden in dieser Arbeit zwei verschiedene Pipelines für
die initiale Bestimmung der Position und der Orientierung von Objekten und deren Nach-
folgung anhand der Bilder des PMD Sensors bereitgestellt. In dieser Arbeit zeigen wir,
dass die Verwendung der Amplituden- und Tiefenbilder des PMD-Sensors einen großen
Beitrag zum visuellen Navigationssystem leistet. Die erste Bestimmung der Position und
Orientierung ist erforderlich, um eine Pose (Position und Orientierung) des nicht kooper-
ativen Weltraumobjekts zu initialisieren, bevor die Verfolgung stattfindet. Diese Aufgabe
ist sehr schwierig, da wir nur die PMD-Bilder und das bekannte 3D-Modell des Zielobjekts
nutzen können. Wir initialisieren die Pose mit dem Tiefenbild und verbessern danach die
erhaltene Pose mit dem Amplitudenbild. Sobald wir eine anfängliche Schätzung haben,
nähert sich der Servicer dem Ziel in einem Frame-to-Frame-Modus. Die Pose für jedes
Einzelbild wird durch eine Fusion der Zustände geschätzt, die mit den entwickelten Tech-
niken für die Tiefen- und Amplitudenbilder entsprechend berechnet werden. Diese Tech-
nik zeigt eine stabile Verfolgung mit geringen Fehlern der geschätzten Pose, auch wenn
das Tiefenbild einige Verzerrungen aufweist. Diese Tatsache ist für die enge Rendezvous-
Phase sehr wichtig, da ein Ausfall des Guidance, Navigations und Steuerungssystems
(GNC) zu einem unvorhersehbaren Verhalten des Verfolgers führen und letztendlich mehr
Weltraumschrott erzeugen kann.

Die in dieser Arbeit vorgestellten Techniken werden mit realen Bildern des PMD-
Sensors getestet. Die Rendezvous-Simulationen werden mit einem Hardware-in-the-Loop-
Simulator mit hoher Genauigkeit durchgeführt und ausgewertet. Die Tests der visuellen
Navigation mit einem PMD-Sensor in einer geschlossenen Regelschleife zeigen vielver-
sprechende Ergebnisse. Der Service-Satellit kann sich dem Ziel ebenmäßig nähern, wobei
lediglich der PMD-Sensor für die Relativnavigation verwendet wird.



List of Publications

• Klionovska, K., Benninghoff H. Visual Navigation for Rendezvous and Docking us-
ing PMD Camera. In Doctoral Consortium, In 2nd International Conference on
Geographical Information Systems Theory, Applications and Management (GIS-
TAM), Rome, Italy, pp. 3-7, 2016. Best Phd Project Award.

• Klionovska, K., Benninghoff, H. Initial Pose Estimation using PMD Sensor during
the Rendezvous Phase in On-Orbit Servicing Missions. In 27th AAS/AIAA Space
Flight Mechanics Meeting, San Antonio, TX, USA, 2017.

• Klionovska, K., Benninghoff, H. and Strobl, Klaus H. PMD Camera-and Hand-
Eye-Calibration for On-Orbit Servicing Test Scenarios On the Ground. In 14th
Symposium on Advanced Space Technologies in Robotis and Automation (ASTRA),
Leiden, the Netherlands, 2017.

• Klionovska, K., Ventura, J., Benninghoff, H., Huber, F. Close Range Tracking of
an Uncooperative Target in a Sequence of PMD Images. 1st IAA Conference on
Space Situation Awareness (ICSSA), Orlando, FL, USA, 2017. 2nd Best Student
Paper Award.

• Klionovska, K., Ventura, J., Benninghoff, H., Huber, F. Close Range Tracking of
an Uncooperative Target in a Sequence of Photonic Mixer Device (PMD) Images.
Robotics, 7(1), 5, 2018.

• Klionovska, K., Benninghoff, H., Risse, E.-A., Huber, F. Experimental Analysis of
Measurements Fusion for Pose Estimation Using PMD Sensor. 23nd Iberoamerican
Congress, CIARP 2018, Madrid, Spain, 2018.

• Klionovska, K., Benninghoff, H., Huber, F. More Accurate Pose Initialization with
Redundant Measurements. 14th International Joint Conference on Computer Vi-
sion, Imaging and Computer Graphics Theory and Applications, Prague, Czech
Republic, 2019.



Contents

1 Introduction 5
1.1 On-orbit Servicing and Active Debris Removal . . . . . . . . . . . . . . . 5
1.2 Space Rendezvous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Phases of Rendezvous Mission . . . . . . . . . . . . . . . . . . . . 7
1.2.2 Precondition: Separate Orbits . . . . . . . . . . . . . . . . . . . . 8
1.2.3 Phase I - Phasing . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.4 Phase II - Far Range Rendezvous . . . . . . . . . . . . . . . . . . 9
1.2.5 Phase III - Close Range Rendezvous . . . . . . . . . . . . . . . . 10
1.2.6 Mating: Docking or Berthing . . . . . . . . . . . . . . . . . . . . 10

1.3 Objective of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4.1 OOS and ADR Missions . . . . . . . . . . . . . . . . . . . . . . . 11
1.4.2 Visual Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4.3 Review of 3D Techniques . . . . . . . . . . . . . . . . . . . . . . . 18
1.4.4 Review of 2D Techniques . . . . . . . . . . . . . . . . . . . . . . . 20
1.4.5 Review of Hybrid Navigation Techniques . . . . . . . . . . . . . . 22

1.5 Contribution of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 Hardware Facilities: Rendezvous Proximity Simulator and Visual Sen-
sors 26
2.1 European Proximity Operations Simulator . . . . . . . . . . . . . . . . . 26
2.2 Mockup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3 DLR-Argos3D Camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.1 PMD Camera Working Principle . . . . . . . . . . . . . . . . . . 31
2.3.2 Distance and Amplitude Data . . . . . . . . . . . . . . . . . . . . 32
2.3.3 PMD Camera vs. Monocular, Stereo Cameras and LIDAR Systems 37

2.4 PMD Camera- and Hand-Eye-Calibration . . . . . . . . . . . . . . . . . 38
2.4.1 Overview of Calibration Techniques . . . . . . . . . . . . . . . . . 39
2.4.2 Intrinsic Camera Calibration . . . . . . . . . . . . . . . . . . . . . 39
2.4.3 Lens Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.4.4 Hand-Eye Calibration . . . . . . . . . . . . . . . . . . . . . . . . 42
2.4.5 PMD Camera Calibration Process and Numerical Results . . . . . 43



3 Pose Estimation 46
3.1 Introduction to Pose Estimation . . . . . . . . . . . . . . . . . . . . . . . 46
3.2 Pose Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.1 Point Pair Feature Vector . . . . . . . . . . . . . . . . . . . . . . 48
3.2.2 Description of the Initial Pose Estimation Algorithm . . . . . . . 50
3.2.3 Initial Pose Refinement . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3 Hybrid Navigation Technique . . . . . . . . . . . . . . . . . . . . . . . . 53
3.3.1 Autonomous Rendezvous using 3D Depth Data . . . . . . . . . . 55
3.3.2 Pose Estimation with 2D Gray-Scaled Images . . . . . . . . . . . 60

3.4 Fusion of Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.5 Guidance, Navigation and Control System . . . . . . . . . . . . . . . . . 69

4 Tests, Analysis and Discussion 71
4.1 Analysis of Limitations using DLR-Argos3D - P320 . . . . . . . . . . . . 71

4.1.1 Position Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.1.2 Surface Material Limits . . . . . . . . . . . . . . . . . . . . . . . 72

4.2 Offline Test: Pose Initialization . . . . . . . . . . . . . . . . . . . . . . . 74
4.2.1 Improvement of the Initial Pose with Amplitude Image . . . . . . 76

4.3 Offline Test: Weights Definition . . . . . . . . . . . . . . . . . . . . . . . 78
4.3.1 Test Scenario 1 and Test Scenario 2: Pose Estimation using Depth

and Amplitude Images Separately . . . . . . . . . . . . . . . . . . 78
4.3.2 Test Scenario 3: Fusion of Pose Vectors with Weights . . . . . . . 83

4.4 Visual Navigation using PMD Sensor in a Closed Loop . . . . . . . . . . 86
4.4.1 Tests with PMD sensor in a Total Darkness . . . . . . . . . . . . 89

4.5 Comparison of Visual Navigation with PMD and CCD sensors . . . . . . 92
4.6 Computational Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.6.1 Computational Complexity of Pose Initialization Technique . . . . 95
4.6.2 Computational Complexity of the Tracking Technique . . . . . . . 97

5 Conclusion 101
5.1 Can the Presented Pose Estimation Algorithms be Applied with other

Active Sensors? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Bibliography 104



List of Figures

1.1 (a): The tear in the solar array material of ISS.(b): Scott Parazynski
during the process of repair the solar arrays. . . . . . . . . . . . . . . . . 6

1.2 (a): The Agena target vehicle as seen from Gemini 8 during rendezvous.(b):
First automated rendezvous of Soviet space vehicles Cosmos 186 Cosmos
188. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Main phases of rendezvous operation. . . . . . . . . . . . . . . . . . . . . 8
1.4 Orbits of the chaser and target with defined phase angle. . . . . . . . . . 8
1.5 (a): Engineering Test Satellite VII ”KIKU-7” (ETS-VII).(b): The Jules

Verne Automated Transfer Vehicle (ATV) approaches the International
Space Station . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.6 (a): Artistic impression of NASA’s DART spacecraft approaching MUBLCOM.
(b): Orbital Express: ASTRO and NEXTSat. . . . . . . . . . . . . . . . 13

1.7 (a): Artistic illustration of the PRISMA launch configuration.(b): AVANTI
experiment: BIROS satellite and BEESAT-4 pico-satellite. . . . . . . . . 14

1.8 Scanning LIDAR. (b): LIRIS optical head tested during ATV-5 mission.
(c): DragonEye 3D Flash LIDAR Space Camera. (d):The TriDAR Sensor
Package during STS-128 mission. . . . . . . . . . . . . . . . . . . . . . . 15

1.9 (a): Star tracker platform with Camera Head Unit used for the PRISMA
mission. (b): Photo of the docking camera used in STORRM. . . . . . . 16

1.10 Sodern infrared sensors used in ATV-5 mission. . . . . . . . . . . . . . . 17
1.11 PMD Camera ”CamCube 3.0”. . . . . . . . . . . . . . . . . . . . . . . . 17
1.12 Geometry of the target and the chaser with attached PMD sensor. . . . . 23
1.13 Frame-to-frame tracking of the space target in a sequence of PMD images. 24

2.1 Illustration of one possible setup for the RvD simulation in the EPOS
laboratory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 The robot on the left side of the image carries a PMD sensor and the robot
on the right side of the image is equipped with the target mockup. . . . . 27

2.3 The target mockup in EPOS laboratory at DLR. . . . . . . . . . . . . . 28
2.4 The original 3D model of the target mockup. . . . . . . . . . . . . . . . . 29
2.5 (a): Configuration of the client and servicer satellites. (b): Client vehicle

for the DEOS mission. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.6 DLR-Argos3D - P320 camera fixed on the breadboard in the EPOS labo-

ratory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.7 PMD camera working principle. . . . . . . . . . . . . . . . . . . . . . . . 31
2.8 (a): Example of a depth image. (b): Example of an amplitude image. . . 33

1



2.9 (a)-(b): Depth and amplitude images with ConfidenceThresLow=500. (c)-
(d): Depth and amplitude images with ConfidenceThresLow=1000. . . . 35

2.10 (a)-(b): Depth and amplitude images of the mockup’s side with Confi-
denceThresLow=1000 and relative distance 2.7 meters. (c)-(d): Depth and
amplitude images of the mockup’s side with ConfidenceThresLow=1000
and relative distance 4.5 meters. . . . . . . . . . . . . . . . . . . . . . . . 36

2.11 (a): Depth image from PMD sensor taken in complete darkness. (b):
Amplitude image from PMD sensor taken in complete darkness. . . . . . 38

2.12 The coordinate systems in camera calibration process. . . . . . . . . . . . 40
2.13 Calibration images from the PMD sensor. . . . . . . . . . . . . . . . . . 43
2.14 DLR CalDe detects the corner points in the image. . . . . . . . . . . . . 44
2.15 DLR CalLab dialog window with output results. . . . . . . . . . . . . . . 45

3.1 (a)-(b): Depth images with some missing depth information of the mockup’s
parts. Image (b) reflects false distance information of some parts outside
of the hexagon borders, which are absent in reality. . . . . . . . . . . . . 48

3.2 Calculation of the normal vector in any point of the point cloud. . . . . . 49
3.3 Illustration of the point pair feature vector. . . . . . . . . . . . . . . . . . 49
3.4 An example of similar point pairs of the model. . . . . . . . . . . . . . . 50
3.5 An extraction of the similar pairs of points for the scene and model. . . . 51
3.6 A transformation that aligns the model with the scene. . . . . . . . . . . 52
3.7 Architecture of the Hybrid Navigation Technique. . . . . . . . . . . . . . 54
3.8 2D Circle search region with a radius r around the point ai. . . . . . . . 57
3.9 Projection of the 3D point to the image plane. . . . . . . . . . . . . . . . 58
3.10 Line representation in the image space. . . . . . . . . . . . . . . . . . . . 61
3.11 Straight line in the image space transforms into a point in the Hough space. 62
3.12 Sinusoidal curve in the Hough space. . . . . . . . . . . . . . . . . . . . . 62
3.13 (a): Points in the image create a straight line. (b): Sinusoids in the Hough

space intersect in two points. . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.14 Illustration of the image processing procedure with a front view image. . 64
3.15 Illustration of the image processing procedure with a side view image. . . 65
3.16 Overview of GNC system. . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.1 Images of the mockup in the FOV and out of FOV of the sensor. . . . . . 72
4.2 Images of the target with absorbing and reflective materials. . . . . . . . 73
4.3 Depth images for testing pose initialization . . . . . . . . . . . . . . . . . 75
4.4 Results of pose initialization . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.5 Depth image with outliers. . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.6 Results of pose initialization with correction . . . . . . . . . . . . . . . . 77
4.7 Results of pose initialization. . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.8 Some images from data set. . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.9 Translation errors for the test scenario 1. . . . . . . . . . . . . . . . . . . 81
4.10 Rotation errors for test scenario 1. . . . . . . . . . . . . . . . . . . . . . . 81
4.11 Translation errors for the test scenario 2. . . . . . . . . . . . . . . . . . . 82
4.12 Rotation errors for the test scenario 2. . . . . . . . . . . . . . . . . . . . 82
4.13 Translation errors for the test scenario 3. . . . . . . . . . . . . . . . . . . 84
4.14 Rotation errors for test scenario 3. . . . . . . . . . . . . . . . . . . . . . . 85

2



4.15 Rotation errors during rendezvous with PMD sensor in the closed loop for
the test 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.16 Position errors during rendezvous with PMD sensor in the closed loop for
the test 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.17 Distance during the approach, measured distance with the algorithm and
distance corrected with Kalman filter. . . . . . . . . . . . . . . . . . . . . 88

4.18 Zoom into the distance component. . . . . . . . . . . . . . . . . . . . . . 89
4.19 Test in a total darkness. Distance during the approach, measured distance

with the algorithm and distance corrected with Kalman filter. . . . . . . 90
4.20 Test in a total darkness. Rotation errors during rendezvous with PMD

sensor in the closed loop for the test 1. . . . . . . . . . . . . . . . . . . . 91
4.21 Test in a total darkness. Position errors during rendezvous with PMD

sensor in the closed loop for the test 1. . . . . . . . . . . . . . . . . . . . 91
4.22 Gray-scaled images from CCD and PMD sensors. . . . . . . . . . . . . . 93
4.23 Position errors for the PMD and the CCD sensors. . . . . . . . . . . . . 93
4.24 Rotation errors for the PMD and the CCD sensors. . . . . . . . . . . . . 94
4.25 Computational complexity of the pose acquisition technique . . . . . . . 96
4.26 (a)-(b) Computational complexity of the tracking technique. Polynomial

fit of data with 95% prediction interval, radii for the neighbor search are
r=5 and r=10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.27 (a)-(b) Computational complexity of the tracking technique. Polynomial
fit of data with 95% prediction interval, radii for the neighbor search are
r=15 and r=20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3



List of Tables

2.1 Technical data of the PMD sensor inside the DLR-Argos 3D-P320 camera. 31

4.1 Errors for estimated initial pose. . . . . . . . . . . . . . . . . . . . . . . . 74
4.2 Errors for corrected initial pose. . . . . . . . . . . . . . . . . . . . . . . . 77
4.3 Mean errors for the initial pose with and without correction. . . . . . . . 78
4.4 Mean errors for the test scenario 1 and the test scenario 2. . . . . . . . . 83
4.5 Standard deviations for the test scenario 1 and the test scenario 2. . . . . 83
4.6 Weights for the translation components. . . . . . . . . . . . . . . . . . . 84
4.7 Mean errors and standard deviations for the test scenario 3. . . . . . . . 85
4.8 Root mean square errors for position and orientation using the PMD sensor

in a closed-loop for 10 approach trajectories. . . . . . . . . . . . . . . . . 86
4.9 Root mean square errors for position and orientation using the PMD sensor

in a closed-loop for 3 approach trajectories without any illumination in the
hall. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.10 Technical data of Prosilica GC-655 camera . . . . . . . . . . . . . . . . . 92
4.11 Root mean square errors for position and orientation using the PMD sensor. 94
4.12 Root mean square errors for position and orientation using the CCD sensor. 94
4.13 The average result of 10 tests. . . . . . . . . . . . . . . . . . . . . . . . 95
4.14 CPU characteristics of the processor used for tests. . . . . . . . . . . . . 96

4



Chapter 1

Introduction

1.1 On-orbit Servicing and Active Debris Removal

The mobile systems which are used on the Earth, e.g. airplanes, ships, cars, have the
ability to get regularly external support and maintenance. Moreover, the periodic re-
fueling and repairing and/or upgrading of the different parts of the complex systems is
considered as the usual procedures. Since the asset of using the space platforms in space,
such as International Space Station (ISS) and different types of satellites, is being in-
creased yearly, the explicit demand for On-Orbit Servicing (OOS) technologies in space
has become one of considerable issue. The impact of On-Orbit Servicing procedures leave
the valuable trace in the technical, scientific and economical branches before and during
the space operations [1]. The major OOS activities are planned to include the following
goals [2]:

• refueling of propellant

• replenishment of the spacecraft’s components (e.g. batteries or solar arrays)

• replacement of failed subsystems (e.g. payload and bus electronics)

• extension of the mission (e.g. software and hardware upgrades)

Up to now, the OOS activities have been provided by involving humans to terminate
special tasks at ISS. For instance, more than a dozen of several failures, unexpected
problems and different maintenance issues have been solved on the ISS by the astronauts
since the existence of the station. One of the accidents happened in 2007, when a torn
of a solar panel has been detected during the solar arrays deployment [3]. The mission’s
spacewalk has been organized and the astronaut successfully repaired the tear. But
this spacewalk had been considered as one of the most dangerous, since there was a
risk of shock from the electricity generated by the solar panels. Therefore, in cases
with high complex tasks, where risk to the human’s life occurs, autonomy is one of the
possible alternatives. What will happen if a satellite at the Geostationary Earth orbit
(GEO) has e.g. a broken solar panel? There are no possibilities to repair it by an
astronaut. Consequently, one of the challenging issues of the OOS missions is to create
fully autonomous systems. Firstly, they can assist astronauts, and take over dangerous
tasks. Secondly, autonomous OOS via a service spacecraft is the only way to recover
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satellites located at different orbits. The autonomous system should independently gain
information about the environment and also work in this environment without human or
other engineering system interventions.

(a) (b)

Figure 1.1: (a): The tear in the solar array material of ISS. Image credit: see link in [4].
(b): Scott Parazynski during the process of repair the solar arrays. Image credit: see link
in [5].

But if the above mentioned OOS activities no longer will be useful and only the
proper disposal of the space object from its operational orbit is a proper solution? In
this instance we deal with space debris, meaning that the problem is addressed in terms
of remediation of active space debris. According to calculations provided by the ESA
[6], more than 7500 tonnes of space hardware are located in space. Creating a practical
Active Debris Removal (ADR) technology is extremely necessary in order to mitigate the
risk of future collisions and growth of future debris. In particular, the situation on the
Low Earth Orbit (LEO) looks crucially dangerous, since the density of the space debris
there is measured in hundreds of thousands of fragments.

1.2 Space Rendezvous

Autonomous space rendezvous is an essential operation required in all the missions in-
volving more than one spacecraft [7]. In general, the process of the rendezvous requires
that two spacecrafts start at a remote distance (i.e., out of sight of each other), come to-
gether into a common orbit and rendezvous to each other [8]. If the mission envisages the
joining of the vehicles, the process of docking and berthing occurs. The first rendezvous
and docking between two spacecraft dates back on 16 March 1966, when a Gemini ve-
hicle manually approached and then docked an unmanned Agena target vehicle. On 30
October 1967, the first automatic Rendezvous and Docking (RvD) took place between
two Soviet space vehicles Cosmos 186 and Cosmos 188 [7]. Since that time the era of
RvD operations has been started.
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(a) (b)

Figure 1.2: (a): The Agena Target Vehicle as seen from Gemini 8 during rendezvous.
Image credit: see link in [9]. (b): First automated rendezvous of Soviet space vehicles
Cosmos 186 Cosmos 188. Image credit: see link in [10].

In the rendezvous space scenario between two spacecraft, usually, one space vehicle is
active (chaser) and the other one is passive (target). The active spacecraft does the most
of activities during the rendezvous phase, since the target space vehicle is completely pas-
sive and with a potentially uncontrolled motion. The rendezvous is a crucially important
phase, since this process consists of the sequence of different translational and rotational
manoeuvres. It starts at long distance apart between both space objects with multiple
rendezvous stages in order to bring the active vehicle in the vicinity of the passive one.

