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1 Abstract 

2 Physiological traits are key in determining the vulnerability of narrow range, highly specialised 

3 animals to climate change. It is generally predicted that species from more stable environments 

4 possess lower thermal tolerance breadths and thermal plasticity than those from more variable 

5 habitats – the so-called ‘climatic variability hypothesis’. However, evolutionary trade-offs 

6 between thermal breadth and its plasticity are also seen in some taxa, and the evolution of 

7 thermal physiology remains poorly understood. Subterranean environments are excellent systems 

8 for exploring these issues, being characterized by stable climatic conditions, with environmental 

9 variability increasing predictably from deep to shallow habitats. Acclimation capacity will be 

10 fundamental in determining the sensitivity of subterranean species to climate change, since they 

11 have poor dispersal capacity and limited possibility to exploit thermally different microhabitats 

12 in the uniform cave environment. We assessed critical thermal maximum (CTmax) and short-term 

13 heat acclimation capacity in three related beetles (Leiodidae: Leptodirini) with differing degrees 

14 of specialisation to the subterranean environment (deep, shallow and facultatively subterranean, 

15 respectively) and therefore exposed to contrasting thermal variability in nature. Only the 

16 facultative subterranean species showed any acclimatory capacity, also having the highest CTmax 

17 across the taxa studied. However, this species might experience the highest thermal stress in its 

18 habitat under climate change. The studied subterranean specialists will be poorly able to cope 

19 physiologically with temperature increase, but in contrast exposed to lower magnitude and rate 

20 of warming. Our results fit the climatic variability hypothesis, suggesting that adaptation to cave 

21 conditions has selected against the retention of acclimation mechanisms. We show that the 

22 pathways that determine vulnerability of subterranean species to climate change depend on their 

23 degree of specialisation to deep subterranean environments.  This information, combined with 

24 evaluation of exposure to climatic changes at their present locations, is fundamental in 

25 identifying species or populations at greatest risk.
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26 Keywords: critical thermal maximum, physiological plasticity, thermal tolerance, climate 

27 variability hypothesis, subterranean environment, conservation, cave beetles, climate change
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28 Introduction 

29 It is broadly recognised that physiological data may contribute directly to conservation in the 

30 face of climate change and advance the field of conservation physiology (Wikelski & Cooke, 

31 2006; Cooke & O'Connor, 2010; Cooke et al., 2013; Evans, 2015). Indeed, accurate assessments 

32 of species vulnerability to climate change require integrated measurements of its different 

33 determinants, including exposure (the magnitude and change of climatic change) and factors of 

34 organisms’ sensitivity at the individual level, such as the physiological tolerance to 

35 environmental change (Williams et al., 2008; Foden et al., 2019). In this context, the acclimation 

36 capacity of organisms determines their ability to track changing environmental conditions and is 

37 of fundamental importance, especially for species that are unable to respond to climate change 

38 by other means (e.g. range shifts, behavioural adjustments or evolutionary adaption) (Stillman, 

39 2003; Seebacher, White, & Franklin, 2015). Thermal acclimation occurs when individuals adjust 

40 their physiology to compensate for the effects of temperature variation, and may ultimately 

41 extend critical thermal limits for performance and survival (e.g. Da Silva, Riginos & Wilson, 

42 2019). 

43 Despite multiple hypotheses proposed to understand how thermal plasticity varies across taxa 

44 (see Rohr et al. (2018) for a recent review), empirical studies suggest that acclimation responses 

45 are highly context-dependent. According to the climatic variability hypothesis (CVH) (Stevens, 

46 1989), species from more stable environments are predicted to have lower thermal tolerance (i.e. 

47 narrower tolerance breadths and less acclimation capacity) than those from more variable 

48 habitats (e.g. Feder, 1978; Tomanek, 2008; Magozzi & Calosi, 2015; Shah, Funk, & Ghalambor, 

49 2017; Markle & Kozak, 2018), but such a pattern has not always been supported (Seebacher et 

50 al., 2015). Furthermore, evolutionary trade-offs may constrain the evolution of the different 

51 components of thermal tolerance, so that species that have evolved the greatest thermal limits 
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52 (particularly upper ones) may have done so at the expense of the plasticity of such limits and 

53 therefore show limited acclimation capacity (e.g. Stillman, 2003). 

