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Improving Air Leakage Prediction of Buildings using the Fan 

Pressurization Method with the Weighted Line of Organic 

Correlation 

ABSTRACT 

In many countries, the fan pressurization method is the most frequently chosen approach for 

measuring the air leakage of houses. The measurements are usually performed at pressures that 

far exceed pressures to which buildings are exposed to under normal conditions. A fit of these 

tests to the power-law formulation allows an extrapolation to data points outside the measured 

pressure range. With the Ordinary Least Square (OLS) fitting method, the pressure exponent and 

flow coefficient can be determined. However, the measurement results are highly sensitive to 

uncertainties induced by external factors like changing wind conditions during the tests, which is 

neglected by OLS. This may lead to errors in the prediction of flows at lower pressures. The 

Weighted Line of Organic Correlation (WLOC) is an alternative approach and takes 

measurement uncertainty into account.  

In this paper, a statistical analysis of an extensive data set of pressurization measurements has 

been performed. Both regression techniques have been compared for almost 7500 fan 

pressurization measurements of six houses in 109 different house leak configurations. The 

variability in predicting pressure exponent and flow coefficient for both WLOC and OLS 

regression was analyzed using probability density functions. It was found that the Weighted Line 

of Organic Correlation significantly decreases the uncertainty in predicting pressure exponent, 

flow coefficient, and other low-pressure air leakage metrics compared to the Ordinary Least 

Square fitting. The authors highly recommend the implementation of WLOC in current 
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measurement standards and test equipment. 
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1. INTRODUCTION  

According to the International Energy Agency [1], the residential and non-residential buildings 

together accounted for 30 % of the global final energy use and 28 % of energy-related CO2 

emissions in 2018. In addition to the industry (32 %) and the transport sector (28 %), buildings 

are, therefore, a key to the viability of current climate goals. Globally, space heating is the 

primary source of energy consumption in the building sector, and space cooling is one of the 

fastest-growing sources. The uncontrolled airflow through the building envelope contributes 

significantly to this increased consumption of heating and cooling energy [2–4]. In addition to 

rising costs for homeowners and higher greenhouse gas emissions, this can lead to an impairment 

of indoor air quality [5], can significantly affect the performance of existing ventilation systems 

[6] or may cause construction damages through mold formation inside walls [7,8]. 

The airtightness of building envelopes is typically ascertained by the fan pressurization method 

(“blower-door test”), which is specified in various standards like ASTM E779 [9], 

DIN EN ISO 9972 [10] or CAN/CGSB 149.10 [11]. A pressure difference is applied across the 

building envelope with a fan, which moves air in (pressurization) and out (depressurization) of a 

building. Typically, the airflow through the fan is determined by the pressure difference across a 

previously calibrated orifice. The pressure difference and the respective airflow through the fan 
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are recorded at several pressure differences.  

The pressure range across the envelope during the measurements dramatically exceeds the 

pressures leaks in a building are exposed to under normal operation. At these higher pressure 

differences, relative impacts due to ambient disturbances (like wind) and uncertainty of the 

measurement devices are usually lower. However, a subsequent interpolation of the measured 

pressures and an extrapolation to low pressure where natural infiltration occurs may contain a 

significant uncertainty [12]. Therefore, the most precise measurements at high pressure are the 

least accurate ones [13,14]. The determination of infiltration at low pressures (< 4 Pa) may not be 

interesting to fulfill energy performance standards (e.g., passive house) or used in building 

standards to compare the relative airtightness of different buildings, but is essential for building 

energy calculations [15] or indoor air quality assessments [16]. Although measurement 

uncertainties may significantly influence the prediction of airflow rates at low pressures, the 

current standards do not necessitate the acquisition of uncertainties of the measured values. 

The importance of the consideration of uncertainties in fan pressurization measurement was 

already discussed by Persily et al. [17] in 1985 and Herrlin et al. in 1988 [18]. Geissler 

performed simulations about the estimation of errors of blower door measurements [19]. 

Sherman et al. [20] analyzed in 1995 the errors of extrapolation to low pressures using the 

Ordinary Least Square (OLS) regression method. Recent studies also confirmed that the 

uncertainty of fan pressurization measurements could not be neglected [21]. Furthermore, 

Carrié et al. [22] recently highlighted, in particular, the influence of wind fluctuations and 

frequency on the uncertainty of building airtightness pressurization tests. 