One essential challenge appears when we plan to implement rendezvous with space
debris - the uncooperativeness of the target spacecraft. It is not equipped with dedicated
visual markers for distance and attitude estimation, it may uncontrollably tumble around
the principal axes, and initially there is no sufficient information about the kinematics.
Usually it is assumed to have some information about the 3D model of the target but
no information about the target’s pose (position and orientation). For this reason, new
technologies, especially in the field of navigation, must be developed for the RvD to
non-cooperative targets.

1.2.1 Phases of Rendezvous Mission

A rendezvous mission can be divided into different phases, which differ in type of activity,
the relative distance between two spacecraft and also the source of navigation [8]. The
main steps illustrated in Figure 1.3 are as follows: phasing, far range rendezvous, close
range rendezvous and mating [7]. Each step of the mission presents its own mission with
special initial and terminal condition [11].

7



Figure 1.3: Main phases of rendezvous operation.

1.2.2 Precondition: Separate Orbits

Initially, we expect to know at least approximately the target’s orbit. The approximate
orbit can be determined by tracking methods from ground. It is assumed that the upper
stage of the launch vehicle brings the servicer spacecraft into the stable orbit in the
target’s orbital plane [12]. The difference in the semi-major axes between two orbits
creates a relative drift of the phase angle (Figure 1.4) between the spacecraft. In general,
the chaser vehicle can be above or below the target, but the position of the chaser on the
lower orbit is considered safer, since there is no need for the servicer to cross the target’s
orbit prior to terminal rendezvous.

Figure 1.4: Orbits of the chaser and target with defined phase angle.
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1.2.3 Phase I - Phasing

The next step is to reduce the phase angle between the target and chaser and reach
an ”aim point” or ”entry gate”. There are several phasing strategies, depending on the
phase angle to the target, necessary correction parameters and limits of time presumed
for the total mission. Trajectories and manoeuvres should be calculated individually for
the every single launch, depending on the target spacecraft and goal of the mission. One
can find more detailed description of different manoeuvres types and orbits in a work of
Fehse [7].

Well planned consecutive phasing manoeuvres will be terminated by reaching the
required initial aim point or entry gate for far range rendezvous. The aim point usually
locates on the target orbit or somewhere very close to it. The major significant effects
on the accuracy of the rendezvous trajectories vary with the orbit. For example, in LEO
the strongest disturbance is drag due to the residual atmosphere. Moreover, during the
phasing, the effect of the geopotential anomaly causes inaccuracies of the spacecraft’s
position. In GEO, the most serious disturbances occur due to the solar wind [7].

1.2.4 Phase II - Far Range Rendezvous

When the entry gate is reached, the proximity phase operation starts. The single ma-
noeuvre in order to bring the chaser vehicle from the entry gate to the final point of the
mission is hard to implement due to numerous factors: safety of the chaser spacecraft,
fuel consumption, target detection and relative navigation [11]. Moreover, in situations
where we deal with non-cooperative targets, the motion of the servicer can not be con-
strained to the orbital plane of the target and it should be capable to execute maneuvers
out of this plane. Consequently, the chaser should be able to reach any region around
the target spacecraft. The main goal of the far range rendezvous is determination of the
target’s orbit and estimation of its position. Synchronization of the mission timeline,
reduction of the velocity and determination of the lightning conditions are the key tasks.
The end point of this phase is defined as the ”intermediate hold point” from which the
final close approach can be started. Depending on the mission and type of the satellite,
the total number of the hold points can vary during the far and close rendezvous. Taking
into account the difficulty of the OOS missions, it is better to choose more hold points
in order to check more often the working status of the chaser’s navigation system. It
ensures the safety of the system and leads to the successful completion of the mission.

One of the safe approach techniques based on relative eccentricity and inclination
vector separation is described in works [13, 14]. During the approach phase from several
kilometers to a few hundred meters, a relative orbit determination is based on angular
measurements. The collision risk is measured as a function of separation in the plane
orhtogonal to the flight direction and can be prevented in the presence of large uncertain-
ties of angles-only navigation. The far range rendezvous to a non-cooperative object at
GEO is addressed in [12]. Co - elliptic rendezvous profile with Hohmann raises brings the
servicer satellite to the final co-elliptic drift segment. From that point starts the proxim-
ity operation to insert the servicer spacecraft to safety ellipse using Lambert targeting.
This trajectory segment is designed to be safe, the servicer will not collide with a target
if the ellipse insertion maneuver is missed or canceled.
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1.2.5 Phase III - Close Range Rendezvous

The phase of the close approach can be divided into two sub-phases: ’closing’ and a final
approach, which brings the chaser in very close vicinity of the target until mating. In the
closing phase, the main requirements are reduction of the relative distance to the target
and achievement of the initial conditions for the final approach corridor. The close range
approach is considered extremely challenging. In comparison with the previous phase,
the accuracy of the navigation system during close proximity operation must be increased
tremendously. The errors in the estimation of the relative position, attitude and velocity
should be very small. Different visual sensors for the relative navigation in close range are
used in order to guarantee a fault-tolerant navigation system and safe docking, without
a collision with the target vehicle. Above all, some time-flexible elements in form of hold
points may still be planned and executed for operational reasons. In case of unforeseen
circumstances related to the target’s or chaser’s vehicle, the rendezvous process can be
interrupted for some time. In that case, the trajectory design should foresee the return to
one of the hold points with a further restart of the closing. In the second sub-phase, i.e.
during the final approach, the goal is to achieve docking or berthing capture conditions
in terms of relative position and orientation, velocities and angular rates. Additionally,
the GNC system of the chaser needs to bring the chaser docking or berthing capture
interfaces into reception range. Usually, the chaser approach trajectory is chosen as a
closed loop straight line or quasi-straight line trajectory. A straight line approach has the
advantage that only one parameter, the distance, is changed while the other ones (like
azimuth and elevation angles) are kept constant.

1.2.6 Mating: Docking or Berthing

In the mating phase there is a list of necessary conditions, which must be achieved, be-
fore the ultimate docking or berthing takes place. For docking, the parameters, like the
approach velocity, lateral and angular alignment, lateral and angular rates, are principal
for the evaluation. Whereas for the berthing, the position and attitude accuracy, resid-
ual linear and angular rates are the major indicators. The difference between docking
and berthing is as follows. During the docking process the target spacecraft is actively
controlled until a hard dock with the target. Since only uncontrolled non-cooperative
targets are considered, docking is no option in OOS. In case of berthing, some of captur-
ing mechanisms (e.g. manipulator arm, nets, harpoons) located on the servicer satellite
play the major role in order to attach the target and the chaser together.

1.3 Objective of the Thesis

Since two decades, the research in the field of ADR and OOS activities has been essentially
led worldwide by some space agencies. Various investigations in the branch of proximity
operations to non-cooperative space objects have been done actively. As one could notice
from the previous Section 1.2, the process of space rendezvous is a demanding process
in all space applications regardless of the nature of the target vehicle. Furthermore,
the uncooperativeness of the target space object increases the degree of complexity of
autonomous proximity operations.
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In this thesis, the major focus for investigation is directed to the field of close range
rendezvous, especially in the final phase approach. Navigation during the final approach is
based on relative measurements (position and attitude) between the chaser and target due
to the lack of any absolute navigation information by the target. Generally, different types
of vision-based relative navigation systems are used for the important final phase of close
range rendezvous. With a decrease of the relative distance between two space objects,
there are requirements for a dramatical increase of navigation accuracy. According to
this, the principal goal of this thesis is to design and implement robust pose estimation
techniques during the final phase range (< 10 meters) of the non-cooperative space target
using computer vision solutions with a proposed hardware, namely a Photonic Mixer
Device (PMD) sensor [15] [16]. The PMD sensor is a ranging devices, which provides
a depth and amplitude image for every frame. Current research aims to find the initial
pose with a depth image from PMD sensor and a 3D model of the target. With an
acquired guess the pose tracker can be initialized and the servicer approaches the target
using subsequent PMD images. The scope of this work relates to the space robotics for
the ADR and OOS missions, where there is still a technological gap, particularly in the
development of special GNC technologies in order to navigate to the non-cooperative
target in the close vicinity. There is a great need to test new hardware and software
technologies for RvD within different test campaigns on the ground.

1.4 State of the Art

Up to this moment, the necessary tasks in the field of spacecraft servicing have been
provided in a manned mode. However, the concept of fully autonomous inspection,
rendezvous and docking with differently accurate visual-based sensors have been recently
tested in several demonstration missions with a cooperative spacecraft, since its attitude
was stabilized and it was equipped with dedicated visual markers. The Sections 1.4.1
and 1.4.2 provide a review of the existing navigation sensors and some missions where
they have been tested. The Sections 1.4.3 - 1.4.5 give an overview of state-of-the-art pose
estimation techniques.

1.4.1 OOS and ADR Missions

The concept of fully autonomous inspection, rendezvous and docking with differently
accurate visual-based sensors have been recently tested in several demonstration missions
with a cooperative spacecraft, since its attitude was stabilized and it was equipped with
dedicated visual markers. The current and following sections provide a review of the
existing navigation sensors and some missions where they have been tested.

The first unmanned spacecraft, called Engineering Test Satellite No. 7 (ETS-VII),
to conduct autonomous rendezvous docking operations was developed and launched by
the National Space Development Agency of Japan (NASDA) in 1997. Different types of
sensors were used during autonomous RvD, such as laser, GPS and a proximity sensor.
The proximity sensor consisted of a reflecting marker, which was located on the target,
and emitting diodes placed on the chaser. The reflected light form the target was captured
by the camera system of the chaser in order to calculate the pose between both space
bodies.
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The Automated Transfer Vehicle (ATV) [17], developed by the European Space
Agency (ESA) has performed five supply missions to the International Space Station
(ISS) in fully autonomous mode. The purpose of this cargo spacecraft was to transport
various payloads in order to maintain the ISS, support astronaut’s lifes and also conduct
research experiments. ATV’s navigation is based on cooperative rendezvous technology.
At long range, the navigation to the station is based on the GPS measurements from
the ATV and the ISS. At short range, navigation employs the optical sensors (videome-
ters and telegoniometers) fixed on the ATV and the retro-reflectors which are located
on the the Space Station. During the last ATV mission, the LIRIS demonstrator (Laser
InfraRed Imaging Sensors) [18], was tested in in-flight experiments on a European vehicle
in order to demonstrate the technology readiness for future uncooperative rendezvous in
space. The LIRIS system was composed of Infra-red/visible cameras and LIDAR (LIght
Detection And Ranging) sensor. This sensor provides the distance to an object by mea-
suring the time between the transmitted and returned back light from a laser beam. After
the processing the recorded data from the dedicated sensor, the experiments has been
declared successful.

(a) (b)

Figure 1.5: (a): Engineering Test Satellite VII ”KIKU-7” (ETS-VII). Image credit: see
link in [19]. (b): The Jules Verne Automated Transfer Vehicle (ATV) approaches the
International Space Station. Image credit: see link in [20].

In April 2005, NASA launched ”Demonstration for Autonomous Rendezvous Tech-
nology” (DART) [21] with the goal to demonstrate fully automated navigation and ren-
dezvous technologies. Series of proximity maneuvers have been planned in order to test
and validate the ”Advanced Video Guidance Sensor” (AVGS) [22]. The AVGS used laser
diodes to illuminate retro-reflectors in the target, a solid-state camera to detect the re-
turned signal from the target, image capture electronics and a digital signal processor.
During the first 8 hours of the mission, DART operated as it had been planned, but
thereafter some anomalies were detected with the navigation system. The mission could
not be accomplished and, moreover, DART had collided with the MUBLCOM satellite.

The Orbital Express (OE) mission was started in 2007 by United States Defense
Advanced Research Projects Agency (DARPA) and a team led by engineers at NASA’s
Marshall Space Flight Center. The goal was to validate the technical feasibility of robotic,
autonomous on-orbit refueling and reconfiguration of satellites during a three-month mis-
sion. The Autonomous Rendezvous and Capture Sensor System (ARCSS) was part of
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the chaser’s (ASTRO) GNC system and was tested during the on-orbit performances.
The ARCSS sensors consisted of a set of two visible light cameras, an infrared camera, a
laser finder and the Advanced Video Guidance Sensor of OE. The ARCSS and the reli-
able software provided precision real-time target (NEXTSat) bearing, range and attitude
from the range 200 km to soft capture. The results of the ARCSS performance have been
outstanding during a total of five scenarios.

(a) (b)

Figure 1.6: (a): Artistic impression of NASA’s DART spacecraft approaching
MUBLCOM. Image credit: see link in [23]. (b): Orbital Express: ASTRO and NEXTSat.
Image credit: see link in [24].

In 2010 the Swedish National Space Board together with the German Aerospace Cen-
ter (DLR), the French space agency (CNES), and the Danish Technical University have
conducted a technology mission called Prototype Research Instruments and Space Mission
technology Advancement (PRISMA) in order to demonstrate autonomous formation fly-
ing, rendezvous and proximity operations [25]. The Visual Based Sensor (VBS) was built
as an extension module of µ - Advanced Stellar Compass (µASC), a fully autonomous
CCD-based star tracker platform, which can contain up to four Camera Head Units. The
VBS allowed to identify and track the target in far and close ranges. For the far range
visual navigation, the standard star tracker was used. The close range autonomous ap-
proach deployed the set of the coplanar LED installed on the target spacecraft. It allowed
to evaluate sensor performances by considering the target spacecraft as a cooperative, as
well as a non-cooperative space object.

During the extended phase of the PRISMA mission, an experiment called Advanced
Rendezvous Demonstration using Global Positioning System and Optical Navigation
(ARGON) has been performed [14]. The aim of the experiment was to demonstrate
far range approach to a non-cooperative passive target using angles-only optical navi-
gation. The efficient and reliable rendezvous from 30 km to 3 km was accomplished,
even though some difficulties for the range determination inherent to the angles-only
navigation occurred.

In November 2016 the Vision Approach Navigation and Target Identification (AVANTI)
experiment was successfully conducted [26] on the BIROS mission, where the goal was
the realization of a fully autonomous close approach of an unmanned spacecraft to a
non-cooperative target in low Earth orbit. The active servicing satellite used the µASC
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star-tracker. It hosted two cameras heads and two cold redundant digital processing
units. The mission demonstrated a strong achievement in the field of non-cooperative
autonomous approach with less than 50 m by using only the monocular camera for the
estimation of the relative state.

(a) (b)

Figure 1.7: (a): Artistic illustration of the PRISMA launch configuration. Image credit:
see link in [27]. (b): AVANTI experiment: BIROS satellite and BEESAT-4 pico-satellite.
Image credit: see link in [28].

In the recent past, the Northrop Grumman’s Mission Extension Vehicle-1 [29] for the
first time performed a docking with a non prepared for dockng satellite. It gave to the
satellite five more years of service. Nowadays, there are some new projects, which are still
in development and are scheduled to be launched in the near future. A robotic spacecraft
OSAM-1 [30], which is able to extend the operational lifespan of the satellite, even if that
was not prepared for a such mission. The e.Deorbit mission [31] of the the European
Space Agency aims to capture and burn up the ESA-owned satellite (ENVISAT) from
the low orbit. The Orbital ATK [32] offers a satellite life extension vehicle that must dock
with a satellite and take over maneuvering, relocate the space object or dispose it into
graveyard orbit. The Robotic Servicing of Geosynchronous Satellites (RSGS) is proposed
by DARPA [33] for demonstration of the different satellite servicing mission operations
in or near GEO.

1.4.2 Visual Sensors

As I discussed in Section 1.2.5, due to the operational range of the visual sensors, the
autonomous rendezvous usually includes multiple types of systems, e.g. sensors and ap-
propriate algorithms. Some of the rendezvous sensors have already been briefly mentioned
in Section 1.4.1, which have been used during space missions. Now, some more detailed
information about them is provided.

At the moment, two main groups of optical technologies are taken into operation for
RvD missions [34]. They would be categorized as passive and active sensors. The first one
contains cameras (monocular- or stereo- cameras) and the second includes some types of
LIght Detection And Ranging (LIDAR) sensors (e.g. scanning LIDAR or Flash LIDAR).

The measurement principle of the LIDAR is based on the illumination of the target
with a pulsed light and measuring the reflected pulses from the object with a sensor.
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Scanning LIDAR systems provide 3D maps of the picked object by scanning their field of
view with a laser and measuring the back-scattered light. In Figure 1.8 (a) the Scanning
Lidar is illustrated, which was developed by GSOCs On-Orbit-Servicing and Autonomy
group for research purposes [35]. The LIRIS LIDAR sensor depicted in Figure 1.8 (b)
was developed by Jena-Optronik and tested during the ATV-5 mission as a new type of
sensor for non-cooperative rendezvous and docking, see Section 1.4.1. Using another type
of LIDAR sensors, viz. the Flash LIDAR, a full 3D image can be recorded by illuminating
the scene with a single laser pulse and imaging the scene onto the focal plane array. The
ability of the Flash LIDAR to perform an autonomous RvD application was demonstrated
by using the DragonEye (see Figure 1.8(c)) in 2009 and 2011, and the Sensor Test for
Orion Relative Navigation Risk Mitigation (STORRM)[36] in 2011 [37]. The advanced
version of the LIDAR Camera System was demonstrated by the Neptec Design Group:
Triangulation + LIDAR (TriDAR) automated RvD system, which was tested during three
missions to track the ISS during docking/undocking and fly-around operations [38]. An
image of the TRiDAR system carried on board Space Shuttle Discovery during STS-131
mission to the ISS is depicted in Figure 1.8(d).

(a)

(b)

(c) (d)

Figure 1.8: (a): Scanning LIDAR. Image credit: see link in [39]. (b): LIRIS optical head
tesdted during ATV-5 mission. Image credit: see link in [40]. (c): DragonEye 3D Flash
LIDAR Space Camera. Image credit: see link in [41]. (d): The TriDAR Sensor Package
during STS-128 mission. Image credit: see link in [42].

The measurement principle of passive sensors, namely camera systems, is based on
the laws of imaging on the focal plane of a lens. The most recent flying PRISMA mission
[25, 43] demonstrated the successful usage of the CCD-based high accuracy star tracker
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platform with Camera Head Units [44, 45], see Figure 1.9(a). In order to provide an
accurate relative position and orientation w.r.t. the target, the visual system of PRISMA
was equipped with two different cameras in order to cover different distance ranges: the
far camera covering from 10.000 km to 100 m and the short camera covering from 500 m
to a few centimeters. After showing successful performance during the PRISMA mission,
the same star tracker has been used in the AVANTI experiment. A high-definition CMOS
imager, shown on image 1.9 (b), have been used in the STORRM experiment as a docking
camera.

(a) (b)

Figure 1.9: (a): Star tracker platform with Camera Head Unit used for the PRISMA
mission. Image credit: see link in [46]. (b): Photo of the docking camera used in
STORRM. Image credit: see link in [47].

Infrared-cameras have also been tested in space for the Proximity Operations. The
principle of the Thermal Infrared Camera is to detect the infrared energy (heat) and
convert it into electronic signal. Thereafter, a thermal image can be produced. The higher
an object’s temperature, the more infrared radiation can be received by the camera’s
optics. This type of camera can work even in complete darkness, since the ambient
light has less influence on the image quality compared to visual cameras. The focusing
lens of the infrared cameras can not be made from glass as in optical cameras, because
glass blocks long-wave infrared light. Usually, they are made of Germanium or Sapphire
crystals. Along with the LIDAR sensor, two Thermal Infrared Cameras in Figure 1.10
and one visible camera were also tested during the last ATV-5 mission. The TriDAR
system also offers an optional thermal imager for extended range tracking and short
range guidance. Nowdays, Neptec UK has designed and built a very small mass (less
than 0.5 kg) Infrared Camera for multiple space RvD applications [48].
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Figure 1.10: Sodern infrared sensors used in ATV-5 mission. Image credit: see link in
[40].

Figure 1.11: PMD Camera ”CamCube 3.0”.

About one decade ago a new type of ranging systems such as the Photonic Mixer
Device (PMD) camera became available. The PMD technology is quite similar to a Flash
LIDAR, where 3D imaging provides the distance to the target that can be measured in
every pixel of a sensor chip by illuminating the scene with an array of LEDs. To the best of
the author knowledge, this type of visual sensor has never been used in space applications
so far. But investigations and tests of the PMD camera have already been started on the
ground. In an earlier work of Schilling [49], the author performed investigations on the
possibilities and benefits of PMD camera in RvD scenarios. In the work of Scharnagl [50]
the algorithm of collision detection using PMD data (PMD CamCube 2.0) was presented
and verified. More complex experiments were conducted with a tumbling target in order
to prove the robustness of the algorithm. In the work of [51] the author has conducted
some experiments using a data fusion from a PMD camera and a CCD camera during
the close rendezvous scenarios. The PMD CamCube 3.0 camera which was used within
the aforementioned experiment at DLR is illustrated in Figure 1.11. Tzschichholz tested
different rendezvous approach trajectories under different environmental lightning and
various disturbances. He identified that the impact of the sunlight is significant. Getting
data from the PMD camera was possible only when the simulated strong sunlight was
originating from the back side of the target and when it was located at the side of
constellation.
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From previous sections one can notice that a lot of work has already been done
in close proximity operations to the non-cooperative target. Nevertheless, due to the
crucial amount of space debris or uncontrolled spacecraft, there is still a research gap in
the field of proximity operations with completely passive targets. In this subsection one
has already seen some works, where the PMD ranging device was tested as a possible
candidate for visual navigation in OOS missions. In this thesis, I continue to investigate
use of a PMD sensor for the 6 degrees of freedom (3D position and 3D orientation) pose
estimation of non-cooperative targets during the close rendezvous phase. My contribution
in order to decrease the technological gap is a development of novel pose estimation
techniques (pose initialization and pose tracking) with a unique PMD sensor for future
OOS missions. In the Sections 1.4.3-1.4.5 the review of state-of-the art pose estimation
techniques for different types of optical sensors are presented.

