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Abstract 

 

Peanut or groundnut (Arachis hypogaea L), one of the most important oil seed 

crops, faces several challenges due to climate change. The unfavourable climate in 

Australia, as a result of high climate variability, could easily affect peanut 

production. For example, the incidence of drought stress will increase the likelihood 

of one of the major problems in the peanut industry, i.e. aflatoxin. In addition, if the 

climate changes as projected, shifts in geographic distribution of peanut crops and 

the associated diseases are inevitable. In view of these concerns, this study set the 

following objectives: 1) to assess the effectiveness of PROBA-V imagery in 

mapping peanut crops; 2) to study the effects of climate change on the future 

geographic distribution of peanut crops in Australia; and 3) to examine the effects 

of climate change on the future distribution of aflatoxin in peanut crops, and to 

locate high risk areas of aflatoxin in the future areas of peanut crop production. In 

this study, the area of peanut crop mapping was the South Burnett region in 

Queensland, while the area of future geographic distribution of peanut crops and 

aflatoxin covered the entire continent of Australia. 

To address the first objective, the peanut crop areas were mapped using time-

series PROBA-V NDVI by stacking time-series imagery and generating the 

phenological parameter imagery. Three classification algorithms were used: 

maximum likelihood classification (MLC), spectral angle mapper (SAM), and 

minimum distance classification (Min). The results reveal that the overall accuracy 

of mapping using time-series imagery outweighed phenological parameter imagery, 

although both datasets performed very well in mapping peanut crops. MLC 

application in the time-series imagery dataset produced the best result, i.e. overall 

accuracy of 92.75%, with producer and user accuracy of each class ≥ 78.79%. 

Specifically for peanut crops, all the algorithms tested produced satisfactory results 

(≥75.95% of producer and user accuracy), except for the producer accuracy of Min 

algorithm. Overall, PROBA-V imagery can provide satisfactory results in mapping 

peanut crops in the study area.  

For the second objective, the effects of climate change in the potential future 

geographic distribution of peanut crops in Australia for 2030, 2050, 2070, and 2100 

were studied using the CLIMEX program (a Species Distribution Model) under 
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Global Climate Models (GCMs) of CSIRO-Mk3.0 and MIROC-H. The results 

show an increase in unsuitable areas for peanut cultivation in Australia throughout 

the projection years for the two GCMs. However, the CSIRO-Mk3 projection of 

unsuitable areas for 2100 was higher (76% of Australian land) than MIROC-H 

projection (48% of Australian land). Both GCMs agreed that some current peanut 

cultivation areas will become unsuitable in the future, while only limited areas will 

still remain suitable for peanut cultivation. The present study confirms the effects 

of climate change on the suitability of peanut growing areas in the future.  

In the third objective, the impacts of climate change on future aflatoxin 

distribution in Australia and the high risk areas of aflatoxin incidence in the 

projected future distribution of peanut crops were examined. The projected future 

distribution of aflatoxin for 2030, 2050, 2070, and 2100 was also modelled using 

CLIMEX under CSIRO-Mk3.0 and MIROC-H GCMs. The results demonstrated 

that only a small portion of the Australian continent will be optimal/suitable for 

aflatoxin persistence, due to the incidence of heat and dry stresses. The map overlay 

results between the future projections of aflatoxin and peanut crops resulted in small 

areas of low aflatoxin risk in the future projected areas of peanut crops. It is 

projected that most of the current peanut cultivation areas will have a high aflatoxin 

risk, while others will no longer be favourable for peanut cultivation in the future.   

This study has clearly demonstrated the ability of PROBA-V satellite imagery 

in mapping peanut crops. It has also demonstrated that climate change incidence 

will affect the suitability areas of future geographical distribution of peanut crops 

and the associated aflatoxin disease. This study provides strategic information on 

current peanut growing areas, future suitable areas for peanut crops in Australia, 

and future high risk areas of aflatoxin incidence. This information will provide 

valuable contributions to the long-term planning of peanut cultivation in the 

country.  
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Chapter 1  
 

 

INTRODUCTION 

 

 

1.1 Background of the study 

Peanut or groundnut (Arachis hypogaea L.) crops play an important part in 

the agricultural domain. The crops rank sixth among the most important oil-seed 

crops, and rank thirteenth among the food crops in the world (Waliyar et al. 2013). 

High quality edible oil (48-50%) can be retrieved from peanut seeds (Waliyar et al. 

2013). In addition, peanut crops contain a high number of nutrients, i.e. nearly half 

of the thirteen essential vitamins and seven of the essential minerals for human 

growth (Waliyar et al. 2013). Moreover, peanut crop residue is a source of high 

quality fodder for livestock (Waliyar et al. 2013). Therefore, taking into account 

these benefits, it can be presumed that peanut plays an important role as a source of 

livelihood, as well as a source of nutrients for poor farmers (Waliyar et al. 2013). 

This condition occurs in several peanut growing countries, such as Mali and Malawi 

(Waliyar et al. 2013; Waliyar et al. 2015). 

Originating from South America, peanut crops are now cultivated around the 

world and have contributed to the economies of many countries. These legume 

crops have dispersed to the tropical, sub-tropical, and warm climate regions in the 

world (Stalker 1997), including Australia. Geographically, peanut-growing 

countries can be grouped into America (Northern, Southern, and Latin), Africa 

(Eastern, Southern, and Western), and Asia (Eastern, South Eastern, and South 

Western). The regions of Eastern Asia and West Africa play an important role in 

the peanut market by contributing around two-thirds of the world annual peanut 

production (Fletcher & Shi 2016). The average world peanut production from 2010 

to 2013 was 39,526,000 MT (Fletcher & Shi 2016). This production is higher 136% 

than the world peanut production in the 1970s, due to the application of technology-

driven gains in yield (Fletcher & Shi 2016), such as fertilizer and high yield seeds. 

In general, peanut-growing countries use their production output to meet their 
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domestic market (DPIF 2007). Outside the peanut-growing countries, Europe 

(Eastern, European Union-28, and Western) and Oceania are also among the 

peanut-consuming countries (Fletcher & Shi 2016). In Australia, the majority of 

peanut crops are produced in Queensland, with a gross production value of 18.2 

million dollars in 2017/2018 (QGSO 2019). Around 40,000 tonnes of peanut are 

produced annually in Australia and are used to meet the domestic market (Wright 

et al. 2017). 

Considering the role of peanut crops as agricultural commodities and as 

important oilseed and food crops in the world, projecting the production of peanut 

crops is essential. This projection is crucial in planning agricultural production and 

monitoring food supply (Srivastava 2015). Two components of crop production are 

crop area (to be) harvested and (anticipated) yield per unit area (Gallego et al. 2008; 

Craig & Atkinson 2013). Accurate predictions of both components are equally 

important in confirming crop production accuracy (Craig & Atkinson 2013). 

However, compared to crop area estimation, more studies have been conducted in 

crop yield estimation (Craig & Atkinson 2013; Iizumi & Ramankutty 2015). In 

terms of mapping peanut crops, not many studies have been conducted. 

The agricultural sector depends significantly on climate, thus any change in 

climate will affect this sector significantly. Unfortunately, evidence confirms the 

occurrence of climate change; and it is projected to continue in the future (Howden 

et al. 2007). Climate change has led to changes in the long-term mean climate, 

changes in the year-to-year climate variability and extreme weather events, such as 

extreme temperature, drought, heavy rainfall, and flooding (Gornall et al. 2010). 

All of these impact agricultural practices directly (Gornall et al. 2010). In addition, 

climate change also affects this sector indirectly, such as the incidence of pests and 

diseases due to the changes in climate, changes in water availability which is critical 

for dry-land farming, and the increase of mean sea-level which threatens the 

agricultural lands and increases the salinity of groundwater (Gornall et al. 2010). 

The increase of the mean temperature in the northern latitude has contributed to the 

changes of agricultural practices and occurrences of pests and disease (Gregory et 

al. 2009), such as aflatoxin (Giorni et al. 2007). In addition, climate change will 

also influence the geographical distribution of planted areas of agricultural crops 

(Steffen et al. 2012), including peanut crops.  
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The application of technologies is one of the solutions in solving problems 

related to lack of peanut crop mapping and the impacts of climate change in peanut 

crops. For example, the use of remote sensing technologies will offer great benefits 

in estimating the peanut crop areas to provide the projection of peanut crop 

production. It could increase the coverage and accuracy of crop area estimation due 

to its rapid objective assessment and the ability to capture changes over time 

(BeyerJarmer, et al. 2015; Srivastava 2015). The accessibility and availability of 

time-series imagery have provided opportunities to easily differentiate crop types 

(BeyerJarmer, et al. 2015), which are essential in crop mapping. In terms of 

managing the impacts of climate change in shifting geographical distribution of 

peanut crops and aflatoxin incidence, modelling techniques such as Species 

Distribution Models (SDMs) can be used.  

The peanut industry in Australia faces a challenging situation to increase its 

production for the domestic and international market, especially with the 

occurrence of climate change. This situation becomes more difficult with the 

reduction in the available peanut cropping areas, due to the conversion to other land 

uses, which could lead to a decrease in peanut production (QGSO 2019). Since 

Australia has a high climate variability (Head et al. 2014), unfavourable weather 

conditions, such as drought and excessive rainfall, can easily affect peanut 

production in Australia (Meinke et al. 1996). In addition, Australia has experienced 

a temperature increase, which is on average higher than other countries (Cleugh et 

al. 2011). Therefore, it is projected that the future geographic distribution of peanut 

crops and associated diseases will be affected. Considering these situations, 

reasonable steps should be taken to overcome the challenges of Australian peanut 

industry. One important step is to provide information about area estimation of 

peanut crops, the future geographic distribution of peanut crops (in light of 

changing climate), and the future high risk areas of associated peanut diseases, such 

as aflatoxin. Such information will promote strategic decisions to optimise 

production and reduce climate change risks to the peanut industry in Australia. 

1.2 Statement of the problem 

Climate change is projected to continue in the future, and as the agricultural 

sector depends on the climate, the impacts of climate change threatens global food 

production and food security. The projected increase of world population has 
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escalated the challenge, especially with the depletion of natural resources (Anwar 

et al. 2013). As one of the main important sources of protein, peanut crops also 

encounter this challenge. Climate influences the productivity level of agricultural 

productivity through its four factors, namely: temperature and precipitation, 

atmospheric CO2 concentration, water availability, and climate variability and 

extreme events (Anwar et al. 2013). Unfortunately, climate change will lead to an 

increase in temperature and CO2 concentration, as well as a varied effect on 

moisture (Gautam et al. 2013). On average, the global temperature increased by 

0.74°C in the last 100 years, and similarly, the atmospheric CO2 concentration rose 

from 280 ppm in 1750 to 400 ppm in 2013 (Gautam et al. 2013). The increase in 

the occurrence of extreme events, such as droughts, floods, and forest fires, and 

shifts in precipitation patterns, were also observed (Gautam et al. 2013). As a result, 

agricultural practices, including those in peanut crops, need to adapt with climate 

change in order to maintain and probably increase its productivity (Anwar et al. 

2013).  

Climate change also affects the distribution of agricultural crops and their 

pathogens, including peanut crops and their aflatoxin disease. It is known that 

climate holds an important role in determining crop planting suitability (Anwar et 

al. 2013). Global warming is projected to provide positive impact for crop 

production in northern latitude above 55°, while in tropical and sub-tropical 

countries, it will lead to negative impact (Newton et al. 2011). For example, as an 

impact of temperature increase and lower average rainfall, the traditional peanut 

growing areas in Queensland, Australia have experienced a production decrease of 

around 30% over the past 25 years (Marshall et al. 2014). As a result, the peanut 

industry expanded its peanut growing region to Katherine in the Northern Territory, 

which has suitable condition and readily available irrigation water (Marshall et al. 

2014). In addition, climate also determines the limited range of many pathogens, 

which could result in their geographic expansion (Gautam et al. 2013). One 

example is the first occurrence of aflatoxin disease in peanut crops due to 

Aspergillus flavus pathogen in an area known as free aflatoxin infection in the 

northern part of Italy (Perrone et al. 2014). As one of most important legume crops, 

investigating the impacts of climate change in peanut crops and its associated 

aflatoxin disease will provide useful knowledge in anticipating climate change 

effect in this commodity. 
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The Australian climate has been changing, and if this trend continues in the 

future as expected, the agricultural sector will be considerably affected. Over the 

last 50 years, Australia has become hotter, the rainfall geographic distribution has 

changed substantially with some areas becoming drier while others becoming 

wetter, and severe weather incidence has increased (Steffen et al. 2012). As a result, 

agricultural industries are exposed to some risks, such as heat stress, waterlogging, 

salinity, production reduction, and unsuitability of current planting area (Steffen et 

al. 2012). Peanut industry in Australia has suffered due to the effect of climate 

change; results in a decision to relocate its peanut growing areas (Marshall et al. 

2014). If the climate changes as projected, there will be a reduction in the seed yield 

of peanut (Vara Prasad et al. 2003), and shifts in distribution areas of agricultural 

crops and agricultural pests and diseases (Chakraborty et al. 2000). These could 

lead to economic impacts from crop loss (Chakraborty et al. 2000). 

In order to secure the production level of agricultural crops, an accurate 

prediction of crop production is a paramount important. Accurate data of crop 

production components, namely crop area and yield estimate, will be essential to 

diminish the uncertainty of future climate change effects on crop production and to 

develop appropriate adaptation responses (Iizumi & Ramankutty 2015). Remote 

sensing offers great help in crop area estimation, including estimating peanut crop 

area. However, not many studies have been done in estimating peanut crop area. 

Knudby (2004) used NOAA AVHRR satellite imagery data to study the groundnut 

yield variation in the peanut growing region (peanut basin) of Senegal, but did not 

map the peanut crops. In Australia, peanut crops were accurately mapped over four 

consecutive years (2004 – 2007) using a single date multi-spectral imagery of 2.4m 

high resolution commercial satellite of QuickBird (Robson et al. 2007). However, 

this study was applied in a small area of the peanut growing region of the South 

Burnett (64 km2), and was quite costly due to the high-resolution commercial 

satellite imagery used. 

The use of time-series imagery provides great benefits in crop mapping, 

especially with the increasingly available types of satellite imagery, such as 

medium and low spatial resolutions of time-series imagery. Technology and 

methodology advancements in time-series satellite imagery enable the easy 

separation of different types of crops (BeyerJarmer, et al. 2015). Some studies in 

estimating crop area by using time-series imagery have been conducted in a number 
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of crops, such as winter crops (barley, chickpea, and wheat) (Potgieter et al. 2007; 

Sun et al. 2012), summer crops (sorghum, corn, and soybeans) (Wardlow & Egbert 

2008), sugarcane (Xavier et al. 2006), and rice paddy (Yang et al. 2011; Zhang et 

al. 2015). In terms of peanut crops, Schultz et al. (2015) mapped the crops, together 

with other agricultural crops in South-eastern Brazil, by using time-series Landsat 

imagery. However, the study encountered difficulties in separating peanut and 

cassava crops due to the similarity in spectral behaviours and the high variabilities 

within the classes. Therefore, the challenge in carrying out this specific aspect of 

the study is to determine the most appropriate techniques in analysing time-series 

imagery for mapping the peanut crops in a particular growing season. 

Modelling the impacts of climate change in the geographic distribution of 

peanut crops and their associated aflatoxin disease in Australia is a significant 

aspect of managing the peanut industry. As the Australian climate is becoming 

warmer (Steffen et al. 2012), some regions could become more favourable for 

future peanut cultivation and aflatoxin invasion, while others could become less 

favourable/unfavourable. Therefore, it is important to identify and map those 

favourable and less favourable/unfavourable regions. CLIMEX (Sutherst & 

Maywald 1985) is a tool that can be used to model species geographic distribution 

in the future in relation to climate change incidence. The CLIMEX model has been 

applied in several studies to predict future geographic distribution of a wide range 

of taxa including plants, pathogens, mammals, and insects (Kriticos & Leriche 

2010). These studies include the future distribution of  date palm (Shabani, Kumar 

& Taylor 2014; Shabani, Kumar, et al. 2015), oil palm (Paterson et al. 2015), cotton 

and wheat (Shabani & Kotey 2015), common bean (Ramirez-Cabral et al. 2016), 

tomato (Silva et al. 2017), Fusarium oxysporum f. spp. pathogen (Shabani, Kumar 

& Esmaeili 2014), and wheat curl mite, Aceria tosichella, (Schiffer et al. 2009).  

However, studies about projected suitable peanut planting areas and aflatoxin 

invasion areas in the future have not been undertaken in any part of the world, 

including Australia. Vellidis et al. (2007) studied the spatial distribution of 

aflatoxin, but this was a pilot study and did not model the future distribution. 

 



7 

 

1.3 Significance of the study 

It is obvious that climate change will affect the agricultural sector, including 

the peanut crop industry in Australia. This study investigated the use of remote 

sensing and modelling techniques in providing vital information in the current 

estimation of peanut crop areas and the future geographic distribution of peanut 

crops and the associated aflatoxin incidence in Australia. The information resulting 

from this study can be used to improve the yield of peanut crops, minimise crop 

losses, and enhance food security. In addition, the results of this study will provide 

strategic information on current peanut growing areas in Queensland, future 

suitable areas for peanut crops in Australia, and future high risk areas of aflatoxin 

incidence. Thus, governments and the peanut industry in Australia can take 

reasonable steps to anticipate the level of peanut production and the possible future 

condition of peanut crops in Australia.  

Accurate assessments of two components of crop production (crop area and 

yield estimation) are needed to achieve accurate production estimation. For years, 

crop area estimation, including peanut crops, has been collected by censuses, which 

are accurate but expensive and time-consuming, or by samples, which are cheap 

but not always accurate (Craig & Atkinson 2013). The ability to estimate peanut 

crop areas planted using time-series imagery provides an opportunity to increase 

the accuracy and reduce the associated time and costs. Thus, it will lead to more 

effective and efficient management of peanut crops. In addition, using remote 

sensing makes the mapping of peanut crops both easier and more objective. It also 

provides an opportunity to retrieve near real-time data collection due to satellite 

frequent revisit time, especially since real-time objective estimations of end-season 

cropping areas is not often available (Potgieter et al. 2007). Utilising remote sensing 

may allow crop area mapping several months before harvest, such as in the early 

season (Robson et al. 2007). This will be beneficial in making decisions such as 

supply, staff requirements, and import needs (Robson et al. 2007), which are 

important for the peanut industry in Australia; especially since the peanut market is 

supplied from the production of domestic peanut cultivation. 

This study examines the use of time-series imagery from a relatively new 

vegetation satellite, PROBA-V, in mapping the peanut crops in a peanut growing 

region of the South Burnett in Queensland, Australia.  The peanut crop map 
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generated from this study will provide important information to estimate peanut 

production in Australia. In addition, apart from achieving the benefits as detailed in 

the previous paragraph, mapping peanut crops will also be beneficial in formulating 

policies for minimising the impacts of climate change. As is widely known, legume 

crops, such as peanut crops, are the second highest sources of nitrogen gas 

emissions (Monfreda et al. 2008). Therefore, mapping legume crops will provide 

an understanding of the global distribution of nitrogen cycling (Monfreda et al. 

2008), which can be used in determining climate change policies. 

Knowledge of suitable areas of peanut crops and high risk areas of aflatoxin 

incidence in the future retrieved from this study will help to plan and develop 

management decisions and policies to anticipate the impacts of climate change. Due 

to its devastating health impacts, the maximum level of aflatoxin was regulated in 

more than 120 countries (Bui-Klimke et al. 2014). Aflatoxin could lead to 

symptoms of carcinogenicity and acute toxicity, especially in fish, birds, and 

mammals (Newberne & Butler 1969). The most affected organ is liver, although 

signs of damage were also obvious in other organs, especially kidney (Newberne & 

Butler 1969). The occurrence of liver cancer in humans and animals is associated 

with aflatoxicosis (Turner et al. 2002). This study is the first to evaluate the impacts 

of climate change on future distribution of peanuts crops and the associated 

aflatoxin incidence. This study will fill the gap of mapping potential future areas of 

peanut crops and potential hotspot (high risk) areas of aflatoxin incidence. Locating 

the high and low risks of aflatoxin areas will be useful in determining the 

appropriate location of peanut cultivation areas. This information is valuable in 

securing food and increasing crop production, especially since crop disease is 

among the key constraints in increasing crop production and quality (Chakraborty 

& Newton 2011). 

1.4 Research aim and objectives 

The general aim of this study is to investigate the potential of time-series 

imagery data and spatial modelling techniques in mapping current peanut cropping 

areas, the future geographic distribution of peanut crops and the associated aflatoxin 

incidence in Australia under climate change scenarios. Specifically, the study has 

the following objectives: 
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1. To assess the effectiveness of time-series PROBA-V 100m NDVI imagery 

for peanut crop mapping in the South Burnett region of Queensland, 

Australia by using crop phenology and traditional approaches. 

2. To study the effects of climate change on the future geographic distribution 

of peanut crops in Australia by using the Species Distribution Models 

(SDMs) of CLIMEX under two different climate models. 

3. To examine the effects of climate change on the future geographic 

distribution of aflatoxin in peanut crops in Australia by using the Species 

Distribution Models (SDMs) of CLIMEX under two different climate 

models, and to locate high risk areas of aflatoxin in the future peanut 

growing areas of peanut crop production. 

1.5 Scope and limitation of the study 

This study used a relatively new vegetation satellite, PROBA-V (100m spatial 

resolution), which is an intermediate satellite resolution between traditional 250m 

MODIS and 30m LANDSAT satellites. In addition, with its daily revisit frequency, 

PROBA-V has a high temporal resolution. To the best of our knowledge, this study 

is the first that has used PROBA-V imagery in crop mapping in Australia. The time-

series of PROBA-V NDVI 100m was used to map peanut crops due to its ability to 

capture changes over the crops’ growth period. In mapping the peanut crops, this 

study analysed the use of phenology imagery derived from PROBA-V 100m NDVI 

imagery, along with the use of PROBA-V NDVI imagery itself. Since Queensland 

is the main peanut growing areas in Australia, the peanut crop mapping was carried 

out in this state. More specifically, the peanut crop mapping was focused in one 

peanut growing region in Queensland, namely the South Burnett region, since the 

extent of peanut cropping areas in this region is adequate for that particular part of 

the study. 

The spatial modelling of future distribution of peanut crops and the associated 

aflatoxin incidence in Australia was carried out using the Species Distribution 

Models (SDMs) of CLIMEX (Sutherst & Maywald 1985). CLIMEX is a computer 

model which has been developed based on species’ or other biological entities’ 

response to climate (Beddow et al. 2010). The fundamental approach of CLIMEX 

is that climate eventually limits species distribution (Beaumont et al. 2008). 

Consequently, CLIMEX only considers climatic factors in modelling the current 
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and future distribution of species. Climate is also one of the major factors in 

determining the geographic boundary in planting crops (Anwar et al. 2013), 

including peanut. Similarly, among several driving factors of aflatoxin synthesis, 

climate is the main factor. Therefore, as CLIMEX was developed based on climatic 

factors, this program was used in this study to model the future distribution of 

peanut crops and aflatoxin in relation to climate change incident. It should be noted 

that the results of future peanut distribution could be improved further by including 

non-climatic factors, such as economic aspects, social factors, topography, soil 

type, and land use. In addition, the results of future aflatoxin distribution could also 

be enhanced by considering other factors which affect the distribution. These 

include host availability, susceptibility and abundance, historical contingency (e.g. 

evolutionary change), and interacting factors such as crop and pest management, 

crop rotation, and crop acreage. 

1.6 Conceptual framework 

Climate change is likely to continue in the future (Steffen et al. 2012). It can 

generate adverse impacts in agriculture, such as reduction in crop production (Xie 

et al. 2008), changes in crop area planted (Steffen et al. 2012), and shifting in areas 

that are favourable for pest infestation (Luck et al. 2011). Like other crops, peanut 

crops could also be affected by this climate change incidence. In Australia, peanut 

crops are usually grown under dryland conditions (Meinke & Hammer 1995). 

Unfortunately, unfavourable weather conditions, for instance drought and excessive 

rainfall can adversely affect peanut production in Australia (Meinke et al. 1996), 

and they could trigger aflatoxin contamination (Cotty & Jaime-Garcia 2007). 

This study used remote sensing methods and modelling techniques to address 

the potential impacts of climate change in peanut crop production. Firstly, it 

examined the use of time-series imagery in mapping peanut crop areas, thus peanut 

production assessment could be done accurately and effectively. Secondly, in order 

to manage climate change impacts in the future, this study projected the potential 

future geographic distribution of peanut crops and future potential high risk areas 

of aflatoxin incidence using the Species Distribution Models (SDMs) of CLIMEX. 

Finally, the high and low risks of aflatoxin areas were used to determine the 

appropriate location of peanut cultivation areas in the future. The conceptual 

framework of this study is presented in Figure 1.1. 
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Figure 1.1 Conceptual framework of the study. 

 

1.7 Organisation of the thesis 

This thesis is organised into seven chapters. Chapter 1, Introduction, 

provides the background of the study, identifies the research gaps, explains the 

significance of the study, enumerates the aim and specific objectives of the research 

study, defines the scope and limitations, and describes the conceptual framework 

of the study. Chapter 2, Literature Review, provides a review of the current 

knowledge and gaps relevant to the study. This includes explanations of peanut 

crops and aflatoxin, the importance of crop mapping, the use of time-series imagery 

in crop mapping, the incidence of climate change and its impacts, and the use of 

Species Distribution Models (SDMs) in modelling the future distribution of a 

species in relation to climate change incidence. Chapter 3, Research Methods, 
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explains the research methods adopted by the study. It presents the study area, as 

well as the acquisition, pre-processing, and analysis of the data. 

Chapter 4 addresses the first objective of this study. It presents the use of 

PROBA-V 100m NDVI imagery in mapping the peanut crops in the South Burnett, 

Queensland, Australia using time-series NDVI imagery and phenology imagery 

derived from the time-series NDVI imagery. Chapter 5 addresses the second 

objective of the study. Using the CLIMEX model, the projection of future 

geographic distribution of peanut crops in Australia by taking into account climate 

change incidence is presented. The last objective is addressed in Chapter 6. This 

chapter discusses the projection of future geographic distribution of aflatoxin 

incidence in peanut crops using the computer model of CLIMEX under climate 

change scenarios. In addition, an analysis of aflatoxin risk areas in the projections 

of future geographic distribution of peanut crops is also presented in this chapter. 

Finally, Chapter 7, Conclusion, explains the overall summary, findings, research 

contributions, and recommendations for future studies. 
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Chapter 2  
 

 

LITERATURE REVIEW 

 

 

2.1 Introduction 

The previous chapter presented the overall framework of the study, 

highlighting the need to investigate peanut crop mapping, the projected future 

peanut crop distribution, and the projected future aflatoxin incidence distribution in 

order to provide strategic information for planning, management, and policy, 

especially in anticipating climate change. This second chapter presents the reviews 

of current literature regarding the explanations of peanut crops and aflatoxin, the 

importance of crop mapping, the use of remote sensing technology in peanut crop 

mapping, the impact of climate change on peanut crops, and the computer model 

used in modelling the future distribution of peanut crops and aflatoxin. The specific 

and detailed reviews of literature for each objective are presented in Chapters 4 to 

6. 

Chapter 2 is divided into nine sections. Sections 2.2 and 2.3 provide 

information regarding peanut crops and aflatoxin. Section 2.4 reviews the 

utilisation of remote sensing technologies in crop mapping. Section 2.5 elaborates 

the nature, application, and analysis techniques of time-series imagery data. Section 

2.6 evaluates the impact of climate change. Section 2.7 reviews the Global Climate 

Models (GCMs) and the scenarios of future anthropogenic GHG emissions. Section 

2.8 explains species distribution models (SDMs) and CLIMEX, the model 

specifically used in this study. Then, lastly, the chapter ends with a summary in 

Section 2.9. 

2.2 Peanut crops 

Groundnut or peanut (Figure 2.1) is one of the most important oilseed crops 

(Fletcher & Shi 2016) and has 26% more protein than eggs, dairy products, meat, 

and fish (DPIF 2007). The peanut species (Arachis hypogaea L.) is a member of 
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the genus Arachis which belongs to the family Fabaceae or leguminosae, in the 

subtribe Stylosanthinae of the tribe Aeschynomeneae (Pattee & Stalker 1995). The 

species is divided into two subspecies, namely ssp. hypogaea (the Virginia group) 

and ssp. fastigiata (the Spanish-Valencia group) (Gibbons et al. 1972), with several 

botanical varieties (Stalker 1997). The two subspecies are differentiated based on 

the branching patterns of reproductive to vegetative nodes on the lateral branches 

(Stalker 1997). Peanut crops are unique since the flowers are above ground, but 

once pollinated, their fruits are produced below the surface of the soil (Wright et al. 

2017). An embryo embedded between two cotyledons develops into a bush of 50 

cm height and spreads up to 100 cm wide. The flowers which are small, yellow, 

and pea-shaped, emerged from the axils of the leaves, 30-40 days after planting. 

After self-pollination, the fertilised ovary starts to elongate and enter the soil, then 

develops a pod containing 1-3 kernels (DAF 2011; Wright et al. 2017).  

 

 

Figure 2.1 Arachis hypogaea L plant. (Madhan & Nigam 2013) 
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Peanut crops require relatively warm conditions, 500 – 600 mm well 

distributed rainfall annually, and stored soil water to harvest a high-yielding crop 

(Crosthwaite 1994). In order to germinate, the soil temperature at the planting depth 

should be at least 18°C (20°C is better) at 9 am measured over three days. 

Vegetative growth requires a warm temperature, 25-30°C, while temperature for 

reproductive growth is 22-24°C. In Australia, it is important to schedule planting 

time carefully, since peanut crops require a warm temperature at the early stage of 

crop development, then experience a cooler temperature at the flowering stage, and 

finally they should mature before the temperature reached freezing. Consequently, 

in inland southern Queensland, crops should be harvested before the end of April.  

Growth stage length depends on temperature and the peanut variety, and results in 

the variation of the peanut growing season, from 110 to 170 days (16 to 24 weeks). 

An example of growth stages is revealed in Table 2.1 (DPIF 2007) and Figure 2.2 

(Torres et al. 2014). Although known as moderately drought tolerant crops (Stalker 

1997), inadequate water at the flowering stage will reduce pod yield; while at the 

pod filling stage, drought stress will result in severe yield reduction (Wright et al. 

1991). In addition, inadequate water supply during the late season will also increase 

the possibility of aflatoxin infection (Kambiranda et al. 2011). 

 

Table 2.1 Growth stages of a Virginia peanut variety in south and north Queensland. 

Growth stages Days after planting 

 South Queensland North Queensland 

Planting 6-14 6-12 

Emergence to first flower 20-40 28-38 

Flowering 35-65 28-65 

Pegging 45-75 36-75 

Pod filling 60-130 55-130 

Harvest maturity 140-150 125-150 

Source: (DPIF 2007) 
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Figure 2.2 Peanut crop phenology (adopted from Boote 1982) and BBCH scale (edited by 

the Federal Biological Research Centre for Agriculture and Forestry) (Torres et al. 

2014). 

 

Originally, peanut crops come from South America, and nowadays, they  are 

planted around the world, in the tropical, sub-tropical, and warm climate zones 

(Stalker 1997). Geographically, peanut planting areas can be grouped into three 

major regions, namely: the Americas (Northern, Southern, and Latin), Africa 

(Eastern, Southern, and Western), and Asia (Eastern, South Eastern, and South 

Western) (Fletcher & Shi 2016). In Australia, peanut crops were first grown in 

North Queensland in 1880s by Chinese gold-miners (Wright et al. 2017), and 

adapted successfully to the conditions. Conventionally, peanuts were grown in red 

basaltic soil which has good water holding capacity and is friable. Therefore, the 

initial peanut growing areas were in the red soils of the Burnett and the Atherton 

Tableland regions. However, in 1990, the common belief that red soils were the 

only soils where peanut could be grown has changed, as soil texture is an important 

consideration (Crosthwaite 1994). Subsequently, the cropping areas have expanded 

to other Queensland regions, such as Bundaberg, Mackay, and Emerald 

(Crosthwaite 1994). Currently, the cropping areas have expanded further to 

Katherine in the Northern Territory, and to other Queensland regions: Texas, 

Inglewood, St. George, Childers, Chinchilla, and Georgetown (Chauhan et al. 

2013). Annually, around 15,000 hectares in Australia are planted with peanut crops 

(Wright et al. 2017) to meet the domestic market (DPIF 2007). More than 90% of 
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peanut cropping areas is located in Queensland (Wright et al. 2017). Around 40,000 

tonnes of peanut are produced annually, although in order to meet the domestic 

market, Australia would need 50,000 tonnes of peanut (Wright et al. 2017). 

Therefore, it is important to be aware of the need to increase peanut production 

capacity in Australia to maintain profitability and secure production demands.   

Unlike insects, diseases are considered to be a major problem in growing the 

peanut crops (Wright et al. 2017), as they can affect peanut crops’ yield and quality. 

The disease can be defined as the presence of an abnormality in the foliage, roots, 

pods, and seeds of peanut crops (Kokalis-Burelle et al. 1997). In general, peanut 

crops are categorised into three types: seedling diseases, foliar diseases, and soil-

borne diseases (Wright et al. 2017). Seedling diseases can be caused by several 

fungi. The popular one is crown rot, which is caused by Aspergillus niger (GRDC 

2014). The impacts of seedling diseases vary from preventing the seeds to 

germinate (seed rot), germinating the seeds but failed to grow (pre-emergence 

damping off), or the incident of dying seeds soon after emerge (post-emergence 

damping off) (Jordan et al. 2010). For soil borne diseases, the common diseases are 

sclerotinia, white mould, and CBR (Cylindrocladium Black Rot); while common 

foliar diseases are leafspot, rust and net blotch (Wright et al. 2017). Based on the 

sources, peanut diseases are divided into two groups: (1) diseases due to biotic 

(infectious) factor and (2) diseases due to abiotic (non-infectious) factor. Among 

the biotic factors are fungi, bacteria, nematodes, viruses and viroids, and 

phytoplasmas (mycoplasma like organism) (Kokalis-Burelle et al. 1997). One of 

the examples of peanut disease caused by fungi is aflatoxin. In general, peanut 

diseases spread through wind and equipment, particularly diggers and threshers 

which can potentially spread soil borne diseases (Crosthwaite 1994). The 

development and severity of peanut diseases are determined by the complex 

interaction between host plant, pathogen, and environment (Figure 2.3) (Kokalis-

Burelle et al. 1997; Huber & Haneklaus 2007). 
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Figure 2.3 The interaction factors associated with plant disease (Huber &Haneklaus 

2007). 

