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Abstract

Relative Gromov-Witten theory and Vertex Operators

Shuai Wang

In this thesis, we report on two projects applying representation theoretic techniques

to solve enumerative and geometric problems, which were carried out by the author

during his pursuit of Ph.D. at Columbia.

We first study the relative Gromov-Witten theory on T ∗P1×P1 and show that cer-

tain equivariant limits give relative invariants on P1×P1. By formulating the quantum

multiplications on Hilb(T ∗P1) computed by Davesh Maulik and Alexei Oblomkov as

vertex operators and computing the product expansion, we demonstrate how to get

the insertion operator computed by Yaim Cooper and Rahul Pandharipande in the

equivariant limits.

Brenti proves a non-recursive formula for the Kazhdan-Lusztig polynomials of Cox-

eter groups by combinatorial methods. In the case of the Weyl group of a split group

over a finite field, a geometric interpretation is given by Sophie Morel via weight trun-

cation of perverse sheaves. With suitable modifications of Morel’s proof, we generalize

the geometric interpretation to the case of finite and affine partial flag varieties. We

demonstrate the result with essentially new examples using sl3 and sl4.
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Chapter 1

Introduction

The unifying theme of this thesis is the application of representation theoretic and

harmonic analytic techniques to enumerative, geometric, and arithmetic problems. In

the following sections, we introduce the motivation, notation, and state the main state-

ments dealt with in the following two projects.

1. Investigate the interaction among equivariant relative Gromov-Witten theory on

P1 × P1, T ∗P1 × P1, classical Severi degree problem on P1 × P1 and quantum

cohomology on Hilb(T ∗P1)[Wan19];

2. Find a generalization of a nonrecursive formula for Kazhdan-Lusztig polynomials

in the case of finite and affine partial flag varieties. [WZ19].

1.1 Relative Gromov-Witten theory and vertex op-

erators

Gromov-Witten theory is a modern approach to address questions in enumerative ge-

ometry that were asked more than a century ago by Chasles, Zeuthen,Schubert, and

the Italian school, of which one typical example is the Severi degree problem:
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How many algebraic curves in P2 of geometric genus g and degree d pass

through 3d+ g − 1 general points?

For example, when g = 0 and d = 1, the answer is 1—there is a unique line passing

through 2 generic points. The Severi problem for rational curves in all degrees can be

solved by considering intersection numbers on the moduli space of stable morphisms

from rational curves to P2, the associated quantum cohomology ring structure yields

the following striking result for Nd, the number of degree d rational plane curves passing

through 3d− 1 general points:

Nd =
∑

d1+d2=d;d1,d2>0

Nd1Nd2

(
d2

1d
2
2

(
3d− 4

3d1 − 2

)
− d3

1d2

(
3d− 4

3d1 − 1

))
.

The first few terms N1 = 1, N2 = 1, N3 = 12, N4 = 620..., already vastly generalize our

understanding of enumerative geometry of the projective plane. Moreover, Witten’s

conjecture [Wit91] was first solved by Kontsevich [Kon92]. In 2001, a new proof was

given in Okounkov-Pandharipande [OP09], which involves Hurwitz numbers and matrix

integral techniques. Generalizations of Witten’s 1990 conjecture [Wit91] were proposed

in [EHX97] and special cases were proven by Givental for toric Fano manifolds [Giv01]

and by Okounkov-Pandharipande [OP06] for algebraic curves.

In Okounkov-Pandharipande’s approach [OP09], the representation theory of sym-

metric groups is an essential ingredient. To enumerate the Hurwitz number of algebraic

curves, it’s enlightening to view them as the matrix coefficients of an operator MH . The

punchline is that, MH is diagonalized by Schur functions, thus the generating function

has a very simple form in the basis of Schur functions. Moreover, in this formal-

ism, the tensor products and induced representations on the representation theoretic

side yield a natural understanding of the cut-and-join structures of Hurwitz numbers.

Cooper and Pandharipande give a Fock space formalism of the Severi degree problem

on P1 × P1. By degenerating P1 × P1, the absolute Gromov-Witten invariants can
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be encoded in the matrix coefficients of the point-insertion operator MS(u,Q) in the

relative Gromov-Witten theory, and eigenvalues of special cases are computed. More

precisely, let the variables Q1 and Q2 correspond to the curve classes of the fibers of the

first and second projections to P1 respectively. The generating function for possibly

disconnected Severi degrees N•g,(d1,d2) is defined to be

ZP1×P1

= 1 +
∑
g∈Z

ug−1
∑

(d1,d2)6=(0,0)

N•g,(d1,d2)

t2d1+2d2+g−1

(2d1 + 2d2 + g − 1)!
Qd1

1 Q
d2
2 .

The vector v =
∑

d1≥0 |(1)d1 , ∅〉 =
∑

d1≥0 α
d1
−1(pt) in F [P1], the Fock space on H•(P1).

See section 4.2.3 for more details of the notations. Cooper and Pandharipande prove

the following theorems.

Theorem 1.1.1 ([CP17a]). The partition function for Severi degrees of P1 ×P1 is

ZP1×P1

= e
tQ2
u 〈v|Q|·|1 MS(u,Q2)|v〉

Proposition 1.1.2 ([CP17a]). The eigenvalues of MS(0, Q) on the space of energy s

are

{(|µ| − |ν|)
√
Q}|µ|+|ν|=s.

On the other hand, the Hilbert/Gromov-Witten correspondence was initiated by

Okounkov-Pandharipande [OP10] and solved for C2 [OP10] and An-resolutions [MO09,

Mau09]. In our A1 = T ∗P1 case, heuristically, by viewing a curve in T ∗P1 × P1 as a

P1-family of points in T ∗P1— roughly a P1 in Hilb•(T ∗P1), the equivariant quantum

cohomology of Hilb•(T ∗P1) is essentially the same as the equivariant Gromov-Witten

theory of T ∗P1 × P1. The Fock space QH•T (Hilb(T ∗P1)) is isomorphic to the space

of boundary conditions in the relative Gromov-Witten theory. Denote the two divisor

on Hilb(T ∗P1) as (2) and (1, ω), for more details, see section 3.2.1. The quantum

multiplication operator M(1,ω) [MO09] on Hilb(T ∗P1) corresponds to a divisor insertion
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operator in the Gromov-Witten theory of T ∗P1 × P1. By taking the limit, it reduces

to the point-insertion operator MS(u,Q) in [CP17a]. Via this link, we first match the

relative invariants.

Proposition 1.1.3. All relative Gromov-Witten invariants of P1 × P1 appear as the

coefficients of (t1+t2)2d+g−1-terms of the equivariant relative Gromov-Witten invariants

of T ∗P1 ×P1.

Based on the invariant level comparison and the following proposition,

Proposition 1.1.4. The divisor (1, ω) is the difference of the first Chern classes of

the tautological bundle V1 and V0 and the cup product acts diagonally in the fixed point

basis. More precisely,

(1, ω) = c1(V1)− c1(V0)

(1, ω) ∪ |λ, µ〉 = (t1|λ|+ t2|µ|)|λ, µ〉.

We first match the classical part M cl
(1,ω) of a quantum multiplication operator on

Hilb(T ∗P1) [MO09] with the type-A part of MS(u,Q) in [CP17a]:

Proposition 1.1.5. valt1+t2M
cl
(1,ω) = MA

S (u,Q).

Then by using Frenkel-Kac construction [FK81] of the basic representation of ŝl2

and ĝl2, the purely quantum part of the quantum multiplications on Hilb(T ∗P1) com-

puted by Maulik-Oblomkov can be realized as vertex operators. Computing the op-

erator product expansion (OPE) and taking equivariant limits, we match the purely

quantum part of the quantum multiplication operator in Hilb(T ∗P1) with the type-B

part of MS(u,Q) in [CP17a]:

Proposition 1.1.6. The qs-coefficient of Ω+ in [MO09] is the operator corresponding
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to the type-B curve counting in [CP17b]. More precisely,

[qs]Ω+ =
∑
k 6=0

: f(k)e(−k) :=
∑

|µ|=|ν|>0

α−µαν .

They’re vertex operators of ŝl2.

All combined, we recover MS(u,Q) in the limit of M1,ω:

Theorem 1.1.7 ([Wan19]). MS(u,Q) is an equivariant limit of M(1,ω):

MA
S (u,Q) = valt1+t2M

cl
1,ω

MB
S (u,Q) = [qs]Ω+.

After utilizing the Beilinson spectral sequence on Hirzebruch surfaces to give a

monad description of Hilb(T ∗P1) as quiver varieties and match the tautological bun-

dles, we also demonstrate how to diagonalize the quantum multiplication operator and

compute its eigenvalues via Bethe equations following Aganagic-Okounkov [AO17],

Nekrasov-Shatashvili [NS09, NS10].

Theorem 1.1.8. The eigenvalues of M(1,ω) are given by
∑
i

(xi − yi), where xi, yi are

the roots of the the Bethe equations

q =
a+ xi

a+ xi + ~
∏
j

xi − yj − ~
yj − xi − ~

∏
j 6=i

xj − xi − ~
xi − xj − ~

s =
a+ yi

a+ yi + ~
∏
j

yi − xj − ~
xj − yi − ~

∏
j 6=i

yj − yi − ~
yi − yj − ~

.

This gives a full computation of the Severi degree problem for P1×P1 and for C ×P1

by degeneration.
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The strategy is depicted in the following diagram

GW(T ∗P1 ×P1) QH•T (Hilb(T ∗P1)

GW(P1 ×P1) Quiver of Hilb(T ∗P1)

Severi problem on P1 ×P1

Hilb/GW

Localization [AO17]

Degeneration

1.2 Nonrecursive formulas for KL polynomials

Kazhdan-Lusztig polynomials and R-polynomials were defined in [KL79, KL80] as the

matrix coefficients of an involution in the standard basis of the Hecke algebra HW of

a Coxeter group W . Brenti proves a non-recursive formula for the Kazhdan-Lusztig

polynomials of Coxeter groups by combinatorial methods [Bre98]. In the case of the

Weyl group of a split group over a finite field, a geometric interpretation of the formula

on G/B is given by Sophie Morel [Mor11] via the weight truncation theory of perverse

sheaves developed by her. With suitable modifications of Morel’s proof, in a joint work

with Yihang Zhu [WZ19], we generalize the geometric interpretation to the case of

finite and affine partial flag varieties G/P . In the parabolic case corresponding to a

subgroup WJ ↪→ W , let W J be the set of minimal length representatives of W/WJ . For

any two elements τ ≤ σ in W J , certain generalized Kazhdan-Lusztig polynomials P J
τ,σ

and RJ
τ,σ can de defined [Deo87]. Let τ≤d denote the truncation operator in Q[t±

1
2 ],

that is τ≤d(
∑
i∈Z

ait
i
2 ) =

∑
i≤d

ait
i
2 . In this setting, we prove an analogue of [Mor11]:

Theorem 1.2.1 ([WZ19]). For any τ , σ ∈ W J , the generalized Kazhdan-Lusztig poly-

6



nomial can be computed from the generalized R-polynomials:

P J
τ,σ = τ`(σ)−`(τ)−1

∑
τ=v1<···<vr<σ

(−1)r(T1 ◦ · · · ◦ Tr−1 ◦ Tr)1,

where 1 is the constant polynomial 1 and

Tr(f) = τ`(σ)−`(vr+1)(R
J
vr+1,σ

· f)

On the one hand, the Kazhdan-Lusztig polynomial is the Poincaré series of the

perverse sheaf ICXσ
—the intermediate extension of the constant Q`-sheaf on the open

smooth locus Xσ [KL80]. On the other hand, Morel’s result [Mor08] enables one to

construct ICXσ
via weight truncation instead of the usual cohomological truncation.