1.4.3 Review of 3D Techniques

To this date, many techniques have been developed for the purpose of object recognition
and pose estimation using 3D data with the focus to find a robust and efficient manner
to identify objects in a scene. In the field of robotic applications this problem is ad-
dressed as object recognition, which includes object identification and pose estimation
[52, 53]. It should be noticed that I discuss model-based approaches, namely 3D a-priori
knowledge about the model is avaliable. According to the extended survey for the 3D
object recognition in cluttered scenes in the work of Guo et al. [54], the existing 3D ob-
ject identification and pose estimation methods can be divided into 2 categories: global
feature based methods and local feature based methods. Here, the term feature refers to
some information, which can be extracted from the scene in order to solve the problem.
Features can be points, edges or even objects. For the local and global methods the
features are different. The idea of global methods is to not divide a model into parts or
any geometrical objects, but conversely, use the complete 3D known model. A second
class of methods, local methods, use so-called point descriptors. The scheme of this type
of algorithms identifies point to point correspondence between the model and the scene.
Point correspondence is built by comparing visual descriptors of the scene and of the
model, which represent visual features of the content from both point clouds. Therefore,
the descriptors must accurately and robustly distinguish between the real object in the
scene and present noise.

Let us discuss some of the known algorithms for pose acquisition, applicable in robotics
and also for some space applications for RvD. To initialize objects the so-called Gener-
alized Hough Transform is suggested in [55], but its application is limited to primitive
objects, as the recognition of 6 degrees of freedom (DOF) is computationally too expen-
sive. Another automatic routine based on random sample consensus (RANSAC) to find
basic shapes with point cloud input was designed by Schnabel et al. in [56]. In the works
of [57, 58], the authors proposed the RANSAC techique for the pose initialisation of the
non-cooperative target with LIDAR and stereo vision systems. The input data is a set
of observed values, sampled and reconstructed in a model, which can be fitted to the
observation. The inliers are generated from a random subset of the original data and
tested against the entire set of data in order to determine the correlation between the
inliers and the data set. The other approach which uses a Viewpoint Feature Histogram
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(VFH) is presented in the paper of Rusu et al. [59] for mobile manipulation and grasping
application with a prior segmentation of the scene. The VFH encodes the geometry and
the view point for recognition and 6 DOF pose identification. In the work of Woods et al.
[60] authors tested the VFH technique for the pose initialization of the non-cooperative
target during proximity operations. Mian in his work [61] built three dimensional ten-
sors from multiple unordered range images. The tensors are stored in a hash table and
used like a lookup table during the matching phase in order to calculate 6 DOF. In [62],
Johnson and Hebert introduce a recognition algorithm based on surfaces correspondence
by matching points using the spin image representation. The main idea is to construct
and store spin images from points on one surface (model) and thereafter do the same
procedure for the spin image of the scene surface. The best point correspondence is es-
tablished and grouped for the further surface matches in order to get a transformation
matrix. In the work of Luis A. Alexandre [63], the author sums up different possible
3D feature descriptors, which exist and can be used nowadays in a Point Cloud Library
(PCL) for 3D object recognition and pose estimation. In the work of Ruel et al. [64],
the authors propose one alternative to the feature based methods by using a point based
technique with a raw data from sensor. They apply a polygonal aspect hashing algorithm,
where throughout limited set of poses, which are the most likely candidates, surface fit
check between an input scan and known 3D model is performed in order to find best
matching pose. The works of Drost et al. [65] and Papazov et al. [52] outline a 3D object
recognition and pose estimation framework based on calculation of the features, such as
point pairs, which are matched to a 3D known model using a voting scheme. According
to the authors, the great advantage of this algorithm is its robustness in the presence of
the occlusion and clutter. Some simple deterministic methods as Principal Component
Analyses (PCA) and Singular Value Decomposition (SVD) have been used to find the
orientation of the main axis of the target (other remaining components can be calculated
by additional techniques) for the proximity operations [66, 34, 51, 67]. Both algorithms
are pairwise registration based on the covariance matrix and the cross correlation matrix
between two point sets. Along with the above referred algorithms, it is likewise quite
usual to use different variants of the well known Iterative Closest Point (ICP) [68] algo-
rithm for initial pose estimation [69], as well as for the pose refinement [70, 71], when the
pose is already coarsely estimated. The key idea of the ICP algorithm is to iteratively
minimize the average squared distance between the nearest points from two data sets
(e.g. model and scene point clouds). The algorithm continues until the error converges
or the maximum number of iterations is reached.

Once the initial pose is available, estimation of the pose in the next frame can be
simplified by restricting the search to solutions, which do not deviate extremely from
the previos ones. The model-based pose tracking of the target using the known 3D
geometrical shape of the object and the 3D locations of the features in every frame
leads to a least squares minimization problem in order to find the motion parameters
[72]. The state-of-the art technique which is commonly adopted in 6 DOF 3D model-
based tracking is the ICP algorithm [68]. This method has shown its effectiveness in
the real-time matching of misaligned 3D shapes, as well as robustness in the real-world
application [73, 74]. The ICP algorithm is robust for the coarse initial guess provided
to the visual navigation system. The ICP algorithm with its different configurations has
been applied for tracking purposes with the data sets from LIDAR and stereo camera
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systems in many works [60, 69, 74, 34, 67, 75]. In the work [34, 76], the Bounded Hough
Transform (BHT) is introduced to track objects in a sequence of sparse range images.
The key idea of the algorithm is to consider the coherency between frames, which allows
to reduce the 6 DOF solution space in the vicinity of the previous pose with a follow
estimation of the transformation matrix. Another approach for non-cooperative pose
estimation with flash LIDAR based on edge detection is proposed in the work of Lim et
al. [77]. The prominent geometric features, such as corners and edges, can be detected
and the edge unit vectors for the detected edges are constructed. With two accurate edge
vectors the pose is able to be calculated. One can obtain the most accurate result if two
edge vectors are perpendicular. In the work of Opromolla et al. [78], the survey of the
tracking techniques of completely model-free approaches are listed. Most of them include
variants of Kalman filters, Bayesian filters and Particle filters for state estimation. Along
with that there are also model-based tracking algorithms which utilize filter frameworks.
For example, in the work of Krull et al. [79] an offline learning model-based approach
with particle filter is presented. A 3D online pose tracker of rigid objects with a learning
stage using depth images and known model is proposed in the work of [80]. The authors
guarantee high robustness of the technique against occlusion, low memory consumption
and low computational costs. Simultaneous localization and mapping (SLAM) [81] is
another common technique to navigate with respect to so-called landmarks. Sonnenburg
et al. [82] proposed SLAM algorithm for spacecraft rendezvous using stereo or monocular
cameras.

1.4.4 Review of 2D Techniques

In the literature one can find a variety of the state-of-the-art model-based 2D pose esti-
mation tracking techniques based on point features or contours and edges [83, 84]. One
of the first model-based 3D tracker for the real-time application was RAPiD [85]. It
uses some model features, and namely, the points located on high contrast edges. The
control points located on the weak, error prone edges are ignored, since they can lead to
inaccuraces during the tracking. The bad/weak edges can occur due to bad illumination
conditions. This is a common problem present in the edges/contour methods. Once
the initial pose exists, the control model points match the image points with subsequent
linearisation in order to estimate 6 DOF. In a conclusion Harris et al. resumed that the
algorithm proved its robustness and fast execution, when the enhancement listed in the
paper [85] concerning the control points choice are taken into account. The other edge
based approach is proposed in [86]. The visible edge features of the model are identified
online and the correspondences are found in the image frame. A Lie group formalism is
used in order to simplify the tracking problem. Further, the optimization problem solved
by means of iterative reweighted least squares. Petit et al. [87] proposed 3D model based
tracking for the space debris removal with edge matching process, where the image edges
are found with 1D search along the edge normals. The pose is computed by minimizing
the distance between 3D projected edges of the model and detected edges in the image.
A set of 2D lines of the satellite has been detected in works of Cropp et al. [88] and
D’Amico et al. [89] as a special image feature of the target for the model-based pose
estimation.

Optical flow methods based on the assumption that the pixel intensities of the object
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do not change within consecutive frames and the neighbouring pixels have a similar
motion. The Lucas-Kanade [90] method is a widely used algorithm for optical flow
estimation. This local method can solve the optical flow equation by a least squares
criterion. The regularized optical-flow method is applied in [91] to 3D tracking during
the fast motion. Combination of the optical flow and edge detection is used for tracking
in the work [92] in order to increase stability and accuracy of the tracker.

Template-based pose tracking is another branch of the diversity of tracking techniques,
which corresponds to the global methods. In this contest, the term template refers to an
image. In a template-based category the whole template pattern of the object is compared
to an observed image and the best match between both of them helps to find the pose.
In the work of Hager et al. [93] the tracking is based on the minimization of the sum-of-
squared differences (SSD) between two regions. The Fast Normalized Cross Correlation
algorithm is presented in the work [94], where the matching occurs by intensity values
in the initial target bounding box as a template [83]. The sampled uniform windows
around the previous target position are compared with the target template using the
cross correlation. The candidate window with the highest score is admitted to be the
right new target location. The Mean Shift Tracking [95, 83] uses RGB-color histograms in
order to find the target position in each new frame. The comparison between the target
model, which is presented as a color distribution, and the target candidate is expressed
by a Bhattacharyya metric [96]. The best location of the target in a new frame can be
found using mean shift by finding the peak of a confidence map near the target’s old
position.

Another approach is a probabilistic approach with Bayesian filters for estimating the
density of successive states in the space of possible camera poses [84]. The estimation
of the state vector occurs by using a dynamic model and given observations or measure-
ments. Kalman fitering [97, 98] is a tool for recursively estimating the state of the process
during the 3D tracking. Particle filters with their advantages are presented in the work
[99] for relative rolling estimation with a sequence of infrared images. Also Augenstein
et al. [100] estimate recursively the 6 DOF and 3-D shape of the target with a Rao-
Blackwellized particle filter [101] for the autonomous docking with an unknown tumbling
target.

The combination of different approaches is useful and allows to take advantages of
each method for the frame-to-frame target tracking. In the work of Marimon et al.
[102] the authors use a hybrid tracking system, which combines measurement from a
marker-based cue and a feature point-based one with a particle filter. The proposed
filter uses different cues within a single motion model. In the work of Panin et al.
[103] contour based tracking is proposed, as an integration of local color statistic and
intensity of edges. Yol et al. [104] present two approaches for the future space debris
removal missions, which combine points of interest and edge features, as well as color-
based features. Convolutional Neural Networks (CNN) algorithms are modern methods
for the 6D pose estimation of uncooperatibe targets are presented in works of [105, 106].
Usually, the method consists of off-line learning phase and on-line prediction phase. The
synthetic space imagery data sets are a prerequisite for the CNN algorithms.
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1.4.5 Review of Hybrid Navigation Techniques

The hybrid pose estimation techniques refer not only to the combination of different meth-
ods with one visual sensor. Multiple visual sensors and applicable algorithms with the
following combination of the measured information for the pose tracking are referred to
hybrid navigation. In the work of Padial et al. [107] the authors present the 3D tumbling
target reconstruction and relative pose estimation for the RvD via fusion of monocular
vision and sparse-pattern range data. They implemented a modified Rao-Blackwellised
Particle Filter and demonstrated the test performances. Feature-level data fusion for au-
tonomous localization is presented in the work [108], where the depth information from
the infrared sensor is fused with the image from the camera through the edge information.
Cho et al. [109] developed a multi-sensor fusion system for moving object detection and
tracking. An Extended Kalman Filter (EKF) treats observations from radars, LIDARs
and monocular cameras to consistently track objects. Alatise et al. [110] and colleages
from DLR [111] propose to use Extended Kalman filter and fuse the data from an Inertial
Measurement Unit (IMU) and a camera in order to estimate position and orientation of
a mobile robot. The object tracking with two sensors like Stereo RGB-D and LIDAR
is given in the work of [112]. Both sensors independently measure the pose and there-
after fuse it with Bayesian filtering. By doing that, the frame-to-frame track losses were
prevented by redundant stereo measurements. In the PhD thesis of Ventura [74], three
combinations of data fusion with EKF for RvD with an uncooperative target have been
tested. The first combination consists of GPS, IMU and Kinect v2 ToF sensor, second
one fuses the data from GPS, IMU and stereo vision, and the third one uses data from
GPS, IMU and monocular camera. As one can notice, there are different fusion architec-
tures depending on the application’s aim, types of sensors and requirements for the fused
system. For example, the raw data fusion (fusion of the images from sensors) or fusion
of the results of the processed data.

1.5 Contribution of the Thesis

The aim of this thesis can be formulated with the following concept: the developed
robotic systems for OOS and ADR must be able to perform an autonomous rendezvous
to non-cooperative targets with known geometrical parameters. Non-cooperative targets
are lacking rendezvous aids such as retro-reflectors, transponders or other special markers.
Moreover, there is no way to exchange telemetry between the service satellite and the
target. It means that the GNC system of the chaser should ensure robust real-time
motion estimation of the space object without any confidential information about it.
For this purpose, the main contribution of this thesis is the development, validation
and verification of the novel suitable pose estimation techniques using computer vision
technologies with the proposed Photonic Mixer Device visual sensor. In Section 2.3 of
this thesis, more detailed information about characteristics, features and possibilities of
the sensors with PMD technologies is provided.

Let us describe more specific the problem and outline the objectives of the thesis.
In Figure 1.12 the sketch of the geometry of the chaser with a fixed camera and the
target for the proximity operations represents graphically a problem. The goal of the
pose estimation technique is to determine the relative position vector tB and relative
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orientation, i.e. attitude, of the target principal frame B (body frame) with respect to
the PMD camera coordinate frame C using the measurements provided from the PMD
sensor and the knowledge about the model of the target. Notably in Figure 1.12, the
attitude of the target spacecraft principal frame B with respect to the camera frame C is
represented by the rotation matrix RBC .
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Figure 1.12: Geometry of the target and the chaser with attached PMD sensor.

The PMD navigation sensor of the chaser spacecraft, which is the unique visual sensor
used in this thesis, acquires images of the target vehicle during the maneuver with sub-
sequent onboard processing. The tracking of the target is based on the frame-to-frame
pose estimation procedure depicted in Figure 1.13.
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Figure 1.13: Frame-to-frame tracking of the space target in a sequence of PMD images.

The standard approach for uncooperative pose estimation is to detect the known fea-
tures of the target in the sensor measurements and fit the known 3D model on them.
The key challenge here is to retrieve the spacecraft’s patterns under the varying illumi-
nation conditions in space since high reflectivity of some target spacecraft surfaces may
cause corrupted measurements. Besides that, the depth information of the scene can be
partially lost. Furthermore, the features of the target may vary from frame to frame
due to the uncontrolled rotational motion of the target. Systematic and non-systematic
errors of the PMD sensor measurements create the challenge for the choice of pose esti-
mation techniques. Regarding all these difficulties, this thesis outlines the following main
objectives.

1. Firstly, this manuscript presents a development of a stable approach for a navigation
system, which will allow the chaser to acquire an initial pose of the non-cooperative
space object knowing only the geometrical model of target and the measurement
from the PMD sensor. The proposed pose initialization pipeline uses the combi-
nation of the state-of-the-art 3D pose estimation algorithms, such as Point Pair
Feature algorithm and ICP method. The follow 2D refinement pose estimation
technique with an amplitude image is applied after careful study of PMD sensor
and its pros and cos.

2. Secondly, thesis provides a Hybrid Navigation Technique (HNT), where two sources
of PMD data (depth and amplitude) are used for a robust and stable tracking with
real-time state estimation during the approach to non-cooperative target. With
the proposed HNT the tracker should not fail during the rendezvous phase, even if
the depth data is (partially)lost. The proposed technique does not include different
sensors as it was mentioned in some works in Section 1.4.5. The concept does have
a software redundancy but without a hardware redundancy. The ICP algorithm
with a reverse calibaration technique for the neighbor search is proposed for pose
estimation with a depth image. Thanks to the organized point clouds of PMD sen-
sor, the computational complexity of neighbor search can be decreased from 3D to
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2D space. The image processing with detection of straight lines using Hough Lines
Transform and following 3D-2D pose estimation using Gauss-Newton minimization
problem is applied for the small resolution amplitude images.

3. Thirdly, the author presents experimental test campaigns for validation and eval-
uation of the developed methods including real images from the PMD sensor and
a high-accurate hardware-in-the-loop proximity simulator. The tests scenarios are
conducted with an extra powerful spotlight and in total darkness. The PMD sensor
is able to show its functionality in a simulated umbra phase using only its own
illumination unit.

The mentioned objectives can not be accomplished without additional steps which
play an inevitable role for the accurate assessment of the visual navigation system:

• PMD sensor calibration, including intrinsic and absolute extrinsic parameters in
order to accurately extract features from the images

• hand-eye-calibration of the PMD sensor, which delivers the pose of the camera
w.r.t. the chaser; it is necessary for the precise verification of the state vector and
for the controlled relative approach in a closed loop

In section 2.4 we showed how the PMD sensor for the first time was calibrated using DLR
CalDe and DLR CalLab calibration toolbox.
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Chapter 2

Hardware Facilities: Rendezvous
Proximity Simulator and Visual
Sensors

Multiple tests of the developed software and hardware, especially for the costly space
missions, are the inevitable pre-step procedures before a real mission can take place. The
common element of OOS and space debris removal missions is the proximity operation
to the target object. For On-Orbit Servicing operations different configurations of the
rendezvous and docking scenarios can be considered dependent on the size and mass of
the target, its position in orbit and also from the intentional OOS activities. If there
is a special testbed for such applications, one is able to simulate the aforementioned
configurations. The European Proximity Operations Simulator (EPOS) simulator located
at DLR is presented in this chapter as an available ground based set up for testing the
feasibility and safety of the future OOS missions. Moreover, there is also description of
the mockup, the PMD sensor and calibration procedure.

2.1 European Proximity Operations Simulator

During the last two decades, DLR has been involved in the process of simulating RvD
scenarios. The first European Proximity Operations Simulator (EPOS) had been devel-
oped from 1985 to 1998 by DLR and ESA for the simulation of rendezvous maneuvers
in the laboratory. In the period from 2008 to 2009 the renewed EPOS 2.0 was devel-
oped and established at DLR entirely replacing the previous test bed. EPOS 2.0 is a
hardware-in-the loop RvD ground based simulator, which consists of two 6 DOF indus-
trial robots manufactured by KUKA [113].Using EPOS, one has the capability to simulate
a 6 DOF relative dynamic motion of two spacecraft in a close range starting from 25 to
0 m. In Figure 2.1 one possible setup for RvD test scenario on the ground using EPOS
is illustrated.
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Figure 2.1: Illustration of one possible setup for the RvD simulation in the EPOS labo-
ratory.

The KUKA KR100HA robot (Robot 1 in Figure 2.1) is mounted on a rail system
and can move along it simulating the 6 DOF motion of the chaser. The KUKA KR240-
2 robot (Robot 2 in Figure 2.1), is fixed at the end of the rail system. Each robot is
equipped with a breadboard attached to the flange, see Figure 2.2, which can be used as a
mounting board for the mockups and RvD visual sensors [113, 114, 115]. The simulation
is controlled and monitored by a set up of computers. To create an almost realistic
space environment in the EPOS laboratory, a space-representative lightning using a sun
simulator and black covering material for the robot and walls for the dark background
are provided.

Figure 2.2: The robot on the left side of the image carries a PMD sensor and the robot
on the right side of the image is equipped with the target mockup.
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2.2 Mockup

For the test scenarios handled in this thesis the client satellite mockup mounted on the
robot with its coordinate system is presented in Figure 2.3.

Figure 2.3: The target mockup mounted onto DLR’s EPOS laboratory and the target
body frame B.

The mockup’s surface consists of materials, which have optical properties close to real
satellites. This fact is demanded as a high apriori condition by simulating the OOS sce-
narios in the laboratory with the real hardware visual sensors. Regarding the applicability
of the proposed PMD sensor in space missions for the high reflective and specular surfaces
of the spacecraft, it is of great importance to test the sensor on the ground within a lab-
oratory and with the complex realistic mockup. Figure 2.4 illustrates the corresponding
detailed 3D model of the mockup. The full 3D model contains 70002 vertices.
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Figure 2.4: The original 3D model of the target mockup.

The mockup’s configuration reminds a client spacecraft, which was intended for the
Deutsche Orbitale Servicing Mission (DEOS) [116, 117]. Figure 2.5(a) illustrates the
configuration of the client and servicer satellite intended for the DEOS mission, whereas
Figure 2.5 (b) shows only the client vehicle.

(a) (b)

Figure 2.5: (a): Configuration of the client and servicer satellites. (b): Client vehicle for
the DEOS mission. Image credit for both images: see link in [118].

There are many construction features of the mockup, which are very similar to that of
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the client of DEOS. For example, solar arrays and a grappling fixture in form of hexagon
in the front part of the mockup, in case when the sevicer vehicle aims to capture the client.
These mentioned interface parts of the mockup are denoted with the text in Figure 2.3.
The given mockup has also a ”nose” part, which is intended to the docking, if this one
is planned. The fixed mockup on the robotic arm in the EPOS laboratory can spin and
tumble according to the defined scenario for the non-cooperative target.

2.3 DLR-Argos3D Camera

In Chapter 1, visual sensors for rendezvous have been introduced. As an alternative to
the cameras and LIDAR systems, I propose to investigate the PMD camera as a ranging
system in order to use it for relative pose localization of the target during the rendezvouse
phase. Since the appearance up to today the PMD technology has been improved in terms
of the resolution of the PMD chip, measurements accuracy and robustness with respect
to the working conditions. In the work of Piatti et al. [119], the authors bring a detailed
table with different types of the PMD sensors. One can observe an enhancement of the
resolution, where the first PMD sensors (PhotonIcs PMD 1kS) had a resolution of 64 ×
16 pixels [120, 119] and today one can get it with a resolution of 352 × 288 [121].

In this thesis, a DLR-Argos3D - P320 camera, see Figure 2.6, is used, which was
specially configured and provided as a prototype by the Bluetechnix company [16].

Figure 2.6: DLR-Argos3D - P320 camera fixed on the breadboard in the EPOS laboratory.

The camera is highlighted on the figure with a red frame. The device contains a 3D
PMD sensor. For the purpose of this thesis only PMD sensor was employed, its technical
characteristics are summarized in a Table 2.1.