 

2.3 Aflatoxin 

2.3.1 Aflatoxin and Aspergillus species 

Aflatoxin is one of the major mycotoxin problems which occurs in several 

crops, including peanut crops, and generates several negative impacts. Mycotoxin 

is a secondary metabolite synthesized by certain fungi; its consumption can cause 

symptoms of toxicity and in some cases, it can be fatal (Diener et al. 1987). In 

addition, it also generates economic impacts, originating from loss of human and 

animal life, escalation of health care and veterinary care costs, decline in livestock 

production, production of waste from contaminated foods and feeds, and financial 

costs relating to the generation of research and other programs to reduce the severity 

of the impact of mycotoxin (Hussein & Brasel 2001). Considering its significant 

effect on health and agro-economic, one of the most studied mycotoxins is aflatoxin 

(Hussein & Brasel 2001). Aflatoxin is a secondary metabolite produced by common 

soil fungi namely aspergillus (Perrone et al. 2014). The first aflatoxicosis, an 

exposure of aflatoxin, incident occurred in 1961 when more than 100,000 young 

turkeys in England died due to aflatoxin infection in their groundnut feed (Blount 

1961). The latest notable incident was an outbreak of aflatoxicosis in Kenya from 

2004 to 2006 which claimed more than 150 lives (Mutegi et al. 2012). In general, 

aflatoxicosis can be grouped into two categories: first, acute aflatoxicosis resulting 
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in fatality, and second, chronic aflatoxicosis resulting in cancer (especially liver 

cancer), immune suppression, teratogenicity, and other symptoms (Bennett & Klich 

2003).  

In a similar way to other fungal species, the primary reservoir of Aspergillus 

(Figure 2.4) is the soil (Zorzete et al. 2011). Aspergillus section flavi includes the 

major aflatoxin producing fungi in agricultural crops, namely aspergillus flavus (A. 

flavus) and aspergillus parasiticus (A. parasiticus) (Klich 2007; Perrone et al. 

2014). A. parasiticus is more frequently found in peanut crops than other crops 

(Diener et al. 1987). Nevertheless, A. flavus is the major vector for aflatoxin 

contamination (Guo et al. 2003; Torres et al. 2014) and produces a high number of 

toxins (Schroeder & Boller 1973). When both species are present in the soil, A. 

flavus is more aggressive in invading the host crops (Perrone et al. 2014). In 

addition to these two species, there are other aspergillus section flavi which produce 

aflatoxin, although less frequently, namely A. nomius, A. pseudotamarii, A. 

bombysis, and A. parvisclerotigenus (Klich 2007). Moreover, apart from section 

flavi, species that produce aflatoxin are A. ochraceoroseus, A. rambellii, Emericella 

venezuelensis, and E. astellata (Frisvad et al. 2005). All of these fungi spread across 

soil, organic matter, and crop hosts (Kachapulula et al. 2017a), and commonly 

invade high nutrient media of oilseed crops, which are grown in similar latitude 

with the fungi, such as peanut, corn, cottonseeds, and tree nuts (Klich 2002; Guo et 

al. 2003; Klich 2007). As a result, these crops have a high risk of aflatoxin 

contamination. 
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Figure 2.4 Characteristic conidiophores of Aspergillus (Klich 2007). 

 

Although it may be found in all climatic zones (Klich 2007), aspergillus 

flavus persists most frequently in tropical latitudes (below 25 degrees of south and 

north), and more frequently in the warm temperate zones of 26-35 degrees (Klich 

2002). These climatic zones provide the most suitable climate for aspergillus 

development. The species’ optimum temperature is between 25 and 40°C, while its 

minimum temperature is 10°C (Klich et al. 1992). However, the presence of 

aspergillus in a crop’s seeds does not necessarily mean the occurrence of aflatoxin 

(Hill et al. 1983; Atayde et al. 2012). Environmental stresses, such as prolonged 

drought and heat, are needed for aflatoxin infection (Cole et al. 1989; Cotty & 

Jaime-Garcia 2007; Smartt 2012). A natural protective mechanism of the crops 

against aflatoxin incidence (Smartt 2012), known as phytoalexins, antimicrobial 

compounds produced by the crops (Klich 2007). However, drought stress leads to 

a reduction of phytoalexins production (Wotton & Strange 1987), and put crops at 

a high risk of aflatoxin invasion. In addition, proline, an amino acid, is known to 

stimulate aflatoxin production (Payne & Hagler 1983). Unfortunately, drought 

stress incidence increases proline production in crops (Barnett & Naylor 1966) and 

thus increase the probability of aflatoxin infection. 

More than 20 aflatoxins have been isolated from several fungal species 

(Hussein & Brasel 2001). However, only four aflatoxins occur frequently (Abbas 

et al. 2004) with a devastating effect on agricultural commodities, i.e. aflatoxins B1 
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(AFB1), G1 (AFG1), B2 (AFB2), and G2 (AFG2) (Figure 2.5). Aflatoxin type B is 

produced by A. flavus and A. parasiticus, while aflatoxin type G is only produced 

by A. parasiticus (IARC 2012; Kachapulula et al. 2017a). The most potent and 

carcinogenic aflatoxin is aflatoxin B1 (AFB1), followed by aflatoxins G1 (AFG1), 

B2 (AFB2), and G2 (AFG2) (Zorzete et al. 2011). Aflatoxins B1 and G1 showed 

sufficient evidence for carcinogenic potential, thus were categorised as a group 1 

human carcinogen (IARC 2012), i.e. a group of agents with sufficient evidence of 

causing cancer in human (IARC 2006). Meanwhile, aflatoxin B2 showed limited 

evidence and aflatoxin G2 showed inadequate evidence (IARC 2012).  

 

 

Figure 2.5 Chemical structure of aflatoxin B (AFB1 and AFB2) and G (AFG1 and AFG2) 

(Hussein & Brasel 2001). 

 

Because of its carcinogenic potential, more than 120 countries have 

regulated the maximum content of aflatoxins in agricultural products (Bui-Klimke 

et al. 2014). The European Union, as one of the major peanut importing areas 

(Fletcher & Shi 2016), has determined the maximum level for aflatoxin B1 and 

other aflatoxins in peanut commodities as 2 and 4 µg/kg, respectively (EC-

European Commission 2010). A possible significant economic loss could be 
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sustained if the standard level is not achieved, especially since two-thirds of 

annual peanut production is supplied from Eastern Asian and West African 

regions (Fletcher & Shi 2016), which are known as aflatoxin epidemic areas.  It is 

predicted that around $450 million will be loss annually from the peanut industry 

in the USA, China, Argentina, and the African continent if the European standard 

of aflatoxin maximum limit is applied (Wu 2004). 

 

2.3.2 Aflatoxin occurrence in peanut crops 

The presence of aspergillus in peanut seeds does not necessarily indicate the 

infection of aflatoxin (Hill et al. 1983). Prolonged heat and drought stress during 

the last 3 to 6 weeks of the peanut growing period are required for the synthesis of 

aflatoxin in peanut seeds (Figure 2.6) (Kokalis-Burelle et al. 1997). Although many 

factors are responsible for aflatoxin infection in agricultural crops, climate is the 

dominant factor (Paterson & Lima 2010). Climate stresses, i.e. drought, extreme 

temperature, and rain at the end stages of crop production, will induce aflatoxin 

contamination and determine its severity (Cotty et al. 2008). Cole et al. (1989) 

suggested that a drought and heat stress period of 20 days is insufficient for 

aflatoxin synthesis in groundnut, while 30 days of stress is sufficient, and the most 

conducive period for aflatoxin synthesis is between 40 and 50 days of stress. 

Blankenship et al. (1984) also revealed that drought and heat stresses in the last 50 

days of peanut growing time will induce aflatoxin synthesis in peanut crops. Some 

experiments have shown that the optimum geocarposphere temperatures for 

aflatoxin contamination in peanut crops are in the range of 27 – 30°C (Kokalis-

Burelle et al. 1997), 26.3 – 29.6°C (Cole et al. 1985), 28 – 30.5°C (Sanders et al. 

1985), and 25 - 28°C (Hill et al. 1983). Therefore, severe aflatoxin incidence 

commonly occurs in tropical and subtropical climate regions, and also in temperate 

regions, like temperate areas of the USA (Perrone et al. 2014). However, climate 

alteration of hot and dry climate in free-aflatoxin areas of the northern part of Italy 

in 2003-2004 had stimulated the synthesis of aflatoxin in corn crops (Perrone et al. 

2014). This incident provides a warning of shifting aflatoxin areas due to climate 

change. As a result, further studies of future aflatoxin areas in relation to climate 

change occurrence will be beneficial and necessary in providing information to 
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manage aflatoxin incidence in the future. Chapter 6 (Objective 3) of the thesis 

addressed this research gap.  

 

Figure 2.6 Aflatoxin contamination in peanut pod (DAF 2018). 

 

Peanut crops have a high risk of aflatoxin contamination. In a study of 

aflatoxin contamination in peanut and corn crops in Zambia, Kachapulula et al. 

(2017b) discovered that aflatoxin contamination in peanut crops was more severe 

and frequent than contamination in corn crops. In addition, in a survey of the 

Aspergillus population in the agricultural fields of the southern regions of the USA, 

peanut fields contain more aspergillus species than other fields, such as corn, 

cotton, and soybean (Horn & Dorner 1998). Schroeder and Boller (1973) revealed 

that the majority of aflatoxin-producing strains of A. flavus are found in peanut 

crops. In addition, although peanut crops flower above the ground, once they are 

pollinated, the fruits are below the ground (Wright et al. 2017). As a result, peanut 

fruits have direct contact with soil microorganisms, such as Aspergillus species, 

which increase the probability of fungi contamination and aflatoxin infection. Apart 

from climatic and environmental factors, it has been suggested that peanut seeds 

might provide some factors which enable the synthesis of aflatoxin, thus making 

the seeds very favourable substrates for infection (Schroeder & Boller 1973). 

In view of the significant impact of climate stress on aflatoxin development 

in agricultural crops, climate change may stimulate an increase of aflatoxin 

incidence and severity. Climate models have projected simultaneous drought stress 

episodes in the future due to the increase of temperature and the decrease in summer 

rainfall (Medina et al. 2014). As an impact of the climate change, it is projected that 

Australia will experience a temperature increase, uncertainty in summer tropical 

rainfall in the northern areas, a rainfall reduction in the southern and western areas, 

and an increase of extreme climate events (Cleugh et al. 2011; Head et al. 2014). 
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Moreover, the arid climate zones which dominate the Australian continent, put the 

broad-acre crops mostly mature under hot and dry conditions (Pitt & Hocking 

2006). As a result, it is suggested that Australia will experience an increase of 

aflatoxin incidence and severity, especially since the majority of peanut crops are 

grown under dry-land practice and are imposed with drought stress risks at the final 

stage of their growing period (Pitt & Hocking 2006). Therefore, modelling the 

effect of climate change in aflatoxin incidence in Australia will be significant in 

anticipating the adverse effect in the future. This gap will be addressed in Chapter 

6 (Objective 3) of the Thesis. 

2.4 Crop mapping utilizing remote sensing 

Crop mapping plays a critical role in securing and managing agricultural 

crops to meet the food demands of an increasing world population. The agricultural 

sector faces challenges in increasing its production and productivity to feed the 

projection of nine-billion people by mid-century, and at the same time, reducing the 

environmental impacts of agricultural activities (Atzberger 2013). Therefore, 

estimating crop production is exceptionally important in order to plan agricultural 

production and monitor food supplies (Srivastava 2015). Two components of crop 

production are crop area (to be) harvested and (anticipated) yield per unit area 

(Gallego et al. 2008; Craig & Atkinson 2013). Accurate predictions of both 

components are equally important in confirming crop production accuracy (Craig 

& Atkinson 2013). However, compared to crop area estimation, more studies have 

been conducted on crop yield estimation (Craig & Atkinson 2013; Iizumi & 

Ramankutty 2015). In addition, classifying and mapping crops are crucial elements 

in managing natural resources (Xie et al. 2008), since crops hold an important role 

in climate change occurrence through the emission of CO2 (Xiao et al. 2004) and 

other greenhouse gasses (GHG).  

Traditionally, crop area mapping is carried out periodically by censuses, i.e. 

data enumeration of the total population of the object, or by samples, i.e. data 

enumeration of a small part of the population (Craig & Atkinson 2013). The former 

method typically requires enormous amount of time and budget, but with a high 

accuracy of results. Meanwhile, the latter method is cheap and quick, but with a 

less accuracy of results (Craig & Atkinson 2013). Sample survey system can be 

carried out through farmer reported data, large point samples with observed data, 
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conventional area frame systems, and the use of administrative data. Generally, this 

method involved expert opinion in analysing the data (Craig & Atkinson 2013). 

Traditional methods have been established for a long period, and still being 

employed. One example is the National Resources Inventory (NRI) conducted by 

the USDA’s Natural Resource Conservation Service (NRCS) which employed an 

extremely large point sample and survey (Craig & Atkinson 2013). 

The application of remote sensing technology in observing agricultural crops, 

including crop mapping, has provided great advantages. The technology overcomes 

the shortcoming of traditional methods, especially in terms of time, budget, and 

accuracy (Atzberger 2013; Craig & Atkinson 2013; Srivastava 2015). In addition, 

it has distinct benefits, i.e. large coverage areas, rapid objective assessment and 

longitudinal assessment (capturing changes over a period of a particular area) 

(Atzberger 2013; Srivastava 2015). Considering these benefits, remote sensing 

could support traditional methods in estimating crop area and forecasting crop yield 

(Srivastava 2015). The utilisation of remote sensing technology in crop area 

mapping has been done since 1970s, but the popularity of its adoption and use has 

just increased over the past few decades (Craig & Atkinson 2013). The 

advancement of Geographic Information System (GIS) and the invention of new 

devices, such as Global Positioning System (GPS) and various types of handheld 

computer tablets, has enhanced the performance of remote sensing technology 

(Craig & Atkinson 2013). 

Fundamental knowledge of spectral reflectance and thermal emittance 

properties of crops and soils have enabled the advance and usage of numerous 

remote sensing methods (Pinter et al. 2003). Various imagery with different 

spectral, spatial, and temporal characteristics have provided an exceptional 

opportunity for monitoring and managing agriculture at every level, from field to 

global scales (Pinter et al. 2003; Xie et al. 2008). Currently, there are numerous 

earth observation data available, supported with novel image compositing 

approaches and an improved computing and storage capacity (Gómez et al. 2016). 

Table 2.2 presents some commonly used land observation sensors. 
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Table 2.2 Commonly used land observation sensors (adopted from Sun et al. (2012)) 

Sensor Satellites Spatial 

resolution 

(m) 

Temporal 

resolution 

(days) 

Coverage 

(km) 

Enhanced Thematic Mapper 

Plus (ETM+) 

Landsat 7 30, 15 (pan) 16 185 

Operational Land Imager 

(OLI) 

High Resolution Visible and 

Infrared (HRVIR) 

Landsat 8 

 

SPOT 4 

30, 15 (pan) 

 

20, 10 (pan) 

16 

 

26 

185 

 

60 

High Resolution Geometric 

(HRG) 

SPOT 5 10, 2.5-5 

(pan) 

26 60 

Advanced Spaceborne 

Thermal Emission and 

Reflection Radiometer 

(ASTER) 

Terra 15, 30, 90 16 60 

Multi-spectral instrument 

(MSI)  

Sentinel-2 10, 20, 60 5 290 

Advanced Very High 

Resolution Radiometer 

(AVHRR) 

NOAA-

Series 

1100 1 2399 

Moderate-Resolution Imaging 

Spectroradiometer (MODIS) 

Terra, Aqua 250, 500, 

1000 

1-2 2330 

VEGETATION (VGT) 

Vegetation 

SPOT 4, 5 

PROBA-V 

1000 

100 

1 

1 

2250 

2285 

. *) pan = panchromatic 

 

The application of remote sensing studies in peanut crops are limited (Rajan 

et al. 2014), despite the crops’ position as important source of protein and as 

contributing agents in nitrogen gas emission. Using high spatial resolution of 

satellite imagery, Robson et al. (2007) explored the inherent spatial variability on 

specific peanut paddocks. They also found correlation between the NDVI dataset 

with yield and pod maturity of peanut crops to be highly significant (r=0.91) and 

moderately significant (r=0.67), respectively. Ground cover of peanut crops can be 

estimated accurately based on perpendicular vegetation index (PVI) by using an 

airborne remote sensing technology (Rajan et al. 2014). In Senegal, (Knudby 2004) 

carried out a study of crop yield estimation in a peanut-growing region (Peanut 

Basin).  

Only few remote sensing studies have focused on peanut crop mapping. For 

example, Schultz et al. (2015) mapped several crops in Brazil including peanut 

crops, but found difficult to differentiate between peanut and cassava crops. 

Meanwhile, Robson et al. (2007) also mapped peanut crops in the South Burnett, 

Australia, but the study only covered small areas and utilised high spatial resolution 
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of satellite imagery, which is usually costly. It is well known that legume crops, 

such as peanut crops, are the second most important source of nitrogen gas emission 

(Monfreda et al. 2008). As a result, mapping these crops will provide more 

understanding regarding the global spatial distribution of nitrogen cycling 

(Monfreda et al. 2008). Therefore, mapping peanut crops will be essential, not only 

in terms of securing peanut market, but also in determining policy for climate 

change impact. Chapter 4 (Objective 1) of this Thesis will address this peanut crop 

mapping gap. 

2.5 Time-series imagery 

2.5.1 The nature and application of time-series imagery 

The ability of earth observation satellites to repetitively capture imagery of a 

particular location has enabled the emergence of time-series or multi-temporal 

imagery data, which provides some advantages for crop mapping. It is 

acknowledged that the use of remote sensing data in determining land use of 

agricultural areas is still very challenging (BeyerJarmer, et al. 2015). Different 

vegetation types frequently demonstrate very similar spectral behaviour. As a 

result, it is difficult to classify crops using one multispectral data alone 

(BeyerJarmer, et al. 2015). However, different physiological growth (phenological) 

stages of each crop reflect different spectral behaviours (BeyerJarmer, et al. 2015), 

which lead to frequent changes of a crop’s reflectance at different times (Sun et al. 

2012). As a result, the use of time-series data can provide an opportunity to capture 

these differences, and at the end, crops with similar spectral behaviour can be 

classified easily (BeyerJarmer, et al. 2015). In addition, time-series data also offer 

the benefits of providing near real-time information on large areas (Eerens et al. 

2014). 

Several issues to consider in mapping land use of agriculture are the spatial 

resolution, temporal resolution, coverage, ability/quality (such as cloud cover), 

imagery costs, and classification methods (Sun et al. 2012). Basically, land 

observation sensors can be grouped into two types: first, sensors with high spatial 

resolution but small in coverage area and low in temporal resolution; and second, 

sensors with high temporal resolution and large coverage area but low in spatial 

resolution. The former is appropriate for attaining detailed local information, while 

the latter is appropriate for gaining time-series data and have more possible 
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opportunity to retrieve cloud-free imagery (Sun et al. 2012). A relatively new earth 

observation satellite, Project for On-Board Autonomy - Vegetation (PROBA-V), 

was employed in this study (Objective 1). PROBA-V offers an intermediary spatial 

resolution between medium spatial resolution imagery, such as Landsat (30m) and 

Sentinel-2 (10m), and low spatial resolution imagery, such as MODIS (250m). 

Thus, it has higher temporal resolution and large coverage areas than the medium 

spatial resolution satellite, with a fairly good spatial resolution. In order to map 

agricultural crops accurately, a medium to high spatial resolution, with a pixel size 

of 5 to 100m, is required (Liu et al. 2014). PROBA-V has a spatial resolution of 

100m (Wolters et al. 2017), thus it fulfils the requirements of crop mapping. In 

addition, with a swath width of 2,285 km (Wolters et al. 2017), PROBA-V has 

superiority compared to Landsat 8 and Sentinel-2, which have a coverage of 185 

and 290 km, respectively. The satellite also has a daily temporal resolution. As a 

result, PROBA-V is ideal for future crop mapping and agricultural monitoring 

(Zhang et al. 2016), especially since it was designed specifically for vegetation 

monitoring (Wolters et al. 2017).  

In classifying crops, utilizing the single-date reflectance bands with low 

spatial resolution is frequently difficult; consequently Vegetation Indices (VIs) are 

generally used to extract green plant properties in multi-spectral remote sensed data 

(Sun et al. 2012). VIs measure the basic difference among soil and crop spectra 

(Pinter et al. 2003), and primarily derive from the transformation of red and near 

infra-red (NIR) reflectance (Xavier et al. 2006). One example of VIs is the 

normalized difference vegetation index (NDVI), which is the most popular satellite-

derived VIs used in agricultural studies (Foerster et al. 2012). Some satellites have 

readily available derived NDVI products; one example of these satellites is 

PROBA-V earth observation satellite. Considering its benefits in terms of 

resolution and coverage area, PROBA-V NDVI imagery will be used in mapping 

peanut crops in this study (Chapter 4 - Objective 1 of the Thesis). Moreover, none 

of studies have been undertaken in mapping peanut crops using PROBA-V, a 

relatively new vegetation monitoring satellite. 
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2.5.2 Time-series analysis technique 

Mapping vegetation and crops using remote sensing often comprises of image 

pre-processing and image classification. The former involves all preparatory steps, 

including bad line replacement, radiometric correction, geometric correction, and 

image enhancement and masking; while the latter refers to the process of extracting 

the discriminated classes (Xie et al. 2008). Before classifying multi-temporal 

imagery, an analytical approach is employed to enhance image quality. For 

example, BeyerJarmer, et al. (2015) used the Jeffries-Matusita (JM) separability 

test to acquire a time-series data set with best spectral separability, thus preventing 

the run of a huge number of classification classes. Sun et al. (2012) used curve 

shape matching in mapping winter wheat and removing time-series noise using 

Savitzky Golay filter and Fast Fourier Transform (FFT) to smooth the raw data. 

Xavier et al. (2006) employed cluster analysis which grouped the sample data. Yang 

et al. (2011) used TIMESAT software to smooth enhanced vegetation index (EVI) 

imagery and acquire the seasonal development by employing the three processing 

methods available in TIMESAT software.  

TIMESAT is a software package for estimating the growing season of time-

series imagery by extracting the seasonality parameters, such as the beginning and 

end of the growing season, its length, and integrated values (Eklundh & Jönsson 

2015a). It iteratively fits mathematical functions to smooth the time-series of noisy 

satellite data, and extract the seasonality parameters from each imagery pixel 

(Jönsson & Eklundh 2015). The process involves two steps: first defining the 

number of seasons and their approximate time, and second, filtering or smoothing 

the data by using the available mathematical functions, i.e. Savitzky-Golay filter, 

asymmetric Gaussians function, and double logistic function (Jönsson & Eklundh 

2004). Originally, TIMESAT was used to smooth noisy time-series of AVHRR 

NDVI data (Jönsson & Eklundh 2015), but currently, it has been used in numerous 

time-series data.  

TIMESAT has been applied in several studies involving several earth 

observation satellites. The software has been used successfully in extracting 

phenological parameters from PROBA-V data in mapping crops in China (Zhang 

et al. 2016). Li et al. (2014) also used TIMESAT software to filter MODIS EVI 

data and successfully mapping crop cycles in China using the filtered data. The 
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resulting phenological parameters generated from MODIS EVI data using 

TIMESAT software also successfully mapped paddy rice in China (Yang et al. 

2011). Gao et al. (2017) used TIMESAT software to generate a crop phenology 

map of LANDSAT-MODIS data fusion, and found a strong correlation between the 

remotely sensed phenological stages with the observed crop physiological growth 

stages. In addition, Bendini et al. (2016) concluded that phenological parameters 

derived from LANDSAT 8 EVI using TIMESAT has the potential for agricultural 

land use map. However, Hentze et al. (2016) suggested careful use of the 

phenological data retrieved from the TIMESAT program in discriminating rainfed 

agriculture with grassland in semi-humid tropical regions, as it may incorrectly 

classify the classes. In addition, crop calendars of each crop influenced the 

classification accuracy of crop mapping, although TIMESAT software was 

employed in filtering the time-series data (Muhammad et al. 2016).  It has been 

discovered that crops with near similar crop calendars had lower classification 

accuracy than crops with different crop calendars. (Muhammad et al. 2016). 

2.6 Climate change and its impacts 

The earth has experienced an increase of average combined land and ocean 

surface temperature of 0.85°C since 1880; and the consecutive last three decades 

are becoming warmer than any earlier decade since 1850 (Figure 2.7) (IPCC 2014). 

In addition, there is a reduction of glaciers and ice sheets, an increase in sea level, 

and a change in precipitation Figure 2.7 (IPCC 2014). The increase of 

anthropogenic greenhouse gas emissions since the pre-industrial era has contributed 

predominantly to climate change (Figure 2.8). As can be seen in Table 2.3, it is 

projected that if the trends continue, the increases in temperature and sea levels are 

inevitable. 
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Table 2.3 Projected change in global mean surface temperature and global mean sea 

level rise for the mid and late 21st century, relative to 1986-2005 period (IPCC 2014). 

  2046-2065 2081-2100 

 Scenario Mean Likely range Mean Likely range 

Global mean surface 

temperature change (°C) 

RCP2.6 1.0 0.4 to 1.6 1.0 0.3 to 1.7 

RCP4.5 1.4 0.9 to 2.0 1.8 1.1 to 2.6 

RCP6.0 1.3 0.8 to 1.8 2.2 1.4 to 3.1 

RCP8.5 2.0 1.4 to 2.6 3.7 2.6 to 4.8 

 Scenario Mean Likely range Mean Likely range 

Global mean sea level rise 

(m) 

RCP2.6 0.24 0.17 to 0.32 0.40 0.26 to 0.55 

RCP4.5 0.26 0.19 to 0.33 0.47 0.32 to 0.63 

RCP6.0 0.25 0.18 to 0.32 0.48 0.33 to 0.63 

RCP8.5 0.30 0.22 to 0.38 0.63 0.45 to 0.82 

  

 

 

 

Figure 2.7 The increase of average global temperature (a), changing in surface 

temperature (b), extent of sea ice (c), increase of sea level (d), and change in annual 

precipitation (e) (IPCC 2014). 
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Figure 2.8 Total annual anthropogenic GHG by gases 1970-2010 (IPCC 2014). 

 

Data in the previous paragraph shows the evidence of climate change 

incidence. Climate change results in mean temperature alteration, climate 

variability, and extreme weather incidence, including drought, very high or very 

low temperatures, heavy rain, and floods (Gornall et al. 2010). Since weather and 

climate have a significant effect on agricultural production (Gornall et al. 2010), 

agriculture will become a susceptible sector (Anwar et al. 2013). Temperature and 

precipitation alterations will affect land and water regimes, which will in turn, affect 

agricultural productivity (Anwar et al. 2013). Many agricultural regions will 

experience negative impacts due to the increase in temperature, which will result in 

a reduction of crop yields (Rosenzweig et al. 2014). The growing rate becomes 

faster, thus the crops become incapable of acquiring sufficient sunlight and 

resulting in biomass reduction (Stokes & Howden 2010).  

In addition the agricultural sector also faces other challenges, such as pests 

and diseases, water supply, waterlogging, salinity, soil degradation, heat stress, 

drought, and unsuitability of current planting areas (Gornall et al. 2010; Steffen et 

al. 2012; Rosenzweig et al. 2014). The increase in the sea level may also result in 

the loss of agricultural land (Gornall et al. 2010).  Geographical distribution and 

growth of plant species will be affected by climate change, even though the scale 

will depend on the species type (annual or perennials) and their growth patterns 

(agricultural crops or natural vegetation) (Coakley et al. 1999). For example, the 

change in the climate of some high-latitude regions will enable the cultivation of 

some crops in these regions, although viability assessment is needed to ensure the 
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suitability of their soil quality (Rosenzweig et al. 2014). Similar with crops, 

pathogen distribution will also be influenced by climate change. Warming 

temperatures will limit some pathogen life-cycles, such as Puccinia striifromis f.sp. 

triciti, while CO2 increase could establish favourable conditions for Fusarium 

pseudograminearum (Luck et al. 2011). 

Australia has one of the most variable climates in the world (DERM 2010), 

due to the influences of El Nino – Southern Oscillation (ENSO), the Indian Ocean 

Dipole (IOD), the Madden-Jullian Oscillation (MJO), and the Southern Annular 

Mode (SAM) (King et al. 2014; CSIRO & BoM 2015). It is acknowledged that 

agricultural practices in Australia are sensitive to long-term climatic conditions and 

year-to-year climate variability (Stokes & Howden 2010). As a result, the incidence 

of climate change puts the agricultural sector in Australia in a more susceptible 

position. Compared to other countries, Australia has experienced a higher 

temperature increase since 1910, i.e. 0.9°C (Stokes & Howden 2010; Garnaut 2011; 

CSIRO & BoM 2015). Moreover, the geographic distribution, averages, 

seasonality, and intensity of rainfall are changing (DERM 2010; Stokes & Howden 

2010). Considering the role of climate in peanut crops and aflatoxin development, 

the adverse climate change in Australia could shift the geographical distribution of 

these peanut crops and aflatoxin in the future. These gaps are addressed in Chapter 

5 (Objective 2) and Chapter 6 (Objective 3) of the Thesis. 

2.7 Climate models and scenarios 

Information about future changes in climate average and variability is needed 

by decision makers and resource managers to improve the management of climate 

change effects (Santoso et al. 2008). One of the best instruments for projecting 

climate change is Global Climate Models (GCMs) (Suppiah et al. 2007; CSIRO & 

BoM 2015). The models are developed using mathematical representations of the 

climate systems, based on the laws of physics, such as mass, energy, and 

momentum (CSIRO & BoM 2015), and comprehensively verified against historical 

observations (IPCC 2014). GCMs simulate various climate aspects, such as the 

temperatures of the oceans and atmosphere, precipitation, winds, clouds, ocean 

currents, and sea-ice extent (IPCC 2014). Currently, 48 GCMs are available from 

the Coupled Model Intercomparison Project Phase 5 (CMIP5) (CSIRO & BoM 

2015). 
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GCMs project future climate using scenarios of greenhouse gasses (GHG) 

and air pollutant emissions and land use patterns. The scenarios are based on the 

key factors determining anthropogenic GHG emissions, i.e. economic and 

population growth, lifestyle and behavioural changes, energy use and land use 

changes, technology, and climate policy (IPCC 2014). The Fifth Assessment Report 

(AR5) of the Intergovernmental Panel on Climate Change (IPCC) provides the 

standard set of scenarios, namely Representative Concentration Pathways (RCPs). 

RCPs consists of rigorous mitigation scenario (RCP2.6), intermediate scenarios 

(RCP4.5 and RCP6.0), and very high GHG emission scenario (RCP8.5) (IPCC 

2014). The previous third (TAR) and fourth (AR4) of IPCC assessments used 

emission scenarios of Special Report on Emission Scenarios (SRES), consisting of 

the A1, A2, B1, and B2 scenario family (Nakicenovic et al. 2000). Generally 

speaking, the resemble of RCP to SRES scenario are RCP8.5 to SRES A2 or A1F1, 

RCP6.0 to SRES B2, and RCP4.5 to SRES B1. Meanwhile, RCP2.6 is not 

comparable to any SRES scenarios (IPCC 2014). 

2.8 Species Distribution Models (SDMs) and CLIMEX 

Species Distribution Models (SDMs) are models which are developed based 

on the relation between species distribution data (occurrence or abundance) at 

known locations and environmental and/or spatial characteristics of the locations  

(Barry & Elith 2006; Elith & Leathwick 2009). The fundamental approach of SDMs 

is that climate ultimately limits species distributions (Beaumont et al. 2008). 

Therefore, the resulting data can be used to project future species distribution using 

particular climate models and climate change scenarios (Heikkinen et al. 2006). 

Different terminology with occasionally different emphases and meanings are 

being used to refer to SDMs, i.e. bioclimatic models, climate envelopes, habitat 

models, and Ecological Niche Models (ENMs) (Elith & Leathwick 2009). Many 

SDMs have been developed, among them are ANUCLIM/BIOCLIM, CLIMATE, 

CLIMATE ENVELOPE, DOMAIN, GARP, HABITAT, and CLIMEX (Kriticos & 

Randall 2001). 

CLIMatic indEX (CLIMEX) (Sutherst & Maywald 1985) is a mechanistic or 

process-oriented computer model that infers species’ response to climate, using 

species’ geographical distribution and species’ seasonal growth and mortality 

patterns in different areas (Beddow et al. 2010; Kriticos et al. 2015). CLIMEX uses 
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the assumption that is also used by other SDMs, i.e. it is possible to deduce tolerant 

climatic requirements of a species based on their persistence areas (Kriticos et al. 

2015). However, unlike other SDMs which characterise species’ occupied 

environments, CLIMEX mimics the mechanism that limits species’ geographical 

distribution, defines species’ seasonal phenology, and to a lesser extent species’ 

relative abundance (Kriticos et al. 2015). In addition, most of the models emphasise 

defining the relationship between species occurrences with respect to static 

environmental covariates, while CLIMEX describes the species response to 

climatic variable at suitable temporal measures (daily or weekly) (Kriticos et al. 

2015). 

