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Abstract: In some cases, heuristics may be transferred easily between different optimisation problems. This is the case
if these problems are equivalent or dual (e.g., maximum clique and maximum independent set) or have similar
objective functions. However, the link between problems can further be defined by the constraints that define
them. This refining can be achieved by organising constraints into families and translating between them
using gadgets. If two problems are in the same constraint family, the gadgets tell us how to map from one
problem to another and which constraints are modified. This helps better understand a problem through its
constraints and how best to use domain specific heuristics. In this position paper, we argue that this allows
us to understand how to map between heuristics developed for one problem to heuristics for another problem,
giving an example of how this might be achieved.

1 Introduction

Karp reductions show that if a problem can be re-
duced to a known NP-complete problem, then it
too must be NP-complete (Karp, 1972). Such NP-
complete problems are commonly solved with meta-
heuristics (Krawiec et al., 2018), of which there many
approaches (e.g., genetic algorithm, ant colony opti-
misation, particle swarm optimisation). The number
of such approaches is growing dramatically.

(Sörensen, 2015) examined this plethora of meta-
heuristic approaches and identified the need for an
underlying theory, observing that ostensibly distinct
metaheuristics in fact share many key components.
The author recommended that the design of meta-
heuristics be performed with regard to problem struc-
ture. This problem structure thus informs the design
of components of metaheuristics, too. Seeds of such
an approach were originally suggested by the work of
(Cook, 1971), commonly referred to as Cook-Levin,
who show that any problem in NP can be written as
a collection of clauses in conjunctive normal form
(SAT).

(Karp, 1972) showed that, supplementary to
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Cook-Levin, there is a structure to NP-complete prob-
lems in general, finding reductions between his fa-
mous 21 NP-complete problems. These transitive re-
ductions may be seen as fundamental relations be-
tween structures of each of the problems. Since
then, there have been thousands of NP-complete prob-
lems produced and, since they are all NP-complete,
there are fundamental reductions or relations between
the structures of these problems. Combined with
the work of Cook-Levin, this backs up the work
of (Sörensen, 2015), suggesting that there is a def-
inite structure between effective algorithms for NP-
complete problems. This also holds for NP-hard op-
timisation variants of these problems. Furthermore,
this suggests that some extension of reductions be-
tween problems may be produced between those algo-
rithms. This means that a fundamental view of meta-
heuristic frameworks is possible, reducing (or map-
ping) between metaheuristic components. Finally,
(Trevisan et al., 2000) showed that by writing prob-
lems as linear programs, it is possible to construct op-
timal gadgets (in polynomial time) via reducing be-
tween the constraints (or families of constraints) of
these linear programs.



1.1 Motivation

As there are many existing algorithms that are not
designed for a specific problem (e.g., NSGA-II,
SPEA2), and many existing NP-complete/hard prob-
lems, our approach aims to build a bridge between
existing theoretical work done on NP-complete prob-
lems and existing empirical work done by the meta-
heuristics community.

It could be argued that a well-designed meta-
heuristic is designed for a problem. For exam-
ple, the well-known Lin-Kernighan heuristic (Lin and
Kernighan, 1973) proves effective for the Travelling
Salesman Problem (TSP) since it explicitly treats the
topology of the problem. As another example, hill-
climbers are excellent at solving unimodal problems.
Our aim is to allow metaheuristics which are proved
to work well on one problem to be ported to other
problems via gadget transformations. Thus we wish
to make use of knowledge we already have about
mapping between problems and use this knowledge
to make new algorithms.

Further, we may interpret the following points
from (Cook, 1971):

1. A problem in NP is a problem that is only solv-
able by a polynomial-time algorithm that runs on
a Nondeterministic Turing Machine (NTM);

2. They show how to implement any algorithm on an
NTM as a Boolean formula;

3. Since any problem can encoded as an Boolean for-
mula, any algorithm can thus be encoded as an
Boolean formula.

In other words, we do not concentrate on the prob-
lems in NP - instead, we should be focusing on the
algorithms that solve them. We are motivated by this
approach of focusing on the algorithms and using the
mapping to exploit these algorithms.