The DLR-Argos3D - P320 camera includes also 2 Light Illumination Modules (LIM),
where each module includes 6 high-power IR LEDs with a wavelength λ being in the
range of λ ≈ 865nm - 870nm (peak emission). The emitted signal of the IR LEDs is
an amplitude modulated (AM) signal, where the frequency of the signal can be set by
the user, see in Table 2.1. The output of the PMD is a de-facto 2D image with a depth
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Table 2.1: Technical data of the PMD sensor inside the DLR-Argos 3D-P320 camera.

Field of View 28.91 x 23.45 deg
Resolution of the chip 352 x 287 pixels

Integration time 24 ms
Frames per second 45

Modulated frequencies 5.004 MHz, 7.5 MHz, 10.007 MHz,
15 MHz, 20.013MHz, 25.016 MHz, 30MHz

Mass/Power Consumption 2 kg/ < 25.5W

measurements for every pixel. Beside the distance information, usually, a PMD sensor
provides additional amplitude values by the same pixel array at the same time. The
amplitude image corresponds to the amount of the returned active light and represents
the quality of the measurements [122]. The higher the amplitude value of a pixel, the
more reliable is the distance value. Since I get the amplitude image of the scene, it can be
handled as a gray-scaled image described by the pinhole camera model [123]. Monocular
vision is a special case of the PMD sensor and not the primary goal.

2.3.1 PMD Camera Working Principle

The basic time-of-flight principle is to determine the distance from the absolute time
delay between the transmitted wave fronts from the sender illumination unit and the
wave fronts reflected by the objects surface[15, 124]. Alternatively, the distance can be
computed using the principle based on a phase shift of a periodically modulated signal.
The phase shift ϕ is measured between the emitted modulated signal from 12 IR-flash
LEDs integrated in the camera and the reflected signal from the observed surface.

Figure 2.7: PMD camera working principle.

To calculate the phase shift ϕ , the receiver needs to know the emitted reference signal
as a reference [125]. For this purpose, the illumination modules and the receiver are
connected to the same signal generator. Usually four samples are acquired with different
phase offsets and the phase shift is calculated with the four phase algorithm [126]. Each
pixel of the sensor chip has several transistors and capacitors in order to collect electrons.
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The amount of electrons is measured at multiple time locations. Assuming that the AM
emitted IR light is presented in the form of a sinusoid, the amount of collected electrons
Q1 . . . Q4 is measured usually in phases ψ0 = 0◦, ψ1 = 90◦, ψ2 = 180◦, ψ3 = 270◦.
Please, refer to the detailed description of PMD operational principle to the follow works
[126, 125, 124, 51].

During the fixed integration time the electrons are charged through multiple cycles of
the IR signal in order to collect Q1 . . . Q4. Once Q1 . . . Q4 are measured, the phase angle
between illumination and reflection can be presented as:

ϕ = arctan

(
Q3 −Q4

Q1 −Q2

)
. (2.1)

The distance can be calculated as follows:

d =
ct

2
=

cϕ

4πfmod
, (2.2)

where c is the speed of light c = 3×108 m/s, ϕ is the measured phase shift and fmod is the
modulation frequency of the emitted signal. The signal strength, namely the amplitude
A of the correlated signal can be obtained if the duration of the signal is determined [51],
described as follow:

A =
1

2

√
(Q1 −Q2)2 + (Q3 −Q4)2. (2.3)

2.3.2 Distance and Amplitude Data

The DLR-Argos3D - P320 sensor has up to four channels available in order to transmit the
sensor data via its interface. In this work I am interested in the distance and amplitude
data, which can be retrieved for each frame from the sensor. Distance data (in millimeters)
and the amplitude data from the PMD sensor are sent as 16-bit unsigned (Uint16) values.
The amplitude array can be used to generate a gray-scale image of the scene. Example
of depth and amplitude gray-scaled images from the DLR-Argos3D - P320 sensor taken
in the EPOS laboratory are presented in Figure 2.8.
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Figure 2.8: (a): Example of a depth image. (b): Example of an amplitude image.

Measurements from PMD cameras (also from other Time-of-Flight (ToF) cameras)
suffer from different systematic and non-systematic errors. In the work of Fürsattel et
al. [127] the authors listed six dominant error sources dependent on the camera model:
temperature related errors, temporal variations, integration time, internal scattering,
amplitude related errors, wiggling. In the work of Tzschichholz [51], the author also ad-
dressed some other PMD errors, such as multipath interference, jump edge effect, motion
artifacts. At the beginning of the development of PMD technologies, improvements in
the hardware and software parts have been done including an integration of correction
methods for error compensation. Therefore, in this work I do not focus on the PMD
error correction, rather than use the software tools of the DLR-Argos3D - P320 camera
developed by the Bluetechnix company.
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Confidence of Depth Measurements

Every pixel of the PMD sensor provides co-registered range and amplitude data in every
frame. The amplitude image corresponds to the amount of the returned active light.
The objects with highly reflecting surfaces create large amplitude values, scattering or
less reflective surfaces cause low amplitudes. Therefore, the materials and colors play a
crucial role in the calculation of an accurate depth measurement. Along with the material
properties of the target, the distance measurements are noisy due to the other external
and internal errors mentioned above. In the works of Frank et al. [128, 129], Mufti et al.
[130] and Dal Mutto et al. [131] it was found out that the standard deviation of the range
data is mutual to the amplitude of the signal. The distribution of the pixel noise in the
ToF cameras can be approximated by a Gaussian distribution with standard deviation:

σd =
c

4πfmod

√
I/2

A
(2.4)

where fmod is the modulated frequency of the signal emitted from the ToF’s LEDs; A
is the amplitude value measured in a pixel; I is the intensity of the signal in the same
pixel; c = 3× 108 is a speed of light. From Equation (2.4) one can observe the following:
when the amplitude of the signal increases, the given standard deviation decreases and in
turn improves the precision of the measured range data. According to [132], the intensity
I depends on two factors: the amplitude A of the received signal and the background
illumination. If the intensity goes up, the depth precision drops. As it was already noted
before, the increase of the amplitude value leads in total to a better depth precision.
Therefore, the important factor in order to improve the accuracy of the measured depth
value is to decrease the non-modulated background illumination. The background light
is an ambient light, which occurres in space in form of sun light. Consequently, the
amplitude of the received signal is the optimal element for the assessment of the distance
measurement. Concerning the modulation frequency of the emitted signal - the bigger
it can be set, the higher the precision of the measured depth value can be obtained,
because the measurement range of the camera system drops. In practice, it is difficult to
produce modulated light with high power LEDs and high frequencies [126]. Therefore,
the available range of the modulated frequencies for PMD sensors varies from one camera
to another.

Amplitude Threshold

By default the DLR-Argos3D - P320 sensor performs amplitude based filtering for every
pixel to invalidate unreliable measurements. According to the datasheet of the DLR-
Argos3D - P320 sensor, the camera software transfers the confidence array of the pixels
in Uint8 format in parallel to the depth and amplitude measurements. The confidence
value in this array is a measure of the confidence of the corresponding depth value. A
value of 255 (maximum value) means 100% confidence and a value 0 (minimum value)
means a confidence of 0%.

On-board check for the invalid distance pixels is regulated by setting two following
registers: ConfidenceThresLow and ConfidenceThresHigh. If the measured amplitude
value in a pixel is lower then the threshold ConfidenceThresLow, the measured distance
in this pixel gets the maximum distance value. This pixel is marked as an underexposed
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unstable pixel. In case of the overexposed pixel, the measured amplitude value exceeds
the threshold ConfidenceThresHigh and the distance in this pixel gets the minimum
distance value. It means that the relation I showed in a previous subsection ”the higher
amplitude value, the higher quality of the depth measurement” works only up to a certain
maximum confident amplitude value. The overexposed pixels are not able to provide
distance measurements. Both of these thresholds indicate that every pixel should have a
certain amount of received light for a valid depth measurement.

Next, I provide some image examples, where one can observe the physical influence
of the amplitude threshold on the depth measurements. Figure 2.9 reflects depth and
amplitude images, which have been taken within the same illumination condition in the
EPOS laboratory and with the same relative distance between the camera and mockup.
The images show the front view of the mockup, where the hexagon, octagon contours and
central part of the nose are made from solid non-light absorbing materials (see Figure
2.3).
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Figure 2.9: (a): Depth image with the ConfidenceThresLow=500. (b): Correspond-
ing amplitude image with ConfidenceThresLow=500. (c): Depth image with Con-
fidenceThresLow=1000. (d): Corresponding amplitude image with ConfidenceThres-
Low=1000.

Images (a) and (b) on Figure 2.9 were taken when the amplitude threshold Confi-
denceThresLow=500. Images (c) and (d) on Figure 2.9 were taken when the amplitude
threshold ConfidenceThresLow=1000. One can notice the evident difference in the depth
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images (a) and (c), namely the entirety of the hexagon contours. When the threshold is
set to a lower value, more valid pixels appear in the raster depth image, see Figure 2.9
(a). The image on Figure 2.9 (c) has thin and broken lines of the contour, meaning an
absence of the valid pixels of the measured depth. But one should be very careful with
a choice of the ConfidenceThresLow. Because by decreasing this threshold, more depth
measurements appears but it doesn’t mean that the measurements have a high accuracy
and can be considered as confident. The amplitude images for the both cases almost
similarly depict the scene object. Figure 2.10 depicts amplitude (b and d) and distance
(a and c) images of the same mockup, but taken from the side with a certain angle. The
images taken with different relative distances, however, with the unique ConfidenceThres-
Low=1000. Images (a,b) in Figure 2.10 correspond to an approximate relative distance
of 2.7 meters and images (c,d) to a distance of 4.5 meters between mockup and PMD
sensor. It should be noted that the side surfaces of the mockup simulate solar panels (see
Section 2.2), therefore the its material absorbs incoming light in order to convert it to
electricity. Some of the coating materials intended for real solar panels still reflect some
light, but it is not enough for the accurate calculation of the distance per pixel. This
effect is evidently demonstrated with the depth images presented below.
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Figure 2.10: (a)-(b): Depth and amplitude images of the mockup’s side with Confi-
denceThresLow=1000 and relative distance 2.7 meters. (c)-(d): Depth and amplitude
images of the mockup’s side with ConfidenceThresLow=1000 and relative distance 4.5
meters.
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From the distance images in Figure 2.10 (a) and (c) one can notice that the distance
could be calculated in some edgings spots around the solar arrays, because of the different
contour material. The amplitude image in Figure 2.10 (b) reflects the good gray-scaled
image of the side part. Almost the same situation happened when the distance to the
target is increased. The object on the depth image in Figure 2.10 (c) is hardly to detect,
whereas the amplitude image gives a visible silhouette of the target. This last case with
the side view is really difficult situation, where only the amplitude image can be used for
the pose estimation. I am not considering it in this thesis.

2.3.3 PMD Camera vs. Monocular, Stereo Cameras and LI-
DAR Systems

Conducting the research in the field of a practical use of the PMD camera for the future
OOS activities, I would like to provide some comparison of the PMD camera character-
istics vs. monocular and stereo cameras, as well as PMD cameras vs. LIDAR systems.

For the first sight, comparing the PMD camera with a monocular one, one gets the
evident difference - the automatic depth measurement for every pixel of the sensor chip
[15]. The range information with the stereo camera has to be found via a triangulation
principle. This process demands additional processing time as well as computational
power in order to estimate the depth accurately. The correspondence problem appears
for the stereo camera during the search for the appropriate pixels from two images in
order to get the range value.

The strength of the 2D camera is color data, whereas the PMD camera provides only
gray scale output. A change in the gray level values of the both cameras is not necessarily
caused by the movement of the object. If illumination conditions vary noticeably, this
causes gray level changes. Therefore, object motion detection cannot be described by the
gray level values changes. This problem is eliminated in the PMD sensor, because the
PMD sensors use a different technique to calculate the range value [133].

Having conducted some research, it was revealed that the resolution of the sensor
chip of the PMD sensor has reached up to 352 x 288 pixels, whereas monocular cameras
have a resolution up to hundred megapixels. For example, the camera prototype PMD
CamCube 3.0 has a resolution 200x200 pixels and the engineering sample DLR-Argos3D,
which I am working with, has a resolution 352 x 287 pixels. For the close range approach
I would not see this fact as a drawback, because increasing the resolution of the sensor
chip, leads to an increase of the computational time in processing of one image from the
PMD camera, which is in general undesirable. At the same time, the bigger resolution of
the sensor chip, the better the accuracy of the translational components of the position.
This is, because a small motion for example to the left/right, which results in a sub-pixel
changes, can not be recognized.

The disadvantage of both stereo and PMD cameras for the object acquisition is the
sensitivity to specular reflections and lightning conditions. For the stereo camera, dif-
ferent light scatters can cause additional shadows on the some parts of the target from
itself or from the chaser. Moreover, with a stereo camera, a sufficient texture is necessary
for the accurate stereo vision. Some inaccuracies of the output data from the PMD cam-
era are very noticeable in presence of a strong external IR illumination (e.g. direct sun
light), as well as highly reflective objects (specular surfaces) [131, 51]. This phenomenon

37



is inherited by the PMD cameras because of its sensor chip structure. Operating in the
full umbra phase can be impossible without any additional illumination for the stereo
cameras, but with the PMD sensor it seems doable. In Figure 2.11, I plot the depth
and amplitude images from PMD camera, which have been taken in complete darkness.
These images look like the images taken with a sun simulator (e.g. Figure 2.8) and
contain sufficient details about the object.
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Figure 2.11: (a): Depth image from PMD sensor taken in complete darkness. (b): Am-
plitude image from PMD sensor taken in complete darkness.

LIDAR systems are more similar to PMD cameras in terms of emitted illumination
required in general to calculate the range component. Actually, the PMD sensor operation
principle is the same as the Flash LIDAR: usage of a detector array and measuring the
range to the object for every pixel. The difference appears in the illumination units:
the PMD camera uses LEDs modules and the Flash LIDAR lasers. Laser diods allow to
use higher modulation frequiencies and higher optical power. That quality of laser diods
incrases the possible measurment range of the Flash LIDAR. LEDs, in its turn, are more
cheaper and have a safety eye-class. However, a safety eye-class of LEDs of PMD cameras
is important only for on-ground tests and not for real autonomous rendezvous missions.
In terms of resolution of the sensor chip there are no big differences, because the Flash
LIDARs nowadays have resolutions of 128x128 pixels [134] or 256x256 pixels [135, 36].

Comparing to the scanning LIDARs, the absence of the moving parts in a PMD
sensor in order to get 3D measurements helps to avoid additional hardware failures,
undesirable artifacts and motion blur during the relative pose estimation. Besides that,
the PMD camera along with a range image, provides amplitude image of the picked scene,
representing the intensity of the reflected signal from the target. This characteristic will
be one of the solution during the pose estimation under the strong sunlight conditions.

2.4 PMD Camera- and Hand-Eye-Calibration

By simulating the autonomous approach using the EPOS facility, the visual sensors (in-
dividually or by fusion of several sensors) and the developed pose estimation algorithms
can be tested. An accurately calibrated visual camera is a prerequisite in order to extract
the information from 2D images and process it for the pose estimation of the target. Like
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usual mono- or stereo cameras, the PMD camera needs to be calibrated. In this sub-
section, I consider the camera calibration process as an estimation of the camera model
(intrinsic calibration) and position and orientation of the PMD sensor frame in the camera
housing (hand-eye calibration) with respect to the breadboard of the Robot 1.

2.4.1 Overview of Calibration Techniques

The well-known calibration toolboxes, such as OpenCV Camera Calibration [136] or
Camera Calibration Toolbox (CCT) for Matlab [137] are available in the public domain for
estimation of the intrinsic camera and absolute extrinsic parameters. Absolute extrinsic
parameters refer to the absolute pose of the camera in the world/object frame. For the
current application, I do not use these parameters directly in the thesis, but I mention
them in the theoretical part of the intrinsic calibration, since they are tightly connected.
In the work of Tzschichholz [51], the author already calibrated the PMD sensor for using
it with the EPOS facility. In his work, the CCT for Matlab is applied in order to
estimate the intrinsic parameters of the PMD camera. The transformation between the
pose of the PMD camera and the Tool Center Point (TCP) of the robots breadboard
was determined by involving the knowledge about the relative position and orientation
of the other robot in the chain of transformations. The DLR CalDe and DLR CalLab
calibration toolbox [138] is proposed in the present thesis as an alternative for the above
mentioned methods. This calibration toolbox contains the well-known method of Zhang,
Sturm and Maybank [139, 140] for the intrinsic calibration and also algorithm for the
hand-eye calibration technique [141]. Critically, this toolbox does not require for the
camera to perceive the whole calibration pattern in every image, which on the one hand
is convenient for automated acquisition of images and on the other hand increases the
accuracy of lens distortion estimation since features are more evenly spread in the images.
Using the proposed toolbox the calibration procedure is simplified, in comparision with
the technique of Tzschichholz [51]. During the calibration process I was working only
with one robot and its data, where the camera is mounted. DLR CalDe and DLR CalLab
toolbox was not developed for the PMD sensor calibration and, as far as I know, this is
the first time that a PMD camera is calibrated with this technique at EPOS. Therefore,
I purposefully give a detailed overview on the included methods of the toolbox and also
provide notes to the manual usage of the DLR CalDe and DLR CalLab toolbox. By that,
I introduce a new possibility for other users of PMD sensor technologies (or similar ToF
sensors) to calibrate this sensor.

2.4.2 Intrinsic Camera Calibration

The proposed calibration toolbox outlines the intrinsic camera calibration approach,
which was made by Zhang [139] and Sturm and Maybank [140]. They presented a closed-
form solution by linear least-squares techniques for the initialization of the nonlinear
optimization [142]. To intrinsic camera calibration parameters belong: focal length (α,
β), principal point of the image (u0, v0), a skew coefficient γ. In Figure 2.12, I plot
coordinate systems involved in calibration process according to the current application.
These are camera frame, TCP frame and world/object frame. It is similar setup to the
that one presented in the work of Strobl [143].
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Figure 2.12: The coordinate systems in camera calibration process.
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For the accurate camera calibration, one has to detect and identify the visible control
point (corners) of the planar calibration pattern

0xi = [xiyizi]
T (2.5)

projected onto the image frame in every image n ∈ (1, . . . , N) as ˜nmi perspectively.
These measured projections are noisy and are compared with the estimated ones

ˆnmi = [nui, nvi, 1]T (2.6)

using the Euclidean decomposition of the perspective projection matrix P = A cT
0
n as

follows:

s nm̂ = A cT
0
n 0xi =

α γ u0
0 β v0
0 0 1

 [r1 r2 t
] xy

1

 , (2.7)

where s is an arbitrary scale factor, cT
0
n the rigid body transformation from the camera

frame to the object/world frame in the image n, and A is a camera calibration matrix.
Calibration matrix A has 5 unknowns α, β, γ, u0, v0, which I am going to determine. A is a
homogeneous transformation relating the pose of the object/world frame of the calibration
object to the pose of the camera/sensor frame. Since z=0 (because the calibration plate is
flat), so that r3 vanishes and the homography between the calibration plane and the image
simplifies to the linear projective transformation H = [h1h2h3]. The N homographies Ĥn

between image projections ˜nmi and pattern features 0xi can be estimated. Subsequently,
the follow equation can be obtained

Ĥ = λA
[
r1 r2 t

]
, (2.8)

where λ is an arbitrary scalar. Knowing that r1 and r2 are orthonormal, I get the following
equations:

(A−1h1)
T · (A−1h2) = 0

(A−1h1)
T · (A−1h1) = (A−1h2)

T · (A−1h2)

}
(2.9)

Note that ω∞ = A−TA−1 describes the image of the absolute conic and the system of
equations transforms to:

hT1 ω∞h2 = 0

hT1 ω∞h2 = hT2 ω∞h2

}
(2.10)

These two equations are taken for every image n, leading to 2N constraints for 5 intrinsic
unknowns. They can be solved by using a least-square criterion, if at least three different
views (N ≥ 3) are available. Once the camera calibration matrix is known, the absolute
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extrinsic parameters for every image n are ready to be computed:

r1 = 1
s
· A−1 · h1

r2 = 1
s
· A−1 · h2

r3 = r1 × r2

t = 1
s
· A−1 · h3

s = ‖A−1 · h1‖ = ‖A−1 · h2‖

(2.11)

2.4.3 Lens Distortion

Up to now I did not consider the lens distortion of the camera, which significantly spoils
the linear projective formulation of the camera. Usually the lens systems of the real
cameras are affected by nonlinear aberrations. These distortions can be modelled as a
symmetric displacement along the radial direction from the principal point [144]. Taking
into consideration the radial distortion, the pinhole camera model is extended by an
additional distortion model, which is described by a polynomial formulation:

δr(ρ) = k1ρ
3 + k2ρ

5 + k3ρ
7 +O(ρ9) (2.12)

where ρ is the radial distance from the center of radial distortion to the expected normal-
ized projection and k1, k2, k3 are the coefficients of the radial distortion [145, 142, 143].

2.4.4 Hand-Eye Calibration

Whenever the sensor is mounted on a robot, it is required to define the rigid-body trans-
formation of the PMD sensor (eye) frame SS relating to the TCP frame of the Robot
1 (hand) SR [145]. This problem is referred to as a hand-eye calibration. Thanks to
this transformation ST

R, we are able to map the sensors measurements into the robot
frame for further processing. The common solution of the hand-eye camera calibration
is formulated as: move the hand of the robot and observe/perceive the movement of the
eye. The mathematical representation is:

AX = ZB (2.13)

HereX is a desired homogeneous transformation relating the pose of the camera/sensor
frame to the pose of the TCP frame of the robot, namely X=ST

R ; A is a homogeneous
transformation relating the pose of the object/world frame of the calibration object to
the pose of the camera/sensor frame, which one obtains during the intrinsic calibration
phase [139]; Z is the unknown (yet irrelevant) transformation between the object/world
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reference frame and the base frame of the robot; and B is a homogeneous transformation
relating the base frame of the robot and the pose of the TCP frame. At least n=3 stations
are required in order to uniquely determine the transformation ST

R [145]. In a nutshell,
the rigid body transformation X can be retrieved by minimizing the discrepancies be-
tween A and B.

