
Journal of Information Security and Applications 54 (2020) 102555

Contents lists available at ScienceDirect

Journal of Information Security and Applications

journal homepage: www.elsevier.com/locate/jisa

Digital forensics cloud log unification: Implementing CADF in Apache

CloudStack

Nikolaos Dalezios, Stavros Shiaeles ∗, Nicholas Kolokotronis, Bogdan Ghita

School of Computing, Faculty of Technology, University of Portsmouth, Buckingham Building, Portsmouth, Hampshire, PO1 3HF, United Kingdom

a r t i c l e i n f o

Keywords:

Cloud computing

Computer crime

Forensics

Cloud Auditing Data Federation

CADF

CloudStack

a b s t r a c t

Cloud computing is an important step in our era, delivering many advantages in business and our daily

life. However, as every new technology, various challenges are brought into light with one of them being

the misuse of Cloud computing environments for criminal activities. As such, Cloud service providers

have to establish adequate forensic capabilities in order to support forensics investigations in the event

of illegal activities in the cloud. In order to help forensics investigations, this paper deals with log format

unification in cloud platforms using Distributed Management Task Force’s (DMTF) Cloud Auditing Data

Federation (CADF) standard. CADF event logging is utilised in the widely used OpenStack, and we have

modified the Apache CloudStack platform to become forensically sound. Furthermore, we investigated the

existing CloudStack platform along with the proposed CADF event model implemented, with regards to

the principles of the Association of Chief Police Officers (ACPO) on handling digital evidence. The results

are provided in this paper as well as an automated parsing tool/CADF event consumer, named C.Lo.D,

which is freely available and can be downloaded from Github.

© 2020 Elsevier Ltd. All rights reserved.

1

o

e

l

p

a

o

A

m

t

c

t

c

w

t

a

u

2

b

a

f

i

d

t

c

a

t

a

o

e

u

t

t

w

h

2

. Introduction

THE uprising needs to reduce service costs, the integration

f services between non-portable and portable devices and the

ver-increasing demands on storage and computing power have

ed companies to cloud computing systems. The volume of the

rocessing procedure is transferred to the cloud, making it imper-

tive to define processes of forensic analysis but also to solve the

pen challenges/limitations of forensics in this new environment.

s Dykstra [1] noted, crime heads to where people, data and

oney are gathered.

In the era of Big Data, Virtualization and Cloud Computing,

he volume of information stored are disproportionately large

oncerning the speed of transfer. The process of acquisition during

he investigation for digital evidence is the most decisive for its

ourse since it will provide the investigator with the subject on

hich he/she will perform the forensic analysis. Limitations set by

he volume of data are time, cost, and validity.

Cybercrime and Internet cannot be seen in isolation from one

nother. More specifically, the Internet, depending on how it is
∗ Corresponding author.

E-mail address: stavros.shiaeles@port.ac.uk (S. Shiaeles).

a

j

f

m

ttps://doi.org/10.1016/j.jisa.2020.102555

214-2126/© 2020 Elsevier Ltd. All rights reserved.
sed by malicious users, divides cybercrime into 1) cyber-assisted,

) cyber-enabled, 3) cyber-dependent.

Cybercriminals enjoy the same benefits of cloud usage with

usinesses. Increased computing power, increased capacity, energy

nd cost savings, anonymity and elasticity are just some of the

eatures that malicious users can take advantage of, thus expand-

ng their capabilities and goals. The creation and use of botnets,

ata-mining, crypto-mining and Command-n-Control (CnC) cen-

res are now easier than ever. However, apart from the tools of

riminals, the range of targets is also significantly increased. Once

 customer decides to use the cloud services, he/she has to accept

hat his/her data are no longer available only for him/her or in

 particular location. When the Internet of Things (IoT)/Internet

f Anything (IoA) factor is added to the above equation, where

ach device can connect and communicate with a network – often

sing the cloud infrastructure – then, the targets (in number) and

he complexity of attacks skyrocket [2] .

A significant motivation for cloud usage in cybercrime is also

he lack of tools and procedures of forensic analysis combined

ith open issues [3,4] . Many times, criminals do not even need

nti-forensics, as long as they use any infrastructure outside the

udicial and administrative jurisdiction of the authorities as a basis

or any malicious energy.

A system’s log files are a critical component for debugging and

onitoring its operation and current status. During a forensic in-

https://doi.org/10.1016/j.jisa.2020.102555
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jisa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jisa.2020.102555&domain=pdf
mailto:stavros.shiaeles@port.ac.uk
https://doi.org/10.1016/j.jisa.2020.102555

2 N. Dalezios, S. Shiaeles and N. Kolokotronis et al. / Journal of Information Security and Applications 54 (2020) 102555

Table 1

7W’s of audit.

W Description

What What was the action and what was its result

When When did the event take place

Who Who triggered the event

From Where From where was the event triggered

On What What was the target of the action

Where Who observed and reported the event

To Where Where is the target located

t

S

u

S

t

p

p

t

a

w

t

a

O

t

B

S

a

p

i

e

t

f

t

r

U

a

f

v

M

a

i

t

t

o

c

D

p

t

7

o

t

n

t

o

a

1 http://uw714doc.sco.com/en/UDI _ spec/m _ mgmt.html .
2 http://cee.mitre.org/language/1.0-beta1/cls.html .
vestigation, these files may contain important information related

to the investigated incident. They are one of the key "witnesses"

of what was happening to a system at a specific time.

It is generally accepted that the process of e-discovery, col-

lection and analysis of digital evidence in cloud environments

differs from that in-home/corporate computing systems as it is a

cross-discipline of cloud computing and digital forensics [5] . The

difference lies in the absence of tools, procedures but mainly in

the case of the possible geographical dispersion of the system un-

der investigation. Non-physical access to a system requires specific,

technical and legal, conditions of remote access to be provided. At

this point, questions are raised about ensuring the integrity of data.

In cloud environments where the amount of information of log

files is enormous, useful information may not be easily located.

Moreover, cloud-related issues such as fragmentation, geographical

dispersion and different implementations make it difficult to

identify useful information.

This paper investigates how the Cloud Auditing Data Federation

(CADF) event model could be implemented in Apache CloudStack,

whether the existing model is improved, and what test case

scenarios could be considered.

The rest of this paper is structured as follows: Section II pro-

vides a literature review of recent studies on auditing and cloud

forensics, Section III studies CloudStack’s current event model and

Section IV proposes DMTF’s CADF event model. Section V presents

the implementation, testing and validation of CADF for CloudStack.