CLIMEX has been used broadly in a wide range of taxa, such as plants 

pathogens, mammals, and insects (Kriticos & Leriche 2010). The model was 

employed in the future projections of the geographic distribution of several crops 

in relation to climate change occurrence. This includes common bean (Ramirez-

Cabral et al. 2016), corn (He & Zhou 2012), wheat and cotton (Shabani & Kotey 

2015), oil palms (Paterson et al. 2015), tomato (Silva et al. 2017), and date palms 

(Shabani, Kumar & Taylor 2014; Shabani, Kumar, et al. 2015). However, a study 

regarding the projected suitable areas for peanut cultivation in the future has not 

been carried out in any part of the world, including Australia. Therefore, Chapter 5 

(Objective 2) of this Dissertation addressed this gap. Similarly, CLIMEX also has 

been used in the projected future geographic distribution of several pests and 

diseases, such as Fusarium oxysporum f. spp. (Shabani, Kumar & Esmaeili 2014), 

Leptinotarsa decemlineata (potato pest) and Ostrinia nubilalis (corn pest) 

(Kocmánková et al. 2011), Sitodiplosis mosellana (wheat pest) (Olfert et al. 2016), 

and Aceria tosichella (cereal pest) (Schiffer et al. 2009). It is acknowledged that the 

main driving factor of aflatoxin synthesis is climate (Paterson & Lima 2010). 

Therefore, since CLIMEX is based on species’ climatic preference, the use of this 

model in projecting future aflatoxin distribution is appropriate. Unfortunately, 

despite the significant negative impact of aflatoxin, the projection of its future 

geographic distribution has not been undertaken. As a result, this study addressed 

the gap in Chapter 6 (Objective 3) of the Thesis. 
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2.9 Concluding remarks 

Based on the preceding reviews of the potential use of remote sensing 

technologies and spatial modelling techniques in mapping peanut cropping areas 

and projecting the future geographic distributions of peanut crops and aflatoxin, the 

following research gaps are summarised: 

 Crop mapping holds an essential role in managing the market and 

distribution of agriculture crops. However, only limited studies have been 

carried out in mapping peanut crops, despite their essential role as important 

sources of protein and as contributing agents in the emission of nitrogen gas.  

 As a relatively new vegetation monitoring satellite, PROBA-V offers an 

advantage in terms of resolution and coverage area, which could provide 

benefits for mapping peanut crops. Nevertheless, as of the time of writing 

this Dissertation, none of studies have been undertaken in mapping peanut 

crops using this satellite.  

 Time-series imagery data offers an opportunity to differentiate crops with 

very similar growing seasons by capturing different physiological growth 

(phenological) stages of the crops over their growing period. One of the 

examples of software to analyse time-series data is TIMESAT, which has 

been used widely and successfully in several studies, although some 

encounter challenging results. Therefore, using TIMESAT in generating 

phenological parameters to map peanut crops could provide an opportunity 

for mapping these crops.  

 As geographical distribution and growth of crops will be affected by climate 

change, investigating the future geographical distribution of peanut crops 

will be beneficial in managing this commodity to anticipate the impact of 

climate change. This is particularly so since none of studies have been 

carried out in modelling future geographic of peanut crops in relation to 

climate change. 

 In particular, the effect of climate change in Australia will further put the 

agricultural sector in a susceptible position, due to its sensitivity with long-

term climatic conditions and year-to-year climate variability. Therefore, 

there is a need to study the impact of climate change on the geographical 

distribution of peanut crops in Australia. 
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 Considering its risk of fatality, aflatoxin has become one of the major 

mycotoxin problems with a high risk of occurrence in peanut crops. Since 

climate is the main driving factor in aflatoxin incidence, climate change 

might influence the synthesis and distribution of aflatoxin. Unfortunately, 

no study has been carried out to investigate this issue, although it will be 

beneficial in managing aflatoxin incidence in the future.  

 Climatic stresses, i.e. drought and heat stresses, are the triggers for aflatoxin 

synthesis in peanut crops. It is projected that Australia will experience an 

increase of incidence and severity of aflatoxin due to the projected increase 

of temperature and projected variability and reduction of rainfall in the 

future. It is found that there is limited knowledge regarding the favourable 

areas for aflatoxin invasion in Australia. 

 Having knowledge of suitable areas for peanut cultivation and favourable 

areas for aflatoxin infection will provide an opportunity to locate suitable 

peanut cultivation areas with a low risk of aflatoxin infection. 

Unfortunately, none of the studies have related peanut cultivation areas with 

aflatoxin favourable areas, including in Australia. 
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Chapter 3  
 

 

RESEARCH METHODS 

 

 

3.1 Introduction 

The previous two chapters provided an overview of the key problems and 

issues in the peanut crop industries, especially in overcoming the challenges of 

climate change. The chapters explained the overall framework of the study and 

identified the current research gaps on the topic that need to be addressed. These 

knowledge gaps were then used as basis for developing the aim and objectives of 

this study. The present chapter discusses the methods adopted by the study in 

achieving the objectives enumerated in Chapter 1. Specific methods are detailed in 

the ensuing chapters corresponding to the specific objectives of this study 

(Chapters 4, 5, and 6). The contents of this chapter are presented in the following 

sections: description of the study area (Section 3.2), data acquisition, processing, 

and analysis (Section 3.3), and summary (Section 3.4). 

3.2 The study area 

The study area for peanut crop mapping using remote sensing (Objective 1) 

was located in the South Burnett region, Queensland, Australia, while the study 

area for projecting the future geographic distribution of peanut crops and their 

associated aflatoxin incidence (Objective 2 and Objective 3) covered the entire 

Australian continent (Figure 3.1). The South Burnett region is situated in the 

southern catchment of the Burnett River, approximately 200 km north-west of 

Brisbane, the capital city of Queensland, Australia. The proximity with Brisbane 

has put the South Burnett region in a strategic location for domestic and 

international markets, and has enabled the region to be an important food producing 

area (Sorby & Reid 2001). The main town in the South Burnett region is Kingaroy, 

which is well known as the ‘peanut capital of Australia’. Historically, the peanut 

industry in Australia began in the Burnett region in 1924, with the establishment of 
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the Peanut Marketing Board (Wright et al. 2017). Currently, the board has been 

transformed into the largest peanut company in Australia and is still located in 

Kingaroy (Wright et al. 2017). 

The climate of the South Burnett region is subtropical (Sorby & Reid 2001). 

The region has a seasonal rainfall of wet summer and low winter rainfall (BoM 

2016), with a mean annual rainfall of 662.6 mm (South Burnett Regional Council 

2014). The wettest month (108.1 mm) is recorded in December (South Burnett 

Regional Council 2014). The temperature/humidity zones are characterised by 

warm summers and cold winters (BoM 2016). The average mean maximum 

temperature ranges from 19.4°C in July to 30.8°C in January, while the average 

minimum temperature ranges from 3.4°C in July to 18.0°C in January (South 

Burnett Regional Council 2014). The region covers an area of 8,381 km2, with a 

total population of 32,575 (around 0.14% of the Australian population) (ABS 

2018). The land use is dominated by grazing native vegetation, and the majority of 

agricultural land is dryland cropping (Figure 3.1) (ABARES 2019). The region has 

a soil dominated by red ferrosol which is historically suitable for cropping activities, 

and has made the South Burnett region an important summer crop producer, 

especially of peanut, navy beans, and maize (Sorby & Reid 2001). The summer 

crops are typically sowed in September to early January, and usually harvested in 

February to May (DAF 2014).  

The study area of future geographic distribution of peanut crops and the 

associated aflatoxin (Objective 2 and Objective 3) covered the Australian 

continent, with a total area of 7.692 million km2 (Geoscience Australia 2018) and 

a total population of 25.18 million people (ABS 2019). The country has an expanse 

of land with great variability in climate, water, and soil conditions (Tapsell et al. 

2011). The climate in Australia comprises five major climate groups: tropical, 

subtropical, desert, grassland, and temperate (Figure 3.1) (Kriticos et al. 2012). 

These classifications are based on the Koppen-Geiger classification following the 

application of the rules of  Kriticos et al. (2012) applied to the 5’ resolution of 

WorldClim – Global Climate Data (Hijmans et al. 2005).  

The agricultural sector has become one of the important components in the 

economy of Australia (Tapsell et al. 2011). Although the majority of the Australian 

land is desert and the agricultural sector frequently encounters problems of drought 

and water shortage, the country has a substantial agricultural production and a 
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relatively self-sustaining food supply (Tapsell et al. 2011). Agricultural production 

areas in Australia are concentrated in the eastern parts of Queensland and New 

South Wales, the majority of Victoria, the southern part of South Australia, and the 

south-western part of Western Australia (ABARES 2019). These agricultural areas 

comprise subtropical, grassland, and temperate climatic regions. Summer crops 

planted in Australia are mostly sorghum, cotton, rice, corns, mung beans, peanuts, 

soybeans, and sunflowers; while winter crops planted are mostly wheat, barley, 

canola, chickpeas, faba beans, field peas, lentils, lupin, oats, safflowers, and triticale 

(ABARES 2016). In general, peanut crops are grown under dry-land practices (Pitt 

& Hocking 2006) and are cultivated across the eastern part of Queensland and 

northern part of the Northern Territory (Crosthwaite 1994; Chauhan et al. 2013). 

Aflatoxin incidence, which commonly occurs in peanut crops, is one of the major 

problems of the peanut industry in Australia (Pitt & Hocking 2006).  
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Figure 3.1 Study area for Objective 1 in the South Burnett region, Queensland, Australia (a), and study area for Objectives 2 and 3 covering the entire 

Australian continent (b).
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3.3 Data acquisition, processing, and analysis 

An overview of the data inputs, processes, and the outputs of this study is 

shown in Figure 3.3, while the summary of datasets used is presented in Table 3.1. 

This section only describes the general overview of the data acquisition, processing, 

and analysis, since the details are explained further in the succeeding chapters of 

this Thesis.  

Briefly, the data acquisition for Objective 1 (i.e. peanut crop mapping) 

consists of field survey data and satellite imagery datasets, namely time-series 

PROBA-V NDVI imagery, Landsat 8 imagery, and Google Earth data. The field 

survey (Figure 3.4) was used to determine regions of interest (ROI) with the 

guidance of higher resolution satellite imagery from Google Earth and Landsat 8. 

Meanwhile, the time-series PROBA-V NDVI imagery was pre-processed, was then 

analysed using the separability test of Jeffries-Matusita (JM) distance, the 

traditional approach (stacking the NDVI dataset), and the phenology approach of 

the TIMESAT time-series analysis program. Afterwards, the imagery was 

classified using supervised classification algorithms, namely maximum likelihood 

classification (MLC), minimum distance classification (Min), and spectral angle 

mapper (SAM). The accuracy of the classified imagery/map was then assessed 

using an error matrix which was used to calculate the overall accuracy, producer 

accuracy (PA), user accuracy (UA), and kappa coefficient (KP).  

Accuracy assessment of classified results was based on the number of pixels 

matches between classified image/data and reference data in the error matrix 

(Figure 3.2). Around 28% of the reference data collected from field work in this 

study was used. The error matrix consists of rows and columns of corresponding 

feature classes, which fill in with the number of observed pixels in each cell. The 

feature classes in the rows represent the classified data, while feature classes in the 

columns represent the reference data (Story & Congalton 1986; ITC 2010). The 

overall accuracy is the accuracy for the whole class classification which is 

calculated by dividing the number of correctly classified pixels (i.e. the sum of the 

diagonal cells in the error matrix) to the total number of all samples in the matrix, 

and multiplying with 100%. To assess the classified map in detail, the accuracies 

of individual feature classes were investigated using the producer accuracy (PA) 

and user accuracy (UA) metrics. PA is defined as the probability of a reference data 
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to be correctly classified in the classification map. This accuracy is related to 

omission error, i.e. the omission of a reference data from its actual feature class in 

the classified map. PA is calculated by dividing the number of correctly classified 

samples of a specific feature class with the total number of reference data of that 

class (column total). The other individual feature class accuracy, UA, is defined as 

the probability of a classified data from a specific feature class, indeed actually 

represent the feature class on the ground. This accuracy is related to commission 

error, i.e. the inclusion of classified data into incorrect feature class in the classified 

map. UA is calculated by dividing the number of correctly classified samples of a 

specific feature class with the number of classified data of that class (row total) 

(Story & Congalton 1986; ITC 2010). In order to observe the differences between 

actual agreement and agreement expected by chance in the classification result, 

Kappa coefficient (KC) was used. The coefficient is calculated as follows (Stefman 

1996): 

 

𝐾𝐶 =
𝑁 ∑ 𝑥𝑖𝑖

𝑟
𝑖=1 − ∑ (𝑥𝑖+ × 𝑥+𝑖)𝑟

𝑖=1

𝑁2−∑ (𝑥𝑖+× 𝑥+1)𝑟
𝑖=1

  (1) 

where 

r    = number of row in the error matrix 

𝑥𝑖𝑖  = number of observation in row i and column i (on the major diagonal) 

𝑥𝑖+  = total observation in row i 

𝑥+𝑖 = total observation in column i 

N = total number of observations included in matrix 

 

 

 

Figure 3.2 Accuracy assessment of an error matrix (Story & Congalton 1986) 
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In Objective 2 (i.e. the projection of future geographic distribution of peanut 

crops), the data acquisition consists of three datasets: (1) the peanut developmental 

threshold on temperature and soil moisture from various academic articles; (2) the 

global geographical distribution data of peanut crops from the Global Biodiversity 

Information Facility (GBIF) and the Atlas of Living Australia (ALA); and (3) the 

historical and Global Climate Models (GCMs) of CSIRO-Mk3.0 and MIROC-H 

climate data from CliMond database. One of Species Distribution Models (SDMs), 

CLIMEX, was used in modelling the future geographic distribution of peanut crops 

in Australia for 2030, 2050, 2070, and 2100. The modelling process started by 

iteratively fitting the CLIMEX parameters for peanut crops using the 

developmental threshold and global geographical distribution data. The resulting 

model was then validated against independent data of the global geographic 

distribution of peanut crops. Once the model was validated, it was used to project 

the future geographic distribution of peanut crops in Australia. 

Initially, 23 GCMs were analysed based on three selection criteria (Kriticos 

et al. 2012): (1) the ability to provide climate data needed in calculating the input 

data for CLIMEX, as well as the extended list of 35 Bioclim variables. The climate 

data consists of monthly averages of daily maximum and minimum temperatures, 

precipitation, mean sea level pressure, and specific humidity; (2) having a relatively 

smaller-horizontal grid spacing; and (3) the ability to perform well compared to 

other GCMs in representing basic aspects of the observed climate at a regional 

scale. Three GCMs fulfilled this criteria, namely CSIRO-Mk3.0 (CSIRO, 

Australia), NCAR-CCSM (National Centre for Atmospheric Research, USA), and 

MIROC-H (Centre for Climate Research, Japan). However, NCAR-CCSM 

produced some concerning errors in arid regions; thus it was eliminated. Widely 

recognised and more popular GCMs should be used in employing Species 

Distribution Models (SDMs) (Olfert et al. 2016). CSIRO-Mk3.0 and MIROC-H 

GCMs have been used widely in modelling variety of species distributions, 

including those using CLIMEX model. Both GCMs were used in the distribution 

studies of tomato (Silva et al. 2017), date palm (ShabaniKumar, et al. 2015), oil 

palm (Paterson et al. 2015), cotton and wheat (Shabani & Kotey 2015), common 

bean (Ramirez-Cabral et al. 2016), Melanoplus sanguinipes (Fabricius) (Olfert et 

al. 2011), and Fusarium oxysporum f. spp. (Shabani, Kumar & Esmaeili 2014). 



45 

 

The data acquisition for Objective 3 (i.e. the projection of future geographic 

distribution of aflatoxin and the identification of high risk areas of aflatoxin in the 

future geographic distribution of peanut crops) is similar with Objective 2. It 

consists of the aflatoxin developmental threshold on temperature and soil moisture, 

and the global geographic distribution data of aflatoxin incidence. These two 

datasets were retrieved from various academic articles. It also included the 

historical and GCMs of CSIRO-Mk3.0 and MIROC-H climate data from the 

CliMond database. The CLIMEX model was also used in modelling the future 

distribution of aflatoxin in Australia for 2030, 2050, 2070, and 2100. The processes 

in developing the model followed similar steps to those described in modelling the 

future geographic distribution of peanut crops. It started with fitting the CLIMEX 

parameter values, and was then validated against independent data. Once the model 

was developed, it was used to project future geographic distribution of aflatoxin. 

The projection results of future aflatoxin distribution were then overlaid with the 

projection results of future peanut crop distribution (Objective 2) to identify the 

high risk areas of aflatoxin incidence in the future peanut crop distribution. 
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Figure 3.3 The input-process-output model of the study. 
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 Table 3.1 Types of data collected for the study. 

Dataset Description Acquisition 

year/period 

1. PROBA-V imagery End-user product (Level 3) of S1TOC NDVI with 

spatial resolution of 100 m. 

3 June 2015 to 

28 June 2016 

2. Landsat 8 imagery It is used as a guidance in determining region of 

interest (ROI) with a spatial resolution of 30 m. 

25 March 2016 

3. Google Earth It is used as a guidance in determining region of 

interest (ROI) with a spatial resolution of 15 m. 

March 2015 

4. Ground truth A field survey of various locations throughout the 

study area to collect training areas or ROI 

March 2016 

5. Developmental 

threshold of peanut 

crops 

Developmental threshold on temperature and soil 

moisture from various academic articles.  

July 2017 

6. Developmental 

threshold of 

aflatoxin 

Developmental threshold on temperature and soil 

moisture from various academic articles. 

May - June 

2018 

7. Global geographical 

distribution of 

peanut crops 

Dataset retrieved from the Global Biodiversity 

Information Facility (GBIF) and the Atlas of 

Living Australia (ALA). 

August 2017 

8. Global geographical 

distribution of 

aflatoxin 

Dataset retrieved from various academic articles. May – June 

2018 

9. Historical climate 

data 

Dataset retrieved from the CliMond gridded data 

at 10’ resolution. 

It comprises of: 

 Average maximum monthly temperature 

 Average minimum monthly temperature 

 Average monthly precipitation 

 Relative Humidity (RH) measured at 9am 

 Relative Humidity (RH) measured at 3pm  

August 2017 

(for running 

peanut model) 

July 2018 (for 

running 

aflatoxin model) 

10. Future climate data 

of Global Climate 

Models (GCMs) of 

CSIRO-Mk3.0 and 

MIROC-H  

Dataset retrieved from the CliMond gridded data 

at 10’ resolution for 2030, 2050, 2070, and 2100. 

It comprises of: 

 Average maximum monthly temperature 

 Average minimum monthly temperature 

 Average monthly precipitation 

 Relative Humidity (RH) measured at 9am 

 Relative Humidity (RH) measured at 3pm 

August 2017 

(for running 

peanut model) 

July 2018 (for 

running 

aflatoxin model) 
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Figure 3.4 Field work documentation for Objective 1 in the South Burnett region: fields of (a) peanut crops, (b) corn and peanut crops, (c) duboisia or 

corkwood trees, and (d) sorghum.
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3.4 Summary 

This chapter presents the overall approach and general methods used to 

achieve the objectives of the study. As the detailed methods are discussed in each 

of the technical chapters (i.e. Chapters 4, 5, and 6), this chapter only discusses the 

methods briefly. In summary, the peanut crop mapping was undertaken by using 

time-series PROBA-V 100m NDVI imagery in two different analytical approaches: 

stacking the NDVI dataset; and the phenology dataset of TIMESAT time-series 

analysis program. The projected future geographic distribution of peanut crops in 

Australia was carried out by using Species Distribution Models (SDMs) of 

CLIMEX based on the developmental threshold and global geographic distribution 

of peanut crops. Similarly, the projected future geographic distribution of aflatoxin 

in Australia was determined using the CLIMEX model based on the developmental 

threshold and global geographic distribution of aflatoxin. The identification of high 

risks of aflatoxin incidence in the distribution of peanut crops was carried out by 

overlaying the results of future geographic distribution of peanut crops and 

aflatoxin. 
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Chapter 4  
 

 

MAPPING OF PEANUT CROPS USING TIME-SERIES 

PROBA-V 100M NDVI IMAGERY  

 

 

4.1 Introduction 

As Australia has a high climate variability (Head et al. 2014), the peanut 

industry in this country has encountered a number of challenges in increasing its 

productivity and meeting the market demand. Therefore, forecasting peanut 

production is essential in securing and managing peanut crop’s logistics and 

marketing. One of the key components of the forecasting crop production is crop 

area mapping (Gallego et al. 2008; Craig & Atkinson 2013). However, limited 

studies are to be found in the literature about mapping areas of peanut crops, 

including Australia.  

Utilising satellite imagery in crop area mapping offers great benefits in terms 

of providing objective results and reducing time and cost. The advancement and 

diversity in remote sensing systems have provided opportunities to obtain the 

maximum benefits of using these technologies. One of the recent earth observation 

satellite systems, namely Project for On-Board Autonomy Vegetation (PROBA-V) 

(Wolters et al. 2017), has the advantage of increased spatial and temporal 

resolutions relative to other systems like MODIS. This satellite specialised in 

monitoring global vegetation (Dierckx et al. 2014), and has been applied 

successfully in several studies around the world.  Therefore, examining the use of 

time-series PROBA-V imagery in mapping peanut crops over regional areas in 

Australia will be important in providing information about the area estimation of 

peanut crops.   

This chapter addressed the issue of using time-series satellite imagery in 

mapping peanut crops. The primary aim of this study was to assess the effectiveness 

of time-series PROBA-V 100m NDVI imagery for peanut crop mapping in the 

South Burnett region of Queensland, Australia. The following are the specific 
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objectives: 1) to map peanut crops using PROBA-V 100m NDVI images and test 

the value of crop phenology as an alternative to traditional approach; and 2) to 

determine the most appropriate classification method(s) in mapping peanut crops 

in the study area. 

This chapter addressed this issue by using time-series PROBA-V NDVI 

imagery in mapping peanut crops. The primary aim of this study was to assess the 

effectiveness of time-series PROBA-V 100m NDVI imagery for peanut crop 

mapping in the South Burnett region of Queensland, Australia. The following are 

the specific objectives: 1) to map peanut crops using PROBA-V 100m NDVI 

images and test the value of crop phenology as an alternative to traditional 

approach; and 2) to determine the most appropriate classification method(s) in 

mapping peanut crops in the study area.  

This chapter is organised into six sections. Section 1 explains the objectives 

of the chapter. Section 2 presents the literature review on the benefits of peanut crop 

mapping, the utilisation and benefits of using satellite imagery in crop mapping, the 

analysis techniques of time-series imagery, and the research gap of the study. 

Section 3 describes the methods that were used to achieve the objectives of this 

study. Section 4 presents the results of this study in mapping peanut crops and 

Section 5 provides the discussion and interpretation of the results. Lastly, the 

chapter ends with Section 6 which concludes the new knowledge achieved in this 

study.  This chapter has been published in the Journal of Applied Remote Sensing 

(Haerani et al. 2018) with some reformatting done to suit the format of the Thesis. 

This study contributes novel knowledge on the application of a relatively finer 

(100m) remote sensing data product, including the assessment of multi-temporal 

data analysis techniques, to peanut crop mapping and monitoring. This is 

particularly true for mapping crops during the summer season where cloud cover is 

a major issue. 

4.2 The benefit of peanut crop mapping by using satellite imagery 

Peanut or groundnut (Arachis hypogaea L.) is one of the most important 

legume crops, as it is an important source of protein and oil (Adomou et al. 2005), 

and it has 26% protein higher than eggs, dairy products, meat, and fish (DPIF 2007). 

Generally, peanut-growing countries use their production output to meet their 

domestic market (DPIF 2007). In Australia, peanut production is about 40,000 
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tonnes per year, which is less than 0.2% of the world’s peanut production. The crop 

area planted in Australia is about 15,000 hectares, and more than 90% is located in 

Queensland (Wright et al. 2017). In Queensland, the peanut industry contributed to 

gross value production of 15.2 million dollars in 2014/2015 (QGSO 2016). In 

general, Australian peanut production can meet domestic demand, except when a 

severe drought occurs. However, efforts have been made to develop and supply an 

export market (DPIF 2007). Therefore, there is a need to increase the industry’s 

capabilities in producing peanut using more effective and efficient methods to meet 

production demands and profitability. 

Crop area estimation and crop yield estimation are the two main components 

of crop production (Gallego et al. 2008; Craig & Atkinson 2013). Compared to crop 

area estimation, more studies have been conducted on crop yield estimation (Craig 

& Atkinson 2013; Iizumi & Ramankutty 2015). For years, crop area estimation has 

been collected by censuses which is accurate but expensive and time consuming, or 

by samples which is cheap but not always accurate (Craig & Atkinson 2013). 

Remote sensing offers great help in crop area estimation by providing opportunities 

to increase the accuracy of the estimate and to reduce associated time and cost of 

mapping. It has distinct benefits pertaining to rapid objective assessment and 

longitudinal assessment, i.e. capturing changes over time at the same area 

(Srivastava 2015). Utilising remote sensing may allow crop area estimates to be 

conducted several months before harvest, including in the early season. This will 

be beneficial in making decisions such as supply, staff requirements, and import 

needs (Robson et al. 2007). However, studies on peanut crop mapping using 

satellite imagery are limited. 

Schultz et al. (2015) studied crop mapping of several crops, including peanut, 

in a sub-tropical region, Brazil, by using Landsat imagery and employing a 

combination of segmentation and Random Forest classification algorithm. It was 

found that using Landsat imagery is not enough to separate peanut and cassava due 

to similarity in spectral behaviour and the high variabilities within the class. In 

Australia, Robson et al. (2007) employed a single-date high resolution QuickBird 

imagery in one area of the South Burnett to identify spatial variability in peanut 

fields. This study also mapped peanut crops within the area with accurate results. 

However, this study was conducted in small areas (64 km2) and used a high spatial 

resolution satellite imagery. In Senegal, a study on peanut crop yield estimation has 
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been done in a peanut growing region (Peanut Basin) (Knudby 2004), but peanut 

crop area mapping has not been conducted. 

Crop mapping using satellite imagery can be done by using multispectral, 

Radar, and hyperspectral sensors. Having many narrow spectral bands, 

hyperspectral satellite data provides the opportunity to collect more detailed 

spectral information than the few broad spectral bands of multispectral sensors (Im 

& Jensen 2008). Therefore, hyperspectral data can adequately discriminate crops’ 

properties and can perform well in crop mapping (Whiting et al. 2006). 

Nevertheless, fewer hyperspectral sensors are mounted in satellites (i.e. Hyperion 

EO-1) (Vorovencii 2009) which results in limited data availability. In regard to 

multispectral sensors, it is often difficult to classify different crop types using a 

single image (Alganci et al. 2013), since crops frequently demonstrate very similar 

spectral behaviour (BeyerJarmer, et al. 2015). However, different physiological 

growth phases of each crop exhibit different spectral behaviour, thus the use of 

multispectral time-series imagery provides an opportunity to capture these temporal 

differences (BeyerJarmer, et al. 2015). This intra-annual multispectral time-series 

imagery can produce average phenology of individual land cover types (Gómez et 

al. 2016), which is an indirect estimation of physiological crop growth phases (Gao 

et al. 2017).  As a result, crops with similar spectral behaviour can be classified 

easily using this time-series data (BeyerJarmer, et al. 2015). In a study of crop 

classification in Kansas, USA, the VI time-series profile of a crop was found to be 

similar with its phenology attributes, such as timing of green-up, peak greenness, 

and senescence (Wardlow et al. 2007).  

Several mathematical functions have been used to smooth time-series 

vegetation indices from various satellite sensors (Atkinson et al. 2012; Atzberger 

2013). These include principal component analysis (PCA) (Hirosawa et al. 1996), 

harmonic analysis (Jakubauskas et al. 2001), Harmonic Analysis of Time-series 

(HANTS) (Potgieter et al. 2007), Savitzky-Golay filter (Chen et al. 2004), double 

logistic function fitting (Zhang et al. 2003), and asymmetric Gaussian function 

fitting (Jönsson & Eklundh 2002). Some tools have been developed to analyse time-

series data, such as TIMESAT, TIMESTATS, TiSeG, BFAST, and STARFM 

(Foerster et al. 2014). TIMESAT is a free software program that uses a curve fitting 

approach to smooth noisy time-series imagery to generate phenological parameters 

and map them (Jönsson & Eklundh 2002, 2004; Eklundh & Jönsson 2015b). Using 
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phenological parameters of MODIS Enhanced Vegetation Index (EVI) imagery 

produced from the TIMESAT program, Yang et al. (2011) successfully mapped 

paddy rice in China. However, the use of a TIMESAT program in mapping land 

use and land cover (LULC) in a semi-humid tropical region of Zimbabwe using 

time-series MODIS has failed to distinguish rainfed agriculture from grassland 

(Hentze et al. 2016). 

Mapping agricultural land use requires the consideration of spatial resolution, 

temporal resolution, coverage, availability/quality (such as cloud cover), imagery 

costs, and classification methods (Sun et al. 2012). The definition of spatial 

resolution of satellite imagery can be divided into four (Navulur 2006): (1) coarse 

or low resolution imagery (ground sampling  distance (GSD) ≥ 30m); (2) medium 

resolution (GSD between 2 – 30m); (3) high resolution imagery (GSD in the range 

of 0.5 – 2.0m); and (4) very high resolution (GSD < 0.5m). Fundamentally, the 

trade-off in mapping crops is focused on temporal versus spatial resolutions (Khan 

et al. 2016). 

Higher resolution (high spatial) data provides an opportunity to capture in-

depth local information (Sun et al. 2012; Petitjean et al. 2014), which is appropriate 

to map cropping areas on a small scale (Xie et al. 2008). The use of decametric 

sensors such as Landsat (30m), ASTER (15m), Sentinel-2 (10m), and Resourcesat-

2 (5.8m), will be useful in mapping crop areas with paddocks of a few hectares 

(Schultz et al. 2015). However, most of these sensors usually have insufficient 

temporal resolution to generate crop phenology stages (Pan et al. 2015), e.g. 

Landsat and ASTER have a temporal resolution of 16 days. Another disadvantage 

of using these sensors is the possibility of having noise, due to cloud cover (Zhang 

et al. 2016). Coarse resolution (low spatial) sensors, e.g. MODIS (250m), AVHRR 

(1km), and SPOT VEGETATION (1km), have become the main sources of data for 

mapping large areas, for example in the United States (Ozdogan & Woodcock 

2006). These sensors typically have wider swaths which lead to high temporal 

resolution data (Khan et al. 2016); for example, MODIS and AVHRR have a 

resolution of 1-2 days and <1 day, respectively. Nevertheless, in mapping small 

paddock sizes, inaccurate estimates may result from these sensors due to their 

coarse spatial resolution (Khan et al. 2016). To compensate for the trade-off, some 

studies composite imagery data using different sensors; for example Liu et al. 

(2014) incorporated high and low spatial resolution image in their crop mapping 
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study. Nevertheless, with their frequent temporal resolution, coarse resolution 

sensors are more feasible to get cloud-free imagery and are suitable for gaining 

time-series data (Sun et al. 2012; Petitjean et al. 2014), which can facilitate the 

derivation of phenology phases (Pan et al. 2015). 

Many agricultural fields are characterised by small farm size (i.e. less than 1 

ha). Thus, to accurately map crops, a medium to high spatial resolution imagery, 

with a pixel size of 5 to 100m, is required (Liu et al. 2014). A recent earth 

observation satellite, namely Project for On-Board Autonomy Vegetation 

(PROBA-V), could satisfy this requirement, since it has a spatial resolution of 

100m. Moreover, derived Normalized Difference Vegetation Index (NDVI) 

products are also available from PROBA-V (Wolters et al. 2017) which could be 

very useful in mapping crops. This satellite has finer spatial resolution than the 

commonly used coarse resolution satellite data, i.e. MODIS, which has 250m 

resolution, although both satellites have similar temporal resolution, i.e. daily 

(PROBA-V) and 1-2 days (MODIS).  

The increasing resolution of PROBA-V can potentially generate better 

accuracy, since the number of  spectral mixtures can be eliminated (Mingwei et al. 

2008). For instance, Zhang et al. (2016) compared the use of MODIS and PROBA-

V to map crops in complex cropping systems in Hongxing, China, and revealed that 

PROBA-V generated better accuracy (73.29%), compared to MODIS (46.81%). In 

addition, crop mapping studies using PROBA-V imagery are limited since this 

remote sensing satellite was launched in recent years (Durgun et al. 2016). For 

instance, Lambert et al. (2016) have recently mapped cropland in Sahelian and 

Sudanian regions using 100m PROBA-V time-series. Moreover, the successful 

study of crop area mapping with PROBA-V in Belgium, Russia, Ukraine, and 

Brazil provides the possibility of using this remote sensing system to map crop areas 

around different regions in the world (Durgun et al. 2016). Thus, the use of time-

series PROBA-V satellite imagery in mapping peanut crops over regional areas in 

Australia has been examined in this study. 

4.3 Materials and methods 

4.3.1 Study area 

The region selected for this study is located in the South Burnett region, 

Queensland, Australia, covering an area of 8,381.70 km2 (Figure 4.1) (ABS 2018). 



56 

 

The climate in the study site is temperate (BoM 2016), with the average mean 

maximum temperature between 19.4°C in July and 30.8°C in January, while the 

average minimum temperature is between 3.4°C in July and 18.0°C in January 

(South Burnett Regional Council 2014). It falls within the summer rainfall zones 

(BoM 2016), with mean annual rainfall of 662.6 mm, while the wettest month 

(108.1 mm) is recorded in December (South Burnett Regional Council 2014). These 

temperature and rainfall ranges are suited for peanut crops, i.e. 25-30°C during 

vegetative growth and 22-24°C during generative growth, with 500-600 mm well 

distributed rainfall (DPIF 2007). The region has a soil dominated by red ferrosols, 

which is suitable for growing peanut crops (Sorby & Reid 2001). Summer and 

winter crops, such as peanuts, navy bean, wheat, and sorghum, are often planted in 

this region (South Burnett Regional Council 2016). These summer crops are 

typically sowed in September to early January, and usually harvested in February 

to May (DAF 2014). 