2.4.5 PMD Camera Calibration Process and Numerical Results

The intrinsic and hand-eye calibration techniques, which were described previously, are
state-of-the art for monocular and stereo cameras. In this section I show a feasible use
of them for the calibration of the PMD sensor within the DLR-Argos3D - P320 camera
by using the DLR CalDe and DLR CalLab calibration toolbox. The PMD sensor for the
first time was calibrated with the proposed toolbox. A common brief tutorial how to
use this calibration toolbox can be found in [138]. I used a rigid checkerboard pattern,
which is defined by nx = 18 and ny = 12 squares, where the dimension of every square
is specified as ux × uy ≈ 30 mm × 30 mm. Inaccuracies during the manufacturing or
printing of the pattern inherit regularly in the checkerboard and not every rectangle has
exactly the mentioned size. Therefore, according to [145], I recalculated the estimated
values of the rectangles with the aid of an electronic ruler and acquired the actual size
as 29.91 mm × 29.95 mm. The calibration pattern was fixed in front of the robot with
the mounted camera on the breadboard plane of the Robot 1, see Figure 2.12.

Robot 1 had been moved to 8 different positions in order to image the calibration
pattern. Only the amplitude images of the PMD sensor were used in place of color images
of the standard cameras. The follow calibration procedure is the same as the calibration
for mono-and-stereo cameras. Nevertheless, throughout available information about PMD
sensor calibration with amplitude images, I have not found thorough explanation of the
process. Therefore, I suggest it here. In Figure 2.13 eight pictures (2 images from each
side) of the amplitude channel are shown.

Figure 2.13: Calibration images from the PMD sensor.

There was no need that the whole pattern plate appears in the image, but getting
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images at a sharp angle is one of the prerequisites for accurate calibration. During
the acquisition of the calibration images, the robot pose w.r.t. the fixed Cartesian 3D
laboratory frame was stored for every amplitude image respectively.

The information about the robot pose is required in order to calculate the hand-
eye-calibration. Having completed the image collection, the DLR CalDe was started in
order to localize landmarks and corners on the chessboard with sub-pixel accuracy. It
is important to fill up correctly the chessboard parameters on the right side of the main
window of the DLR CalDe toolbox (Figure 2.14) in order to let the program detect the
corner points precisely and automatically.

Figure 2.14: DLR CalDe detects the corner points in the image.

In Figure 2.14 the image with the accurately detected corners of the calibration plate
is presented. The recognized points were saved and further used as an initial basis in
the DLR CalLab toolbox. To get the intrinsic and hand-eye parameters, one runs the
calibration toolbox DLR CalLab. The user can choose and set numerical optimization
algorithms and a variety of estimation methods. The calibration process is fully auto-
matic. In Figure 2.15 the main window of the DLR CalLab application with the output
results is depicted.
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Figure 2.15: DLR CalLab dialog window with output results.

By running the calibration process, the following results for the PMD sensor inside
the DLR-Argos3D - P320 camera have been obtained: Calibration matrix is presented
as:

• A =

705.748 0.581 143.578
0 704.082 184.228
0 0 1


• Distortion coefficients k1 = −0.4973 and k2 = 0.3251.

• The transformation matrix ST
R , which describes the pose of the sensor inside of

the DLR-Argos3D - P320 camera relating to the chosen TCP point of the Robot 1:

ST
R =

0.9999 −0.0043 −0.0022 −42.874
0.0043 0.9999 0.0134 −186.912
0.0021 −0.0134 0.9999 145.847


The measurement unit for the translation vector is mm.

• A root mean square (RMS) calibration error after intrinsic calibration of 0.177
pixels; after hand-eye calibration it reads 1.192 pixels or 0.21◦ and 2.92 mm. Note
that the former pixel RMS error is not explicitly minimized but the latter position
and orientational errors of the robot manipulator as detailed in [145]. In doing so,
the reprojection error in pixels might be slightly worse, but the estimation of the
hand-eye transformation is optimal since the actual, biggest errors in the system
(viz. the positioning errors of the robotic manipulator) are being minimized.

The calibration process with the current DLR-Argos3D Camera was done once, since
the camera was fixed mounted on the plate during the whole research phase.
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Chapter 3

Pose Estimation

3.1 Introduction to Pose Estimation

The main scope of this thesis is computer vision for the space robotic applications, namely,
estimating position and orientation of the target spacecraft relative to the camera by
extracting information from an image or sequence of images. The first problem refers to
the recognition/detection of the object and the second one to the frame-by-frame tracking
of the known object in the sequence of the images. The problem of pose estimation
considered in the current thesis belongs to the model-based pose estimation problem
since I take into account the knowledge of a 3D model of space debris or the satellite
with demand to be repaired. The 3D model is stored on board of the active chaser during
the whole mission. In cases, when the inspection is a part of the planned space mission,
the model can also be built on board as the target appears in the FOV of the chasers
visual system but this task is not considered in this thesis. Both of these problems are
connected together in the sense that frame-by-frame tracking can not be started until an
initial guess of the target’s position is provided to the navigation system. Initial guess
can be acquired by the same sensor, which is used for tracking, or provided from other
sensors mounted on board (e.g. GPS, radar or other visual sensors). In my case, when
I deal with a non-cooperative target, the lack of a GPS receiver on the target spacecraft
forces us to use different sensors and techniques for the pose acquisition. Therefore, the
object recognition and pose acquisition is a necessary task by RvD with non-cooperative
targets. Moreover, in case of the loss of the target during the tracking in a sequence of
images, one would need a re-initialization of the vehicle’s pose in order to continue with
a safe approach. In the next sections I propose pose initialization of the target with the
depth image of a PMD sensor without prior knowledge of position and orientation. As
soon as the pose has been initialized I employ the hybrid navigation technique, which
exploits fusion of completely different pose estimation techniques for 3D depth and also
2D amplitude images of a PMD sensor.

In this thesis, primarily I use only the depth image from the PMD sensor in order to
estimate the initial pose. The reason is follow. The pose initialization technique with the
PMD sensor was one of the first research questions during the research phase. In that
moment, the idea of using the amplitude image for the pose estimation had not appeared
yet. Nevertheless, in Chapter 4, I also present the possibility to use a 2D amplitude image
for a follow-up improvement of the calculated initial pose with a depth image.
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Similarly with the tracking using depth images, one needs to know the initial guess
in order to start frame-to-frame tracking in a 2D image sequence. The hybrid navigation
technique in Section 3.3 is proposed, which is based on distributed fusion architecture
using only a single PMD sensor.

3.2 Pose Initialization

In Section 1.4.3, an overview of the state-of-the-art pose estimation techniques with 3D
point clouds was given. In this section, I propose one of the local methods for the object
recognition and pose estimation that is applied in order to calculate the initial unknown
pose of the non-cooperative target. The initial pose estimation algorithm based on the
Point Pair Feature descriptors using ToF cameras is outlined in the work of Drost et al.
[65] and Papazov et al. [146]. I provide the explanation of the choice below. For this
method it is presumed that the model and the scene are presented in the form of oriented
points (e.g. vertices and normal vectors in every vertex): m ∈ M points belong to the
model and s ∈ S points belong to the scene, respectively. Firstly, the global description
model is calculated, which includes point pair feature vectors for different combinations of
the model’s vertices. Secondly, scene descriptors are calculated when the data arrives from
the sensor. This global model is used further for finding corresponding matches between
a set of the scene’s and model’s descriptors. When the matches have been found, the
voting scheme and clusterization processes for the best pose of the object are involved. By
varying some initial parameters of the algorithm, it was noticed, that the pose refinement
process is still necessary, because discrepancies of the rigid transformation between the
model and the scene point clouds exist.

The choice of used features, such as point pairs, has some advantages in comparison
with other techniques when working with a PMD sensor. First of all, this is a local
method, which in general leads to more concrete object identification assuming that the
target is in the field of view. The global features, in their turn, are giving the answer
if the spacecraft is presented in the scene or not. Furthermore, the point pair features
can be extracted for different complex models (e.g. the mockup used in this work) and
not only for some primitives objects. By a complex model we should also understand
non-cooperative spacecrafts, which have lost some structural parts and we do not know
anything about it when mission has already started. It means, the known 3D model on
board of the chaser can be different from that of the target spacecraft located in space.
Moreover, we need to take in account other factors: illumination conditions, surface of
the target material and the approach scenario. Depending on the listed circumstances
the quality of the range data received from the PMD sensor is inconsistent, meaning that
noise will deteriorate the point cloud by adding false points, see Figure 3.1 (b), or even
completely exclude some part of the target from a scene point cloud, as one can see in
both images of Figure 3.1.
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Figure 3.1: (a)-(b): Depth images with some missing depth information of the mockup’s
parts. Image (b) reflects false distance information of some parts outside of the hexagon
borders, which are absent in reality.

It is very important to find an appropriate algorithm, which is able to cope with these
problems. These justifications pushed us to create the pose acquisition technique with
point pairs features which, actually, provides good results for the current application.

3.2.1 Point Pair Feature Vector

Let us consider mi as a first and mj a second point throughout all model points M .
Additionally, each of the points has a normal vector - ni and nj. Let us discuss in more
details, how we get the normals in every point.
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Normal Vectors for Oriented Points

The process of the estimation of the normal vector in every point of the model, e.g. many,
will be directly connected to the information about Nneigh neighbor points around the
point many. One of the methods for estimating the surface normal at a point many is to
compute the eigenvectors of the Nneigh-neighborhood surface patch [147]. The eigenvector
corresponding to the smallest eigenvalue gives us the surface normal at a point many.

Figure 3.2: Calculation of the normal vector in any point of the point cloud.

Point Pair Feature

In Equation (3.1),

Fm(mi,mj) = (f1, f2, f3, f4) = (‖ d ‖,∠(ni, d),∠(nj, d),∠(ni, nj)) (3.1)

the point pair feature vector for the model Fm is defined as a four component vector and
composed by the Euclidean distance between two points ‖ d ‖=‖ mi - mj ‖, as well as
an angle between vector d and the normal ni, an angle between vector d and the normal
nj, and an angle between two normal vectors ni and nj.
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Figure 3.3: Illustration of the point pair feature vector.
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Vector Fm and the components from the Equation (3.1) are depicted on Figure 3.3.
The distances and angles are sampled in steps by setting parameters dangl and ddist

as follows: dangl = 2π
nangl

with an angle sampling value nangl, which refers to the number

of angle bins to be quantized; and ddist dependent on the sampling rate τd and model
diameter ddist =τd · diam(Model). The model diameter is defined as the Euclidean norm
of a vector constituted by the differences between maximum and minimum values of the
vertices coordinates. In my experiment, the parameters have following values nangl = 90,
dangl = 2π

90
= π

45
, τd = 0.03 , ddist = τd × diam(M).

3.2.2 Description of the Initial Pose Estimation Algorithm

As it was already mentioned, I have to construct the global description model, by calcu-
lating the point pair descriptors. Here, the global description model is presented in the
form of a hash table, where the feature vector Fm is used as a key. The model can contain
equal feature vectors F a

m=F b
m=F c

m, e.g. depicted in Figure 3.4. The pair of points (ma
i ,

ma
j ),(m

b
i , m

b
j) and (mc

i , m
c
j) have the same relation between them.
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Figure 3.4: An example of similar point pairs of the model.

Reasonably, feature vectors were put together, which are equal to each other, in the
same cell reducing the dimension of the hash table. Usually, in one cell of the hash table
there is more than one pair of points of the model.

Having created the hash table, the global model is created. Since the point cloud
S has been obtained with a PMD camera, the point pair feature vectors Fs (si, sj) are
calculated as well for the pairs of points (si, sj). As we opted previously, the feature
vectors Fs are the keys for the hash table. All pairs (mi, mj) from the hash table are
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extracted, if the feature vector of the model Fm is equal to the feature vector of scene Fs.
This chain of successive actions is illustrated in Figure 3.5.
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Figure 3.5: An extraction of the similar pairs of points for the scene and model.

Once the match between two pairs of points exists, one is able to compute the rigid
transformation that aligns the model to the scene. In the work of Drost et al. [65], the
authors introduce the meaning of the local coordinates. In Figure 3.6, the local coordinate
system with axes x, y and z is presented. Local coordinates are pairs of the form (mi, α)
with respect to reference point si, where α denotes the rotating angle and mi is a reference
point on the model. For local coordinates, one can derive the rigid transformation. The
transformation that aligns the model with a scene is computed as follows:

Tm→s = T−1s→gR(α)Tm→g (3.2)
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Figure 3.6: A transformation that aligns the model with the scene.

In the Equation (3.2), the transformation Ts→g moves the scene point si into the origin
and aligns its normal nsi with the x-axis, see the Figure 3.6. The same procedure Tm→g is
implemented for the model reference point mi and the corresponding normal vector nmi
allocated to that point. In order to complete the final transformation Tm→s, one more
transformation R(α) is needed to align two left points, mj and sj. The rotating angle α
is determined as follows:

α = αm − αs, (3.3)

where αm is the angle between the vector mi −mj and an upper xy half-plane of the
intermediate coordinate system and αs is the angle between the vector si − sj and the
upper xy half-plane of the intermediate coordinate system (see Figure 3.6). The dashed
gray line in Figure 3.6 divides the xy plane for upper half-plane and lower half-plane.
To find the best local coordinates at a specific point si, the number of points in the scene
lying on the model has to be maximized. For that purpose Drost et al. [65] suggested to
use the 2D accumulator massive, where the hypotheses vote for the local coordinates. The
rows of the accumulator massive correspond to the reference points of the model mi and
the columns correspond to the sampled rotation angles α. The size of the accumulator
massive is Nm × Nangle, where Nm is equal to the number of the model points mi and
Nangle is the number of sample steps of the rotation angle α.

When the voting process takes place, all point pairs corresponding to the model
(mi,mj) are retrieved from the cell for each calculated point feature vector Fs. Using
Equation (3.3), the rotation angle α is computed. After completing these steps, it is
supposed that we have local coordinates (mi, α), which can move (mi, mj) to (si, sj).
The vote (vote is a number) for this hypothesis is thrown in the related cell of the local
coordinate (mi, α) in the accumulator massive. It should be noted, that every voting
result has a certain number of votes. When all point feature vectors of the scene Fs are
processed, the set of local coordinates with the highest number of votes is retrieved from
the accumulator massive. The transformations from the model to the scene coordinate
frame are calculated for each returned local coordinates.

Consequently, knowing the series of object poses from each reference point, the final
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pose must be extracted. For that purpose, the object poses are grouped in one clus-
ter if they do not differ in translation and rotation components more than predefined
thresholds. For the translation component the threshold is taken as 1/10th of the model
diameter, tthresh = 0.1 × diam(M), and for the rotation component as rthresh = 2 × π

30
.

Poses collected in each cluster are averaged and the votes are summed up. The clusters
with the highest scores are considered as the applicants for the best estimated relative
pose.

3.2.3 Initial Pose Refinement

I include the pose refinement after pose initialization, since in the most cases the ex-
tra correction step significantly improves the calculated pose. Once the pose has been
obtained by the local method presented in the previous sections, the point cloud of the
model can be transformed to the point cloud of the scene. In order to revise the transfor-
mation, the Iterative Closest Point (ICP) algorithm [68] was executed, similarly to the
works of Hinterstoisser et al. [148] and Birdal et al. [71]. A particular overview of the
ICP algorithm will be provided in Section 3.3.1, since it was involved into frame-to-frame
tracking for the rendezvous phase.

3.3 Hybrid Navigation Technique

After the coarse estimation of the initial pose of the target spacecraft, the process of
frame-by-frame tracking of the target vehicle in the sequence of PMD images takes place.
In general, the aim of a frame-by-frame tracking is to measure the change of object’s pose
in each of two consecutive image frames. The important hint for pose localization in a
new arrived frame is provided in form of the known previous pose. Different approaches
described in Sections 1.4.3 - 1.4.5 can be employed depending on the sphere of application.
Concerning OOS and ADR the main criteria for the choice of the tracking technique
are the position of the spacecraft on the orbit together with illumination conditions
(sun angles, eclipse, etc.), and also the target’s material. Moreover, one of the major
aspects for the tracking is reliable visual information or some strong features of the
target available during the whole rendezvouse phase even when the obtained images are
incomplete because of some occlusions, image noise or blur, etc.

Considering the nature and possibilities of the used PMD sensor, namely, co-registered
depth and amplitude images, I propose a tracking architecture with a hybrid nature. In
general, there are different classifications of the fused techniques depending on the amount
of sensors and relations between each other [149]. The best known are: complementary,
where the measurements from different sensors complement each other, because of im-
possibility of both of them provide the fully needed information of the scene; redundant
- the same information of the target is provided and fused in order to increase the relia-
bility of the measured system. In his thesis, the distributed architecture with redundant
measurements but without hardware redundancy for the state estimation is proposed.

The idea of creating of a novel hybrid pose estimation technique for the frame-to-
frame tracking came across throughout a deep analysis of the features and capabilities of
the DLR-Argos3D - P320 sensor. By simulation of different RvD scenarios with a non-
cooperative target (mockup) in the EPOS laboratory, the full or partly incompleteness
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of the depth measurement of the scene (see Section 2.3.2) was discovered. Estimation
of 6 DoF of the spacecraft vehicle with a non perfect depth image presents a problem,
since the estimated state vector can deviate from the real one and create large errors.
So, what I propose is the combination of two different pose estimation techniques for
redundant real-time estimation of the target’s state vector without additional sensors.
The hybrid navigation pipeline employs two completely different model-based pose esti-
mation techniques to improve continuous estimation of the target’s pose without a break
or abruptions during the close range approach. The depth and amplitude measurements
from the PMD sensor are processed independently in order to estimate the local state
vectors before they are sent to the fusion node. The sketch of the proposed architecture
is illustrated on Figure 3.7.

Figure 3.7: Architecture of the Hybrid Navigation Technique.

The first method estimates the pose of the target spacecraft from the depth raster
image using the Iterative Closest Point algorithm (ICP) with a reverse calibration tech-
nique. The proposed pipeline is outlined in Section 3.3.1. The second method (explained
in Section 3.3.2) consists of an image processing procedure that extracts low-level features
of the target spacecraft from the 2D amplitude images. The straight lines are detected
with a Hough Line Transform and thereafter, the end points of the lines are defined. The
current target pose is estimated by fitting the projection of the known 3D model on the
detected features with Gauss-Newton minimization problem. In order to get the final
fused pose, I combine the best local measurements from two pose estimation techniques
with weighted average technique. This solution should balance the pros and cons of the
proposed completely different approaches, based on the experience obtained during the
test simulations with real data. The description of the technique in a fusion node is
explained in Section 3.4.

The great advantage of the proposed architecture is no need for additional measure-
ment sensors. Additionally, by distributed architecture the measurements are not needed
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to be aligned from the both channels of the sensor. The combination of the standard,
very common techniques for pose estimation guarantees a stable tracking tacking into
account all challenges of the PMD sensor.

3.3.1 Autonomous Rendezvous using 3D Depth Data

The tracking algorithm with the depth images must be stable to work without abruption
even when the completeness of the raster image content can not be guaranteed during
the whole sequence of the images. By completeness of the raster image I assume the
missing depth data or worng measurements as shown in Figure 3.1. Working with a non-
cooperative target I rely only on the known 3D model of the target spacecraft likewise by
the pose acquisition. During the tracking phase there is no need to consider the whole 3D
model, but good visual features describing the object is the prerequisite to the accurate
and fast estimation of the relative attitude and position. In the next subsection, one
of the state of the art methods, namely Iterative Closest Point (ICP) algorithm [68], is
proposed. The emphasis by applying this algorithm in this doctoral thesis aims at using
the raster nature of the PMD depth images. The organized point cloud is the prerequisite
to use one variation of the diversity of ICP algorithms - ICP algorithm with reverse
calibration. The organized point cloud refers to the knowledge of the 2D position in the
depth image of every observed 3D point. Therefore, the advantage of the proposed ICP
algorithm with reverse calibration is that I could decrease the assigned task complexity
of the computational part by the transfer from 3D to 2D space. Why did I choose this
algorithm and not another one? This is mainly because the ICP with reverse calibration
doesn’t rely on the distance information from the previous frame. I don’t try to find the
coherence between the chosen visual features in the current and the previous frames since
it can cause big discrepancies if some of the depth data in one of the frames is missing or
totally noisy. Here the tracking assumes information about the pose in a previous frame.

Iterative Closest Point

In the work of [150] the author summarized some different derivations of the ICP algo-
rithm with the best computational efficience [151]. However, the central idea to find the
transformation between two registered points sets remains unchanged.

Let us determine the first data set as model point cloud A = {a1 . . . aNA
}, which

should be aligned to the second data set, namely scene point cloud B = {b1 . . . bNB
}.

According to the work of Rusinkiewicz [150], the standard ICP algorithm can be divided
into six stages:

• selection of a subset of the points in point clouds A and B;

• matching those selected points;

• weighting the corresponding pairs appropriately;

• rejecting certain points based on distance;

• assigning the error metric based on the point pairs and minimizing the error.
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One of the time consuming part throughout the above mentioned steps is the selection of
the corresponding points between two point sets. This part concludes the search of the
nearest neighbor, where Euclidean distance is calculated for every point in the first set
ai ∈ A and the second data set bi ∈ B. The neighbor point bj from the bj ∈ B is found
for every point ai when the distance between point ai and the point from the set B is
the smallest. In the work of [150], the author outlined the neighbor search by using the
following techniques:

• neighbor search by using a k-dimensional (k-d) tree (as acceleration of the compu-
tation);

• finding the intersection of the ray originating from the source point in the direc-
tion of the source point’s normal with the destination surface (approach called as
”normal shooting”);

• project the source point onto the destination mesh, from the point of view of the
range camera and provide the corresponding search directly or by limiting the neigh-
borhood and provide local search for compatibility (approach called as ”reverse
calibration”)[152]. The neighbor search is in 2D space.

Using the matrix depth data structure of the raster PMD image, it is assumed that the
acquired point cloud corresponds to an organized point cloud. On this basis, the efficient
version of neighbor search - ”reverse calibration” is presented in more details further. I
found this technique appropriate for the target tracking, because of the following aspects:
a previous coarse pose estimation after the pose initialization phase exists; the neighbors
computing search is not overloaded with many outliers; the computing efficiency is high.