The advantage is that weight truncation is compatible with the Frobenius action, and

this makes it possible to compute the Poincaré series step by step. Two geometric

inputs are important for the actual computation. One is a refinement of the Bruhat

decomposition of a flag variety [Deo85, Deo87]. Deodhar’s original construction was

combinatorial, and we can give a proof via a generalized Bott-Samelson resolution of

Xσ and Bialynicki-Birula decomposition, similar to the proof for finite G/B case in

[Mor11]. The other is that the embedding Xτ ↪→ Xw has a very nice open neighborhood

of the form Xτ × (Xσ ∩Xτ ). These geometric facts together with the Grothendieck-

Lefschetz trace formula reduce the computation required in [Mor11] to a point counting

problem on Xσ ∩Xτ . Due to a result by Kazhdan-Lusztig [KL80], the point counting

on Xσ ∩ Xτ just gives the corresponding R-polynomial. Via this link, when we com-

pute the Poincaré series of the intersection cohomology complex by counting points

via Frobenius action, we bridge the generalized R-polynomials with the generalized

Kazhdan-Lusztig polynomials with the help of Morel’s result [Mor08].
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1.3 Structure of this thesis

This thesis is organized as follows. In Chapter 2 we recall the key concepts and con-

structions for some infinite dimensional Lie algebras and their highest weight rep-

resentations. They are important for the description of the quantum multiplication

operators and the geometry of the generalized partial flag varieties. Then in Chapter

3 we describe the geometry and equivariant quantum cohomology of Hilbert schemes

of T ∗P1 via weight spaces in the basic representation of ĝl2. In Chapter 4 we intro-

duce the moduli space of relative Gromov-Witten theory, the corresponding virtual

fundamental classes and localization theorem. In Chapter 5, we utilize the equivariant

localization techniques and explore the relations between certain vertex operators, we

demonstrate how to get the invariants on P1 × P1 from the invariants of T ∗P1 × P1.

Then we match the operators in [CP17b] and [MO09]. In Chapter 6 we recall the

basic concepts and constructions of perverse sheaves that are important for our un-

derstanding of the intersection cohomology of Schubert varieties in generalized partial

flag varieties, and we also review Morel’s weight truncation theory with examples. In

Chapter 7, we explore local geometry of generalized partial flag varieties and then state

and prove non-recursive formulas for finite and affine G/P following [Mor11].
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Chapter 2

Infinite dimensional Lie algebras

and representations

A basic strategy to get infinite dimensional Lie algebras is to take a finite dimensional

Lie algebra g, consider the corresponding loop algebra g[t, t−1], and then consider

central extensions or add certain derivation when necessary. If we start from the

abelian Lie algebra C, we get the Heisenberg algebra, if we take a semisimple Lie

algebra g, we get Kac-Moody algebra ĝ. We’ll briefly review the general construction

and demonstrate with the Heisenberg algebra H, and the Kac-Moody Lie algebras ŝl2

and ĝl2. The Heisenberg algebra [KR87] and its representations will be important in

our description of different cohomology theories of Hilbert Schemes in section 3.2 and

the space of relative conditions of relative Gromov-Witten theory in section 4.2.3. The

structure of semisimple and Kac-Moody Lie algebras will be used in the description of

the geometry of the partial flag varieties in section 7.1, the basic representations of ŝl2

and ĝl2 are key for representation theoretic presentation of the quantum cohomology

ring of Hilbert schemes and quantum multiplication by divisors in section 3.2.

9



2.1 The Heisenberg algebra

Starting from the abelian Lie algebra C, Heisenberg algebra H is the one dimensional

central extension of the loop algebra C[t, t−1]. In other words, the Heisenberg algebra

has a basis {αn, n ∈ Z; c}, and the commutation relations

[c, αn] = 0

[αk, αl] = kδk+lc.

Note that α0 is also a central element, it’s called the zero mode. Some authors just

ignore α0 in the definition of a Heisenberg algebra.

The Fock space F = C[x1, x2, . . . ] is the polymonial ring with infinite many vari-

ables. Given µ, ~ ∈ C, the Fock space representation of H on F(k > 0):

αk = εk
∂

∂xk

α−k = ~ε−1
k kxk

α0 = µI

c = ~I

In the thesis, all incarnations of this representation have ~ = 1, εk = 1 and µ = 1.

Moreover, we can consider the Heisenberg (super)algebra associated to a super

space V [EG00, Nak99], that is a decomposition V = V+⊕V− of V into even subspace

and odd subspace, with a non-degenerate bilinear form, for homogeneous element v

and w, satisfying

〈v, w〉 = (−1)deg v degw〈w, v〉.
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Let W = V ⊗C[t, t−1], we equip W with a bilinear form

〈v ⊗ tk, w ⊗ t`〉 = kδk+`〈v, w〉.

By abuse of notation, the Heisenberg superalgebra H is defined to be the free Lie

superalgebra divided by the two-sided ideal generated by [v⊗ tk, w⊗ t`] = 〈v⊗ tk, w⊗

t`〉1. This is slightly different from the definition in [Nak99] since we include all the

zero modes. The Heisenberg algebra has a representation on the Fock space

F [V ] ∼=
∞⊗
m=0

Sym•(V+ ⊗ tm)⊗ ∧•(V− ⊗ tm).

The cohomology space H•(X) with the pairing

∫
X

γ1 · γ2 is our prototype of such V .

The Heisenberg superalgebra and corresponding Fock space will appear as space of

boundary conditions in relative Gromov-Witten theory on P1×P1 and T ∗P1×P1, as

well as the equivariant cohomology ring of Hilb•(T ∗P1), the Hilbert scheme of points on

T ∗P1. We also note that, in all our applications V = V+, the Fock space only contains

the symmetric part, this agrees with the construction of the basic representations of

ŝl2 and ĝl2.

Define the degree of the monomial xj11 . . . x
jk
k as

∑
k kjk, we also identify it with

a partition µ given by jk-rows with k boxes. Let Fk be the subspace of F spanned

by the monomials of degree k. Then F =
⊕
k≥0

Fk and dim Fk = p(k), the number

of partitions of size k. Thus the dimension generating function is the same as the

generating function of partitions

∑
k≥0

(dim Fk)qk =
∑
k≥0

dim p(k)qk =
∏
k≥1

1

1− qk
.

Similarly, the Fock space on a super space V = V+ ⊕ V− has generating function
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∏
k≥1

(1 + qk)dimV−

(1− qk)dimV+
. In practice of this thesis V = V+ = H•(X), then the generating

function is just
(∏
k≥1

1

1− qk
)dim H•(X)

, which can be viewed as the generating function

of the space of all possible combinations of n = dim H•(X) partitions. Directly related

to the degree is the so-called energy operator

E =
∑
k≥0

α−kαk =
∑
k

kxk
∂

∂xk
.

The monomial xj11 . . . x
jk
k is an eigenspace of E with eigenvalue exactly its degree∑

k kjk, that is the size of the partition. H admits an antilinear anti-involution ω,

such that ω(αn) = α−n, ω(c) = c. By [KR87], the corresponding Fock space F car-

ries a unique Hermitian form which is contravariant with respect to ω and such that

〈1,1〉 = 1 for the vacuum vector v∅ = 1. The monomials xj11 . . . x
jk
k = αj1−1 . . . α

jn
−n for

an orthogonal basis have norms given by

〈αj1−1 . . . α
jn
−n|α

j1
−1 . . . α

jn
−n〉 =

n∏
k=1

(jk)!(k)jk =: z(µ).

In later sections, this will be used to describe the intersection paring on Hilbert schemes

as well as package the Severi degrees on P1 ×P1 after a little modification

2.2 Kac-Moody Algebras and highest weight rep-

resentations

Kac-Moody Lie algebras are generalizations of finite-dimensional simple Lie algebras.

They include finite-dimensional simple Lie algebras as special cases but most Kac-

Moody Lie algebras are infinite dimensional. Kac-Moody Lie algebras share many

concepts and results similar to the finite dimensional counterparts. For example, the

root system, Weyl group, weight lattice, the integrable highest weight representation
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theory and the Weyl character formulas. These concepts are important both for our

Gromov-Witten theory project and the Kazhdan-Lusztig polynomials for finite and

infinite G/P project. Thus in this section, we first review the notion of Kac-Moody

Lie algebras and their highest weight representations.

Let A be a (generalized) Cartan matrix. This is a `×` matrix A = (aij) with aii = 2,

∀i ∈ I = {1, 2, . . . , `}, aij ≤ 0 for distince i, j ∈ I, such that aij = 0 if and only if aji=0.

In later discussions, we always assume that the generalized Cartan matrix is indecom-

posable and symmetrizable. Indecomposable means that it cannot be rearranged into

two diagonal blocks a change of basis of the vector space; and symmetrizable means

that DA is symmetric for some invertible diagonal matrix D. g admits an invariant

symmetric bilinear form if the corresponding Cartan matrix is diagonalizable. For in

this case, we can define the Casmir operator and the corresponding representation

theory behaves good. The transpose At of A is also a generalized Cartan matrix, the

corresponding Kac-Moody Lie algebra gAt is the dual of gA in the sense that the roots

and coroots are interchanged.

Definition 2.2.1 (Kac-Moody Lie algebra gA). For any generalized Cartan matrix A

and for any field K of characteristic 0, gA denote the Lie algebra generated over K by

the 3` elements h1, . . . , h`, e1, . . . , e`, and f1, . . . , f` subject to the following relations

[hi, hj] = 0, [fi, ej] = δijhi

[hi, ej] = aijej, [hi, fj] = −aijfj, ∀i, j ∈ I = {1, . . . , `}

(adei)
−aij+1ej = 0, (adfi)

−aij+1fj = 0. for distinct i, j. (Serr relations).

We call gA the Kac-Moody algebra over K associated to A.