54 Testing between such alternatives is challenging, given the multiple intrinsic and extrinsic 

55 factors that affect the range of temperature actually experienced by organisms. For the same 

56 reason, teasing apart the relative importance of the different drivers of vulnerability to climate 

57 change can be challenging. Climatically stable and isolated systems are excellent models to 

58 minimize confounding effects and focus on physiology in a climate change context. This is the 

59 case with subterranean habitats, where environmental conditions are more stable and 

60 homogeneous than at the surface, limiting the possibility of behavioral adjustments of their 

61 inhabitants through differential microhabitat use (Sánchez-Fernández et al., 2018). The dispersal 

62 potential is also extremely reduced for most subterranean specialists (Juan & Emerson, 2010; 

63 Rizzo et al., 2017). Moreover, low genetic variability (Juan et al., 2010), low reproductive rates 

64 and long life cycles (Voituron et al., 2010) may constrain rapid evolutionary change in such taxa 

65 (Sánchez-Fernández et al., 2016; Mammola et al., 2019b). Therefore, as with species in many 

66 other isolated ecosystems (e.g. mountain summits or islands), they rely strongly on physiological 

67 adjustments to cope with environmental changes, even though the magnitude and rate of such 

68 changes in subterranean habitats is moderate compared to the surface (Domínguez-Villar et al., 

69 2015; Pipan et al., 2018). Deep subterranean habitats typically experience very stable climates 

70 (but see Trontelj, Borko, & Delić, 2019) and within caves, such stability decreases markedly 

71 from inner to outer sections (Cigna, 2002; Badino, 2010; Pipan et al., 2010), presenting an ideal 

72 setting in which to explore the relationship between thermal tolerance and climatic variability 

73 and test macrophysiological hypotheses (Gaston et al., 2009; Sánchez-Fernández et al., 2018; 

74 Mammola et al., 2019b). 

75 The rarity of many subterranean taxa (Sánchez-Fernández et al., 2018; Trontelj et al., 2019) and 

76 difficulties of access for sampling (Raschmanová et al., 2018; Castaño-Sánchez, Hose, & 
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77 Reboleira, 2020; Mammola, et al., 2019a), have limited research on subterranean species to date. 

78 In terms of thermal tolerance, most of the data on subterranean organisms come from studies 

79 conducted on a handful of species and have generally shown they have a high thermal 

80 sensitivity: upper lethal limits are usually not higher than 23ºC (e.g. Issartel et al., 2005; Rizzo et 

81 al., 2015; Pallarés et al., 2019) and studies based on molecular biomarkers indicate that thermal 

82 stress onsets at lower temperatures (Mermillod-Blondin et al., 2013; Pallarés et al., 2020).  

83 Several studies have also suggested that the degree of specialisation to the subterranean 

84 environment is negatively correlated with thermal tolerance breadth (Lencioni, Bernabò & 

85 Latella, 2010; Bernabò et al., 2011; Novak et al., 2014; Raschmanová et al., 2018; Mammola et 

86 al., 2019c), broadly supporting the CVH. Whether physiological plasticity is reduced in the 

87 process of specialisation to subterranean life and how it could affect species sensitivity to climate 

88 change remains an open question, however, since most studies have ignored acclimation capacity 

89 (but see Rizzo et al., 2015; Pallarés et al., 2019, 2020). In addition, such studies have often 

90 involved disparate, unrelated species, sometimes from localities with very different climates, 

91 making meaningful comparisons difficult. Efforts to increase our knowledge on the thermal 

92 tolerance of subterranean fauna are needed, as they represent an important and typically endemic 

93 component of the global animal biodiversity, but still largely neglected in conservation 

94 programs. 

95 In Leptodirini cave beetles (Coleoptera, Leiodidae), one of the most extreme modifications 

96 associated with underground colonisation is a reduction in the number of larval instars in the life 

97 cycle, likely as an adaptation to a resource-poor environment (Cieslak, Fresneda, & Ribera, 

98 2014a, b). Species that can live in deep forest litter or the upper layers of fractured soil (MSS, 

99 Milieu Souterrain Superficiel (Juberthie, Delay, & Bouillon, 1980a,b, 1981; Mammola et al., 

100 2016)), i.e., not necessarily confined in caves, typically have the standard life cycle of 

101 Coleoptera, with three larval instars (Minelli & Fusco, 2013). Deep or shallow subterranean 
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102 specialists (true troglobionts sensu Sket (2008)) may show a reduction to two or -in the most 