Nearest Neighbor Search using Reverse Calibration Technique

The most efficient way to search the neighbors for the sets of points is inside of a limited
space, i.e., only in a certain region of interest. This space can be determined by the
search radius on the 2D area pointed from the source point. The search radius should
be selected depending on the quality of the raster image, meaning that one can choose
a small radius if the scene is presented quite completely. It will be sufficient to find
the neighbors. However, when some data of the scene is missing, the radius should be
increased in order to expand the nearest neighbor search area. Figure 3.8 depicts the
illustration of this nearest neighbor search.
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Figure 3.8: 2D Circle search region with a radius r around the point ai.

Taking the point ai from the point set of the frame A and using a certain radius, at
least one neighbor in the point set of the frame B can be found. One can start with
a certain radius and steadily increase it until at least one neighbor will be found. Here
the term ”reverse calibration” is used intentionally, because the following task for the
2D circle determination around every interested point for the neighbor search can be
solved by projection of the 3D point onto the image plane if the calibration matrix of
the sensor chip is known. The PMD sensor of the DLR-Argos 3D-P320 camera has been
calibrated in EPOS with the technique presented in Section 2.4. The calibration matrix
was accurately calculated in the subsection 2.4.5.

Every point ai from the point set of the frame A can be projected onto the image
plane of the frame B, so the 2D point in a frame B in form of a pixel will be determined
(see Figure 3.9). The obtained pixel with coordinates (px, py) indicates the starting point
and the chosen radius determines the region of interest, where the nearest neighbor search
should be conducted. The region of interest is defined symmetrically around the pixel
(px, py). But in case of points located near the sensor’s borders, the search area will be
limited from one or another side by the absence of the pixels in an image area. In this
case, the nearest neighbor will be absent.
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Figure 3.9: Projection of the 3D point to the image plane.

Estimation of Rigid Body Transformation via ICP

The pose estimation between two point sets for every frame l in a sequence of images can
be calculated throughout transformations (Rl, tl), where tl is the relative position vector
and Rl is the rotation matrix. The following main stages are included in the ICP routine
in order to minimize the point-to-point distance:

1. The initial transformation (R0, t0) provides the coarse alignment between the model
and the target at a counter k = 0. It also narrows the search field for the neighbor
points for the tracking algorithm.

2. Perform nearest neighbor search by using reverse calibration technique with radius
r in a 2D space.

3. Find correspondences between points from the frame A (e.g., points aj, j = 1, ..., N)
and frame B (e.g., points bj, j = 1, ..., N ).

4. Compute the rotation Rl and translation tl that minimize the point-to-point error
function in Equation (3.4) by applying the closed-form solution to the least square
problem [153] for the corresponding points from step 2. I describe a step-by-step
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procedure of the closed-form solution at the end of this section

min
R,t

N∑
i=1

‖bi − (Rai + t)‖2. (3.4)

When the minimum of Equation (3.4) is computed for the first time, the iteration
process from the step 2 is continued.

5. The ICP algorithm terminates when the registration error in Equation (3.4) is
less than the predefined threshold value θerror, or when the number of maximum
iteration steps k is exceeded.

In order to ensure that the iterative algorithm converges into the global minimum,
it is necessary to provide a correct initial guess to ICP. Large errors in the initial guess
cause incorrect correspondences between the model and the measured points and as a
consequence, the algorithm can be easily trapped into the incorrect first local minimum
and an expected pose of the target will be incorrect [154, 155]. In fact, a pose initialization
routine can be employed to estimate the pose of the target spacecraft without guess, as
described in Section 3.2.

Closed-form Solution of Absolute Orientation

In order to complete the step 4 in the ICP routine, I apply the closed form solution to
the least square problem. Here, I give an overview of the closed-form solution to the
least-squares problem for three or more points described in [153]. This solution provides
in one single step the best possible transformation between two sets of points in different
coordinate systems. For the representation of rotation the author uses unit quaternions,
where the solution for the desired quaternions is shown to be the eigenvector of the
symmetric 4x4 matrix associated with the most positive eigenvalue. A unit quaternion
is closely allied to the geometrically intuitive axis and angle notation. According to the
carefully analyzed algorithm in [153] the main steps to find the closed-form solution are
as follows:

• knowing two sets of corresponding points, e.g., aj, j = 1, ..., N and bj, j = 1, ..., N ,
one finds the centroids ra and rb.

• Thereafter the centroids are subtracted from all measurements, so that one deals
with the measurements relative to the centroids.

• For each pair of coordinates the nine possible products of the components of the
two vectors are computed x

′
a · x

′

b, x
′
a · y

′

b,...,z
′
a · z

′

b. The products of coordinates are
summed up in order to obtain Sxx, Sxy,...,Szz as:

Sxx =
N∑
i=1

x
′

a,ix
′

b,i Sxy =
N∑
i=1

x
′

a,iy
′

b,i ... Szz =
N∑
i=1

z
′

a,iz
′

b,i (3.5)

These in total nine components contain all necessary information in order to find
the solution. Next step is to create the 4x4 symmetric matrix P by combining the
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sums of the product from the previous step.

P =


(Sxx + Syy + Szz) Syz − Szy Szx − Sxz Sxy − Syx

Syz − Szy (Sxx − Syy − Szz) Sxy + Syx Szx + Sxz
Szx − Sxz Sxy + Syx (−Sxx + Syy − Szz) Syz + Szy
Sxy − Syx Szx + Sxz Syz + Szy (−Sxx − Syy + Szz)

 (3.6)

It is required to calculate the coefficients of the fourth-order polynomial in order
to obtain the eigenvalues of P . By solving the quartic equation, the most positive
root is used to obtain the corresponding eigenvector. The quaternion representing
the rotation from one coordinate system to another is a unit vector in the same
direction.

• The translation component is computed as the difference between the centroid of
one point cloud and the scaled and rotated centroid of the other point cloud.

3.3.2 Pose Estimation with 2D Gray-Scaled Images

Throughout the variety of the model-to-image registration techniques in computer vision
using monocular cameras (see Section 1.4.4), here the focus is on designing the pose
tracking technique based on feature correspondences between the 3D wireframe model
and the detected features in the 2D image. The choice of the image features is a very
important prerequisite for the accurate pose estimation. The image features tend to be
chosen on the grounds of simplicity and noise insensitivity in order to be recognizable
in every image frame. The lack of visual markers on the target satellite complicates the
problem of pose estimation with monocular vision. Moreover, one needs to keep in mind
that even in cases when the depth data is (partly) lost and only the redundant amplitude
image information exists, the quality of the amplitude image can be restricted. The
restriction appears because amplitude images contain also some occlusions, image noise
and blur. These factors complicate the process of feature extraction. Using the prior
known pose, the search space for the correct feature correspondence can be narrowed,
when a new frame arrives.

In this work, the model-to-image registration based on two types of low-level features
is proposed. First, I detect straight lines and thereafter end-points of those lines. The
detected lines construct the frontal hexagon and octagon, and also parallelogram, when
the servicer approaches from the side of solar panel. Once a new image is acquired by
the sensor, the edges of the mockup from the image are obtained using standard edge
detection algorithms such as Canny detector [156]. Subsequently, the Hough Transform
technique is employed to detect the straight lines [157].

Throughout the whole investigation phase I found out that this approach is very
suitable when working with the existing mockup, since it has accurate straight contours
to be tracked. Moreover, the edges of the spacecraft mockup can be distinguished and
localized in the gray-scaled amplitude image even under different illumination conditions.
The great advantage of using the Hough Transform is the resistance of the technique to
short line gaps (e.g. straight line is broken) due to noise or some occlusions. Despite this,
the line will be still detected.

The template matching is not considered since it can happen that the generated
template will not contain key points determined in the arrived image and it leads to
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false or inaccurate pose estimation. I am also not going to pay attention to optical flow
methods in this thesis. First, because it is always required to have two consecutive frames
for the pose estimation, and they should not be saved on board. I want a pose estimation
algorithm for the 2D image to be completely independent on the previous image itself,
so that I am taking into account only the knowledge about the estimated previous 6 DoF
pose. Second, because of the low resolution of the PMD sensor chip, a small motion
between frames based on the pixel displacement can not be properly distinguished. The
CNN are omitted in the thesis because of following reason. The target spacecraft could be
very different from what we are expecting, e.g. there are some damages. This information
we only get after the mission already have been started. In this case, the training data
set of the CCN will not perform well for the real images during the rendezvous. The
training data set is not well constructed and does not contain the real features of the
target.

Standard Hough Line Transform

The Hough transform can be used in order to identify the parameters of a curve which
best fits a set of given edge points. A line can be represented by the equation

y = m · x+ b (3.7)

where the parameter m is a slope of line and b determines the point, where the line crosses
the y-axis. By describing the line in a polar coordinate system the line can be detected
using the pair (ρ, θ).

Figure 3.10: Line representation in the image space.

The parameters θ and ρ are the angle of the line and the distance from the line to the
origin.

ρ = x · cos(θ) + y · sin(θ) (3.8)

A line in a two dimensional Hough space (space determined by θ and ρ) is represented
by a single point, corresponding to a unique set of parameters (θ0, ρ0), see Figure 3.11.
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Figure 3.11: Straight line in the image space is presented as a point in the Hough space.

Drawing multiple lines intersecting at one common point (x0, y0) in the image space
will result in a continuous sinusoid in Hough space (see Figure on 3.12).

Figure 3.12: Bunch of lines intersecting at one point in the image space corresponds to
the points which form a sinusoid in a Hough space. The intersecting point in the image
space corresponds to the sinusoidal curve in the Hough space.

A collection of the points, which create a line in the image space, will construct differ-
ent sinusoids in the Hough space. The crossing of the sinusoids in one point characterizes
that points in the image space are located on the same line. Figure 3.13 reflects the fore-
going explanation. Three sinusoids in the Hough space intersect in two common points
(see Figure 3.13(b), consequently, three image points create the line in the image space
like in Figure 3.13 (a).
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Figure 3.13: (a): Points in the image create a straight line. (b): Sinusoids in the Hough
space intersect in two points.

In other words, in order to find the straight line in the image space, one needs to
look for the intersection of the sinusoids in Hough space. In order to determine the areas
where the most Hough space lines intersect, the two-dimensional accumulator is used.
For every pixel (px, py), the Hough Transform algorithm determines if the straight line
at that pixel exists or not. If there is enough evidence of a straight line at that pixel,
the corresponding parameters (ρ0, θ0) will be calculated and the accumulator’s bin where
these parameters fall into will be incremented. The most likely line can be extracted by
finding the bins with the highest values.

Progressive Probabilistic Hough Line Transform

The classical Hough Transform detects infinite lines given by the parameters θ and ρ. In
order to find the finite lines in the image, the variant of the common Hough Transform
can be applied, which is called Progressive Probabilistic Hough Line Transform [158].
The Probabilistic Hough Transform is the optimized version of the Hough Transform.
The idea of this algorithm is transforming only a subset of the pixels in the image space
into the accumulator instead of all the considered points. When a bin in the accumulator
corresponding to the particular infinite line contains certain amount of votes, in the image
space the searching process starts if one or more finite lines are present. In order to detect
all finite lines on the image, one needs to carefully determine the minimum length of lines
to be detected [136].

Image Processing

In this thesis, the straight line detection technique is realized with the open source library
OpenCV [136]. The Standard Hough Line Transform is included in the HoughLines()
function and the Progressive Probabilistic Hough Line Transform is implemented inside
the HoughLinesP () command. Below, I provide a step-by-step description of the applied
image processing procedures with corresponding images taken from the front view of the
mockup (in Figure 3.14) and from the side part (in Figure 3.15). In summary, the line
detection procedure consists of the following steps [159]:
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1. Low-pass filtering is executed in order to reduce image noise.

2. The Canny-edge operator is used in order to extract edges of the amplitude image,
see in Figures 3.14 - 3.15(b) .

3. The Probabilistic Hough Line Transform is employed for the detection of finite lines,
see Figures 3.14 - 3.15 (c).

(a) (b)

(c) (d)

Figure 3.14: Front view images. (a): 2D gray-scaled image from the amplitude channel.
(b): Image with detected Canny edges and Hough Lines. (c): Image with detected Canny
edges, Hough Lines and end points of the straight lines. (d): 2D gray-scaled image with
detected Hough Lines and end points of the straight lines.
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(a) (b)

(c) (d)

Figure 3.15: Side view images. (a): 2D gray-scaled image from the amplitude channel.
(b): Image with detected Canny edges and Hough Lines. (c): Image with detected Canny
edges, Hough Lines and end points of the straight lines. (d): 2D gray-scaled image with
detected Hough Lines and end points of the straight lines.

The Hough Line Transform performs really well with small resolution amplitude im-
ages of the PMD sensor (see Figures 3.14 - 3.15). By finding straight lines on the 2D
image, I need to generate a list of corrected feature pairs between these detected lines and
given lines of the 3D model. In order to do that, primary, is is necessary to project the
known 3D wireframe model onto the image plane using the pose solution obtained from
the precedent pose estimation. The projected wireframe model in the image plane repre-
sents the set of the linked lines. However, in some cases due to the space environmental
illumination or features of the mockup’s material the detected edges from the image can
be partial and broken lines, merged lines or even completely wrong detected lines, which
do not belong to the model. These inaccuracies can increase the number of false feature
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correspondences between lines in the image and the model [89]. Furthermore, it definitely
induces an incorrect motion estimation. To cope with this problem, a nearest neighbor
search among lines is involved in the chain of image processing pipeline. The line neigh-
bor search is based on the differences in (ρ and θ) representation of lines. The subset of
lines that meets the threshold requirements is assumed to be correct.

Presuming the straight line as a vector between a start and an end point, one can
represent detected lines in the image as one set of corresponding points. The same
procedure is implemented for the lines of the projected model. And the current step is
to sum up the point-to-point correspondences of all the start and end points from both
the model and the image.

Pose from Points

After the image processing phase a set of feature correspondences between the image and
the wireframe model of the target was generated. The following step is to calculate the
pose of the spacecraft with respect to obtained feature correspondences. I assume that
during image processing with the Hough Line Technique a set of image points ρimg =
[uimg, vimg] and a set of corresponding model points pT =

[
pTx , p

T
y , p

T
z

]
expressed in the

target frame T were obtained.
Let us consider the pose (RC

T , t
C) as a 6 parameters vector x = [tC , θ], where tC is

position vector of the target with respect to the camera frame and θ = [θ1, θ2, θ3] is a
set of the Euler angles, which determines the orientation of the target spacecraft. The
projection of the point pT on the image is obtained through the 3D-2D true perspective
projection equations:

pC = RC
T p

T + tC (3.9)

ρM =

[
uM
vM

]
=

[
pxC

pzC
α + u0

pyC

pzC
β + v0

]
(3.10)

In the Equations (3.9) and (3.10), pT is the feature point of the target model defined in
the target frame, pC is the same point in a camera frame after applying transformation
(RC

T , t
C) , (uM , vM) is the pixel of the image corresponding to the feature, (α, β) focal

lengths of the camera and (u0, v0) the principal point of the image. Equation (3.10)
describes the simple camera model, which uses only focal lengths and the principal point
of the camera. Skew factor, radial and tangential lens distortions are not included here.
The camera model which is presented in Section 2.4 is more complex than this one. For
each coupled feature correspondence image-model it is possible to define the following
residual error:

e = ρM − ρimg =

[
uM(x)− uimg
vM(x)− vimg

]
(3.11)

where ρM is the projection of the geometric feature of the target model, whereas ρimg is the
end point detected with the Hough Line Transform. The error in the Equation (3.11) has
6 unknown parameters, which are described by state vector x. The state vector contains
three Euler angles, which define the rotation matrix and the three coordinates of the
translation vector. Each feature correspondence is defined by two conditions, therefore,
at least three pairs of matches between detected endpoints and projected features are
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required to solve the system equation for the defined error function. Let us assume that
one has N feature correspondences between image and model points. The Gauss-Newton
approach iteratively minimizes the sum of squared errors in order to find the position
and orientation defined by x.

S(x) =
N∑
i=1

‖ei(x)‖2 =
N∑
i=1

[(uMi
(x)− uimgi)2 + (vMi

(x)− vimgi)2] (3.12)

Given the first guess x0, the pose that minimizes Equation (3.12) is iteratively obtained
as

xk+1 = xk − (JTk Jk)
−1JTk Ek (3.13)

where

Ek =


e1(xk)
e2(xk)
..

eN(xk)

 (3.14)

is the error vector with ei defined in the Equation (3.11) and Jk is the Jacobian of e
calculated at xk and defined as

J =
∂Ek
∂x

(3.15)

The Equation for the Jacobian (3.15) for point correspondences can be written as
follows:

J =

[
∂Ek
∂tC

,
∂Ek
∂θ

]
=

 ∂e1
∂tC

∂e1
∂θ

.. ..
∂eN
∂tC

∂eN
∂θ

 (3.16)

The size of the Jacobian is 2Nx6 since each residual error in the Equation (3.11) is
defined by two components along u and v coordinates of the image.

The general expression of the rows of the Jacobian being

Ji =

[
∂ei
∂tC

,
∂ei
∂θ

]
. (3.17)

In the Equation (3.17) ei = ρMi
− ρimgi , i = 1 . . . N .

The first element of the row can be rewritten as

∂ei
∂tC

=
∂ρMi

∂pCi

∂pCi
∂tC

(3.18)

where
∂pCi
∂tC

= I3×3 (3.19)

and the follow equation obtained from Equations (3.9) and (3.10)

∂ρMi

∂pCi
=

[
α

(pCz )i
0 − (pCx )i

(pC2
z )i

α

0 β
(pCz )i

− (pCy )i
(pC2

z )i
β

]
(3.20)
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Alternatively, the second element of the expression 3.17 can be presented as

∂ei
∂θ

=
∂ρMi

∂pCi

∂pCi
∂θ

(3.21)

with
∂pCi
∂θ

=

[
∂pCi
∂θ1

,
∂pCi
∂θ2

,
∂pCi
∂θ3

]
(3.22)

and
∂pCi
∂θj

=
∂RC

T

∂θj
pTi j = 1, 2, 3 (3.23)

In the Equation (3.23), the rotation matrix is defined in terms of Euler angles [θ1, θ2, θ3]
as

RC
t =

 cθ1cθ1 sθ1sθ1 −sθ2
cθ1sθ2sθ3 − sθ1cθ3 sθ1sθ2sθ3 + cθ1cθ3 cθ2sθ3
cθ1sθ2sθ3 + sθ1sθ3 sθ1sθ2sθ3 − cθ1sθ3 cθ2cθ3

 (3.24)

where cθ = cos θ and sθ = sin θ.

3.4 Fusion of Measurements

At the beginning of Section 3.3 the sketch (Figure 3.7) of the proposed fused architecture
of a visual navigation system was depicted. In the previous Sections 3.3.1 and 3.3.2,
I have described two completely different pose estimation techniques for the amplitude
and depth images, where each of them gives an estimate (pose) of the target. Let us
consider the fusion node block from the Figure 3.7. One of the simplest ways for the
combination of measurements is to take a weighted average [160] of the pose vectors
which is obtained after two different pose estimation techniques. The simple arithmetic
mean of all measurements does not perform good enough, since one measurement can be
more reliable than other [161]. Taking in account this fact, it is better to assign more
importance and greater weight to an observation xi from one output channel that is more
reliable, whereas a less accurate observation from the other output channel will receive
minor weights. The weighted average for the fused estimate of n different measurements
xi with non-negative weights ωi looks as

xfused =

∑n
i=1 ωixi∑n
i=1 ωi

. (3.25)

An Equation (3.25) can be simplified when the weights are normalized and sum up
to 1:

xfused =
n∑
i=1

ω
′

ixi,

n∑
i=1

ω
′

i = 1. (3.26)

From the mathematical point of view the weights ωi for every single member of the
pose vector can be related to an estimated variance of the measurement error σ2

i that
occurred during pose estimation with one of the suggested methods
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ωi =
1

σ2
i

. (3.27)

In the work of Elmenreich [162], the author shows that this variance of the fusion
result xfused is minimized and always smaller than the input variances

σ2
fused =

n∑
i=1

ω2
i σ

2
i =

n∑
i=1

1

σ2
i

. (3.28)

3.5 Guidance, Navigation and Control System

Conducting research in the field of OOS at DLR, one has a great opportunity to implement
hardware-in-the-loop (HIL) simulations of the rendezvous scenarios. It is an invaluable
step for the on-ground simulations before the real mission takes place. In the works of
Benninghoff et al. [163] and Rems et al. [164] the authors give a detailed overview of
on-orbit servicing end-to-end simulation project. During this project on-board and on-
ground systems are developed and verified. The colleagues from OOS group of DLR, who
work on this project, are developing an advanced rendezvous GNC system, which includes
sensors, pose estimation algorithms, navigation filter, guidance and control functions
[164]. It should be noticed that this doctoral thesis is only a part of the current GNC
system. Let us turn to Figure 3.16, where a hardware-in-the-loop simulation system for
the rendezvous scenarios is represented.
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Figure 3.16: Overview of GNC system.
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I have marked with the yellow colors two blocks of the GNC system: the PMD
rendezvous sensor presented in Chapter 2 and pose estimation techniques described in
Chapter 3. It gives an idea, where the place of the current research inside of the complex
system is. The other blocks on Figure 3.16 are shadowed in gray color, since they are
out of scope in this thesis. Using other visual sensors, the yellow block with PMD sensor
can be replaced by any other optical sensor or by a group of sensors. In this case, the
second yellow block of fused pose estimation could be replaced by another appropriate
algorithms as well. The goal of HIL rendezvous tests is to ensure the stability of the GNC
system with real-time measurements of state vector with PMD sensor during the whole
approach phase.