 

 

Figure 4.1 Study area in the South Burnett region, Queensland. 
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4.3.2 Image data acquisition and pre-processing 

PROBA-V offers an intermediary spatial resolution between medium spatial 

resolution imagery, such as Landsat and HJ-1 A/B (30 m resolution), and low 

spatial resolution datasets, such as MODIS, SPOT-Vegetation, and AVHRR (250 

m – 1 km resolution) (Zhang et al. 2016). It was specifically designed as a ‘gap-

filler mission’ between SPOT-VEGETATION which was terminated in 2014 and 

ESA Sentinel-3 satellite, to ensure the continuation of vegetation time-series data 

(Francois et al. 2014; VITO 2016). The end-user products include daily synthesis 

(S1) collections which are available for 100m, 300m, and 1km resolution, and 5-

day synthesis (S5) with 100m resolution top-of-atmosphere (TOA) reflectance. In 

addition, top-of-canopy (TOC) (atmospherically corrected) products are also 

available, including a 10-day synthesis (S10) with 300m and 1 km resolution. NDVI 

collections are available for S1 and S5 products with 100m resolution, as well as 

S10 datasets with 300m and 1km resolution TOC. 

In this study, PROBA-V S1TOC (daily synthesis atmospherically corrected) 

100m NDVI products were selected in mapping peanut crops (Table 4.1). Since the 

growing season of peanut crops in this region is between October and June, images 

were collected during the period of June 2015 to June 2016 to adequately cover the 

entire season. A total of 163 images covering the study area from X33Y10 PROBA-

V tile were available. However, only cloud free images were selected and processed 

for this study, which resulted in 24 images. Out of these 24 images, a total of 15 

images were within the peanut growing season. A coverage of one year time-series 

data was used, since multiple years’ data can generate inaccurate phenological 

features (Jia et al. 2014) and may cause confusion due to land cover changes (Gao 

et al. 2017). Afterwards, the 24 images were subset into a study area and re-

projected into a Universal Transverse Mercator (UTM) projection. Lastly, the 

original NDVI values for each image were rescaled (0-255) using a linear function 

to enable software compatibility, better data handling, and data standardisation. 
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Table 4.1 Summary of imagery used in this study. 

Imagery Characteristics 

Product End-user product (Level 3) of S1TOC NDVI 

Spatial Resolution 100m 

Swath 2285 km 

Global coverage 5 days 

Date/Period 22 June 2015; 1, 19, and 28 July 2015; 15 August 

2015; 2, 16, 20, and 25 September 2015; 4 and 13 

October 2015; 18, 23, and 27 November 2015; 6, 11, 

and 15 December 2015; 7 January 2016; 26 February 

2016; 20 April 2016; 13, 17, and 26 May 2016; and 9 

June 2016. 

Number of imagery 24 cloud free imagery 

Tile 

File format 

X33Y10 

HDF5 

 

4.3.3 Field data gathering 

In March 2016, a field survey of various locations throughout the study area 

was conducted to collect training areas or Region of Interest (ROI) for classification 

and accuracy assessment. Using a Global Positioning System (GPS), the reference 

data collection was conducted by capturing crops or land feature types (i.e. peanut, 

corn, sorghum, mung bean, woody vegetation, pasture, and water.) on the main, 

secondary and farm roads. It was done by randomly selecting large paddocks, water 

bodies, pasture lands, and forest vegetation areas to avoid mixed pixels; and 

ensuring geographical representativeness of the reference data. In addition, high 

resolution image from Landsat 8 satellite captured on 25 March 2016 and from 

Google Earth captured in March 2015 were also used to determine ROIs by using 

visual interpretation techniques (de Souza et al. 2015). Typical appearances of crop 

classes examined in this study taken from TIMESAT output of crop phenology, a 

Landsat image, and field work photos were illustrated in Figure 4.2. Based on study 

area observation during the field work, there were eight (8) classes selected for this 

study with a total number of reference data of 1,690 pixels (Table 4.2). The original 

pixel size of 100 × 100m was retained for the training samples. 
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Figure 4.2 Example image of peanut, corn, mung bean, and sorghum classes were taken 

from crop phenology layers of TIMESAT program, a Landsat image, and field work 

photos. The yellow lines indicate the boundary of paddocks for each class. The Landsat 

image, particularly corn, may not represent the actual cover due to the date of data 

captured (i.e. during harvesting time). 

 

 

Table 4.2 Total number of reference data for each class. 

Class Training Data 

Peanut 263 

Mung bean 63 

Corn  198 

Sorghum 63 

Pasture 368 

Bare soil 161 

Woody vegetation 412 

Water 162 

Total 1,690 

 

 

 

4.3.4 Extracting time-series profiles and separability test 

The time-series profiles of NDVI datasets were generated and displayed by 

extracting the average spectral value of selected sample pixels from each date/layer 

of 24 NDVI image data for each class. Field data and high-resolution image from 

Google Earth were used as references in determining pixel samples, where only 

‘pure pixels’ were selected. Pure pixels ensure that the chosen pixels were indeed 
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the pixels of the representative class. In this case, pixels in the middle of paddock 

or class area were chosen. Spectral profiles were used to observe the reflectance 

pattern and differences between classes, including the examination of temporal 

separability. Especially for crop classes, such profiles were also used to examine 

the ability of PROBA-V NDVI imagery in presenting crop phenology cycles and 

ageing (Arvor et al. 2011). In addition, a separability test, namely Jeffries-Matusita 

(JM) distance, was performed in order to avoid or reduce potential misclassification 

due to using similar classes in classification (Richards 2006). BeyerJarmer, et al. 

(2015) have demonstrated the effectiveness of JM as a pre-testing method in finding 

the best layer stack combination for spectral separation of different land cover 

classes. This test can be used to determine the spectral distance between any pair of 

layers before conducting classification. If the distance is insignificant, the layers 

can be eliminated from the classification to ensure the best result (Gambarova et al. 

2010). JM distance measures the separability between a pair of two classes based 

on the average distance between their spectral means. Its output value ranges from 

0 to 2, where a good separability is indicated by a larger value (Wardlow et al. 

2007). The JM distance between a pair of probability distributions is calculated as 

𝐽𝑖𝑗 = ∫ [√𝑝(𝑥 𝜔𝑖⁄ ) − √𝑝(𝑥 𝜔𝑗⁄ )]
𝑥

2

𝑑𝑥            (1) 

 

In this study, x represents the span of NDVI time-series values, while i and j 

represent crop and/or other land cover classes under consideration. In a normally 

distributed assumption, equation (1) becomes 

𝐽𝑖𝑗 = 2(1 −  𝑒−𝐵)       (2) 

where 

𝐵 =  1 8⁄ 𝐷2 + 1 2⁄ 𝑙𝑛[(|∑ 𝑖 + ∑ 𝑗|2) (|∑ 𝑖|1/2|∑ 𝑗|1/2)⁄ ]  (3) 

and 𝐷2 =  (𝑚𝑖 − 𝑚𝑗)
𝑡
[(∑ 𝑖 + ∑ 𝑗) 2⁄ ]−1(𝑚𝑖 − 𝑚𝑗)             (4) 

 

 

4.3.5 Time-series image analysis 

PROBA-V NDVI time-series imagery was used to map peanut crops, other 

crops, and additional land cover classes. Two datasets were analysed in this study, 
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i.e. stack of 24 PROBA-V NDVI time-series imagery and stack of phenological 

parameters imagery generated from the time-series using a TIMESAT software 

program (Jönsson & Eklundh 2002, 2004). TIMESAT analyses time-series data in 

relation to its seasonality, such as phenology and temporal development (Eklundh 

& Jönsson 2015b). It is a user friendly software with advanced algorithms 

(Jayawardhana & Chathurange 2015). The program generates eleven phenological 

parameters of a growing season, such as start and end seasons (Table 4.3 and Figure 

4.4) (Eklundh & Jönsson 2015b). Figure 4.3 presented the entire workflow to map 

these land features.  
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Figure 4.3 Flow chart of data and key processing tasks employed in the study. 
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Table 4.3 Eleven phenological parameters of the TIMESAT software program. 

Phenological parameters Label Description 

Start of the season a Similar to green-up period 

End of the season b Harvesting period 

Length of the season c Growing period 

Base value d The average of minimum value of left and right of 

the season 

Middle season e The mean value of the times, where the left edge 

has increased to the 80% level and the right edge 

has decreased to the 80% level 

Maximum value f Phenology peak where time-series hit its highest 

data value 

Seasonal amplitude g The difference between the maximum value and the 

base level 

Left derivative (i.e. rate of 

increase at the beginning of 

the season) 

- The ratio of the difference between the left 20% 

and 80% levels of the fitted function 

Right derivative (i.e. rate of 

decrease at the end of the 

season) 

- The absolute value of the ratio of the difference 

between the right 20% and 80% levels of the fitted 

function 

Small integral h The area between start and end of the season, and 

between base value and maximum value 

Large integral h+i The area under fitting curve, between start and end 

of the season 

 

 

 

Figure 4.4 Some of the phenological parameters generated from the TIMESAT program: 

(a) beginning of season, (b) end of season, (c) length of season, (d) base value, (e) time of 

middle of season, (f) maximum value, (g) amplitude, (h) small integrated value, (h+i) 

large integrated value. The blue line represents the original time-series data, while the 

red line represents filtered data (Eklundh & Jönsson 2015b). 
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The TIMESAT program iteratively fits  mathematical functions to smooth 

noisy time-series data, in which the phenological parameters are extracted from 

each imagery pixel (Jönsson & Eklundh 2015). Theoretically, as long as the 

growing season peaks in the middle of a year, the phenological parameters could 

be generated from each year of time-series data. However, TIMESAT is not based 

on this. In TIMESAT, for a time-series spanning n years, the number of years of 

phenological parameters produced will be n – 1 center-most seasons (Eklundh & 

Jönsson 2015b). Therefore, for one year time-series data, i.e. the case for our study, 

Eklundh and Jönsson (2015b) recommend the creation of artificial time-series data 

for the dataset of first and third years, since the phenological parameters will be 

calculated from the centre of time-series data, i.e. our original year data. The 

artificial time-series data were created by duplicating our one year time-series data.  

Three fitting methods to the upper envelope of time-series data are available 

in the TIMESAT program, i.e. Savitzky-Golay filter, asymmetric Gaussian, and 

double logistic (Jönsson & Eklundh 2004). In this study, the asymmetric Gaussian 

(local polynomial function) was used, since this method is less sensitive to time-

series noise and provides better results for the season start and season end 

parameters (Jönsson & Eklundh 2004). The TIMESAT program comprises various 

processing aspects, such as choosing the best fitting method and fine-tuning the 

program parameter settings. The parameter settings for running the program in this 

study were summarised in Table 4.4.  

Table 4.4 TIMESAT parameter settings used in this study. 

Parameters Value Description 

Amplitude value 0 0 = include all pixels in the processing. 

Spike method 1 To detect and remove outliners and spike. 

1 = median filter method. 

Spike value 2 To determine the removing degree.  

Low value will remove more spike and outliners. 

Seasonal parameter 0.5 To determine the number of season.  

Value is between 0 and 1, where 0 = dual seasons and       

1 = single season. 

Envelope iterations 3 3 = two additional fits.  

Function fits to approach the upper envelope of time-

series imagery. 

Adaptation strength 2 To indicate the strength of upper envelope adaptation. 

Value is a number between 1 and 10. 

Start of season 

method 

1 To determine start/end of the season. 

1 = amplitude (start/end where the fitted curve reaches 

a proportion of seasonal amplitude). 

Season start  0.2 The proportion of left minimum value. 

Season stop 0.2 The proportion of right minimum value. 
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4.3.6 Image classification and accuracy assessment 

Image classification techniques were performed for two data sets used in this 

study, i.e. stack of PROBA-V NDVI imagery and stack of phenological parameters 

of PROBA-V NDVI imagery derived from the TIMESAT program. To achieve 

higher classification accuracy, imagery layers with small discrimination 

information for class separability were avoided by carrying out data set 

dimensionality reduction (Arvor et al. 2011). Thus, only parameters which had most 

useful information to separate eight classified classes were selected in this study. 

Based on this criteria, only eight phenological layers derived from TIMESAT 

program were used in this study, namely amplitude, position middle, base value, 

large integral, left derivative, right derivative, season end, and season length. 

In this study, a supervised classification algorithm, i.e. Maximum Likelihood 

Classification (MLC), was used to map peanut crops, other crops and additional 

land cover classes using ENVI 5.0 software (Exelis Visual Information Solutions). 

In previous studies, the classification accuracy produced from MLC was found to 

be comparable with machine learning algorithms such as Support Vector Machine 

(SVM) and Random Forest (RF) (Otukei & Blaschke 2010; Beyer, Jarmer, et al. 

2015; BeyerJarmer, et al. 2015). To compare the results gained by MLC, this study 

also used other supervised classification algorithms, namely Minimum Distance 

Classification (Min) and Spectral Angle Mapper (SAM). In MLC, inadequate 

training pixel number can produce poor classification results, while the Minimum 

Distance Classification method can handle limited pixel counts. The reference data 

of 1,690 pixels were divided into two groups, i.e. training and test samples (Table 

4.5). The accuracy assessment of classification results was conducted by using an 

error matrix to calculate the overall accuracy, Kappa coefficient, producer accuracy 

(PA) and user accuracy (UA) (Congalton 1991).  

 

Table 4.5 Reference data division into training and test samples. 

Samples The number of pixels Percentage (%) 

Training 1,221 72.25 

Test 469 27.75 

Total 1,690 100 
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4.4 Results 

4.4.1 Time-series profiles and separability test 

Time-series profiles characterised the reflectance pattern of each classified 

class, which then can be used to observe their differences. The mean value of 

PROBA-V NDVI time-series during the period 22 June 2015 to 9 June 2016 (Figure 

4.5) for each feature class showed distinct profiles, especially between crop and 

non-crop classes. Non-crop classes, i.e. woody vegetation, bare soil, water, and 

pasture, showed more even profiles, since these objects tend to be static throughout 

time. On the other hand, crop classes experienced a dynamic life-cycle growth, 

starting from planting, peak season, and senescence, which was then reflected in 

their time-series profiles. The crop profiles for a curved shape which started from a 

planting season, then increased until reaching a maximum reflectance value (peak), 

and finally decreased to a period of senescence where the crops were harvested.  In 

addition, each crop grows in a specific period depending on its characteristics, 

climate and water availability.  

As a result, different crops may have different or similar time-series profiles. 

Among all crops, sorghum showed a distinct time-series profile, although it has 

similar start of the season (planting time) and end of the season (harvesting time) 

with corn. The other three crops, namely peanut, corn, and mung bean, showed 

almost similar profiles, especially in the peak of the season. However, their start of 

the season is slightly different; peanut, corn, and mung bean started at November 

2015, December 2015, and January 2016, respectively. In addition, due to its longer 

growing period, i.e. 110 to 170 days (16 to 24 weeks) (DPIF 2007), peanut 

harvesting time was in May 2016. Meanwhile, the harvesting time for corn and 

mung bean was around April 2016, which is similar with sorghum. Compared to 

corn and sorghum, the NDVI value of mung bean at the harvesting time is the 

highest. Meanwhile, among these crops, sorghum produced the lowest NDVI value 

at the harvesting time. The figure also illustrated that during crop growing seasons, 

there was a limited number of NDVI imagery. It was also observed that spectral 

responses outside of the crop growth period, i.e. June to October 2015, tend to be 

static, indicating that crops were not planted during this time. 
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Figure 4.5 Mean NDVI profiles of different crops and land cover classes extracted from 

PROBA-V NDVI time-series imagery. 

 

Good separability of values among all classes was found for both the 24-layer 

PROBA-V NDVI imagery and the corresponding phenological parameters. The 

results of Jeffries-Matusita (JM) distance calculations between class pairs in 

PROBA-V NDVI imagery were dominated by 2.00 (Table 4.6), which is the highest 

measure of class separation. This is slightly better than JM distance in phenological 

parameters in which two class pairs resulted in 1.88 JM (sorghum and pasture) and 

1.92 JM (water and bare soil). The dominant JM distance for phenological 

parameters was 1.99 (Table 4.7).  
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Table 4.6 Separability of time-series PROBA-V NDVI imagery. 

Classes Peanut Corn 
Mung 

bean 
Sorghum 

Woody 

veg 
Pasture Water 

Bare 

soil 

Peanut  1.99 2.00 1.99 2.00 1.99 2.00 2.00 

Corn 1.99  2.00 1.99 2.00 1.99 2.00 2.00 

Mung bean 2.00 2.00  2.00 2.00 1.99 2.00 2.00 

Sorghum 1.99 1.99 2.00  2.00 1.99 2.00 2.00 

Woody veg 2.00 2.00 2.00 2.00  1.99 2.00 2.00 

Pasture 1.99 1.99 1.99 1.99 1.99  2.00 2.00 

Water 2.00 2.00 2.00 2.00 2.00 2.00  2.00 

Bare soil 2.00 2.00 2.00 2.00 2.00 2.00 2.00   

 

Table 4.7 Separability of phenological parameters of PROBA-V NDVI. 

Classes Peanut Corn 
Mung 

bean 
Sorghum 

Woody 

veg 
Pasture Water 

Bare 

soil 

Peanut  1.99 1.99 1.99 2.00 1.99 1.99 2.00 

Corn 1.99  1.99 1.99 1.99 1.99 1.98 1.99 

Mung bean 1.99 1.99  1.98 1.99 1.99 1.99 1.99 

Sorghum 1.99 1.99 1.98  1.99 1.88 1.98 1.99 

Woody veg 2.00 1.99 1.99 1.99  1.99 1.99 1.99 

Pasture 1.99 1.99 1.99 1.88 1.99  1.99 2.00 

Water 1.99 1.98 1.99 1.98 1.99 1.99  1.92 

Bare soil 2.00 1.99 1.99 1.99 1.99 2.00 1.92   

 

 

4.4.2 TIMESAT features 

Time-series profiles resulting from image data processing using the 

TIMESAT program also showed distinctive profiles between crop and non-crop 

classes (Figure 4.6). The profiles were selected from a sample pixel of each class, 

which in general represent the group pixel values. Since TIMESAT requires at least 

three years of time-series data (as previously indicated), one year time-series data 

of 24 imagery employed in this study were replicated into 72 imagery (the axis in 

the profiles) as recommended by the software. However, the analysis in this study 

only focussed on the original time-series data, i.e. the centre data, from 25 to 48. 
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Figure 4.6 Time-series profiles from the TIMESAT program: blue line represents original 

time-series data, while the red line represents fitted time-series data using asymmetric 

Gaussian method. 
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In the time-series profiles from TIMESAT, non-crop classes showed 

generally constant NDVI values. Bare soil and water had low NDVI values (around 

35 and 50, respectively), while pasture and woody vegetation had high NDVI value 

(around 135 and 210, respectively). Profiles of four crop classes (i.e. peanut, corn, 

sorghum, and mung bean) represent its phenological phases, which depict the start, 

peak, and end of seasons. Among all crop classes, peanut showed the longest 

growing period, while the other three crops presented almost similar length of 

growing period. The results agree with the crops’ growing period. The peanut crop 

growing period is between 110 to 170 days (DPIF 2007). Meanwhile, the other 

three crops, i.e. corn, mung bean, and sorghum, are grown in a period of 72 – 100 

days (DPI NSW 2007), 90 – 120 days (DFF 2010), and 115 – 140 days (GRDC 

2017), respectively. 

In the second phase of analysis, the phenological parameters output of 

PROBA-V NDVI imagery resulted from the TIMESAT program were used to map 

peanut crops. Two out of eleven phenological parameters, i.e. ‘maximum value’ 

and ‘season start’ failed in performing the separability test, while including the 

‘small integral’ parameter has reduced the classification accuracy. Therefore, only 

eight phenological parameters were used in the classification process, namely 

amplitude, position middle, base value, large integral, left derivative, right 

derivative, season end, and season length (Figure 4.7). 
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Figure 4.7 Phenological parameters used in mapping peanut crops and other crop/land 

cover classes. 

 

4.4.3 Classification results 

The classification results of Maximum Likelihood Classification (MLC), 

Minimum Distance Classification (Min), and Spectral Angle Mapper (SAM) for 

both PROBA-V NDVI imagery and its phenological parameters derived from the 

TIMESAT program are presented in Figure 4.8. In conducting classifications, the 

process involved choosing the most suitable parameter for each classification 

algorithm to achieve the best and the most appropriate classified imagery. Visual 

analysis through comparison of different land cover classes, i.e. woody vegetation, 
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water, bare soil, and pasture, in classified imagery and Landsat 8 imagery showed 

similar distribution. Classification results of the MLC algorithm for both NDVI and 

phenological parameters showed better outcomes than Min and SAM classifier, 

even though parameter adjustment of these two latter classifiers had been repeatedly 

tested several times. 

 



73 

 

 

Figure 4.8 Classified image outputs from Maximum Likelihood Classification (MLC), 

Minimum Distance Classification (Min) and Spectral Angle Mapper (SAM) classifiers 

(the unclassified pixels occurred due to the threshold values applied in MLC). 
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4.4.4 Accuracy assessment 

The classification performance of phenological parameters and NDVI 

imagery was analysed based on error matrix and kappa coefficient (k) value for the 

three classification methods, i.e. MLC, Min, and SAM. In general, NDVI imagery 

provided better classification performance than phenological parameters for all the 

classification methods (Table 4.8). Comparing the three classification methods, 

MLC was the best classification method in this study, for both phenological 

parameters and NDVI imagery. Looking in closer detail, the overall accuracy of 

MLC classifier for the NDVI imagery was the highest, i.e. 92.75%, compared to 

79.53% of MLC classifier for the phenological parameters. The lowest overall 

accuracy was 62.26%, which resulted from the Min classifier of phenological 

parameters. The Kappa coefficients (k) for NDVI imagery classification varied 

between 0.73 to 0.9, which is considered to be very good (0.61 < k ≤ 0.80) and 

excellent (k > 0.81) (Landis & Koch 1977). On the other hand, the k values for 

phenological parameters classification were 0.55 to 0.76, which can be considered 

as moderate (0.41 < k ≤ 0.60) and very good (Landis & Koch 1977). 

 

Table 4.8 Overall accuracy and Kappa coefficient of classified images. 

 

Classification 

NDVI imagery Phenological parameters 

Overall 

accuracy (%) 

Kappa 

coefficient 

Overall 

accuracy (%) 

Kappa 

coefficient 

MLC 92.75 0.91 79.53 0.76 

Min 85.29 0.82 62.26 0.55 

SAM 77.83 0.73 66.74 0.60 

 

 

The producer accuracy (PA) and user accuracy (UA) of the image classified 

using maximum likelihood classification (MLC) of NDVI imagery presented the 

best result, i.e. ≥ 78% (Table 4.9), which indicated a good classification 

performance. The maximum likelihood classification of phenological parameters 

also gave a good result for the producer and user accuracy, except for the mung 

bean class which had producer accuracy of 52%, indicating that many pixels 

belonging to this class were omitted. Compared to phenological parameters, the 

Spectral Angle Mapper (SAM) of NDVI imagery provided better results, where the 

user accuracy was slightly better than producer accuracy. On the other hand, the 

application of Minimum Distance Classification (Min) in phenological parameters 
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resulted in low producer and user accuracy, which indicated the high inclusion 

(omission error) and exclusion (commission error) of pixels to the targeted class. In 

relation to the peanut class, all classification methods gave good results in producer 

and user accuracy for both the NDVI imagery and the phenological parameters, i.e. 

> 75%, except for producer accuracy of the Minimum Distance Classification (Min) 

algorithm which accounted for 59%. Interestingly, the SAM algorithm provided the 

best result in the peanut class for user accuracy (UA) of NDVI imagery and 

producer accuracy (PA) of phenological parameters, i.e. 100% and 90%, 

respectively. However, the MLC algorithm still presented the best results for 

producer accuracy (PA) of NDVI imagery and user accuracy (UA) of phenological 

parameters, i.e. 79% and 88%, respectively. 
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Table 4.9 Classic contingency matrix of NDVI imagery dataset. 

MLC of NDVI 

Reference test data (number of pixels) 

 Peanut Corn 
Mung-

bean 
Sorghum 

Woody 

veg 
Pasture Water 

Bare 

soil 
Total 

UA 

(%) 

Peanut 52 10 0 0 0 0 0 0 62 83.87 

Corn 0 41 0 0 0 0 0 0 41 100 

Mung-bean 0 0 16 0 0 0 0 0 16 100 

Sorghum 0 0 0 12 0 2 0 0 14 85.71 

Woody veg 0 0 0 1 129 0 0 0 130 99.23 

Pasture 0 0 0 0 0 95 0 0 95 100 

Water 0 0 0 0 0 0 48 0 48 100 

Bare soil 0 0 0 0 0 0 0 42 42 100 

Unclassified 14 0 1 0 6 0 0 0 21  

Total 66 51 17 13 135 97 48 42 469  

PA (%) 78.79 80.39 94.12 92.31 95.56 97.94 100 100   

Overall Accuracy = 92.75%, Kappa Coefficient = 0.91 

MLC of crop phenology 

Reference test data (number of pixels) 

 Peanut Corn 
Mung-

bean 
Sorghum 

Woody 

veg 
Pasture Water 

Bare 

soil 
Total 

UA 

(%) 

Peanut 51 7 0 0 0 0 0 0 58 87.93 

Corn 0 38 0 0 0 0 0 0 38 100 

Mung-bean 0 0 9 0 0 0 0 0 9 100 

Sorghum 0 0 0 9 0 3 0 0 12 75 

Woody veg 0 0 0 0 105 0 0 0 105 100 

Pasture 0 0 0 3 0 86 0 0 89 96.63 

Water 0 0 0 0 0 0 45 3 48 93.75 

Bare soil 0 0 0 0 0 0 1 30 31 96.77 

Unclassified 15 6 8 1 30 8 2 9 79  

Total 66 51 17 13 135 97 48 42 469  

PA (%) 77.27 74.51 52.94 69.23 77.78 88.66 93.75 71.43   

Overall Accuracy = 79.53%, Kappa Coefficient = 0.76 

Min of NDVI 

Reference test data (number of pixels) 

 Peanut Corn 
Mung-

bean 
Sorghum 

Woody 

veg 
Pasture Water 

Bare 

soil 
Total 

UA 

(%) 

Peanut 39 1 0 2 0 0 0 0 42 92.86 

Corn 13 50 0 1 0 0 0 0 64 78.13 

Mung-bean 0 0 1 0 0 0 0 0 1 100 

Sorghum 0 0 0 3 0 0 0 0 3 100 

Woody veg 0 0 3 0 121 0 0 0 124 97.58 

Pasture 0 0 4 3 8 97 0 0 112 86.61 

Water 0 0 0 0 0 0 48 1 49 97.96 

Bare soil 0 0 0 0 0 0 0 41 41 100 

Unclassified 14 0 9 4 6 0 0 0 33  

Total 66 51 17 13 135 97 48 42 469  

PA (%) 59.09 98.04 5.88 23.08 89.63 100 100 97.62   

Overall Accuracy = 85.29%, Kappa Coefficient = 0.82 
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Min of crop phenology 

Reference test data (number of pixels) 

 Peanut Corn 
Mung-

bean 
Sorghum 

Woody 

veg 
Pasture Water 

Bare 

soil 
Total 

UA 

(%) 

Peanut 50 11 0 0 0 2 0 0 63 79.37 

Corn 5 21 4 3 0 12 4 6 55 38.18 

Mung-bean 11 6 12 6 2 1 12 3 53 22.64 

Sorghum 0 0 1 2 4 10 5 4 26 7.69 

Woody veg 0 0 0 0 117 0 0 0 117 100 

Pasture 0 0 0 2 12 60 0 0 74 81.08 

Water 0 10 0 0 0 12 26 25 73 35.62 

Bare soil 0 3 0 0 0 0 1 4 8 50 

Unclassified 0 0 0 0 0 0 0 0 0  

Total 66 51 17 13 135 97 48 42 469  

PA (%) 75.76 41.18 70.59 15.38 86.67 61.86 54.17 9.52   

Overall Accuracy = 62.26%, Kappa Coefficient = 0.55 

SAM of NDVI 

Reference test data (number of pixels) 

 Peanut Corn 
Mung-

bean 
Sorghum 

Woody 

veg 
Pasture Water 

Bare 

soil 
Total 

UA 

(%) 

Peanut 51 0 0 0 0 0 0 0 51 100 

Corn 1 51 3 5 0 0 0 0 60 85 

Mung-bean 0 0 8 0 0 0 0 0 8 100 

Sorghum 0 0 2 5 0 8 0 0 15 33.33 

Woody veg 0 0 1 0 128 19 0 30 178 71.91 

Pasture 0 0 0 3 1 70 0 0 74 94.59 

Water 4 0 1 0 0 0 41 0 46 89.13 

Bare soil 0 0 0 0 6 0 0 11 17 64.71 

Unclassified 10 0 2 0 0 0 7 1 20  

Total 66 51 17 13 135 97 48 42 469  

PA (%) 77.27 100 47.06 38.46 94.81 72.16 85.42 26.19   

Overall Accuracy = 77.83%, Kappa Coefficient = 0.73 

SAM of crop phenology 

Reference test data (number of pixels) 

 Peanut Corn 
Mung-

bean 
Sorghum 

Woody 

veg 
Pasture Water 

Bare 

soil 
Total 

UA 

(%) 

Peanut 60 11 0 0 0 0 8 0 79 75.95 

Corn 5 18 0 0 0 11 9 12 55 32.73 

Mung-bean 1 0 16 2 7 16 0 0 42 38.1 

Sorghum 0 0 0 2 0 20 5 0 27 7.41 

Woody veg 0 0 0 1 123 5 0 2 131 93.89 

Pasture 0 0 1 8 5 45 0 0 59 76.27 

Water 0 1 0 0 0 0 22 1 24 91.67 

Bare soil 0 21 0 0 0 0 4 27 52 51.92 

Unclassified 0 0 0 0 0 0 0 0 0  

Total 66 51 17 13 135 97 48 42 469  

PA (%) 90.91 35.29 94.12 15.38 91.11 46.39 45.83 64.29   

Overall Accuracy = 66.74%, Kappa Coefficient = 0.60 

 

 

4.5 Discussion 

Our study demonstrates the ability of using imagery from a recent satellite 

mission, PROBA-V, in mapping the peanut cropping area in the South Burnett 

region of Queensland, Australia. It successfully differentiated and mapped eight 



78 

 

classes of crops and other land cover features using time-series PROBA-V NDVI 

100m imagery and its phenological parameters. The good performance of PROBA-

V data could be attributed to its improvement in spatial resolution compared to 

traditional time-series data, such as the commonly used MODIS 250m data. The 

choice of 100m spatial resolution contributed to desirable outcomes of this study, 

as Roumenina et al. (2015) found that PROBA-V 100m achieved better results than 

PROBA-V 300m in mapping crops in Bulgaria. In addition, the compact design of 

PROBA-V platform and payload, which is equipped with vegetation sensors, 

enables the application of high-performance operation to achieve its specific 

objective in providing time-series vegetation data (Francois et al. 2014). 

The PROBA-V NDVI mean time-series profiles in this study indicated that 

this satellite sensor has successfully captured temporal separability between eight 

crops and other land cover classes examined. In addition, it showed the ability of 

PROBA-V NDVI time-series in presenting phenological stages of crop classes 

included in this study. This time-series imagery was also analysed further by using 

the TIMESAT program which smoothed the time-series data and generated 

phenological parameter maps. It was found that the phenology profiles from the 

TIMESAT program (Figure 4.6) closely resemble the mean NDVI time-series 

profiles (Figure 4.5).  

Comparing two data sets, i.e. PROBA-V NDVI imagery and its phenological 

parameters derived from the TIMESAT program, the former produced better 

overall accuracy in all classification methods. However, not all phenological 

parameters were included in the classification efforts. Phenological parameters of 

‘maximum value’ and ‘season start’ failed in the separability test, while including 

the ‘small integral’ parameter in the classification has decreased the classification 

accuracy. It was suggested that the limited number of NDVI imagery during the 

crop growth period, especially in the peak of the season, has contributed to the 

exclusion of these three parameters. Moreover, the better outcomes from the 

separability test of Jeffries-Matusita (JM) distance in NDVI imagery (dominated by 

2.00) than the phenological parameters (dominated by 1.99) have predicted the 

better accuracy results of NDVI imagery. Additionally, in a study of crop mapping 

in Bulgaria, it was sufficient to utilize only three to four PROBA-V imagery 

distributed along the crop growth period, to acquire good classification accuracy 

(Roumenina et al. 2015). Since this study used 24 stacked imagery of the PROBA-
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V NDVI dataset, it would be expected that this number was more than enough to 

achieve good classification results. It should be noted that the Region of Interest 

(ROI) development for classification and accuracy assessment was performed in 

the phenological parameters stack. This study recognises that the distinct spectral 

differences between classes in the phenological parameters stack, compared to 

NDVI imagery, were useful in guiding and locating ROIs. Different results could 

be generated from this study if the phenological parameters stack was not used in 

determining ROI. In this case, it would be expected that if NDVI imagery was used 

to locate ROI, different ROI datasets would take place. 

The Maximum Likelihood Classification (MLC) algorithm performed better 

than the Spectral Angle Mapper (SAM) and the Minimum Distance Classification 

(Min), with an accuracy of 92.75%. This result agrees with BeyerJarmer, et al. 

(2015) study in evaluating eight classification algorithms (including MLC, SAM, 

and Min) to map agricultural crops in Israel, which resulted in the superior 

performance of MLC compared to most of the classification algorithms. A 

comparison of the three classification algorithms (i.e. MLC, SAM, and Min) was 

also carried out by Fontanelli et al. (2014) in mapping crops in Italy, which found 

MLC to be the best algorithm. 

The classification accuracy achieved in this work was comparable to the 

accuracy results of previous crop mapping studies using PROBA-V imagery. 