Let Γ =
⊕
i∈I

Zαi be a free abelian group generated by {α1, . . . , α`}. gA has a Γ-

graded Lie algebra structure. Let deg(ei) = αi, deg(hi) = 0, deg(fi) = −αi. For any

α ∈ Γ, gα denotes the subspace of gA consisting of all elements of degree α. Then
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we have h := g0 = Kh1 ⊕ · · · ⊕ Kh`. A nonzero element α ∈ Γ is called a root if

gα 6= 0. Let ∆ denote the set of all roots. Then ∆ is contained in Γ+ ∪ Γ−, where

Γ+ := {α =
∑
i∈I

kiαi|ki ≥ 0} and Γ− = −Γ+. Set ∆+ = Γ+ ∩∆, ∆− = −∆+. They’re

called the positive root system and negative root system of gA respectively. For any

α =
∑
i∈I

kiai, gα (resp. g−α)is the subspace of gA generated by elements of the form

[ei1 [ei2 . . . [eir−1 , eir ] . . . ]]

resp. [fi1 [fi2 . . . [fir−1 , fir ] . . . ]],

where ei (resp. fi) appears exactly |ki| times. Specially, gα = Kei and g−α = Kfi.

{αi, . . . , α`} is called the set of simple roots. The vector space h contains vectors

{α∨1 , . . . , α∨` }, which is called the set of simple coroors, such that 〈α∨i , αj〉 = αj(α
∨
i ) =

aij.

Affine Lie algebras (e.g. ŝl2), as special cases of Kac-Moody algebras, can also

be described as central extensions of loop algebras associated to finite dimensional

semisimple Lie algebras. Start from a finite dimensional simple Lie algebra g, then one

may make a central extension of the loop algebra g[t, t−1], see the appendix .

0→ C · c→ g′ → g[t, t−1]→ 0

To get the affine Lie algebra ĝ, we add another basis element d, which acts on g′ by

derivation. If h is the Cartan algebra of g, then the Cartan algebra of g′ is h ⊕C · c,

that of ĝ is h ⊕C · c ⊕C · d. For an untwisted affine Lie algebra ĝ [KR87]. The root

system ∆̂ = ∆⊕Zδ, where ∆ is the root system of g. Real roots consist of α+nδ with

α ∈ ∆, and n ∈ Z. A root α+nδ is positive if either n = 0 and α ∈ ∆+ or n > 0. The

imaginary roots consist of nδ with n 6= 0. For a real root α, let rα be the reflection in

the hyperplane orthogonal to α. The Weyl group is defined to be the Coxeter group

14



Figure 1: ŝl3 root system

Figure 2: G2 root/weight system

generated by the `+ 1 reflections associated to the simple roots αi (i = 0, . . . , `).

Example 2.2.2 (Root system of affine ŝl3). The root system of ŝl3 is generated by

{α0, α1, α2}, the imaginary root δ = α1 + α1 + α2. See Figure 1 taken from [KMPS90]

1 .

Definition 2.2.3 (Weight lattice and dominant weights). The subset of h∗ character-

ized by λ(α∨i ) ∈ Z for all the coroots α∨i is called the weight lattice P . A weight λ ∈ P

is called dominant if

〈λ, α∨i 〉 = λ(α∨i ) ≥ 0

for all simple coroots α∨i . Let P+ be the set of dominant weights.

Example 2.2.4 (Dominant weights of G2). The root system of G2 is generated by the

long root α and short root β. The weight lattice of G2 is the same as its root lattice,

1This use is covered by fair use, in accordance with Section 107 of US Copyright Law.
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the dominant weights are spanned by {2α+ 3β, α+ 3β}. See figure 2, credit to Samuel

Mundy.

The structure theory of these (infinite dimensional) Lie algebras has deep interaction

of the geometry of homogeneous spaces, such as flag varieties G/B and partial flag

varieties G/P . For example, the Picard group of G/B can be described by the cokernel

of the Cartan matrix [Pop74]. The Bruhat decomposition of a finite dimensional flag

variety (resp. partial flag varieties) can be described by the Bruhat order in the Weyl

group (resp. cosets of the Weyl group) in chapter 7. The Bruhat decomposition for

the affine Grassmannian GrG is parametrized by the dominant weights P+ in section

7.1.

Moerover, a Kac-Moody Lie algebra has a triangular decomposition

g = h⊕ n+ ⊕ n−,

where n+ and n− are locally nilpotent Lie algebras by our description above and the

Serre relations. If V is a g-module, we have a decomposition of V into weight subspaces

V =
⊕
λ∈h∗

Vλ.

In many cases Vλ is finite-dimensional vector space, and h ∈ h acts by hv = λ(h)v

for h ∈ h, v ∈ Vλ. λ is called a weight if and only if Vλ 6= 0. Vλ is called the weight

space of weight λ and its dimension is the multiplicity of Vλ. Specially, the root space

decomposition of gA we discussed above is the same as the weight space decomposition

of gA viewed as a g-module under the adjoint representation.

Let V =
⊕
λ∈h∗

Vλ be a g-module with a weight space decomposition, v ∈ V is called

a highest weight vector if it’s annihilated by n+. If the space of highest weight vectors

is one-dimensional, and if V is generated by a highest weight vector v, then Kv = Vλ
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for a weight λ, λ is called the highest weight of V , and V is called a highest weight

representation. Let α be a real root, then the two one-dimensional spaces gα and g−α

generate a Lie algebra isomorphic to sl2.

Definition 2.2.5 (Integrable g-module). The g-module V is called integrable if for

each real root α the representation of sl2 obtained this way integrates to a representa-

tion of the Lie group SL2.

Remark 2.2.6. Since this group contains an element that stabilizes h and induces the

corresponding simple reflection on the weight lattice, integrability implies that the

weight multiplicities are invariant under the action of the Weyl group.

For andy λ ∈ h∗, then there is a universal highest weight module M(λ) such that

any highest weight module with highest weight λ is a quotient of M(λ). M(λ) is called

the Verma module of weight λ. Specially, M(λ) has a unique irreducible quotient

denoted L(λ).

As special cases of heighest weight representations of the form L(λ), we shall de-

scribe in the next section the basic representations of ŝl2 and ĝl2. They’ll be indispens-

able in the relative Gromov-Witten theory project.

2.3 Examples: Basic representations of ŝl2 and ĝl2

First, we’ve recalled in the previous section the construction of the affine Lie algebra ĝ

associated to a complex semisimple Lie algebra g and its highest weight representations.

Let h be the Cartan subalgebra of g, ∆ be the root system in h∗ and Q be the lattice

generated by the root system. Let 〈, 〉 be an invariant bilinear pairing on g such

that 〈α, α〉 = 2 for a long root α. Unwinding the definition, the affine Lie algebra ĝ

17



characterized by the following conditions

ĝ = g[t, t−1]⊕Cc⊕Cd

[x(k)⊕ a1c⊕ b1d, y(l)⊕ a2c⊕ b2d] = [x, y](k + l) + kδk+l〈x, y〉+ b1ly(l)− b2kx(k).

The basic representation ρ is an irreducible representation V of g and there exists a

vector v ∈ V such that ρ(g[t])v = 0 and ρ(c)v = v. The basic representation plays a

central role in our description of the quantum cohomology ring of Hilb(T ∗P1). Here

we recall the Frenkel-Kac construction of the basic representation. It’s based on the

notion of a Heisenberg system (s̃, Q), where s̃ = h[t, t−1] ⊕ Cc can be viewed as a

generalization of the oscillator algebra. Let s− = t−1h[t−1] be the negative part of the

Heisenberg algebra. We define the Fock space F to be the symmetric algebra Sym•(s−)

of s−. Then the basis representation as a vector space is given by

L = Sym•(s−)⊗C[Q],

where C[Q] is the group algebra of the root lattice Q. The actions can be described

as follows, for any k 6= 0, h(k) acts trivially on C[Q] and as a multiplication by h(k) if

k ≤ 0 and as a derivation of Sym•(s−) if k > 0, namely ρ(h(k))(h′(l)) = kδk+l〈h, h′〉.

On the other hand h(0) acts trivially on Sym•((s−)) and as a derivation on C[Q],

namely ρ(h)(eα) = α(h)eα, we denote it by ∂h. The action of the off-diagonal element

Eα are given by the so-called vertex operators associated with the root α ∈ Q. To be

more precise, e(z) =
∑
k∈Z

e(k)z−k−1 is given by

X(α, z) := exp(
∑
k≥1

zk

k
α(−k)) exp(tα + (ln z)∂α) exp(−

∑
k≥1

z−k

k
α(k))
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where tα means Q acts on C[Q] by tα(eβ) = ε(β, α)eβ+α, ε is a 2-cocycle of the

group Q with values in {±1} such that ε(α, β)ε(−α, β) = eiπ〈α,β〉 and ε(α,−α) =

ε(α, 0) = 1. Note that the middle term in the vertex algebra can also be written as

z
1
2
〈α,α〉eα exp(ln z)∂α and exp(ln z)∂α =

∑
k∈Z

zkPk where Pk(e
β) = δk,〈β,α〉e

β [FK81, page

47]. Finally, choose dual bases ui, u
i of h, we define the action of d to be −D0, where

D0 =

dim g∑
i=1

(
1

2
ui(0)ui(0) +

∑
k≥1

ui(−n)ui(n).

Now we specialize the Frenkel-Kac construction to the ŝl2 case to describe the basic

representations of ŝl2 and ĝl2. The loop algebra sl2[t, t−1] is generated by

α(k) = tk

1 0

0 −1

 , e(k) = tk

0 1

0 0

 , f(k) = tk

0 0

1 0

 .
The affine Lie algebra ŝl2 (type A

(1)
1 ) is defined in terms of a two-step central extension

(see the appendix for more explanation on the central extension) of the loop algebra

sl2[t, t−1]. Namely ŝl2 = sl2[t, t−1] ⊕ Cc ⊕ Cd where c is a central element and d is a

derivation. The commutators are given by

[x(k), y(l)] = [x, y](k + l) + kδk,−ltr(xy)c

[d, x(k)] = kx(k)

[d, c] = 0.

The Cartan subalgebra and its dual are given by ĥ = Cα ⊕ Cc ⊕ Cd and ĥ∗ =

Cα∗ ⊕ CΛ ⊕ Cd. The invariant symmetric non-degenerate bilinear form 〈, 〉 on ŝl2 is

given by
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〈, 〉 x(k) c d

y(l) δk+ltr(xy) 0 0

c 0 0 1

d 0 1 0

Thus sets of dual bases are given by

{α(k), e(k), f(k), c, d} and

{α(k)∗ =
1

2
α(−k), e(k)∗ = f(−k), f(k)∗ = e(−k),Λ = c∗ = d, δ = d∗ = c}.

The Frenkel-Kac construction above gives us the basic representation LΛ of highest

weight Λ. The negative part of the Heisenberg algebra is s− =
⊕
k≥1

α(−k). The Fock

space F = Sym•(s−) thus can be identified with the space of all partitions or the ring

of infinitely many variables C[x1, x2, . . . ]. The root system is one-dimensional thus we

have C[Q] ∼= Z. Then the basic representation is LΛ = F ⊗C[Q] = Sym•(s−)⊗C[Q].