103 extreme specialisation- one larval instar. Therefore, the number of larval instars in these species, 

104 clearly associated with the degree of subterranean specialisation, can be used as an indirect proxy 

105 for the degree of thermal stability species experienced in their evolutionary history. Here we 

106 assess critical thermal maximum (CTmax) and short-term heat acclimation capacity in three 

107 related Leptodirini taxa from areas with similar climatic histories but with life cycles of one, two 

108 and three larval instars respectively, reflecting different degrees of specialisation to the 

109 subterranean environment and hence exposed to contrasting thermal variability. We explore 

110 whether support for the CVH in subterranean taxa (Latella, Bernabò & Lencioni, 2008; Lencioni 

111 et al., 2010; Novak et al., 2014; Raschmanová et al., 2018; Mammola et al., 2019c) also holds 

112 for thermal plasticity. Under the CVH, both CTmax and acclimation capacity are expected to 

113 decrease with increasing subterranean specialisation. However, if trade-offs between thermal 

114 limits and plasticity have shaped the evolution of thermal tolerance in these taxa, such a 

115 relationship with subterranean specialisation might not be so evident for acclimation capacity 

116 (i.e., species living in the more variable habitats could tolerate higher temperatures but show 

117 little thermal plasticity). Extending these general hypotheses to the subterranean environment can 

118 provide important insights into the evolution of thermal physiology associated with the process 

119 of underground specialisation, as well as relevant information for the conservation of specialist 

120 animal taxa with limited dispersal capabilities. 

121 Material and methods

122 Study species and collection

123 The study species belong to monophyletic lineages of the beetle tribe Leptodirini; the Pyrenean 

124 (Speonomites crypticola and Bathysciola rugosa) and Cantabrian clades (Speonomidius crotchi) 

125 (Salgado, Blas, & Fresneda, 2008; Ribera et al., 2010). Rearing experiments revealed that S. 
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126 crotchi has a life cycle of two larval instars (Jeannel, 1911; Glaçon, 1955), whilst S. crypticola 

127 and B. rugosa were inferred to have one and three larval instars, respectively, based on robust 

128 ancestral state reconstructions (Cieslak et al., 2014b). Two of the species are obligate cave 

129 inhabitants only found in deep subterranean habitats (S. crypticola) or in both deep and shallow 

130 subterranean environments (S. crotchi), whilst B. rugosa is a facultative subterranean species, 

131 most commonly found in deep forest litter, always in dark conditions (Salgado et al., 2008).

132 Live adults were collected in different sites within the same geographical region (Northern 

133 Spain), with broadly similar mean annual surface temperatures (Table 1), which are known to 

134 closely approximate the constant temperatures recorded inside caves (Moore & Sullivan, 1964; 

135 Smithson, 1991; Badino, 2004, 2010). Therefore, all species live under similar average climatic 

136 conditions but occupy habitats with different daily and seasonal climatic variability. The two 

137 subterranean species can be assumed to be exposed to an annual variation of a few degrees (≤ 4º 

138 C) around mean annual surface temperatures, which is the typical thermal range in caves 

139 (Badino, 2010; Mammola & Isaia, 2016). The facultative subterranean species can be assumed to 

140 be exposed to a maximum annual variation between 8 – 24.4º C (minimum temperature of the 

141 coldest month and maximum temperature of the warmest month at the surface in its locality, 

142 respectively, obtained from Worldclim v. 1.4 database (http://www.worldclim.org; see Table 1). 

143 Projected temperatures for 2070 under the Representative Concentration Pathway (RCP) 4.5 are 

144 also shown in Table 1. 

145 Specimens of S. crypticola and S. crotchi were collected by hand in the caves indicated in Table 

146 1, whilst specimens of B. rugosa were collected in forest litter near the entrances of Cave Orobe. 

147 The specimens were transported to the laboratory in a portable fridge with substratum from the 

148 cave and moss to retain humidity (ca. 90% RH). In the laboratory, they were maintained for two 

149 days prior to experiments in closed plastic containers (10 x 15 x 10 cm) with a plaster layer (1 

150 cm), in controlled-temperature incubators (Radiber ERF‐360, Radiber S.A, Barcelona, Spain) at 
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151 the approximate mean temperature of their habitats (S. crypticola 11ºC; S. crotchi 9ºC; B. rugosa 

152 12ºC), i.e. control temperatures hereafter. Maintenance of high humidity (> 90% RH) throughout 

153 the experiments was ensured by adding wetted tissue paper to experimental containers daily and 

154 placing trays with water inside the incubators. Temperature and humidity inside the containers 

155 were monitored with HOBO MX2301 dataloggers and remained quite constant, with very small 

156 variations (±0.5ºC and ±10% RH). Food was provided ad libitum with freshly frozen Drosophila 

157 melanogaster.