Lambert et al. (2016) mapped cropland into four classes of crop proportions in the 

Sahelian and Sudan regions using PROBA-V 100m and attained an accuracy of 

84%. High accuracy between 65% and 86% was also achieved in using this satellite 

data to map crops globally in Flanders (Belgium), Sria (Russia), Kyiv (Ukraine), 

and Sao Paulo (Brazil) (Durgun et al. 2016). The crops mapped in these studies 

were maize, potato, sugar beet, winter barley, winter wheat, flax, peas, soybean, 

spring barley, sunflower, winter rape, spring wheat, and sugarcane (Durgun et al. 

2016). Furthermore, PROBA-V data has been successfully used to map crops with 

similar phenology profiles (i.e. corn and soybean) in China with accuracy of 

73.29% (Zhang et al. 2016). It is important to realise that even though the number 

of classes used in our study was relatively large, i.e. eight classes in total, the 

application of Maximum Likelihood Classification (MLC) in NDVI imagery 

produced very good overall accuracy with producer and user accuracy of each class 

≥ 78%. Interestingly, this result was achieved without masking out non-cropping 
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areas (e.g. using land use maps), which could further improve the accuracy, as 

achieved by Potgieter et al. (2007). Conversely, masking out land use cover could 

also generate some problems related to the currency of data and accuracy of land 

use map employed. 

Peanut crop maps resulting from this study will be valuable in supporting 

peanut production, yield prediction, and commodity forecasting, especially as 

focused work on peanut crop mapping is limited. Combining with yield per unit 

area, an estimation of peanut production can be calculated, which then can be used 

to support decisions for planning and management purposes. Moreover, this study 

utilised remote sensing technology which could overcome significant shortcomings 

of traditional survey methods. The use of multi-band data, such as Vegetation 

Indices, and time-series imagery as employed in this study has offered great benefits 

in peanut crop mapping. 

4.6 Conclusion 

The use of imagery from a recently launched satellite, PROBA-V, was 

successful in mapping peanut crops in the South Burnett region in Queensland, 

Australia, using two datasets, i.e. PROBA-V 100m NDVI imagery and its derived 

phenological parameters. In general, the overall accuracy of NDVI imagery 

outweighed phenological parameters, but specifically for peanut crops, both 

datasets have performed very well. The best classification method for both datasets 

involving all classes was the Maximum Likelihood Classification (MLC) approach, 

i.e. 92.75% for NDVI imagery and 79.53% for phenological parameters. However, 

in classifying peanut crops, all classification methods performed well for producer 

and user accuracy, with the best results provided by MLC and Spectral Angle 

Mapper (SAM) classifiers.  

It is recommended that sufficient number of imagery during the crop growth 

period is available to enable modelling of phenological parameters. Furthermore, 

the use of machine learning algorithms has not been considered in this study, but 

can be explored in further work. To the best of our knowledge, this is the first study 

which used PROBA-V imagery in crop mapping in Australia. Our study confirmed 

that the PROBA-V satellite has great potential in crop area mapping and can fulfil 

its mission to support vegetation user communities. The findings in this study 
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reinforce the necessity to continue the PROBA-V mission, which was originally 

designed as a ‘gap-filler mission’, by launching its second-generation satellite. 
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Chapter 5  
 

 

MODELLING FUTURE DISTRIBUTION OF PEANUT 

CROPS UNDER CLIMATE CHANGE SCENARIOS 

 

 

5.1 Introduction 

The agricultural sector faces an increasing number of challenges. Gornall et 

al. (2010) point out that the agricultural sector is strongly dependent on having a 

suitable climate; as a result, the impacts of climate change in this sector are 

inevitable. Unfortunately, an observation of the recorded data indicates that climate 

change is likely to continue in the future (Steffen et al. 2012); therefore, together 

with an increase in the global population, food security  is potentially at risk. One 

of the impacts of climate change in agriculture is the changes in suitability that are 

occurring in crop planting areas. Areas that are currently suitable could become 

unsuitable in the future, or vice versa. Australia is particularly significant as a 

country where extensive changes are taking place. Some studies have been carried 

out in assessing future suitable crop planting areas but unfortunately, none of these 

studies has assessed suitable areas for peanut crops in the future, including areas in 

Australia. 

This chapter fills in this gap by identifying and mapping areas which will be 

favourable for peanut production in the future, and areas which will be adversely 

affected by the impact of climate change. The primary aim of this study was to 

study the effects of climate change on the future geographic distribution of peanut 

crops in Australia. The following are the specific objectives: 1) to develop CLIMEX 

model parameters on geographic distribution of peanut crops by using current crop 

distribution and climate data; and 2) to project and analyse the potential future 

geographic distribution of peanut crops in Australia under two different climate 

models. The knowledge of suitable future peanut crop planting areas obtained from 

this study will assist government and policy makers to plan and develop programs 

and policies to anticipate climate change impacts in the future. 
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This chapter is organised into six sections. Section 1 enumerates the 

objectives of the chapter, while Section 2 discusses the background literature on the 

effects of climate change on crops’ geographic distribution, the species distribution 

model and previous studies conducted in this field. Section 3 describes the methods 

that were used to achieve the objectives of this study. Section 4 presents the study 

results of CLIMEX model development in peanut crops, model validation, and 

projections of future peanut crop planting areas in Australia. Section 5 discusses 

and interprets the results in light of the objectives and research. Finally, the chapter 

concludes with Section 6 with implications and recommendation of the results. 

The novelty and significant contributions of this chapter are: 1) the 

development of CLIMEX model parameters for peanut crops; and 2) the first study 

on projecting the future distribution of peanut crops in Australia in relation to 

climate change. 

5.2 The need for projecting future peanut distribution 

Climate change is ongoing and inevitable. As weather and climate have a 

significant influence on agricultural production (Gornall et al. 2010), future climate 

change and climate variability place agriculture as a susceptible sector (Anwar et 

al. 2013). Research indicates that the increase in anthropogenic gas emissions is the 

dominant cause of climate change (IPCC 2014). The increase in emissions leads to 

alterations in mean temperature, climate variability, and increasing extreme 

weather events, such as very high or very low temperatures, drought, heavy rainfall, 

flooding, and tropical storms (Gornall et al. 2010). Global mean temperature has 

risen by 0.76 +/- 0.19°C since the mid-1800s. In 2010, there was a temperature 

increase of 0.53°C above the temperature mean of the 1961-1990 period (Garnaut 

2011). It is recorded that the temperature of the three last decades has consecutively 

increased compared to any decades since 1850 (IPCC 2014).  

Australia’s climate is influenced by El Nino – Southern Oscillation (ENSO), 

the Indian Ocean Dipole (IOD), the Madden-Jullian Oscillation (MJO), and the 

Southern Annular Mode (SAM) (King et al. 2014; CSIRO & BoM 2015), all of 

which lead to Australia having one of the most variable climates in the world 

(DERM 2010; Potgieter et al. 2013). Over the last 50 years, Australia has become 

hotter with substantial changes in the geographic distribution of rainfall (DERM 

2010). The country experienced a mean temperature increase of 0.9°C since 1910 
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(Stokes & Howden 2010; Garnaut 2011; CSIRO & BoM 2015). As a result of the 

variability, climate change will continue to significantly influence the agricultural 

sector in Australia. 

The climate in the future will be different to the climate at present and in the 

past (DERM 2010; Steffen et al. 2012). Global Climate Models (GCMs) are among 

the best instruments for projecting climate change; these are developed using 

mathematical representations of the climate systems, based on the laws of physics, 

including conservation of mass, energy, and momentum (Suppiah et al. 2007; 

CSIRO & BoM 2015). The projections are built based on various greenhouse gas 

and aerosol emission scenarios (Suppiah et al. 2007), which are determined by 

using historical data and plausible assumptions on future socio-economic factors 

such as economic activity, energy sources, and population growth (Nakicenovic et 

al. 2000). It is predicted that continuing greenhouse gas emissions will result in 

further temperature increases and long-term changes in climate system components 

(IPCC 2014). 

Because of the impacts of climate change, agricultural industries are exposed 

to a number of risks like heat stress, drought, water availability, waterlogging, 

salinity, the occurrence of pests and diseases, reduction in production, and 

unsuitability of current planting areas (Gornall et al. 2010; Steffen et al. 2012). 

Major factors determining the geographic boundary in planting crops include soil 

quality, availability of nutrients, and climate (Anwar et al. 2013). Therefore, 

geographical distribution and growth of plant species will be affected by climate 

change, although the scale will depend on the species type (annuals or perennials) 

and their growth patterns (agricultural crops or natural vegetation) (Coakley et al. 

1999). Unfortunately, in most landscapes, plant species are unable to cope with the 

projected climate change which results in a natural shift in their geographical range 

(IPCC 2014). If the climate changes as projected, there will be shifts in crop areas 

planted and the occurrence of pests and diseases, which could lead to economic 

impacts from crop loss (Chakraborty et al. 2000).  

Shifting geographic distribution of crops due to climate change can be 

mapped using modelling techniques such as Species Distribution Models (SDMs). 

A fundamental approach of SDMs is that climate ultimately limits distributions of 

species (Beaumont et al. 2008). These models establish the relationship of known 

species distribution data and environmental variables and/or spatial characteristics 
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of those locations to determine appropriate environmental conditions for a species 

to survive (Elith & Leathwick 2009). The resulting data can be then used to predict 

species potential distribution under a particular climate change scenario (Heikkinen 

et al. 2006). Some examples of SDMs are Bioclimatic Prediction and Modelling 

System (BIOCLIM/ANUCLIM), Climatic Index (CLIMEX), Climate Profile 

(CLIMATE), and Genetic Algorithm for Rule-set Production (GARP) (Kriticos & 

Randall 2001).  

CLIMatic indEX (CLIMEX) (Sutherst & Maywald 1985) is a computer 

model that deduces species’ or other biological entities’ responses to climate, based 

on their geographical distribution and their seasonal growth and mortality patterns 

in different areas (Beddow et al. 2010). It is based on the key assumption that if it 

is known where a species lives, it will be possible to deduce tolerant climatic 

conditions for the species, an assumption also used by other models. However, 

while other models try to characterise species’ occupied environments, CLIMEX 

attempts to mimic mechanisms that limit geographical distribution of the species, 

determine species’ seasonal phenology, and to some extent determine species’ 

relative abundance (Kriticos et al. 2015). CLIMEX has been used widely to predict 

future geographic distributions of several crops, such as the common bean 

(Ramirez-Cabral et al. 2016), wheat and cotton (Shabani & Kotey 2015), oil palms 

(Paterson et al. 2015), tomato (Silva et al. 2017), and date palms (Shabani, Kumar 

& Taylor 2014; Shabani, Kumar, et al. 2015). 

 Peanut (Arachis hypogaea L.) is one of the most important sources of protein 

and has 26% more protein than eggs, dairy products, meat, or fish (DPIF 2007). 

Peanut crops are subtropical crops which require relatively warm conditions, 500-

600 mm well distributed rainfall, and stored soil water to harvest a high-yielding 

crop (Crosthwaite 1994). Peanut crops originated in South America and have 

adapted without problems to warmer regions of Australia (DPIF 2007). Queensland 

is the main peanut cropping area in Australia, producing more than 90% of 

Australia’s peanuts (GRDC 2014). Originally, peanut crops were grown in the 

Burnett and the Atherton Tableland regions in Queensland, but in 1990s, the 

cropping areas expanded into other Queensland areas, namely Bundaberg, Mackay, 

Emerald, and southern Queensland (Crosthwaite 1994; DPIF 2007). Currently, the 

peanut planting areas further expand into Katherine in the Northern Territory and 
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other Queensland areas, i.e. Texas, Inglewood, St. George, Childers, Chinchilla, 

and Georgetown (Chauhan et al. 2013).  

In the same way as other crops, peanut crops can also be affected by climate 

change. In Australia, peanuts are usually grown under dryland conditions (Meinke 

& Hammer 1995). Unfortunately, since Australia’s climate is highly variable due 

to the impact of El Nino-Southern Oscillation (ENSO) (Nicholls et al. 1997), 

unfavourable weather conditions, for instance drought and excessive rainfall, can 

easily affect peanut production in the country (Meinke et al. 1996). Recently, 

Australia’s climate has been becoming warmer (DERM 2010). Consequently, some 

regions could turn out to be more suitable for future peanut planting, while others 

could turn out to be less favourable. Therefore, it is important to identify and map 

which areas will be favourable for peanut production in the future, and which areas 

will be adversely affected by climate change impacts.  

5.3 Materials and methods 

5.3.1 Study area 

This study covered the entire Australian continent (Figure 5.1), with a total 

area of 7.692 million km2 (Geoscience Australia 2018). Australia has a variety of 

climates comprising five major climate groups, i.e. tropical, subtropical, grassland, 

desert, and temperate (Kriticos et al. 2012). The climate classifications are based 

on Koppen-Geiger classifications, which developed by applying the rules of 

Kriticos et al. (2012) to the 5’resolution WorldClim global climatology (Hijmans 

et al. 2005). Agricultural lands in Australia are located in the eastern parts of 

Queensland and New South Wales, the majority of Victoria, the southern part of 

South Australia, and the south-western part of Western Australia (ABARES 2019). 

These agricultural lands are dominated by subtropical, grassland, and temperate 

climates. Summer crops planted in Australia are sorghum, cotton, rice, corns, mung 

beans, peanuts, soybeans, and sunflowers; while winter crops planted are wheat, 

barley, canola, chickpeas, faba beans, field peas, lentils, lupin, oats, safflower, and 

triticale (ABARES 2016). 
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Figure 5.1 Map of the study area (Australia) with the current geographical distribution of 

peanut crops throughout different climate zones adapted from Kriticos et al. (2012). 

 

5.3.2 Data acquisition 

5.3.2.1 Peanut crop geographic distribution 

Data representing the current distribution of peanut (Arachis hypogaea L.) 

(Figure 5.2) was obtained from the Global Biodiversity Information Facility (GBIF) 

(GBIF 2017) and the Atlas of Living Australia (ALA) (ALA 2017). A total of 9,011 

records was obtained from these databases. However, only 1,912 records were used 

in this study, since the other 7,099 records were identified as records without 

geographic coordinates, preserved specimens, duplicate records, and data outliners. 

During the CLIMEX model parameter development, these geographic distribution 

records were divided into two: one area was used for parameter fitting, while the 

other area was used for model validation. The geographic distribution data used in 

model parameter development was South America, North America, South Asia, 

South-East Asia, and East Asia. Meanwhile, the geographic distribution data 

acquired for model validation includes Africa, Central America, and Australia. The 

division of peanut distribution data was based on the representation of the 

heterogeneous range of climate in training and validation dataset. This division is 
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important to ensure data independency of model validation, thus affirms the 

reliability of the model. 

In developing CLIMEX models, it is important to acquire the global 

geographic distribution of modelled species as real as possible. As with other 

CLIMEX studies (Taylor et al. 2012; Ramirez-Cabral et al. 2016), this study also 

used native and exotic distribution data with a heterogeneous environment to 

develop and validate peanut CLIMEX parameters. A heterogeneous environment 

with variable climates is recommended in fitting CLIMEX parameters (Sutherst 

2003; Kriticos et al. 2015), since it facilitates the required range of possible 

temperature and moisture values for species’ permanent occupations (Sutherst 

2003). Furthermore, Sutherst (2003) and Kriticos and Leriche (2010) have 

suggested the use of both native and exotic (agricultural worldwide) distribution 

data of the species. After being released from the effects of natural enemies, a 

species might occupy exotic distribution areas which have totally different climate 

ranges from the native distribution areas. Therefore, the inclusion of these climate 

ranges will enhance the model’s ability to approximate the species’ potential 

distribution (Sutherst 2003; Kriticos & Leriche 2010; Kriticos et al. 2015). 

 

Figure 5.2 The current distribution of peanut crops taken from GBIF 2017 and ALA 

2017. Red triangles represent the distribution data. 

 

5.3.2.2 Climate data and climate change models and scenarios 

The CliMond gridded climate data at 10' resolution (Kriticos et al. 2012) was 

employed in modelling geographical distribution of peanut crops. The climate 
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variables used to run CLIMEX model are average maximum monthly temperature 

(Tmax), average minimum monthly temperature (Tmin), average monthly 

precipitation (Ptotal) and Relative Humidity recorded at 9am (RH09:00) and 3pm 

(RH15:00) (Kriticos et al. 2012). Historical climate data of these five climate 

variables for a period of 1950-2000 (centred at 1975) was retrieved from CliMond 

database to develop peanut CLIMEX parameters. The same climate variables were 

also used to model future peanut distribution in Australia by employing Global 

Climate Models (GCMs) and the climate change scenarios. 

Two GCMs, i.e. CSIRO-Mk3.0 (developed by CSIRO, Australia) and 

MIROC-H (developed by the Centre for Climate Research, Japan) were used in this 

study and downloaded from the CliMond database. The choice of these GCMs was 

based on three criteria (Kriticos et al. 2012): 1) their availability of monthly average 

of minimum and maximum daily temperature, precipitation, mean sea level 

pressure, and specific humidity; 2) their relatively small horizontal grid spacing; 

and 3) their superior performance relative to other GCMs. These two climate 

models have been used widely in CLIMEX studies of crop distributions, including 

oil palms (Paterson et al. 2015), date palms (Shabani, Kumar, et al. 2015), tomato 

(Silva et al. 2017), and common bean (Ramirez-Cabral et al. 2016). The SRES 

(Special Report on Emissions Scenarios) A2 family (Nakicenovic et al. 2000) was 

used as emission scenarios for both GCMs. The ‘A’ family of SRES emission 

scenarios is the most extreme SRES scenario family; it was chosen in this study 

based on its consistency with the emission of carbon dioxide since 2000 (Manning 

et al. 2010). The A2 emission scenario family depicts the world as very 

heterogeneous with high population growth, but slow economic growth, largely due 

to slow changes in technology (Bernstein et al. 2008). This scenario family’s theme 

is self-reliance and local identities preservation, which leads to regional orientation 

of economic development (Nakicenovic et al. 2000). 

 

5.3.3 Species Distribution Models (SDMs) 

5.3.3.1 CLIMEX model 

CLIMEX is a dynamic model based on a mechanistic (process-oriented) 

approach of species population processes. It enables the determination of a species’ 

relative abundance, potential geographic distribution, and seasonal variations based 
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on climate related processes (Kriticos et al. 2015). There are three options in 

running the model: compare locations, compare years, and compare locations/years 

(Kriticos et al. 2015), and this study has employed the compare locations option. 

The model can utilise minimum field data by extracting maximum information of 

species’ responses to climate (Sutherst 2003).  It works on the assumption that most 

species experienced both favourable season(s) for population growth, which is 

known as the growth season and unfavourable season(s) for population growth, 

which is known as the survival or stress season (Sutherst 2003; Kriticos et al. 2015). 

The CLIMEX model develops a Growth Index (GIA) to describe the potential 

species’ growth during favourable season(s), and a Stress Index (SI) to describe the 

survival ability of species during unfavourable season(s). The philosophy of the 

model is that a range of climatic parameters defined by Growth Indices (i.e. 

Temperature Index (TIW) and Moisture Index (MIW)) will determine species’ 

population growth. Values outside these ranges will stimulate stress and lead to a 

negative population growth, which is described by Stress Indices: Cold Stress (CS), 

Heat Stress (HS), Dry Stress (DS), and Wet Stress (WS). Growth and Stress Indices 

define species’ responses to temperature, soil moisture, and if applicable, light. The 

CLIMEX program calculated these indices every week, then combined them into 

an annual value. The model’s purpose is to combine the GI and SI indices into an 

Ecoclimatic Index (EI) value, which describes the climatic favourability of a 

location for a species’ permanent occupation (Sutherst & Maywald 1985; Kriticos 

et al. 2015). The EI can be calculated as follows: 

EI = GIA × SI             (1) 

where: 

GIA, the annual Growth Index, = 100 ∑ 𝐺𝐼𝑤 52⁄52
i=1         (2) 

GIW, the weekly Growth Index = TIW × MIW         (3) 

TIW is weekly Temperature Index and MIW is weekly Moisture Index  

SI, the annual Stress Index, = [(1 −
𝐶𝑆

100
) × (1 −

𝐷𝑆

100
) × (1 −

𝐻𝑆

100
) × (1 −

𝑊𝑆

100
)]  (4) 

CS, DS, HS, WS, respectively are the annual cold, dry, heat, and wet stress indices. 

 

The Ecoclimatic Index (EI) value ranges from 1 to 100 which denotes 

unsuitable to optimal conditions for a species to survive in one location. If the 

climate of a location is ideal for a species to persist throughout the year, the EI value 
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will be 100. However, this rarely occurs since GI seldom reaches its maximum 

value (Kriticos & Leriche 2010; Kriticos et al. 2015). In areas with distinct wet and 

dry seasons, it would be expected that the maximum EI value would be around 50 

(Sutherst 2003; Kriticos et al. 2015). It has been found that EI values of more than 

20 have been adequate to support substantial population densities, while EI values 

less than 10 indicate that the location is likely to experience large annual climate 

fluctuation and is therefore marginal for species’ permanent occupation (Sutherst 

2003). The EI classification used in this study was defined as follows: unsuitable 

(EI = 0), marginal (0<EI<10), suitable (10<EI<20), and optimal (EI>20). 

 

5.3.3.2 Fitting CLIMEX parameters 

The most challenging task in CLIMEX modelling is fitting species’ CLIMEX 

parameters. It requires an understanding of global geography and climatic patterns 

and the sensitivity of Stress and Growth indices (Kriticos et al. 2015). The 

underlying philosophy is that Stress Indices limit the geographical distribution of 

the species, while Growth Indices indicate the seasonal population growth (Kriticos 

et al. 2015; Ramirez-Cabral et al. 2016). In addition, the resulting parameters should 

be biologically reasonable, based on theoretical and practical species’ knowledge 

from experimental domains (Kriticos et al. 2015). 

In this study, peanut geographical distribution data, which provides general 

pictures of peanut climatic preferences, was used as a guideline in fitting CLIMEX 

parameters. The peanut distributions in South America, North America, South Asia, 

South-East Asia, and East Asia were used as training data in developing/fitting 

CLIMEX parameters. Comparing the peanut distribution data with the available 

CLIMEX template, this study chose the CLIMEX wet tropical template, which 

showed the best fit with overall peanut geographical distribution, as a starting point 

to develop peanut CLIMEX parameters.  

In the first place, an intensive study to understand the biology and growth 

requirements of peanut was carried out to retrieve field and laboratory data on the 

peanut developmental threshold of temperature and moisture levels. These field and 

laboratory data were then used as initial CLIMEX parameter values to start fitting 

the CLIMEX parameters. Fitting CLIMEX parameters involved a manual iterative 

procedure (Ramirez-Cabral et al. 2016). The initial CLIMEX parameter values 
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were adjusted, by visually comparing various CLIMEX indices with the peanut 

geographic distribution data. Each of CLIMEX indices were adjusted by running 

the CLIMEX model. The output map of this model was then compared visually 

with the peanut geographic distribution data. This process was conducted until a 

satisfactory level of agreement between model output and the peanut geographic 

distribution data was achieved; here the best visual fit was accomplished between 

the CLIMEX output and peanut distribution maps. Afterwards, parameter values 

for future reference could be justified (Kriticos et al. 2015). Initially, Stress Indices 

were iteratively fitted, since they pointed to areas without stress conditions for 

peanut growth, and hence established the peanut geographical boundaries. Then, 

Growth Indices were established using the same iterative procedure. The 

determination of peanut CLIMEX parameter values are explained in detail below, 

and the value of CLIMEX parameters are presented in Table 5.1. 

Cold stress: The day-degree temperature threshold of cold stress (DTCS) of 

8°C and the accumulation rate derived from it (DHCS) of -0.00025 week-1 denoted 

cold stress of peanut species. The stress parameters were iteratively adjusted to fit 

areas in the coldest peanut distributions, i.e. Shandong-China (GBIF 2017), Hebei-

China (WMO 2010), Virginia-USA and Kalama (Washington)-USA (GBIF 2017). 

Heat stress: Craufurd et al. (2003) found that many peanut genotypes showed 

consistently high temperature tolerance, which enabled them to persist in arid and 

semi-arid environments. In order to enable peanut persistence in known distribution 

areas of Rajasthan, India (GBIF 2017), the heat stress temperature threshold 

(TTHS) was set to 45°C with the weekly accumulation rate (THHS) of 0.0002 

week-1. Setting heat stress at these value has eliminated heat stress in peanut 

distribution areas. 

Dry stress: To include peanut persistence in the arid climate of Rajasthan, 

India, the dry stress threshold (SMDS) was set to be similar to the permanent wilting 

point of a crop, where peanut growth diminished, i.e. 0.1. Peanut crops started to 

accumulate dry stress when they stopped growing, with accumulation rate (HDS) 

of -0.0001 week-1.  

Wet stress: The wet stress threshold (SMWS) was set at the same level as the 

highest CLIMEX soil moisture threshold (SM3), i.e. 2, and the wet stress 

accumulation rate (HWS) was chosen at 0.001 week-1. These parameters values 

prevented wet stress occurring in peanut distribution areas. 
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Temperature index: The CLIMEX Temperature Index consists of lower 

temperature threshold (DV0), lower optimum temperature (DV1), upper optimal 

temperature (DV2), and upper temperature threshold (DV3) parameters, which 

define the suitable temperature range for species’ growth and development 

(Kriticos et al. 2015). Peanuts require relatively warm conditions (Crosthwaite 

1994), with different temperature requirements for its growing stages. The base 

temperature where peanuts start to grow and develop is widely considered between 

9°C to 11°C (Williams & Boote 1995). Other scientists, Leong and Ong (1983), 

considered a range of 10-11°C as peanut base temperature, while Bell et al. (1991) 

discovered Virginia and Spanish cultivar of peanut crops have a base temperature 

of 8.2°C and 12.4°C, respectively. Based on this, DV0 was set at 10°C to 

accommodate the above mentioned values.  

The optimum temperatures at which peanuts grow and develop maximally are 

at a range of 25°C and 30°C for different crop stages (WMO 2010). Williams and 

Boote (1995) found the optimum temperature is 27-33°C, whereas Vara Prasad et 

al. (2003) and DPIF (2007) suggested that peanut vegetative growth requires a 

temperature of 25-30°C, and generative growth requires a temperature of 22-24°C. 

As a result, DV1 and DV2 were established at 24°C and 30°C, respectively. 

Although peanut crops were grown with sufficient water supply, their development 

started to decrease when the crops were exposed to 35°C temperature (Ketring 

1984). Furthermore, if peanut crops were exposed to a temperature of 38°C from 

flowering to maturity stages, there was a significant reduction in peanut pod yield 

(Vara Prasad et al. 2000). Based on this, DV3 was set at 38°C. In general, setting 

the DV0, DV1, DV2, and DV3 at these values has enabled the coverage of peanut 

distribution areas in China and the United States. 

Moisture index: The CLIMEX Moisture Index works on the assumption that 

soil moisture significantly determines a crop’s moisture content. The index 

provides a species’ responses to the soil moisture values, which consists of four 

parameters: lower soil moisture threshold (SM0); lower optimal soil moisture 

(SM1); upper optimal soil moisture (SM2); and upper soil moisture threshold 

(SM3) (Kriticos et al. 2015). Peanuts are considered to be drought tolerant crops at 

two specific development stages: at the beginning of the vegetative phase and at the 

maturation stage (DPIF 2007; Wright et al. 2009), where peanut water requirement 

can be as much as 40% of soil moisture level (Wright et al. 2009; Lindsay 
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Corporation 2010). Based on this information, the SM1 value in this study was set 

to 0.4.  

However, to achieve a yield that is high in quantity and quality, adequate soil 

moisture is needed (DPIF 2007), especially in the developmental stages of 

flowering/pegging and pod formation when peanut crops use the greatest amount 

of water (Wright et al. 2009). In general, soil moisture levels should be maintained 

at around 85-90% of the plant’s available water holding capacity (Lindsay 

Corporation 2010). In fact, by setting SM2 at 0.85, the model produced in this study 

had the ability to include peanut cropping areas in the arid region of Rajasthan, 

India. SMO was established using a permanent wilting point value of 0.1 (Kriticos 

et al. 2015), whereas SM3 was set at 2, since excessive soil moisture can stimulate 

leaf disease (DPIF 2007).  

 

Table 5.1 CLIMEX parameter values generated from this study and used in modelling 

peanut distribution. 

Index Parameter Values 

Temperature DV0 10°C 

 DV1 24°C 

 DV2 30°C 

 DV3 38°C 

Moisture SM0 0.1 

 SM1 0.4 

 SM2 0.85 

 SM3 2 

Cold stress DTCS 8°C 

 DHCS -0.00025 week-1 

Heat stress TTHS 45°C 

 THHS 0.0002 week-1 

Dry stress SMDS 0.1 

 HDS -0.0001 week-1 

Wet stress SMWS 2 

 HWS 0.001 week-1 

 

5.3.3.3 Model validation 

Validating the CLIMEX parameters is important to ensure model consistency 

and reliability. The model is indicated as reliable if the model parameters built in 

one distribution area can predict distribution in other areas successfully (Shabani & 

Kotey 2015). In this study, the CLIMEX parameters which showed the best visual 

fit for the peanut distribution data in South America, North America, South Asia, 

South-East Asia, and East Asia were validated against independent distribution data 
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in Africa, Central America, and Australia. To validate the model, the percentage of 

peanut distribution data which categorised as unsuitable areas for peanut cultivation 

in the model was calculated. 

 

5.3.3.4 Future distribution model 

The final CLIMEX parameters were used to project peanut distribution in 

Australia for 2030, 2050, 2070, and 2100. The projections were conducted by using 

climate data derived from two Global Climate Models (GCMs), namely CSIRO-

Mk3.0 and MIROC-H, with the SRES A2 climate change scenarios. Model output 

from these two GCMs was analysed further by overlaying the results, thus making 

it possible to acquire the common areas of future peanut distribution. 

 

5.3.4 Research flowchart 

The entire workflow employed in this study is presented in Figure 5.3. 

 

Figure 5.3 Flow chart of data and key processing tasks employed in the study. 
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5.4 Results 

5.4.1 Model evaluation and current climate 

The peanut distribution model produced from the CLIMEX model (Figure 

5.4) shows a consistent distribution with the current peanut distribution data 

retrieved from GBIF (2017) and ALA (2017) (Figure 5.2), with approximately 

2.3% of peanut distribution data falling outside the model. Peanut distribution data 

in its native range in South America countries, i.e. Bolivia, Brazil, Peru, Paraguay, 

and Uruguay, can be well-presented in the model. Only data in the Andes mountain 

region in Peru was not included in the model, due to the persistence of cold stress 

(Figure 5.5). The model also successfully captured peanut distribution data in exotic 

locations, where the species is cultivated, including China, The United States, India, 

Indonesia, Myanmar, Thailand, Vietnam, and the Philippines. Only small amount 

of distribution data in the arid region of Rajasthan, India was not included in the 

model, due to lack of rainfall and dry stress persistence (Figure 5.5). It was found 

in this study that peanut crop distribution were affected by cold stress, where low 

temperature limited peanut crop distribution, and dry stress, where low moisture 

limited peanut crop distribution. 
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Figure 5.4 The Ecoclimatic Index (EI) of current peanut distribution using current climate data. 
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Figure 5.5 (a) Cold stress map and (b) dry stress map of peanut crops generated from the 

CLIMEX model. Green cross represents the peanut distribution data taken from GBIF 

(2017) and ALA (2017). 

 

The majority of peanut distribution data in Africa, Central America, and 

Australia, which was retained for model validation, shows general agreement with 

the CLIMEX model output (Figure 5.6). All distribution data in Australia were 

included in the CLIMEX model and only one outliner data found in Central 

America. Closer detail of the African region reveals that 99.3% of peanut records 

was incorporated in the model. In addition, the majority of distribution data of these 

validation areas fell within optimal and suitable areas for peanut planting. 
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Figure 5.6 The distribution of peanut crops in validation areas of (a) Central America, 

(b) Africa, and (c) Australia. Blue dots represent current peanut distribution data. 

 

Most of the areas with optimal suitability for growing peanut crops are found 

in tropical regions, i.e. South East Asia, East India, Central Africa, the northern part 

of South America, and Central America. However, it has been found that some 

subtropical and arid regions, including the southern part of China, the eastern part 

of Australia, the north-eastern part of Argentina, Uruguay, the south-eastern part of 

the United States, and the eastern parts of South Africa, Zambia, and South Angola, 

also show optimal suitability. In addition, areas which are categorized as suitable 

for peanut cultivation are found in subtropical regions, such as the middle-eastern 

part of The United States and the eastern part of China, and arid regions, such as 

the northern parts of India and Central Africa (Figure 5.4). In Australia, current 

suitable areas for peanut growing are located in the eastern parts of Queensland and 

New South Wales; the northern parts of Queensland, the Northern Territory, and 

Western Australia; and the eastern part of Western Australia, which are 

characterised as tropical and subtropical climate regions (Figure 5.6). 
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5.4.2 Future projections 

The results of projections of future peanut cropping areas in Australia using 

CSIRO-Mk3.0 are shown in Figure 5.7. A comparison of the projection years shows 

that there is a significant increase in unsuitable peanut cropping areas, which is 

marked by approximately 76% of Australia continent in 2100. In 2030, the 

projected unsuitable areas only covers the arid region in the middle of Australia, 

but these unsuitable areas will be expanded throughout the projection years, until 

in 2100, they are projected to reach the current peanut growing areas in subtropical 

regions of the eastern part of Queensland and tropical regions of northern 

Queensland and the Northern Territory. Current peanut planting areas which will 

not be suitable in 2100 are Katherine in the Northern Territory and Georgetown, 

Emerald, St. George, Chinchilla, Inglewood, and Texas in Queensland. These areas 

are the expansion of peanut growing regions in Australia, due to decreasing 

productivity in the traditional dryland peanut regions in the South and North Burnett 

(Chauhan et al. 2013).  

Moreover, the traditional dryland peanut regions, i.e. the South Burnett and 

the North Burnett, have been projected as marginal peanut growing areas in 2100. 

