

Computation 2020, 8, 88; doi:10.3390/computation8040088 www.mdpi.com/journal/computation

Article

A QP Solver Implementation for Embedded Systems

Applied to Control Allocation

Christina Schreppel * and Jonathan Brembeck

Institute of System Dynamics and Control, Robotics and Mechatronics Center, German Aerospace Center

(DLR), 82234 Weßling, Germany; jonathan.brembeck@dlr.de

* Correspondence: christina.schreppel@dlr.de; Tel.: +49-8153-28-4507

Received: 31 August 2020; Accepted: 06 October 2020; Published: 13 October 2020

Abstract: Quadratic programming problems (QPs) frequently appear in control engineering. For

use on embedded platforms, a QP solver implementation is required in the programming language

C. A new solver for quadratic optimization problems, EmbQP, is described, which was

implemented in well readable C code. The algorithm is based on the dual method of Goldfarb and

Idnani and solves strictly convex QPs with a positive definite objective function matrix and linear

equality and inequality constraints. The algorithm is outlined and some details for an efficient

implementation in C are shown, with regard to the requirements of embedded systems. The newly

implemented QP solver is demonstrated in the context of control allocation of an over-actuated

vehicle as application example. Its performance is assessed in a simulation experiment.

Keywords: quadratic programming problems; active set method; embedded systems; control

allocation problem; over-actuated mechanical systems

1. Introduction

Quadratic programming problems occur in various areas, for example in portfolio optimization

where the risk-adjusted return shall be maximized [1], in signal processing operations, in audio

applications [2], and in machine learning [3]. The efficient and reliable solution of quadratic

programming problems (QPs) is essential in the solution of many real-time control problems.

Especially, the use on electronic control units and embedded platforms poses challenges, as

described in [1,4]. To run on platforms with little memory space, the solver should consist of code

with a small footprint that is self-contained and does not depend on external libraries. For the use in

real-time applications, a solution must certainly be accomplished within the sampling time, which

can be very short depending on the application. So, the solver needs to be reliable and provide a

solution even in the case of poor quality data without causing a termination of the algorithm in

which the solver is used. Furthermore, the solver needs to be provided in a programming language

matching the requirements of safety-critical applications, such as C, which is widely used especially

in the automotive sector. A new C-implemented QP solver is presented here. It is based on the dual

method of Goldfarb and Idnani [5]. Other solvers are based on the same method, such as the C++

libraries QuadProg++ [6] and qpmad [7] or a Matlab solver named QP [8]. There also exists a Fortran

implementation by Schittkowski named QL [9] based on this dual method. Automatic conversion

from Fortran to C is available with the f2c program [10]. However, the C code generated in this way,

is not appropriate for application on embedded systems, since it relies on external Fortran libraries

and consists of many jump statements. Yet, simple control structures provide benefits for the use on

embedded platforms since, e.g., loops with a fixed number of iterations and the avoidance of jump

statements make it easier to analyze the overall execution of the code and to determine the real-time

capability of the code. Moreover, code with simple control structures is easier to maintain if

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Institute of Transport Research:Publications

https://core.ac.uk/display/338194044?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Computation 2020, 8, 88 2 of 21

adaptations should be necessary. However, such manual modifications in the f2c-generated code are

not advisable, since the converted code is confusing and not well readable. For these reasons, a

handwritten well-readable and embedded system suitable C code implementation of the QL solver

was developed. This new implementation is called EmbQP. Although the new solver is based on the

same approach as the QL solver, it has been implemented completely new. The new solver follows

the process of the QL solver [9] only when handling non-positive definite matrices in the objective

function of the QP problem. In contrast to [9], the EmbQP solver can also be used to solve QP

problems without any lower and/or upper bounds of the solution vector being given. As an

application example for the use of QPs, the control allocation problem from [11] is considered. It is

included in the context of path following control for DLR’s ROboMObil (ROMO), a robotic full

x-by-wire research vehicle [12]. In [11], the QL solver of Schittkowski was used to solve the QP

problems. In the work presented here, the new EmbQP solver is used in this application example,

and the simulation results of the two solvers are shown and compared.

The QL Fortran routine according to [9] and the underlying algorithm of Goldfarb and Idnani

are explained in Section 2. Section 3 details the implementation of the EmbQP solver. In Section 4,

the control allocation problem is described. The results of the simulations and the comparison

between the QL solver and the new EmbQP solver are shown in Section 5.

2. Description of the EmbQP Algorithm

The new C implemented QP solver follows the dual active set method of Goldfarb and Idnani

[5] with some additions from [9]. The algorithm solves the following strictly convex quadratic

programming problem:

min 𝑓(𝒙) : =
1

2
𝒙𝑇𝑪𝒙 + 𝒅𝑇𝒙

s. t. 𝒂𝑗
𝑇𝒙 + 𝒃𝑗 = 0, 𝑗 = 1, . . . , 𝑚e

𝒂𝑗
𝑇𝒙 + 𝒃𝑗 ≥ 0, 𝑗 = 𝑚e + 1, . . . , 𝑚

𝒙l ≤ 𝒙 ≤ 𝒙u

 (1)

with a symmetric and positive definite matrix 𝑪 ∈ ℝ𝑛×𝑛 , vectors 𝒙 ∈ ℝ𝑛 and 𝒅 ∈ ℝ𝑛 , and a

(𝑚 × 𝑛)-matrix 𝑨 = (𝒂1, … , 𝒂𝑚)𝑇, together with 𝒃 ∈ ℝ𝑚 representing 𝑚 linear constraints. Upper

and lower bounds for the variable 𝒙 are given by 𝒙u ∈ ℝ𝑛 and 𝒙l ∈ ℝ𝑛, respectively. The number

of all equality constraints is denoted as 𝑚e.

In this implementation, the lower and upper bounds on 𝒙 are treated as additional inequality

constraints by an appropriate expansion of 𝑨 and 𝒃. Then, the number of constraints 𝑚 is adapted

internally. However, it is optional to specify such limits, since the EmbQP solver can also handle QP

problems without explicit declaration of lower and upper bounds on 𝒙, where the constraints are

thus only given by 𝑨 and 𝒃. In contrast, the QL solver of Schittkowski always needs the input of

such lower and upper bounds, and if a QP without such bounds is to be solved with it, sufficiently

large values must be provided.

The QL routine of Schittkowski is based on the dual method of Goldfarb and Idnani, and the

implementation of it goes back to Powell [13]. Some important points of the method of Goldfarb and

Idnani are described here, whereas a detailed description can be found in [5]. A good summary of

this method can also be found in [14]. The method of Goldfarb and Idnani creates optimal

approximate solutions, while the value of the objective function is monotonically increasing. The

method uses a so-called active set of constraints 𝐼 ⊂ {1, … , 𝑚} which is the empty set at the

beginning. During the course of iterations, indices of the constraints are added to 𝐼 so that 𝐼

represents the set of constraints that are satisfied as equalities with the current solution. Indices of

inequality constraints can also be removed from 𝐼 if the corresponding constraint is no longer

active. The minimum of the objective function subject to the current active set 𝐼 is calculated at

every iteration.

For an active set 𝐼, the subproblem 𝑃(𝐼) is defined to be the relaxed quadratic programming

problem with the objective function of Equation (1) subject to the subset of constraints, which is

Computation 2020, 8, 88 3 of 21

given by the active set 𝐼. In every iteration of the algorithm, 𝒙 and 𝐼 are defined to be the solution

pair (𝒙, 𝐼) if the following conditions are fulfilled: the vectors {𝒂𝑖}𝑖∈𝐼 ⊂ ℝ𝑛 are linearly

independent, the relaxed problem 𝑃(𝐼𝑘) is feasible, 𝒙𝑘 minimizes the objective function 𝑓, and 𝒙𝑘

satisfies all constraints in 𝐼𝑘 with equality. With these definitions, the basic principle of the method

of Goldfarb and Idnani can be described. It comprises the following steps in Table 1.

Table 1. Basic principle of the method of Goldfarb and Idnani.

• Compute the first solution pair (𝒙0, 𝐼0) ≔ (−𝑪−1𝒅, ∅)

• For 𝑘 = 0,1, … repeat:

o If all constraints are satisfied: 𝒙𝑘 is the optimal solution, STOP

o Else:

▪ Choose any of the remaining violated constraints 𝑝 ∈ {1, … , 𝑚}\ 𝐼𝑘

▪ If 𝑃(𝐼𝑘 ∪ {𝑝}) is infeasible: the problem is infeasible, STOP

▪ Else: Compute new solution pair (𝒙𝑘+1, 𝐼𝑘+1)where 𝐼𝑘+1 = 𝐼𝑘̅ ∪ {𝑝}, 𝐼𝑘̅ ⊂ 𝐼𝑘 and

𝑓(𝒙𝑘+1) > 𝑓(𝒙𝑘)

Since the active set 𝐼 represents the empty set at the beginning of the algorithm, 𝒙0 yields the

minimum of the problem Equation (1) in the unconstrained case (𝑚 = 0), which is the minimum of

the bare objective function. It serves as a starting point, and the first solution pair is given by

(𝒙0, 𝐼0) ≔ (−𝑪−1𝒅, ∅). The iteratively calculated solution points 𝒙𝑘 are inadmissible except for the

last one; therefore, there is no need to search for a feasible starting point with the dual method in

contrast to other primal active set methods.

