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Abstract:  There is an urgent need to halt the degradation of the ecosystems on Earth.  For the acquisition, 

modification and disposal of natural fibres and their composites, the use of organisms and the associated 

enzymes offers a promising route to sustainable composites.  This would potentially reduce the required energy 
and use milder reaction conditions.  This paper reviews the use of organisms and enzymes for (a) extraction 

of fibres from plant material (retting), (b) surface modification of fibres, and (c) end-of-life treatments, in the 
context of bast fibres and their composites.  The use of enzyme processes at large scale is limited by the 

extended treatment times, costs of the enzymes and equipment, wastewater treatment and the current low 

level of adoption by industry. 
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Introduction: 

“The decay of plant and animal debris is perhaps the most essential process in nature.  Without 
decay, the nutrient cycle would grind to a halt, and life could no longer survive. ... The main 

constituent of leaf litter is cellulose, the commonest organic substance on earth.  This is not easily 

degraded, if at all, by animals, plants, or bacteria, but many Fungi do have the requisite enzymes 
to break down cellulose into simpler compounds (principally glucose) and utilise it as a food 

resource” (Spooner and Roberts, 2005). 
 

Bast fibres, extracted from the stems of plants, are finding increasing use in “sustainable” composites. To 

ensure the environmental credentials for such materials, a life cycle assessment should be conducted, rather 
than rely on the instinct that “green is good”.  Previous reviews on  bast fibres and their composites include 

papers specific to reinforcements [1], use in composites [2], modelling [3], interfaces [4], manufacturing 
processes [5], life cycle assessment [6] and forensic techniques [7] with well over 100 review papers 

addressing this topic [8]. 

 
Life is divided into three domains, the Archaea, the Bacteria, and the Eukarya (the latter arising from a member 

of the Archaea taking up endosymbiont Bacteria to create mitochondria).  The Eukarya then diverged to give 
rise to the six major divisions [9] listed in order of position of radiation: (i) Archaeplastida (containing green 

plants, Chlorophyta, and algae, (ii) Hacrobia (CCTH clade), (iii) Harosa (SAR clade), (iv) Excavata, (v) 
Amoebozoa, (vi) Opisthokonta (containing the Animalia, including humans, and the Fungi)  A seventh division, 

the Hemimastigophora, has been proposed by Lax et al (2018) [10]. 

 
Fungi are closer to animals than to plants.  The fungal Kingdom includes mushrooms, molds, mildews, plant 

pathogens (rusts and smuts) and yeasts.  Cavalier-Smith [11] suggested the definition of ‘true fungi’ was 
dependent on characteristics such as chemistry of the cell wall, mode of nutrition, biosynthetic pathways and 

ultrastructure of the mitochondria.  However, the taxonomy of Fungi is evolving rapidly due to recent research 

based on DNA comparisons [12, 13].  The classification of Fungi has changed dramatically since the 1990s.  
The kingdom now commonly divides into five “true” phyla (groups): Ascomycota (yeasts and sac Fungi), 
Basidiomycota (club Fungi), Chytridiomycota (chytrids), Glomeromycota (tree root symbionts) and 
Zygomycota (bread molds).  Blastocladiomycota are under consideration for full phylum status by splitting 

Blastocladiales from the Chytridiomycota [14] (Lange and Olson, 1980).  There is some uncertainty as to 
whether Microsporidia and Neocallimastigomycota are phyla of Fungi or Protozoa [15] (Læssøe and Petersen, 

2019).   

 
Fungi [15-17] (Spooner and Roberts, 2005.  Money, 2016. Læssøe and Petersen, 2019) grow in soil and do 

not move around like animals.  The diversity of Fungi is second only to that of insects, but they are a “poorly 
known group of organisms” due to their hidden life within various substrates except for the short period when 

they may produce fruit bodies [15] (Læssøe and Petersen, 2019).  Fungi do not have chlorophyll and hence 

cannot photosynthesise.  They are characterised by chitin, rather than cellulose, in their cell walls. 
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The building blocks of all filamentous Fungi are hyphae (fine strands) which are hollow tubes containing nuclei, 
mitochondria and other organelles (specialised structures within a cell).  All Fungi feed by absorbing small 

molecules (amino acids and simple sugars) inwards though the walls of the hyphae.  Of particular interest in 

the context of natural fibres, polymers and composites are those Fungi that can produce digestive enzymes 
to attack complex molecules such as cellulose, lignin and starch and modify the material surface. 

Decomposition by Fungi appears to be primarily at the actively growing filament tips.  Fungi in the lumen 
digest the fibre from the inside outwards. 

 
Saphrophyes are plants, fungi, or microorganisms that process dead or decaying organic matter by 

extracellular digestion and are considered “decomposer organisms”.  Fungi are "the principal agents of natural 

decay and nutrient recycling" [16].  Brown rot is the residue of decomposers that break down the fairly easily 
degradable cellulose to leave brown lignin.  White rot is the whitish fibrous residue of decomposers that break 

down both cellulose and lignin [15] (Læssøe and Petersen, 2019).  The white rot fungi from Basidomycetes 
are the only fungi known to produce extracellular oxidases that expose and metabolise the cellulose and 

hemicellulose then degrade the lignin. 

 
Other organisms can also degrade materials.  Bacteria adhere to the fibre outer surface as particulate cells, 

release cellulases to promote biodegradation of cellulose to glucose, enlarge, then fission into daughter cells 

[18] (Siu, 1954).  Dependent on the process objective, the progress of degradation by cellulases and the 

properties of the resulting products can be controlled by adjusting the treatment parameters, enzyme loading 

and the composition of the cellulase mixture [19, 20] (Kalia et al, 2013; Esteghlalian, 2002).  Table 1 (animals), 
Table 2 (bacteria) and Table 3 (fungi) list the organisms in the papers reviewed below with their respective 

taxonomy. 