In our case, Q = Zα. Let q = eα ∈ C[Q], we have

LΛ = C[x1, x2, . . . ; q
±1]

The operators are given as follows

α(−k) α α(k) c d

nxn 2q ∂
∂q

2 ∂
∂xn

1 −(q ∂
∂q

)2 −
∑
n≥1

nxn
∂

∂xn
.

For ĝl2, we have ĝl2 = ŝl2 ⊕
⊕
k∈Z

h(k), where h =

1 0

0 1

. That is, it’s the direct sum

of ŝl2 and the Heisenberg algebra generated by {h(k)}k∈Z. The Cartan subalgebra and

its dual is just the ones of ŝl2 with h or h∗ = 1
2
h added. Then the basic representation
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of the same highest weight is

VΛ = F ⊗ LΛ = C[y1, y2, . . . ;x1, x2, . . . ; q
±1],

where we have identified the Fock space of {h(k)}k∈Z with C[y1, y2, . . . ]. Viewed as an

element in ĝl2, d acts as

d 7→ −
∑
n≥1

nyn
∂

∂yn
−
∑
n≥1

nxn
∂

∂xn
− (q

∂

∂q
)2.

In 3.2.7, we’ll use these descriptions to embed H•(Hilb•(T ∗P1)) into the basic rep-

resentation of ĝl2. In section5.3, we’ll use them to match the purely quantum part of

the the quantum multiplication operator in [MO09] with that of in [CP17b].
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Chapter 3

Hilb/GW correspondence

3.1 Preliminaries on quantum cohomology

Let β ∈ H2(X,Z) be en effective curve class. Given (equivariant) cohomology classes

γ1, . . . , γn, the n-pointed genus g Gromov-Witten invariant is defined by

〈γ1, . . . , γn〉g,n,β =

∫
[Mg,n(X,β)]vir

n∏
k=1

ev∗k(γk),

where evk : M g,n(X, β) → X is the evaluation map associated to the k-th marked

point and the integration is against the T -equivariant virtual fundamental class of the

moduli space of genus 0 stable morphism along the pushforward map

H∗T (M g,n(X, β))→ H∗T (pt).

The quantum multiplication and quantum cohomology is defined via the three-point

genus 0 Gromov-Witten invariants, to be more precise

〈γ1, γ2 ? γ3〉X = 〈γ1, γ2 ∪ γ3〉+
∑

β∈Heff
2 (X,Z)

〈γ1, γ2, γ3〉0,3,βqβ

22



We’ll focus on the case where γ2 is a divisor. Namely γ2 ∈ H2
T (X). Note that in

this case we have the divisor equation in this situation

〈γ1, D, γ3〉X0,3,β = 〈D, β〉〈γ1, γ3〉X0,3,β

For the Hilbert schemes of interest, the moduli spaces of genus 0 stable morphisms

are not proper, however the T -fixed locus is necessarily proper. This is simply because

the crepant resolution Hilb(An)→ C2/Zn+1 is a proper map to an affine variety. Under

certain torus action, the base variety is contracted to the cone point 0, thus the T -fixed

locus is a closed subvariety of π−1(0), which is proper. In this case, the integral above

can be defined by the pushforward of its equivariant residue

H∗T (M0,n(X, β))loc → H∗T (pt)loc.

We denote Q[[qβ]] the algebra of formal power series in qβ, where β ∈ Heff
2 (X,Z)

are effective curve classes. The equivariant quantum cohomology ring QH•T (X) =

H•T (X)⊗QQ[[qβ]] is a deformation of the ordinary equivariant cohomology ring H•T (X),

equipped with a ring structure via the quantum multiplication we defined above.

3.2 Quantum cohomology of Hilbert schemes

3.2.1 Geometry of Hilbert schemes

The Hilbert scheme Hilbn(X) of n points on X parametrizes zero-dimensional sub-

schemes of X of length n. When X is a quasiprojective surface, Hilbn(X) is a smooth

irreducible quasiprojective algebraic variety of dimension 2n. The classical cohomology

[Nak99, Gro96] of Hilbert schemes of points on surfaces can be described well by rep-

resentation theory of Heisenberg algebras. We’ll focus on the An surfaces, which can

be realized as the minimal resolution of the quotient An → C2/Zn+1, where the cyclic
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group Zn+1 acts on C2 by (z1, z2) 7→ (ζz1, ζ
−1z2), ζ is the n+ 1-th root of unity. When

X is a An surface, the quantum cohomology and quantum multiplications can also

be described nicely by representation theory of ĝln+1 [MO09]. As a crepant resolution

of the quotient, the exceptional divisors on An consists of a chain of rational curves

E1, . . . , En. The negative of the intersection matrix is just the Cartan matrix of type

An. Thus 〈Ek, Ek〉 = −2, 〈Ek, E`〉 = 1 if |k−`| = 1. Moreover H2(An,C) =
⊕
k

C ·Ek.

We denote the dual basis by {ω1, . . . , ωn}. That is 〈ωk, E`〉 = δk`. We can also identify

H2(A,Z) with the type An root lattice by sending Ek to the k-th simple root of gln+1,

the one take value aii − ajj on the diagonal matrix diag(a11, . . . , ann). Consequently,

the positive roots correspond to αk` = Ek + · · ·+E`, we’ll use this terminology in the

description of the Gromov-Witten invariants on An ×P1, see section 3.3.

The diagonal action of T = (C×)2 on C2 commutes with the Z/Zn+1 action, thus

it lifts to torus actions on An as well as Hilb(An). Under this action An has n+1 fixed

points p0, . . . , pn with tangent weights at the fixed point pk given by

wLi = (n+ 2− k)t1 + (1− k)t2

wRi = (−n+ k − 1)t1 + kt2.

The T -fixed curves are the n exceptional rational curves, the noncompact fibre at p0

and pn.

p1

t2 − nt1 p2

p3

· · ·
pn−2

pn−1

pn

t1 − nt2
(n+ 1)t1 E1

nt1 − t2
E2E2 En−1

En

nt2 − t1

(n+ 1)t2

Figure 3: Torus weight of An

Since our project is mainly about the A1 = T ∗P1 case and for clarity. We specialize

the discussion above to this simplest case. The geometry for T ∗P1 is very clear. The
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exceptional locus E of T ∗P1 is just a copy of P1 with self-intersection number −2.

E is a generator of H2(T ∗P1,C), together with the identity element 1, they generate

the whole cohomology ring of H(T ∗P1,C). Denote ω the dual basis of E, that is

〈ω,E〉 = 1, actually ω = −1
2
E.

The T -action acts both on T ∗P1 and Hilb(T ∗P1,C). With this torus action, we

have two fixed points p0 = 0 and p1 = ∞. The tangent weights are given in the

following figure .

p1 p2

Et2 − t1 t1 − t2E

2t2 2t2

Figure 4: Torus weight of T ∗P1

Note that we have a simple identification of H2(T ∗P1,Z) with the rank one root

lattice of type A1.

3.2.2 Monad and quiver description

Let π : Σn = P(E∨) = P(O ⊕ O(−n)) → P1 be the n-th Hirzebruch surfaces. Let

H = c1(OΣn(1)), E be the class of P(O(−n)), its self-intersection equals to −n, F be

a fiber class of π. We have E = H − nF . The Chow ring of Σn is given by A(Σn) =

A[P1][H]/(H2−nFH) = Z[F,H]/(F 2, H2−nFH), naturally one has Pic(Σn) = ZH⊕

ZF . From now on, we denote E(p, q) = E⊗OΣn(pH+qF ) for any sheaf ofOΣn-modules.

Recall that the relative Euler sequence computes the relative canonical sheaf

0→ OΣn(−1, 0)→ π∗(E∨)→ TΣn/P1(−1, 0)→ 0.
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ΩΣn/P1 = OΣn(−2, 0)⊗ π∗(det E) = OΣn(−2, n)

TΣn/P1 = OΣn(2,−n)

ωΣn = OΣn(−2, n− 2).

For later computations, we need the following lemmata.

Lemma 3.2.1.

H0(OΣn(p, q)) 6= 0 if and only if


p ≥ 0

np+ q ≥ 0

H1(OΣn(p, q)) 6= 0 if and only if


p ≥ 0

q ≤ −2

or


p ≤ −2

q ≥ n

H2(OΣn(p, q)) 6= 0 if and only if


p ≥ −2

np+ q ≤ −(n+ 2)

.

Proof. See [BBR15, Lemma 3.1]

The classical Beilinson spectral sequence is a way to describe torsion-free sheaves on

P2 as the cohomology of certain three-term complexes—the so-called monad. With the

isomorphism between the Hilbert scheme of points on C2 and the moduli space of rank

1 torsion-free sheaves on P2 which are trivial over infinity, the Hilbert scheme can be

realized as the quiver variety with one vertex and one loop, see [Nak99, Theorem 2.1].

The essential part of the construction is a resolution of the diagonal in P2 × P2. For

Hirzebruch surfaces, the diagonal can also be resolved(for references to the details of

the construction , we refer to [Buc87] or [AB09]). We first briefly recall the Beilinson-

type spectral sequence on Σn, following the approach in [Nak99] we give a monad

description of Hilb(T ∗P1) as a Nakajima quiver variety of type A
(1)
1 , and we show that

the two tautological bundles corresponding to the two vertices are exactly OX(1)[n]

26



and O[n]
X [Buc87]. We denote pi : Σn × Σn be the projections to the two factors,

p : X×X → P1×P1 be the product of the ruling π. Let ∆P1 ⊂ P1×P1 be the diagonal

divisor on P1 × P1 and ∆ be the diagonal divisor on Σn × Σn, L = OP1×P1(∆P1).

Consider the line bundle

F = p∗1(TΣn/P1(−1, 0))⊗ p∗2(OΣn(1, 0)) = OΣn(1,−n) �OΣn(1, 0).

A rank 2 locally free sheaf G is defined by an extension

0→ F → G → p∗(L)→ 0.

Note that p∗(L) = OΣn(0, 1) � OΣn(0, 1). Buchdahl proved that[Buc87] the diagonal

∆ can be realized as the zero locus of a global section s of G, then the Koszul complex

of s gives us the resolution of the diagonal C• � O∆:

0→ ∧2G∨ → G∨ s−→ OΣn×Σn → O∆ → 0.

Then the Beilinson spectral sequences comes from different ways of computing the

image of p∗1E under the composite functor p2∗(O∆⊗−) . On the one hand, we trivially

have p2∗(O∆ ⊗ p∗1E) = E . If we take the cohomology of C• first in the double complex

for the hyper direct image R•p2∗(C
• ⊗ p∗1E), the trivial identity tells us exactly that

the corresponding spectral sequence degenerate at the E2 page, namely

Ep,q
2 = Rqp2∗(H

p(C• ⊗ p∗1E)) =


E (p, q) = (0, 0)

0 otherwise

.