In addition to the conventionally used OLS regression method,  Delmotte et al. [23] discussed in 

2011 the applicability of a weighted least square regression, and Okuyama et al. [24] introduced 
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in 2012 an Iterative Weighted Least Square (IWLS) regression approach. In 2017, Delmotte [25] 

suggested the Weighted Line of Organic Correlation (WLOC) as an improved non-iterative 

regressing method, which takes measurement uncertainties into account. 

In this work, the OLS and WLOC regression methods are applied to a large dataset of almost 

7500 blower-door measurements in six different single-story, single-family houses. The goal was 

to identify the uncertainties in the prediction of the pressure exponent and flow coefficient of the 

power-law using both regression techniques. In addition to the work done by Prignon et al. 

[26,27], this work investigates a statistical analysis of a larger data set of blower door 

measurements. 

 

2. METHODOLOGY 

2.1. Test Site and Measurement Equipment 

In this paper, a data set of fan pressurization measurements is used, which was recorded at the 

Alberta Home Research Facility (AHHRF). This facility consists of six unoccupied houses, 

which are each of different construction. These houses were located south of Edmonton, Alberta, 

Canada, and were used to test different heating and ventilation strategies. Each of these six 

houses is a single-story construction with a floor area of 6.7 m by 7.3 m, a wall height of 2.4 m, 

and a full basement. For more detailed information about this test facility and data source, see 

[14] and [28]. 

Repeated fan pressurization measurements have been performed at each of these six houses. 

These repetitions allow an investigation of how external factors (like the presence and strength of 

wind) may affect the measurement results when the building construction and, therefore, the 

airtightness remain constant. All tests were automated, which prevents additional uncertainties 
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due to equipment installation and operator errors, and enables the recording of a large data set. A 

total of almost 7500 fan pressurization tests have been performed, where each test contains 

between 20 and 100 measurements of pressure difference and airflow rate, which enables to 

obtain a complete flow-pressure difference characteristic for each test. The covered pressure 

range lies between 1 and 100 Pa, for both pressurization and depressurization, which is a broader 

range than required by the ASTM E779 [9] or DIN EN ISO 9972 [10] standard. 

The houses were operated in 109 different test configurations, e.g., pressurization and 

depressurization tests, open and closed flues, windows, or passive vents. Prior to this analysis, 

the data set was filtered to remove erroneous files, where, e.g., no standard deviation or offset 

pressure was recorded. This filtering results in 7402 sets of measurements from the original 7500 

sets being selected for this study. 

Because wind (and stack) pressures vary over the building envelope, the testing procedure would 

ideally measure the indoor-outdoor pressure difference at each leak location. However, this 

approach is impractical. For this study, indoor-outdoor pressure differences were taken from 

pressure taps on each wall of the test building connected to a pressure averaging manifold. This 

averaging of multiple pressure taps was intended to reduce uncertainties and biases due to wind 

speed and direction [29] and follows the guidance in standardized testing [9]. Despite the use of 

multiple pressure taps, we still expect some test uncertainty due to varying wind direction during 

a test. Wind direction was measured during these tests, but the additional analysis of wind 

direction effects is beyond the scope of this paper, and we note that wind direction effects will 

also scale with wind speed, with the effect of wind direction variability being more significant at 

higher wind speeds. 

In most field measurements, only one pressure tap is used to record outside pressure data and 
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may result in higher sensitivities than presented here. Each measured envelope pressure 

consisted of about 150 individual measurements over a period of 15 seconds. The mean and 

standard deviations of the pressure measurements at each station are recorded. These standard 

deviations are used as an uncertainty estimate for each pressure station and are an essential input 

to the WLOC analysis. 

In contrast to the required measurement procedure in most standards, where offset pressures have 

to be recorded at the beginning and end of each measurement series, for this study, every 

pressure difference data point has been corrected by a reference pressure at zero flow rate for this 

point in this analysis. For this purpose, a damper closed the fan opening for each offset pressure 

measurement because this opening may affect the pressure distribution throughout the building. 

The airflow rates Q (in m³/h) were measured using a laminar element flowmeter, which was 

connected to the outside with a flexible duct. All flow rates were corrected with indoor and 

outdoor air temperatures according to the ASTM E779 [9] standard. As with the pressure 

difference measurements, the air flows were taken over a period of 15 seconds, at a sampling rate 

of about ten samples per second. From the pressure measurements across the laminar element 

flowmeter, both the mean ΔPflowmeter (in Pa) and standard deviation (σΔP flowmeter) were recorded. 