 
Enzymes [19,21] (Kalia et al, 2013; Prior, 2013) are natural chemicals produced by Bacteria, Fungi, protozoans, 

termites, plants and animals.  They catalyse selective chemical synthesis and/or decomposition at low 
concentrations under mild (temperature, humidity, pH) conditions and consume less energy and water than 

conventional chemical processes.  Tailored enzymes have high reaction specificity, work under milder reaction 
conditions and can result in non-destructive transformations on the surface of polymers.  Factors that limit the 

use of enzymes at large scale include the high cost for enzymes and equipment, wastewater treatment systems 

and the lack of industry support. 
 

Enzymes [21] (Prior, 2013), like true catalysts, are not consumed by the reactions they facilitate.  An enzyme 
enables another molecule, termed the substrate, to undergo a reaction by forming a temporary complex with 

that substrate.  The active site on the enzyme must have the correct chemical nature and perfect conformation 

for the specific substrate.  For example, cellulose is the substrate for the cellulase enzymes. 
 

Enzyme function depends on the precision of the Activated Enzyme-Substrate Complex (AESC).  A substrate 
and its enzyme bind together like a key in a lock (known as the Lock and Key Analogy).  The AESC forces the 

substrate into a stressed form making the bonds more susceptible to reaction (the induced fit hypothesis) 

when the required energy exists.  Enzymes: A Very Short Introduction will soon be published [22] (Engel, 
2020). 

 
Each enzyme has been classified using an Enzyme Commission number (EC number: "EC" followed by four 

integers separated by full stops (periods in US English)) based on the hierarchy of the catalysis to progressively 
describe the chemical reaction of the enzyme (Tables 4 & 5) [23, 24].  Preliminary EC numbers include an 'n' 

as part of the fourth (serial) digit (e.g. EC 3.5.1.n3).  BRENDA (BRaunschweig ENzyme DAtabase) < 

https://www.brenda-enzymes.org/ > is a comprehensive enzyme database offering free-of-charge functional 
data to the scientific community.  ENZYME < https://enzyme.expasy.org/ > is one alternative repository of 

information for the nomenclature of enzymes, primarily based on the recommendations of the Nomenclature 
Committee of the International Union of Biochemistry and Molecular Biology (IUBMB) [25] (Bairoch, 2000). 
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Cellulases are a class of enzymes that hydrolyse cellulose (catalyse cellulolysis), most often acting on the -

(1,4)-linkage. Cellulases are the enzymes that cleave sugar from the cellulose molecule.  They consist of three 
different synergistic enzymes: 

 endoglucanases (EG) randomly hydrolyse the -(1,4)-linkages in the water-insoluble cellulose chain, 

 cellobiohydrolases (CBH) hydrolyse the linkages at the reducing ends of the cellulose chain to form 
cellobiose and cellobiases, and 

 -glucosidases convert water-soluble cellobiose into two glucose residues [19, 26] (Kalia et al, 2013; 

Almeida and Cavaco-Paulo, 1993). 

Organisms that possess cellulases include Bacteria, some flagellate and ciliate protozoa, and Fungi [27] (Scott, 
2002). 

 

Pectinases (pectinolytic enzymes) are naturally occurring chemicals generated by Fungi [28] (Singh et al, 
1999), actinomycetes [29] (Beg et al, 2000), yeasts [30] (Blanco et al, 1999) or Bacteria [31, 32] (Dosanjh 

and Hoondal, 1996. Kapoor et al, 2001).  Pectinases produced from fungal sources dominate the commercial 
products [33] (Henriksson et al. 1997).  The most common fungal species used in industrial production of 

pectinolytic enzymes is Aspergillus niger [34] (Jayani et al, 2005).  Bacillus, Lactobacillus, Pediococcus and 
Leuconostoc are effective bacterial sources for fermentation processes that produce pectinolytic enzymes 

[35] (Kouhoundè et al, 2014). 

 
This paper reviews the use of organisms and enzymes for (a) extraction of fibres from plant material 

(retting), (b) surface modification of fibres, and (c) end-of-life treatments.  Table 6 compiles the process 
parameters reported for the respective processes.  Those parameters (where quoted) fall in the range 

ambient-60°C, 65-85% RH, pH 3.5-10 with durations up to 40 days.    Whatever the chosen route, there 

should be risk assessment for economic, environmental (including escape of organisms into the ecosystem) 
and health and safety when handling these systems.  Quantitative Life Cycle Assessment (QLCA) should 

reveal the extent of environmental burdens imposed. 
 

Retting 

 
Sisti et al. [36] (2018) have comprehensively reviewed the retting process as a pre-treatment for the 

acquisition of natural fibre reinforcements for polymer composites.  Retting, also known as degumming, is the 
process of softening harvested plant stems for fibre extraction.  Retting permits separation of the fibre bundles, 

and individual fibres, from the vegetal skin and the woody core cells.  The process involves soaking (water 
retting) or exposure to moisture (dew-, or field-, retting) using pectin enzymes naturally secreted by indigenous 

microflora.  Monitoring the progress of the retting process is essential to obtain high quality fibres.  

 
Retting uses pectinases or pectinolytic enzymes to loosen the fibres from the other stem tissues by hydrolytic 

depolymerisation of the pectic substances. Pectinolytic enzymes are classified according to their main catalytic 
reaction mechanisms.  Polygalacturonases are fundamental to the retting process as they catalyse hydrolytic 

cleavage of polygalacturonic acids [34, 37, 38] (Zhang et al. 2000. Evans et al, 2002. Jayani et al. 2005).  

Pectin lyases drive a non-hydrolytic breakdown of pectates and pectinases by a trans-elimination splitting the 
pectic polymer and so are potentially important for retting bast plants [39-41] (Sakai et al, 1993. Akin et al, 

2007; Bruhlmann et al, 2000).  Pectin esterases may have a lesser role.   This heterogeneous group of enzymes 
are widely distributed in higher plants and microorganisms where they aid cell wall extension and soften plant 

tissues during maturation and storage. They also contribute to maintenance of ecological balance by 
decomposing and recycling waste plant materials [42, 43] (Mohnen, 2008.  Ridley et al. 2001). 