On the other hand, we can also take the direct image first, then we get the so-called

Beilinson spectral sequence for Σn.
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Theorem 3.2.2 ([Buc87]). For any torsion free sheaf E on Σn, there exists a spectral

sequence, depending on E:

Ep,q
1 = Rqp2∗(∧−pG∨ ⊗ p∗1E)⇒


E p+ q = 0

0 otherwise

.

Remark 3.2.3. It’s originally stated for locally free sheaves, the same argument works

for torsion free sheaves with very little modification. Also notice that we can use either

p1∗(p
∗
2E ⊗ O∆) or p2∗(p

∗
1E ⊗ O∆). In general the two spectral sequences are different.

We chose the one above simply because we can get better vanishing control on the

E1-page.

Take the exterior powers of the dual of the defining sequence of G and tensor with

p∗1E , Since E is torsion-free, −⊗ p∗1E is an exact functor. We have

0→ ∧−p−1F∨ ⊗ p∗(L∨)⊗ p∗1E → ∧−pG∨ ⊗ p∗1E → ∧−pF∨ ⊗ p∗1E → 0.

If p = 0, the first sheaf in the sequence above vanishes, ∧−pG∨⊗ p∗1E = p∗1E , if p = −2,

the last sheaf in the sequence above vanishes, ∧−2G∨ ⊗ p∗1E = F∨ ⊗ p∗(L∨) ⊗ p∗1E =

E(−1, n− 1) �OΣn(−1,−1). Take the associated long exact sequence one has

E0,q
1 = Hq(E)⊗OΣn(0, 0) (3.1)

· · · → Hq(E(0,−1))⊗OΣn(0,−1)→E−1,q
1 → Hq(E(−1, n))⊗OΣn(−1, 0)→ . . . (3.2)

E−2,q
1 = Hq(E(−1, n− 1))⊗OΣn(−1,−1). (3.3)

Lemma 3.2.4. Let E be a torsion-free sheaf on Σn, trivial at infinity. We have

H0(E(p, q)) = 0 for np+ q ≤ −1

H2(E(p, q)) = 0 for np+ q ≥ −(n+ 1).
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Proposition 3.2.5. For any torsion free sheaf E on Σn can be realized as a monad:

0→ H1(E(−2, n−1))⊗OΣn(0,−1)→ E−1,1
1 ⊗OΣn(1, 0)→ H1(E(−1, 0))⊗OΣn(1, 0)→ 0.

where the E−1,1
1 ⊗OΣn(1, 0)-term can be computed from

0→ H1(E(−1,−1))⊗OΣ(1,−1)→ E−1,1
1 ⊗OΣn(1, 0)→ H1(E(−2, n))⊗OΣn(0, 0)→ 0.

Moreover, the second sequence splits.

Proof. The trick here is that E can’t be realized as a monad just from the spectral

sequence. However, for E(−1, 0), the Beilinson spectral sequence becomes

H2(E(−2, n− 1))⊗O(−1,−1) E−1,2
1 H2(E(−1, 0))⊗OΣn

H1(E(−2, n− 1))⊗OΣn(−1,−1) E−1,1
1 H1(E(−1, 0))⊗OΣn

H0(E(−2, n− 1))⊗OΣn(−1,−1) E−1,0
1 H0(E(−1, 0))⊗OΣn

By Lemma 3.2.4, all the four corner terms vanish. Then Theorem 3.2.2 forces E−1,2
1

and E−1,0
1 to be zeros. Thus only the q = 1 terms in the spectral sequence survive

and the spectral sequence degenerates at the E1-page. This proves that E(−1, 0) is the

cohomology of

0→ H1(E(−2, n− 1))⊗OΣn(−1,−1)→ E−1,1
1 → H1(E(−1, 0))⊗OΣn → 0.

Tensoring it with OΣn(1, 0) gives the first statement. To compute E−1,1
1 ⊗ OΣn(1, 0),

Lemma 3.2.4 shows that H0(E(−1,−1)) = 0 and H2(E(−1,−1)) = 0 for any Σn.

Sequence 3.2 degenerates to the second statement in the proposition. It splits because

Ext1(OΣn(1,−1),OΣn) = H1(OΣn(−1, 1)) = 0, the last equality comes from Lemma

3.2.1.

With the information above the the method similar to that in [Nak99, Page 18], we
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can realize Hilb(T ∗P1) as a Â1-quiver variety. We briefly recall this description here.

For a quiver Q and vertex set V and edge set E. Given a GIT stability parameter

θ ∈ R|V |, and two V -graded vector spaces V =
⊕
k∈V

Vk and W =
⊕
k∈V

Wk, the space of

framed representation of the quiver is defined to be

Repframed
Q :=

⊕
k→`∈E

Hom(Vk, V`)⊕
⊕
k∈V

Hom(Wk, Vk).

W is called the framing. T ∗Repframed
Q has a standard symplectic form. The action of

the structure group GV :=
∏
k∈V

GL(Vk) is an Hamiltonian action, the corresponding

moment map is denoted by µ. The Nakajima quiver variety is defined to be a GIT

quotient with respect to the stability condition θ

Mθ := µ−1(0)//θGV .

It has irreducible components Mθ(v, w) parametrized by the dimension vectors v =

(dimV1, . . . , dimV|V |) and w = (dimW1, . . . , dimW|V |). Specially, let v0 = (1, . . . , 1)

and w0 = (1, 0, . . . , 0).

Theorem 3.2.6 ([Nak99, Kuz07]). For any integer m ≥ 0 and stability condition θ

such that
n+1∑
k=1

θk > 0, there is an isomorphism

Mθ(mv0, w0) ∼= Hilbm(An).

Moreover, when θ is generic, Mθ is always a smooth algebraic variety and is a

fine moduli space of quiver representations. It has a universal family V =
⊕
k∈V

Vk.

Mθ(v, w) has |V | tautological bundles {V0, . . . ,Vn}. For Mθ(nv0, w0) ∼= Hilbn(An),

we can describe it as follows, if Z ⊂ An+1 is 0-dimensional subscheme of length n. The

30



fibre of Vk restricted at Z is given by

Vk|Z = H0(An+1,Vk ⊗OZ).

3.2.3 Fock space formalism

To start, we know that H•T (T ∗P1,Q) = H•(T ∗P1,Q)⊗Q[t1, t2]. Consider the Heisen-

berg algebra H generated over the field Q(t1, t2) by a central element c, {αk(γ)} for

γ ∈ H•T (T ∗P1) and k ∈ Z \ {0}. The Lie algebra structure of H is given by

[αk(γ1), α`(γ2)] = −kδk+l〈γ1, γ2〉c

[c, αk(γ)] = 0.

Note that the pairing 〈γ1, γ2〉 is commonly computed by equivariant localization for-

mula. Actually, the only nonvanishing Lie bracket is essentailly [αk(ω), α−k(E)] = −kc.

As noted in [MO09], we can pick a basis of cohomology for which the denomenator of

any intersection pairing are never divisible by ~ = (t1 + t2), that is H can be defined

over R = Q[t1, t2](t1+t2), the ring of rational functions with nonnegative valuation at

t1 + t2.

The Fock space F is freely generated over Q[t1, t2] by the commutation relations

of α−k(γ) on the vacuum vector v∅. F has a natural grading induced by defining

deg(v∅) = 0 and deg(α−k(γ)) = k which is compatible with the number of points

grading of Hilbm(T ∗P1). Base change to Q(t1, t2), the intersection pairing on gives a

nondegenerate paring on F ⊗Q(t1, t2), namely 〈v∅, v∅〉 = 1 and specifying the adjoint

αk(γ)∗ = (−1)kα−k(γ).

A natural basis of F can be described by cohomology-weighted partitions −→µ =

{(µi, γi)}`(µ)
i=1 , where {µi}`(µ)

i=1 is a partition and γi = 1 or E. A natural basis of F is
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given by the vectors

|µ, ν〉 =
1

z(µ)z(ν)

`(µ)∏
i=1

α−k(1)

`(ν)∏
j=1

α−νj(E)v∅

where

z(µ) = |Aut(µ)|
`(µ)∏
i=1

µi.

We also denote this basis element by −→µ if it’s clear in the context. The cohomological

degree of −→µ is 2(|µ|− `(µ))+
∑

deg(γi). The intersection pairing in this basis is given

by

〈−→µ ,−→ν 〉 =
δ−→µ−→ν

z(µ)z(ν)
.

We denote the boundary divisor on Hilbn(T ∗P1) by D, in the Nakajima basis,

see section 3.2.4 formalism, we have D = −{(2, 1), (1, 1)n−2}, H2(Hilbn(T ∗P1)) is 2-

dimensional, the other generator is given by (1, ω) = {(1, ω), (1, 1)n−1}. Note that

D could be thought as a tangency condition operator and ω could be thought as an

insertion at a fibre condition.

For our Hilbert scheme Hilb(T ∗P1), We also define the generating function

〈γ1, . . . , γn〉Hilb =
∑
β

〈γ1, . . . , γn〉Hilb
0,n,βq

D·βs(1,ω)·β.

Similarly, we define

〈γ1, γ2 ? γ3〉 = 〈γ1, γ2, γ3〉Hilb

The quantum multiplication gives the equivariant quantum cohomolgy

QHT (Hilb(T ∗P1)) = HT (Hilb(T ∗P1))⊗Q(t1, t2)((q))[s]

a structure of supercommutative associative algebra. It’s a deformation of the ordi-
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nary equivariant cohomology ring in two variables q and s. We denote the quantum

multiplication operator with respect to D and (1, ω) by MD and M(1,ω) respectively.

3.2.4 Quantum multiplication and the basic representation of

ĝl2

In [MO09], the authors compute the quantum multiplication by divisors on Hilb(An)

in terms of ĝln+1-representations. We specialize the result in [MO09] to the case of

A1 = T ∗P1 and the ĝl2 basic representation, see section 2.3. Consider the operator

Ω+ =
∑
k∈Z

: f(k)e(−k) : log(1− (−q)ks).

The normal ordering is given by

: f(k)e(−k) :=


f(k)e(−k), k ≤ 0

e(−k)f(k), k > 0.

.

We also consider another operator

Ω0 = −
∑
k≥1

(2t1t2α−k(1)αk(1) + α−k(E)αk(ω)) log(
1− (−q)k

1− (−q)
).

The Ω0 is defined in term of the Nakajima operators, so it naturally acts on the

equivariant cohomology ring of Hilb(T ∗P1). For Ω+, it only acts on the whole basic

representation a prior. However each summand : f(k)e(−k) : commutes with the

Cartan ĥ, hence Ω+ preserves each weight subspace. We shall identify H•T (Hilb(T ∗P1))

with a collection of weight subspaces in the basic representation. First we can embed
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the Heisenberg algebra into ĝl2 ⊗Q(t1, t2) via

α−k(1) 7→ Id(−k), α−k(1) 7→ Id(−k)

4t1t2

α−k(E) 7→

tk 0

0 −tk

 , c 7→ 1.