We can exploit existing theory which effectively
provides a mapping (refinement of problem con-
straints) between problems. We build on this by sug-
gesting that an algorithm that performs well on one
domain can then be applied to another domain via
such a mapping between problems. Thus we wish to
take a promising algorithm from one domain and en-
able it to be applied to a new domain (which hopefully
will also be well performing), hoping to avoid the is-
sue of the ever increasing number of metaheuristics,
as mentioned by (Sörensen, 2015). Building on Tre-
visan (Trevisan et al., 2000), we show how a heuristic
appropriate for a given problem can be modified to be
used on another different problem.

Figure 1: A diagrammatic explanation of our approach.

1.2 Contribution of the Paper

The contribution of this position paper is that the work
of the aforementioned authors may be built upon to
provide a method of producing mappings between
heuristics. A visual explanation of our work is repre-
sented by Figure 1. Algorithms A and B denote algo-
rithms that solve problems A and B respectively. The
arrow between problems A and B denotes the trans-
lation of integer programming (IP) constraints from
problem A to B via a gadget. That is, we translate
modify or refine the constraints of problem A into
those for problem B. Through an analogous approach
to the gadget via judicious simulation of problem B
in Algorithm A, we create Algorithm B. Note that,
of course, this makes no guarantees of the efficacy of
the new algorithm (Algorithm B) on problem B. The
vertical arrows denote that algorithm A is applied to
problem A and algorithm B is applied to problem B.
Our contribution is the concept and our further work
will be the implementation.

Note that, in this position paper, we use the words
’algorithm’ and ’heuristic’ interchangeably. Also im-
portant to note that we do not make any guarantees of
the efficiency of the new algorithm in this work; the
implementation of such algorithms, based upon the
ideas given in this work, is classified in the realms of
further work.

This remainder of the paper is structured as fol-
lows. In Section 2 we introduce the technical back-
ground to our approach, examining constraints and
their families, and then lead into gadgets. In Sec-
tion 3 we detail our approach to constructing maps
between algorithms by utilising existing gadgets de-
fined between constraint families defining problems.
We end the work in Section 4, giving a conclusion and
an overview of further work.



2 Background

In this section, we introduce the technical background
to the work. Firstly, constraints that define problems
and the families of constraints arising are examined,
after which gadgets are briefly defined. Subsequently,
an example of an existing gadget from Vertex Cover
to Hamiltonian Circuit (both NP-complete problems)
is given. Finally, these constraint families are parti-
tioned into two types, the idea being gadgets to map
between constraints in a particular type of constraint
family are practical.

2.1 Constraint Families and Gadgets

In this paper, we write definitions of NP problems as
IPs since it is straightforward to understand the con-
straints that define the problem. Constraint families
are essentially a common language which allow us to
show some problems are refinements of other prob-
lems. Further, (Trevisan et al., 2000) goes on to de-
fine constraint functions and constraint families, on
which gadgets act, in terms of IPs. We adopt the com-
mon notation of B= {0,1}. A constraint function is,
by (Trevisan et al., 2000), simply a Boolean function
f : Bk → B. A constraint family is a set of constraint
functions, and a constraint is then an assignment of a
constraint function.

A gadget is an algorithm that transforms the con-
straints of one problem to another in polynomial time.
Thus gadgets may be seen as methods for defining
one problem in terms of another, only possible be-
cause of inherent constraint-wise similarities between
those problems. Further, a gadget is, by (Trevisan
et al., 2000, p. 2074), “a finite combinatorial struc-
ture which translates a given constraint of one opti-
mization problem into a set of constraints of a second
optimization problem.” Thus, gadgets not only pre-
serve (NP-)complexity, but structure also.

Historically, creating gadgets was, at the very least
difficult and somewhat contrived, until the work of
(Trevisan et al., 2000), using a linear programming
(LP) implementation to find optimal gadgets in poly-
nomial time. There is an extensive literature on gad-
gets (e.g., the works (Cai et al., 2012; Garey and
Johnson, 1978; Papadimitriou and Yannakakis, 1988;
Sipser, 2012; Skiena, 2008)). There is also a small
amount of work on using gadgets to assist algorithms;
e.g., the work of (Letchford and Vu, 2019) on using
gadgets to generate cutting planes for algorithms on
the Stable Set and Clique Partitioning problems.