 

Plant diseases and spoiling of fruit and vegetables are major manifestations of pectinolytic enzymes.  In 
consequence, they have a role in extraction and treatment of plant fibres, extraction and clarification of fruit 

juices and vegetable oils, tea and coffee fermentation, bleaching of paper, poultry feed additives, and are used 
in the alcoholic beverages and food industries as well as for wastewater treatment [34] (Jayani et al, 2005). 

 

 Water retting 
 

Water retting in rivers or ponds was widespread around five-six decades past.  The harvested bast stems are 
immersed in water for one to two weeks so that the water penetrates into the centre of the stalk leading to 

breaking of the outer layer and hence more rapid moisture absorption.  The treatment time is dependent on 

the water used, the temperature and the bacterial community [44, 45] (Bismark et al. 2005; Donaghy et al. 
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1990). Initially, growth of aerobic microorganisms consumes dissolved oxygen, creating an environment where 
anaerobic organisms can thrive.  The active aerobic phase Bacillus microorganisms include B. macerans (now 

classified as Paenibacillus macerans), B. mesentericus, B. polymyxa (now classified as Paenibacillus polymyxa) 
and B. subtilis [32, 46-48] (Ali 1958; Kapoor et al. 2001; Tamburini et al. 2003; Munshii and Cathoo 2008).  
The anaerobic phase Clostridium genus microbiota found in retting water include C. acetobutylicum, C. 
aurantibutyricum, C. felsineum and C. tertium [45, 47-50]] (Donaghy et al. 1990; Di Candilo et al. 2000; Zheng 
et al. 2001; Tamburini et al. 2003; Munshii and Cathoo 2008). 

 
The quality of fibres from water retting is generally higher than from dew retting [51, 52] (Amaducci and 

Gusovious 2010; van Sumere 1992).  However, the water retting process imposes high environmental burdens 

as it consumes and contaminates large volumes of both water [53] (van Dam and Bos 2004) and energy [54] 
(Van der Werf and Turunen 2008).  It would be timely to consider alternative water sources for water retting 

to address freshwater scarcity and reduce watercourse pollution.  The process is now conducted in large tanks.  
Zhang et al. [55, 56] (2008a/b) have suggested that seawater may be considered as an abundant, 

inexhaustible resource.  They studied seawater retting with pectinolytic Stenotrophomas maltophilia and 

Ochrobactrum antrophi species with good retting results.  Bismark et al [44] (2005) and Sisti et al. [57] (2016) 
conducted artificial warm water retting with a bacterial inoculum to produce clean, homogeneous, high-quality 

fibres in just 3-5 days. 
 

 Dew/field retting 
 

In dew/field retting, the harvested plants are spread thinly on the field for 2-10 weeks. Microorganisms present 

in the soil and/or on the plants degrade the non-cellulosic material, especially the binding pectins and 
hemicelluloses of the parenchyma cells and the middle lamellae without damaging the cellulose fibres.  The 

organisms are primarily filamentous Fungi and/or aerobic Bacteria.  The field may not be available for the next 
crop for a number of weeks while dew retting occurs.  Contaminated soil, and the Fungi, may also be 

undesirable for agricultural and economic reasons. 

 
Fungal and bacterial species isolated from dew-retted plants include Cladosporium sp., Penicillium sp., 

Aspergillus and Rhodotorula sp. [58-60] (Fogarty et al. 1972; Ahmed and Akhter 2001; Ribeiro et al. 2015).  
Fungi isolated during flax dew retting, include Cladosporium herbarum, Epicoccum nigrum, Alternaria 
alternate, Fusarium sp., Aureobasidium pullulans, Phoma sp., Mucor sp., Rhizomucor pusillus, and Rhizopus 
oryzae [32, 61-65] (Sharma 1986; Henriksson et al. 1997; Akin et al. 1998; Molina et al. 2001; Booth et al. 
2004; Xiao et al. 2008).  Lignin accumulates in plant stems as they age, so different enzymes may be needed 

for retting lignified fibres, and complementary mechanical methods are often necessary [60] (Ribeiro et al. 
2015). 

 
Currently, dew retting is the most used process for the industrial production of bast fibres, mainly flax and 

jute, because of its low cost [66] (Bacci et al. 2010). Unfortunately, the method is limited to geographic 

regions, where the weather is suitable for Fungi proliferation. Moreover, often low and inconsistent fibre quality 
is produced compared to other methods, such as water retting. Under-, or over-, retting leads to difficulties in 

separation or weakens the fibre respectively [67] (Jankauskiene et al. 2015). For example, cellulotic enzymes 
secreted by the microbiota can damage the fibres after extended exposure. 

 

Over recent years, dew retting has been investigated in a controlled artificial environment with the variable 
parameters including fungal type, temperature and duration of treatment, in order to lower costs, increase 

efficacy and decrease environmental burdens [68] (Pickering et al. 2007). 
 

 Enzyme retting 
 

In enzyme retting, also known as bioscouring, the enzymes are added to the substrate in a bioreactor vessel.  

The technique shows promise as an alternative to traditional retting methods with potential benefits including 
time-saving (typical duration of just 8-24 h), convenience and low environmental burdens.  However, a balance 

must be sought between increased energy input and single-use enzymes compromising the cost-effectiveness 
of the process [69] (Tahir et al, 2011).  Enzyme retting promises to improve fibre quality, but has not yet 

replaced pond/immersion or field/dew retting at large scale [19, 70-72] (Akin et al 2002; Akin 2013; Kalia et 

al, 2013; Lee et al, 2011).   
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Specific retting conditions, especially pH, temperature, and enzyme concentration, are required dependent on 
the chosen enzyme(s) as the activity can differ dramatically.  Akin et al [73] (2003) reported that pre-soaking 

with distilled water before enzyme-retting “increased fine fibre yield in some cases, but fibre strength at times 

was reduced”.  Enzyme retting efficiency can be enhanced by chelators that withdraw calcium from the solution 
and by surfactants employed in formulations to improve activity.  Calcium (II) chelators, such as Ethylene  

Diamine Tetracetic Acid (EDTA), improve retting by destabilising chemical bridges to separate the 
epidermal/cuticle material from the fibre and fibre bundles [74] (Akin et al, 2004). 