The hardware-in-the-loop simulations are performed at EPOS, see Section 2.1, and
include a software-based satellite simulator in order to compute the dynamics of the
servicer and the target. The data from the satellite simulator consists of the state vector
(position, attitude, velocity and angular velocity in Earth central inertial (ECI) frame).
The PMD sensor with correspondent pose estimation algorithms provides the position and
attitude of the target relative to the servicer frame. The estimated target pose is an input
to the modifided extended Kalman filter [164], which output is a noise-minimized guess in
ECI frame. According to Benninghoff et al. [163] the filter provides the transformation
from the local vertical - local horizontal system (LVLH) to ECI system. Having this
information, the GNC system calculates control forces and desired servicer attitude, such
that the servicer can follow a trajectory generated by a guidance function. The developed
rendezvous GNC system is integrated into the EPOS hardware-in-the-loop simulator.
The performance results of the visual navigation in closed loop with the PMD sensor are
presented in the next Chapter 4.
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Chapter 4

Tests, Analysis and Discussion

This chapter provides analysis of extended tests of the algorithms presented in the previ-
ous chapter. The practical use of the pose estimation techniques with the real data from
the DLR-Argos3D - P320 sensor allows to characterize the competence of the developed
algorithms with the sensor’s data; find appropriate conditions and parameters for the
better performance; analyze limits of sensor usage and computational time complexity.
Finally, I provide the results of the closed-loop pose estimation in a close range. All ex-
periments conducted with the EPOS simulator, which allows high-accuracy rendezvous
simulations.

4.1 Analysis of Limitations using DLR-Argos3D -

P320

4.1.1 Position Limits

In this section I am going to define some limits according to the operational range of
the given DLR-Argos3D - P320 sensor. Especially, I am interested in the minimum and
maximum distances where the sensor can work properly. According to the main approach
scenario, namely front side rendezvous, it is very important to have the whole form of the
mockup in the field-of-view (FOV) of the camera. It means that the front hexagon must
be observable in order to let the algorithm detect the contours and features. Figure 4.1
shows two images of the target, one, where the target is completely in the FOV (Figure
4.1 (a)), and one, where some parts of the mockup are out of the FOV (Figure 4.1 (b)).
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(b)

Figure 4.1: (a): The entire mockup is in the FOV. (b) Some parts of the mockup are not
in the FOV of the camera.

Since the FOV of the existing camera is less than 30 degrees (28.91 x 23.45), one
is able to detect the whole hexagon contour with the diameter of 1.66 meters within a
distance starting from approximately dmin > 5 meters. The maximum operating range
of the given sensor is defined by the following conditions: modulation frequency of the
emitted signal, resolution of the sensor chip and power of the illumination unit of the
camera. Depending on the modulation frequencies presented in Table 2.1, the maximum
measurement range can be defined with following equation: dmax = c

2fmod
. It means

that the maximum calculated distance dmax of the DLR-Argos3D - P320 can be varied
from 29.9 meters to 5 meters. Nevertheless, the current modulation unit of the camera is
suitable for the close range simulations (< 10 meters) and not for the long one. Moreover,
the resolution of the current PMD sensor is small in comparison with existing CCD
sensors, the features of the imaged object become not to be observable and it leads to
big errors in pose estimation. Taking into account all these constrains, I observed that
the maximum operational distance of the current sensor is in practice dmax= 8 meters.
For the rendezvous scenarios dmin is a final point and dmax is a starting point.

4.1.2 Surface Material Limits

In Section 2.3.2 I discussed the features and characteristics of the PMD sensor in re-
lation to different surfaces. The strong weakness of the DLR-Argos3D - P320 sensor
were brought out when working with high absorbing (Figure 4.2 (a)) and high reflective
materials (Figure 4.2 (b)) - loss of the depth information.
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(c)

Figure 4.2: (a): The high reflective MLI material of the front side doesn’t provide depth
measurements. (b) The high absorbing material of the solar panels doesn’t provide depth
measurements. (c) A good image for the pose initialization.

Consequently, the loss of depth information leads to the impossibility to use the pose
initialization technique proposed in Section 3.2, since it uses a depth image as a primary
information. Therefore, for my working test case with the given mockup and current
PMD sensor I define limitation concerning the appearance of the target on the image.
For the pose initialization technique the image of the target mockup must be taken from
the front side, where the hexagon and long ”nose” part are well represented (Figure 4.2
(c)), because they are made from solid materials which don’t absorb the emitted light
from the sensor.

With the tracking phase the situation looks a bit different. The proposed tracking
pipeline is developed on the basis to avoid full dependence of the visual navigation on the
depth image. And in case the distance information is completely or partly lost, one can
rely on the amplitude image where the surface materials of the current mockup do not
disturb it. In this thesis I consider this identified feature of the PMD sensor as incredibly
important, since it can lead to the possibility to get rid of some limitation with the surface
materials.
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4.2 Offline Test: Pose Initialization

In Section 3.2 I presented the pose initialization technique using the depth image. To
use this technique it is necessary to have on board of the chaser the 3D model of the
space object. In the paper of Klionovska et al. [165] the pose acquisition pipeline with
the current sensor was tested. It was revealed that there is a great need to use proper
features of the used 3D model (see Section 2.2), such as ”nose” and front hexagon, in order
to get an accurate position and attitude. Let us define some necessary parameters and
run the pose initialization technique. The errors are processed in the camera coordinate
frame, where the Z-axis is taken along the optical axis of the camera. See Figure 1.12, in
red color. The ground truth for every logged image with DLR-Argos3D - P320 sensor is
provided by EPOS.

Both point clouds, the model and the scene, must be down-sampled, since there is no
need to process massive point clouds. Moreover, it can lead to wrong estimation of the
pose if the density of point clouds is very different. The algorithm for the down-sampling
proposed in the work of Bridson [166], called Fast Poisson Disc Sampling, is used in this
thesis for point cloud size reduction. Briefly, this algorithm needs a sampling step in
order to down-sample a point cloud. Two sampling steps were defined: for the model
sampling step model and for the scene sampling step scene. The sampling step of the
model point cloud sampling step model = 0.01 is a constant, meaning the data of the
model was reduced once and continue using the obtained minimized model point cloud
during all simulations. The parameter sampling step scene is not usually the same. It
changes depending on the distance between camera and the mockup. The closer the
camera, the bigger the point cloud and there is a need to increase sampling step scene.

Let us provide some results after evaluation of the initial pose only using depth images
when the target is placed on the distance d1 = 7.7 meters (Figure 4.3 (a)) and d2 = 6.5
meters (Figure 4.3 (b)) from the camera. The sampling step scene is also different for
both distances and presented in Table 4.1.

In offline tests, the best parameter sampling step scene for every range is chosen by
iterating over the parameters. For the future real missions, this parameter must be also
chosen on the ground during the preparation tests. It will be important to analyze the
sizes (density and also the diameter) of the scene point cloud in different ranges by the
selected resolution of the PMD sensor. The selected values can be stored on board for
further use.

Table 4.1: Errors for estimated initial pose.

errors d1 = 7.7 meters d2 = 6.5 meters
sampling step scene = 0.03 sampling step scene = 0.035

roll, deg 3.763 23.614
pitch,deg 0.914 7.770
yaw,deg 5.251 11.040
z,m 0.141 0.368
y,m 0.030 0.072
x,m 0.058 0.006
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Figure 4.3: (a): Depth image from the PMD sensor at the distance d1 = 7.7 meters. (b):
Depth image from the PMD sensor at the distance d2 = 6.5 meters.
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Figure 4.4: (a): Re-projection of the model with estimated initial pose onto the image,
d1 = 7.7. (b): Re-projection of the model with estimated initial pose onto the image,
d2 = 6.5.

The co-registered gray-scaled amplitude image is used for the outcome representation.
The magenta re-projection of the 3D model shape onto the 2D image is the result of the
estimated initial pose. From the results presented in Figure 4.4 and Table 4.1 it is not
hard to see that a determination of the attitude of the target using only the point cloud
from the depth image leads to the big errors. The acquired pose of the target spacecraft
at the distance d1 = 7.7 meters shows better results than at the closer distance. It is due
to the relation between the distance and the number of scene points - the closer distance,
the bigger point cloud. The scene point cloud contains more outliers in the depth images,
which can deteriorate the process of pose estimation since they create wrong pairs of
points, which are not presented in the model point cloud. In the depth image of Figure
4.5 one can observe a massive part of wrong distance measurements, circled with a black
contour. In my opinion, this is due to the surface reflections. From the first sight, one can
think that these measurements are reliable and belong to the proper front hexagon part,
but in reality it’s not. Since I cannot avoid it at the moment, I look for an improvement
of the pose technique.

75



pixel

p
ix

e
l

 
50 100 150 200 250

50

100

150

200

250

300

350

m
ill

im
e
te

rs

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Figure 4.5: Depth image with outliers.

4.2.1 Improvement of the Initial Pose with Amplitude Image

During the test phase of the algorithm for the pose initialization, many test cases have
been made with various parameters of the algorithm. A test case with the correspondent
parameters above is the best setup which was achieved. Since the obtained error values
of the position and orientation are not accurate enough, I propose to use an additional
pose refinement. The idea to use an amplitude image for the correction of the estimated
initial pose came across after a deep investigation of the appropriate tracking method,
and especially, after a solid decision to use the amplitude image along with the depth one
for the hybrid navigation technique. In the papers [167, 168], I showed the advantages
of using the amplitude image in conjunction with the depth one for pose estimation in
every frame.

On this basis, I came up with an idea to use supplement processing of the co-registered
amplitude image as follow-up refinement of the calculated initial pose. The algorithm
for the 2D image from Section 3.3.2 is involved here as the follow refinement. The only
prerequisite for this technique is to have an initial guess. In this case the initial guess is
the previously obtained state vector with the depth image.

So, let us assume the results of the initial state vector from the Table 4.1 as the
guess input for the pose estimation technique. The amplitude images used for the image
processing are the same gray-scaled images as in Figure 4.4. I run the image processing
and the pose estimation procedures.
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Table 4.2: Errors for corrected initial pose.

errors d1 = 7.7 d2 = 6.5

roll, deg 1.681 2.391
pitch,deg 0.368 0.179
yaw,deg 0.586 1.621
z,m 0.109 0.250
y,m 0.002 0.010
x,m 0.030 0.029
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Figure 4.6: (a): Re-projection of the model with an estimated corrected initial pose onto
the image, d1 = 7.7 meters. (b): Re-projection of the model with a estimated corrected
initial pose onto the image, d2 = 6.5 meters.

In Table 4.2, I provide the errors of the position and attitude after an implementation
of the correction technique. It can be explicitly noticed, how the results of both poses have
been greatly improved. First of all, the attitude of the target. The numerical assessment
of the improved roll angle for the bad second case at the distance d2 = 6.5 meters shows
the decrease of the error up to 10 times, from 23.614 deg to 2.391 deg. Moreover, an
evaluated distance to the target along Z axis without correction had a difference with the
real value in more than 30 cm. After the improved procedure the position along Z axis
was improved up to 25 cm. When the object locates farther away at d1 = 7.7 meters,
one can also notice some improvements, even if they are not so big. This is because the
errors after the first pose estimation with the depth image were also much lower.

In order to get the statistical overview of the improvement technique, I do tests with
a data set of 200 images in a range from 8 to 5 meters. In Figure 4.7 I plot some images
with the results of the pose initialization technique - some pairs of initial pose with and
without correction. The mean values for the estimated parameters of the state vector for
both cases are presented in Table 4.3.

One can definitely notice the improvements of the estimated position and rotation
components. The rotation around the principal axis of mockup is difficult to estimate
only with a point cloud. The mean error in a roll angle reaches up to 10.92 deg. After
the improvement technique with the amplitude image, the mean error of the roll angle
has been decreased up to 1.22 deg. The mean errors for other rotation components
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Table 4.3: Mean errors for the initial pose with and without correction.

errors without correction with correction

µroll, deg 10.929 1.221
µpitch,deg 4.517 1.236
µyaw,deg 4.113 1.555
µz,m 0.117 0.068
µy,m 0.022 0.022
µx,m 0.030 0.011

are 3 times less with the proposed pose correction. Having a look at the translation
components, especially in z direction µz, one can see that the estimation of the distance
can be improved with the follow-up 2D improvement technique. The mean error for the
initial pose calculated only with the depth image µz = 11.7 cm, whereas for the corrected
initial pose µz = 6.8 cm.

4.3 Offline Test: Weights Definition

Before I start the closed loop simulations using the proposed hybrid navigation technique,
it is necessary to find correct the weights defined in Section 3.4 for a fusion of both
estimates from the depth and amplitude images. I present here an offline test, where I
provide the frontal approach scenario from 8 to 5 meters. In this data set, see Figure
4.8, the target is rotating around its principal axis of inertia at a rate 1 deg/s. The
modulation frequency of the camera was set to 5 MHz. The camera coordinate frame
(see Figure 1.12 in red color) is used in order to evaluate the results, where Z-axis is the
optical axis of the camera.

4.3.1 Test Scenario 1 and Test Scenario 2: Pose Estimation
using Depth and Amplitude Images Separately

I run the algorithms for the depth and amplitude images separately using the provided
dataset. Let us define: a test scenario 1 presents the frame-to-frame pose estimation
technique using depth images and ICP with the reverse calibration technique (see Section
3.3.1); a test scenario 2 concludes the results of the pose estimation algorithm with image
processing of amplitude images (see Section 3.3.2). I plot the errors for the translation
and rotation components from the test scenario 1 in Figure 4.9 and Figure 4.10.
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Initial pose Initial pose corrected Initial pose Initial pose corrected

Figure 4.7: Results of pose initialization technique without and with correction.
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Figure 4.8: Some depth and amplitude images taken at the distance from 8 to 5 meters
from the data set.
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Figure 4.9: Translation errors during close approach for the test scenario 1 (depth image).
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Figure 4.10: Rotation errors during close approach for the test scenario 1 (depth image).

In Figure 4.11 and Figure 4.12 I plot the translation and rotation errors for the test
scenario 2 (amplitude image).
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Figure 4.11: Translation errors during the close approach for the test scenario 2 (ampli-
tude image).
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Figure 4.12: Rotation errors during the close approach for the test scenario 2 (amplitude
image).

In Table 4.4 the mean errors for the attitude and position vectors are illustrated. One
can notice that in the test scenario 1 the mean errors for roll, pitch and yaw angles are
0.719, 2.830 and 4.913 degrees, and for the position errors along z, y and x axis they are
0.0277, 0.0154, 0.0108 meters. We can see strong deviations in the pitch and yaw angles,
when the pose is estimated only with the depth data. The bad estimated orientation of
the target in the previous frame, will lead to the wrong choice of the neighbors in the
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following frame for the model and scene point clouds. This fact, in its turn, will cause an
influence on the correct estimation of the position vector as well.

For the test scenario 2, I also present the mean errors in Table 4.4. For the translation
components z, y, x - 0.0526, 0.0126 and 0.0088 meters; for the rotation part (roll, pitch,
yaw) - 0.883, 1.300 and 0.919 degrees. The results for the attitude from the test scenario
2 are definitely better than from the test scenario 1. Nevertheless, when considering the
mean value µz for the distance component estimated with the amplitude images, one can
clearly observe a worse result than with the depth images.

Table 4.4: Mean errors for the test scenario 1 and the test scenario 2.

µ test scenario 1 (depth image) test scenario 2 (amplitude image)

µroll, deg 0.719 0.883
µpitch,deg 2.830 1.300
µyaw,deg 4.913 0.919
µz,m 0.0277 0.0526
µy,m 0.0154 0.0126
µx,m 0.0108 0.0088

Table 4.5 presents the result of the standard deviations for three rotation angles and
for z, y, x components of the position vector.

Table 4.5: Standard deviations for the test scenario 1 and the test scenario 2.

σ test scenario 1 (depth image) test scenario 2 (amplitude image)

σroll,deg 0.569 0.434
σpitch,deg 2.342 0.143
σyaw,deg 2.530 0.105
σz,m 0.0232 0.0319
σy,m 0.0078 0.0065
σx,m 0.0132 0.0102

4.3.2 Test Scenario 3: Fusion of Pose Vectors with Weights

Taking into account revealed tendency after the test scenarios 1 and 2, I propose the
following concept for the data fusion. In the test scenario 3, I am going to estimate pose
during the close approach for the same dataset and use the weighted average technique
for the translation components. The rotation is completely taken from the pose vector
estimated with the amplitude image. In other words the weight ωpitch=ωyaw=ωroll=1
for the amplitude estimate and ωpitch=ωyaw=ωroll=0 for the depth estimate. This is so,
because the algorithm with the amplitude images is less sensitive for the estimation of the
orientation and usually provides better results. Actually, the comparison of test scenario
1 and 2 proved it. In the test scenario 3 I apply weights for the z, y and x coordinates
presented in Table 4.6, which are calculated using the Equation (3.27) and variations
from the Table 4.5.
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Table 4.6: Weights for the translation components.

Weight Depth estimate Amplitude estimate

ωz 0.65 0.35
ωy 0.40 0.60
ωx 0.37 0.63

In Figure 4.13 and Figure 4.14 I plot the results of the angular and position measure-
ment errors after execution of the test scenario 3.
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Figure 4.13: Translation errors during close approach for the test scenario 3.
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Figure 4.14: Rotation errors during close approach for test scenario 3.

The numerical results in form of mean errors and standard deviations for the tracking
with fused states are listed in Table 4.7.

Table 4.7: Mean errors and standard deviations for the test scenario 3.

mean error values standard deviation values

µroll, deg 0.884 σroll, deg 0.453
µpitch, deg 1.001 σpitch, deg 0.545
µyaw, deg 0.919 σyaw, deg 0.306
µz, meters 0.0367 σz, meters 0.0261
µy, meters 0.0240 σy, meters 0.0075
µx, meters 0.0096 σx, meters 0.0121

In fact, as I expected, the fused technique with its measurements errors presented in
Table 4.7 overcomes the drawbacks of pose estimation techniques. The mean errors for
the estimated components of the orientation vector are almost the same as in the test 2,
whereas the mean errors for the components of the position vector are more similar as
in the test 1. Since I use the rotation part only from the amplitude estimate, one would
expect that the attitude errors in Figure 4.14 should look like in Figure 4.12. However it
looks slightly different, because it is a tracker and the result of the position estimate of
the previous image influences also the attitude result of the current image.

For the current thesis the weights have been chosen with a post-facto procedure. For
the real missions it should be avoided to have a hard-coded parameters. Therefore, the
weights and other parameters of the algorithms and sensor are commandable and can be
changed during the whole mission per telecommand. Other sophisticated way can be to
let the algorithm calculate and set the weights already during the pose estimation phase.
That approach would be interesting to investigate in the future.
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4.4 Visual Navigation using PMD Sensor in a Closed

Loop

In this section I am going to present the results of the visual navigation in a closed
loop using PMD sensor. The GNC system, which is integrated in a hardware-in-the-loop
simulator, is presented in section 3.5. In Figure 3.16, the DLR-Argos3D - P320 sensor
and the hybrid navigation technique with weighted fusion are parts of the system. The
close approach is in a range from 8 to 5.5 meters, the servicer approach velocity is 0.01
m/s. The rendezvous scenario has been repeated 10 times. During these tests I used the
sun simulator as a spotlight. Let us define some errors constraints similarly as it was
used in ATV rendezvous mission [169]: the rotation errors are not higher than 5 deg and
translation errors should not increase 10 cm.

The nearly circular orbit (perigee 771.7 km, apogee 773.5 km), a semi-major axis of
7143 km, an inclination of 98.2◦ and an orbit period of about 100 min has been chosen
for the current test scenario. This real orbit belongs to the current ENVISAT satellite,
which can be potentially considered as a client.

In Table 4.8, the root mean square (RMS) errors for 10 approach trajectories are
presented.

Table 4.8: Root mean square errors for position and orientation using the PMD sensor
in a closed-loop for 10 approach trajectories.

RMS 1 2 3 4 5 6 7 8 9 10

rollrms, deg 0.6490 0.6088 0.5579 0.5485 0.5495 0.5693 0.5436 0.5418 0.6095 0.5657
pitchrms, deg 0.4633 0.4869 0.5030 0.5577 0.5147 0.5499 0.5661 0.5653 0.5043 0.4826
yawrms, deg 0.8508 0.8778 0.9026 0.9260 0.9360 0.9929 1.0665 1.1555 1.2009 1.2206
zrms, meters 0.0311 0.0288 0.0305 0.0271 0.0287 0.0276 0.0249 0.0261 0.0347 0.0324
yrms, meters 0.0185 0.0185 0.0198 0.0164 0.0180 0.0154 0.0149 0.0151 0.0205 0.0224
xrms, meters 0.0068 0.0075 0.0073 0.0066 0.0070 0.0048 0.0052 0.0044 0.0053 0.0061

From the Table 4.8 one can see that the rotation errors in all 10 scenarios are quite
small. The RMS errors for the attitude components don’t increase 2 deg. The maximum
RMS error for the measured distance is zrms=0.0347 meters (test 9) and the minimum is
zrms= 0.0249 meters (test 7).

In Figure 4.15 and Figure 4.16 two plots with the rotation and position errors for
the test number 8 are presented. In Figure 4.16, one can observe that the target was
approached without any breaks in the visual navigation system during the rendezvous.
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Figure 4.15: Rotation errors during rendezvous with PMD sensor in the closed loop for
the test 8.
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Figure 4.16: Position errors during rendezvous with PMD sensor in the closed loop for
the test 8.

Let us have a look at the distance component separately. I plot three distances
together in Figure 4.17: real distance in a red color, measured distance with the algorithm
in a blue color and smoothed distance with the Kalman filter in a green color. One can
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notice that the rendezvous approach with the visual sensor is stable, without big jumps
and deviations from the real trajectory. In Figure 4.18, I provide two images with a zoom
into Figure 4.17. These two plots clearly show that at the far distances between servicer
and target the deviations of the measured Z coordinate and the real trajectory are much
bigger than at the close distances. This may be caused due to the small resolution of the
PMD sensor, where sub-pixel changes cannot be accurately detected. In total, the visual
navigation in the closed loop with the smoothing Kalman filter provides acceptable errors
and ensures stable approach from 8 meters to 5.5 meters.
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Figure 4.17: Distance during the approach, measured distance with the algorithm and
distance corrected with Kalman filter.
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Figure 4.18: (a): Zoom into the distance component at the beginning of the tracking in
the range from 7.75 meters to 7 meters. (b). Zoom into the distance component at the
end of the tracking in the range from 6.35 meters to 5.7 meters.