The algorithm terminates either after finding the optimal solution 𝒙 of the problem Equation

(1) or after detecting that the problem is infeasible. The termination occurs after a finite number of

steps, since the number of possible solution pairs is finite and since the return of the algorithm to a

formerly computed solution pair is not possible, because the values of the objective function are

monotonically increasing from one iteration to the next. The number of the solution pairs is limited

by the number of possible subsets of {1, … , 𝑚}, which is 2𝑚 at the most. A reliable upper limit of

iterations is particularly important for the use in hard real-time applications.

With a solution pair (𝒙, 𝐼) from the last iteration and a newly chosen violated constraint 𝑝, two

possible cases can occur. Either the vectors {𝒂𝑖: 𝑖 ∈ 𝐼 ∪ {𝑝}} are linearly independent or 𝒂𝑝 is

linearly dependent on {𝒂𝑖: 𝑖 ∈ 𝐼}. Based on these cases, the index 𝑝 can either be added directly to

the active set 𝐼 or an element, which is no longer considered active, has to be removed from 𝐼 first

before adding 𝑝 to it. The index 𝑝 is in any case added to 𝐼.

A short summary of the algorithm of Goldfarb and Idnani is given in Table 2 where, in

comparison to the basic principle in Table 1, particularly the computation of a new solution pair is

described in more detail. The description of the algorithm is based on [5] and [14]. The notation 𝑨𝐼

is used here to describe a reduced matrix composed only of the rows of 𝑨 whose indices of the

corresponding constraints are included in the current active set 𝐼.

The algorithm takes steps in the primal and dual space, which means in the primal and dual

variables, so changes in 𝒙 and/or in the Lagrange multipliers of the corresponding dual problem

occur [5]. The dual feasibility is always fulfilled, producing the primal optimality of the subproblems

in each iteration. Primal feasibility, i.e., compliance with all constraints, applies only to the last,

optimal solution point. A change in the active set and in the dual variables is possible without

changing 𝒙; see step 6 in Table 2.

Computation 2020, 8, 88 4 of 21

Table 2. Algorithm of Goldfarb and Idnani.

Inputs: 𝑪, 𝒅, 𝑨, 𝒃, 𝒙l, 𝒙u, 𝑛, 𝑚, 𝑚e

1. Compute the minimum of the unconstrained problem: 𝒙 = −𝑪−1𝒅, 𝑓min =
1

2
 𝒅𝑇𝒙

2. If all constraints are fulfilled: 𝒙 is the solution, STOP

Else: Choose a violated constraint 𝑝 ∈ {1, … , 𝑚}\𝐼

3. Determine the step directions in the primal and dual space:

Compute the matrices 𝑵𝐼 = (𝑨𝐼𝑪−1𝑨𝐼
𝑇)−1𝑨𝐼 𝑪−1 and 𝑯𝐼 = 𝑪−1 (𝐈 − 𝑨𝐼

𝑇 𝑵𝐼), and from these,

determine the vectors 𝒛 = 𝑯𝐼 𝒂𝑝 and 𝒓 = 𝑵𝐼 𝒂𝑝

4. Calculate the step length 𝑡 using 𝑡1 and 𝑡2:

full step length 𝑡1: minimal step length in the primal space such that the constraint 𝑝

becomes feasible

partial step length 𝑡2: maximal step length in the dual space such that the dual feasibility is

not violated

5. If no step in the primal or dual space is possible: problem is infeasible, STOP

6. If step in the dual space: a constraint is removed from the active set 𝐼, go to 3.

7. If step in the primal and dual space: Compute 𝒙new = 𝒙 + 𝑡𝒛 and 𝑓min,new and 𝐼new

If a constraint is added to 𝐼: go to 2.

If a constraint is removed from 𝐼: go to 3.

Outputs: 𝒙, 𝑓min

The algorithm detects, on the basis of the step length, whether a new constraint can be added to

the active set or whether an active constraint has to be removed first from the active set, i.e., whether

a full step or a partial step is taken. If a step violates the dual feasibility, it has to be shortened. More

details about the implementation of this method in the EmbQP algorithm are described in the next

section.

3. EmbQP Implementation Details

Table 3 shows a summary of all inputs and outputs of the EmbQP solver. Further outputs are

conceivable and easy to provide, such as the final active set 𝐼 that includes the indices of all

constraints satisfied with equality by the solution vector.

Table 3. Inputs and outputs of the EmbQP implementation.

Inputs:

𝑛: dimension of the solution vector

𝑚: number of constraints

𝑚e: number of equality constraints

𝑪 ∈ ℝ𝑛×𝑛: matrix in the objective function

𝒅 ∈ ℝ𝑛: vector in the objective function

𝑨 ∈ ℝ𝑚×𝑛: matrix of the constraints; the first 𝑚e rows refer to equality constraints

𝒃 ∈ ℝ𝑚: vector of the constraints

𝒙l ∈ ℝ𝑛: lower bounds for 𝒙

𝒙u ∈ ℝ𝑛: upper bounds for 𝒙

𝑏𝑜𝑢𝑛𝑑𝑠_𝑥_𝑙 (boolean): indicates whether bounds 𝒙l are present

𝑏𝑜𝑢𝑛𝑑𝑠_𝑥_𝑢 (boolean): indicates whether bounds 𝒙u are present

𝑒𝑝𝑠: desired accuracy

𝑚𝑜𝑑𝑒: determines whether an initial Cholesky decomposition of 𝑪 is available

𝑟𝑒𝑎𝑙_𝑤𝑜𝑟𝑘𝑎𝑟𝑟𝑎𝑦: working memory for temporary float type data (= preallocated memory for

internal calculations)

𝑖𝑛𝑡_𝑤𝑜𝑟𝑘𝑎𝑟𝑟𝑎𝑦: working memory for temporary integer type data (= preallocated memory for

internal calculations)

Outputs:

Computation 2020, 8, 88 5 of 21

𝒙 ∈ ℝ𝑛: solution vector

𝑓min: optimal value of the objective function

𝑒𝑥𝑖𝑡: reports whether the optimization was successful

In comparison to Table 2, the EmbQP solver implementation requires additional inputs that

need to be specified in the calling function. These include Boolean parameters 𝑏𝑜𝑢𝑛𝑑𝑠_𝑥_𝑢 and

𝑏𝑜𝑢𝑛𝑑𝑠_𝑥_𝑙 that determine whether upper or lower bounds for the solution vector are provided or

not. In contrast to the Fortran QL solver, the EmbQP solver also works if no upper or lower bounds

or only either of them are given. Another additional input is the desired accuracy 𝑒𝑝𝑠. It is used for

comparisons of variables with zero and should therefore be greater than the target machine

precision. Furthermore, as it is the case with the Fortran QL solver, the integer input parameter

𝑚𝑜𝑑𝑒 needs to be specified. It determines whether an initial Cholesky decomposition of 𝑪 is

already known from the start and can be provided by the calling function. If this is the case, the

provided factorization is stored in the lower triangular part of 𝑪, and consequently, it is possible to

save redundant Cholesky decomposition in the algorithm. When programming code for the use on

embedded systems, dynamic memory allocation should be avoided. Wherever possible, the input

arguments of a function are overwritten with internal calculations and output arguments to

effectively use the available memory. Moreover, a function may need additional temporary memory

for internal calculations. To overcome recurrent dynamic memory allocation, pointers to

pre-allocated working arrays with an appropriate length and data type are passed to the function.

The EmbQP code uses two working arrays, one for float-type data and one for integer-type data.

Their size depends only on the dimensions 𝑛 and 𝑚. The C code segment, where pointers to the

integer working array are set, is shown in Table A1. Turning to the outputs, the optimal solution 𝒙

is returned as the main result. Moreover, the minimal objective function value 𝑓min is provided and

an integer 𝑒𝑥𝑖𝑡 is returned. The latter reports whether the optimization was successful. This is the

case if 𝑒𝑥𝑖𝑡 = 1 and only then do the other outputs have reasonable values. The case 𝑒𝑥𝑖𝑡 = 2

reveals an infeasible problem, and the case 𝑒𝑥𝑖𝑡 = 3 occurs if the maximal number of iterations is

exceeded. This last case may only arise due to rounding errors, since theoretically, with infinite

precision, the algorithm will always find an optimal solution or detect the infeasibility of the

problem. In the cases 𝑒𝑥𝑖𝑡 = 2 or 𝑒𝑥𝑖𝑡 = 3, the EmbQP algorithm does not deliver meaningful

values for 𝒙 and 𝑓min, but it ensures that the solution returned for 𝒙 is within the bounds 𝒙l and

𝒙u. Table A2 shows how this is done in the C code in the case of an unfeasible problem. So, at least

these constraints are always fulfilled as long as they represent applicable boundaries. A C main

function in Table A3 shows data for an example QP problem and how the EmbQP solver is called

with the above-mentioned inputs and outputs.