In Section VI discussion raises issues and suggestions regarding

implementation and Section VII is examining CADF’s compliance

to ACPO principles. Section VIII presents a CADF log parsing tool.

Finally, in Section IX, conclusions of this paper are presented, and

in Section X, future directions are outlined.

2. Background

2.1. Related work

The issue of cloud log format unification was identified by

Simou as part of the examination stage [6] while the first official

and comprehensive attempt to collect all open issues in cloud

forensics was held on behalf of NIST in 2014 [3] . A new study, in

2015, highlighted the reliance on the availability and type of log

files on the Cloud service provider [7] . In particular, in Software as

a Service (SaaS) and Platform as a Service (PaaS) models, it is the

sole responsibility of the provider to make log files available with-

out giving any assurance about the integrity of the deliverables and

whether they can be accepted by the judicial authorities or not.

In 2011, while studying the Eucalyptus cloud platform, the

interaction of its components was recorded in logs. This detected

a Distributed Denial of Service (DDoS) attack that started through

the cloud being examined [8] . The same year, Birk and Wegener

were the first to suggest the use of a read-only API to enable

cloud customer to download data from it and offer them to the

investigators [9] .

According to [10,11] , due to the heterogeneous nature of cloud

log files, at least 1) When the event is logged, 2) What is logged

precisely, 3) Which is the format of logging, should be specified.

Timestamp, Application, User, Session id, Severity, Reason and

Categorization are defined as minimum components of logging

following the “key-value” format.

In research regarding ACPO guidelines and Cloud Forensics [12] ,

the impact and issues during a digital investigation on the cloud

while trying to apply the four principles were presented. Method-

ology differs accordingly to the deployment model (private, public,

hybrid, community). In a private cloud, data stores are accessible

and in known locations – by authorized personnel. The organiza-

tion’s staff can also be familiar with the auditing procedure. On
he other hand, public clouds are owned and managed by a Cloud

ervice Provider (CSP) in a way that clients have no clue about the

nderlying infrastructure.

As it has been already pointed out [13] , in Infrastructure as a

ervice (IaaS) model, the client is responsible for the investiga-

ions – except for exceptional cases. This paper disagrees with this

oint. A CSP must actively assist and be part of the investigative

rocess. CSP will be benefited in general more than the client if

he investigation is successful and the case is closed. In case of

n incident, it is likely that a vulnerability on the CSP’s platform

as exploited and sensitive data may have breached out. Often,

he consequences of such cases can harm the corporate reputation

nd business activity of the CSP.

A different approach was attempted in 2015, suggesting the

pen Cloud Forensics (OCF) model [11] . There are four entities in

he OCF model - user, CSP, investigator and judicial authorities.

ased on this, every access to the cloud produces Electronically

tored Information (ESI), a thing that is not acceptable to the legal

uthorities. In order to be accepted, the CSP must follow a specific

rocedure to render it valid to the judicial authorities. This process

s continuous (Continuous Forensics Process). Although it does not

xplicitly refer to log files, the core idea includes them, as long as

hey belong to data that the CSP must validate.

P ̆atra ̧s cu and Valeriu Patriciu presented in 2015 a forensics

ramework that can be integrated into existing cloud infrastruc-

ures as well as into new ones. After comparing two forms of

epresenting the event data, “Management Metalanguage” by

nixWare 1 and Common Event Expression (CEE) Language, 2 they

greed on a combination of both. In this way, they leveraged the

unctionality of Management Language with the help of JSON data

isualization [14] . Then, they divided the cloud architecture into

anagement and Virtualization. At the management level, they

dded a Cloud Forensics Module that assumes to log data from the

nteraction of the cloud components. At the level of virtualization,

hey suggested using Cloud Forensics Interface to collect data from

he virtual machines internal. This suggestion - at least in terms

f management - reminds strongly of the logic of a telemetry

omponent. Their idea was applied only to KVM hypervisors.

ata that can be collected are well above the log files since it is

ossible to download virtual disks and memory dumps.

In 2015, DMTF defined the seven essential questions that need

o be answered in order to fully describe an event, known as the

W’s of audit [15] (see Table 1).

Kumar Raju and Geethakumari studied in 2016, the possibility

f correlating information contained in log files from the perspec-

ive of the forensic investigator on the OpenStack platform [16] . A

ormalization process was applied to log files in order to resolve

he problem of common and single format temporarily. Correlation

f information was made on log files either from homogeneous

rtefacts or heterogeneous.

http://uw714doc.sco.com/en/UDI_spec/m_mgmt.html
http://cee.mitre.org/language/1.0-beta1/cls.html

N. Dalezios, S. Shiaeles and N. Kolokotronis et al. / Journal of Information Security and Applications 54 (2020) 102555 3

Table 2

Logging formats.

Format Type Proposed by Year Status

CBE Proprietary IBM, Cisco 2003 Dead

CIM Open DMTF 2005 Alive

CEF Proprietary ArcSight 2006 Alive

CEE Open MITRE 2007 Dead

OLF Proprietary elQNetworks 2007 Dead

WELF Proprietary WebTrends 2008 Alive

LEEF Proprietary Q1 Labs 2013 Alive

CADF Open DMTF 2015 Alive

a

m

a

f

i

o

i

c

c

t

a

t

c

t

t

s

v

v

S

m

i

2

i

d

c

A

s

o

a

w

e

b

s

b

i

g

t

o

s

i

a

p

n

a

i

n

v

c

o

c

m

h

2

a

w

a

t

b

w

c

c

a

m

f

i

t

a

c

l

a

l

i

w

s

c

n

i

c

a

w

r

t

p

f

t

a

w

W

(

c

o

f

a

C

f

b

3 http://www.sendmail.org/ .
Sekhar and Murali again raised the issue of trust in the CSP by

pplying a Secure Logging Services system. Based on the homo-

orphic encryption of log file records, they protect them against

ny possible alteration [17] . This can come either from the CSP or

rom an attacker who has gained access to the CSP and the cloud

nternals.

The same year, a study proposed a safe logging approach based

n data collection and display by combining three algorithms [18] :

1. SystemInit – performed on CSP and produced the necessary

components for encryption.

2. KeyGen - performed by the user and produces a type of digital

signature.

3. SecLogging - It combines the results of the above two algo-

rithms and encrypts log blocks instead of log entries.