4.4.1 Tests with PMD sensor in a Total Darkness

Since the PMD sensor is an active camera, which has its own illumination unit for calcu-
lation of depth measurements, I am going to introduce the results of the visual navigation
in a closed loop without any additional illumination. Thanks to the EPOS laboratory,
the complete darkness environment was created by switching off all lightning in the hall
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and also the sun simulator. The close approach trajectory is the same as I used above. I
repeated the close approach three times. In Table 4.9, the root mean square (RMS) errors
for the position and orientation components for three approach scenarios are shown.

Table 4.9: Root mean square errors for position and orientation using the PMD sensor
in a closed-loop for 3 approach trajectories without any illumination in the hall.

RMS 1 2 3

rollrms, deg 0.4385 0.4481 0.4715
pitchrms, deg 0.2285 0.1999 0.2321
yawrms, deg 1.1191 1.0538 1.0114
zrms, meters 0.0401 0.0399 0.0391
yrms, meters 0.0202 0.0201 0.0169
xrms, meters 0.0053 0.0068 0.0075

From Figure 4.19, one can observe that the approach with the single PMD sensor in
a complete darkness can be successfully performed. The tracking is stable. The PMD
sensor is totally adaptable to work without any ambient light.
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Figure 4.19: Test in a total darkness. Distance during the approach, measured distance
with the algorithm and distance corrected with Kalman filter.

The rotation and position errors for the test number 1 are presented in Figures 4.20-
4.21. The rotation errors are just few degrees. The position errors in this test look similar
to the results presented in Figure 4.16.
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Figure 4.20: Test in a total darkness. Rotation errors during rendezvous with PMD
sensor in the closed loop for the test 1.
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Figure 4.21: Test in a total darkness. Position errors during rendezvous with PMD sensor
in the closed loop for the test 1.

With this test I have shown one of the important and positive features of the PMD
sensor - its ability to perform in a darkness. The visual navigation system is totally
independent on illumination conditions.
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4.5 Comparison of Visual Navigation with PMD and

CCD sensors

In this section, I am going to compare the open-loop performances of the PMD sensor
with a charge coupled device (CCD) sensor. I have chosen the same rendezvous trajectory
as in the previous section. For the comparison of the results, the coordinate system of
the chaser satellite is chosen. The chaser coordinate system is presented in blue in Figure
1.12. A Prosilica Gigabit Ethernet GC-655 vision camera with CCD sensor is used to
measure the pose of the target during the rendezvous phase. This sensor is also mounted
on the breadboard of the Robot 1 at EPOS laboratory, see Section 2.3. Some technical
characteristics of the CCD camera are presented in Table 4.10. Noticeably, the resolution
of the sensor chip is almost twice as much as the PMD sensor. The FOV of the CCD
camera is also bigger.

Table 4.10: Technical data of Prosilica GC-655 camera

Resolution of the chip 640× 480 pixels
focal length [604, 604] pixels

pixel size 9.9× 10−6 m

The setup for the open-loop performance comparison is as follows: I run in parallel
two visual navigation techniques with PMD and CCD sesnors. The first one is the
navigation technqiue presented in this thesis and uses PMD sensor (see Section 3.3), and
the second one has been developed by the colleagues of the OOS group of DLR and
uses aforementioned CCD sensor [163]. Before I discuss the numerical results after the
executed test, it is interesting to compare the images from both visual sensors.

In order to have an idea how two gray-scaled images differ - an image from CCD
camera and an amplitude image from PMD sensor, I plot both of them taken in the same
moment in Figure 4.22. Since the CCD camera does not provide a depth image, the
depth image from PMD sensor is omitted. Since the image from PMD sensor has the
lower size, I have resized it up to the size of CCD image for better presentation. Because
of the different FOVs, the target in amplitude images appears bigger than in the 2D CCD
image. High contrast of the CCD gray-scaled images and higher resolution of the CCD
chip makes the target more clear and sharp than in the PMD gray-scaled image.
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Figure 4.22: (a): PMD gray-scaled image. (b) CCD gray-scaled image.

I simulate the rendezvous approach from 8 meters to 5.5 meters, with a safe approach
velocity of 0.01 m/sec. This rendezvous scenario was repeated 10 times. In Figure 4.23
and Figure 4.24, the errors in position and orientation with PMD and CCD sensors are
presented for the test number 6.
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Figure 4.23: Position errors for the PMD and the CCD sensors.
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Figure 4.24: Rotation errors for the PMD and the CCD sensors.

In Table 4.11 and Table 4.12, I show the root mean square (RMS) errors for the
position and orientation using the PMD sensor and the CCD camera. The statistical
characteristics are presented for the 10 approach trajectories.

Table 4.11: Root mean square errors for position and orientation using the PMD sensor.

RMS 1 2 3 4 5 6 7 8 9 10

rollrms, deg 0.6360 0.6713 0.6795 0.6921 0.6722 0.6474 0.6339 0.6164 0.6561 0.6495
pitchrms, deg 0.7342 0.6217 0.7075 0.8047 0.8274 0.8896 0.9421 1.0000 0.9850 1.0394
yawrms, deg 0.9520 0.8790 0.9088 0.9192 0.9082 0.9087 0.9645 0.9509 0.9650 0.9809
xrms, meters 0.0310 0.0235 0.0244 0.0275 0.0226 0.0286 0.0260 0.0265 0.0275 0.0289
yrms, meters 0.0191 0.0085 0.0096 0.0128 0.0121 0.0104 0.0086 0.0115 0.0173 0.0183
zrms, meters 0.0088 0.0062 0.0055 0.0080 0.0053 0.0057 0.0074 0.0075 0.0060 0.0069

Table 4.12: Root mean square errors for position and orientation using the CCD sensor.

RMS 1 2 3 4 5 6 7 8 9 10

rollrms, deg 0.5022 0.5235 0.5249 0.5348 0.5248 0.5167 0.4972 0.5304 0.5332 0.5145
pitchrms, deg 0.8552 0.7884 0.8075 0.8422 0.8313 0.7948 0.8305 0.8568 0.8307 0.8859
yawrms, deg 0.8297 0.8077 0.8396 0.9247 0.8452 0.8496 0.8746 0.7628 0.8295 0.8346
xrms, meters 0.0420 0.0393 0.0422 0.0408 0.0422 0.0393 0.0383 0.0382 0.0375 0.0360
yrms, meters 0.0135 0.0110 0.0106 0.0133 0.0120 0.0115 0.0104 0.0117 0.0126 0.0124
zrms, meters 0.0193 0.0168 0.0109 0.0198 0.0165 0.0154 0.0115 0.0119 0.0096 0.0106

For the better comparison of the final results I present Table 4.13, where the average
of all RMS errors for both sensors are included.
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Table 4.13: The average result of 10 tests.

average PMD sensor CCD sensor

rollrmsavg , deg 0.6554 0.5202
pitchrmsavg , deg 0.8552 0.8323
yawrmsavg , deg 0.9337 0.8398
xrmsavg , meters 0.0267 0.0396
yrmsavg , meters 0.0128 0.0119
zrmsavg , meters 0.0067 0.0142

The obtained results of both pose estimation techniques with the CCD and PMD
sensors in an open-loop showed a good, stable tracking. From Table 4.13, one can see
that the averages of the RMS errors for the rotational components estimated with PMD
and CCD sensors over 10 tests are slightly different. The average measured attitude is a
bit more accurate with the CCD sensor. The average of the RMS errors of the estimated
distance (along X axis) with PMD sensor (0.0267 meters) is better than of the CCD
sensor (0.0396 meters). When one has a look at Tables 4.11-4.12, we can notice that
there is not any test, where the distance to the target is measured more accurate with
CCD rather than with PMD camera. Moreover, the PMD sensor was able to estimate
with a better precision the position along the Z axis.

For the current work it was sufficiently to show the general behavior of the PMD
and CCD sensors. I think, the identical tendency for the estimated state vector will
be obtained if the same pose estimation algorithm processes images of PMD and CCD
sensor.

4.6 Computational Complexity

It is very important to evaluate the computational complexity of the algorithm during
the developing phase (even if it could be only estimated roughly) in order to have an idea,
if the algorithm is able to guarantee a good performance with real on-board computers
(OBC) used for the spacecrafts. The demonstration of the time complexity assists not
only for the further choice of the OBC, but also could push us to make thoughts how to
optimize the algorithms and reduce the time complexity.

Below I show experimental analyses of the computational complexity of the proposed
pipelines for the pose acquisition and tracking. The computer, which I used for execution,
has a Debian GNU/Linux 9.5 (stretch) operating system. The characteristics of the CPU
are presented in Table 4.14.

4.6.1 Computational Complexity of Pose Initialization Tech-
nique

I run pose initialization technique for different images in the range from 8 to 6 meters.
The main factor which strongly influences the time complexity of the pose estimation
procedure is the number of scene points, since the number of model points are defined as
a constant throughout all simulations. In Figure 4.25, I depict the CPU computational
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Table 4.14: CPU characteristics of the processor used for tests.

Architecture x86 64
Order Little Endian

CPU(s) 6
On-line CPU(s) list 0-5

Vendor ID GenuineIntel
CPU family 6

Model 62
Model name Intel(R) Xeon(R) CPU E5-1650 v2 @ 3.50GHz
BogoMIPS 6982.36

times, which were spent to estimate the initial pose with different sizes of the scene point
cloud. After evaluation of the data I have found out that the computational complexity
suits to the polynomial regression T (n) = O(nk), where n denotes the number of scene
points. The degree of the regression k is found out to be 5. I estimate the standard error
and plot the 95% prediction interval of CPU computational time tCPU comp ± 24.
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Figure 4.25: Computational complexity of the pose acquisition technique. Polynomial fit
of data with 95% prediction interval.

The increase of the scene point cloud usually occurs when the distance between the
space target and the camera decreases. It means, the closer chaser is, the bigger the
point cloud of the scene and longer the CPU computational time of the pose acquisition.
From Figure 4.25, one can observe the minimum processing time for one pose execution
corresponds to tmin = 7.58 seconds and the maximum tmax = 16.52 seconds.
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4.6.2 Computational Complexity of the Tracking Technique

Let us evaluate the performance of the tracking technique. I estimate the CPU processing
time to estimate one pose using the fusion technique, since I determined this approach
as very robust during the tracking with the current PMD sensor. The main factor, which
plays role for the evaluation of the time complexity, is the same as in the previous case -
a number of taken scene points. For the tracking technique the major parameter, which
changes the amount of points, is mainly the chosen radius for the neighbor search. Check
Section 3.3.1 for the description of the radius. Shortly, the larger the radius, the bigger
scene point cloud. Furthermore, the quality of the depth image regulates the number of
the scene points, but not so drastically as the radius of search. I present the following
Figures 4.26-4.27, where the spent CPU times depending on the number of scene points
are introduced. Every plot is for the specific radius for the neighbor search.

After some experimental tests I can make a statement that the computational com-
plexity of the hybrid navigation technique for the tracking is shown to be polynomial.
The plots in Figure 4.26 show the time complexity depending on the size of scene point
cloud by radius of neighbor search r=5 and r=10. The plots in Figure 4.27 show the same
with the bigger radii equal to r=15 and r=20. With the calculated and depicted predic-
tion intervals (see Figure 4.26 and Figure 4.27) in 95% one can suppose that having the
certain number of scene points the computational time will be within determined limits.
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Figure 4.26: (a)-(b) Computational complexity of the tracking technique. Polynomial fit
of data with 95% prediction interval, radii for the neighbor search are r=5 and r=10.
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Figure 4.27: (a)-(b) Computational complexity of the tracking technique. Polynomial fit
of data with 95% prediction interval, radii for the neighbor search are r=15 and r=20.

CPU time spent for the calculation of one pose depends on a software application,
more specific, on number, types and frequency of executed instructions. In generally,
an instruction is an order given to processor by a computer program. Nowdays, it is
easy to calculate the CPU execution time for a process, but it is difficult to find out the
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instruction count or number of clock cycles per instruction (CPI). The simple equation
for the CPU time looks like [170, 171]:

tCPU comp = Instruction count− CPI

Clock rate
. (4.1)

Since the CPU time depends on three different factors, I provide a brief parameter
analysis in order to decrease the CPU time. Clock rate depends on the hardware tech-
nologies of the processor. CPI depends on organization of the cycles, instruction set
architecture (ISA) and compiler. Instruction count can be changed by varying the ISA
and compiler as well. One can notice that by improving one of these components it will
have an impact on the others.

To sum up, for the choice of the chaser’s OBC for the future rendezvous scenarios
to non-cooperative targets it is necessary to pay attention on detailed description of
scenario, hardware setup (e.g. visual sensors), and complexity of the software for the
rendezvous. For sure, it is difficult task to find the trade-off between many parts of the
complex system.
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Chapter 5

Conclusion

From the scientific point of view, it is interesting to sum up the results of the research
presented in this thesis and to propose some ideas for the further researchers in a field of
pose estimation with the PMD sensor.

This PhD thesis represents a theoretical and practical research in the branch of prox-
imity operations for On-Orbit Servicing and Active Debris Removal missions. It is very
important to extend the existing knowledge about the new hardware and software pos-
sibilities and share them with the scientific communities. The more we try to simulate
the missions scenarios on the ground, the faster we can start a real mission for the space
debris mitigation. The primary goal of the thesis was to develop pipelines for pose esti-
mation (position and orientation) of the target spacecraft using a PMD sensor. For the
pose estimation the 3D target model was available. In particular, the challenge of my
thesis is to create a stable tracking technique, which allows to chaser approach a target
with PMD images.

The first contribution of the thesis to the state-of-the-art is a creation of a Hybrid
Navigation Technique (HNT), where amplitude and depth images of the PMD sensor are
used independently for pose estimation. This method processes the gray-scaled amplitude
image in parallel with the depth image and gives to the system the redundant state
measurement. The HNT is able to cope with two of the strong drawbacks of the sensor:
its inability to work under the strong ambient light and with high reflective or absorbing
materials. When the depth measurements are (partly) absent, the tracking will not fail.
The chaser continues its approach only with amplitude images. In case when both of
them have a good quality, the amplitude image serves as an additional data source for
the pose improvement. I was able to fuse both estimates and use a fused state as a single
pose. The weights for the fusion technique were calculated in a post-processing phase,
when each of the algorithms operated solely. It was proved that the data fusion has its
best performance than depth or amplitude pose estimation techniques separately.

The proposed feature of the amplitude image made also the second contribution for
pose initialization. At the first stage, the pose was acquired with the depth image and a
known 3D model. The initial assessment of the rotation component with a point cloud of
the PMD image is a difficult task and lead to some errors. For the follow-up correction
of the initial estimated pose, the pose estimation with an amplitude image was applied.
The author demonstrated evolution of accuracy of the rotational components with a small
resolution gray-scaled image.
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The third contribution is integration of the PMD visual navigation in a GNC system
of the OOS group at DLR. It gave us a great possibility to test the developed techniques
in a closed-loop with the EPOS simulator. The evaluation of the performances with
the DLR-Argos3D sensor totally satisfied the assigned tasks with an acceptable accuracy
(position errors less than 10 cm and rotation errors less than 5 deg). I also compared in
an open-loop tests the performance of the CCD and PMD sensors for the same tracking
scenario. As it was expected, the depth PMD sensor showed better results for measure-
ments of the relative distance component throughout 10 tests. The CCD sensor provided
slightly better results of the estimated attitude. Moreover, the PMD sensor has one great
advantage in compare to CCD sensor: it can be used in a completely darkness without
any additional light source, whereas a flash light is necessary for the CCD sensor in umbra
phase.

It is interesting and important to know, if the developed techniques can be used with
other time-of-flight sensors, which have different characteristics. I am trying to answer
this question in the next paragraph.

5.1 Can the Presented Pose Estimation Algorithms

be Applied with other Active Sensors?

Let us denote that here active sensors are considered, which use the time-of-flight/phase
shift depth measurement principle in order to get a raster image. As I already defined,
there are two main pose estimation methods - the first one for the pose initialization and
the second one for the pose tracking. In case of the pose acquisition the initial position
and attitude are calculated with the depth image. The point cloud of the DLR-Argos3D
Camera and the pose estimation technique with the Point Feature Vectors described in
Section 3.2 are applied. Can one use the same pose acquisition technique and the current
mockup but another active sensor? The answer will be yes, if another active sensor is
able to provide the 3D point clouds, which reflect the features of the observable object.
It means, the resolution and the FOV of the depth sensor must be big enough in order to
fit the mockup into the image. The FOV depends on the focal length and the chip size
(length and width).

Let us imagine a case, when the resolution of the sensor is even bigger than I have
at the moment. Evidently, it will be considered as an advantage, since the details of the
object are better visible. On the contrary, if the resolution of any other PMD sensor is
noticeably smaller, e.g. one of the previous PMD sensors had the resolution 64 × 48,
there is no guarantee to have a good quality of the point cloud and, respectively, the
great accurate output of the acquired pose.

Working with the PMD sensor one should not forget that it is an active sensor, and
the depth measurements are dependent on the power of the illumination unit integrated
in the camera kit. This fact is in close correlation between the FOV of the sensor and the
good reliable depth measurements. In other words, by increasing the FOV of the camera,
the sensor is able to provide images of the full object even in the close vicinity between
given mockup and the sensor. But then the weakness will arise when one is going to
work in a long distance range. There will be a need for more high-power LEDs units and
robust suppression of the ambient illumination.
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Now the pose estimation algorithm is considered, which is used during the tracking
phase for the depth images and described in Section 3.3.1. Can one replace the existent
PMD sensor with another one without any consequences for the operation of the algo-
rithm? The main prerequisite to use the ICP algorithm with the reverse calibration is
the raster depth image. It means that for the group of sensors defined in this section the
algorithm can be applied. The main factors which can influence the performance of the
algorithm are the same as with the previous algorithm: FOV and resolution of the sensor.
For the rendezvous with non-cooperative target the trade-off must be found concerning
the approach scenario and the space object.

What about the pose estimation technique for the amplitude image described in Sec-
tion 3.3.2?1 I propose this technique for the correction of the initial pose, as well as for
the hybrid navigation technique during frame-to-frame tracking. Can one expect a good
performance of the algorithm with another PMD sensor and the same mockup? Inter-
estingly that here the main dependencies are same as for the two previous mentioned
pose estimation techniques with the depth image - the resolution of the senor and FOV.
It is commonly known that the accuracy of the estimated pose with monocular vision
is more precise if the resolution of the image sensor is higher, because of smaller pixel
noise. Especially it concerns the distance measurement. Therefore, it is preferably to
choose a higher resolution of the PMD sensor for the proper work of the algorithm with
the amplitude images. The small FOV limits the observation of the mockup in the close
vicinity.

To sum up, all presented algorithms for the pose estimation of the non-cooperative
target can be processed with other active sensors with a raster image, when the resolution
of the sensor chip and FOV are big enough in order to provide full information of the
chosen features of the space object. In general, the higher resolution, the better received
data from the sensor.

5.2 Future work

In Sections 1.3-1.5, I defined the objectives and tasks of the thesis. All these research
questions, such as development and validation of the pose initialization and tracking
techniques, as well as calibration of the PMD sensor have been successfully completed.
The more deeply immersed in the topic, the more new questions arise. From my point
of view, it would be interesting extending the length of the close rendezvous phase, and
considering distances less than 5 meters. In this case it will be required to choose other
features, e.g. octagon, since the hexagon, the outer contours of the target mockup, will
be no longer in the FOV of the camera. For this purpose, the current pose estimation
methods must be improved and adjusted, or a new pose estimation technique for the
tracking phase must be developed.

Currently the DLR-Argos3D - P320 camera has one IR illumination unit, which emits
the signal. As far as I know, there is a possibility to extend the illumination unit with
some additional ones. This brings us more illumination power and, as consequently, it
will allow to increase the measurement range of the sensor. For example, when using the

1The algorithm for the amplitude image can be applied also for other cameras (like CCD, CMOS)
which deliver a gray-scaled image and have a sufficient FOV and resolution.
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modulation frequency of 5 MHz the sensor should provide depth measurements in the
range up to 30 meters. Nowadays, using DLR-Argos3D - P320 camera it is quite hard to
get the reliable depth images with the modulation frequency of 5 MHz, because due to
insufficient power of the IR illumination unit.

What probably can be also interesting to consider is the use of the second PMD
sensor. The configuration of two PMD sensors can be considered as a stereo system by
using the gray-scaled amplitude images. It means, there will be three point clouds (two
from depth images of each sensor and third one can be obtained via stereo vision, i.e.
the triangulation principle for two amplitude images) of the imaging scene, three sources
of depth information. The depth data from stereo configuration can be examined to
substitute the lost or incorrect depth data in the PMD depth images, when this case
occurs.

Future work in the field of software part, namely, a development of other suitable
techniques for pose estimation with the PMD sensor can be implemented. Nowadays,
the branch of computer vision is enormous. It would be interesting to try deep learning
algorithms with the data from the PMD sensor and compare its performance with the
state-of-the-art computer vision techniques.

Moreover, an integration of the provided software into any available prototype of an
on-board computer is an invaluable contribution for the research. Tests of the developed
methods with the real on-board computers allow evaluate their future applicability in
the real OOS missions. It will also help to optimize and improve any of the proposed
software components on the ground. The colleagues from the OOS group already work
on integrating the GNC system on the ScOSA on-board computer [172]. The next step
would be also to integrate the PMD algorithms.

The other investigation can be done in the following direction - an implementation of
the current image processing algorithms in hardware (if it is possible), e.g. with a Field
Programmable Gate Array (FPGA) [173, 174]. The outstanding features of the FPGAs
for image processing are optimization of imaging operations, high computational capacity
and low cost. Working with FPGA, one has the possibility to execute independently the
instructions of the algorithm in parallel, each of them on a separate hardware module,
thereby increasing the speed of the execution. Having numerical results after such imple-
mentations one can compare performance results of the algorithms executed in software
and in hardware.
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