The matrix 𝑪 in the objective function of Equation (1) needs to be symmetric and positive

definite in the original algorithm. The routine of Schittkowski can also handle positive semidefinite

matrices 𝑪 that may occur as a consequence of rounding errors or other numerical deficiencies. This

approach is also adopted in the EmbQP solver. At the beginning of the algorithm, a Cholesky

decomposition of 𝑪 is carried out (if not already provided), and during this factorization, a

non-positive definite matrix can be identified. In this case, the identity matrix multiplied by a small

factor 𝐷𝐼𝐴𝐺 is added to the matrix 𝑪 to increase its diagonal elements. 𝐷𝐼𝐴𝐺 is increased

iteratively until a positive definite matrix is obtained for which the Cholesky decomposition can be

performed. In this situation, a quadratic programming problem with a slightly perturbed objective

function with 𝑪 + 𝐷𝐼𝐴𝐺 ⋅ 𝑰 instead of 𝑪 is solved. Based on [13], the value of 𝐷𝐼𝐴𝐺 and the

perturbed 𝑪 are computed using the elements of the already calculated decomposition matrix as

well as the pivotal element that caused the break of the decomposition. It is ensured that 𝐷𝐼𝐴𝐺 is

positive and increases its value in each step so that the procedure converges and provides a small

value that gives positive definiteness.

Several options are possible for the choice of the violated constraint 𝑝 ∈ {1, … , 𝑚}\𝐼 to be

added to the active set. The successful termination of the algorithm does not depend on this choice,

so one has the freedom of choosing any violated constraint. However, by an adapted choice, the

Computation 2020, 8, 88 6 of 21

number of iterations may be reduced. A simple possibility with no additional computation is the

choice of the violated constraint with the lowest index. An alternative that might be more effective is

to choose the most severely violated constraint. Different strategies for this choice, for example the

computation of euclidean distances, can be found in [15]. In the implementation of the EmbQP

solver, two possibilities were tested: in one case, the violated constraint with the lowest index was

used, and in the other case, the most violated constraint was chosen. The latter one is the constraint

for which the absolute value of the residual 𝒂𝑗
𝑇𝒙 + 𝒃𝑗 is the greatest, with 𝑗 ∈ {1, . . . , 𝑚} a violated

constraint from Equation (1). The results for both variants were equivalent in terms of 𝒙; however,

the first variant required more iterations until the optimal solution was found, which led to a longer

computing time. For this reason, the second option was used for the results presented in Section 5.

The corresponding segment of the EmbQP code selecting the violated constraint 𝑝 is shown in

Table A4.

Table 4 shows a pseudo code of the EmbQP algorithm, using the method in Table 2 and the

input arguments of Table 3.

Table 4. Pseudo code of the EmbQP algorithm.

internally used variables are set to pointers in the working memory

if present, the constraints defined by 𝒙l and 𝒙u are attached to 𝑨 and 𝒃

compute the Cholesky decomposition 𝑪 = 𝑳𝑳𝑇, if not provided, and the inverse 𝑼 = 𝑳−1

compute 𝒙 = −𝑪−1𝒅 and 𝑓min =
1

2
 𝒅𝑇𝒙

set 𝑒𝑥𝑖𝑡1 = 𝑓𝑎𝑙𝑠𝑒, 𝑎𝑑𝑑 = 𝑓𝑎𝑙𝑠𝑒, 𝑟𝑒𝑚𝑜𝑣𝑒 = 𝑓𝑎𝑙𝑠𝑒, 𝑘 = 0, 𝑒𝑥𝑖𝑡 = 0, 𝑞 = 0

while (𝑒𝑥𝑖𝑡1 == 𝑓𝑎𝑙𝑠𝑒) and (𝑘 ≤ 𝑖𝑡𝑒𝑟_𝑚𝑎𝑥):

choose a violated constraint 𝑝

if there is no violated constraint: 𝑒𝑥𝑖𝑡 = 1, 𝑒𝑥𝑖𝑡1 = 𝑡𝑟𝑢𝑒

compute 𝜎 = sgn(𝑏𝑝 − 𝒂𝑝
T 𝒙), 𝜃 = 0

set 𝑒𝑥𝑖𝑡2 = 𝑓𝑎𝑙𝑠𝑒

while (𝑒𝑥𝑖𝑡 == 0) and (𝑒𝑥𝑖𝑡2 == 𝑓𝑎𝑙𝑠𝑒)

if 𝑞 == 0: compute 𝒛 = 𝑪−𝟏𝒂𝑝

else if 𝑎𝑑𝑑 == 𝑡𝑟𝑢𝑒: compute 𝑵𝐼 = (𝑨𝐼𝑪−1𝑨𝐼
𝑇)−1𝑨𝐼 𝑪−1, 𝑯𝐼 = 𝑪−1 (𝐈 − 𝑨𝐼

𝑇 𝑵𝐼),

𝒛 = 𝑯𝐼 𝒂𝑝, 𝒓 = 𝑵𝐼 𝒂𝑝, 𝑎𝑑𝑑 = 𝑓𝑎𝑙𝑠𝑒

else if 𝑟𝑒𝑚𝑜𝑣𝑒 == 𝑡𝑟𝑢𝑒: compute 𝑵𝐼 = (𝑨𝐼𝑪−1𝑨𝐼
𝑇)−1𝑨𝐼 𝑪−1,

𝑯𝐼 = 𝑪−1 (𝐈 − 𝑨𝐼
𝑇 𝑵𝐼), 𝒛 = 𝑯𝐼 𝒂𝑝, 𝒓 = 𝑵𝐼 𝒂𝑝, 𝑟𝑒𝑚𝑜𝑣𝑒 = 𝑓𝑎𝑙𝑠𝑒

end if

if 𝒛 ≠ 0: compute 𝑡1 =
𝑏𝑝−𝒂𝑝

𝑇𝒙

𝒂𝑝
𝑇𝒛

if 𝑞 > 0 and 𝜎 ⋅ 𝑟𝑖 > 0 for 𝑖 ∈ 𝐼 ∩ {𝑚e + 1, … , 𝑚}: compute 𝑡2 with

𝑡2 = min {
𝒚𝑖

𝒓𝑖
: 𝑖 ∈ 𝐼 ∩ {𝑚e + 1, … , 𝑚}, 𝒓𝑖 > 0} , if 𝜎 == 1, and

𝑡2 = max {
𝒚𝑖

𝒓𝑖
: 𝑖 ∈ 𝐼 ∩ {𝑚e + 1, … , 𝑚}, 𝒓𝑖 < 0} , if 𝜎 == −1

if 𝒛 = 0 and (𝑞 == 0 or 𝜎 ⋅ 𝑟𝑖 ≤ 0 for 𝑖 ∈ 𝐼 ∩ {𝑚e + 1, … , 𝑚}): problem is infeasible,
𝑒𝑥𝑖𝑡 = 2

compute 𝑡 with 𝑡 = min (𝑡1, 𝑡2), if 𝜎 == 1, and 𝑡 = max (𝑡1, 𝑡2), if 𝜎 == −1

if 𝒛 = 0: dual step, compute 𝜃 = 𝜃 + 𝑡, 𝐼new, 𝒚new, 𝑞 = 𝑞 − 1, 𝑟𝑒𝑚𝑜𝑣𝑒 = 𝑡𝑟𝑢𝑒

if 𝒛 ≠ 0: primal and dual step, compute 𝒙 = 𝒙 + 𝑡𝒛, 𝑓min, 𝜃 = 𝜃 + 𝑡

if 𝑡 = 𝑡1 : compute 𝐼new, 𝒚new, 𝑞 = 𝑞 + 1, 𝑎𝑑𝑑 = 𝑡𝑟𝑢𝑒, 𝑒𝑥𝑖𝑡2 = 𝑡𝑟𝑢𝑒

else: compute 𝐼new, 𝒚new, 𝑞 = 𝑞 − 1, 𝑟𝑒𝑚𝑜𝑣𝑒 = 𝑡𝑟𝑢𝑒

end while

if 𝑒𝑥𝑖𝑡 == 2: make sure that 𝒙 is within the limits 𝒙l and 𝒙u, 𝑒𝑥𝑖𝑡1 = 𝑡𝑟𝑢𝑒

set 𝑘 = 𝑘 + 1

end while

if 𝑘 > 𝑖𝑡𝑒𝑟_𝑚𝑎𝑥: make sure that 𝒙 is within the limits 𝒙l and 𝒙u, 𝑒𝑥𝑖𝑡 = 3

Computation 2020, 8, 88 7 of 21

Since the computation of the step sizes 𝑡1 and 𝑡2 and the dual variable 𝒚 was taken from [5]

and [14] and does not present any particular challenges for the implementation in C, it will not be

addressed further here. However, the computation of the two matrices 𝑵𝐼 and 𝑯𝐼 , is an essential

part of the algorithm and can be time-consuming if it is not done efficiently. It is explained in more

detail in the following.