In 2017, the need to establish a single mechanism for collect-

ng log files was identified since existing solutions either do not

over the different cloud models (IaaS, PaaS, SaaS) or do not over-

ome the obstacles of locating, reviewing and correlating informa-

ion in them [19] . The most comprehensive solution was the CADF

pproach, but two issues emerged. The first issue was related to

he absence of use cases and tests to demonstrate whether data

ollected on the basis of CADF are enough to conduct an investiga-

ion or not. The second one was the existence of too much data in

he log files, a fact that makes research difficult.

The problem of integrating log files has re-emerged in the case

tudy of 3 different storage service providers (Cloud Storage Ser-

ice Provider), that is Amazon Web Services Simple Storage Ser-

ice (AWSS3), Google Cloud Platform Storage and Microsoft Azure

torage [20] . The solution suggested is the use of a single for-

at/structure in the log files. This occurs as a result of the follow-

ng three steps: 1) Collection of log files from different providers,

) Check for duplicates in the log files, 3) Conversion and normal-

zation to the desired format. The logic followed refers to the one

eveloped by CADF standard.

In 2018, a paper was presented on the detailed examination of

loud logging mechanisms to facilitate forensic investigation [21] .

t the same time, CADF standard was implemented for CloudStack

ystem. Penetration tests were then performed to verify the proper

peration of this application, but only a Replay Attack type was

ble to be captured. The reason for this is that the implementation

as only obtaining the API calls instead of examining each event

xplicitly.

The need for event logging is imperative for all sorts of projects,

e it simple scripts of a few tens of lines of code or large-

cale projects. However, the most important issue is What will

e logged, How it will be presented, in Which format, Where and

n How it will be stored. Various log file formats have been sug-

ested and used by organizations and companies from time to

ime. Gagliardi Rocco, in his article on a corporate blog, lists some

f the most crucial Logging formats [22] .

It is indicative that from 2003 and onwards CIM and CADF

tand out among the open logging standards (see Table 2).
Both are DMTF’s work, but there are no other similarities. CIM

s a standard for describing software and hardware features in

 single way for different manufacturers. Different manufacturer

roducts can be described using common fields such as device

ame, serial number, model etc. [23] . CADF is thoroughly studied

t a later stage of this paper.

Until now (2019), the most widely accepted logging standard

s syslog, as described in RFC 5424. It is implemented with mi-

or variations from various operating systems. Although it was de-

eloped in 1983 as part of the “sendmail” project, 3 it was offi-

ially established as a standard in March 2009 [24] . The majority

f tasks performed by modern operating systems and their appli-

ations, use syslog format in log files. The main fields of the syslog

essage are the facility code, severity level, process ID, timestamp,

ostname and IP address of the resource logging the event.

.2. Cloud auditing and forensics

Cloud Auditing is a continuous process designed to measure

nd provides CSPs with data on the performance and compliance

ith the safety requirements of their services. These are metrics

nd statistics that enable CSPs to monitor and continually improve

heir service and safety level. Cloud Auditing is usually conducted

y a third entity if there is no dedicated team or department

ithin the organization. Auditor undertakes to complete the pro-

ess in stages, depending on the entity’s strategy, the provider’s

hecking over the safety of communications, system management

nd upgrades, data management, risk management and incident

anagement and response. However, it is important to note the

act that many times in favor of the provider’s Management, audit-

ng focuses on the performance of system services rather than on

he accurate presentation of what exactly is happening in systems

t a technical level. Auditing should include management, techni-

al staff and infrastructures [25] . It needs to be extended at all

evels (from Hardware, Host OS and Virtualization Software, etc.)

s well as in all development models (private, community, pub-

ic and hybrid). Customers of cloud providers take access to audit-

ng and monitoring data for granted. Customers will trust providers

ith their corporate and personal data and therefore, they require

pecific safeguards. Cloud Auditing is about audit procedures that

an be expanded vertically in the organizational chart of an orga-

ization as well as across its entire infrastructure. However, it is

mperative in particular for each department concerned to use a

ommon language and toolbox. Actually, as Konoor points out [26] ,

ny operation in the infrastructure must be performed in such a

ay that it provides relevant information for future analysis and

eview.

Underlying cloud architecture is not friendly to forensics. De-

ection and analysis of any event require the use of quick tools but

rimarily of tools able to limit the scope of the investigation. Cloud

orensics tools have to face multiple challenges [3] . When it comes

o log files, in particular, there is a difficulty in terms of the criteria

ccording to which it will be determined which logs are useful and

hich can be used. Furthermore, there is no specific standard for

HAT will be logged by the CSP. Regardless of the service model

IaaS, PaaS, SaaS) data that are valuable to the investigator of a

loud incident are not on the customer’s side. On customer’s side

nly temporary files, cookies and session information files can be

ound. These do not provide enough information to associate an

ctivity with more than 3 out of 7 Ws. We see that analysis on the

SP’s side is the only way. Taking the trust to the provider’s entity

or granted, a tool and therefore, the investigator himself, should

e able to ask the provider for specific data based on criteria. Re-

http://www.sendmail.org/

4 N. Dalezios, S. Shiaeles and N. Kolokotronis et al. / Journal of Information Security and Applications 54 (2020) 102555

Fig. 1. CloudStack current event logging model.

Table 3

7W’s and EventVO.

Question CloudStack EventVO fields

What Description

When createDate

Who uuid, userId

FromWhere no information available

OnWhat Description

Where no information available

ToWhere no information available

i

a

i

t

“

e

b

i

e

i

4

r

i

c

t

r

m

t

t

s

t

e

a
ceiving them requires a secure communication channel, and their

processing requires respecting the privacy of other users. The an-

swer to the issues above is called Web API and API Endpoints. The

provision of these interfaces is now available by default on every

cloud platform. In a forensic investigation, it is necessary to min-

imize CSP’s involvement. In practice, it depends on the cloud de-

ployment model, the owner of the hardware infrastructure and the

type of cloud platforms (proprietary or open-source). However, the

use of open standards, such as the CADF, may minimize the CSP’s

possibilities to interfere in the log files.

Naaz and Ahmad studied the possibilities and limitations of

FROST and UFED Cloud Analyzer tools [27] , whereas a study of

researchers was published the same year describing the experi-

ences and difficulties encountered in developing three cloud foren-

sics tools for the SaaS model [28] . These tools are kumodd, kumod-

ocs and kumofs.

Simou pointed that due to the lack of cloud forensics tools, in-

vestigators use existing software solutions [4] . They either examine

acquired files with them, considering as reliable by default, or they

try to perform a remote analysis. However, the tools that enable

remote analysis have not been tested and certified regarding the

appropriateness and preservation of data integrity and thus do not

provide any assurance that they will be accepted by the judicial

authorities.