Due to the linear behavior of the flowmeter, the respective standard deviation of the airflow (σQ) 

was determined by the following equation: 

σ𝑄 = σ∆𝑃 𝑓𝑙𝑜𝑤𝑚𝑒𝑡𝑒𝑟 ∙
𝑄

∆𝑃𝑓𝑙𝑜𝑤𝑚𝑒𝑡𝑒𝑟
                                                                        (1) 

In this data set, a wide range of weather conditions are covered with outside temperatures 

between –40°C and +30°C and wind speeds of up to 10 m/s. The wind speed, wind direction, and 

ambient temperature data were gathered from a meteorological station next to the test site.  
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2.2. Regression Methods 

In the past, there were several approaches [30–32] to predict the relationship between the airflow 

rate Q and the pressure difference ΔP (in Pa) across the building envelope. The current 

formulation in all measurement standards is the power-law relationship [33]: 

𝑄 = 𝐶∆𝑃𝑛                                                                                                                  (2)  

C (in m³/(h·Pa
n
)) is the flow coefficient, which can be a measure of the overall leakage size, and 

n is the pressure exponent, which characterizes the leakage shape [34]. The flow exponent is 

limited to values between 0.5 (turbulent flow) and 1.0 (laminar flow) but is typically in the 

vicinity of 2/3 [33]. This formulation is a reasonable model to describe the airflow through a 

network of cracks that can vary in size and shape in a building envelope. 

For the determination of flow coefficient and pressure exponent, this power-law needs to be 

transformed to its linear form by expressing both sides of Eq. (2) for each measured value as 

logarithms: 

ln(𝑄) = ln(𝐶) + n ∙ ln(∆𝑃)                                                                                  (3) 

A regression is applied to this linear form of the power law, where n is the slope, and ln(C) is the 

intercept of this regression. In the following paragraphs, the OLS and the WLOC regression 

techniques, which are compared in this study, are introduced. 

 

2.2.1. Ordinary Least Square Method 

In current standards [9, 10], the Ordinary Least Square (OLS) method is used for determining the 

flow coefficient C and pressure exponent n. The OLS method minimizes the residuals, which are 

geometrically the distances in the y-direction between the fitted line and the measured values 

[35]. In this case, 𝑥𝑖 = ln(∆𝑃𝑖) is the independent and 𝑦𝑖 = ln(𝑄𝑖) is the dependent variable 
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(with 1 ≤ i ≤ N). The pressure exponent and flow coefficient of the power-law formulation 

(cf. Eq. (2)) can directly be determined using following formulas: 

𝑛 =
∑ (𝑥𝑖 − ∑

𝑥𝑖

𝑁
𝑁
𝑖=1 ) (𝑦𝑖 − ∑

𝑦𝑖

𝑁
𝑁
𝑖=1 )𝑁

𝑖=1

∑ (𝑥𝑖 − ∑
𝑥𝑖

𝑁
𝑁
𝑖=1 )

2
𝑁
𝑖=1

                                                             (4) 

𝐶 = 𝑒𝑥𝑝 (∑
𝑦𝑖

𝑁

𝑁

𝑖=1

− 𝑛 ∙ ∑
𝑥𝑖

𝑁

𝑁

𝑖=1

)                                                                               (5) 

Here, the assumption is made that values in the y-direction are equally uncertain, and the 

uncertainties in the x-direction, which correspond to the pressure difference measurements, are 

not taken into account [36]. These assumptions are, however, not valid for measurements in real 

buildings. Imperfect knowledge of the uncertainties may lead to a shifting and rotation of the 

linear regression line of the power-law. The fractional error is usually more significant for lower 

pressure points (e.g., 4 or 10 Pa) than for higher pressure points and may lead, therefore, to 

uncertain predictions of flows at these pressures [25]. 