At every iteration of the algorithm, directions in the primal and dual space are computed by

means of matrices 𝑵𝐼 and 𝑯𝐼 as specified in Table 4 and step 3 of Table 2. However, a direct

evaluation of these matrices is not efficient. These matrices depend on the active set 𝐼, which differs

only by one element from step to step because either an element is added to the active set or an

element is removed from it. Taking advantage of this feature enables updating of the matrices 𝑵𝐼

and 𝑯𝐼 . Updating the appropriate decompositions of 𝑵𝐼 and 𝑯𝐼 reduces the effort for computing

the step directions even more. The approach described in the following is based on [5] and [14]. At

the beginning of the algorithm, the Cholesky decomposition of the objective function matrix 𝑪 is

carried out, 𝑪 = 𝑳𝑳𝑇, and also the inverse of the lower triangular matrix 𝑳 is computed:

𝑼 = 𝑳−𝟏. (2)

For updating 𝑵𝐼 and 𝑯𝐼 , we assume that there exist matrices 𝒁𝐼 and 𝑹𝐼 with the following

characteristics:

𝒁𝐼𝒁𝐼
𝑇 = 𝑪−1 and 𝒁𝐼

𝑇𝑨𝐼
𝑇 = (

𝑹𝐼

0
) (3)

with 𝒁𝐼 ∈ ℝ𝑛×𝑛 and an upper triangular matrix 𝑹𝐼 ∈ ℝ𝑞×𝑞, where 𝑞 is the number of elements of

the current active set 𝐼. The matrix 𝒁𝐼 can be partitioned into two submatrices

𝒁𝐼 = (𝒁𝐼
(1)

 𝒁𝐼
(2)

) (4)

where 𝒁𝐼
(1)

∈ ℝ𝑛×𝑞 comprises the first 𝑞 columns of 𝒁𝐼 and 𝒁𝐼
(2)

∈ ℝ𝑛×(𝑛−𝑞) comprises the last 𝑛 −

𝑞 columns. By exploiting this and substituting Equations (3) and (4) in the definition of the matrices

𝑵𝐼 and 𝑯𝐼 in step 3 of Table 2, we obtain

𝑯𝐼 = 𝒁𝐼
(2)

𝒁𝐼
(2) 𝑇 and 𝑵𝐼 = 𝑹𝐼

−1𝒁𝐼
(1) 𝑇. (5)

Therefore, the matrices 𝑵𝐼 and 𝑯𝐼 can be expressed by means of the matrices 𝒁𝐼 and 𝑹𝐼. By

defining the vector

𝒅𝐼 ≔ 𝒁𝐼
𝑇𝒂𝑝 = (

𝒁𝐼
(1)𝑇

𝒁𝐼
(2)𝑇) 𝒂𝑝 = (

𝒅𝑰
(1)

𝒅𝐼
(2)) (6)

where 𝒂𝑝 is the row of the matrix 𝑨𝐼 with the index 𝑝, the vectors 𝒛 = 𝑯𝐼 𝒂𝑝 and 𝒓 = 𝑵𝐼 𝒂𝑝 can

be expressed as 𝒛 = 𝒁𝐼
(2)

𝒅𝐼
(2)

 and 𝑹𝐼𝒓 = 𝒅𝐼
(1)

. Since 𝑹𝐼 is an upper triangular matrix, the vector 𝒓

can be easily calculated by backwards substitution. So, for computing the step directions, there is no

need to determine the matrices 𝑵𝐼 and 𝑯𝐼 in every iteration. Updating 𝒁𝐼 and 𝑹𝐼 is sufficient and

comprises all needed information. At the beginning of the algorithm, the active set 𝐼 is empty and

𝑞 = 0. By choosing 𝒁∅ = 𝑼 with 𝑼 from Equation (2), the prerequisites from Equation (3) are

fulfilled in the first iteration of the algorithm. In the next steps, the updated matrix 𝒁𝐼,𝑛𝑒𝑤 is

calculated by means of an orthogonal matrix 𝑸𝐼 ∈ ℝ𝑛×𝑛 as

𝒁𝐼,𝑛𝑒𝑤 = 𝒁𝐼𝑸𝐼
𝑇. (7)

This approach can be used for both cases in the iteration, i.e., both when an element is added to

𝐼 and when an element is removed from it. If an element 𝑝 is added to 𝐼, the matrix 𝑸𝐼 can be

composed in this way:

𝑸𝐼 ≔ (
𝐈𝑞 𝟎

𝟎 𝑸𝐼
(2)). (8)

The matrix 𝐈𝑞 denotes the identity matrix in the ℝ𝑞×𝑞. With this approach, it follows with

Equations (3) and (6):

Computation 2020, 8, 88 8 of 21

𝒁𝐼∪{𝑝}
𝑇 𝑨𝐼∪{𝑝}

𝑇 = 𝑸𝐼𝒁𝐼
𝑇(𝑨𝐼

𝑇 𝒂𝑝) = 𝑸𝐼 (
𝑹𝐼 𝒅𝐼

(1)

𝟎 𝒅𝐼
(2)

) = (
𝑹𝐼 𝒅𝐼

(1)

𝟎 𝑸𝐼
(2)

𝒅𝐼
(2)

). (9)

Since the assumptions in Equation (3) must also be fulfilled in the next step, it follows that the

matrix 𝑸𝐼
(2)

∈ ℝ(𝑛−𝑞)×(𝑛−𝑞) must be chosen in a way that the product 𝑸𝐼
(2)

𝒅𝐼
(2)

 is collinear with the

first unit vector in the ℝ(𝑛−𝑞). This can be achieved using Givens rotations. Thus, the matrix 𝑸𝐼
(2)

 is a

product of 𝑛 − 𝑞 − 1 Givens rotations. They are successively multiplied with 𝒅𝐼
(2)

 and eliminate

one component of the vector at a time, until 𝑸𝐼
(2)

𝒅𝐼
(2)

 finally becomes collinear with the first unit

vector. With

𝒁𝐼∪{𝑝} = 𝒁𝐼𝑸𝐼
𝑇 = (𝒁𝐼

(1)
 𝒁𝐼

(2)
) (

𝐈𝑞 𝟎

𝟎 𝑸𝐼
(2)𝑇) = (𝒁𝐼

(1)
 𝒁𝐼

(2)
𝑸𝐼

(2)𝑇
) (10)

the matrix 𝒁𝐼
(2)

 needs to be successively multiplied with the Givens rotations. For 𝑹𝐼∪{𝑝}, it is:

 𝑹𝐼∪{𝑝} ≔ (
𝑹𝐼 𝒅𝐼

(1)

0 𝛿𝐼

) (11)

where 𝛿𝐼 denotes the first component of 𝑸𝐼
(2)

𝒅𝐼
(2)

. With (10) and (11), the matrices 𝒁𝐼 and 𝑹𝐼 can be

updated by successively multiplying 𝒁𝐼
(2)

 and 𝒅𝐼
(2)

 with Givens rotations. These multiplications

can be performed in one step in direct succession so that the Givens matrices do not have to be

stored in each step, and the matrix 𝑸𝐼 does not have to be calculated explicitly. In case an element is

removed from the active set 𝐼, the same approach in Equation (7) can be used. We assume that the

element 𝑙 is removed, which is located at the position 𝑘 of 𝐼. The operator 𝑻𝑘 is defined to remove

the row 𝑘 of a matrix. With that, it is:

𝑨𝐼\{𝑙} = 𝑻𝑘𝑨𝐼. (12)

Using Equation (12) and the prerequisite from Equation (3), the following applies:

𝒁𝐼\{𝑙}
𝑇 𝑨𝐼\{𝑙}

𝑇 = 𝑸𝐼𝒁𝐼
𝑇𝑨𝐼

𝑇 𝑻𝑘
𝑇 = 𝑸𝐼(𝑹𝐼

𝟎
) 𝑻𝑘

𝑇 = 𝑸𝐼 (𝑹𝐼𝑻𝑘
𝑇

𝟎
). (13)

The operator 𝑻𝑘
𝑇 removes the 𝑘 th column of 𝑹𝐼 . The matrix 𝑹𝐼𝑻𝑘

𝑇 can be divided in

submatrices:

(
𝑹𝐼𝑻𝑘

𝑇

𝟎
) = (

𝑹𝐼
(11)

𝑹𝐼
(12)

𝟎 𝑹𝐼
(22)

𝟎 𝟎

) (14)

with the upper triangular matrix 𝑹𝐼
(11)

∈ ℝ(𝑘−1)×(𝑘−1) , 𝑹𝐼
(12)

∈ ℝ(𝑘−1)×(𝑞−𝑘) and 𝑹𝐼
(22)

∈

 ℝ(𝑞−𝑘+1)×(𝑞−𝑘). Since 𝑹𝐼 is an upper triangular matrix, 𝑹𝐼
(22)

 is an upper Hessenberg matrix. The

matrix 𝑸𝐼 is chosen as follows:

𝑸𝐼 ≔ (

𝐈𝑘−1 𝟎 𝟎

𝟎 𝑸𝐼
(2)

𝟎

𝟎 𝟎 𝐈𝑛−𝑞

) (15)

where 𝐈𝑘−1 and 𝐈𝑛−𝑞 are identity matrices and 𝑸𝐼
(2)

∈ ℝ(𝑞−𝑘+1)×(𝑞−𝑘+1) is an orthogonal matrix.

Using Equations (15) and (14) in Equation (13) yields:

𝑸𝐼 (𝑹𝐼𝑻𝑘
𝑇

𝟎
) = (

𝑹𝐼
(11)

𝑹𝐼
(12)

𝟎 𝑸𝐼
(2)

𝑹𝐼
(22)

𝟎 𝟎

). (16)

From that, it follows that 𝑸𝐼
(2)

 has to be chosen in a way that the product 𝑸𝐼
(2)

𝑹𝐼
(22)

 becomes an

upper triangular matrix. Again, Givens rotations are used. Therefore, the matrix 𝑸𝐼
(2)

 is a product of

𝑞 − 𝑘 Givens rotations, which are successively multiplied with 𝑹𝐼
(22)

. Turning to the matrix 𝒁𝐼\{𝑙},

we again use the partition from (4) and divide the matrix 𝒁𝐼
(1)

 into two further submatrices:

Computation 2020, 8, 88 9 of 21

𝒁𝐼
(1)

 = (𝒁𝑘−1
(1)

 𝒁𝑞−𝑘+1
(1)

) (17)

with 𝒁𝑘−1
(1)

∈ ℝ𝑛×(𝑘−1) und 𝒁𝑞−𝑘+1
(1)

∈ ℝ𝑛×(𝑞−𝑘+1). With Equations (15) and (17), it is:

𝒁𝐼\{𝑙} = 𝒁𝐼𝑸𝐼
𝑇 = (𝒁𝑘−1

(1)
 𝒁𝑞−𝑘+1

(1)
 𝒁𝐼

(2)
) (

𝐈𝑘−1 𝟎 𝟎

𝟎 𝑸𝐼
(2)𝑇

𝟎

𝟎 𝟎 𝐈𝑛−𝑞

) .