2.2 An Example of an Existing Gadget:
Vertex Cover to Hamiltonian
Circuit

Reductions involve the modification of the constraints
of one problem to encompass the constraints of an-
other problem. We know that the Minimum Vertex
Cover problem (i.e., finding the minimum set of ver-
tices that touch every edge of a graph) is NP-complete
via the famous reduction of its decision variant Vertex
Cover from 3SAT (Skiena, 2008, pp. 333). We also
recall that there is a reduction from Vertex Cover to
Hamiltonian Circuit by manipulation of their respec-
tive IPs. Assume G = (V,E,k) is an undirected graph,
where V is the set of vertices in the graph, E ⊆V ×V
is the set of edges in the graph and k is the size of the
vertex cover.

For each vertex v ∈ V we have a variable xv. We
interpret the variable as chosen to be included in a
vertex cover if xv = 1, and otherwise xv = 0. The de-
cision version of this problem is to return 1 if there is
a vertex cover of size k, or 0 otherwise. The optimisa-
tion version of the problem is to minimise the number
of vertices in the cover. As an IP, this is written as:

min ∑
v∈V

xv (minimize total cost)

subject to
xu + xv ≥ 1 for all e = {u,v} ∈ E (1)
xv ∈ {0,1} for all v ∈V. (2)

The Hamiltonian Circuit problem is to decide
whether, given a graph G(V,E,k), there is a circuit
of size k of vertices, each with degree 2, where each
vertex is visited only once. Here, k is the required cy-
cle size. Constraint (1) refers to covering every edge
in the graph, whereas constraint (2) states that every
vertex is either in or not in the cover.

Let xi j ∈ {0,1} be a variable representing an edge,
with value 1 if the edge is part of the route connecting
vi and v j, and 0 otherwise. Let ci j be the distance (un-
der some appropriate metric) between vertices i and
j. The following gives the well-known Miller-Tucker-
Zemlin formulation of the TSP (Miller et al., 1960):

min
n

∑
i=1

n

∑
j 6=i, j=1

ci jxi j (minimise total distance)



subject to the following constraints:

xi j ∈ {0,1} i, j = 1, . . . ,n (3)
ui ∈ Z i = 2, . . . ,n (4)

n

∑
i=1,i 6= j

xi j = 1 j = 1, . . . ,n (5)

n

∑
j=1, j 6=i

xi j = 1 i = 1, . . . ,n (6)

ui−u j +nxi j ≤ n−1 1 < i 6= j ≤ n. (7)
0≤ ui ≤ n−1 1 < i≤ n (8)

Constraint (7) is the subtour constraint, designed
to ensure that a tour does not break into at least two
subtours (the vertices clearly cannot cross but edges,
of course, may). Note that there are other formula-
tions of the TSP that are possible (Langevin et al.,
1990; Cheung, 2005; Sawik, 2016).

The well-known gadget of (Skiena, 2008) maps
Vertex Cover to Hamiltonian Circuit. The gadget con-
verts the instance of Vertex Cover into one of Hamil-
tonian Circuit. The process involves turning the undi-
rected graph of the source problem into the digraph
of the target problem. The edge gadget turns an undi-
rected edge into a directed edge. The digraph of the
target problem is then a chain of successive edge gad-
gets governed by the vertices originally connected to-
gether in the vertex cover. In terms of constraints,
the edge gadget converts constraint (1) in the Vertex
Cover IP, and maps it to constraints (5) and (6) of the
Hamiltonian Circuit IP formulation.

We consider Vertex Cover and Hamiltonian Cir-
cuit to be part of the constraint family that we call
allocation, where an algorithm allocates a vertex if it
lies on the vertex cover or route.