 
Foulk et al [75] (2008) stated that when using a specific composition of an enzyme mixture, enzyme retting 

can tailor fibres, or their bundles, to produce particular properties, notably fineness and strength.  Pectinase 

enzyme retting can produce consistent high strength renewable reinforcement fibres [76] (Foulk et al, 2011).  
Strength is maintained by retting with relatively pure pectinases, whereas these enzymes in mixtures with 

cellulases tend to shorten fibres, especially by attacking the nodes limiting their use to paper pulp or injection 
moulding compounds [75] (Foulk et al, 2008). 

 

Customised enzyme blends enhance the dew retting process, e.g. Inotex Texazym® SER sprayed on the field 
before pulling, or within the first 3 days of dew retting. The flax long fibre yield increased by >40%.  These 

enzymes, in combination with mild mechanical treatment, can eliminate the aggressive and energy-intensive 
processing otherwise required [77] (Antonov et al, 2007). 

 
Fibre surface treatment 

 

Fungal treatment has potential as an environmentally friendly and efficient process for surface modification of 
natural fibres. This biological treatment removes the non-cellulosic components (e.g. wax) from the fibre 

surface by the action of specific enzymes.  Extracellular oxidase enzymes, from e.g. white rot Fungi reacts to 
remove lignin constituents from the fibre, and to increase the solubility of hemicelluloses.  The net effect is 

reduced hydrophobicity.  The fungal hyphae create fine holes at the fibre surface that roughen the fibre surface 

and provide a better mechanical interlock with the matrix of the composite [78] (Kabir et al 2012). 
 

Enzymes with chelators have been used to modify flax fibre surfaces, by removing pectin and calcium, 
accompanied by wall stripping and generation of fine fibrils, making the surface more hydrophobic and 

enhancing the fibre/matrix interfacial adhesion [19, 79] (Kalia et al, 2013; Adamsen et al. 2002). 

 

Enzymes (including cellulases, hemicellulases, pectinases, xylanases and laccase (EC 1.10.3.2)) have been 

used for surface treatment of jute fibres leading to removal of lignin and hemicellulose constituents and 

reduction of breaking strength of the treated fibres by 15-25% [80] (Kamiko et al 2002). 
 

Ouajai and Shanks [81] (2005) performed bioscouring of hemp using pectate lyases (EC 4.2.2.2, Scourzyme 
L) by varying concentration, treatment time and substrate concentration to obtain the reaction kinetic 

constants.  SEM indicated smooth surfaces and separated fibres.  Thermogravimetry indicated complete 

removal of pectins while FTIR and WAXD suggested there was no destruction of the cellulose crystalline 
structure of the fibres. 

 
Pickering et al [68] (2007) studied fungal treatment of hemp fibres to enhance their bonding in natural fibre 

reinforced polypropylene composites.  Fibres were pre-treated in 10% NaOH for 45 minutes at up to 160C.  

The hemp was incubated at 10 mg Fungi/12 g of sterilised fibre at 27C for two weeks.  The five Fungi used 

were: 

 three Basidiomycetes white rot Fungi 
(Phanerochaete sordida (D2B), Pycnoporus species (Pyc) and Schizophyllum commune (S.com)), 

 Ophiostoma floccosum (F13) ascomycetes, and  

 Absidia (B101) zygomycete. 
The treated fibres were characterised using X-ray diffraction (XRD), ξ-potential, TAPPI lignin testing, DTA and 

TGA thermal analysis, and scanning electron microscopy (SEM). A combined alkali and Fungi treated fibre 
composite produced the highest tensile strength of 48.3 MPa, an increase of 32% compared to composites 

with untreated fibre.  Among Fungi, the white rot fungus (Basidiomycetes) is the only one able to degrade 

non-cellulosic compounds from natural fibers, thus improving the mechanical properties of the resulting 
natural fibre reinforced composites. 
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White rot Fungi cellulase enzymes singly and in combination (cellulases, xylanases and pectinases) were used 
to treat jute fibres and degraded the lignin polymers leading to a reduction in flexural rigidity and tenacity [82] 

(Jayapriya and Vigneswaran, 2010). 

 
Acero et al [83] (2014) used laccases (EC 1.10.3.2), p-diphenol dioxygen oxidorecductases, from Trametes 
hirsuta as a biocatalyst for direct grafting of different types of functional phenolic and amine molecules onto 
flax fibres.  The different chemical moieties generated could increase compatibility with polymeric matrices. 

 
Bio-composite core materials for sandwich panels 

 

The fibrous networks of mycelia (the vegetative part of Fungi) may be used as sustainable alternatives to 
synthetic foams for the cores of sandwich structures.  The topic has been reviewed by several authors [84-

87] (Jones et al, 2017; Attias et al, 2019; Girometta et al, 2019; Hyde et al, 2019). 
 

Composites end-of-life 

Fibres 
 

Once the natural fibres are incorporated into a composite, the ultimate (<~25m apparent diameter) or 

technical fibres or bundles (>~25m apparent diameter) are enclosed by a different polymer as the matrix for 

the composite.  Deacon [88] (2019) states that the fungal hyphae are typically 5-10 m diameter, and thus 

of a similar size to the synthetic high-performance reinforcement fibres (aramid or carbon).  For an ultimate 

fibre, access will be limited to ~ 20 hyphae travelling parallel to each other. 
 

Leonowicz et al [89] (1999) reviewed the biodegradation of lignin, as a constituent of wood, by white rot 
Fungi.  Wood rotting basidiomycetous Fungi directly attack the “lignin barrier”, penetrate the wood and 

metabolise the carbohydrate components of the material.  The hypothetical mechanisms of lignocellulose 
transformation by white rot enzymes are presented in Figure 4 of reference [89]. 
 
Stamboulis et al [90] (2000) have observed that moisture causes fungus development on the fibre surface 

after a couple, or three, of days of exposure, resulting in degradation of the fibres and the decrease of their 
mechanical properties. 