158  Upper thermal limits and acclimation capacity

159 Specimens were acclimated at either a control temperature (see above) or at 20ºC for 10 days (N 

160 = 10-13 individuals per treatment), with all other conditions (humidity, food etc.) as described 

161 before. These acclimation temperatures were chosen since all subterranean leiodids studied to 

162 date can survive relatively long-term exposure (>7 days) at 20ºC, but this is also close to their 

163 upper lethal limits (Rizzo et al., 2015; Pallarés et al., 2019, 2020), and it is well established that 

164 insects typically undergo acclimation in response to stressful sublethal temperatures (e.g. 

165 Lachenicht et al., 2010; Nyamukondiwa & Terblanche, 2010; Terblanche et al., 2011; Sgrò, 

166 Terblanche, & Hoffmann, 2016). After acclimation, we estimated heat coma temperature (HCT) 

167 for each individual. This was defined as the temperature at paralysis prior to death, preceded by 

168 spasmodic movements of legs and antennae, and is a typical response used to assess critical 

169 thermal maximum (CTmax) in insects (see Vannier, 1994; Lutterschmidt & Hutchison, 1997; 

170 Chown & Nicolson, 2004). HCT was measured using a dynamic, ramping method 

171 (Lutterschmidt & Hutchison, 1997; Terblanche et al., 2007), with a heating rate of 1ºC min-1 and 

172 infrared thermography. CTmax measured with such a fast ramping rate tend to be overestimated 

173 (Terblanche et al., 2007) and cannot be used to directly extrapolate actual thermal limits, but this 

174 method provides a robust comparative estimate of the relative thermal tolerance amongst related 

175 species and is the most commonly used in thermal tolerance assays on ectotherms (Bennett et al., 
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176 2018). Furthermore, infrared thermography has proven to be a highly sensitive technique to 

177 measure CTmax in insects (Botella-Cruz et al., 2016; Carbonell et al., 2016; Gallego et al., 2016; 

178 Gallego, Verdú, & Lobo, 2018). Specimens were dried on blotting paper and glued dorsally on a 

179 ceramic plate using nontoxic glue (ErichKrause) to prevent escape during the trial. The plate was 

180 then placed in a programmable BINDER MK53 incubator (BINDER GmbH, Tuttlingen, 

181 Germany) in which the temperature was increased 1ºC min-1, starting at the corresponding 

182 acclimation temperature. The incubator was coupled with an infrared thermographic camera 

183 (FLIR SC305) to record body temperature of the specimens, from which HCT were obtained. 

184 High quality images were also recorded with a video camera (Sony DCR-DVD110E, Sony Co., 

185 Tokyo, Japan) to determine the moment of paralysis (cessation of movement of legs and 

186 antennae) of each individual. Thermal images were analysed with the software ThermaCAM 

187 Researcher Professional 2.10 (FLIR Advanced Thermal Solutions; ATS; Croissy-Beaubourg, 

188 France).

189  Statistical analyses

190 We performed a two-way ANOVA with HCT as the response variable and species, acclimation 

191 temperature (a factor with two levels: control temperature (see above) or 20ºC) and their 

192 interaction as predictors, to compare HCT and short-term acclimation capacity across species 

193 and assess whether these traits are related to the degree of subterranean specialisation. Pairwise 

194 comparisons were made with Bonferroni-adjusted post-hoc tests. Significance level was set at 

195 0.05. Data conformed to a normal distribution so no transformation was required. Normality and 

196 homoscedasticity assumptions of model residuals were also validated by graphical inspection 

197 (Zuur et al., 2009). All statistical analyses were conducted in R v.3.6.1 (R Core Team, 2019) 

198 using default packages and phia (De Rosario-Martinez, 2015).