= (𝒁𝑘−1
(1)

𝒁𝑞−𝑘+1
(1)

𝑸𝐼
(2)𝑇

𝒁𝐼
(2)

)

(18)

In 𝒁𝐼\{𝑙}, only the columns 𝑘 to 𝑞 differ from 𝒁𝐼 . The matrix 𝒁𝑞−𝑘+1
(1)

 is multiplied with the

same Givens rotations as 𝑹𝐼
(22)

. This can again be carried out in parallel and without the need to

explicitly determine the matrix 𝑸𝐼
(2)

. With the described approach, the updating of the matrices 𝒁𝐼

and 𝑹𝐼 can be done efficiently, both when an element is added to the active set 𝐼 and when an

element is removed from it. All required algorithms for these computations, such as the Cholesky

decomposition, Givens rotations, or backwards substitution, were implemented in C. The C function

for computing plane Givens rotations used within the EmbQP solver is shown in Table A5. As a

consequence, the EmbQP algorithm is self-contained, and no external library is needed.

Furthermore, the C code was written in a way that adheres to the coding guidelines of Motor

Industry Software Reliability Association (MISRA) [16]. These guidelines aim at improving the

quality of the C code by using only a subset of the C language with the objective of decreasing the

incidence of undefined or unpredictable behaviors and of enhancing the reliability and

maintainability of the code. In the automotive industry and safety-critical applications, the MISRA-C

guidelines are established and typically required with the programming of embedded systems. One

issue that comes up with the observance of the MISRA guidelines is the handling of input values

from external sources. Their validity needs to be checked at the beginning of the algorithm. Another

issue is the avoidance of dynamic memory allocation, which is resolved by the use of working arrays

in the EmbQP code. Furthermore, the basic data types of C shall not be used directly. They are only

allowed in type definitions. Thus, for each variable, the appropriate data type is defined according to

its respective properties. Another example for the rules of the MISRA guidelines is the aspect that

only one return or break statement is allowed to terminate an iteration. This was respected with the

while loops in Table 4 and implemented with additional if constructs. In summary, the EmbQP code

was written in a way that respects the MISRA guidelines that are often required for safety-critical

applications in the automotive sector.

4. Application of the EmbQP Solver in a Vehicular Control Allocation Problem

As an application example, the EmbQP solver is used as a part of a control allocation algorithm

in the context of path following control. The problem formulation goes back to [11,17,18]. A short

overview about the control allocation is given in this section.

4.1. Control Allocation Problem

Path following control is an example of motion control, and it plays an essential part in the

development of autonomous vehicles. Path following control affects the movement of a vehicle with

the aim that it follows a predetermined path with only small lateral displacement. The considered

vehicle is the ROboMObil (ROMO) [12], which is a robotic full x-by-wire research vehicle featuring

four almost identically constructed wheel robots. Its planar movement can be directed by setting the

steering angles of the four wheels and the drive torques of the in-wheel motors. These control input

variables of the vehicle are described by the eight-dimensional vector 𝒖𝐖:

𝒖𝑾 = {𝜹𝑾𝟏 , 𝜹𝑾𝟐 , 𝜹𝑾𝟑 , 𝜹𝑾𝟒 , 𝝉𝑾𝟏 , 𝝉𝑾𝟐 , 𝝉𝑾𝟑 , 𝝉𝑾𝟒} (19)

In many control systems, the number of virtual control inputs to the mechanical system equals

the number of degrees of freedom [19]. In contrast, the ROMO belongs to the class of over-actuated

systems. It has three degrees of freedom of the horizontal motion but eight control inputs. The

Computation 2020, 8, 88 10 of 21

desired motion is represented by three so-called virtual control demand variables being the

longitudinal, lateral, and rotational velocity at the vehicle’s geometric center:

𝝂C = {𝑣𝑥
C, 𝑣𝑦

C, 𝜓̇C}. (20)

The configuration of the ROMO with its four wheels and the above-mentioned variables is

shown in Figure 1. The arc length 𝑠∗ on the reference path 𝒑P is the one that minimizes the

displacement between the vehicle position and the path position 𝒑P(𝑠∗) = {𝑥𝐼 , 𝑦𝐼} . The

determination of 𝑠∗ is done by using a time-independent path interpolation as described in [11].

reference

path 𝒑P

𝑥I

𝑦I

𝑣𝑦
C

𝑣𝑥
C 𝜓̇C

𝑦C

𝑥C

𝜏W 1

𝜏W2
𝜏W 3

𝜏W 4

𝛿W 4

𝛿W1

𝛿W2

𝐹W4

𝐹W1

𝐹W 2

𝐹W3
𝛿W 3

𝑥W 1

𝑦W 1

𝒑P(𝑠∗)

Figure 1. Planar movement of the ROboMObil along a reference path.

In the real-world application, the vehicle states 𝒑C, 𝒗C, 𝜓C can be estimated e.g., as proposed in

[20]. Since there is no unique actuator available that directly meets the virtual control demands 𝝂C, a

control allocation is necessary to determine and distribute the commands that are applied to the

physical actuators. So, the control allocation serves as an interface between the controller and the

available actuators of the vehicle and maps the computed virtual control demands 𝝂C to the

physical control inputs 𝒖𝐖.

The primary goal of the control allocation is to achieve the desired virtual control variables if

feasible. A secondary goal is to find an energy-friendly solution in a way so that simultaneously, the

instantaneous total power consumption should be minimized while satisfying the desired motion.

For solving this problem, an optimization-based method is applied. The goal is to minimize a certain

objective function while considering the solution of the control allocation problem and the physical

actuator constraints. The objective function can be formulated as a heuristic cost function, which

should meet the following two goals for reaching low energy consumption: The steering rate should

be minimized to avoid mechanical losses and the traction motor torque should be chosen so that

recuperation is maximized. These two rules are conflated in a cost function that can be adjusted

offline, and since it represents a simple function expression, it is suitable for real-time applications

[17]. One approach for minimizing an objective function 𝐽(Δ𝒖) for the actuating variable variation

Δ𝒖 is a two-step optimization:

Step 1: 𝛺 = argmin
𝒖

‖𝑾𝜈(𝑩 ⋅ Δ𝒖 − Δ𝝂)‖2

 s. t. Δ𝒖(𝑇𝑠) ≤ 𝒖 ≤ Δ𝒖(𝑇𝑠)

Step 2: Δ𝒖 = argmin
𝛺

𝐽(Δ𝒖).

(21)

First, a set of physically feasible solutions is found that respects the actuator limits 𝒖 and 𝒖 in

each time step. 𝑾𝜈 is a weighting matrix to prioritize the virtual control variables Δ𝝂, and 𝑩

denotes the control-efficiency matrix for the linear relation 𝑩 ⋅ 𝒖 = 𝝂 between the virtual control

variables and the actuating variables. 𝑇𝑠 is the sample time in a time discrete system. If there exists a

Computation 2020, 8, 88 11 of 21

manifold of solutions 𝛺 in the first step, then the second step seeks for a solution in the manifold

that minimizes the objective function 𝐽(Δ𝒖).

4.2. QP Problems in the Control Allocation

The energy optimal control allocation problem is solved using quadratic programming. The

EmbQP solver is employed here. Therefore, the steps in Equation (21) that represent a least squares

minimization problem need to be rewritten to obtain a quadratic programming compatible problem

in the form of Equation (1) [11]. The transformation by matrix computation leads to the following

equivalent formulation of the first step of Equation (21):

min
Δ𝒖𝐖

1

2
Δ𝒖𝐖𝑇

𝑯Δ𝒖𝐖 + 𝒇𝑇Δ𝒖𝐖

s. t. Δ𝒖𝐖 ≤ Δ𝒖𝐖 ≤ Δ𝒖
𝐖

with 𝑯 = 2 ⋅ 𝑩𝑇𝑾𝑣
𝑇𝑾𝜈𝑩

 𝒇 = −2 ⋅ 𝑩𝑇𝑾𝑣
𝑇𝑾𝜈Δ𝒗𝐂

. (22)

The weighting matrix 𝑾𝜈 for the virtual control inputs is defined at the beginning of the

algorithm and remains the same in each time step. The configuration of the control-efficiency matrix

𝑩 depends on changes of states or inputs. However, during the current sample interval, it remains

constant, and the QP Equation (22) can thus be treated as a static problem [19]. Then, the matrix 𝑩 is

recalculated in each time step using the current vehicle speed and yaw rate and the current settings

of the actuator variables; so, the problem is solved with a new matrix 𝑩 in the next time instance.

The upper and lower bounds Δ𝒖𝐖 and Δ𝒖
𝐖

 define the physical limits for the actuating variables.

They are recalculated in each time step and may vary depending on the current state of the vehicle.

The virtual control variables Δ𝒗𝐂 are passed on to the control allocator by the controller.