 

While all-cellulose composites do exist (e.g. [91-94] Nishino et al, 2004. Nishino and Peijs, 2014. Reddy et al, 
2014. Li et al, 2018.), they are comparatively rare, but both the fibre and matrix could potentially be 

decomposed by cellulases, lignases and pectases acting singly or in combination. 
 

Biodegradation of cellulose to glucose is the principal route for treatment of plant fibres at end-of-life.  

Degradation by cellulases can be controlled by adjusting the treatment parameters, including time, 
temperature, enzyme loading and the cellulase composition. 

 
Milner et al. [95] (2008) and Anon. [96] (2008) have reported a new strain of thermophylic Bacteria that can 

break down cellulose waste to produce useful renewable fuels for the transport industry. The Geobacillus 

family normally synthesise sugars and produce lactic acid as a by-product when they break down biomass in 
a compost heap. The re-engineered TM242 strain is claimed to produce ethanol more efficiently (yields of 10 

to 15%) and cheaply than in traditional yeast-based fermentation. 
 

Acetylation of lignocellulosics provides protection against fungal attack and hence may not be desirable for 
end-of-life composites. Suttie [97] (1999) suggests that the substitution of the hydroxyl (-OH) groups on 

cellulose with acetyl moieties makes the cell wall polymers incompatible with the enzymes associated with 

Fungi. 
 

Matrix 
 

For composites that will be highly stressed, where the glass transition temperature of the matrix is above 

ambient temperature, thermoplastic matrix composites will generally be processed at temperatures that 
degrade the bast reinforcement fibres and hence the composite system may not be useful after initial, or re-, 

processing.  Poly(lactic acid) (PLA) is an exception with Tg ~65C and Tm ~175C.  Thermosetting matrix 

composites are normally disposed of at end-of-life by chemical or thermal methods or sent to landfill. 

https://doi.org/10.1016/j.compositesa.2020.106149


Manuscript of a paper (DOI: 10.1016/j.compositesa.2020.106149) accepted for publication in 

Composites Part A: Applied Science and Manufacturing, available online 30 October 2020. 
 

 
For end-of-life bast fibre composites other than self-reinforced polymers, a cocktail of Fungi/Bacteria/enzymes 

may be required to degrade the composite.  However, it is possible that some mixed systems likely to be 

antagonistic and hence below optimal efficiency. 
 

The matrix systems used for many bast fibre composites are synthetic polymers.  The polyolefins 
(polyethylene, polypropylene, etc.) are often used as the matrix for (injection moulded) short bast fibre 

composites as they can be melt processed below the degradation temperature of the fibres. Given their 
chemical similarity to petrochemical fuels, they might be processed using the fungal systems that “spoil” those 

fuels [16] (Spooner and Roberts, 2005), once they are no longer suitable for reprocessing at their end-of-life. 

 
Bombelli et al [98] (2017) reported fast bio-degradation of poly(ethylene) (PE) by larvae of the wax moth 

Galleria mellonella, which feed on beeswax, to produce ethylene glycol.  The authors were “not clear whether 
the hydrocarbon-digesting activity of G. mellonella derives from the organism itself, or from enzymatic activities 

of its intestinal flora previously reported by Yang et al [99] (2014) as biodegrading PE.  Weber et al [100] 

(2017) disagreed with the methodology and conclusions from the Bombelli et al paper stating that “weight 
loss alone is clearly insufficient to prove the proposed biodegradation of polyethylene”. 

 
Poly(lactic acid) (PLA) is a bio-based thermoplastic that can be processed at similar temperatures to the 

polyolefins, and has the additional advantage that the glass transition temperature is above ambient so the 
materials can take stress at room temperature.  Gross and Kalra [101] (2002) report that even at high 
humidity, it is “uncommon to encounter contamination of high molecular weight PLA by fungi, mold, or 
other microbes”.  In consequence, PLA may need to be composted in municipal facilities.  Tokia and 

Calabia [102] (2006) have reviewed the biodegradability and biodegradation of poly(lactide).  The 
microorganisms considered include the PLA-degrading bacteria Pseudonocardiaceae genera such as 
Amycolatopsis, Lentzea, Kibdelosporangium, Saccharothrix and Streptoalloteichus. 

 

Brueckner et al [103] (2008) treated PET fabrics with cutinase(s) from Thermobifida fusca (GBF Braunschweig) 
and lipases from Thermomyces lanuginosus (Novozymes) and observed formation of novel carboxyl and 

hydroxyl groups after treatment.  A new esterase class of enzymes (PETases) has recently been identified that 
can catalyse the hydrolysis of poly(ethylene terephthalate) [104-107] (Han et al, 2017. Austin et al, 2018. 

Chen et al, 2018. Son et al, 2019).  Although specific to a high-performance (high melting point) thermoplastic 

system, it does indicate that it may be practical to develop similar systems to process unsaturated polyester 
thermoset resin matrices. 

 
Magnin et al [108] (2019) have developed screening strategies to identify enzymes for depolymerisation of 

polyurethanes.  Esterases depolymerise PCL-based thermoplastic polyurethane (TPU).  The combination of 
esterases and amidases was synergistic in the hydrolysis of urethane bonds. 

 

Composites 
 

Gu et al [109] (1996) inoculated pre-sterilised samples of glass/fluorinated polyimide or carbon fibre reinforced 

bismaleimide or epoxy or PEEK to a fungal consortium for five weeks at ~22C and found fungal attack in all 

samples.  Unfortunately, the poor quality of the images in the paper makes it difficult to understand their claim 
of fungal penetration into the glassfibre composite. 

 
Gu et al [110] (1997) exposed samples of epoxy-matrix sandwich panels with glass fibre skins over a 

unidirectional IM6G carbon fibre core to a “mixed culture of Fungi ... enriched from degraded composite 
materials” for up to 179 days and inferred that the Fungi used the resins or fibre sizing chemicals as carbon 

and energy sources.  Scanning electron microscopy indicated fungal colonisation of the composites with 

localised penetration of fungal hyphae into the interior of the composites.  However, mechanical testing was 
limited to interlaminar shear strength (ILSS) tests where “No significant difference of [ILSS] was detected 

between the inoculated and the control composites” although the “resultant fracture indicated that bonding 
strength between fibres and resin was weakened after inoculation with Fungi compared to the [sterile] control. 