199 Results 
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200 Heat coma temperatures (HCTs) ranged from 34.6 – 38ºC across the studied species and 

201 acclimation treatments (Figure 1). HCTs differed significantly amongst species (ANOVA F2, 52 = 

202 21.963, P < 0.001), being lower in the one-larval instar, deep subterranean species (S. crypticola) 

203 than in the other two, less specialised taxa investigated (all Bonferroni corrected Ps < 0.001, 

204 Table 2). There was also a significant effect of acclimation temperature on HCT (ANOVA F1, 52 

205 = 18.357, P < 0.001), but species differed significantly in their response to acclimation (ANOVA 

206 species x temperature interaction F2, 52 = 3.564, P = 0.035). 

207 The deep subterranean specialist, S. crypticola, had a significantly lower HCT than the two-

208 instar, shallow subterranean S. crotchi when acclimated at control temperatures, and lower than 

209 either of the other two species following acclimation at 20ºC (all Bonferroni corrected Ps < 

210 0.001, Table 2; Fig.1). Only the species with the least specialisation to subterranean 

211 environments, B. rugosa (three larval instars), showed acclimation capacity. In this species, HCT 

212 significantly increased after exposure at 20ºC (Bonferroni corrected P < 0.001, Table 2; Fig. 1), 

213 with a difference of 1.2ºC between the mean HCT of the control and 20ºC treatment. The more 

214 specialised subterranean taxa lacked acclimation ability because no differences were found in 

215 HCT between acclimation treatments (Bonferroni corrected Ps > 0.05, Table 2; Fig. 1).

216 Discussion

217 Among the three studied subterranean species, the most specialised to the subterranean 

218 environment and hence living under the more stable climatic conditions, S. crypticola, showed 

219 the lowest HCT values. Such finding in relation to the upper thermal limit fits the general 

220 predictions of the CVH, as seen in other subterranean groups for both lower (Latella et al., 2008; 

221 Lencioni et al., 2010; Novak et al., 2014) and upper thermal limits (Raschmanová et al., 2018; 

222 Mammola et al., 2019c). The main novelty of our study is that the CVH is tested by comparing 

223 not only thermal limits, but also thermal plasticity, something largely ignored for subterranean 
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224 taxa to date. Again, in agreement with the CVH, the more specialised subterranean taxa (S. 

225 crypticola and S. crotchi, both obligate subterranean) lacked acclimation ability at the 

226 acclimation temperatures and heating rates tested here; whilst B. rugosa, the facultative 

227 subterranean species exposed to more fluctuating daily and seasonal temperatures, significantly 

228 increased HCT after acclimation at the higher temperature. As well as a positive acclimation 

229 response, B. rugosa showed the highest HCT values across the three species after acclimation at 

230 20ºC. Therefore, there is not apparent evolutionary trade-off between CTmax and its short-term 

231 plasticity in these species, as reported in a clade of aquatic beetles (Calosi, Bilton & Spicer, 

232 2008), but in contrast to patterns seen in other taxa such as intertidal porcellanid crabs (Stillman, 

233 2003). As suggested by Calosi et al. (2008), the mechanisms and constraints underlying thermal 

234 limits and acclimation capacity appear to be taxon and context specific. 

235 A lack of thermal acclimation capacity has also been reported for other subterranean groups, 

236 such as groundwater crustaceans (Di Lorenzo & Galassi, 2017), and previous work on 

237 Leptodirini suggests that the physiological mechanisms to cope with heat stress are rather 

238 inefficient in specialised subterranean species compared with their less specialised relatives. For 

239 example, Bernabò et al. (2011) showed that the intensity of the heat shock response was 

240 negatively correlated with the degree of adaptation to the cave environment. Pallarés et al. 

241 (2020) found that an obligate subterranean species of the clade studied here failed to acclimate 

242 when exposed to a fixed stressful temperature. Such inability to acclimate was coupled with 

243 oxidative stress and shifts in the activity of key enzymes at sublethal temperatures. The 

244 physiological mechanisms underlying thermal acclimation capacity in ectotherms are 

245 energetically costly processes (Krebs & Loeschcke, 1994; Monaghan, Metcalfe, & Torres, 2009; 

246 Tomanek, 2010) that could have been selected against during the evolution of specialisation to 

247 deep subterranean habitats. In these environments, with limited resources and highly stable 

248 climatic conditions, both temporally and spatially (Badino, 2010; Howarth & Moldovan, 2018), 
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249 traits that do not affect fitness could be loss or reduced either by neutral evolution or indirect 

250 natural selection favouring energetic economy (Culver & White, 2005, Ribera et al., 2018).  