Then we can identify the equivariant quantum cohomology of T ∗P1 with certain weight

spaces of the basic representation of ĝl2.

Proposition 3.2.7. The following map gives a H-module isomorphism:

HT (Hilb•(T ∗P1))→
∞⊕
m=0

VΛ[Λ−mδ]

α−µ(1)v∅ 7→ yµ

α−µ(E)v∅ 7→ xµ.

Proof. α acts as 2q ∂
∂q

on LΛ and acts trivially on F . h also acts trivially, that is acts

by 0. Thus V [Λ − mδ] = {v ∈ VΛ|h(v) = (Λ(h) − mδ(h))(v)}. ĥ acts diagonally on

monomials, for a given yµxνq
k, their eigenvalues are given by

α h c d

2k 0 1 k2+|µ|+|ν|

That means weight spaces in the basic representations are those spanned by mononials,

more precisely,Cyµxνq
k ∼= VΛ[Λ−mδ + 2kα∗] = VΛ[Λ−mδ + 1

2
kα]. We conclude that

HT (Hilb•(T ∗P1) ∼= q0C[y1, . . . ;x1, . . . ] =
∞⊕
m=0

VΛ[Λ−mδ].

Proposition 3.2.8 ([MO09]). We have the equality for the quantum multiplication of
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divisor classes

MD = M cl
D + (t1 + t2)q

d

dq
Ω(q, s)

M(1,ω) = M cl
(1,ω) + (t1 + t2)s

d

ds
Ω+(q, s).

3.3 Absolute Gromov-Witten theory of An ×P1

Let X = An×P1 and (β,m) ∈ H2(X,Z) be en effective curve class, where β ∈ H2(An).

Given partitions µ1, . . . , µn, and n distinct points z1, . . . , zk on P1. The moduli space

M
•
g(X, (β,m), (µ1, . . . , µn))

parametrized possibly disconnected relative stable maps from a genus g source curve

to X, with image given by the cohomology class (β,m) and the ramification profile

given by partition µk on An× zk. Note that the • notation means that we don’t allow

collapsed connected components in the domain. The virtual fundamental class has

dimension

−KAn · β + 2m+
∑
k

(`(µk)−m) =
∑
k

`(µk) + (2− n)m.

Consider the cohomology-weighted partitions {−→µk}`k=1 of m, we as defined in 3.2.4,

for each part µik, we can associate to the corresponding ramification point the evaluation

map

evsk : M g(X, (β,m), (µ1, . . . , µk))→ X × zk.

The relative Gromov-Witten invariants in this case is defined to be

〈−→µ 1, . . . ,
−→µ n〉Xg,β =

1∏
Aut(µk)

∫ vir

[M
•
g(X)]

n∏
k=1

`(µk)∏
s=1

ev∗(γsk).
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Note that we suppress the m since it has been encoded in the partitions, namely m =

|µk|. The automorphism prefactors accounts for the fact that our relative conditions

are unordered however to define the moduli space, we need ordered partitions.

We also define a generating function of relative invariants [Mau09]

Z ′(X)−→µ 1,...,
−→µ n =

∑
g,β

〈−→µ 1, . . . ,
−→µ n〉Xg,βu2g−2sβ·ω.

Note once again that this generating function is defined by possibly disconnected

domain curves. If we fix a connected domain component, Z ′ is just a product of

the connected Gromov-Witten invariants. Thus it suffices to study the moduli space

M
◦
(X, (β,m), µ, ρ, ν) for connected domain curves. We can split the generating func-

tion into“classic part”(β = 0) and “quantum part” (β 6= 0):

Z◦β=0(X)−→µ ,−→ρ ,−→ν + Z◦β 6=0(X)−→µ ,−→ρ ,−→ν

.

Proposition 3.3.1 ([Mau09]). If µ, ν are partitions of m > 0 and the cohomology

classes labelling µ,ν are divisors, then we have

u`(µ)+`(ν)−1Z◦β 6=0(An ×P1)−→µ ,(2),−→ν =
d

du
Θ◦(−→µ ,−→ν )

u`(µ)+`(ν)Z◦β 6=0(An ×P1)−→µ ,(1,ωk),−→ν = sk
d

dsk
Θ◦(−→µ ,−→ν )

Otherwise, these invariants vanish.
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The Θ◦(−→µ ,−→ν ) above is given by

Θ◦(−→µ ,−→ν ) =
t1 + t2

|Aut(−→µ )||Aut(−→ν )|
×

∑
1≤i<j≤n

∞∑
d=1

(du)`(µ)+`(ν)−2×

∏`(µ)
k=1(αi,j · γk)S(dµku)

∏`(ν)
k=1(αi,j · ηk)S(dνku)

dS(du)2
(si . . . sj−1)d,

where S(u) =
sin(u

2
)

u
2

and S(du)2 in the denominator means (S(du))2.

3.4 Hilb/GW correspondence

Theorem 3.4.1 ([MO09]). Under the variable substitution q = e−iu we have

(−1)m〈−→µ ,−→ν ,−→ρ 〉Hilb = (−iu)−m+`(µ)+`(ν)+`(ρ)Z ′(An ×P1)−→µ ,−→ν ,−→ρ

for −→ν = D and −→ν = (1, ω).
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Chapter 4

Relative Gromov-Witten theory

4.1 Preliminaries on relative Gromov-Witten the-

ory

In this part, we give a brief review of the relative Gromov-Witten theory following

[LLZ07]. In chapter 5, we’ll compare the virtual fundamental classes of T ∗P1×P1 and

P1 × P1, virtual localization gives the change of variables that is needed to get the

relative invariants of P1 ×P1 from those of T ∗P1 ×P1.

4.1.1 The moduli space

Given a smooth projective variety X, and D1, . . . , Dk, smooth divisors on X, the

relative Gromov-Witten invariants essentially count the number of stable morphisms

from curves to X with certain intersection conditions on the divisors and we allow

degeneration of X along Di, a subtle point is that the degeneration is a ‘rubber’, in the

sense that morphisms into the degeneration are viewed equal up to a C×-action. We

demonstrate the definition in the case of one smooth divisor D ↪→ X, multiple divisors

only use more indices. We first introduce some notations.
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• ∆(D) = P(OD ⊕ ND/X) → D, the projective completion of the normal bundle

of D.

• ∆(D)(m), the union of m copies of ∆(D) by identifying the zero section D0 =

P(OD ⊕ 0) ↪→ ∆(D) of the i + 1-th copy ∆(D) with the ∞-section D∞ =

P(0⊕ND/Y ) of the i-th copy ∆(D). Denote the k-th section in this digeneration

by Dk.

• X[m] = X ∪∆(D)(m). The m-fold degeneration of X along the divisor.

• (C×)m acts on ∆(D)(m), the action is trivially on the divisor.

• π[m] : X[m] → X, the natural projection which is equivariant under the torus

action.

• β ∈ H2(X,Z), an effective curve class.

• d =

∫
β

c1(OD) ≥ 0, the intersection number of β with the divisor.

• µ, a partition of d and let `(µ) be the length of the partition. This keeps track

of the intersection type of β with the divisor.

• C, the source curve, let {xi}`(µ)
i=1 be the marked points on C that are mapped to

be the intersection points of β and D, let y be another free marked point.

C

X X[m]

f

i

π[m]

Now we can give the definition of Mg,1(X;D|µ), the moduli space of relative stable

morphism, if the divisor D is fixed, we also denote it by Mg,1(X,µ).

Definition 4.1.1. Mg,1(X;D|µ) is the moduli space of morphisms

f : (C; {xi}`(µ)
i=1 ; y)→ X[m]
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with the conditions that

• (C; {xi}`(µ)
i=1 ; y) is a connected prestable curve of arithmetic genus g with 1 + `(µ)

marked point.

• (π[m] ◦ f)∗[C] = β.

• f−1(Dm) =

`(µ)∑
i=1

µixi as a Cartier divisor. In other words, the partition actually

denotes the intersection type of f with the last copy of the divisor D in the

degeneration.

• f−1(Di) are nodes of C for 0 ≤ i ≤ m − 1, that is, except the last divisor in

the degeneration, the intersection points of f and Di are all nodes. Moreover, if

x ∈ f−1(Di) (i 6= m) is the intersection of two irreducible components C1, C2 of

C, then f |C1 and f |C2 have the same contact order to Di.

• Two morphisms are identified up to the torus action on the target.

• |Aut(f)| is finite, which takes into consideration of the torus action above.

It’s shown in [LLZ07] that Mg,1(X;D|µ) is a separated, proper Deligne-Mumford

stack with a perfect obstruction theory of dimension

∫
β

c1(TX) + (1− g)(dimX − 3) + 1 + (`(u)− |µ|).

For example, if X = P1 × P1, β = aH + bV , then dim[Mg,1(P1 × P1;µ, ν)vir] =

−2a − 2b + g + `(µ) + `(ν) − |µ| − |ν|. Similarly, for possibly disconnected stable

relative morphisms, we can define M•
g,1(X;D|µ), which is also a separated, proper

Deligne-Mumford stack with a perfect obstruction theory of dimension

∫
β

c1(TX) + (1− g)(dimX − 3) + 1 +
r∑

k=1

(`(ur)− |µr|),
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where r denote the number of irreducible components and g is the arithmetic genus in

the sense that 2 − 2g = χ =
∑r

k=1(2 − 2gk), gk is the genus for the k-th component.

For more details, see [LLZ07].

Example 4.1.2. If X = P1 ×P1, D1 = 0×P1, D2 =∞×P1 we have

ΩX(
2∑

α=1

logDα
(mα))

∼= ΩP1×P1 � p∗ΩP1(log 0 + log∞) = ΩP1×P1 � ØP1 ,

where p is the projection to the first factor. Similarly, if X = T ∗P1×P1, D1 = T ∗P1×0,

D2 = T ∗P1 ×∞

ΩX(
2∑

α=1

logDα
(mα))

∼= ΩP1×P1 � p∗ΩP1(log 0 + log∞) = ΩT ∗P1×P1 � ØP1 ,

where p is the projection to the second factor.

Example 4.1.3. Let β = dV +mH ∈ H2(P1×P1,Z) be an effective curve class. The

Euler characteristics of the restriction to β of ΩT ∗P1×P1 and ΩP1×P1 are well defined.

Let π : T ∗P1 → P1 be the natural projection. Since we have the exact sequence

0→ π∗ΩP1 → ΩT ∗P1 → ΩT ∗P1/P1 → 0.