The problem (22) is the first of two QPs that is solved in each time step within the control

allocator. It represents the actual control allocation and means that a solution Δ𝒖𝐖 is sought that

minimizes the distance between the virtual control demands and the real actuator motions subject to

the physical limits, compare step 1 of (21). Next, the computed solution Δ𝒖𝐖 is used to check if there

is a nullspace. Considering limited numerical accuracy, practically, this is true if |𝑩 ⋅ Δ𝒖𝐖 − Δ𝒗𝐂| <

𝜖 holds for a small value 𝜖 > 0. If a nullspace exists, there is a manifold of solutions in terms of Δ𝒖𝐖

to achieve the virtual control demands. Accordingly, the additional goal of low power consumption

is inserted as described in the second step of (21). It also needs to be reformulated as a QP problem.

In the cost function 𝐽(Δ𝒖) that seeks for energy optimality, the difference between the actuating

variable Δ𝒖𝐖 and the demand Δ𝒖d
𝐖 are to be minimized. The demand Δ𝒖d

𝐖 represents the goals

formulated above for the steering rates and the motor torques. The former are set to zero, while the

latter are chosen to achieve the maximal available recuperation depending on the current state of the

vehicle; see [11]. So, the cost function results in 𝐽(Δ𝒖𝐖) = ‖𝑾𝑢(Δ𝒖𝐖 − Δ𝒖d
𝐖)‖

2
 with a weighting

matrix 𝑾𝑢 for the control signals. Again, matrix computation yields a QP formulation for this

optimization:

min
Δ𝒖𝐖

1

2
Δ𝒖𝐖𝑇

𝑬Δ𝒖𝐖 + 𝒆𝑇Δ𝒖𝐖

s. t. 𝑩 ⋅ Δ𝒖𝐖 = Δ𝒗𝐂

 Δ𝒖𝐖 ≤ Δ𝒖𝐖 ≤ Δ𝒖
𝐖

with 𝑬 = 2 ⋅ 𝑾𝑢
𝑇𝑾𝑢

 𝒆 = −2 ⋅ 𝑾𝑢
𝑇𝑾𝑢Δ𝒖d

𝐖

 (23)

This is the second QP problem that is solved in each time step but only if the solution of (22)

shows that there is a nullspace. If no nullspace exists, there are no physically admissible actuation

control variables that can reach the demand of the virtual control variables. So, there is no

intersection between the set of admissible solutions and the set of virtual control variables.

Nevertheless, the actuating control variables need to be specified in each time step of the control

allocation algorithm. So, a solution is sought that minimizes at least the distance between these two

Computation 2020, 8, 88 12 of 21

sets and preserves the direction of the virtual control variables. The following QP problem is solved

if there is no nullspace:

min
Δ𝒖𝐖

1

2
Δ𝒖𝐖𝑇

(2 ⋅ 𝑩𝑇𝑩 + 𝑮)Δ𝒖𝐖 − (2 ⋅ 𝑩𝑇Δ𝒗𝐂)𝑇Δ𝒖𝐖

s. t. Δ𝒖𝐖 ≤ Δ𝒖𝐖 ≤ Δ𝒖
𝐖

. (24)

This QP formulation is similar to the first one in Equation (22). In comparison to (22), the

weighting matrix 𝑾𝜈 is neglected, which is chosen as the identity matrix in our application example

anyway. The objective function is supplemented by a diagonal matrix 𝑮. With large entries in the

first four diagonal elements compared to the last four ones, it makes sure that the steering angles do

not deflect too far from the set-point.

Table 5 shows a pseudo code of the steps in the control allocation with the three calls of the

EmbQP solver.

Table 5. Pseudo code of the control allocation.

lateral and longitudinal controller compute Δ𝒗𝐂

set 𝑮 = 𝑑𝑖𝑎𝑔(𝑢𝑠𝑒𝑟𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑡𝑢𝑛𝑖𝑛𝑔 𝑣𝑎𝑙𝑢𝑒𝑠)

determine weighting matrices 𝑾𝜈 and 𝑾𝑢

when (sample Trigger)

calculate the control limits Δ𝒖𝐖 and Δ𝒖
𝐖

 in one time step using physical parameters

compute the control-efficiency matrix 𝑩

compute 𝑯 and 𝒇

compute Δ𝒖d
𝐖, 𝑬, 𝒆 for the energy-optimal objective function

Δ𝒖𝐖 = EmbQP(8, 0, 0, 𝑯, 𝒇, Δ𝒖𝐖, Δ𝒖
𝐖

)

check whether a nullspace for optimization is available 𝒗diff = 𝑎𝑏𝑠(𝑩 ⋅ Δ𝒖𝐖 − Δ𝒗𝐂)

if 𝒗diff < 0.001

Δ𝒖𝐖 = EmbQP(8, 3, 3, 𝑬, 𝒆, 𝑩, −Δ𝒗𝐂, Δ𝒖𝐖, Δ𝒖
𝐖

)

else

Δ𝒖𝐖 = EmbQP(8, 0, 0, (2 ⋅ 𝑩𝑇𝑩 + 𝑮), (−2 ⋅ 𝑩𝑇Δ𝒗𝐂), Δ𝒖𝐖, Δ𝒖
𝐖

)

end if

check the limits: 𝛥𝒖𝑾 = min (max(𝛥𝒖𝑾, 𝛥𝒖𝑾) , 𝛥𝒖
𝑾

)

end when

Details about the design of the lateral and the longitudinal controller, which compute the

virtual control variables, can be found in [11] as well as further information about integrating the

control allocator into the path following control. In addition to the calculation of the matrices and

vectors for the QP problems, there is a dynamic calculation of the maximum actuating variables in

each time step, which takes into account the current states of the actuators.

A check is inserted after the optimization steps of the control allocator to verify whether the

computed solution is within the admissible range specified by the physical limits Δ𝒖𝐖 and Δ𝒖
𝐖

. If

that is not the case, the solution is clipped to the admissible set. This check should not be necessary,

but nevertheless, it is included as a precaution if an error during the optimization is not detected.

In summary, in each time step of the motion control algorithm, two QPs have to be solved

within the control allocation. The first QP (22) is solved in each time step and depending on its

solution, either the QP (23) or the QP (24) is solved, while the solutions of the latter QPs are the

output of the control allocator and used as actuator set-points in the next time step. Details about the

implementation and the numerical results are given in the next section.

5. Results of the Simulation

In this section, the EmbQP solver is assessed against the Fortran QL solver [9] by means of

comparative simulations of a path-following scenario with the ROMO. While using the Fortran QL

Computation 2020, 8, 88 13 of 21

solver, version 3.2, these simulations were already accomplished in [11], which facilitates the

comparison. The total simulation model comprising a complex vehicle dynamics model of the

ROMO, the path-following control, and the control allocation-based motion control was established

in [11] using Modelica, an object-oriented modeling language for multiphysical systems, see [21],

and the software tool Dymola. Details about the modeling of the ROMO and the multiphysical

Modelica components can be found in [11].

For the comparison, the Fortran QL solver now only needed to be replaced by EmbQP, which is

easy to accomplish, since both solvers can be interfaced into the Modelica environment using

so-called external C functions. In the case of the Fortran QL solver, the Fortran code had been

automatically converted from Fortran to C beforehand using f2c [10]. The two solvers are compared

with respect to the following criteria: the course of the solution vectors, the adherence to the

constraints, the minimal objective function value, and the computing times.

The three matrices in the objective functions to be minimized in Equations (22)–(24),

respectively, are chosen in a way that they are symmetric and either positive definite or positive

semidefinite. In the latter case, a small multiple of the identity matrix is added to the positive

semidefinite matrix during the optimization to obtain a positive definite one, as described in Section

3.

The predefined path the vehicle should follow is specified by means of a look-up table used for

interpolation. The simulation is performed for a path with a length of about 3083 m and with a

sampling time of 0.004 s. Figure 2 shows results of both the EmbQP solver and the QL solver for the

QPs (23) and (24) for the fifth component of the eight-dimensional solution vector from (19), which is

the drive torque for the front left wheel. In Figure 2a, which shows the results for the entire path,

there is hardly any difference to be observed between the two solutions. Figure 2b shows a closer

look at the first few steps of the simulation revealing discrepancies.

(a) (b)

Figure 2. Solution of EmbQP and QL for QP (23) and QP (24) for the fifth component of the solution

vector Δ𝒖𝐖, that is the torque for the front left wheel; (a) covers the whole simulation and (b) shows

a closer look at the first few time steps. Additionally depicted: lower and upper bounds Δ𝒖𝐖 and

Δ𝒖
𝐖

 for the solution.

The differences are due to the fact that the two solvers do not solve the very same QPs in each

time step. The EmbQP and the QL solver both are based on the same algorithm of Goldfarb and

Idnani, but they represent different implementations in different programming languages. One

difference is that the QL solver provides a separate handling of the lower and upper bounds [9],

while the EmbQP solver considers the bounds identical to the other linear constraints. Consequently,

the two solvers provide slightly different results of the optimization. The two simulations, one with

the QL solver and one with the EmbQP solver, have only in the first time step the same QP problem

to be solved. The slightly varying results of the two solvers are used further and lead to a different

Computation 2020, 8, 88 14 of 21

position of the vehicle in the next time step and thus to different QPs that need to be optimized in the

following time steps. Thus, slight differences in the solution of the solvers as in Figure 2 are

expected, since they solve different QPs, which impedes a comparison of the two solvers. Therefore,

the comparison of the solvers has been carried out in a different manner for the following figures:

both solvers solve the corresponding QPs in one time step, but only one solution is used for the next

time step, and so on. To be more specific, in one simulation, the solution of the EmbQP solver is used

for feedback in the next step of the motion control, while the QL solver also calculates solutions for

the QPs, but these solutions are only used for comparison but are neglected for feedback. For a

second simulation, it is done the other way round. With this proceeding, a better comparison of the

two solvers is possible, because they solve QPs with the same input data in each time step.