 

Tufan et al [111] (2016) conducted decay tests to European standard EN 113 [112] using brown rot Fungi, 
Coniophora puteana (Schumach.: Fr.) P. Karst (Mad-15) and white rot Fungi, Trametes versicolor L.Pilat (Mad-

697) to determine the degradation of the sisal (leaf) with carbon fibre polypropylene matrix hybrid composites.  
Mechanical/thermal properties and biological durability improved with the increasing proportions of carbon 
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fibre in the hybrid composite.  After 16 weeks exposure, the mass loss rate was very limited (<7% for white 
rot and <5% for brown rot) in the hybrid composites. 

 

Terzi et al [113] (2018) studied the decay resistance of composite sandwich panels with woven jute fabric 
skins over a wood particle and short glass fibre core in an unsaturated polyester matrix manufactured by 

VARTM.  The fungal tests used brown rot (Fomitopsis palustris) and white rot (Trametes versicolor) Fungi with 
12 weeks exposure.  The rot Fungi weight losses were <5%, so the hybrid composites were classified as 

“highly resistant” according to ASTM D2017-05(2010) [114].  Mould tests used a mixture of Aspergillus niger 
2.242, Penicillium chyrsogenum PH02 and Trichoderma viride ATCC 20476 Fungi with four weeks exposure.  

The lowest mold growth rates were found in panels without the jute skin. 

 
Conclusion 

 
For the acquisition, modification and disposal of natural fibres and their composites, the use of organisms and 

the associated enzymes offers a promising route to sustainable composites.  This would potentially reduce the 

required energy and use milder reaction conditions.  This paper reviews the use of organisms and enzymes 
for (a) extraction of fibres from plant material (retting), (b) surface modification of fibres, and (c) end-of-life 

treatments, in the context of bast fibres and their composites.  The use of enzyme processes at large scale is 
limited by the extended treatment times, costs of the enzymes and equipment, wastewater treatment and the 

current low level of adoption by industry.  It will be essential to undertake risk assessment before laboratory 
experiments or commercial use of organisms and enzymes to address economic, environmental (including 

escape of organisms into the ecosystem) and health and safety issues.  Further, a quantitative life cycle 

assessment (QLCA) should demonstrate that the chosen route incurs minimal environmental burdens. 
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Table 1: Summary of animals mentioned in this review. 
 

Kingdom Phylum  Class   Order  Family  Type  Genus Species 
 
Animalia Arthropoda  Insecta  Lepidoptera  Pyralidae  Phycitini Plodia  interpunctella 
Animalia Arthropoda  Insecta  Lepidoptera  Pyralidae  Galleriinae Galleria mellonella 
 

 
 

Table 2: Summary of bacteria mentioned in this review. 

 
Kingdom Phylum  Class   Order  Family  Genus  Species 

 
Bacteria Actinobacteria Actinobacteria Actinomycetales Nocardiopsaceae Thermobifida fusca 
Bacteria Actinobacteria Actinobacteria Actinomycetales Pseudonocardiaceae Amycolatopsis 
Bacteria Actinobacteria Actinobacteria Actinomycetales Pseudonocardiaceae Pseudonocardia (Amycolata) 
Bacteria Actinobacteria Actinobacteria Actinomycetales Pseudonocardiaceae Kibdelosporangium 
Bacteria Actinobacteria Actinobacteria Actinomycetales Pseudonocardiaceae Lentzea 
Bacteria Actinobacteria Actinobacteria Actinomycetales Pseudonocardiaceae Saccharothrix 
Bacteria Actinobacteria Actinobacteria Actinomycetales Pseudonocardiaceae Streptoalloteichus 
 
Bacteria Firmicutes  Bacilli   Bacillales  Bacillaceae  Bacillus  mesentericus 
Bacteria Firmicutes  Bacilli   Bacillales  Bacillaceae  Bacillus  subtilis 
Bacteria Firmicutes  Bacilli   Bacillales  Paenibacillaceae Paenibacillus  macerans 
Bacteria Firmicutes  Bacilli   Bacillales  Paenibacillaceae Paenibacillus  polymyxa 
Bacteria Firmicutes  Bacilli   Lactobacillales Lactobacillaceae Lactobacillu 

Bacteria Firmicutes  Bacilli   Lactobacillales Lactobacillaceae Leuconostoc 
Bacteria Firmicutes  Bacilli   Lactobacillales Lactobacillaceae Pediococcus 
 
Bacteria Firmicutes  Clostridia  Clostridiales  Clostridiaceae Clostridium  acetobutylicum 
Bacteria Firmicutes  Clostridia  Clostridiales  Clostridiaceae Clostridium  aurantibutyricum 

Bacteria Firmicutes  Clostridia  Clostridiales  Clostridiaceae Clostridium  felsineum 
Bacteria Firmicutes  Clostridia  Clostridiales  Clostridiaceae Clostridium  tertium 

 
Bacteria Proteobacteria Alphaproteobacteria  Rhizobiales Brucellaceae  Ochrobactrum antrophi 
Bacteria Proteobacteria Betaproteobacteria   Burkholderiales Comamonadaceae Ideonella  sakaiensis 
Bacteria Proteobacteria Gammaproteobacteria  Enterobactrales Enterobacteriaceae Enterobacter  asburiae 
Bacteria Proteobacteria Gammaproteobacteria  Xanthomonadales Xanthomonadaceae Stenotrophomas maltophilia 
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Table 3: Summary of fungi mentioned in this review (taxonomy may be contentious). 