χ(ΩT ∗P1/P1) = χ(ΩT ∗P1) − χ(π∗ΩP1) can be computed in the following way: T ∗P1

can be constructed by gluing two copies of C2, let (x, u), (y, v) be the coordinates

respectively. The transition function is given by (x, u) ↔ (y, v) = ( 1
x
, 1
x2u). Thus

dy∧dv = −1
x2 dx∧(−2x−3udx+x−2du) = − 1

x4dx∧du. We also know a general differential

on P1 is given by −1
x2 dx. Restrict everything to β, we have c1(ΩT ∗P1×P1|β) = (0)(dV +

mH) = 0, c1(ΩP1×P1) = (−2H)(dV + mH) = −2d. Thus the Euler characteristic

of ΩT ∗P1×P1/P1×P1|β is given by the Grothendieck-Riemann-Roch formula (1− g)rk +

(−4d− (−2d)) = −2d− g + 1

Example 4.1.4. Let X = T ∗P1×P1, Y = P1×P1 and denote the natural projections
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as T ∗P1 ×P1 π−→ P1 ×P1 p−→ P1. In the case of degeneration, we have

ΩX[m1,m2](
2∑

α=1

logDα
(mα)) = ΩX ⊗ π∗p∗ΩP1[m1,m2](log 0 + log∞)

ΩY [m1,m2](
2∑

α=1

logDα
(mα)) = ΩY ⊗ p∗ΩP1[m1,m2](log 0 + log∞).

Therefore, tensoring the relative differential sequence above with π∗p∗ΩP1[m1,m2](log 0+

log∞), we get

0→ π∗ΩY [m1,m2](
2∑

α=1

logDα
(mα))→ ΩX[m1,m2](

2∑
α=1

logDα
(mα))

→ ΩT ∗P1/P1 ⊗ π∗p∗ΩP1[m1,m2](log 0 + log∞)→ 0.

The invariants we’ll care about later is the equivariant Euler characteristic of the last

term. Let β = dV +mH, it’s straightforward to check that 〈c1(π∗p∗ΩP1[m1,m2](log 0 +

log∞)), β〉 = 0. It’s a line bundle, so it doesn’t affect the rank, in other words, the

Euler characteristic of the last term in the short exact sequence is exactly the same as

in the previous example, that is −2d− g + 1.

4.1.2 The virtual fundamental class

We explain the tangent-obstruction spaces at a point in Mg,1(X, β;µ, ν) following

[LLZ07]. First we need some notations.

• R = z +

`(µ)∑
i=1

xi +

`(ν)∑
i=1

yi is the divisor on C formed by those marked points.

• nαk = #{q|q ∈ f−1(Dα
k )}, the number of nodes in the fibre over the intersection

divisors in the degeneration.

• H0
et(R

α•
k ) =

⊕
q∈f−1(∆(Dα)k)

Tq(f
−1(∆(Dα)k))⊗ T ∗q (f−1(∆(Dα)k)) ∼= C⊕n

α
k .
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• Lαk are line bundles on Dα
k defined by

Lαk =


NDα/X ⊗NDα0 /∆(Dα)1 k = 0,

NDαk /∆(Dα)k ⊗NDαk+1/∆(Dα)k+1
1 ≤ k ≤ mα − 1.

• H1
et(R

α•
k ) ∼= H0(Dα

k , L
α
k )⊕n

α
k /H0(Dα

k , L
α
k ), where H0(Dα

k , L
α
k ) is viewed as a sub-

group of H0(Dα
k , L

α
k )⊕n

α
k via the diagonal embedding.

Let [f : (C, {xi}`(µ)
i=1 , {yi}

`(ν),z
i=1 )→ X[m1,m2]] be a relative stable morphism, the tangent

space T 1 and the obstruction space T 2 is given by the exact sequence

0 Ext0(ΩC(R),OC) H0(D•) T 1

Ext1(ΩC(R),OC) H1(D•) T 2 0,

where the terms H0(D•) and H1(D•) can be computed from the following long exact

sequence:

H0(C, f ∗(ΩX[m1,m2](
2∑

α=1

logDα
mα))∨)→ H0(D•)→

2⊕
α=1

mα−1⊕
k=0

H0
et(R

α•
k )

→ H1(C, f ∗(ΩX[m1,m2](
2∑

α=1

logDα
mα))∨)→ H1(D•)→

2⊕
α=1

mα−1⊕
k=0

H1
et(R

α•
k ).

All terms out of the range shown above are zeros. Specially, in either exact sequence,

the first arrow is an injection, the last arrow is a surjection. We explain the six terms

that are important for our computation of the perfect obstruction theory by

• B1 = Ext0(ΩC(R),OC) is the space of infinitesimal automorphisms of the domain

curve (C,R).

• B2 = H0(C, f
′∗(ΩT ∗P1 � OP1)) is the space of infinitesimal deformations of the

map with the domain curve (C,R) fixed.
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• B4 = Ext1(ΩC(D),ΩC) is the space of infinitesimal deformation of the domain

curve (C,R).

• B5 = H1(C, f ∗(Ω∨T ∗P1 �OP1)) is the space of obstructions to the deformations of

the map with the domain curve (C,R) fixed.

• B3 =
2⊕

α=1

mα−1⊕
`=0

H0
et(R

α•
` ) corresponds to the smoothing of the nodes in f−1(Dα

k ).

• B6 =
2⊕

α=1

mα−1⊕
`=0

H1
et(R

α•
` ) corresponds to the obstructions to the smoothing of the

nodes in f−1(Dα
k ).

The virtual fundamental class Mg,1(X, β;µ, ν) is defined to be the one associated to

the perfect obstruction theory T1 − T2.

4.1.3 Localization

We assume all relative divisors are T -equivariant. Thus T acts on ∆(Dα) andX[m1,m2]

naturally. T acts on the moduli spaces Mg,1(X;D; β|µ, ν) by moving the image. The

T -fixed point of the moduli space is a disjoint union of combinatorial configurations

parametrized by certain types of graphs, we denote one such type of fixed points by

FΓ. Let p ∈ FΓ and consider the two exact sequences defining the tangent-obstruction

spaces T 1, T 2 at this point. Let T i,f and T i,m be the submodules of trivial T -weight

and nontrivial T -weights respectively. Then T 1,f − T 2,f defines a perfect obstruction

theory on FΓ and T 1,m − T 2,m define the virtual normal bundle Nvir
FΓ

of FΓ in the

corresponding moduli space of relative stable morphisms. More precisely, we have

1

eT (Nvir
FΓ

)
=
eT (T 2,m)

eT (T 1,m)
=
eT (Bm

1 )eT (Bm
5 )eT (Bm

6 )

eT (Bm
2 )eT (Bm

4 )
.

The virtual localization theorem in [GP99, GV05] is applicable in our case. That is,

the T -equivariant virtual fundamental class is a summation of pushforward of virtual
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fundamental classes on the fixed loci after localization. In the case of a compact target

X, it reads

[MX ]vir
T =

∑
Γ∈Gg,1

(iFΓ
)∗(

[FΓ]vir
T

eT (Nvir
FΓ

)
).

In the case of a noncompact target (e.g. X = T ∗P1 × P1), the ordinary virtual fun-

damental class vanishes, we have to use the reduced virtual fundamental class which

shows up as the ~-coefficient of the construction of the T -equivariant virtual funda-

mental class. The localization theorem in this case is given by

~ · [MX ]red
T =

∑
Γ∈Gg,1

(iFΓ
)∗(

[FΓ]vir
T

eT (Nvir
FΓ

)
).

As we mention above, [FΓ]vir
T is the virtual fundamental class from the perfect obstruc-

tion theory T 1,f−T 2,f , the equivariant Euler class of the virtual normal bundle eT (Nvir
FΓ

)

is given by T1,m − T2,m. Similarly for possibly disconnected invariants, we have

[M•
X ]vir

T =
∑

Γ∈G•g,1

(iFΓ
)∗(

[FΓ]vir
T

eT (Nvir
FΓ

)
).

4.1.4 Reduced classes for absolute Gromov-Witten theory

In this section, we briefly recall the construction of the reduced virtual fundamental

class for M g,β(X = T ∗P1, β), via this we can understand the vanishing of naive nonre-

duced invariants and the fact that non-equivariant reduced invariants are encoded in

the (t1 + t2)-linear part of the equivariant invariants. Similar phenomenon appears for

relative Gromov-Witten invariants.

For a fixed nodal curve C of genus g as the domain, let MC(X, β) denote the moduli

space of stable morphisms form C to X of degree β 6= 0. The ordinary obstruction

theory for MC(X, β) is given by

Rπ∗(ev∗TX)∨ → LMC
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where LMC
is the cotangent complex of MC(X, β) and

ev : C ×MC(X, β)→ X

π : C ×MC(X, β)→MC(X, β).

Denote the holomorphic symplectic form on X by ω, ω is induced from the standard

2-form dx ∧ dy on C2. As the discussion in section 3.2.1, the torus weight of ω is

−(t1 +t2). Let Ωπ and ωπ be the sheaf of relative differentials and the relative dualizing

sheaf. We have the canonical map

ev∗(ΩX)→ Ωπ → ωπ

and the symplectic pairing

TX → ΩX ⊗ (Cω)∨

together gives a bundle map

ev∗(TX)→ ωπ ⊗ (Cω)∨.

This induces a map of complexes

Rπ∗(ωπ)∨ ⊗ (Cω)∨ → Rπ∗(ev∗(TX)∨)

The truncation

τ≤−1Rπ∗(ωπ)∨ ⊗ (Cω)∨ → Rπ∗(ev∗(TX)∨)

is a trivial line bundle with nontrivial equivariant weight −(t1 + t2). [Mau09], this

is precisely the modified obstruction theory in the definition of the reduced virtual

fundamental class. Moreover, since all maps are compatible with the torus action, this

46



also gives the equivariant reduced virtual fundamental class. The reduced equivariant

perfect obstruction theory is obtained by varying the domain curve. In summary, the

new obstruction theory differs from the standard one only by the trivial line bundle

(Cω)∨ which have weight t1 + t2. Thus the dimension of the virtual fundamental class

is 1 +m+ (g − 1). The standard virtual class is divisible by t1 + t2, i.e.

[M g,m(X, β)]vir = c1((Cω)∨)[M g,m(X, β)]red = (t1 + t2)[M g,m(X, β)]red.

In other words, the standard equivariant Gromov-Witten invariants of X with β 6= 0

are all divisible by (t1 + t2). Nonequivariant reduced invariants are encoded in the

coefficient of (t1 + t2) of the standard equivariant theory. If X = T ∗P1, we recall the

following lemma

Proposition 4.1.5 ([Mau09]). For d > 0, we have an identification of moduli spaces

M g,m(X, dE) = M g,m(P1, d), moreover we have a linear relation between the virtual

fundamental classes

[M g,m(X, dE)]red = c2d+g−2(Rπ∗ev∗O(−2))[M g,m(P1, d)]vir

Proof. See [Mau09, Corollary 2.2].

4.2 A Fock space approach to Severi degrees

In this section, we study the Severi degree problem on surfaces via Gromov-Witten

theory, and present a Fock space approach to these invariants following [CP17b].