2.3 Constraint Families: Allocation and
Partition

The work of (Trevisan et al., 2000) discussed con-
straint families with respect to defining approxima-
tion algorithms. They used polynomial time reduc-
tions to define constraint families and showed how
they could be used to help find new approximation
algorithms. In this work, we study reductions using
gadgets to show how they refine or redefine the con-
straints of one problem to encompass the constraints
of another. In this way, they do not just preserve
complexity from one problem to another, but prob-
lem structure (i.e., IP constraints) also. It is in this
way gadgets can show how one problem is related to
another in the context of constraint families.

Graphs are used to express combinatorial optimi-
sation problems. The vertices simply represent “ob-

jects”, but the edges have a more complex role to play;
edges have different interpretations depending on the
problem. Let us compare three examples.

1. in Vertex Cover, an edge from one vertex to an-
other vertex (assuming one vertex is in the cover
set) tells us that the other vertex is covered;

2. in Graph Colouring, the edge tells us that each
vertex (connected by the edge) must be a differ-
ent colour; and

3. in Hamiltonian Circuit the edge tells us that this
edge is part of the route.

The constraints tell us how to interpret and deal
with the edges for each type of problem. In other
words, vertices typically have a simple interpretation,
i.e., “objects” in the problem, while edges are inter-
preted as the “relationship between objects”, and give
meaning to the different problems (i.e., expressed by
the constraints). The meaning of a graph in terms of
the problem being expressed originates from the inter-
pretation of the edges, and not the vertices, and this is
why focusing on the constraints is fundamentally im-
portant.

We have called the constraint family containing
3SAT, Vertex Cover and Hamiltonian Circuit alloca-
tion because the constraints cause the algorithm to al-
locate vertices with a certain property to a result set.
The allocation constraint family essentially means us-
ing an edge to represent relations between elements of
the source problem.

However, when this is not the case, this leads us
to another constraint family we call partition. This
involves using an edge to represent that two objects
have no relation. In other words, we must parti-
tion a result set rather than allocate elements to one.
The constraint family then represents those prob-
lems which involve partitioning or colouring sets, or
the search for independent objects or subgraphs with
given properties. Two examples of problems in this
constraint family are 3-Colour, where we partition the
vertices into three sets (each set corresponding to a
different colour), and Subset Sum, where we partition
into two sets (where one of the sets has a given tar-
get sum). Again, we can define this constraint family
as we know there are reductions between problems
in the constraint family (Garey and Johnson, 1979).
In this way, the types of algorithms effective on prob-
lems from each type of constraint family may be anal-
ogously partitioned, and mapping between algorithms
of a given type is possible because the key operations
of the algorithm on each problem are essentially the
same. The next section gives our proposed approach.



3 Our Proposed Approach

3.1 Introduction

The field of metaheuristics has suffered in the past few
years by an overwhelming number of unexplained al-
gorithms. We believe to progress the field we need
fewer, but better understood, algorithms. We propose
a method of taking an algorithm designed with in-
sights into one problem, and then making that algo-
rithm applicable to a different problem type by us-
ing gadgets to map between the constraint classes of
problems. This mapping is effectively a mapping be-
tween an existing algorithm and a new algorithm (see
Figure 1).

3.2 Steps in Approach

The proposed approach involves the following steps.

1. Identify a successful heuristic on a specific do-
main (e.g., Lin-Kernighan on the TSP). We call
this heuristic the source algorithm and the prob-
lem the source problem;

2. Either identify an existing gadget from the ex-
isting research literature, or design a new gad-
get which maps between the constraints of source
problem and the target problem (e.g., a gadget
mapping from TSP to Minimum Vertex Cover);

3. Then apply the existing source algorithm to the
problem which has been translated from the target
problem to the source problem.

This mapping process, in effect, gives us a new al-
gorithm acting on a different problem to which it was
intended by exploiting the mapping provided by the
gadget. The gadget directly maps between the con-
straints of problems and indirectly maps between al-
gorithms.

3.3 An Example of the Approach

We discuss a practical example of how this transfor-
mation might be achieved. We take a Vertex Cover
problem such as one of the benchmark problems
found at (Xu, 2014). We can then create an algo-
rithm based on the gadget described in Section 2.2,
and show how the Vertex Cover instance is trans-
formed into a tour and solved accordingly. As such,
this problem could be solved using a well-known TSP
solver such as the Lin-Kernighan algorithm (Lin and
Kernighan, 1973).