251 Extreme modifications of thermal physiology have been found in organisms inhabiting other 

252 highly stable habitats, such as the absence of a heat shock response in Antarctic notothenioid fish 

253 (Somero, 2005). The greatest modifications of thermal physiology in subterranean taxa, resulting 

254 in lower thermal limits and poor acclimation capacity, may be expected in those lineages that 

255 colonised subterranean habitats longer ago during their evolutionary history. This is the case of 

256 Western Mediterranean Leptodirini, which were apparently already adapted to subterranean life 

257 by the Early-Mid Oligocene, some 34-28 MYA (Ribera et al., 2010; Cieslak, et al., 2014b). 

258 Accordingly, other specialised deep subterranean species of these beetles are also likely to lack 

259 acclimation capacity and have similar CTmax than the one-larval instar species studied here (S. 

260 crypticola). In contrast, deep subterranean species in lineages that colonised subterranean 

261 habitats more recently may retain greater heat tolerance and acclimation capacity from their less 

262 specialised or surface-dwelling ancestors, as previously suggested (Pallarés et al., 2019). Further 

263 experimental data on thermal limits and acclimation for several lineages that have independently 

264 colonised the subterranean environment would be invaluable in testing this evolutionary 

265 hypothesis. Unfortunately, the difficulties in accessing subterranean habitats, of collecting 

266 sufficient number of specimens for experimental studies and maintaining and rearing 

267 subterranean organisms in the laboratory (Raschmanová et al., 2018; Castaño-Sánchez et al., 

268 2019; Mammola et al., 2019a) impose serious limitations when conducting comparative studies 

269 on cave-dwelling species. Therefore, despite its relatively modest taxonomic coverage, our study 

270 represents an important milestone in understanding physiological evolution of subterranean 

271 invertebrates.

272 Overall vulnerability to climate change in subterranean species will depend mainly on their 

273 thermal sensitivity and the magnitude and rate of climate change in their habitats, as range shifts 
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274 through dispersal will be largely limited. Both aspects (sensitivity and exposure to climate 

275 change) will in turn be determined by the degree of subterranean specialisation, but in opposite 

276 directions. Here we show that subterranean species have higher thermal sensitivity than surface 

277 ones, something that has been generally assumed but rarely tested. The HCT of the three species 

278 studied are markedly lower than the average value of CTmax (45.5 ± 1.0ºC, N = 40) recorded 

279 experimentally in a range of arthropods at the same heating rate (Bennett et al., 2018). We also 

280 show that thermal sensitivity increases with subterranean specialisation. In deep subterranean 

281 Leptodirini, experiments under relatively long-term exposure, which may better represent natural 

282 conditions, have shown that heat injury at the biochemical level occurs at 20ºC (Pallarés et al., 

283 2020) and survival is not possible above 23ºC (Rizzo et al., 2015). Such upper lethal limits seem 

284 to be highly conservative across deep subterranean specialist species of this clade, irrespective of 

285 the current and historical temperature of their habitats (Rizzo et al., 2015). Likewise, the lack of 

286 acclimation observed here in S. crypticola and S. crotchi appears to be mirrored in related 

287 species with similar specificity to subterranean habitats (as discussed above). In contrast, 

288 changes in the underground climate will be delayed compared to those experienced at the surface 

289 (Fejér & Moldovan, 2013; Domínguez-Villar et al., 2015) and will occur primarily in the cave 

290 sections closest to the surface and in superficial subterranean habitats (Culver & Pipan, 2014), 

291 such as small cavities in the uppermost karst layers, deep soil and litter strata, surface cracks and 

292 fissures (Badino, 2004; Mammola, Goodacre, & Isaia, 2018). In a proximate climate change 

293 scenario, the projected annual mean surface temperature apparently will not reach 

294 physiologically stressful levels for the two obligate subterranean species studied here (Table 1). 