 

2.2.2. Weighted Line of Organic Correlation 

In contrast to OLS, the Weighted Line of Organic Correlation (WLOC) minimizes the sum of the 

product of the measured values and the weighted horizontal as well as vertical differences and 

the predicted line [25]. Consequently, measurement points with higher uncertainty are less 

significant in the calculation of the regression line. This is an important characteristic, mainly if 

airflows at low pressures shall be predicted. Unlike the Iterative Weighted Least Square (IWLS) 

regression approach [24], pressure exponent and flow coefficient can be calculated without 

iteration: 
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𝑛 =
√∑ 𝑣𝑖𝑤𝑖

𝑁
𝑖=1 ∑ 𝑣𝑖𝑤𝑖𝑦𝑖

2 − (∑ 𝑣𝑖𝑤𝑖
𝑁
𝑖=1 𝑦𝑖)2𝑁

𝑖=1

√∑ 𝑣𝑖𝑤𝑖
𝑁
𝑖=1 ∑ 𝑣𝑖𝑤𝑖𝑥𝑖

2 − (∑ 𝑣𝑖𝑤𝑖
𝑁
𝑖=1 𝑥𝑖)2𝑁

𝑖=1

                                              (6) 

𝐶 = exp (
∑ 𝑣𝑖𝑤𝑖

𝑁
𝑖=1 𝑦𝑖 − 𝑛 ∙ ∑ 𝑣𝑖𝑤𝑖

𝑁
𝑖=1 𝑥𝑖

∑ 𝑣𝑖𝑤𝑖
𝑁
𝑖=1

)                                                       (7) 

 

In Eq. (6) and (7), vi and wi are the weights of each measurement point xi and yi. These weights 

are defined by Delmotte [25] as the reciprocal value of the measured standard deviation at each 

pressure level: 

𝑣𝑖 =
1

𝜎(𝑥𝑖)
                                                                                                                 (8) 

𝑤𝑖 =
1

𝜎(𝑦𝑖)
                                                                                                                (9) 

Thus, lower variability in the measured data gives it more significant weight in the analysis, and 

therefore, these points are more important in the fitting. 

In Figure 1, an example of a typical blower-door measurement with twelve different pressure 

differences and their corresponding airflow rates is shown. This specific example is just one out 

of the 7402 considered measurement series in this work in order to demonstrate the difference 

between the fitting of OLS and WLOC (a depressurization test of a masonry structure with an 

open 150 mm diameter furnace flue). The measured standard deviations for each point are 

displayed as well. For the same measurement series, both previously described regression 

methods are applied, and the resulting power-law functions are plotted on a linear scale. The 

Ordinary Least Square fitting (blue line) tries to find an appropriate fit for all pressure 

differences equally. In contrast, the Weighted Line of Organic Correlation (red line) considerably 

improves the fit for data points with low measurement uncertainty. Data with more significant 
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errors are less important in the fitting. In this specific case, WLOC shows a significantly better 

fitting for measurement data points in particular above 25 Pa pressure difference. 

 

 

FIG. 1  Linear display of a comparison between OLS and WLOC fitting technique for one 

blower-door measurement series 

 

2.3. Probability Density Functions 

To determine the potential improvement using WLOC, we took the results for each of the 109 

configurations and looked at the distribution of calculated n and C for both WLOC and OLS for 

multiple measurements. This comparison was achieved by the analysis of Probability Density 

Functions (PDFs) for each individual leakage configuration. The area under the PDF curve 

between two points equals the probability of getting a value between these two points. Therefore, 

not the value of the function is essential but the integral. Here, the PDFs were calculated using 

the Kernel Density Estimation (KDE) algorithm, which allows estimating an unknown 
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continuous density function from a set of N discrete 1D data samples xs,i, with 1 ≤ i ≤ N [37]. The 

use of KDE has a significant advantage of directly evaluating the data without previously 

applying a model onto it [38]. In contrast to the commonly used histogram as an estimation of a 

datasets density, the shape of the kernel density estimation is continuous and seems to be a 

reasonable estimation of the “true” PDF [39]. According to Sheather [40], the bias of kernel 

density estimation is one order better compared to a histogram estimator.  