In terms of projection for optimal and suitable areas which are mainly located in 

the eastern coast of Australia and known as peanut main production regions, there 

is a significant reduction under the CSIRO-Mk3.0 model. Interestingly, small areas 

in the south-western part of West Australia and south-eastern parts of New South 

Wales and Victoria, which are marked as marginal areas in current peanut 

distribution, are projected to become suitable areas in 2100. 
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Figure 5.7 The future distribution of peanut crops in Australia using CSIRO-Mk3.0 

Global Climate Model, with climate scenarios of the SRES A2. 

 

The results of MIROC-H projections in areas of peanut crop suitability in 

Australia (Figure 5.8), especially for optimal and suitable areas, are not as dramatic 

as CSIRO-Mk3.0 projections. Although there is a significant increase for unsuitable 

peanut areas in 2100, it only accounts for approximately 48% of Australia 

continent. In addition, unlike CSIRO-Mk3.0 projections, MIROC-H projections of 

unsuitable areas are mainly concentrated in the middle of Australia, with a smaller 

effect for tropical regions in the northern part of Australia. The number of current 

peanut production areas which will become unsuitable in 2100, according to the 

MIROC-H projection, is considerably smaller than the number CSIRO-Mk3.0 

number. Only two current peanut production areas will be affected: Georgetown in 

northern Queensland and Katherine in the Northern Territory.  

Interestingly, the subtropical regions in the eastern part of Australia where 

peanuts are mainly produced, i.e. South Burnett, North Burnett, Chinchilla, 

Inglewood, and Texas, are still categorised as optimal and suitable areas in 2100. 

There is little change in these regions throughout the projection years. Meanwhile, 

other current peanut production areas, i.e. Emerald and St. George, are projected to 

be marginal areas in 2100. Moreover, similar to the CSIRO-Mk3.0 projections, 
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some areas in the south-western part of West Australia and south-eastern parts of 

New South Wales and Victoria will become suitable for peanut cultivation in 2100 

according to the MIROC-H projection. However, MIROC-H projection coverages 

for these regions are bigger than the CSIRO-Mk3.0 projection coverage. 

 

 

Figure 5.8 The future distribution of peanut crops in Australia using MIROC-H Global 

Climate Model, with climate scenarios of the SRES A2. 
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Figure 5.9 The total areas of future peanut crops using the CSIRO-Mk3.0 (CS) and 

MIROC-H (MR) projections for 2030, 2050, 2070, and 2100. 

 

In general, the results show a projected reduction in suitable areas for peanut 

crop planting in Australia under the SRES (Special Report on Emissions Scenarios) 

A2 using two Global Climate Models (GCMs), CSIRO-Mk3.0 and MIROC-H; 

although a few areas will experience increasing suitability for peanut planting 

(Figure 5.7 and Figure 5.8). Both models, CSIRO-Mk3.0 and MIROC-H, show a 

decreased trend in optimal, suitable, and marginal areas throughout the projection 

years (Figure 5.9). However, CSIRO-Mk3.0 projected a significant reduction from 

year to year, which could be seen from the decrease of 56% of marginal areas and 

almost 50% of optimal and suitable areas in 2100, compared to 2030. Meanwhile, 

MIROC-H predicted a small reduction in 2100 compared to 2030 for optimal, 

suitable, and marginal peanut planting areas, i.e. 5, 13, and 15%, respectively. 

Comparing the two models, MIROC-H projections for optimal, suitable, and 

marginal areas are higher than CSIRO-Mk3.0 projections. It should also be noticed 

that, for the MIROC-H projection, marginal areas for peanut cultivation in 2030 are 

slightly higher than unsuitable areas. Nevertheless, from 2050, unsuitable areas of 

MIROC-H projection exceed marginal areas, and the trend continues until 2100. 

In contrast, there is an increased trend for unsuitable projection areas for both 

models. However, similar to the trends for other category areas, the increase for 

MIROC-H in 2100 compared to 2030 is lower than for CSIRO-Mk3.0, which 

accounted for 20 and 57%, respectively. In general, the CSIRO-Mk3.0 projection 
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for future unsuitable peanut crop areas shows a higher number than the MIROC-H 

projection, with a trend of an increasing gap between the two models throughout 

the projection years. As a result, there is a significant difference between 

projections of unsuitable peanut cropping areas for both models in 2100. 

Examining cold stress projections for peanut planting areas, both the CSIRO-

Mk3.0 and MIROC-H models forecast almost similar cold stress areas for peanut 

cultivation. These are located in temperate regions in the south-eastern part of 

Australia. In detail, the models predicted a reduction in cold stress areas throughout 

the projection years. Comparing the two models, the MIROC-H model projected a 

slightly higher cold stress severity and coverage area than the CSIRO-Mk3.0 

model, especially in 2070 and 2100. In terms of dry stress projections, which are 

mainly located in the arid region of central Australia, the areas affected by dry stress 

are larger for the CSIRO-Mk3.0 model than the MIROC-H model. Moreover, the 

CSIRO-Mk3.0 model predicted an increase in dry stress areas throughout the 

projection years. It is projected that by 2100, dry stress areas will expand to central 

Queensland, majority of Western Australia, and tropical regions in the Northern 

Territory. Meanwhile, the MIROC-H projected a reduction in dry stress in central 

Australia and a small dry stress increase in the northern part of Western Australia. 

Analysing the heat stress, both models projected that Australia will not experience 

heat stress until 2100. However, compare the two models, more areas are 

significantly affected by heat stress in the CSIRO-Mk3.0 projection than MIROC-

H projection, i.e. areas in the northern and middle parts of Australia.  

The results of overlaid maps between the two models, CSIRO-Mk3.0 and 

MIROC-H, shows an agreement in the reduction of peanut planting areas in the 

tropical regions in the northern part of Australia, and an increase in the peanut 

suitability in the temperate regions in the south-eastern part of Australia (Figure 

5.10). While the percentage of unsuitable/marginal agreement areas between two 

models moderately constant from 81.09% of Australia continent in 2030 to around 

82.87% of Australia continent in 2100, the percentage of optimal/suitable areas 

decreased from 14.65% of Australia continent in 2030 to 7.51% of Australia 

continent in 2100. In addition, the overlaid maps also show a disagreement between 

two models. For example in 2100, Chinchilla is categorised as an unsuitable area in 

the CSIRO-Mk3.0 projection, while the MIROC-H projection included Chinchilla 
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as suitable area. The disagreement areas increased from 4.26% of Australia 

continent in 2030 to 9.62% of Australia continent in 2100. 

The overlaid maps show that some current peanut cropping areas, i.e. 

Katherine in the Northern Territory, Georgetown in northern Queensland, St. 

George in southern Queensland, and Emerald in central Queensland, will be not be 

suitable for peanut planting in 2100. Meanwhile, two models, i.e. CSIRO-Mk3.0 

and MIROC-H, disagreed with the projections in 2100 of other current peanut 

planting areas in Queensland such as South Burnett, North Burnett, Chinchilla, 

Inglewood, and Texas. 

 

 

Figure 5.10 CSIRO-Mk3.0 (CS) and MIROC-H (MR) overlaid map of future distribution 

of peanut crops in Australia under climate scenarios of the SRES A2. 
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5.5 Discussion 

5.5.1 Peanut distribution under the current climate 

The CLIMEX model for peanut crops was developed by examining peanut 

distribution in the native and exotic ranges. The model showed agreement with the 

majority of distribution data in both native and exotic ranges, which confirmed the 

correctness of selected peanut CLIMEX parameter values. Only a small amount of 

peanut distribution data, i.e. 2.3%, were not included in the CLIMEX model, which 

could be peanut herbarium records or errors in GBIF or ALA databases. In addition, 

the fact that majority of peanut distribution data was categorised as optimal and 

suitable peanut planting areas, together with the inclusion of majority peanut 

distribution data in model validation, has strengthened the validity of the model.  

Although known as moderately drought tolerant crops, peanut crops require 

at least 600 mm of well-distributed water throughout the growing season for 

achieving optimal yields. In addition, the crops typically require warm 

temperatures, i.e. around 25-30°C for vegetative growth and around 22-24°C for 

generative growth (DPIF 2007). Therefore, as can be seen in the peanut CLIMEX 

model, tropical regions are the most suitable areas to cultivate peanut crops, 

although the model also includes some subtropical regions. In fact, the starting point 

to develop peanut CLIMEX parameters in this study was the CLIMEX wet tropical 

template parameters, which are provided in the CLIMEX program. In addition, due 

to the temperature and water requirements as mentioned before, peanut crop 

distribution was limited by cold and dry stress. As a result, peanut distribution 

cannot be found in extremely arid regions, such as northern Africa, or in extremely 

cold regions, such as northern Europe and northern America. 

 

5.5.2 Peanut distribution under future climate scenarios 

The results of this study and other crop distribution studies, such as wheat and 

cotton (Shabani & Kotey 2015), common bean (Ramirez-Cabral et al. 2016), 

tomato (Silva et al. 2017), oil palm (Paterson et al. 2015), and date palm (Shabani, 

Kumar, et al. 2015), confirm the effects of climate change on crop distribution. 

Climate is one of the significant factors in determining crop planting suitability 

(Anwar et al. 2013). Currently, regions with low temperature constraints, such as 

high mid-latitude countries, may increase their agricultural productivity, while 
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current productive areas in mid-latitude continental countries may experience 

productivity decrease due to moisture stress increase. In addition, countries in lower 

middle and low latitudes, which have limited production capacity, will experience 

further crop stress as a result of climate change (Parry et al. 1990). 

CLIMEX model projections on future peanut cropping areas in Australia 

showed a decrease in suitable peanut planting areas and the emergence of new 

suitable peanut planting areas for two climate models used in this study, i.e. CSIRO-

Mk3.0 and MIROC-H. In the future, it is predicted that dry stress will limit peanut 

distribution in Australia, since the results of this study have shown that the increase 

in unsuitable areas is in line with the increase in projected dry stress. This study 

also found that dry stress projection coverage for CSIRO-Mk3.0 was larger than 

MIROC-H coverage, which explains the larger coverage of unsuitable areas for 

CSIRO-Mk3.0 than MIROC-H coverage. In addition, the influence of heat stress 

occurrence in 2100, also contribute for the decrease of suitable areas for peanut 

planting in Australia. Interestingly, some areas in the south-western part of West 

Australia and south-eastern parts of New South Wales and Victoria which are 

currently not suitable for peanut planting due to cold stress occurrence, are 

predicted to be suitable in the future. It is predicted that cold stress limitation in 

these areas will be reduced in the future, since the areas will become warmer due 

to climate change.  

The results in this study were consistent with the results of future distribution 

study of another legume crop, the common bean (Phaseolus vulgaris L.), which 

also originated in South America. In their study, Ramirez-Cabral et al. (2016) used 

two climate models, CSIRO-Mk3.0 and MIROC-H, in projecting future common 

bean distribution. Their findings produced similar results to our study, i.e. CSIRO-

Mk3.0 (rather than MIROC-H) projected a less suitable area for common bean 

cultivation in Australia in 2100. It should be noted that CSIRO-Mk3.0 was 

developed by Australian researcher under the CSIRO Climate Change Research 

Program (Gordon et al. 2002), which could include more specific information about 

Australia. Ramirez-Cabral et al. (2016) also projected a slight increase in suitable 

common bean planting area in the New South Wales coast and the southern coast 

of Western Australia. 

Analogous to other CLIMEX studies used to project future cotton and wheat 

distribution in Australia (Shabani & Kotey 2015), the projection of peanut planting 
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areas produced from CSIRO-Mk3.0 and MIROC-H were overlaid to identify 

common areas between the two models. This method will enhance the likelihood 

of projections in the future, and thus possible errors can be minimised. 

Traditionally, in Australia, peanut crops are planted in the South Burnett and North 

Burnett regions under dryland conditions. However, due to recurring droughts in 

those regions, peanut areas have been expanded into Katherine in the Northern 

Territory and areas in the central and northern parts of Queensland, such as 

Georgetown, the Atherton Tablelands, Emerald, Chinchilla, St. George, Childers, 

Inglewood, Texas, and Bundaberg (Chauhan et al. 2013). Unfortunately, based on 

the overlaid projections of future suitable peanut planting areas using CLIMEX 

model, some of these expansion regions will experience unsuitable climatic 

condition for peanut growing.  

The overlaid CLIMEX model maps from CSIRO-Mk3.0 and MIROC-H 

climate models indicate that Katherine in the Northern Territory and Georgetown, 

Emerald, and St. George in Queensland will have low suitability or will not be 

suitable  for peanut planting areas. Only Bundaberg, Mackay, the Atherton 

Tableland, and Childers in Queensland can be reserved as suitable or optimal areas 

in 2100. Meanwhile, both CSIRO-Mk3.0 and MIROC-H models disagreed on 

climate suitability in 2100 for other peanut regions, including the traditional peanut 

planting areas of South Burnett and North Burnett, where one model included a 

region as an optimal/suitable area, while other model included it as an 

unsuitable/marginal area. Indeed, this fact gives a warning of the potential negative 

impacts of climate change in the current peanut growing regions in Australia. 

Currently, more than 90% of peanut growing regions in Australia, which supply the 

majority of the peanut domestic market, are located in Queensland (Wright et al. 

2017). Therefore, it is important to develop strategic measures to overcome and 

manage the economic impacts of the projected shifting climate suitability of the 

majority of current peanut growing regions. 

Based on the projections, future peanut distribution in Australia will be 

limited by the occurrence of dry stress, which could have unfavourable effects for 

peanut crops. Although known as moderately drought tolerant, peanut crops require 

readily available moisture throughout their development stages, especially in 

flowering and pod formation stages (DPIF 2007). Inadequate water supply during 

flowering will reduce pod yield, while severe drought stress during the pod filling 
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stage will lead to more severe yield reduction (Wright et al. 1991). Reoccurrence 

of water deficit during the late season decreases yield, reduces peanut quality, and 

increases the possibility of aflatoxin disease contamination (Kambiranda et al. 

2011). Peanut seed physiological activity is reduced with the occurrence of drought 

stress, thus it becomes more susceptible to fungal invasion, such as aspergillus 

invasion which leads to aflatoxin disease (Kambiranda et al. 2011).  

As a result of frequent water deficit, crops experience anatomical changes, 

i.e. reduction in size of cell and intercellular spaces, cell walls thickening, and larger 

development of epidermal tissue. In addition, severe water deficits could also 

influence a crop’s metabolic process, i.e. reduction in enzymatic activity 

(Kambiranda et al. 2011). Shahenshah and Isoda (2010) found that drought stress 

in peanut caused an increase of leaf temperature and non-photochemical quenching. 

Moreover, it leads to a reduction in water content per unit leaf area, chlorophyll 

content, and maximum quantum yield of photosystem. Furthermore, peanut crops 

also experience an increase of root dry weight with small reduction of leaf area 

when they are suffering drought stress (Shahenshah & Isoda 2010).  

Therefore, it is important to take strategic measures to anticipate the future 

shifting suitable areas of peanut crops in Australia, especially since the majority of 

current peanut planting areas will be affected negatively. One measure that has been 

taken and is still in progress is the development of drought tolerant varieties. 

Currently, drought tolerant peanut genotypes were screened by using advanced 

molecular tools, which involved studies on the peanut at the molecular and cellular 

level (Kambiranda et al. 2011). Although an improved peanut genotype that can 

tolerate drought stress has been developed, the process still needs to continue to 

develop advanced genotypes (Kambiranda et al. 2011). Another measure that can 

be considered is to apply and improve irrigation and greenhouse technologies, 

although economic constraints must also be taken into account. 

It should be noted that careful considerations should be taken in interpreting 

this study result, since the CLIMEX model only considers climatic factors in 

determining the current and future distribution of species. Non-climatic factors that 

could limit species distribution, such as biotic interactions (e.g. competition and 

predator), habitats (e.g. presence of suitable host, soil type and humans), and 

topographic elements (Kriticos et al. 2015), were not considered. In addition, the 
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model development of this study did not consider the application of irrigation in 

peanut crops which could increase the suitable areas of peanut crop planting. 

5.6 Conclusion 

This study has successfully developed CLIMEX model parameters for peanut 

crops which are found consistent with current peanut geographic distribution. In 

addition, using CSIRO-Mk3.0 and MIROC-H Global Climate Models under the 

climate scenarios of the SRES A2, CLIMEX model projections for future peanut 

distribution in Australia shows an increase of unsuitable areas for peanut 

cultivation. In detail, the projections of unsuitable peanut cultivation areas in 2100 

is higher for CSIRO-Mk3.0 than MIROC-H, i.e. 76% of Australia continent 

compared to 48% of Australia continent. In the future, dry stress is projected to 

increase and cause limitations of suitable peanut areas. The overlaid maps of 

CSIRO-Mk3.0 and MIROC-H models projected that in 2100, some existing peanut 

cultivation areas, namely, Katherine (the Northern Territory) and Georgetown, 

Emerald, and St. George (Queensland), will become unsuitable for peanut 

cultivation. Only peanut cropping areas of Bundaberg, Mackay, the Atherton 

Tableland, and Childers in Queensland are projected to be suitable or optimal for 

peanut cultivation in 2100. Meanwhile, CSIRO-Mk3.0 and MIROC-H models 

disagreed on climatic suitability in 2100 for other peanut cropping areas, such as 

the traditional peanut planting areas in South and North Burnett, Chinchilla, 

Inglewood, and Texas.  

The future peanut distribution maps resulting from this study will provide 

valuable contributions in long term planning of peanut cultivation in Australia, 

especially with regard to projected unsuitable areas for the majority of current 

peanut cultivation regions. However, further work is needed to include non-climatic 

factors, such as topography, soil type, and biotic interactions, to further increase the 

accuracy and robustness of the projected future distribution of peanut cropping 

areas. 
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Chapter 6  
 

 

THE IMPACT OF CLIMATE CHANGE ON FUTURE 

DISTRIBUTION OF AFLATOXIN IN PEANUT CROPS  

 

 

6.1 Introduction 

Aflatoxin attracts significant attention because of its negative effects on 

human and animal health. Approximately 90,000 cases of liver cancer occur every 

year due to aflatoxin, some of which may be fatal (Grace et al. 2015). Moreover, 

aflatoxin is also known to be responsible for stunted growth and immune 

suppression in children (Grace et al. 2015).  As a result of these health problems, 

over 100 countries have set up special regulations for monitoring aflatoxin limits 

and have arranged specific guidelines for mycotoxins in food (Van Egmond et al. 

2007; Wu & Guclu 2012).  

Although incidence of aflatoxin is influenced by many factors, climate is the 

most significant consideration (Paterson & Lima 2010). Consequently, climate 

change could affect aflatoxin incidence, including a shift in its potential 

geographical distribution (Van der Fels-Klerx et al. 2016). Unfortunately, although 

it is crucial, research in modelling the effects of climate change on aflatoxin 

incidence are still limited (Battilani 2016). Peanut crops are at a high-risk of 

aflatoxin infection (Klich 2007). In Australia, the major mycotoxin problem is 

aflatoxin invasion in peanut crops (Pitt & Hocking 2006). Therefore, with the 

projection of climate change occurrence in the future, it will be important to identify 

areas in Australia which are suitable for growing peanut crops but have a low 

aflatoxin risk.  

This chapter focuses on the third specific objectives of the study. It examines 

the impact of climate change on future aflatoxin distribution in Australia and 

identifies potential future peanut growing areas with a lower risk of aflatoxin 

incidence. The primary aim of this study was to examine the effects of climate 

change on the potential geographic distribution of aflatoxin in peanut crops in 
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Australia and its high risk spots on the future projected distribution of peanut 

cropping areas. The specific objectives of the study were: 1) to develop CLIMEX 

model parameters of aflatoxin in peanut crops; 2) to identify the projected 

geographic distribution of aflatoxin in Australia under climate models; and 3) to 

identify the projected peanut planting areas in Australia which could be affected by 

aflatoxin.  

The chapter is organised into six sections. Section 1 details the objectives of 

this chapter. Section 2 reviews literature on aflatoxin incidence in peanut crops, 

including the cause, effect, and current knowledge deficiency. Section 3 describes 

the methods of the study used in achieving the chapter’s objective. Sections 4 and 

5 respectively present the results and discussions on the development and validation 

of the aflatoxin CLIMEX model, the future aflatoxin distribution in Australia, and 

the future distribution of peanut crop growing areas in Australia in comparison with 

future aflatoxin distribution. The chapter concludes by highlighting the new 

knowledge gained from this study.  

The novelty and significant contributions of this chapter include the 

followings: 1) it describes the development of CLIMEX model parameters for 

aflatoxin; 2) it is the first study on projecting the effects of climate change on future 

aflatoxin distribution in Australia; and 3) it is the first study on investigated 

projected suitable areas for future peanut distribution in conjunction with projected 

suitable areas for future aflatoxin distribution, in order to identify aflatoxin low-risk 

areas for peanut cultivation. 

6.2 Aflatoxin problems in peanut crops 

One of the major problems in peanut consumption is the presence of aflatoxin 

in peanuts which could lead to cancer and even fatality due to aflatoxicosis. The 

latest major outbreak of aflatoxicosis occurred in Kenya between 2004 and 2006, 

and claimed the lives of more than 150 people (Mutegi et al. 2012). The first 

aflatoxicosis outbreak, known as Turkey X disease epidemic, occurred in 1961 in 

England due to the imported groundnut ingredients in bird feed. The hepatotoxic 

product of aspergillus species found in the feed was concluded to be the responsible 

agent for the disease (Blount 1961). This toxin was subsequently named aflatoxin 

(Blount 1961), which is a secondary metabolite produced by common soil fungi, 

namely aspergillus (Perrone et al. 2014). There are four major aflatoxins: aflatoxins 
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B1, B2, G1, and G2, which occur naturally in agro-products (Klich 2007), and the 

most toxic is aflatoxin B1 (Zorzete et al. 2011). Evidence indicates that aflatoxins 

B1 and G1 have carcinogenic potential and have been categorised by the 

International Agency for Research on Cancer (IARC) as a group 1 human 

carcinogen (IARC 2012), that is, a group of agents with sufficient evidence of 

causing cancer in humans (IARC 2006). 

Two aspergillus species, aspergillus flavus and aspergillus paraciticus, are 

associated with aflatoxin infection in agricultural crops (Perrone et al. 2014). 

Aspergillus flavus has been identified as the major vector for aflatoxin infection 

(Torres et al. 2014). Aflatoxin commonly infects crops such as peanut, corn, 

cottonseeds, and tree nuts which are grown in the latitude where aspergillus species 

is commonly found (Klich 2007). Klich (2002) revealed that while aspergillus 

species persists at projected frequencies in tropical latitude, i.e. below 25 degrees 

of south and north, and is found more frequently in the subtropical or warm 

temperate zones of 26-35 degrees, it hardly persists in higher latitudes. It is 

suggested that differences in the latitude temperature might be the factor for these 

differences in persistence (Klich 2002). The optimal temperatures for aspergillus 

development are between 25 and 40°C, while the minimum temperature for its 

growth is 10°C (Klich et al. 1992). The optimal temperature range continues in the 

subtropical or warm temperate zone for a relatively long period which explains the 

persistence of aspergillus species in this zone (Klich 2002). 

Fortunately, the presence of aspergillus in the crops does not necessarily 

indicate the occurrence of aflatoxin (Hill et al. 1983). Certain environmental 

stresses, e.g. temperature increase and prolonged drought, are required for the 

infection to occur (Cole et al. 1989; Cotty & Jaime-Garcia 2007). The longer the 

crops are exposed to environmental stress and other risk factors (e.g. high soil insect 

incidence), the greater the probability of aflatoxin infection  (Rachaputi et al. 2002). 

In addition, agricultural practices, such as adapted cultivars, seed density, 

fertilization (especially nitrogen), irrigation, and harvesting time (Klich 2007), also 

determine the infection rate of aflatoxin (Horn & Dorner 1999). In spite of these, 

climate is the main driving factor for aflatoxin contamination (Paterson & Lima 

2010). 

Peanut crops are one of the legume crops. They are unique because the 

flowers are above ground, but once pollinated, they produce fruits below the surface 
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of the soil (Wright et al. 2017). As a result, throughout their growth and 

development period, peanut fruits have direct contact with soil microorganisms, 

including aspergillus fungus which prefer to grow in high nutrient media, such as 

seeds (Guo et al. 2003). Consequently, peanut fruits have a high-risk of aflatoxin 

contamination (Zorzete et al. 2011). Schroeder and Boller (1973) found that peanut 

is one of the most suitable substrates for high aflatoxin production. Aflatoxin 

infection in peanut crops is determined significantly by climate. In particular, 

prolonged heat and drought stress during the last 3 to 6 weeks of the peanut growing 

season facilitates the synthesis of aflatoxin in peanut seeds (Kokalis-Burelle et al. 

1997), resulting in pre-harvest contamination. In a recent study, Kachapulula et al. 

(2017b) found that climate is the main factor responsible for high aflatoxin 

concentration in groundnut in Zambia. Environmental stresses also induce 

subsequent post-harvest aflatoxin contamination in peanut crops during harvest, 

handling, or storage (Diener 1960). However, in general, pre-harvest contamination 

is still the dominant factor in aflatoxin infection in peanut crops (Cole et al. 1989). 

Due to the adverse effects of aflatoxin contamination in human health, the 

maximum acceptable level of aflatoxin in agricultural products have been 

regulated, in more than 120 countries (Bui-Klimke et al. 2014). For example, the 

European Union, where some of its member countries are major peanut importers  

(Fletcher & Shi 2016), regulated the maximum level of aflatoxin B1 and other 

aflatoxin types in groundnuts at 2 and 4 µg/kg, respectively (EC-European 

Commission 2010). The regulations of aflatoxin content would induce significant 

economic losses if the maximum acceptable level could not be achieved. Wu (2004) 

found that the peanut industries in USA, China, Argentina, and Africa will suffer 

around $450 million annual losses if the European standard of aflatoxin maximum 

limit is applied.  

As aflatoxin occurrence and severity depend on climate stresses, such as 

drought, extreme temperature, and rain at the end stages of crop production (Cotty 

& Jaime-Garcia 2007), changes in climate could affect aflatoxin contamination in 

agricultural crops, including peanut. Climate change leads to alteration in mean 

temperature, climate variability, and occurrence of extreme weather events, such as 

drought, very high or very low temperature, heavy rain, and floods (Gornall et al. 

2010). These changes may affect agricultural systems, including plant disease 

epidemiology and severity (Chakraborty et al. 2000; Luck et al. 2011). A latitude 
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bias in the range shifts of crop pests and pathogens indicates the impact of global 

warming (Bebber 2015). For example, a shift in the dry and hot summer climate in 

2003 resulted in the occurrence of aflatoxin for the first time in Italy (Giorni et al. 

2007). It is expected that if climate and atmospheric composition continue to change 

as projected, the distribution of crops and diseases will be affected, which could 

lead to adverse economic impacts (Chakraborty et al. 2000). Therefore, there is a 

need to differentiate future disease trends on a geographic and future time scale 

(Juroszek & von Tiedemann 2013).  

One of the methods to evaluate the impact of climate change in the geographic 

distribution of aflatoxin is the use of Species Distribution Models (SDMs), such as 

CLIMatic indEX  or CLIMEX (Sutherst & Maywald 1985). Since the availability 

of plant disease historical data for fingerprint analysis is limited, plant pathologists 

rely primarily on mathematical or statistical models for the purpose of impact 

assessment (Scherm 2004). Furthermore, there is an increase in model capability in 

taking into account the complex interaction between a pathogen, its host, and the 

environment (Luck et al. 2011), which enables a more accurate prediction of the 

impact of climate change on the distribution of the pathogen.  

As discussed in previous chapter, CLIMEX is a mechanistic or process-

oriented computer model which is designed to explore the effects of climate on 

species (Kriticos & Leriche 2010). A set of species growth and stress functions is 

used in assessing the response of species to climate variables and the ability of 

species to persist in a location. The growth and stress functions are fit based on 

experimental laboratory data or geographic distribution data using inductive and 

deductive approaches (Kriticos & Leriche 2010; Kriticos et al. 2013).  The model 

has been used successfully in a wide range of taxa, including plants, pathogens, 

mammals, and insects (Kriticos & Leriche 2010). It is also well suited to model 

invasive species (Kriticos et al. 2013). Some examples of successful applications 

of CLIMEX model include the study of future distribution of another legume crop, 

the common bean (Phaseolus vulgaris L.) (Ramirez-Cabral et al. 2016) and the 

study of Fusarium oxysporum f. spp. pathogen (Shabani, Kumar & Esmaeili 2014).  

Climate change projection in Australia has placed peanut crops in a 

vulnerable position for aflatoxin contamination. The Australian average 

temperature increased by 0.9°C from 1910 to 2009, which is 0.2°C higher than the 

global average (Cleugh et al. 2011). The warming trend continues with a projection 
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of an average temperature increase of 1.0°C by 2030 (Cleugh et al. 2011). There is 

also a projection of summer rainfall uncertainty in northern Australia (Cleugh et al. 

2011), where the majority of peanut crops is grown. In addition, it is projected that 

Australia is likely to suffer more frequent extreme events, such as drought, heat-

waves, and floods (Head et al. 2014). These factors could result in the occurrence 

of drought and heat stresses that stimulate the synthesis of aflatoxin in peanut crops. 

This is especially true because the majority of peanut crops in Australia are 

cultivated under dryland practice with a high climatic risk (Meinke & Hammer 

1995), and the Australian climate is dominated by an arid climate regime and is 

well known for its high variability (Head et al. 2014). 

In the last 40 years, the management of pests and diseases has contributed to 

the doubling of food production, but pathogens are still responsible for a reduction 

of 10-16% in the global harvest (Chakraborty & Newton 2011). In particular, 

despite their limited host range, fungal pathogens have the most widely dispersed 

distribution, which marks them as being the leaders of invasive species of 

agricultural crops (Bebber et al. 2014). Taking this into account climate change 

could affect the geographical distribution of aflatoxin in peanut crops. Therefore, 

further investigation in this area is undoubtedly important. Specifically, aflatoxin 

distribution may further limit the area of peanut planting in the future. 

6.3 Materials and methods 

6.3.1 Study area 

The study was carried out in the Australian continent covering a total of 7.692 

million km2 (Geoscience Australia 2018) (Figure 6.1). Major climate types in 

Australia include: tropical, subtropical, desert, grassland/semi-arid, and temperate 

(Kriticos et al. 2012). These classes are based on the Koppen-Geiger classification, 

following the application of the rules of Kriticos et al. (2012) applied to the 5’ 

resolution of WorldClim – Global Climate Data (Hijmans et al. 2005). Agricultural 

activities are performed in areas of Australia that are suitable for cultivation, 

including the eastern parts of Queensland and New South Wales, most part of 

Victoria, the southern part of South Australia, and the south-western part of 

Western Australia (ABARES 2019). In general, peanut crops are grown under dry 

culture practice in large scale farms with fully mechanized systems (Pitt & Hocking 

2006). These peanut areas spread across the eastern part of Queensland and the 
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northern part of the Northern Territory (Crosthwaite 1994; Chauhan et al. 2013). 

Unfortunately, aflatoxin contamination in peanut is the dominant mycotoxin 

problem in Australia (Pitt & Hocking 2006). In a study, Hansen and Norman (1999) 

revealed the historical level of aflatoxin contamination in dryland South and Central 

Burnett, Atherton Tableland, and Northern Territory as 42%, 11%, and 17%, 

respectively, which generated economic loss. In fact, for some extreme climate 

conditions, almost 100% of peanut from dryland South and Central Burnett may be 

contaminated with aflatoxin (Hansen & Norman 1999). 

 

 

Figure 6.1 Study area of Australia and current cultivation areas of peanut crops 

throughout different climate classes based on Kriticos et al. (2012) rule. 

 

6.3.2 Global geographic distribution of aflatoxin 

Evidence concerning the global distribution of aflatoxin incidence was 

retrieved from various academic articles. In general, aflatoxin incidence spread 

across tropical, sub-tropical and semi-arid climates in America, Africa, Asia, 

Europe and Australia. In total, there were 405 recorded locations of aflatoxin 

outbreaks, with 151 locations in Asia, 150 locations in Africa, 87 locations in 

America, 12 locations in Italy, Europe, and 5 locations in Australia. In detail, the 
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locations of aflatoxin data were retrieved from the following academic articles: 

Kenya (Lewis et al. 2005; Collins et al. 2010; Mutegi et al. 2012); Zambia 

(Kachapulula et al. 2017b); Ghana (Agbetiameh et al. 2018); Ethiopia (Chala et al. 

2013; Chauhan et al. 2016); Mali (Waliyar et al. 2015); Democratic Republic of 

Congo (Kamika & Takoy 2011; Kamika & Tekere 2016); Malawi (Waliyar et al. 

2013); Nigeria (Bankole & Mabekoje 2004); Tanzania (Seetha et al. 2017); Benin 

(Setamou et al. 1997); Uganda (Kaaya et al. 2006); the Philippines (Quitco 1991; 

Yamashita et al. 1995; Arim 2000; Arim 2003); Indonesia (Yamashita et al. 1995; 

Ali et al. 1998; Rahayu et al. 2003); Thailand (Siriacha et al. 1988; Yamashita et al. 

1995); India (Sinha 1990; Kishore et al. 2002; Vijayasamundeeswari et al. 2009; 

Navya et al. 2013; Sharma & Parisi 2017); China (Daren 1989; Li et al. 2001; Zhang 

et al. 2011; Wu et al. 2016); the USA (Pettit et al. 1971; Lillehoj et al. 1975; Horn 

et al. 1995; Robens & Cardwell 2003); Brazil (Gonçalez et al. 2008; Moreno et al. 

2009; Rocha et al. 2009; Atayde et al. 2012); Argentina (Resnik et al. 1996; Barros 

et al. 2003); Costa Rica (Mora & Lacey 1997); Mexico (García & Heredia 2006); 

Italy (Battilani et al. 2013); Australia (Chauhan et al. 2010). This global distribution 

of aflatoxin outbreaks is presented in Figure 6.2. The global distribution data were 

divided into two groups, one for parameter fitting and the other one for model 

validation. 