Finally, there are also custom cloud-based solutions applied by

organizations for inside use. Netflix is one such case [29] . These

solutions are proprietary and are not available to the general pub-

lic, or they are commercial products, or at best they fall into Free

and Open Source (FOSS) category.

The NIST Institute applies a process for the assessment of foren-

sics tools. This assessment includes a series of tests called Com-

puter Forensic Tool Testing (CFTT) and produces results in the

form of reports (CFTT Reports). This creates a list of NIST-approved

tools 4 for disk imaging, file carving, email parsing, etc. Approval

of tools plays a significant role in the acceptance of the tool’s re-

sults by the judicial authorities. Investigators clearly prefer the use

of tools approved by NIST. However, the search in cloud forensics

tools list illuminates the scarcity in this field. Only six tools are

related to cloud forensics:

1. Belkasoft Evidence Center

2. Elcomsoft Cloud Explorer

3. Elcomsoft Phone Breaker

4. Internet Evidence Finder

5. Magnet AXIOM

6. UFED Cloud Analyzer

3. Current model

At a structural level, CloudStack consists of a number of sub-

projects. CloudStack events are divided into three categories, 1) Ac-

tion events, 2) Usage events, 3) Alerts. They are also divided into

1) Standard events, 2) Long running job events. Finally, events are

categorized as 1) Synchronous events, 2) Asynchronous/Scheduled

events. Inside the API subproject, 352 different Action events are

defined.

Event logging in CloudStack is performed on the cloud-server

package, which is the core of the management server. The follow-

ing operations take place (see Fig. 1):

1. The API call is redirected as a web request.

2. Checks are performed on the request.

3. API call’s key parameters are stored.

4. The request is forwarded to the corresponding entity.
4 https://toolcatalog.nist.gov/ .

v

t

s

5. Entity executes the action and creates a response with the re-

sults.

6. Event is logged

The built-in class that is responsible for describing the events

n CloudStack is EventVO . Fields named type, state, description, cre-

teDate and userId provide essential information that can be used

n forensic investigation. Field “type” contains a string representing

he resource that relates to action along with the response. Field

description” is a string and information merger, different for each

vent, so it does not have a specific structure in order to be parsed

y automated tools.

According to Table 3 , it is clear that no information is stored

n the event concerning the geographical location, e-mail address,

xact resource’s physical and logical address, platform and system

nformation that triggered the event.

. Proposed model

DMTF’s CADF event model [30] is a model to represent events

elated to the cloud. In a cloud infrastructure, all the resources

nteract with each other and exchange data. This exchange must

omply with specific rules and regulations. CADF explicitly defines

he term event. CADF classifies events based on the type of event,

egardless of the cloud component, cloud application or deploy-

ent model. Valid event types are 1) monitor, 2) activity, 3) con-

rol. Monitor events provide information about the status or at-

ributes of a resource. Activity events are events initiated by a re-

ource against another resource. Control events contain informa-

ion about the application of a policy. Depending on the type of

vent, some fields differ, but the core components for each event

re standard (see Table 4). CADF collects data (see Table 5) from

arious cloud layers without exposing though any information or

echnical details about the underlying infrastructure. Observer re-

ource is constantly monitoring every resource, including itself.

https://toolcatalog.nist.gov/

N. Dalezios, S. Shiaeles and N. Kolokotronis et al. / Journal of Information Security and Applications 54 (2020) 102555 5

Table 4

Required CADF components.

Component Description

OBSERVER The Resource that generates the event record based on its observation of the actual event

INITIATOR The Resource that initiated the event’s Action

ACTION The operation or activity the Initiator attempted to or performed against Target

TARGET The Resource against which Action was performed

OUTCOME The result of the status of the Action against Target

Table 5

CADF event fields.

Field Description

typeURI Definition of the event model’s version and name

Id Event’s id

eventType Type of Event

eventTime The timestamp of the event as noted by the OBSERVER

Action The action performed against TARGET

Outcome The outcome of ACTION

Initiator The resource that performed the Action

Initiatorid INITIATOR’s id

Target The resource against who action was performed

Targetid TARGET ‘s id

Observer Resource monitoring other resources and logging events

Observerid OBSERVER’s id

Measurements Measurements and statistics regarding the Event

Reason More information about the OUTCOME

Name The descriptive name for the event

Severity The severity of the Event – used only by OBSERVER

Duration ACTION’s duration

Tags Tags for storing extra information

Attachments Extra information for an event

Reporterchain Information on the reporting chain of the event

Table 6

7W’s and CADF.

W CADF component

What EventType, ACTION, OUTCOME

When REPORTER

Who INITIATOR

FromWhere INITIATOR

On What TARGET

Where OBSERVER

To Where TARGET

p

o

O

t

c

(

t

5

o

C

p

C

fi

r

s

p

Fig. 2. CloudStack proposed event logging model.

Table 7

Target and action extraction from EventVO.type.

EventVO.type Target Resource Action

VM.CREATE VM CREATE

ROLE.PERMISSION.CREATE ROLE.PERMISSION CREATE

K

c

e

d

o

t

Resource entity is classified into taxonomies [30] (Storage, Com-

ute, Network, Data, Service, System, Unknown). Top-level tax-

nomies are also divided into secondary categories. Action and

utcome entities are also classified into Taxonomies.

CADF’s goal is to provide all the resource-related information

o investigators and system auditors in order to assist in tracking

ertain activities. It is described as the Crime Scene Investigation

CSI) for Clouds [31] . In particular, the model is designed to have

he ability to answer all the 7 W’s of forensics [15,32] (see Table 6).

. Implementation

Three top-level classes were created during the implementation

f the CADF Event model, 1) Cadf, 2) Resource, 3) Taxonomy. The

ADF mechanism is implemented in the subproject cloud-server , as

art of the management server (see Fig. 2).

Cadf class provides properties and methods for describing a

ADF event based on the CloudStack event(EventVO). Cadf class

elds typeURI, eventType, action, outcome, eventTime, measurement,

eason, observer, initiator and target are defined. Class structure is

imilar to CADF model (see Table 4) so that serialization can be

erformed on each object in JSON format and be logged in a file.
ey operations are applied to match CloudStack entities to CADF

ompliant model.

We tampered ActionEventUtils class, where generic CloudStack

vents are captured and performed the following operation in or-

er to implement our mechanism without modifying the existing

ne:

1. When a generic CloudStack event occurs (ActionEventUtils class),

a method is called (createCadfRecord()) with an EventVO object

as argument. This method creates a Cadf object and stores it to

a logger object

2. Cadf object is created by using as an argument in its con-

structor the generic CloudStack event object in order to extract

all the information without making any changes to the actual

event source code. Every object is a single event.