Kingdom Phylum Class   Order Family  Genus Species 

Fungi  Ascomycota Dothideomycetes Capnodiales Davidiellaceae  Cladosporium cladosporioides 
Fungi  Ascomycota Dothideomycetes Capnodiales Davidiellaceae  Cladosporium herbarum 
Fungi  Ascomycota Dothideomycetes Dothideales Dothioraceae  Aureobasidium pullulans 
Fungi  Ascomycota Dothideomycetes Pleosporales Didymellaceae  Phoma 
Fungi  Ascomycota Dothideomycetes Pleosporales Pleosporaceae  Alternaria alternate 
Fungi  Ascomycota Dothideomycetes Pleosporales Pleosporaceae  Epicoccum nigrum 
 
Fungi  Ascomycota Euascomycetes   Hypocreales Hypocreaceae  Trichoderma viride 
 
Fungi  Ascomycota Eurotiomycetes  Eurotiales Pleosporales  Aspergillus niger 
Fungi  Ascomycota Eurotiomycetes  Eurotiales Pleosporales  Aspergillus versicolor 
Fungi  Ascomycota Eurotiomycetes  Eurotiales Trichocomaceae Penicillium chrysogenum 
Fungi  Ascomycota Eurotiomycetes  Eurotiales Trichocomaceae Thermomyces lanuginosus 
 
Fungi  Ascomycota Sordariomycetes  Hypocreales Nectriaceae   Fusarium 
Fungi  Ascomycota Sordariomycetes Ophiostomatales  Ophiostomataceae Ophiostoma floccosum 
Fungi  Ascomycota Sordariomycetes  Sordariales Chaetomiaceae   Chaetomium 
 
Fungi  Basidiomycota Agaricomycetes  Agaricales Schizophyllaceae Schizophyllum commune 
Fungi  Basidiomycota Agaricomycetes  Boletales  Coniophoraceae  Coniophora puteana 
Fungi  Basidiomycota Agaricomycetes  Polyporales Fomitopsidaceae Fomitopsis palustris 
Fungi  Basidiomycota Agaricomycetes  Polyporales Phanerochaetaceae Ceriporiopsis subvermispora 
Fungi  Basidiomycota Agaricomycetes  Polyporales Phanerochaetaceae Phanerochaete chrysosporium 
Fungi  Basidiomycota Agaricomycetes  Polyporales Phanerochaetaceae Phanerochaete sordida 
Fungi  Basidiomycota Agaricomycetes  Polyporales Polyporaceae  Pycnoporus 
Fungi  Basidiomycota Agaricomycetes  Polyporales Polyporaceae  Trametes hirsute 
Fungi  Basidiomycota Agaricomycetes  Polyporales Polyporaceae  Trametes versicolor 
 
Fungi  Zygomycota Zygomycetes  Mucorales Mucoraceae  Absidia 
Fungi  Zygomycota Zygomycetes  Mucorales Mucoraceae   Rhizomucor pusillus 
Fungi  Zygomycota Zygomycetes  Mucorales Mucoraceae   Rhizopus oryzae 
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Table 4:  Enzyme classification 
 

First integer Major class Characteristics 

1 Oxidoreductases Transfer a hydrogen atom or hydride ion (H:−) or act on H2O2 or O2 

2 Transferases Transfer acyl, amino, glycosyl, or phosphoryl groups 
3 Hydrolases Cleave a wide variety of substrates by adding water across a bond 

4 Lyases Cleave carbon-containing groups bound to carbon, nitrogen, or oxygen non-hydrolytically; the products contain one 

more double bond than the reactants 

5 Isomerases Include racemases, epimerases, intramolecular oxidoreductases; intramolecular transferases. 
6 Ligases Mediate ATP- or nucleoside triphosphate-dependent condensation reactions 

7 Translocating enzymes 

(new at end of 2019) 

Moves protons over a membrane: EC 1.9.3.1 at the moment, but will move to EC 7.x.x.x 

 

 

 
Table 5: Enzyme or general type [23] (Boden, 2020) 

 

System Description 

amidase 

esterase 
lyase 

oxidase 

general types (not specific enzymes) describing a commonality of reaction, not a specific substrate. 

Variously hydrolases, oxidoreductases, or group-transferases, 
e.g. oxidase adds an "O" from O2 and produces either H2O or more usually H2O2 as a secondary product. 

cellibiohydrolase about four enzymes in EC. 3.2.1.x 

cutinase sensu stricto EC 3.1.7.4, but also used for two unrelated hydrolases. 
One acts on plastics (EC 3.1.1.101), and one on triacylglycerol lipids (EC 3.1.1.3). 

endoglucanase probably usually means EC 3.2.1.6 but 11 other enzymes have this as a synonym. 

beta-glucosidases (that is now the way it is styled, usually) are about a dozen enzymes, all now with got specific names. 

hemicelluloase refers probably to EC 3.1.1.73 but do check the reaction. No other enzymes have hemicellulose listed as a substrate 

keratinase numerous keratinase producing micro-organisms [24] (Srivastava et al, 2020) 

laccase a single enzyme, EC 1.10.3.2. 

lignase a colloquialism for "stuff that acts on lignin", not a real single enzyme, 
e.g. lignin peroxidases or EC 3.1.1.73 which has some activity with lignin. 

lipase 27 thereof, now per beta-glucosidases and endoglucanases above - split up with specific names for easier specific identification. 

pectinase 4 of these, again, each with a specific functional name now. 

xylanase a bunch with specific function names but EC 3.1.1.73 (above) has some xylanase activity too and could mean that. 
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Table 6:  Process conditions for biological action on bast fibres or polymers (pressures not specified and assumed ambient unless stated) 
 

Organism/enzyme Substrate Temperature Environment/pH Reference Notes 

     Retting 

Aspergillus niger flax (Ariane) 27°C for 6.5 h 
40°C for 22 h 

pH 5.0 Zhang et al, 
2000 [37]. 

retting 

Aspergillus niger PGase 

Rhizopus PGase 
Viscozyme L 

flax (Ariane) 40°C for 20 h pH 5.0 Evans et al, 

2002 [38]. 

retting 

Pectate lyase 
Viscozyme L 

Flax (Ariane, Hermes, 
Omega, York) 