295 However, this cannot be generalized, as some coastal or southern populations of specialist cave 

296 invertebrates in the Mediterranean Basin are currently living at temperatures close to their lethal 

297 limits (e.g. Sánchez-Fernández et al., 2016; Pallarés et al., 2019) and the same could occur in the 

298 tropics (Zeh et al., 2012). As the possibilities for behavioural thermoregulation through 
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299 microhabitat selection are extremely reduced in the deep subterranean environment, and 

300 considering the limited capacity to physiologically adjust to rising temperature observed here, 

301 these habitats may become physiological and evolutionary traps for some of their obligate 

302 inhabitants (Mammola et al., 2019b). Compared to species confined to caves, those occupying 

303 forest litter or the MSS, like B. rugosa, may cope better with warming, because they are able to 

304 increase thermal limits via acclimation and exploit a wider range of microhabitats. In this case, 

305 the magnitude and rate of warming could be the key determinant of their vulnerability to climate 

306 change, as these species are more exposed to the thermal fluctuations of the surface, where 

307 maximum temperatures could reach physiologically stressful values in a proximate future (e.g. 

308 28.5ºC in the localities where B. rugosa was collected). 

309 In summary, our results stress the need to account for physiological constraints such as thermal 

310 sensitivity and acclimation capacity if we are to accurately forecast the impacts of global change 

311 on specialised invertebrates with low dispersal ability. This information, combined with 

312 evaluation of exposure to climatic changes in occupied locations, can greatly assist in identifying 

313 species or populations at higher risk. We show that in the case of the subterranean environment, 

314 the relative importance of factors determining overall vulnerability may differ depending on the 

315 degree of habitat specialisation. As many authors have already urged (e.g. Sánchez-Fernández et 

316 al., 2018; Mammola et al., 2019a,b; Castaño-Sánchez et al., 2020), it is necessary to increase 

317 research, monitoring and conservation efforts on this unknown, fragile and valuable component 

318 of global biodiversity. 
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Tables

Table 1. Information on collection sites and their current and projected temperature.

Species No instars Locality Province Mean annual Temperature (ºC)a Annual Temperature range (ºC)a,b

Current 2070 Current 2070

Speonomites crypticola 1 Cave Forat Negre Lleida 10.4 11.8 -2 – 23.1 -0.8 – 28.0

Speonomidius crotchi 2 Cave Arrikrutz Guipuzcoa 11.1 14.9 3.4 – 24.6 5.2 - 28.4

Bathysciola rugosa 3 Cave Orobe Navarra 12 13.6 8 – 24.4 26.8 – 28.5

aSource: Worldclim v. 1.4 database (https://www.worldclim.org/), 30 second spatial resolution. 

Future projected temperatures in 2070 were obtained for the Representative Concentration 

Pathway 4.5 and by averaging 17 different Global Circulation Models. 

bMinimum temperature of the coldest month – Maximum temperature of the warmest month

Page 26 of 29

ACV submitted manuscript

ACV: For review purposes only - please do not distribute

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

https://www.worldclim.org/


Review Copy

24

Table 2. Results of post-hoc tests (with Bonferroni-adjusted P-values) to compare heat coma 

temperature i) among species, ii) between acclimation treatments (C: control vs 20ºC) within 

each species and iii) among species within each acclimation treatment. 

Value df Sum of Sq F P
B. rugosa - S. crotchi -0.088 1 0.073 0.220 1
B. rugosa - S. crypticola 1.047 1 8.698 26.125 <0.001
S. crotchi - S. crypticola 1.135 1 13.206 39.668 <0.001
Residuals 52 17.312
B. rugosa (C - 20) -1.336 1 6.643 19.953 <0.001
S. crotchi (C - 20) -0.446 1 1.294 3.886 0.162
S. crypticola (C - 20) -0.360 1 0.548 1.646 0.615
Residuals 52 17.312
C (B. rugosa - S. crotchi) -0.532 1 1.400 4.206 0.272
C (B. rugosa - S. crypticola) 0.560 1 1.327 3.985 0.307
C (S. crotchi - S. crypticola) 1.091 1 6.335 19.030 <0.001
20 (B. rugosa - S. crotchi) 0.356 1 0.577 1.732 1
20 (B. rugosa - S. crypticola) 1.534 1 8.784 26.385 <0.001
20 (S. crotchi - S. crypticola) 1.178 1 6.871 20.638 <0.001
Residuals 52 17.312

          df: degrees of freedom, Sum of Sq: sum of squares
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Figure legends

Figure 1. Mean ± s.e.m heat coma temperatures measured after acclimation at a control 

temperature (S. crypticola 11ºC; S. crotchi 9ºC; B. rugosa 12ºC) or 20ºC. Significant differences 

between acclimation treatments within each species (P<0.05 in post-hoc tests) are indicated with 

asterisks. 
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