3. A check on the Cadf’s mandatory fields is performed based on

eventType field

4. Cadf object is converted into JSON representation with Google’s

Gson library (https://github.com/google/gson)

5. JSON representation of the object is logged

Inside Cadf’s constructor, we collect all the necessary informa-

ion and match all CloudStack and CADF entities accordingly:

1. Cadf class constructor’s parameter is the generic CloudStack

event object (EventVO). The class field typeURI is set in order

to declare this event as a event.

2. CADF’s Action and Target are extracted from EventVO.type

property (see Table 7). A function (setCADFAction()) performs

pattern matching against hashmaps to match the CloudStack

https://github.com/google/gson

6 N. Dalezios, S. Shiaeles and N. Kolokotronis et al. / Journal of Information Security and Applications 54 (2020) 102555

p

s

fi

T

5

i

c

a

t

n

t

w

“

t

w

a

C

6

6

s

p

g

C

l

w

i

t

T

m

e

o

c

p

H

s

e

h

t

a

6

C

c

d

6 https://github.com/apache/cloudstack-cloudmonkey .
event action with a corresponding CADF Action. Cadf class field

action is set. The hashmap table is implemented in Taxonomy

class.

3. A function (getCADFResourceName()) matches the extracted tar-

get property against a hashmap (Taxonomy class) with CADF

standard resource names. Target Resource object is created (Re-

source class) based on this matching.

4. Cadf class field eventType is set based on the action class field.

This is important, as for different types of events (eventType

field) the mandatory fields of the record also differ.

5. A function (mapEventStateToCADFTaxonomy()) sets the Cadf class

field’s outcome value based on a matching between generic

CloudStack’s event state property (Taxonomy class)

6. Cadf class field eventTime is set on a UTC format

7. Cadf class field Initiator is created (Resource class)

8. Cadf class field Observer is created (Resource class)

9. Additional information related to the event is collected – cur-

rently the initiator host, user agent, userid, and account name

are gathered, but these can be extended in a future work

CADF has been created to cover any kind of event for any plat-

form. Some platforms use a specific resource for monitoring and

another for management, but CloudStack does not offer this option.

Furthermore, this implementation refers only to events that re-

sulted from a user action. For this reason, there is a manual assign-

ment to Initiator. Some additional information is being collected on

the Management Server through a list of values added to CADF as

custom fields, such as initiator_userid and initiator_csAccountName

which particularly refer to CloudStack. Other fields are the Initia-

tor’s IP address, user-agent, platform etc.

Resource class implements properties and functionality of the

resource. A resource is used to represent entities of a CADF event.

Initiator, Observer and Target are Resource objects. In order to de-

scribe a Resource, there are mandatory properties such as typeURI,

id, name, domain, credential, addresses, host, geolocation, attach-

ments . Entities depending on the Resource, such as Host, are de-

fined as subclasses.

Taxonomy class is auxiliary. It contains the enumerations of var-

ious fields of the CADF and Resource classes, such as e ventType,

Action and Outcome . It also contains the string constants about

the taxonomy-related Reason fields as well the string constants

for each type of resource supported by CADF. However, the most

important operation of Taxonomy class is the creation of match-

ing lists among entities of CloudStack and CADF. Matching Cloud-

Stack’s resources and actions with corresponding CADF-compliant

entities requires an understanding of each CloudStack event (352

total events). Events that could not be matched were defined as

“unknown ”. In Taxonomy class 3 hashmap structures were created

in order to match related entities

1. CstoCadfResourceMapping for Resource matching

2. EventActionToTypeMapping for Action matching

3. EventResourcetoUuidMapping for unique UUID assignment

Additionally, some property files were configured

(build/replace.properties and client/conf/log4j-cloud.xml.in) so that

our mechanism logs event records in a separate file.

Apache CloudStack 4.11 was forked from the original project to

a branch named “cadf_events ”. This implementation is available for

download and testing. 5

5.1. Testing

Testing the functionality of the CADF model was performed in

3 ways:
5 https://github.com/ndalezios/cloudstack/tree/cadf _ events .
1 CloudStack’s web interface

2 CloudMonkey CLI 6

3 DevCloud 4 testing environment and marvin scripts (deployDat-

aCenter.py)

After committing this implementation, a pull request was

laced in CloudStack’s main repository with ID #3232. Pull request

tatus. 7 A tool presented in Section 8 makes use of testing’s output

le containing all the events produced during the testing phase.

he dataset is also available. 8

.2. Validation

All the changes made do not affect CloudStack’s functional-

ty. All the existing tests (mvn tests while constructed) were suc-

essfully passed along with the automated validation checks that

re performed after a pull request. Some Cloudstack commit-

ers reviewed our proposal and commented suggestions for mi-

or organizational issues which were addressed and fixed. Addi-

ional changes were made, and this pull request is now marked

ith GitHub labels “component:logging”, “type:enhancement” and

type:improvement”. In June 2019, a review was requested from

he rest of the committers, which is still pending.

All the CADF event records that were logged during our tests

ere stored on a dataset following the JSON CADF format and is

vailable for download

8 along with a dataset 9 which it contains

ADF records from OpenStack’ utilization for further research.

. Discussion

.1. Functionality

Upon completion of the implementation, the 7 Ws can be an-

wered by CADF as opposed to the default CloudStack model. Com-

arison of Table 3 and demonstrates the superiority of the sug-

ested model against the existing one. The functionality of the

ADF model can be divided into simple and advanced . Simple is

imited to filling only mandatory fields for each type of event,

hile advanced includes as many fields as possible. However, both

n the OpenStack project and the Apache CloudStack, CADF was not

he event mapping model for which the platform was designed.

his leads to an arbitrary decision whether changes need to be

ade within each event to provide through source code the nec-

ssary information to fill in the CADF fields, or whether matching

f fields and values should - by losing precision - be made at a

entral point.

The most appropriate decision is to combine the above ap-

roaches and to understand and change each event separately.

owever, the process has some drawbacks. It is time-consuming

ince it concerns 352 different events. It is complicated because

ach event according to its type contains various information and

as a severe difficulty in terms of integration and merging with

he original project, as for each event a change must be made to

t least 1 CloudStack file.