 

 

Figure 6.2 The distribution of aflatoxin outbreaks throughout the world from various 

academic articles. Red circles represent the distribution data. 
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6.3.3 Meteorological database and climate change models 

CliMond 10’ (18.55km) resolution climate database (Kriticos et al. 2012) was 

used in this study to provide historical and future climatic variables required for 

CLIMEX modelling of aflatoxin distribution. The historical climate data were 

retrieved from 1950 to 2000, centred at 1975 (Kriticos et al. 2012). The CliMond 

database is a hybrid of WorldClim and Climate Research Unit (CRU) (CL1.0 and 

CL2.0) datasets which provide humidity data and additional 16 Bioclim variables 

(Kriticos et al. 2012). The climate variables for CLIMEX model consist of average 

maximum monthly temperature (Tmax), average minimum monthly temperature 

(Tmin), average monthly precipitation (Ptotal) and Relative Humidity recorded at 9am 

(RH09:00) and 3pm (RH15:00) (Kriticos et al. 2015).    

The future climate was modelled using two Global Climate Models (GCMs), 

namely CSIRO-Mk3.0 (developed by CSIRO, Australia) and MIROC-H 

(developed by the Centre for Climate Research, Japan). They were obtained from 

the CliMond database. Twenty three GCMs were initially analysed based on three 

selection criteria: (1) the ability to provide monthly averages of daily maximum and 

minimum temperatures, precipitation, mean sea level pressure, and specific 

humidity; (2) having a relatively smaller-horizontal grid spacing (e.g. less than 2×2° 

over Australia); and (3) providing relatively good performance at a regional scale 

compared to other GCMs in representing basic aspects of the observed climates 

(Kriticos et al. 2012). As a result, CSIRO-Mk3.0, MIROC-H, and another GCM, 

NCAR-CCSM (developed by National Centre for Atmospheric Research, USA) 

were selected. However, in the next stage, NCAR-CCSM was eliminated due to the 

occurrence of some concerning errors in arid regions. The use of two GCMs, i.e. 

CSIRO-Mk3.0 and MIROC-H, is widely recognised in CLIMEX studies over a 

variety range of taxa. Some examples of these studies are cotton and wheat (Shabani 

& Kotey 2015), tomato (Silva et al. 2017), common bean (Ramirez-Cabral et al. 

2016), fruit flies (Hill et al. 2016), and wheat midge (a major wheat pest) (Olfert et 

al. 2016). 

The future aflatoxin distributions were modelled using the SRES (Special 

Report on Emission Scenarios) A2 scenario family (Nakicenovic et al. 2000), which 

was found to be consistent with the carbon dioxide emissions since 2000 (Manning 

et al. 2010). This is also available from the CliMond database. The latest IPCC 
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report of the AR5 Synthesis Report disclosed the new climate scenarios, namely 

the Representative Concentration Pathways (RCPs), which consist of RCP8.5, 

RCP6, RCP4.5, and RCP2.6. The closest similar RCP scenario to SRES A2 is 

RCP8.5, which is the revised version of SRES A2 (Van Vuuren et al. 2011; Van 

Vuuren & Carter 2014). The temperature increase of SRES A2 at the end of the 21st 

century (relative to 1980-1999) is projected to be 3.4°C with a likelihood ranging 

from 2.0°C to  5.4°C (Bernstein et al. 2008). Meanwhile, the temperature increase 

of RCP8.5 at the end the of 21st century (relative to the 1986-2005 period) is 

projected to be 3.7°C with a range of 2.6 – 4.8°C (IPCC 2014). 

 

6.3.4 CLIMEX model 

The CLIMEX program is a simplified dynamic model that infers species 

response to climatic conditions, based on their geographical distribution and their 

growth and mortality patterns (Beddow et al. 2010; Kriticos et al. 2015). There are 

several modes of CLIMEX program, and this study used the ‘compare locations’ 

mode. The program is run by determining a set of parameter values that reveals 

species response to temperature, soil moisture, and if applicable, light (Kriticos et 

al. 2015). These values reflect the climatic conditions that favour species growth 

and limit species survival (Sutherst & Bourne 2009); and is calculated weekly in 

the form of Growth Index (GI) and Stress Index (SI) indices. The Growth Index 

determines species’ population growth, and consists of two parameters: 

Temperature Index (TIW) and Moisture Index (MIW). The Stress Index leads to 

species’ negative population growth, and is calculated from Cold Stress (CS), Heat 

Stress (HS), Dry Stress (DS), and Wet Stress (WS) parameters (Sutherst & 

Maywald 1985; Kriticos et al. 2015). The weekly indices of GI and SI are then 

combined into annual value, i.e. GIA and SIA, which are used to calculate 

Ecoclimatic Index (EI) value. 

The EI value shows favourable conditions for a species to persist in a location, 

with a range from 1 (indicates unsuitable conditions for species persistence) to 100 

(indicates optimal conditions for species persistence)   (Sutherst & Maywald 1985; 

Kriticos et al. 2015). As with most of the CLIMEX studies, this study classifies EI 

values into four categories: unsuitable (EI = 0), marginal (0<EI<10), suitable 
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(10<EI<20), and optimal (EI>20). The CLIMEX functions are calculated as follows 

(Kriticos et al. 2015):  

EI = GIA × SI             (1) 

where: 

GIA, the annual Growth Index, = 100 ∑ 𝐺𝐼𝑤 52⁄52
i=1         (2) 

GIW, the weekly Growth Index = TIW × MIW         (3) 

TIW is weekly Temperature Index and MIW is weekly Moisture Index  

SI, the annual Stress Index, = [(1 −
𝐶𝑆

100
) × (1 −

𝐷𝑆

100
) × (1 −

𝐻𝑆

100
) × (1 −

𝑊𝑆

100
)] (4) 

CS, DS, HS, WS, respectively are the annual cold, dry, heat, and wet stress indices. 

 

6.3.5 Adjustment of CLIMEX parameters 

The CLIMEX parameters have to fit the geographical distribution and they 

have to be biologically reasonable, based on the theoretical and experimental 

domains of the species (Kriticos et al. 2015). As a result, the parameter fitting in 

this study was developed based on: (1) aflatoxin developmental threshold of 

temperature and moisture level from various academic literature, and (2) the global 

geographical distribution of aflatoxin as provided in section 3.2. In this study, the 

aflatoxin distribution data in the African and American continents were used in the 

parameter fitting process.    

The CLIMEX program provided several parameter templates which represent 

different geographical distributions. These templates can be used as a starting point 

to develop CLIMEX parameters (Kriticos et al. 2015). The determination of 

CLIMEX parameter template used in this study was based on the comparison 

between aflatoxin distribution map and the distribution map retrieved from all 

templates. The CLIMEX parameter template which showed the closest distribution 

with aflatoxin distribution was ‘wet tropical template’. As a result, this template 

was used as a basis in developing the CLIMEX parameters of aflatoxin.  

The starting point to fit the CLIMEX parameters was the adjustment of Stress 

Indices rather than Growth Indices. The purpose of this step was to recognise the 

unsuitable areas of aflatoxin persistence in the wet tropical template; thus the 

boundary of aflatoxin distribution could be set. The process of these adjustment was 

carried out iteratively. Afterwards, Growth Indices were developed using the same 

iterative fitting procedures. The developmental threshold acquired from the 
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academic literature was used to fit the CLIMEX parameters iteratively, i.e. by 

adjusting them according to the aflatoxin distribution data. The parameter 

adjustment process was carried out until an agreement between the CLIMEX model 

output and aflatoxin geographical distribution was achieved (Kriticos et al. 2015). 

The final parameters (Table 6.1) were then used to develop future aflatoxin models 

in Australia in relation to climate change occurrences. 

Based on the analysis of wet tropical template and aflatoxin distribution 

maps, it can be resolved that most aflatoxin distribution which was not included in 

the wet tropical template was due to the presence of cold or dry stresses. Therefore, 

the fitting process for CLIMEX aflatoxin parameters was started by adjusting cold 

and dry stress parameters. Below is the detailed explanation on the process of 

CLIMEX parameters determination.  

Cold stress: In order to incorporate the aflatoxin occupation areas in the USA, 

China, and Argentina into the CLIMEX aflatoxin model, the day-degree 

temperature threshold of cold stress (DTCS) and the cold stress degree-day rate 

(DHCS), were set at 15°C and -0.00012 week-1, respectively.  

Dry stress: The determination of dry stress threshold (SMDS) was based on 

the value of permanent wilting point of crops, i.e. 0.1. Meanwhile, in order to 

include the aflatoxin occupation areas in Mali, Sudan, and Zambia, dry stress rate 

(HDS) was set to -0.00008 week-1. 

Heat stress: Heat stress temperature threshold (TTHS) and heat weekly 

accumulation rate (THHS) were determined at 40°C and 0.00009 week-1, 

respectively, to allow the inclusion of aflatoxin incidence in Mali and Sudan. 

Wet stress: In order to eliminate wet stress incidents in aflatoxin geographic 

distribution, wet stress threshold (SMWS) and wet stress rate (HWS) were set at 2 

and 0.0009, respectively. 

Temperature index: The temperature range which supports aflatoxin growth 

and development were parameterised in the CLIMEX model as a lower temperature 

threshold (DV0), a lower optimal temperature (DV1), a lower optimal temperature 

(DV2), and an upper temperature threshold (DV3). Since peanut fruits are 

underground, the aflatoxin temperature range for peanut crops is mostly measured 

at the fruiting zone, known as geocarposphere (Smartt 2012), 5 cm below the soil 

surface. On average, air temperature is lower (4 to 6°C), compared to 

geocarposphere temperature (Smartt 2012).  
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Unfavourable geocarposphere temperature for aflatoxin development in 

peanut was found to be at 23.6°C or lower (Blankenship et al. 1984) and at 24.6°C 

(Cole et al. 1985), which are around air temperature of 17.6°C to 20.6°C. Therefore, 

after iteratively fitting CLIMEX parameters, DV0 was determined at 17.5°C. In 

regard to optimum temperature for aflatoxin incidence in peanut crops, favourable 

geocarposphere temperatures are 26.3 - 29.6°C (Cole et al. 1985), 28 – 30.5°C 

(Sanders et al. 1985), and 25 - 28°C (Hill et al. 1983). Based on these data and 

iteratively fitting parameter process, DV1 and DV2 were set at geocarposphere 

temperature of 26°C and 30.5°C or 20°C and 24.5°C air temperature. In terms of 

maximum temperature for aflatoxin occupation, Chauhan et al. (2008) set the 

temperature at 35°C, while Gallo et al. (2016) found aflatoxin contamination at 

almonds was halted at 37°C. Therefore, in order to include the aflatoxin areas in 

Mali and Sudan, DV3 was set to be 38°C. 

Moisture index: The lower soil moisture threshold (SM0) of CLIMEX 

parameter of aflatoxin was set according to permanent wilting point, i.e. 0.1 or 10% 

of soil moisture. In a study, Chauhan et al. (2008) identified that aflatoxin 

accumulated at less than 20% of soil moisture, while Sanders et al. (1985) indicated 

that moisture tension bars of 2.9 (around 84% of soil moisture) did not stimulate 

aflatoxin contamination in peanut crops. Therefore, after being iteratively adjusted, 

the lower and upper optimal soil moisture (SM1 and SM2) were set at 0.2 and 0.8, 

respectively. Meanwhile, in order to prevent wet stress occurrence in aflatoxin 

distribution areas, the upper soil moisture threshold (SM3) was set to be similar to 

the wet stress threshold (SMWS), i.e. 2. 
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Table 6.1 CLIMEX parameter values generated from this study and used in modelling 

aflatoxin distribution. 

Index Parameter Values 

Temperature DV0 17.5°C 

 DV1 20°C 

 DV2 24.5°C 

 DV3 38°C 

Moisture SM0 0.1 

 SM1 0.2 

 SM2 0.8 

 SM3 2 

Cold stress DTCS 15°C 

 DHCS -0.00012 week-1 

Heat stress TTHS 40°C 

 THHS 0.00009 week-1 

Dry stress SMDS 0.1 

 HDS -0.00008 week-1 

Wet stress SMWS 2 

 HWS 0.0009 week-1 

 

 

6.3.6 Model validation 

Geographic distribution data of aflatoxin incidence in India, China, the 

Philippines, Thailand, Indonesia, Italy, and Australia were not used in model 

development, but were reserved for model validation purposes. The developed 

CLIMEX model in the America and Africa continents was validated against these 

independent data to ensure model performance and reliability. The model validation 

was carried out by calculating the percentage of aflatoxin geographical distribution 

which categorised as unsuitable areas for aflatoxin invasion in the CLIMEX model. 

 

6.3.7 Future aflatoxin distribution and it comparison with peanut crop 

distribution 

Using the developed aflatoxin CLIMEX parameters, this study modelled the 

future geographic distribution of aflatoxin incidence in Australia under predicted 

climate change incidence for 2030, 2050, 2070, and 2100. To enhance the accuracy 

of the output, results from the two GCMs, i.e. CSIRO-Mk3.0 and MIROC-H, were 

overlaid to determine the common aflatoxin contamination areas in Australia in the 

future. Since aflatoxin became one of the major problems in the peanut industry, 

the future distributions of aflatoxin in Australia resulting from CSIRO-Mk3.0 and 

MIROC-H GCMs were overlaid with the Australian future distributions of peanut 
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crops (Chapter 5) which were also modelled under CSIRO-Mk3.0 and MIROC-H 

GCMs. It is expected that the overlaid result between peanut crops and aflatoxin 

incidence will provide information regarding the most suitable areas for planting of 

peanut crops in Australia, i.e. those areas which are suitable for peanut crops but 

not suitable for aflatoxin persistence. 

 

6.3.8 Research flowchart 

The workflow for this study is presented in Figure 6.3. 

 

Figure 6.3 The study flowchart and key processing tasks. 
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6.4 Results 

6.4.1 Model evaluation and current climate 

The CLIMEX aflatoxin model result shows a consistency with the global 

distribution data of aflatoxin (Figure 6.4). In general, none of the aflatoxin 

geographic distribution data was categorised as unsuitable areas for aflatoxin 

occurrence. It means that 0% of aflatoxin distribution data falls outside the 

optimal/suitable/marginal areas in the model. Indeed, most of the distribution data 

were included in optimal areas of the model. For example, most aflatoxin data in 

the American continent were categorised in optimal areas, while only small 

amounts were incorporated in suitable areas, and none of them were included in 

marginal or unsuitable areas. Cold stress is found to be the major obstacle for further 

aflatoxin occupation in the northern and southern part of the continent (Figure 6.5). 

In the case of the African continent, the majority of distribution data were included 

in optimal areas for aflatoxin persistence. Meanwhile, some of the distribution data 

were fitted to suitable areas of the CLIMEX aflatoxin model, i.e. distribution data 

in the northern part of Ghana, northern part of Benin, and the major part of Mali. 

Only a small portion of aflatoxin incidence in Mali and Sudan were incorporated in 

marginal areas, merely due to their closeness with areas which suffered dry and heat 

stresses in the northern part of Africa (Figure 6.5). 
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Figure 6.4 CIMEX model output of Ecoclimatic Index (EI) of aflatoxin using current climate data. Blue circles represent the current distribution of aflatoxin. 
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Figure 6.5 Map of cold stress (a), dry stress (b), and heat stress (c) of aflatoxin CLIMEX 

model. Green and red circles represent global geographical distribution of aflatoxin. 
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Aflatoxin distribution in model validation areas (India, China, the 

Philippines, Thailand, Indonesia, Italy, and Australia) showed agreement with the 

distribution in the model development areas (the American and African continents). 

Figure 6.6 showed that most of the distribution data in the validation areas were 

categorised as optimal in the aflatoxin model, especially those in tropical climate 

regions, such as Indonesia, Thailand, and the Philippines. Some of the subtropical 

and semi-arid distribution areas in China, India, Australia, and Italy fell in suitable 

and marginal categories. None of distribution data were categorised as unsuitable 

areas for aflatoxin occupation. Adjusting cold stress parameters to include the 

northern and southern distribution point of the American continent in the 

subtropical climate into the aflatoxin CLIMEX model, had also enabled the 

inclusion of validation area of northern distribution point in China, which has a 

similar climate type. Similarly, the inclusion of northern point distribution of the 

African continent was carried out by adjusting heat and dry stress parameters, which 

automatically resulted in the inclusion of aflatoxin distribution in validation area of 

India, i.e. Rajasthan, Bihar, and Gujarat. Both of the areas in Africa and India have 

grassland or semi-arid climates. 

 

 

Figure 6.6 CLIMEX model output of Ecoclimatic Index (EI) of aflatoxin in validation 

areas of Asia (a), Australia (b), and Italy (c). Blue circles represent the current 

distribution of aflatoxin. 
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Based on the global distribution of aflatoxin (Figure 2), it can be seen that 

aflatoxin occurs between 40° North latitude and 40° South latitude. The majority of 

aflatoxin incidence occurred in tropical and subtropical climate zones, although 

some incidence were also found in the semi-arid grassland climate zone. 

Interestingly, the majority of aflatoxin distribution in tropical regions, such as the 

central part of the African continent, Brazil, India, Thailand, Indonesia, and the 

Philippines were categorised as optimal areas in the CLIMEX model. Similarly, 

most of the aflatoxin distribution in subtropical regions was also included as 

optimal areas for aflatoxin incidence, i.e. the USA, Argentina, Zambia, and 

Australia. However, some of the distributions in this subtropical zone were also 

categorised in suitable areas of the CLIMEX model, such as most of the aflatoxin 

distribution in China. Only a small number of distributions in the subtropical region 

were included in marginal areas for aflatoxin persistence, for example aflatoxin 

distribution in Italy. In terms of aflatoxin distribution in semi-arid climate regions, 

only a small proportion occurred, with the majority categorised as suitable and 

marginal areas in the CLIMEX model, except small distributions in India which 

were categorised as optimal areas. 

 

6.4.2 Future projections 

Projected aflatoxin areas in Australia under the CSIRO-Mk3.0 climate model 

using the CLIMEX model are presented in Figure 6.7. In general, the majority of 

the Australian continent is categorised as unsuitable areas for aflatoxin 

contamination, i.e. areas in the middle, north, and north-western part of Australia, 

which are known as regions of arid climate type. In addition, under CSIRO-Mk3.0 

projections, the number of unsuitable areas will increase significantly throughout 

the projection years of 2030 to 2100, due to the conversion of marginal areas into 

unsuitable areas. Similar to unsuitable areas, most of the marginal areas are 

characterised by the arid climate type.  

Meanwhile, only small areas of Australia are categorised as optimal and 

suitable for aflatoxin infection. The majority of these categories are located in the 

eastern part of Australia, while small amounts are located in the south-western part 

of Western Australia. Both of these areas are included as subtropical and temperate 

climate regions. In contrast to unsuitable areas, the projections of optimal and 
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suitable areas show a remarkable reduction trend from 2030 to 2100. Although the 

number of optimal and suitable areas in the subtropical region of north-eastern part 

of Australia are reduced at the latter period of projection years, the areas of optimal 

and suitable in the temperate region of south-eastern and south-western part of 

Australia have increased.  

 

 

Figure 6.7 The future aflatoxin distribution in Australia using CLIMEX model under 

CSIRO-Mk3.0 Global Climate Model with SRES A2 climate scenario. 

 

 

The results of MIROC-H climate model projections of aflatoxin using the 

CLIMEX model are shown in Figure 6.8. In similar way to CSIRO-Mk3.0, the 

projection of unsuitable areas under the MIROC-H climate model are dominated 

by unsuitable areas for aflatoxin occupation, but with a smaller area compared to 

CSIRO-Mk3.0 projection. In addition, unlike CSIRO-Mk3.0, the increase of 

unsuitable areas of MIROC-H throughout projection years is slight. The results 

show that unsuitable and marginal areas are mainly located in arid climate zones 

(grassland/semi-arid and desert) of Australia, i.e. in the middle, north, and north-

western areas. Although some marginal areas in the northern part of Australia are 
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converted into unsuitable areas in the latter period of the projection years, some 

parts of the unsuitable areas in the semi-arid regions of middle Australia are 

converted into marginal areas. However, in overall there is a decrease in the 

marginal areas. 

In similar way to CSIRO-Mk3.0, the majority of optimal and suitable areas 

for aflatoxin contamination under the MIROC-H model are located in the eastern 

part of Australia. Some of these areas can also be found along the coast of Western 

Australia. Although the optimal and suitable areas for CSIRO-MK3.0 and MIROC-

H models are not really different in 2030, the areas difference at the following 

projection years are significant. Throughout the projection years, MIROC-H 

projected an increase in optimal and suitable areas, while CSIRO-Mk3.0 projected 

a decrease. The significant difference can be seen in 2100 projection, where the 

total optimal areas of CSIRO-Mk3.0 accounted for 34% of the total optimal areas 

of MIROC-H, and the total suitable areas of CSIRO-Mk3.0 accounted for 39% of 

the total suitable areas of MIROC-H. In addition, MIROC-H projected an increase 

of optimal and suitable areas in the south-eastern, south-western, and southern part 

of Australia, which are mainly categorised as temperate regions. 
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Figure 6.8 The future aflatoxin distribution in Australia using CLIMEX model under 

MIROC-H Global Climate Model with SRES A2 climate scenario. 

 

 

 

Table 6.2 The percentage of projected optimal, suitable, marginal, and unsuitable areas 

for aflatoxin contamination in Australian continent under CSIRO-Mk3.0 (CS) and 

MIROC-H (MR). 

CLIMEX 

output 

2030 2050 2070 2100 

CS (%) MR 

(%) 

CS (%) MR 

(%) 

CS (%) MR 

(%) 

CS (%) MR 

(%) 

Optimal 7 10 6 10 5 11 4 12 

Suitable 9 9 7 10 6 11 6 15 

Marginal 38 43 34 41 28 37 16 30 

Unsuitable 46 37 52 39 61 41 74 43 

 

Table 6.2 shows the percentage of projected optimal, suitable, marginal, and 

unsuitable areas for aflatoxin contamination in Australia. Looking at the difference 

between the projection results of CSIRO-Mk3.0 and MIROC-H, it can be said that 

optimal, suitable, and marginal areas for aflatoxin contamination of MIROC-H 

model are higher than CSIRO-Mk3.0 model, with an increase in difference gaps 

throughout the projection years. On the contrary, unsuitable area percentages of 
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CSIRO-Mk3.0 are higher than MIROC-H throughout the projection years, also with 

an increase in difference gap.  

It can be seen that the majority of the Australian continent is projected to be 

unsuitable for aflatoxin contamination under the CSIRO-Mk3.0 and MIROC-H 

climate models. CSIRO-Mk3.0 shows a significant increase (up to 62%) of 

unsuitable areas, from 46% of the Australian continent in 2030 to 74% of the 

Australian continent in 2100. Meanwhile, MIROC-H only shows a slight increase 

(up to 16%) of unsuitable areas from 2030 to 2100, i.e. 37% to 43% of the 

Australian continent, respectively. 

Marginal areas become the second majority group in aflatoxin projections of 

CSIRO-Mk3.0 and MIROC-H models. Respectively, both models projected a 

decrease in these areas from 38 and 43% of the Australian continent in 2030, to 16 

and 30% of the Australian continent in 2100. Resulting in a decrease of 58 and 31% 

of marginal areas throughout the projection years for CSIRO-MK3.0 and MIROC-

H, respectively. 

Only a small portion of the Australian continent will be optimal and suitable 

for aflatoxin persistence under two climate model projections. CSIRO-Mk3.0 

suggests that less than 10% of the continent will be in these categories, with a 

decrease throughout the projection years. Comparing the optimal and suitable areas 

of CSIRO-Mk3.0 projection between 2030 and 2100, respectively, there are 45 and 

33% reductions. On the other hand, MIROC-H projection shows an increase of 

optimal and suitable areas throughout the projection years, i.e. up to 17 and 61% 

increase, respectively. In 2030, only 10 and 9% of the Australian continent are 

projected to be optimal and suitable areas under MIROC-H projection; while in 

2100, they are projected to be 12 and 15% of the Australian continent. 

The projections of future cold, dry, and heat stress for aflatoxin are presented 

in Figure 6.9, Figure 6.10, and Figure 6.11. Both CSIRO-Mk3.0 and MIROC-H 

projected that some of the temperate climate regions of Australia, i.e. the south-

eastern areas, will experience cold stress for aflatoxin persistence in the future. 

However, MIROC-H predicted more coverage area and severity of cold stress than 

CSIRO-Mk3.0. Nevertheless, both models predicted a reduction in areas of cold 

stress throughout the projection years. In terms of dry stress, the projections of two 

climate models are different. MIROC-H projections remain relatively unchanged 

in terms of dry stress areas and severity from 2030 to 2100. Meanwhile, CSIRO-
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Mk3.0 projected an increase of dry stress areas and severity throughout the 

projection years. Dry stress projections of the CSIRO-Mk3.0 model cover almost 

all of the arid climate zone of Australia, while MIROC-H projections only cover 

some parts of Australia’s arid zone. Looking into heat stress projections, both 

climate model projections are significantly increased at the end of the projection 

years. At the beginning of the projection years, only small areas in the north-western 

part of Australia experience dry stress. However, at the end of the projection years, 

dry stress areas have expanded to most of the areas in the northern and central parts 

of Australia. Comparing the two models, dry stress areas of CSIRO-Mk3.0 are 

larger than those of MIROC-H.  
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Figure 6.9 Cold stress projection of aflatoxin model in 2030, 2050, 2070, and 2100 under 

CSIRO-Mk3.0 and MIROC-H Global Climate Models. Green dots are the current peanut 

planting areas in Australia. 
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Figure 6.10 Dry stress projection of aflatoxin model in 2030, 2050, 2070, and 2100 under 

CSIRO-Mk3.0 and MIROC-H Global Climate Models. Green dots are the current peanut 

planting areas in Australia. 
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Figure 6.11 Heat stress projection of aflatoxin model in 2030, 2050, 2070, and 2100 

under CSIRO-Mk3.0 and MIROC-H Global Climate Models. Green dots are the current 

peanut planting areas in Australia. 

 

 

The overlaid results of future aflatoxin models between CSIRO-Mk3.0 and 

MIROC-H projections are presented in Figure 6.12. In general, both projections 

show a decrease of agreement relating to optimal/suitable areas for aflatoxin 

persistence throughout the projection years. As a result, there is an increase of 

disagreement in determine the suitability areas for aflatoxin occupation between the 
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two projections. In 2030, both climate models projected that around 15.66% of the 

Australian continent will be optimal/suitable for aflatoxin contamination, while in 

2100, this percentage will be reduced to 9.54%. In earlier projection years (2030 

and 2050), the optimal/suitable areas are mainly located in tropical and subtropical 

climate zones of the eastern part of Australia. At the end of projection years (2100), 

the majority of optimal/suitable areas are mainly located in temperate climate zones 

of the south-eastern and south-western parts of Australia. In terms of 

unsuitable/marginal areas for aflatoxin contamination, the agreement areas of both 

climate models show a relatively constant percentage, i.e. 79.95% and 72.62% in 

2030 and 2100, respectively. Meanwhile, the disagreement between two projections 

in determine the suitability areas for aflatoxin infection increase from 4.40% in 

2030 to 17.84% in 2100. In 2030, both climate models agree that most of the 

subtropical region in the eastern part of Australia is predicted to be optimal/suitable, 

while in 2100, both climate models disagree regarding the suitability of aflatoxin 

infection in this region.  
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Figure 6.12 CSIRO-MK3.0 and MIROC-H overlaid map of aflatoxin projection in 

Australia using CLIMEX model. 

 

 

6.4.3 Future distribution of peanut crops in comparison with aflatoxin 

distribution 

The overlaid results between future projections of aflatoxin and peanut crops 

in Australia under the CSIRO-Mk3.0 climate model are presented in Figure 6.13. 

In general, the overlaid maps show a reduction in suitable areas for peanut crops 

and aflatoxin persistence throughout the projection years. Unfortunately, the 

dominant suitable areas for peanut crops, which are mainly located in the eastern 

part of Australia, are also going to be susceptible to aflatoxin contamination. 

However, throughout the projection years, the suitability of these areas is reduced. 

On the other hand, there is an increase in peanut and aflatoxin suitability areas in 

the south-eastern part of Western Australia at the end of the projection years. In 
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addition, the overlaid maps also reveal that some areas in the northern, eastern, and 

western parts of Australia, which are projected to be marginal in 2030, 2050, and 

2070, will become unsuitable in 2100. 

Ideal areas for peanut cultivation are those which are 

optimal/suitable/marginal for peanut crops but are unsuitable/marginal for aflatoxin 

infection. In this study, one of the ideal combinations for peanut cultivation is the 

combination of suitable areas for peanut crops and marginal areas for aflatoxin 

invasion. In 2030, dominant areas for this combination are found in the northern 

part of Australia, such as Etheridge, Mareeba, and Cook in Queensland, while there 

are relatively small areas within this combination in the southern part of Western 

Australia, South Australia, and Victoria. However, throughout the projection years, 

areas in the northern part of Australia and the southern part of Western Australia 

show a reduction; meanwhile, areas in the southern part of South Australia and 

Victoria show an increase and are projected to become larger areas by 2100. 

Overall, there is a reduction in this combination from 250,819 km2 (2.85% of the 

Australian continent) in 2030 to 84,763 km2 (0.96% of the Australian continent) in 

2100. However, the size of this combination is small compared to areas which are 

suitable/optimal/marginal for peanut crops and aflatoxin infection. 

Other ideal areas for peanut cultivation will be those that are unsuitable for 

aflatoxin contamination but marginal for peanut cultivation. Unfortunately, these 

areas are relatively small compared to other categories, and are estimated to be 

reduced throughout the projection years. This combination will account for 48,082 

km2 (0.55% of the Australian continent) in 2030, before it is reduced to 46,595 km2 

(0.53% of the Australian continent) in 2100. It is projected that by 2070, Tasmania 

will be the dominant area for this combination. Yet, as the suitable areas for peanut 

and aflatoxin persistence reduces, the northern part of Australia will become 

dominant for this combination by 2100. 

An examination of the current peanut cultivation areas shows that in 2030, 

most of the areas will be optimal/suitable for peanut crops and aflatoxin, including 

South Burnett, Chinchilla, Bundaberg, the Atherton Tableland, Childers, 

Inglewood, Mackay, Emerald, St. George, and Texas. Meanwhile, Katherine and 

Georgetown are projected to be marginal for both, peanut crops and aflatoxin.  In 

2050, Emerald and St. George are predicted to be included in the marginal group, 

while other peanut planting areas will remain in the optimal/suitable group. In 2070, 
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it is predicted that Texas and Chinchilla will also become marginal for peanut 

cultivation and aflatoxin infection. Finally, at the end of the projection years, 

Katherine, Georgetown, Emerald, and St. George will become unsuitable for peanut 

crops and aflatoxin persistence, while Texas, Inglewood, and Chinchilla are 

projected to be marginal for both, peanut crops and aflatoxin. Only the Atherton 

Tableland, Bundaberg, and Childers are projected to remain optimal/suitable for 

peanut cultivation and aflatoxin infection. 
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Figure 6.13 The overlaid map of aflatoxin and peanut crop projections in Australia using CLIMEX model under CSIRO-Mk3.0 Global Climate Model. White 

dots are current peanut planting areas. 
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Figure 6.14 shows the overlaid maps of peanut crop and aflatoxin future 

projections using the MIROC-H climate model under SRES A2 scenario. Overall, 

the overlaid maps show relatively small changes in suitability areas of peanut crop 

and aflatoxin from 2030 to 2100 projections. In a similar way to CSIRO-Mk3.0 

projections, the dominant suitability areas for peanut crops and aflatoxin occupation 

are in the eastern part of Australia. However, the suitability areas for peanut crops 

and aflatoxin will increase in the south-western part of Western Australia 

throughout the projected years, owing to the occurrence of climate change. 

Interestingly, some areas in the central part of Australia will become marginal for 

peanut crops and aflatoxin persistence by 2100. 

Ideally, peanut cultivation is conducted in areas which are free from aflatoxin 

contamination. However, it is predicted that only small areas will be accounted for 

in this category in Australia. The majority of the projected areas which are 

favourable for peanut cultivation, are also predicted to be favourable for aflatoxin 

contamination. In a similar way to CSIRO-Mk3.0, the MIROC-H overlaid maps in 

2030 demonstrate areas which are suitable for peanut cultivation but marginal for 

aflatoxin infection are located mostly in the northern part of Australia, such as 

Queensland (Georgetown, Etheridge, Cook, Carpentaria, and Mareeba) and the 

Northern Territory (Gulf of Carpentaria). In addition, small areas in the southern 

parts of Western Australia, South Australia, and Victoria are also included in this 

combination. However, there is a reduction in the combination of suitable peanut 

and marginal aflatoxin areas throughout the projection years. In 2070, the areas in 

the northern part of Australia and southern part of Western Australia are expected 

to be reduced dramatically, resulting in the elimination of Wyndham-East Kimberly 

shire in the northern part of Western Australia. Remarkably, there are additional 

areas for this combination in the southern part of Victoria and South Australia. 

Nevertheless, in 2100, only small areas will be left for this combination, i.e. 

northern part of Cook shire in the lower latitude of northern part of Queensland. In 

2030, around 329,138 km2 (3.74% of the Australian continent) is projected for this 

combination, while in 2100, only 50,065 km2- (0.57% of the Australian continent) 

will remain.  

The other combination which is ideal for the peanut industry refers to those 

areas which are unsuitable for aflatoxin contamination but marginal for peanut 

crops. However, as with CSIRO-Mk3.0, the size of this combination for MIROC-
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H is very small and predicted to be reduced throughout the projection years. In 

2030, this combination should occur in Tasmania, Victoria, South Australia, and 

Western Australia, which accounted for 94,181 km2 (1.07% of the Australian 

continent). Meanwhile, in 2070, small areas in the northern part of Australia will 

be included in this combination, and by 2100, only Tasmania and the northern part 

of Australia will be left with an area of 42,134 km2 (0.48% of the Australian 

continent).  