The gadget in Section 2.2 is an example of a poly-
nomial time algorithm which maps one problem to

another problem. It does not directly transform one
algorithm into another. Rather, it shows how the con-
straints of one problem may be refined to the con-
straints of another. To do this we need to make a
number of observations. A Vertex Cover graph has
predefined edges and as such will have leaves that do
not lead to other edges. It might also have highly in-
terconnected subgraphs, which means there will be
internal loops.

This means the gadget described shows how a so-
lution to a Vertex Cover problem can also be a solu-
tion to Hamiltonian Circuit problem at the same time.
If we look at constraint (1) of the Vertex Cover IP
and constraints (5) and (6) of the Hamiltonian Cir-
cuit IP, we can see how the two Hamiltonian Circuit
constraints are refinements of the Vertex Cover con-
straint. That is, an edge in a Vertex Cover can have
at most two vertices in a cover set. As a brief exam-
ple, take an edge from vertex i to vertex j in a Vertex
Cover graph. This can be represented as a route from
i to j if only one vertex of the edge is in the cover. If
both vertices are in the cover we route from i to j and
then j to i.

From this observation we can suggest a method
for solving Vertex Cover using an algorithm which is
designed to solve Hamiltonian circuits. This might
be efficacious as Hamiltonian Circuit and TSP prob-
lems have received a lot of attention by researchers
and there are many algorithms that find good solutions
to these types of problems. This is because construc-
tive heuristics tell us something about the solution and
the process by which we arrive at a solution. Let us
define a {0,1}-adjacency matrix where the value 0 in-
dicates the absence of an edge from i to j, while the
value 1 indicates the presence of an edge. We can
modify a well-known algorithm for solving the ver-
tex cover problem. Let C = /0 be the cover set and let
E be the set of all edges in the graph G. Then while
E 6= /0 pick an arbitrary edge (u,v) and put both ver-
tices in the cover. Then remove all edges incident to
those two vertices. Repeat until the set E is empty.
We can modify this algorithm to produce a Hamilto-
nian Circuit by noticing that the edges (u,v) in the
Vertex Cover algorithm can be seen as edges that are
visited in both directions in any circuit, i.e., (i, j) and
( j, i). The edges incident to these edges are of the
type where they are visited only once in a Hamilto-
nian circuit. The next section concludes the paper.

4 Conclusion

This position paper has presented an approach for
modification of a given heuristic acting on one prob-



lem to be applicable on another problem, where the
two problems are connected by a gadget. An exist-
ing gadget between Vertex Cover and Hamiltonian
Circuit was detailed, after which constraint families
were covered. These constraint families are vital to
the “translatability” between IP formulations of prob-
lems. Subsequently, our proposed approach was in-
troduced, using specifically the detailed gadget to re-
fine the constraints from Vertex Cover to Hamiltonian
Circuit. This then applies naturally to the optimisa-
tion versions of these two problems: Minimum Ver-
tex Cover and the TSP. This clearly suggests further
avenues of research with respect to implementation of
the approach, experimentation and future generalisa-
tions.

What we are proposing here is a way to transfer
between algorithms in order to bring about meaning-
ful comparisons. Constraint classes and their respec-
tive gadgets allow us to translate from one problem to
another and preserve underlying problem structure. It
is this preserved problem structure we wish the new
algorithm to be able to exploit. By representing prob-
lems as IPs, we can see which constraints need to be
modified when transforming between problems. They
also show us how to modify algorithms for solving
one problem into algorithms to solve another. This
observation is fundamental to our argument. The ap-
proach is useful since we can use it to modify exist-
ing algorithms intended for one domain, and therefore
design “new” heuristics which are applied to a differ-
ent domain (see Figure 1 for a graphical interpreta-
tion). This approach goes some way to addressing
the concerns of (Sörensen, 2015). Our outlook, then,
is a framework in which we can take algorithms de-
signed for one problem, and meaningfully compare
them with algorithms designed for another problem.
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