.2. Suggestions and improvements

In order for CloudStack’s Action Events to comply with the

ADF standard, it is necessary to match each one of them with the

orresponding CADF event. CADF’s Action Taxonomy includes 26

ifferent actions. Matching is a significant problem because events
7 https://github.com/apache/cloudstack/pull/3232 .
8 https://github.com/ndalezios/clod/blob/master/cs _ events .
9 https://github.com/ndalezios/clod/blob/master/raw _ cadf _ sample .

https://github.com/ndalezios/cloudstack/tree/cadf_events
https://github.com/apache/cloudstack-cloudmonkey
https://github.com/apache/cloudstack/pull/3232
https://github.com/ndalezios/clod/blob/master/cs_events
https://github.com/ndalezios/clod/blob/master/raw_cadf_sample

N. Dalezios, S. Shiaeles and N. Kolokotronis et al. / Journal of Information Security and Applications 54 (2020) 102555 7

Table 8

Cases of event naming pattern issues.

CloudStack Event Note

VM.DESTROY Action “DESTROY” does not exist in CADF’s Action Taxonomy

NETWORK.CREATE Nothing to note – matches the suggested pattern

PROXY.DIAGNOSTICS Action “DIAGNOSTICS” does not exist in CADF’s Action Taxonomy. If it existed, it should be named

“DIAGNOSE”. The correct naming should be PROXY.DIAGNOSTICS.START

NET.RULEADD Action RULEADD does not exist in CADF’s Action Taxonomy and should be renamed to “RULE.CREATE”.

CREATE_ RESOURCE_DETAILS The action does not follow any naming pattern (use of “_”) and therefore cannot be ported to CADF

CloudStack Event Note

VM.DESTROY Action “DESTROY” does not exist in CADF’s Action Taxonomy

Fig. 3. Excerpt from EventTypes.java with naming suggestions as comments.

i

m

d

e

p

i

c

S

s

p

(

S

v

t

o

c

d

T

e

f

s

p

e

w

c

7

o

L

p

i

o

t

i

p

t

i

t

n

a

t

Fig. 4. Event log line format.

m

f

t

–

o

a

e

C

e

e

v

s

t

p

p

a

w

a

t

l

b

8

t

t

e

s

d

i

J

p

–

i

u

I

a

m

J

m

10 https://github.com/ndalezios/clod .
n CloudStack are described verbally in the form of strings, by

erging the target resource with the action. CloudStack’s events

o not follow a specific standard. Events are characterized by the

vent_type field in terms of resource and action. In contrast, CADF

rovides an eventType field whose values determine if it is a mon-

tor, control or action event. Table 8 illustrates some indicative

ases.

Following the aforementioned events cases, as defined in Cloud-

tack, there is a need to use a single event type format exclu-

ively for CloudStack, which could be generalized across other

latforms. The suggested format is a RESOURCE. (SUB-RESOURCE).

SUB-RESOURCE). ACTION. Where, in uppercase Latin characters, RE-

OURCE and SUB-RESOURCES (if any) are nouns, and ACTION is a

erb (noun. (noun). (noun).verb). By following this format, even if

here is no mapping for the Resource or Action in the CADF’s tax-

nomies, it is easy to create an events’ map. Fig. 3 illustrates the

omments inside source code with our naming suggestions

When a CloudStack user deletes one or more events from the

atabase, apart from the deletion, no other action is taking place.

here is no information on who removed what, when, from where

tc. Events’ removal should trigger an EVENTS.DELETE event. In

act, only upon the first installation of CloudStack, event storage

hould be empty. We also implemented this functionality as an im-

rovement of the existing logging mechanism. Any action to delete

vent records must be considered as an event itself. Only in this

ay, a malicious deletion of a history of actions from CloudStack

an be identified.

. ACPO principles and CADF

As mentioned in [33] , four principles related to the practices

f handling and maintaining digital evidence have to be respected.

allie and Pimlott [12] studied the application of the above princi-

les to investigations in public clouds and highlighted a series of

ssues for each one of them. The CADF event model provides the

pportunity to solve some of these issues.

Regarding the 1st principle, they detect a time gap between

he incident and the beginning of the investigation, where there

s no control over the data. However, the auditing and the pro-

osed CADF event logging solution can solve this issue by enabling

he investigator to collect log files from a time point A (before the

ncident being investigated) up to a time point B (at the time of

he beginning of the investigation). In this way, although there is

o data protection against alterations, there is a log entry of these

lterations (if any).

Regarding the 2nd principle, since it is only about log files,

here is read-only access permitted. Besides, “Acquisition” is a for-
al and defined process in common (not cloud) systems. There-

ore, the required level of competency is not increased. In fact,

he acquisition of log files can be carried out by the CSP itself

depending on the deployment model. However, if any change

ccurs in log files, this change should be considered as an event

nd should be logged. In particular, the process of deleting logged

vents does not constitute an event and is not registered in the

loudStack platform. We suggested and implemented creating an

vent record for this particular action.

According to the 3rd principle, provisioning of an audit trail for

ach action on the digital evidence should be provided. A third in-

estigating entity should have the same results by performing the

ame actions. Due to the absence of a unified form of log files,

he investigator often resorts to custom solutions depending on the

latform investigated (OpenStack, CloudStack, AWS, MS Azure). The

rocess of repeating actions to achieve the same result involves

lso developing this custom solution. The answer to this comes

ith the introduction of a specific logging template and the cre-

tion of standardized tools - either open source (where it is easier

o check if they affect the integrity of evidence) or commercial so-

utions. A tool for all platforms can pass the necessary checks to

e certified by NIST.

. CADF consumers

The use of an event logging standard exempts developers from

he need to study and configure the event analysis tools according

o the platform that produced the log files. Therefore, they focus

xclusively on the standard and the interpretation of its fields. One

uch attempt is the C.Lo.D tool (CADF Log Detective), available un-

er Apache 2.0 license in a public repository at GitHub. 10 Clod’s

nput is a log file containing log records in the form of CADF as

SON. Each line in the file usually includes information about the

latform before and after the record (platform-specific information

see Fig. 4).

Clod parses input file and searches each line for the CADF event

dentifier. Once it locates it, it isolates it from where it was found,

p to the point where the number of “{“ and “}” symbols are equal.

n this way, only CADF data are stored in a list. Then, CADF events

re stored in a NoSQL database (see Fig. 5). In particular, a “docu-

ent store” type of database manager is selected to ideally handle

SON documents. The open-source version of the MongoDB Com-

unity Server is used as the database manager. From this point

https://github.com/ndalezios/clod

8 N. Dalezios, S. Shiaeles and N. Kolokotronis et al. / Journal of Information Security and Applications 54 (2020) 102555

Fig. 5. Clod is processing two datasets. The file raw_cadf_sample is OpenStack’s

output, and cs_events is CloudStack’s testing phase output.