The only current peanut growing area which is projected to have a low 

aflatoxin invasion risk in 2030 is Georgetown. The other peanut areas, namely 

Atherton Tableland, Mackay, Emerald, Childers, Bundaberg, Chinchilla, South 

Burnett, Texas, and Inglewood, are projected to be optimal/suitable for peanut 

cultivation and aflatoxin occupation, whereas Katherine is projected to be marginal 

for peanut crops and aflatoxin. However, from 2070 to 2100, Georgetown will 

become a marginal area for peanut and aflatoxin persistence. The projection for St. 

George remains unchanged throughout the projection years, i.e. marginal for peanut 

planting and optimal for aflatoxin persistence. In 2100, Katherine is projected to 

become unsuitable, while Emerald is likely to become marginal for peanut crops 

and suitable for aflatoxin.  In addition, other peanut growing regions will be 

optimal/suitable for peanut crops and aflatoxin in 2100, including the Atherton 

Tableland, Mackay, Childers, Bundaberg, South Burnett, Inglewood, and Texas.  

The overall results of CSIRO-Mk3.0 and MIROC-H overlaid projections 

show similar trends. However, the CSIRO-Mk3.0 projection demonstrates more 

severe climate change effects and a reduction in suitable areas for peanut crops and 

aflatoxin persistence. In addition, the areas which are suitable for peanut crops but 

marginal for aflatoxin are larger in the MIROC-H projection, compared to the 

CSIRO-Mk3.0 projection. Another significant difference is in terms of marginal 

areas for peanut crops and aflatoxin persistence, where MIROC-H has projected 

larger marginal areas than CSIRO-Mk3.0 throughout the projection years. These 

marginal areas are located in the inland arid climate region of Australia. 
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Figure 6.14 The overlaid map of aflatoxin and peanut crop projections in Australia using CLIMEX model under MIROC-H Global Climate Model. White dots 

are current peanut planting areas 
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6.5 Discussion 

6.5.1 Aflatoxin distribution under the current climate 

The CLIMEX model of aflatoxin developed in this study has a high reliability 

of result, since it shows a strong agreement (100%) between distribution areas used 

for the CLIMEX fitting process, i.e. the African and American continents, and 

distribution areas used for model validation, i.e. India, China, the Philippines, 

Thailand, Indonesia, Italy, and Australia. In addition, the inclusion of all aflatoxin 

distribution data into the CLIMEX model and the fact that most of the distribution 

data were categorised as optimal areas for aflatoxin infection, confirms the model’s 

reliability. 

The model shows that majority of optimal areas for aflatoxin contamination 

are located in the tropical and subtropical climate regions, such as South East Asia, 

Central America, the central part of Africa, India, the USA, Brazil, and Argentina. 

Only a small number of aflatoxin distribution from these climate regions was 

categorised as suitable and marginal areas for aflatoxin contamination. Therefore, 

these results confirmed the susceptibility of tropical and subtropical climate zones 

for aflatoxin contamination, as previously cited by other researcher such as Pettit 

and Taber (1968) and Souza et al. (2014). The tropical climate is characterised with 

minimum temperature of ≥18°C and minimum precipitation of around 60mm. 

Meanwhile, subtropical climate zones of warm temperate humid and winter dry are 

characterised with minimum temperatures between 3°C and 18°C, and maximum 

temperatures of ≥ 22°C during summer time (Kottek et al. 2006). As a result, these 

climate zones provide environmental factors favourable for aflatoxin persistence. 

Aflatoxin production in peanut is determined by environmental factors, 

namely temperature, relative humidity, and moisture content of the peanut substrate 

(Pettit & Taber 1968). Extreme heat and elongated drought stress in the final three 

to six weeks of the peanut growth period will stimulate pre-harvest aflatoxin 

contamination in peanut crops (Kokalis-Burelle et al. 1997). Heat and drought 

stresses can affect plant physiology, which in turn can increase crop susceptibility 

for aflatoxin infection (Klich 2007). For example, the formation of phytoalexins, 

antimicrobial compounds used to prevent aflatoxin infection, is repressed during 

drought stress (Klich 2007). In addition, drought stress incidence increases the 

production of proline in crops (Barnett & Naylor 1966), which is known to 
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stimulate aflatoxin production (Payne & Hagler 1983). Another factor that supports 

aflatoxin contamination is the ability of Aspergillus species, especially A. flavus to 

persist in high temperature conditions (i.e. up to 40°C) where other fungi cannot 

persist, providing a competitive advantage for Aspergillus  species (Klich 2007). 

 

6.5.2 Aflatoxin distribution under future climate scenarios 

The results of this study indicate a geographical distribution shift of aflatoxin 

occupation areas in Australia in the future, due to climate change impact. Climate 

change influences the components of complex biological interactions differently 

(Newton et al. 2011). Although many factors, such as biological issues (susceptible 

crop and compatible toxigenic fungus) and harvesting conditions (crop maturity, 

temperature, moisture, and detection/diversion) can generate aflatoxin 

contamination, climate factors remain the most important (Paterson & Lima 2010). 

Climatic conditions alters the complex communities of aflatoxin producing fungi 

(aspergillus), for example modifying the fungi number and fungal community 

structure (Cotty & Jaime-Garcia 2007). The shifting of aflatoxin areas as indicated 

in this study is consistent with the first outbreak of aflatoxin occurrence in areas 

known as free aflatoxin infection, i.e. the northern part of Italy, in 2003-2004 due 

to climate alteration of hot and dry climate (Perrone et al. 2014). There is a risk of 

shifting in traditional aflatoxin areas due to the increase of average temperature, 

particularly shifting the aflatoxin areas into cool and temperate climate regions, 

such as South East Europe (Paterson & Lima 2010; Perrone et al. 2014).  

The increase of unsuitable areas for aflatoxin persistence, as projected by two 

climate models used in this study, CSIRO-Mk3.0 and MIROC-H, is due to the 

increase of areas suffering from severity of dry and heat stresses in Australia. 

Comparing these two models, CSIRO-Mk3.0 shows a significant increase of 

unsuitable areas throughout the projection years. This significant increase can be 

explained by the larger dry stress coverage of CSIRO-Mk3.0 which consists of 

almost all arid climate regions, compared to MIROC-H coverage, which covers 

only some part of the arid region. Similarly, the heat stress coverage of CSIRO-

Mk3.0 projection is also larger than the MIROC-H projection. The significant 

increase of unsuitable areas under CSIRO-Mk3.0 has decreased the optimal, 

suitable, and marginal areas. Meanwhile, the increase of optimal and suitable areas 
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of MIROC-H projection is due to the decrease of marginal areas. The relatively 

steady dry stress projection under MIROC-H model has contributed to a small 

increase of unsuitable areas, although heat stress projection is increased 

significantly throughout the projection years. The projection of Australia’s warmer 

temperature in the future years can also be seen on the decrease of cold stress 

projections from both climate models. As a result, the temperate region of the south-

eastern part of Australia will become more tolerant for aflatoxin contamination in 

the future. This study reveals that only a small percentage of the Australian 

continent will be suitable for aflatoxin contamination in the future. Understanding 

these issues will help to improve the aflatoxin management in Australia. It is 

suggested that arid climate region, the dominant climate in Australia, has 

encouraged the heat and dry stress limitation for aflatoxin invasion.   

The overlaid aflatoxin maps resulting from CSIRO-Mk3.0 and MIROC-H 

climate models were produced to observe the common areas for aflatoxin suitability 

areas, as shown by Shabani and Kotey (2015) in projecting the future distribution 

of cotton and wheat in Australia. This method will confirm the reliability of suitable 

areas of aflatoxin occurrence in Australia, and thus minimise possible errors in 

using the results of this study. The differences in the results between these two 

climate models are expected, since each model employed different methods in 

quantifying the effects of climate change in the future. The climate parameterization 

in CSIRO-Mk3.0 consists of a comprehensive representation of the four major 

components of the climate systems, namely atmosphere, land surface, oceans and 

sea-ice (Gordon et al. 2002). Meanwhile, MIROC-H contains parameterization in 

five components: atmosphere, land, river, sea ice, and ocean (Hasumi & Emori 

2004). The CSIRO-Mk3.0 model however was developed by an Australian research 

institute, the CSIRO (Gordon et al. 2002), and therefore could include more specific 

information about Australia. The disagreement regarding aflatoxin suitability areas 

between CSIRO-Mk3.0 and MIROC-H increases throughout the projection years, 

especially in the agricultural areas of the eastern part of Australia. Considering the 

negative impacts of aflatoxin infection in agricultural commodities, careful analysis 

of these disagreements is essential. The results of this study will be useful in 

supporting the management of aflatoxin outbreaks in Australia. Knowledge of 

projected aflatoxin outbreaks will enable the preparation and implementation of 

countermeasures to mitigate the negative effects of aflatoxin. 
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6.5.3 Future peanut crop distribution in comparison with aflatoxin distribution 

In general, the overlaid maps between peanut and aflatoxin projection models 

reveal that the most of optimal/suitable areas for peanut crops are also 

optimal/suitable areas for aflatoxin. Similarly, most of the unsuitable areas for 

peanut crops are also unsuitable areas for aflatoxin. These results confirmed the 

similar climatic requirements for peanut crops and aflatoxin, since both are 

distributed in generally identical locations. Klich (2007) stated that aflatoxin 

producing fungus are isolated more in the latitude between 26-35°, therefore 

chronic aflatoxin problems frequently associated with crops growing under 35° 

latitude. 

The results of this study show that most of the Australian continent will be 

unsuitable for aflatoxin and peanut persistence, since the continent is dominated by 

arid climate regions. In addition, most of the optimal and suitable areas for peanut 

crops are located in the eastern part of Australia and the south-western part of 

Western Australia, which have subtropical and temperate climate types and are 

suitable agricultural areas. Unfortunately, the optimal and suitable areas for 

aflatoxin contamination are also located in these parts of the continent, because it 

has similar climatic requirements to peanut crops. The ideal areas for peanut 

cultivation are those which are optimal/suitable to cultivate peanut crops, but have 

low risk of aflatoxin incidence, i.e. unsuitable/marginal for aflatoxin. However, in 

the future only a small percentage of the Australian continent will be projected as 

ideal areas for peanut cultivation, and this is reduced throughout the projection 

years. CSIRO-Mk3.0 projected only 3.40% of the continent will be ideal for peanut 

cultivation, before it is reduced to 1.49% in 2100. Meanwhile, MIROC-H projected 

the ideal areas will be 4.82% of the Australian continent in 2030, and reducing to 

1.05% in 2100. These percentages are very small, compared to the total area of land 

use under primary production (livestock grazing, dryland, irrigated agriculture, and 

intensive agriculture) which is nearly 4.5 million km2 (around 58% of the continent) 

(ABARES 2019). 

The overlaid maps indicate that none of the current peanut growing regions 

are included as low aflatoxin risk regions, except for Georgetown in 2030. Overall, 

most of the current peanut growing regions will still be optimal/suitable for peanut 

cultivation and aflatoxin invasion in 2030. However, while none of the regions is 
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unsuitable for peanut crops and aflatoxin in 2030, by the end of the projection years, 

most of the regions are projected to become unsuitable and marginal for peanut and 

aflatoxin persistence. Only a small number of regions will still be optimal/suitable 

in 2100. This study has projected that current peanut growing areas will always 

have a high-risk of aflatoxin invasion. The projection areas of peanut crops always 

coincide with the projection areas of aflatoxin. In addition, some current peanut 

growing regions are projected to be unsuitable in the future, resulting in the need to 

shift peanut growing areas. There will be an opportunity to consider the low-risk 

aflatoxin areas for peanut cultivation. However, careful considerations should be 

taken, since the percentage of the low-risk areas is small, compared to other primary 

production land use. Moreover, most of the low-risk areas are projected to be in the 

northern part of Australia, which are dominated by land use relating to nature 

conservation, protected areas, and minimal use (ABARES 2019). The opportunity 

will be to shift peanut growing areas to the low-risk areas in the south-eastern part 

of Australia, but this will be limited considering its small acreage.  

Considering the risk of aflatoxin infection, determining cultivation areas for 

peanut crops in Australia will be challenging in the future. Utilising the low risk 

aflatoxin areas will be limited, since it has small percentage compared to the high 

risk areas suitable for peanut crops. In addition, there is a reduction in suitable areas 

for peanut crops in the future. Countermeasures to manage aflatoxin incidence in 

peanut growing areas should be taken, for example continuity of genetic resistance 

development, proper crop management systems (crop rotation, tillage, planting 

date, and management of irrigation and fertilization), and the use of chemical and/or 

biological control (Torres et al. 2014). 

6.6 Conclusion 

This study has successfully developed CLIMEX model parameters for 

aflatoxin. The consistency of the results between aflatoxin map produced from the 

CLIMEX model and the aflatoxin geographical distribution map has assured model 

reliability. The results support the outcomes of other studies which confirmed the 

climatic zone preferences of aflatoxin incidence. The future projections of aflatoxin 

distribution in Australia under CSIRO-Mk3.0 and MIROC-H GCMs indicated that 

only a small portion of the Australian continent will be optimal/suitable for 

aflatoxin persistence, due to heat and dry stress incidence. Comparing the 
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projections of the two GCMs, CSIRO-Mk3.0 projected larger unsuitable areas and 

more severe heat and dry stresses in the future. The shifts in aflatoxin invasion areas 

from the tropical and subtropical climate zones of the eastern part of Australia to 

the temperate climate zones of the south-eastern and the south-western parts of 

Australia by 2100 indicate the effect of climate change in aflatoxin distribution. The 

overlaid results between the future projections of aflatoxin and peanut crops 

indicated the similar suitability areas for both. Only a small part of Australia will 

have low aflatoxin risks for peanut cultivation. In addition, it is projected that most 

of the current peanut growing regions have a high aflatoxin risk. Some of the 

existing peanut growing regions will not continue to be favourable for peanut 

cultivation in the future. As a result, a shift in peanut growing regions in Australia 

should be deliberated. Considering the significant negative effects of aflatoxin 

incidence in peanut crops, the results of this study will provide valuable information 

regarding favourable areas for aflatoxin persistence in Australia. The overlaid 

results between CLIMEX models of aflatoxin and peanut will assist in locating the 

high and low risk aflatoxin areas which will be useful in determining the appropriate 

location of peanut cultivation areas. This study is based on the suitability of climatic 

conditions, thus further analysis is needed to include other factors of aflatoxin 

invasion, such as host availability, susceptibility and abundance, historical 

contingency (e.g. evolutionary change) and interacting factors, such as crop and 

pest management, crop rotation, and crop acreage. 
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Chapter 7  
 

 

CONCLUSION 

 

 

7.1 Introduction 

Since agricultural sector depends heavily on climate, climate change will 

affect this sector significantly, including peanut crop commodity. The peanut 

production and the future geographic distribution of peanut crops and the associated 

aflatoxin incidence could be affected. Although quantifying area planting of peanut 

crops will be essential in determining the production level, few studies have 

investigated this issue; a similar case arises with the studies of future geographic 

distribution of peanut crops and aflatoxin.  

This study aimed at investigating the potential of time-series imagery data 

and spatial modelling techniques in mapping current peanut crop areas, the future 

geographic distribution of peanut crops and the associated aflatoxin incidence in 

Australia. This study is one of the first studies to use PROBA-V imagery, a 

specialised vegetation monitoring satellite, in crop mapping in Australia. This is 

also one of the first studies to project the future geographic distribution of peanut 

crops and the associated aflatoxin incidence in relation to the occurrence of climate 

change.  

This chapter summarises the findings of the study and provides 

recommendations for future research. This chapter is organised into four sections. 

Section 7.2 describes the summary of findings resulting from the three objectives, 

while Section 7.3 provides the conclusions. Lastly, the chapter ends with Section 

7.4 which presents the recommendations for future work. 

7.2 Summary of findings 

This study has provided new knowledge on peanut crop mapping, projected 

future suitability areas for peanut cultivation, and projected high risk areas of 

aflatoxin invasion. This was achieved by using time-series analysis applied to 
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PROBA-V NDVI imagery, while one of Species Distribution Models (SDMs), 

CLIMEX, was applied in modelling future geographic distribution of peanut crops 

and the associated aflatoxin disease. The PROBA-V imagery has not been used in 

mapping crops in Australia, while CLIMEX has not been applied in modelling 

peanut crops and aflatoxin. 

 

7.2.1 Peanut crop mapping 

Chapter 4 reveals the success of PROBA-V imagery in mapping peanut crops 

in the South Burnett region, Queensland, Australia using two datasets, namely 

PROBA-V 100m NDVI imagery and its derived phenological parameters. The 

overall accuracy of NDVI imagery outweighed the overall accuracy of phenological 

parameter dataset. However, both datasets performed very well in classifying 

peanut crops. Compared with the other two algorithms, namely the spectral angle 

mapper (SAM) and minimum distance classification (Min), the use of maximum 

likelihood classification (MLC) provided the best accuracy, i.e. 92.75% for NDVI 

imagery and 79.53% for phenological parameters. On examining details of peanut 

crop classification, all algorithms produced satisfactory results with producer and 

user accuracy, i.e. ≥75.95%, except for the producer accuracy of Min algorithm 

which accounted for 59%. The excellent performance of PROBA-V data could be 

attributed to its specific vegetation sensors and its improvement in spatial resolution 

(100 m) compared to the commonly used MODIS 250 m data.  

7.2.2 Future geographic distribution of peanut crops 

The study of future geographic distribution of peanut crops using the 

CLIMEX model under Global Climate Models (GCMs) of CSIRO-Mk3.0 and 

MIROC-H is presented in Chapter 5. The results reveal the effects of climate 

change incidence in the shifting of geographic distribution of peanut crops in 

Australia for 2030, 2050, 2070, and 2100. The study projected an increase of 

unsuitable areas for peanut cultivation throughout the projection years. CSIRO-

Mk3.0 has projected that by 2100, 76% of Australian land will be unsuitable for 

peanut cultivation, which is much higher than the MIROC-H projection of 48%. 

Compared to the projection in 2030, there is likelihood of significant reduction for 
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CSIRO-Mk3.0 projection on optimal, suitable, and marginal areas in 2100. 

However, MIROC-H has only projected a small reduction in these suitability areas.  

Unfortunately, the study reveals that some existing peanut cultivation areas, 

namely, Katherine (the Northern Territory) and Georgetown, Emerald, and St. 

George (Queensland), will become unsuitable in the future. Only a limited number 

of the current peanut areas will be maintained as being suitable, including 

Bundaberg, Mackay, Atherton Tableland, and Childers in Queensland. However, 

the projection results of other peanut cultivation areas, i.e. South and North Burnett, 

Chinchilla, Inglewood, and Texas, showed differences between the two GCMs. It 

is likely that the increase of dry stress in the future could cause limitations in the 

areas that are currently suitable. 

  

7.2.3 Future geographic distribution of aflatoxin and its high risk areas 

Chapter 6 demonstrates the effects of climate change on geographical 

distribution of aflatoxin incidence and presents a map of high risk areas for aflatoxin 

incidence in future geographical distribution of peanut crops. The study revealed 

that only small portion of the Australian continent will be optimal/suitable for 

aflatoxin occupation in the future. The majority of the continent will be unsuitable 

for aflatoxin incidence, with an increase of the areas throughout the projection years 

of 2030, 2050, 2070, and 2100. The increase of heat stress areas and the incidence 

of dry stress are suggested to be responsible for the increase of unsuitable areas for 

aflatoxin invasion. CSIRO-Mk3.0 projected an increase and more severe dry stress 

incidence throughout the projection years, resulting in larger unsuitable areas for 

aflatoxin invasion in 2100 (74% of the Australian continent), compared to MIROC-

H (43% of the Australian continent).  

The study also projected a shift in aflatoxin invasion areas from the tropical 

and subtropical zones of the eastern part of Australia in 2030, to the temperate zones 

of the south-eastern and south-western parts of Australia by 2100.  The 

identification of aflatoxin risk areas in the future distribution of peanut crops 

revealed that most of the optimal/suitable areas for peanut crops are also 

optimal/suitable areas for aflatoxin. Only a small part of Australia will have a low 

risk of aflatoxin in peanut cultivation. The study also projected that most of the 
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current peanut growing areas will have a high risk of aflatoxin, while others will no 

longer to be favourable for peanut cultivation. 

7.3 Conclusions 

The successful application of a specialised vegetation monitoring satellite, 

PROBA-V, in this study has confirmed the great potential of the satellite in crop 

area mapping and in fulfilling its mission to support the vegetation-user community. 

It provides a significant contribution of new knowledge on the potential application 

of PROBA-V imagery in mapping crops in Australia. This study confirmed that the 

use of finer resolution 100m of PROBA-V imagery (i.e. relative to MODIS 250m 

resolution) has contributed to the success of mapping peanut and other crops in the 

study area. Apart from the accuracy of this study, the large coverage (517 km) and 

frequent revisit period (5 days) of the PROBA-V satellite has provided an 

opportunity for a near real time data collection. These accurate, objective, and near 

real time crop area estimations will be useful in determining peanut crop logistics 

and marketing, such as supply, staff requirements, and import needs. Compared to 

the traditional methods of crop area estimation, such as censuses and samples, the 

use of satellite imagery can reduce the associated time and costs, and can make the 

mapping of peanut crops both easier and more objective. In addition, the peanut 

map produced from this study provides important information to estimate peanut 

production in Australia, which will be very useful in securing the domestic market 

of peanut commodity. 

One of the major contributions of this study is the new knowledge generated 

on the effects of climate change on the future geographic distribution of peanut 

crops in Australia. This is an issue which has not yet been explored in any other 

studies in any part of the world. Understanding the future geographic distribution 

of peanut crops in Australia will provide knowledge regarding suitable areas for 

peanut cultivation. This knowledge is important in determining the long-term 

planning of peanut cultivation in Australia. The results of this study have confirmed 

the effects of climate change on the suitability of peanut cropping areas. 

Unfortunately, some of the current peanut growing areas will become unsuitable in 

the future, due to the projected increase of unsuitable areas for peanut cultivation 

in Australia. Therefore, this result can be used as a guide in anticipating the 

possibility of shifting the peanut cropping areas in the future.  



157 

 

In addition, this study also contributes significantly to the knowledge of the 

effects of climate change on the future geographic distribution of aflatoxin, a major 

issue in the peanut industry in Australia. It also provides a major contribution in 

new knowledge on locating the high risk areas of aflatoxin incidence in the future 

distribution of peanut crops in the country. Due to its negative effects on human 

and animal health, aflatoxin attracts significant attention. This study supports the 

outcomes of other studies which confirmed the climatic zone preferences of 

aflatoxin incidence. Looking into the projection of the incidence of aflatoxin in 

Australia, this study has projected a shift in aflatoxin invasion areas. Having this 

knowledge will provide valuable resources in anticipating the incidence of aflatoxin 

in the future. Comparing the future distribution of peanut crops and aflatoxin 

disease, the study reveals that peanut crops have similar climatic requirements to 

aflatoxin, resulting in small areas of low aflatoxin risks for peanut cultivation. Since 

the study found that most of the current peanut growing regions have a high 

aflatoxin risk, shifting the peanut growing regions in Australia should be 

considered. The high and low risk aflatoxin areas resulted from this study will be 

useful in determining the location of peanut cultivation areas. 

Overall, this study has contributed to generate new knowledge on the 

application of time-series PROBA-V 100m NDVI imagery in mapping peanut 

crops in the South Burnett region of Queensland, Australia. It has also contributed 

to the new knowledge of the future geographic distribution of peanut crops and 

aflatoxin in relation to the incidence of climate change. This study provides 

strategic information on estimating current peanut planting areas, future suitable 

areas for peanut crops, and future high risk areas of aflatoxin incidence in Australia. 

This information provides valuable contributions in the planning, management, and 

policy formulation of the peanut industry in Australia to anticipate the impact of 

climate change.  

7.4 Recommendations 

Studies on peanut crop mapping using multi-temporal satellite imagery and 

predicting the future distribution of peanut crops and aflatoxin in Australia are still 

at an early stage. Further investigations could contribute to the need. Based on the 

findings of this study, the following recommendations for future investigations are 

made:  
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1. The use of other classification algorithms, such as machine learning, can 

be explored in further work of peanut crop mapping using PROBA-V 

imagery. In addition, comparing the results of this study with those that 

used other satellite imagery, such as higher or lower spatial resolution 

satellites, will provide some knowledge of the options to use in mapping.  

2. Based on the successful use of PROBA-V imagery in this study and from 

other studies, the continuity of the PROBA-V satellite should be 

investigated by launching its successor mission. Initially, the PROBA-V 

satellite was designed as a ‘gap-filler mission’ between SPOT-Vegetation 

and ESA Sentinel 3 satellites.  

3. The future distribution of peanut crops and the associated aflatoxin 

incidence resulting from this study were carried out using the CLIMEX 

model. The model was developed based on species’ or other biological 

entities’ response to climate. Non-climatic factors, such as economic, 

social, topography, soil type, and land use, were not considered in this 

study. However, the future distribution map resulting from this study 

could be enhanced by incorporating these non-climatic factors.  

4. In order to further enhance the results of mapping future geographic 

distribution of aflatoxin, other factors which specifically affect the 

distribution of aflatoxin can also be incorporated. Some of these factors 

include host availability, susceptibility and abundance, historical 

contingency (such as evolutionary change), and interacting factors (such 

as crop and pest management, crop rotation, and crop acreage).   
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APPENDICES 
 

 

Appendix 1 Field work documentation for peanut crop mapping (Objective 1) in 

the South Burnett region, Queensland, Australia. (a) street direction, (b) pine 

trees, (c) mung bean, (d) corn, and (e) and (f) peanut crops.  
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Appendix 2 Coordinates of reference data for peanut crop mapping (Objective 1), which collected during the field survey in the South Burnett 

region, Queensland, Australia.  

 

Easting Northing Land Cover 

351616.97 7041619.38 pasture (grass and trees), pasture, trees 

369291.06 7051552.36 Peanut, pasture with trees, small farm, farm + pasture  

369639.25 7051679.05 Mungbean (big paddock), tress (north mungbean), pasture (opposite mungbean) 

373420.60 7052782.37 Peanut paddock, pasture + tress 

374594.18 7053841.03 Corn paddock, pasture 

375741.16 7054511.39 Peanut (big field/paddock), pasture 

382879.74 7060638.27 Corn paddock (big area, i.e. > 1 km), house + trees, cropping  

379376.20 7071760.73 Peanut (not big enough), pasture 

377054.37 7071481.35 Forest 

378920.22 7071652.44 Corn (bigger area), pasture/patch of trees, crop have been harvested 

382526.12 7078821.25 Sorghum (bigger area, > 1 km), sports ground, trees, lake 

385053.32 7075755.32 Duboisia/Corkwood tree (bigger area), corn, forest 

383825.57 7075693.69 Pine trees, corn (bigger area), Duboisia 

383918.05 7076592.17 Peanut (bigger area, peanut until the end of the road), corn (bigger area, > 1 km) 

383996.98 7077213.87 Peanut (very big area, almost along the road) 
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381984.48 7082551.65 Forest trees, pasture 

379355.93 7082914.53 Peanut (about 5 km), trees (opposite peanut) 

378782.88 7082993.09 Corn 

377377.04 7083612.71 Peanut (about 3 km), Duboisia 

377589.04 7085221.24 Peanut (about 1 km) 

375979.26 7085831.00 Duboisia (about 5 km), houses 

375778.07 7084256.35 Corn (about 2-3 km), peanut (about 1 km), Duboisia 

383124.09 7083953.16 Mungbean (several paddocks, very big area), house + tree, forest 

385060.49 7074191.84 Corn   

387236.05 7068262.24 Duboisia, pasture 
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Appendix 3 The global distribution of peanut crops for develop CLIMEX 

parameters (Objective 2) retrieved from GBIF and ALA database. 

 

 

No. Country Decimal Latitude Decimal Longitude 

1 Uzbekistan 40.5 70.917 

2 The USA 40.338 -74.492 

3 The USA 40.338 -74.448 

4 Azerbaijan 40.152 47.690 

5 Uzbekistan 39.667 66.950 

6 China 38.912 121.602 

7 Turkey 38.75 30.67 

8 Uzbekistan 38.568 65.714 

9 China 37.591 120.874 

10 Italy 37.522 13.0418 

11 The USA 37 -119 

12 The USA 37 -80 

13 Turkey 36.95 28.667 

14 Turkey 36.858 30.950 

15 China 36.428 118.804 

16 Libya 34.9 13.183 

17 Morocco 34.033 -6.85 

18 Morocco 34.019 -6.841 

19 Morocco 33.972 -6.842 

20 Pakistan 33.667 73.133 

21 Japan 33.625 130.611 

22 Pakistan 33.285 72.804 

23 Libya 32.881 13.192 

24 Iran 32.683 51.683 

25 Iran 32.650 51.68 

26 Libya 32.623 13.519 

27 Israel 32.002 24.829 

28 Mexico 31.216 -107.450 

29 China 31.009 121.226 

30 India 30.85 75.866 

31 India 30.85 76.18 



182 

 

No. Country Decimal Latitude Decimal Longitude 

32 Algeria 30.57 2.88 

33 India 30.316 78.05 

34 India 30.309 78.080 

35 Iran 30.3 57.083 

36 Iran 30.299 57.080 

37 India 29.966 77.583 

38 India 29.67 78.330 

39 The USA 29.65 -82.610 

40 China 29.583 115.966 

41 China 29.367 120.780 

42 India 29.32 77.259 

43 India 29.27 74.400 

44 India 29.18 74.760 

45 India 28.93 79.690 

46 India 28.92 73.93 

47 India 28.92 78.25 

48 China 28.7 115.916 

49 India 28.5 79 

50 India 28.48 73.75 

51 Algeria 28.441 -0.283 

52 Algeria 28.3 0.033 

53 India 28.200 73.389 

54 China 28.2 115.766 

55 India 28.17 80.5 

56 India 28.15 80.370 

57 India 28.08 75.25 

58 India 27.93 81.580 

59 India 27.92 85.5 

60 Nepal 27.91 85.150 

61 Nepal 27.9 85.169 

62 Nepal 27.860 84.910 

63 India 27.83 80.919 

64 Nepal 27.82 85.25 

65 Nepal 27.77 85.080 
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No. Country Decimal Latitude Decimal Longitude 

66 India 27.690 74.470 

67 India 27.67 80.830 

68 India 27.67 80.919 

69 India 27.51 71.709 

70 India 27.5 81.330 

71 India 27.469 75.580 

72 China 27.426 116.074 

73 China 27.383 114.616 

74 India 27.33 79.580 

75 India 27.280 71.239 

76 India 27.25 80.830 

77 India 27.17 79.300 

78 India 27.17 81.599 

79 Nepal 27.17 87.050 

80 China 27.066 119.616 

81 Nepal 27.030 87.220 

82 Egypt 27 30 

83 India 26.93 80.169 

84 India 26.92 71.25 

85 India 26.92 73.830 

86 India 26.85 73.779 

87 China 26.833 116.266 

88 China 26.780 114.816 

89 India 26.780 77.129 

90 India 26.73 77.019 

91 India 26.530 76.330 

92 India 26.49 73.690 

93 India 26.469 73.790 

94 India 26.469 76.709 

95 India 26.469 80.349 

96 India 26.45 80.233 

97 India 26.3 73.133 

98 India 26.299 76 

99 India 26.23 78.169 
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No. Country Decimal Latitude Decimal Longitude 

100 India 26.17 76.080 

101 India 26 74 

102 India 26 81.330 

103 India 25.883 81.853 

104 India 25.83 79.419 

105 China 25.816 114.533 

106 China 25.7 114.316 

107 India 25.57 83.790 

108 India 25.566 91.883 

109 India 25.48 82.580 

110 Pakistan 25.433 68.533 

…    

…    

…    

…    

…    

…    

…    

…    

…    

…    

1861 Argentina -27.25 -55.533 

1862 Paraguay -27.283 -55.907 

1863 Argentina -27.316 -58.583 

1864 Argentina -27.32 -58.580 

1865 Paraguay -27.333 -55.9 

1866 Argentina -27.380 -55.910 

1867 Argentina -27.383 -55.885 

1868 Argentina -27.389 -58.507 

1869 Argentina -27.45 -55.833 

1870 South Africa -27.462 32.066 

1871 Argentina -27.467 -58.833 

1872 Argentina -27.483 -55.483 

1873 Australia -27.5 153 
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No. Country Decimal Latitude Decimal Longitude 

1874 Argentina -27.516 -58.566 

1875 Argentina -27.516 -58.566 

1876 Argentina -27.55 -58.716 

1877 Argentina -27.668 -58.252 

1878 Argentina -27.909 -58.680 

1879 Argentina -28.104 -56.280 

1880 Brazil -28.133 -54.466 

1881 Argentina -28.494 -58.911 

1882 South Africa -28.916 26.316 

1883 Brazil -28.95 -51.616 

1884 Brazil -29.35 -49.8 

1885 Brazil -29.6 -50.066 

1886 Brazil -30.030 -51.209 

1887 Brazil -30.033 -51.216 

1888 Brazil -30.05 -51.166 

1889 Argentina -30.1 -63.933 

1890 Brazil -30.101 -51.159 

1891 Argentina -30.25 -57.683 

1892 Brazil -30.4 -54.333 

1893 Brazil -30.414 -53.652 

1894 Argentina -30.766 -57.983 

1895 Argentina -31.181 -60.166 

1896 Argentina -31.666 -60.766 

1897 Brazil -31.75 -52.333 

1898 Argentina -31.63 -63.75 

1899 Argentina -32 -64 

1900 Uruguay -32.026 -55.670 

1901 Argentina -33.133 -64.35 

1902 Australia -33.871 151.207 

1903 Australia -33.916 151.166 

1904 Uruguay -34.3 -57.733 

1905 Uruguay -34.333 -57.716 

1906 Argentina -34.866 -57.916 

1907 Uruguay -34.916 -56.166 
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No. Country Decimal Latitude Decimal Longitude 

1908 Argentina -34.922 -57.950 

1909 Argentina -35.033 -58.024 

1910 Chile -35.815 -70.890 

1911 Argentina -37.147 -60.031 

1912 Argentina -38.421 -63.584 

 