First, the solution provided by the EmbQP solver is considered, while the QL solver runs

simultaneously and solves the same QPs for a comparison.

Figure 3 shows the solutions of the two solvers obtained in this way for the QPs (23) and (24).

The first and the fifth component of the solution vector from (19) are depicted. The results for the

four steering angles and the four torques are similar, which is why only one component of each is

shown here for better clarity. Figure 3 also shows the lower and upper bounds for the respective

component. It is noticeable that the solutions of both solvers remain within the limits and are very

similar. Zooming in, as in Figure 2b, does not result in both lines being visible separately, as they are

close to each other. Therefore, the absolute difference is also plotted on a logarithmic scale. It is very

slight and illustrates that both solvers find very similar solutions for these QPs.

(a) (b)

Figure 3. Solution of EmbQP for quadratic programming problem (QP) (23) and QP (24) for the first

(a) and the fifth (b) component of the solution vector Δ𝒖𝐖, that is the steering angle (a) and torque

(b) for the front left wheel. Additionally depicted: the corresponding solution of QL as well as lower

and upper bounds Δ𝒖𝐖 and Δ𝒖
𝐖

 for the solution and the absolute difference between the two

solvers.

Figure 4 shows the optimal objective function value of the two solvers for the first QP (22) and

the two QPs (23) and (24) as well as their respective absolute difference on a logarithmic scale. Since

the solution vectors for QPs (23) and (24) are very similar, it is consequently also the objective

function value. For QP (22), there are slightly larger differences.

Computation 2020, 8, 88 15 of 21

(a) (b)

Figure 4. Objective function values for QP (22) (a) and for QPs (23) and (24) (b) of EmbQP and QL

and their respective absolute difference.

The results mentioned above are obtained with the solution of the EmbQP solver, while the QL

solver only runs in parallel and solves the same QPs in each time step. As a second simulation, the

other way round is performed; that means the solution provided by the QL solver is considered,

while the EmbQP solver runs simultaneously to solve the same problems and to enable a direct

comparison. The solutions of the two solvers for the QPs (23) and (24) are very similar to the

solutions in Figure 3 and therefore are not shown here. Both solvers keep the limits, and again, the

absolute differences between the two solvers are very small. The same holds for the objective

function values corresponding to Figure 4.

The C code was compiled using the Microsoft Visual C++ 2017 compiler. The test system on

which the simulations were performed is a laptop with Intel i9-9980HK CPU @ 2.40GHz and 32GB

RAM with Windows 10 (64 Bit) as operating system. The two solvers perform very similarly

regarding the computing times. For this, the simulations have been carried out with only one of the

solvers at a time. The simulation using the integration algorithm Dassl in Dymola yields an overall

computing time of about 64 s for both solvers with a CPU time of about 1.3 ms for one grid interval

of the simulation. Thus, the time for the simulation of one interval is considerably less than the

sampling time of 4 ms. Since this simulation also includes the path-following controller and the

vehicle model, the low computing time indicates the real-time capability of the solver.

6. Outlook: Configuration of a QP-Based Controller Software on an Embedded Platform

In the following, a short overview is sketched using the EmbQP solver as part of a software

application on an embedded platform. As one possible environment, the automotive open system

architecture (AUTOSAR) standard is chosen that is widely used in the automotive sector. In [22], a

corresponding configuration for a cell battery observer on an embedded microcontroller is shown. It

is based on [23], where an integration of the Functional Mock-up Interface (FMI) in AUTOSAR

software is proposed. The approach in [22] can be adapted for the usage of an application example

with the EmbQP solver. The overall scheme is shown in Figure 5.

Computation 2020, 8, 88 16 of 21

Application Layer - AUTOSAR Software

AUTOSAR Run Time Environment (RTE)

AUTOSAR Basic Software

Microcontroller

RTOS Libraries AUTOSAR Services

AUTOSAR Interface AUTOSAR Interface

Sensor

Software

Component

AUTOSAR Interface

QP- based

Controller

Soft. Comp.

Observer

Software

Component

Figure 5. Configuration of an automotive open system architecture (AUTOSAR) layered

architecture.

The lowest layer of this AUTOSAR layered architecture represents the hardware, which is a

microcontroller here. It receives inputs from sensors and passes electrical signals to the actuators.

The next layer summarizes the AUTOSAR basic software. It integrates a real-time operating system

(RTOS) and some libraries e.g., for integration algorithms. This layer provides the infrastructure

services for the top layer of the diagram that is the application layer. The top layer and the

AUTOSAR basic software layer are interconnected by a runtime environment (RTE). The application

layer incorporates all software components that are necessary for the respective application, such as

a sensor and controller software. The observer software handles the estimation of the vehicle states,

as described in [20]. The software components can be deployed as Functional Mock-up Units. The

EmbQP solver is integrated as a part of the control allocation within the controller software

component in the application layer. The data exchange between different software components as

well as between the application layer and the basic software layer is performed by the RTE using

*.arxml files. The latter are described in detail in [23]. The software components are evaluated

periodically and have to meet the real-time conditions. The entire inter-process communication and

also the handling of interrupts is performed by the RTE. The described approach with the separation

between the application and the hardware provides the advantage of incorporating new models or

algorithms on an embedded platform without the need for detailed expertise about the AUTOSAR

structure or the used hardware due to the standardized procedure.

7. Conclusions

In this work, a new solver for quadratic programming problems named EmbQP has been

introduced. It is based on the dual method of Goldfarb and Idnani, and it is similar to an existing

Fortran implementation named QL. The new solver was implemented completely new in the

programming language C with the demand of eligibility for embedded systems and safety-critical

applications in the automotive sector. The C implementation is mainly based on [5] and [14], but two

aspects of the implementation go back to the Fortran QL solver. These are the option that a

previously known Cholesky decomposition of the matrix 𝑪 can be passed to the algorithm and the

handling of a non-positive definite matrix 𝑪 in the objective function. In the latter case, as described

in Section 3, the EmbQP solver follows the very algorithmic steps of the QL solver for computing the

certain small factor multiplied by the identity matrix that is added to 𝑪. In addition, the EmbQP

solver also includes two new features. Firstly, the new C solver is well suited for solving a larger

variety of QP problems than the Fortran implementation, since it does not require any lower or

Computation 2020, 8, 88 17 of 21

upper bounds for the solution vector in the formulation of the QP problem. When using the QL

solver, appropriate large values must be specified for each QP. If such lower and upper limits are

given, secondly, the EmbQP solver ensures that they are always respected as long as they represent

applicable boundaries, even in cases where the solver stops without finding an optimal solution, i.e.,

when the problem is infeasible or the maximal number of iterations is reached.

The EmbQP implementation also applies an efficient updating of matrices by means of Givens

rotations. It does not use dynamic memory allocation because working arrays pre-allocated at the

initialization time are passed from outside to the algorithm. Furthermore, the EmbQP solver does

not employ any external libraries since it is self-contained with all the required algorithms. The new

solver also adheres to the MISRA coding guidelines. In the example of a simulated vehicular control

allocation problem, the solver was validated and showed good results and performed equally

compared to the Fortran solver. Due to these promising results and its efficient implementation, the

EmbQP solver is considered suitable for future use on embedded platforms. Respective

implementation and testing will be addressed in further research, together with runtime analyses.

On series embedded platforms with limited numerical precision, the solver needs to be assessed to

remain numerically stable and reliably provide solutions.

Author Contributions: Conceptualization, C.S. and J.B.; methodology, C.S. and J.B.; software, C.S.; validation,

C.S.; formal analysis, C.S.; investigation, C.S.; resources, J.B.; writing—original draft preparation, C.S.;

writing—review and editing, C.S. and J.B.; visualization, C.S. and J.B.; supervision, J.B. All authors have read

and agreed to the published version of the manuscript.

Funding: This work was funded by the DLR internal project NGC-KoFiF.