D

c

i

S

f

C

s

C

e

e

R

onwards, an investigator is able to, with a MongoDB client or by

source code, prepare and execute queries over stored CADF events.

9. Conclusions

This paper has proposed the CADF event model implementa-

tion for the Apache CloudStack project as the main logging format.

CADF is a simple yet clear, expandable and robust model focused

on the events and not the underlying technology of the cloud in-

frastructure. OpenStack, at its current version, is using CADF –

OpenStack was CADF’s targeted platform. Even OpenStack, though,

does not fully implement CADF. This paper’s implementation for

CloudStack is not utilizing CADF’s full capabilities. The reason for

this is that in order for an event model to collect as much infor-

mation possible, it needs to touch every single event that occurs

on the platform. It has to be part of the initial design of the plat-

form. It cannot be added later on as an enhancement, because it

can cause major changes and side-effects to the entire project. Any

platform or project that can be exploited, or attacked, or used by

any manner by cybercriminals should take into consideration while

being designed, to be as much forensically friendly as possible. The

engineering team and the security team must work together and

not only test a project for vulnerabilities, but also make sure that

in case of an event, all the necessary information is collected, un-

der a standard as CADF.

10. Future work

In future work, a set of cyber-crime scenarios on CloudStack

should be executed and then perform forensic analysis by using

just the information stored in the CADF logs. This will bring to the

surface all the data that should be included in the event logging.

Forensics investigators, police officers, Law Enforcement Agen-

cies and even judicial officers should examine if CADF and data

extracted from CADF, can solve a digital crime case. Are CADF data

enough to solve a case? At the same time, it should be examined

if CADF data could be accepted by the judicial authorities.

Additionally, after having an implementation for OpenStack and

CloudStack, one should port or develop CADF to OpenNebula, the

third in ranking open source IaaS cloud platform.
eclaration of Competing Interest

The authors declare that they have no known competing finan-

ial interests or personal relationships that could have appeared to

nfluence the work reported in this paper.

upplementary materials

Supplementary material associated with this article can be

ound, in the online version, at doi: 10.1016/j.jisa.2020.102555 .

RediT authorship contribution statement

Nikolaos Dalezios: Methodology, Investigation, Software, Re-

ources, Writing - original draft. Stavros Shiaeles: Supervision,

onceptualization, Methodology, Resources, Writing - review &

diting. Nicholas Kolokotronis: Resources, Writing - review &

diting. Bogdan Ghita: Writing - review & editing.

eferences

[1] Dykstra J . Seizing electronic evidence from cloud computing environments. In:

Cybercrime and cloud forensics: applications for investigation processes. IGI
Global; 2013. p. 156–85 .

[2] Wall D. “Towards a conceptualisation of cloud (Cyber) crime,” 2017, pp. 529–
538, doi: 10.1007/978-3-319-58460-7_37.

[3] Iorga M., Simmon E. “DRAFT NISTIR 8006, NIST cloud computing forensic sci-
ence challenges,” National Institute of Standards and Technology, U.S. Depart-

ment of Commerce, Jun. 2014.
[4] Simou S, Kalloniatis C, Gritzalis S, Mouratidis H. A survey on cloud foren-

sics challenges and solutions. Security Commun Netw 2016;9(18):6285–314.

doi: 10.1002/sec.1688 .
[5] Ruan K, Carthy J, Kechadi T, Crosbie M. Cloud forensics. In: Advances

in digital forensics vii; 2011. p. 35–46. Berlin, Heidelberg. doi: 10.1007/
978- 3- 642- 24212- 0 _ 3 .

[6] Simou S, Kalloniatis C, Kavakli E, Gritzalis S. Cloud forensics: identifying the
major issues and challenges. In: Advanced information systems engineering;

2014. p. 271–84. Cham. doi: 10.1007/978- 3- 319- 07881- 6 _ 19 .

[7] Alqahtany S, Clarke N, Furnell S, Reich C. Cloud forensics: a review of chal-
lenges, solutions and open problems. In: 2015 international conference on

cloud computing (ICCC); 2015. p. 1–9. doi: 10.1109/CLOUDCOMP.2015.7149635 .
[8] Zafarullah FA, Anwar Z. Digital forensics for eucalyptus. In: 2011 Frontiers of

information technology; 2011. p. 110–16. doi: 10.1109/FIT.2011.28 .
[9] Birk D, Wegener C. Technical issues of forensic investigations in cloud comput-

ing environments. In: 2011 Sixth IEEE international workshop on systematic

approaches to digital forensic engineering; 2011. p. 1–10. doi: 10.1109/SADFE.
2011.17 .

[10] Marty R. Cloud application logging for forensics. In: Proceedings of the 2011
ACM symposium on applied computing; 2011. p. 178–84. New York, NY, USA.

doi: 10.1145/1982185.1982226 .
[11] Zawoad S, Hasan R, Skjellum A. OCF: an open cloud forensics model for reliable

digital forensics. In: 2015 IEEE 8th international conference on cloud comput-

ing; 2015. p. 437–44. doi: 10.1109/CLOUD.2015.65 .
[12] Lallie H, Pimlott L. Applying the ACPO Principles in Public Cloud Forensic

Investigations. J Digital Foren Security Law Jan. 2012;7(1). doi: 10.15394/jdfsl.
2012.1113 .

[13] Badger M.L., Grance T., Patt-Corner R., Voas J. “Cloud computing synopsis and
recommendations,” National Institute of Standards and Technology, Gaithers-

burg, MD, NIST SP 800-146, 2012.

[14] P ̆atra ̧s cu A , Valeriu Patriciu V . Logging for cloud computing forensic systems.
Int J Comput Commun Control Apr. 2015;10(2):222–9 .

[15] Cloud Auditing Data Federation (CADF) Working Group, “Cloud Auditing Data
Federation - (CADF-OpenStack) - a CADF representation for OpenStack.” Dis-

tributed Management Task Force, Inc. (DMTF), 16-Apr-2015.
[16] Kumar Raju B, Geethakumari G. Event correlation in cloud: a forensic perspec-

tive. Computing Nov. 2016;98(11):1203–24. doi: 10.10 07/s0 0607- 016- 0500- 2 .

[17] Sekhar BC, Murali G. Access control for cloud forensics through secure logging
services. In: 2017 International conference on energy, communication, data an-

alytics and soft computing (ICECDS); 2017. p. 3527–32. doi: 10.1109/ICECDS.
2017.8390116 .