The approximated PDF fĥ(𝑥𝑠) was computed as (cf. [41]): 

𝑓ℎ̂(𝑥𝑠) =
1

𝑁 ∙ ℎ
∑ 𝐾 (

𝑥𝑠 − 𝑥𝑠,𝑖

ℎ
)

𝑁

𝑖=1

                                                                       (10) 

Each observed sample is first replaced with a uniform kernel K, which is here based on the 

normal Gaussian distribution, which is the most frequently used kernel [39]: 

𝐾(𝑥) =
1

√2𝜋
𝑒−

𝑥2

2                                                                                                  (11) 

A summation of these curves and a subsequent normalization to obtain an area of 1 under the 

final curve, leads to an approximated PDF. The parameter h in Eq. (10) is the bandwidth, which 

adjusts the smoothness of the PDF and is calculated as recommended by Silverman [38]:  

ℎ = 1.06 ∙ 𝜎 ∙ 𝑁−
1
5                                                                                                (12) 

The narrower the distribution of the results (i.e., lower variance), the less sensitive the analysis is 

to experimental variation (primary from wind), and the lower the uncertainty is for any given test 

in predicting the correct leakage. 
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3. RESULTS AND DISCUSSION 

Results are presented here in terms of PDFs of predictions of pressure exponent n and flow 

coefficient C for different leak configuration. We also examined the variability in other metrics 

that are commonly used: the building envelope flow and the equivalent leakage area at both 4 

and 10 Pa reference pressures. 

 

3.1. Pressure Exponent and Flow Coefficient 

The PDFs were calculated for all 109 configurations. We provide example figures for illustration 

purposes. Each example is for one single leak configuration. The small vertical lines next to the 

x-Axis indicate the predicted values of n and C for a complete series of measurements using the 

OLS (blue line) and WLOC (red line) regression method, respectively. The global maximum of 

the PDFs can be interpreted as the mode and is here the expected true value of n and C for the 

respective data set and regression technique. 

 

The results were broken down into five different fundamental cases: 

1. Equal expected values and higher variances for OLS: 

In this case, both regression methods predict approximately the same values of n and C, 

but the PDFs of the OLS regression have a significantly higher variance. An example is 

shown in Figure 2. In this specific configuration, the OLS regression method predicts the 

pressure exponent values over a broad range, here between 0.55 and 0.78. The 

distribution of calculated pressure exponent values using the WLOC regression method is 

here limited between 0.57 and 0.69. Even though the highest density of calculated 

pressure exponents and flow coefficients for both regression methods has roughly the 
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same value (𝑛 = 0.6), the probability of getting close to this value with one single 

measurement, which is often done in field testing, is much higher using WLOC 

regression. For this specific configuration, the variance using the WLOC regressing 

technique is reduced by 67 % for the pressure exponent and by 52 % for the flow 

coefficient. 

 

 

FIG. 2  PDF of calculation of n and C using OLS and WLOC fitting method, with a 

higher variance of OLS and approximately the same mean values 

 

2. Different expected values and higher variances for OLS: 

The estimation of the expected values differs significantly for both regression techniques. 

In addition, the PDFs of the OLS regression method have a higher variance. Most of the 

investigated leak configurations fall into this case. In the displayed configuration (see 

Figure 3), the point of the highest density of the predicted pressure exponent n differs by 
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approximately 0.11 (𝑛𝑂𝐿𝑆 = 0.76, 𝑛𝑊𝐿𝑂𝐶 = 0.65). In most cases, a higher prediction of 

n simultaneously results in a lower prediction of C because C and n tend to be highly 

correlated [20]. The variance of n is reduced by 75 % and the variance of C by 61 % 

using WLOC in the displayed configuration. Thus, even with multiple fan pressurization 

measurement series, the probability of getting close to the correct values for n and C is 

challenging using OLS. 

 

FIG. 3  PDF of calculation of n and C using OLS and WLOC fitting method, with a 

higher variance of OLS and different mean values 

 

3. Equal expected values and equal variances: 

In the third case, the shapes of the PDFs of pressure exponent and flow coefficient with 

both fitting methods are approximately the same. Here, both regression methods predict n 

and C with an equal probability. An example is shown in Figure 4, where 𝑛 = 0.67 for 

both regression methods. In this case, the choice of regression method is of no 
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importance, because the performance of both is the same. 