50°C for 1 h 
40°C for 24 h 

pH 8.74 
pH 5 

Akin et al, 
2007 [40]. 

retting 

Amycolata (Pseudonocardia)  
pectate lyase 

ramie “room” for 15h pH 7 Bruhlmann et 

al, 2000 [41]. 

degumming 

Bacillus sp. PGase Ramie and sunn hemp 50°C for 12 h 
60°C for 11 h 

pH 10.0 Kapoor et al, 
2001 [32]. 

degumming 

Bacillus sp alkalophilic bacteria ramie 37°C for 24–48 h pH 10.0 Zheng et al, 
2001 [50]. 

degumming 

Trametes hirsuta flax 37°C for 4 h pH 4.5 Acero et al, 

2014 [83]. 

surface treatment 

Trametes versicolor wheat 30°C for 40 days  Zhang et al, 
2008a [55]. 

retting 

Ochrobactrum anthropi 
Stenotrophomnas maltophilia 

hemp 28°C for 36-48 h  Zhang et al 
2008b [56]. 

retting 

Clostridium felsineum 
Bacillus subtilis. 

hemp (Tiborszallasi) 35°C for 3 days  Sisti et al, 2016 

[57]. 

retting 

18 filamentous fungi (unspecified) plant fibres 30-37ºC for 3 days pH 7.0 Molina et al, 
2001 [63]. 

degumming 

field environment hemp ambient outdoors ambient outdoors Booth et al, 
2004 [64]. 

retting 

0.05% Viscozyme L  

plus 1.8% Mayoquest 200 

flax 40ºC for up to 24h pH 5.0 Akin et al, 

2003 [73]. 

retting 

Various enzymes flax 25-60ºC pH 3.5-9 Foulk et al, 
2008 [75]. 

retting 

PL-BRI bacterial pectinolytic enzyme 

 with lyase activity (E.C.4.2.2.2) 

flax 42ºC up to 46 h pH 8.5 Foulk et al, 

2011 [76]. 

retting 

Texazym SER-3 and SER-4 flax Sprayed in field  Antonov et al, 

2007 [77]. 

retting 
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     Surface modification 

White rot fungi / extracellular 
oxidases enzymes 

plant-based natural fibre 27ºC for 2 weeks  Kabir et al, 
2012 [78]. 

surface modification 

Viscozyme, Ultrazyme or Denilite, 

then Cellusoft L/UL 

jute 40-60ºC for  

72 h then 1-4 h 

neutral or pH 8.0 Kamiko et al, 

2002 [80]. 

degumming 

Scourzyme L 

pectate lyase (EC 4.2.2.2), 

hemp 55°C up to 24 h pH 8.5 Ouajai and 

Shanks, 2005 

[81]. 

bioscouring 

white rot fungi (Phanerochaete 
chrysosporium and Ceriporiopsis 
subvermispora), cellulase enzyme, 

mixed enzymes (cellulase, xylanases, 

and pectinases) 

jute 40°C for 90 min pH 5.0-5.5 Jayapriya and  

Vigneswaran, 
2010 [82]. 

biosoftening 

Trametes hirsute laccase (EC 10.3.2) flax (and coconut) 37°C for 3 h pH 4.5 Acero et al, 

2014 [83]. 

surface 

 functionalisation 

Trametes hirsuta flax 37°C for 4 h pH 4.5 Acero et al, 
2014 [83]. 

surface treatment 

     End-of-life 

Galleria mellonella 
wax moth caterpillars 

poly(ethylene) film ambient  Bombelli et al, 
2017 [98]. 

degradation  

Enterobacter asburiae YT1 and 

baciilus sp. YP1 from Plodia 
interpunctella larvae guts 

poly(ethylene) film 30°C and 85% RH 

for 28 days 

 Yang et al, 

2014 [99]. 

degradation 

Cutinase from Thermobifida fusca 

lipase from Thermomyces 
lanuginosus 

InoTEX PAT fabrics 37 or 60°C for 120 h pH 7 or alkaline Brueckner et 

al, 2008 [103]. 

degradation 

PET hydrolase (cutinase-like enzyme 

from Ideonella sakaiensis 201-F6 

poly ethylene 

terephthalate film 

30°C for 42 h pH 9.0 Han et al, 2017 

[104]. 

degradation 

Ideonella sakaiensis PETase or 

engineered enzyme S238F/W159H 

poly ethylene 

terephthalate film 

30°C for 96 h pH 7.2 Austin et al, 

2018 [105]. 

degradation 

Ideonella sakaiensis PETase or 
Thermobifida fusca DSM43793 

cutinase 2 (TfCUT2) 

poly ethylene 
terephthalate 

30-70°C for 18-72 h  Son et al, 2019 
[107]. 

degradation 

esterase (E3576) and 
amidase (E4143) mix 

PCL-based PU 37°C for 40 h pH 7 Magnin et al, 
2019 [108]. 

degradation 

Aspergillus versicolor, 
Cladosporium cladosporioides, 

carbon/bismaleimide, 

carbon/epoxy, 

222°C for 5 weeks 

in a dark room 

 Gu et al, 1996 

[109]. 

degradation 
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Chaetomium spp. carbon/PEEK, 

glass/ 
   fluorinated polyimide. 

“previously isolated fungal 
consortium in .. a malt broth 

medium” [Gu et al, 1996] 

glass surface, carbon- or 
graphite-fibre core 

reinforced epoxy 

sandwich 

30 days  Gu et al, 1997 
[110]. 

degradation 

white rot: Trametes versicolor L. 

    Pilat (Mad.=-697) 

brown rot: Coniophora puteana 
    (Schumach.: Fr) P.karst (mad-15) 

Sisal carbon hybrid 

poly(propylene) 

composites 

242°C and 75% RH 

for 16 weeks 

 Tufan et al, 

2016 [111]. 

degradation 

brown-rot fungus: 
   Fomitopsis palustris 
white-rot fungus: 

   Trametes (Coriolus) versicolor 

 26 °C and 65% RH  Terzi et al, 
2018 [113]. 

degradation 

     Table ends 
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