[18] Chen Z, et al. Secure logging and public audit for operation behavior in cloud
storage. In: 2017 IEEE international conference on computational science and

engineering (CSE) and ieee international conference on embedded and ubiqui-
tous computing (EUC), 1; 2017. p. 4 4 4–50. doi: 10.1109/CSE-EUC.2017.85 .

[19] Alobaidli H., Nasir Q., Iqbal A., Guimaraes M., “Challenges of cloud log foren-

sics,” 2017, pp. 227–230, doi: 10.1145/3077286.3077302.
[20] Sukmana MIH, Torkura KA, Cheng F, Meinel C, Graupner H. Unified logging sys-

tem for monitoring multiple cloud storage providers in cloud storage broker.
In: 2018 International conference on information networking (ICOIN); 2018.

p. 44–9. doi: 10.1109/ICOIN.2018.8343081 .

https://doi.org/10.1016/j.jisa.2020.102555
http://refhub.elsevier.com/S2214-2126(19)30979-2/sbref0001
http://refhub.elsevier.com/S2214-2126(19)30979-2/sbref0001
https://doi.org/10.1002/sec.1688
https://doi.org/10.1007/978-3-642-24212-0_3
https://doi.org/10.1007/978-3-319-07881-6_19
https://doi.org/10.1109/CLOUDCOMP.2015.7149635
https://doi.org/10.1109/FIT.2011.28
https://doi.org/10.1109/SADFE.2011.17
https://doi.org/10.1145/1982185.1982226
https://doi.org/10.1109/CLOUD.2015.65
https://doi.org/10.15394/jdfsl.2012.1113
http://refhub.elsevier.com/S2214-2126(19)30979-2/sbref0011
http://refhub.elsevier.com/S2214-2126(19)30979-2/sbref0011
http://refhub.elsevier.com/S2214-2126(19)30979-2/sbref0011
https://doi.org/10.1007/s00607-016-0500-2
https://doi.org/10.1109/ICECDS.2017.8390116
https://doi.org/10.1109/CSE-EUC.2017.85
https://doi.org/10.1109/ICOIN.2018.8343081

N. Dalezios, S. Shiaeles and N. Kolokotronis et al. / Journal of Information Security and Applications 54 (2020) 102555 9

[

[

[

[

[

[

[

[

[

[

[21] Alobaidli H., Nasir Q., Abutalib M., “CADF logging infrastruture for cloud com-
puting digital forensics,” 2018.

22] Gagliardi R. Security log standard - still an open question. SCIP Labs 15-Mar-
2018. Online]Available https://www.scip.ch/en/?labs.20180315 Accessed: 21-

Oct-2018 .
23] Sturm R , Pollard C , Craig J . Application performance management (APM) in the

digital enterprise: managing applications for cloud, mobile, iot and eBusiness.
Morgan Kaufmann; 2017 .

24] Gerhards R. “The syslog protocol,” RFC editor, RFC5424, Mar. 2009.

25] P ̆atra ̧s cu A, Patriciu VV. Logging framework for cloud computing forensic envi-
ronments. In: 2014 10th international conference on communications (COMM);

2014. p. 1–4. doi: 10.1109/ICComm.2014.6866662 .
26] Konoor DK. Auditing in cloud computing solutions with OpenStack. In:

2016 IEEE international conference on cloud computing in emerging markets
(CCEM); 2016. p. 176. doi: 10.1109/CCEM.2016.042 .

[27] Naaz S, Ahmad F. Comparitive study of cloud forensics tools. Commun Appl

Electron Jun. 2016;5(3):24–30. doi: 10.5120/cae2016652258 .
28] Roussev V, Ahmed I, Barreto A, McCulley S, Shanmughan V. Cloud forensics–

tool development studies & future outlook. Digital Investig Sep. 2016;18:79–95.
doi: 10.1016/j.diin.2016.05.001 .
29] Blog NT. Netflix SIRT releases Diffy: a differencing engine for dig-
ital forensics in the cloud. Medium 17-Jul-2018 [Online] Available

https://medium.com/netflix-techblog/netflix-sirt-releases-diffy-a-differencing-
engine- for- digital- forensics- in- the- cloud- 37b71abd2698 Accessed: 21-Dec-

2018 .
30] Cloud Auditing Data Federation (CADF) Working Group, “Cloud Auditing Data

Federation (CADF) - data format and interface definitions specification.” Dis-
tributed Management Task Force, Inc. (DMTF), 19-Jun-2014.

[31] R. Basham, G. Chung, M. Rutkowski, and B. Topol, “An overview of cloud audit-

ing support for OpenStack,” presented at the OpenStack Summit, Atlanta, USA,
13-May-2014.

32] Bangur S , Verma D . Adoption of Cloud Auditing Data Federation (CADF) stan-
dard by IBM spectrum virtualize. IBM Syst. Mar-2017 .

33] Williams J. “ACPO_Good_Practice_Guide_for_Digital_Evidence_v5.pdf.” ACPO
Crime Business Area.

https://www.scip.ch/en/?labs.20180315
http://refhub.elsevier.com/S2214-2126(19)30979-2/sbref0017
http://refhub.elsevier.com/S2214-2126(19)30979-2/sbref0017
http://refhub.elsevier.com/S2214-2126(19)30979-2/sbref0017
http://refhub.elsevier.com/S2214-2126(19)30979-2/sbref0017
https://doi.org/10.1109/ICComm.2014.6866662
https://doi.org/10.1109/CCEM.2016.042
https://doi.org/10.5120/cae2016652258
https://doi.org/10.1016/j.diin.2016.05.001
https://medium.com/netflix-techblog/netflix-sirt-releases-diffy-a-differencing-engine-for-digital-forensics-in-the-cloud-37b71abd2698
http://refhub.elsevier.com/S2214-2126(19)30979-2/sbref0023
http://refhub.elsevier.com/S2214-2126(19)30979-2/sbref0023
http://refhub.elsevier.com/S2214-2126(19)30979-2/sbref0023

	Digital forensics cloud log unification: Implementing CADF in Apache CloudStack
	1 Introduction
	2 Background
	2.1 Related work
	2.2 Cloud auditing and forensics

	3 Current model
	4 Proposed model
	5 Implementation
	5.1 Testing
	5.2 Validation

	6 Discussion
	6.1 Functionality
	6.2 Suggestions and improvements

	7 ACPO principles and CADF
	8 CADF consumers
	9 Conclusions
	10 Future work
	Declaration of Competing Interest
	Supplementary materials
	CRediT authorship contribution statement
	References