 

 

FIG. 4  PDF of calculation of n and C using OLS and WLOC fitting method, with 

approximately the same variances and the same mean values 

 

4. Different expected values and equal variances: 

The shapes of the PDFs classified as case 4 are similar and, therefore, the variances are 

similar for both regression techniques. However, the expected values are considerably 

different (see Figure 5, where 𝑛𝑂𝐿𝑆 = 0.66, 𝑛𝑊𝐿𝑂𝐶 = 0.61). Here, it is not clearly evident 

which value of n or C can be interpreted as the true value for this configuration. Only a 

few leak configurations fall into this category. 
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FIG. 5  PDF of calculation of n and C using OLS and WLOC fitting method, with 

approximately the same variances and different mean values 

 

5. Equal expected values and higher variances for WLOC: 

This case is the opposite of case 1. Both regression methods predict values of n and C, 

which are very close to each other, but WLOC has a higher variance this time. In the 

example, displayed in Figure 6, the values for n are 𝑛𝑂𝐿𝑆 = 0.69 and 𝑛𝑊𝐿𝑂𝐶 = 0.70. At 

leak configurations that fit in case 5, the WLOC regression method seems to perform 

worse than the OLS method. However, the number of configurations allocated to this 

case is far lower compared to the number of configurations in cases 1 or 2. Additionally, 

the number of measurements per leak configuration and thus, the number of data samples 

that were used to calculate the PDF was considerably lower for the configurations in case 

5. Therefore, the reliability of these PDFs might be lower. 
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FIG. 6  PDF of calculation of n and C using OLS and WLOC fitting method, with a 

higher variance of WLOC and approximately the same mean values 

 

There is no distinct case where the prediction of both regression curves is significantly different 

and where the variances of the PDFs of WLOC are higher. 

The effectiveness of the WLOC approach depends on how often tests fall into these different 

categories. For this data set of 7.402 sets of measurements with 109 different test configurations, 

17.4 % can be allocated to case 1, 40.5 % to case 2, 15.6 % to case 3, 7.3 % to case 4 and 12.8 % 

to case 5, which is shown in Figure 7. Only 6.4 % of the investigated tests cannot explicitly be 

allocated to one of these cases. The most popular case (case 2) has both a lower variance for 

WLOC and differences in predicted leakage parameters, C and n. This is an interesting result 

because we might have expected a lower variance for WLOC but not necessarily a change in the 

predicted value. Combining cases 2 and 4 shows that about half the tests show changes in 

predicted value between the two approaches. The example for case 5 shows that even when 
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WLOC has higher variance, it is not as high as the higher variance result for OLS. In most of the 

investigated leak configurations, the variance of WLOC is lower compared to OLS, and the 

expected value is different. 

 

 

FIG. 7  Share of each case of the total number of investigated leak configurations  

 

In 73.5 % of all investigated configurations, the WLOC regression technique that gives lower 

weighting to data with higher variability is better than or at least as good as the conventionally 

used OLS regression. Overall, the WLOC substantially reduces the variances in the test results 

on average for all 7402 tests by 32 % for pressure exponent n and by 22 % for flow coefficient 

C. 

 

3.2. Airflow Rate and Equivalent Leakage Area 

In addition to the test-to-test uncertainty, there may be biases introduced by testing at different 

wind speeds [29]. Here, the airflow rates and the equivalent leakage areas (ELAs) are shown for 
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one specific example (depressurization of a masonry structure with an open 150 mm diameter 

furnace flue). This example has been chosen because it contains a large amount of 65 tests.  

The equivalent leakage area is the area of a sharp-edged hole (that has a pressure exponent of 

0.5) that has the same flow at a fixed reference pressure as the power-law formulation. The ELA4 

at a pressure of 4 Pa can be defined as followed: 

𝐸𝐿𝐴4 =
𝑄4

𝐶𝐷
√

𝜌

2∆𝑃4
                                                                                               (13) 

Here, Q4 (m³/s) is the airflow at 4 Pa pressure difference, ρ (kg/m³) is the density of air, CD is a 

fixed discharge coefficient, and ΔP4 is the reference pressure at 4 Pa. 

To better observe the sensitivity of testing bias to wind, the results of the 65 repeated tests for 

this configuration were binned every 1 m/s of wind speed. This process reveals any biases due to 

testing at different wind speeds. The results are plotted as differences between the calculated 

value (using the power-law) and a reference value. This reference value has been chosen as the 

value with the lowest corresponding wind speed in the data set and can be seen as a benchmark 

to the other measurements at higher wind speeds because the influence of wind is the smallest. 

These reference cases at low wind speeds have also been used in previous studies, e.g., [14]. A 

good fit, and thus a reasonable estimation of airflow rates or ELAs at low pressures, is therefore 

characterized by a small difference between the estimated value and the reference value. 