Acknowledgments: The authors’ thanks go to Tilman Bünte for his feedback and help in scientific writing.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Code Segments of the EmbQP C Code

Table A1. Code segment where pointers to the integer working array are set.

int_t* position = &int_workarray[0];

int_t* ind_ineq = &int_workarray[m+n+n];

int_t* ind_viol_constr = &int_workarray[2 × (m+n+n)];

int_t* pos_r_ind = &int_workarray[3 × (m+n+n)];

int_t* pivot = &int_workarray[4 × (m+n+n)];

Table A2. Code segment to set 𝒙 to a value within the bounds if the problem is infeasible.

if (t_sigmainf == TRUE) {//problem not feasible

if (bounds_x_l) {

for (i = 0; i < n; i++) {

if (x[i] < x_l[i]) {

x[i] = x_l[i];

}

}

}

if (bounds_x_u) {

for (i = 0; i < n; i++) {

if (x[i] > x_u[i]) {

x[i] = x_u[i];

}

}

}

*exit = 2;

Computation 2020, 8, 88 18 of 21

}

Table A3. C main function with data of a QP problem and call of EmbQP.

int main() {

//problem data

int_t m = 3;

int_t m_e = 3;

int_t n = 5;

real_t C[25] = {2.0, −2.0, 0.0, 0.0, 0.0, −2.0, 4.0, 2.0, 0.0, 0.0, 0.0, 2.0, 2.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0, 0.0,

0.0, 0.0, 0.0, 0.0, 2.0};

real_t d[5] = {0.0, −4.0, −4.0, −2.0, −2.0};

real_t A[15] = {1.0, 0.0, 0.0, 3.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, −2.0, −1.0};

real_t b[3] = {0.0, 0.0, 0.0};

real_t x_l[5] = {−10.0, −10.0, −10.0, −10.0, −10.0};

real_t x_u[5] = {10.0, 10.0, 10.0, 10.0, 10.0};

real_t EPS = 1.0 × 10−12;

int_t mode = 1; //a Cholesky decomposition of C needs to be computed internally

boolean_t bounds_x_l = TRUE;

boolean_t bounds_x_u = TRUE;

real_t x[5] = {0.0};

real_t f_min = 0.0;

int_t exit = 0;

real_t real_workarray[588] = {0.0};

int_t int_workarray[57] = {0};

EmbQP(m, m_e, n, C, d, A, b, x_l, x_u, EPS, mode, bounds_x_l, bounds_x_u, x, &f_min, &exit,

real_workarray, int_workarray);

return 0;

}

Table A4. Code segment for selecting the violated constraint 𝑝.

//choose the most violated constraint

test_any = FALSE;

numb_viol_constr = 0; //number of violated constraints

for (i = 0; i < m; i++) {

ind_viol_constr[i] = 0;

residuum[i] = 0.0;

}

for (j = 1; j <= m_e; j++) { // all equality constraints

sum = 0.0;

for (i = 0; i < n; i++) {

sum += A[(j + m × i) − 1] × x[i];

}

if (fabs(sum − b[j − 1]) > EPS) {

i = 1;

while (i <= m) {

if (I_data[i − 1] == j) {

test_any = TRUE;

i = m + 1;

} else {

test_any = FALSE;

i++;

Computation 2020, 8, 88 19 of 21

}

}

if (test_any == FALSE) {// p must not be an element of I

numb_viol_constr = numb_viol_constr + 1;

ind_viol_constr[numb_viol_constr-1] = j;

residuum[numb_viol_constr-1] = fabs(sum − b[j − 1]);

}

}

}

for (j = (m_e+1); j <= m; j++) {// all inequality constraints

sum = 0.0;

for (i = 0; i < n; i++) {

sum += A[(j + m × i) − 1] × x[i];

}

if (sum − b[j − 1] < -EPS) {

i = 1;

while (i <= m) {

if (I_data[i − 1] == j) {

test_any = TRUE;

i = m + 1;

} else {

test_any = FALSE;

i++;

}

}

if (test_any == FALSE) {// p must not be an element of I

numb_viol_constr = numb_viol_constr + 1;

ind_viol_constr[numb_viol_constr-1] = j;

residuum[numb_viol_constr-1] = fabs(sum − b[j − 1]);

}

}

}

if (numb_viol_constr == 1) {

p = ind_viol_constr[0] −1;

} else if (numb_viol_constr > 1) {

sum = residuum[0];

p = ind_viol_constr[0] −1;

for (i = 1; i < numb_viol_constr; i++) {

if (residuum[i] > sum) {

p = ind_viol_constr[i] −1;//p is the index of the violated constraint with the largest absolute

value //of the residual

sum = residuum[i];

}

}

}

Table A5. C function for computing Givens plane rotation.

void givens_rot(real_t x[2], real_t G[4], real_t y[2])

{

//an orthogonal matrix G is computed so that: y = G*x with y[1] = 0.0

real_t r = 0.0;

if (fabs(x[1]) > EPS) {

Computation 2020, 8, 88 20 of 21

r = sqrt(fabs(x[0]) × fabs(x[0]) + fabs(x[1]) × fabs(x[1]));

G[0] = x[0]/r;

G[1] = −x[1]/r;

G[2] = x[1]/r;

G[3] = x[0]/r;

y[0] = r;

y[1] = 0.0;

} else {//G is the identity matrix

G[0] = 1.0;

G[1] = 0.0;

G[2] = 0.0;

G[3] = 1.0;

y[0] = x[0];

y[1] = x[1];

}

}

References

1. Banjac, G.; Stellato, B.; Moehle, N.; Goulart, P.; Bemporad, A.; Boyd, S. Embedded code

generation using the OSQP solver. In Proceedings of the 56th Annual Conference on Decision

and Control (CDC), Melbourne, Australia, 12–15 December 2017; pp. 1906–1911.

2. Defraene, B.; Van Waterschoot, T.; Ferreau, H.J.; Diehl, M.; Moonen, M. Real-Time

Perception-Based Clipping of Audio Signals Using Convex Optimization. IEEE Trans. Audio

Speech Lang. Process. 2012, 20, 2657–2671, doi:10.1109/tasl.2012.2210875.

3. Amos, B.; Kolter, J.Z. OptNet: Differentiable Optimization as a Layer in Neural Networks. In

Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, 6–

11 August 2017.

4. Mattingley, J.; Boyd, S. CVXGEN: A code generator for embedded convex optimization. Optim.

Eng. 2011, 13, 1–27, doi:10.1007/s11081-011-9176-9.

5. Goldfarb, D.; Idnani, A. A numerically stable dual method for solving strictly convex quadratic

programs. Math. Program. 1983, 27, 1–33, doi:10.1007/bf02591962.

6. Di Gaspero, L. QuadProg++, University of Udine, Italy. 2020. Available online:

https://github.com/liuq/QuadProgpp (accessed on 25 September 2020).

7. Sherikov. qpmad. 2020. Available online: https://github.com/asherikov/qpmad. (accessed on 25

September 2020).

8. Barraud. QP a General Convex qpp Solver. 2020. Available online:

https://www.mathworks.com/matlabcentral/fileexchange/67864-qp-a-general-convex-qpp-solv

er. (accessed on 25 September 2020).

9. Schittkowski, K. QL: A Fortran Code for Convex Quadratic Programming—User’s Guide. 2011.

Available online: http://www.easy-fit.de/QL.pdf. (accessed on 20 August 2020).

10. Feldman, S.I. A Fortran to C converter. ACM SIGPLAN Fortran Forum 1990, 9, 21–22,

doi:10.1145/101363.101366.

11. Brembeck, J. Model Based Energy Management and State Estimation for the Robotic Electric

Vehicle RoboMObil. Ph.D. Thesis, Technische Universität München, Munchen, Germany, 2018.

12. Brembeck, J.; Ho, L.M.; Schaub, A.; Satzger, C.; Tobolar, J.; Hirzinger, J.B.u.G. ROMO—The

Robotic Electric Vehicle. In Proceedings of the 22nd IAVSD International Symposium on

Dynamics of Vehicle on Roads and Tracks, Manchester, UK, 14–19 August, 2011.

13. Powell, M. ZQPCVX, A Fortran Subroutine for Convex Quadratic Programming; University of

Cambridge: Camridge, UK, 1983.

14. Werner, J. Vorlesung über Optimierung. Universität Hamburg. 2007/2008. Available online:

https://num.math.uni-goettingen.de/werner/optim.pdf. (accessed on 20 August 2020).

Computation 2020, 8, 88 21 of 21

15. Liedel, M. Sichere Mehrparteienberechnungen und datenschutzfreundliche Klassifikation auf

Basis horizontal partitionierter Datenbanken. Ph.D Thesis, Universität Regensburg,

Regensburg, Germany, 2012.

16. Motor Industry Software Reliability Association. MISRA-C: 2012. 2012. Available online:

https://www.misra.org.uk/ (accessed on 26 May 2020).

17. Brembeck, J.; Ritzer, P. Energy optimal control of an over actuated Robotic Electric Vehicle

using enhanced control allocation approaches. In Proceedings of the IEEE Intelligent Vehicles

Symposium, Alacala de Henares, Spain, 3–7 June 2012; pp. 322–327.

18. Ritzer, P.; Winter, C.; Brembeck, J.; Peter, R. Advanced path following control of an

overactuated robotic vehicle. In Proceedings of the IEEE Intelligent Vehicles Symposium (IV),

Seoul, Korea, 28 June–1 July 2015; pp. 1120–1125, doi:10.1109/ivs.2015.7225834.

19. Johansen, T.A.; Fossen, T.I. Control allocation—A survey. Automatica 2013, 49, 1087–1103.

20. Brembeck, J. Nonlinear Constrained Moving Horizon Estimation Applied to Vehicle Position

Estimation. Sensors 2019, 19, 2276, doi:10.3390/s19102276.

21. Modelica Association. Modelica. 2020. Available online: http://www.modelica.org (accessed on

28 May 2020).

22. Brembeck, J. A Physical Model-Based Observer Framework for Nonlinear Constrained State

Estimation Applied to Battery State Estimation. Sensors 2019, 19, 4402, doi:10.3390/s19204402.

23. Neudorfer, J.; Armugham, S.S.; Peter, M.; Mandipalli, N.; Ramachandran, K.; Bertsch, C.;

Corral, I. FMI for Physics-Based Models on AUTOSAR Platforms. SAE Tech. Pap. Ser. 2017,

doi:10.4271/2017-26-0358.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access

article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