For this analysis, airflow rates and ELAs at 4 and 10 Pa pressure difference have been chosen. 

Airflow rates at 4 Pa pressure differences are relevant for users because it is a typical metric for 

energy simulations [15] or indoor air quality applications [16]. The ELA at 4 Pa pressure 

difference is part of the ASTM E779 standard [9] and is at 10 Pa pressure difference part of the 

Canadian CGSB 149.10 standard [11]. 
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In Figure 8, the average relative airflow rate is plotted as a function of the mean wind speed 

during the measurement, evaluated at 4 (a) and 10 Pa (b) pressure difference. For mean wind 

speeds up to 2 m/s, both regression techniques appear to be equally good. For mean winds speed 

of more than 2 m/s, the difference between the reference value and the calculated values 

increases particularly for OLS up to 6 m/s. This increase in uncertainty at higher wind speeds has 

been recognized in the DIN EN  ISO 9972 test method [10] that states that above a 

meteorological wind speed of 6 m/s it is unlikely to obtain satisfactory pressure difference 

measurements. At the last bin between 6 and 7 m/s, the OLS seems to obtain better values again 

(compared to the previous bin). However, this last bin needs to be treated with caution because it 

contains only one single measurement. All other bins include far more than one measurement 

and are therefore more reliable. 

 

 

FIG. 8  Average relative airflow rate as a function of the mean wind speed at (a) 4 Pa and 

(b) 10 Pa pressure difference binned every 1 m/s of wind speed 

 

Figure 9 shows the average relative ELAs at 4 (a) and 10 Pa (b) pressure difference. Here, the 

differences between the calculated values and the reference value increase much more with the 

mean wind speed for OLS. The vertical bars show the variability in ELA within each bin. In 
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contrast to the relative airflow rate, the error of predicted ELAs seems to increase with 

decreasing pressure. The error for extrapolation up to 4 Pa is in this specific configuration for 

OLS higher than for 10 Pa. The error for WLOC seems to remain more or less the same. Again, 

the last bin contains only one value. 

 

 

FIG. 9  Average relative equivalent leakage area as a function of the mean wind speed at 

(a) 4 Pa and (b) 10 Pa pressure difference binned every 1 m/s of wind speed 

 

In general, Figures 8 and 9 show that OLS has much higher wind-induced biases, and these 

biases toughly increase with wind speed. Even though standards (e.g., [10]) allow fan 

pressurization measurements up to 6 m/s, these findings show that the extrapolation error of OLS 

is much higher in this range compared to WLOC. 

 

4. CONCLUSION AND FUTURE WORK 

WLOC reduces the variances for pressure exponent n and flow coefficient C, typically by 

32 % and 22 %, respectively, averaged over 7402 fan pressurization tests. Therefore, the use of 

this analysis technique is encouraged and should be adopted by building test standards. One 

caveat is that each pressure station needs to record the uncertainty (variance or standards 
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deviation) at each point in addition to the mean. Given modern test equipment and test 

automation, this should not be too much of a barrier. Work will be required with test equipment 

manufacturers to incorporate the recording of these data, together with the calculation procedures 

for WLOC. 

 

5. NOMENCLATURE 

Abbreviations 

AHHRF Alberta Home Research Facility 

ELA  Equivalent Leakage Area 

IWLS  Iterative Weighted Least Square 

KDE  Kernel Density Estimation 

OLS  Ordinary Least Square  

PDF  Probability Density Function 

WLOC  Weighted Line of Organic Correlation 

Latin Symbols 

C  Flow coefficient [m³/(h·Pa
n
)] 

CD  Discharge coefficient [-] 

fĥ(𝑥𝑠)  Density function which approximated the probability density function 

N  Number of measurement points 

n  Pressure exponent [-] 

P  Pressure [Pa] 

Q  Airflow [m³/h] 

u  Wind speed [m/s] 
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vi  Weight of the x-value 

wi  Weight of the y-value 

xi  Measurement coordinate which corresponds to ln(∆𝑃𝑖) 

xs  Data samples 

yi  Measurement coordinate which corresponds to ln(𝑄𝑖)  

Greek Symbols 

Δ  Difference 

ρ  Density of air [kg/m³] 

σ  Standard deviation 

Subscripts 

4  Evaluated at 4 Pa pressure difference 

10  Evaluated at 10 Pa pressure difference 

i  Single measurement point 

ref  Reference point 
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