4.2.1 Severi degrees as Gromov-Witten invariants

The classical Severi degree problem studies the number of algebraic curves in P2 of

geometric genus g and degree d pass through 3d+g−1 general points. This problem can
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be reformulated for any nonsingular projective surface X via Gromov-Witten theory.

Let β ∈ H2(X,Z) be en effective curve class. Given cohomology classes γ1, . . . , γn, the

n-pointed genus g Gromov-Witten invariant is defined by

〈γ1, . . . , γn〉g,n,β =

∫
[M
•
g,n(X,β)]vir

n∏
k=1

ev∗k(γk),

where evk : M g,n(X, β)→ X is the evaluation map associated to the k-th marked point

and the integration is against the virtual fundamental class M
•
g,n(X, β) of the moduli

space of genus g possibly disconnected stable morphism along the pushforward map

H∗(M
•
g,n(X, β))→ H∗(pt).

The virtual fundamental class has dimension

dim[M
•
g,n(X, β)]vir =

∫
β

c1(X) + (dimX − 3)(1− g) + n.

Thus when X is a surface, the virtual dim is
∫
β
c1(X) + g − 1 + n, inserting a point

is a codimention 2 condition, thus if n =
∫
β
c1(X) + g − 1, we expect to get numerical

invariants. The Severi invariants is defined to be

N•g,β :=

∫
[M
•
g,n(X,β)]vir

∫
β c1(X)+g−1∏

k=1

ev∗(pt).

If n < 0, N•g,β vanishes by definition.

For the simple surface X = P1 × P1 and β = d1H + d2V , where H denote the

horizontal divisor class and V denote the vertical divisor class. Then
∫
β
c1(X)+g−1 =

2d1+2d2+g−1. The Severi degree invariants can be encoded in the following generating
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function

ZP1×P1

= 1 +
∑
g∈Z

ug−1
∑

(d1,d2)6=(0,0)

N•g,(d1,d2)

t2d1+2d2+g−1

(2d1 + 2d2 + g − 1)!
Hd1V d2 .

4.2.2 Degeneration: absolute to relative

The absolute Gromov-Witten invariants can be computed by relatives one via de-

generation [IP03, LR01, Li02]. To compute the disconnected Severi degrees N•g,(d1,d2)

counting genus g curves passing n = 2d2 + 2d2 + g − 1 points on P1 × P1, we can

degenerate the horizontally to get C ×P1, where C is a chain of n+ 2 rational curves

Ek, such that Ek ∩ E` = pt if and only |k − `| = 1. In other words, we get n+ 1 com-

ponents of P1 × P1 intersect adjacently, denote them by Xk for 0 ≤ k ≤ n + 1.

According to section 4.1, for Xk, 1 ≤ k ≤ n, we can consider the moduli space

Mk := M•
gk,1

(P1 × P1, (d1, d
k
2)|µ∗k, µk−1) of relative stable morphisms, M0 only has

relative condition over the ∞-divisor, Mn+1 only has relative condition over the 0-

divisor. Note that µ is actually a cohomology weighted partition (i.e. of the form

µ = |µ, ν〉 and |µ, ν〉∗ = |ν, µ〉). Denote m(µ) =

`(µ)∏
k

µk

`(ν)∏
k=1

νk. Then by degeneration we

have

Proposition 4.2.1 (Degeneration). The generating function of Severi degrees on P1×

P1 can be computed by relative invariants, i.e

ZP1×P1

= 1 +
∑
g,d1,d2

(
Hd1V d2ug−1 t

n

n!

)
×

∑
dk2 ,µk

(∫
M0

1

) n∏
k=1

[(∫
Mk

ev∗(pt)

)
m(µk−1)

Aut(µk−1)

](∫
Mn+1

1

)
m(µn)

Aut(µn)
.

The summation is over all degree splittings
∑
k

dk2 = d2, relative conditions {µk}nk=0

and all compatible graph types which combined forms a genus g curve, possibly dis-

connected. From the degeneration, the most important invariants for the computation
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is

∫
Mk

ev∗(pt). The disconnected invariants can be derived from connected invariants

by taking products. DenoteM :=M◦
gk,1

(P1×P1, (a, b)|µ, µ′), where µ = |µ, ν〉. From

[CP17b], the only nonzero contributions to the degeneration formula can be described

by

Proposition 4.2.2. The integral

∫
M

ev∗(pt) = 1 if

Type A: g = 0, b = 0, `(µ) = `(µ′) = 1.

Type B: g = 0, b = 1, `(µ) = `(µ′) = 0, `(µ), `(µ′) 6= 0.

Type C: g = 0, b = 0, `(µ) = `(µ′) = 0, `(ν) = `(ν ′) = 0.

All other cases vanish.

Proof. See [CP17b, Page 10, 11].

4.2.3 Fock Space formalism

To start, we know that H•(P1,Q) = Q · 1 ⊕Q · pt. Consider the Heisenberg algebra

H generated over the field Q by a central element c, {αk(γ)} for γ ∈ H•(P1) and

k ∈ Z \ {0}. The Lie algebra structure of H is given by

[αk(γ1), α`(γ2)] = −kδk+l〈γ1, γ2〉c

[c, αk(γ)] = 0.

Note that the only nonvanishing Lie bracket is essentailly [αk(pt), α−k(1)] = kc.

The Fock space F is freely generated over Q by the commutation relations of α−k(γ)

on the vacuum vector v∅. F has a natural grading induced by defining deg(v∅) = 0

and deg(α−k(γ)) = k.

A natural basis of F can be described by cohomology-weighted partitions −→µ =

{(µi, γi)}`(µ)
i=1 , where {µi}`(µ)

i=1 is a partition and γi = 1 or pt. A natural basis of F is
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given by the vectors

|µ, ν〉 =
1

z(µ)z(ν)

`(µ)∏
i=1

α−k(1)

`(ν)∏
j=1

α−νj(pt)v∅

where

z(µ) = |Aut(µ)|
`(µ)∏
i=1

µi.

We also denote this basis element by −→µ if it’s clear in the context. We can define a

nondegenerate pairing in this basis is given by

〈−→µ ,−→ν 〉 =
u−`(

−→µ )

z(µ)z(ν)
δ−→µ−→ν .

Note that if we write |−→µ 〉 = |µ, ν〉, then `(−→µ ) = `(µ) + `(ν) and δ−→µ−→ν = δµν′δµ′ν . The

cohomological degree of |−→µ , ν〉 is |µ|+ |ν| − `(µ).

Now we recall the main results in [CP17b]. Consider the operator MS on the Fock

space F

MS(u,Q) =
∑
k>0

α−k(pt)αk(pt) +Q
∑

|µ|=|ν|>0

u`(µ)−1α−µ(1)αν(1).

We also denote M cl
S (u,Q) =

∑
k>0 α−k(pt)αk(pt), and

Mq
S(u,Q) = Q

∑
|µ|=|ν|>0

u`(µ)−1α−µ(1)αν(1).

Remark 4.2.3. We want to explain two convention differences that will be important

for the actual matching in chapter 5. First is that the genus in ZP1×P1
is parametrized

by ug−1, in the quantum cohomology of Hilbert schemes, it corresponds to u2g−2 in

the expansion of the q-term. Secondly, in the definition of the nondegenerate pairing

in the Fock space, we have a term u`(µ), this goes into the definition of MS(u,Q). In

other words, if we use the convention that is compatible with the quantum cohomology
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section, Mq
S(u,Q) would be Qu−1

∑
|µ|=|ν|>0 α−µαν . This form is the one we’ll going to

match with the quantum multiplication operator in chapter 5.

Let v =
∑

d1≥0 |(1)d1 , ∅〉 =
∑

d1≥0 α
d1
−1(pt). Cooper and Pandahripande prove the

following theorem

Theorem 4.2.4 ([CP17a]). The partition function for Severi degrees of P1 ×P1 is

ZP1×P1

= e
tQ2
u 〈v|Q|·|1 MS(u,Q2)|v〉
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Chapter 5

Proof of the matching

In this chapter, we study the relative Gromov-Witten theory on T ∗P1 ×P1 and show

in section 5.1 that certain equivariant limits give the relative invariants on P1×P1. In

section 5.2, we match the classical multiplication operator in [MO09] with M cl
S (u,Q) in

section 4.2.3. In section 5.3, by formulating the quantum multiplications on Hilb(T ∗P1)

[MO09] as vertex operators and computing the product expansion, we demonstrate how

to get the insertion operator computed by Yaim Cooper and Rahul Pandharipande in

the equivariant limits. Lastly in section 5.4, we apply a result in [AO17] to write the

eigenvalues of the quantum multiplication operator in terms of Bethe equations.

5.1 Matching the invariants

In this subsection, by comparing all terms appear in the localization formula, we make

precise the intuitively obvious observation that the only difference between the relative

Gromov-Witten theory of T ∗P1 ×P1 and that of P1 ×P1 come from the deformation

in the fibre direction of the natural projection T ∗P1 ×P1 → P1 ×P1. Let T = (C×)2

acts on the first component of T ∗P1 × P1 as in section 3.2.1 and arbitrarily on the

second component. We can prove the following analogue of proposition 4.1.5.
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Proposition 5.1.1. All relative Gromov-Witten invariants of P1 × P1 appear as the

coefficients of (t1+t2)2d+g−1-terms of the equivariant relative Gromov-Witten invariants

of T ∗P1 ×P1.

Proof. The relative divisors are naturally T -equivariant. Thus T acts on ∆(Dα) and

X[m1,m2], Y [m1,m2] naturally. T acts on the moduli spaces Mg,1(X;D; β|µ, ν) and

Mg,1(X;D; β|µ, ν) by moving the image. From now on, we denote two moduli spaces

byMX andMY respectively. The T -fixed point of both moduli spaces are the same—a

disjoint union of combinatorial configurations parametrized by certain types of graphs,

we denote one such type of fixed points by FΓ. Let p ∈ FΓ and consider the two exact

sequences defining the tangent-obstruction spaces T 1, T 2 at this point. Then every

term in the exact sequences can be view as a T -module.

B1 = Ext0(ΩC(R),OC), B2 = H0(C, f
′∗(ΩT ∗P1 �OP1))

B3 =
2⊕

α=1

mα−1⊕
`=0

H0
et(R

α•
` ), B4 = Ext1(ΩC(D),ΩC)

B5 = H1(C, f ∗(Ω∨T ∗P1 �OP1)), B6 =
2⊕

α=1

mα−1⊕
`=0

H1
et(R

α•
` )

Let T i,f and T i,m be the submodules of trivial T -weight and nontrivial T -weights

respectively. Then T 1,f−T 2,f defines a perfect obstruction theory on FΓ and T 1,m−T 2,m

define the virtual normal bundle Nvir
FΓ

of FΓ in the corresponding moduli space of

relative stable morphisms. More precisely, we have

1

eT (Nvir
FΓ

)
=
eT (T 2,m)

eT (T 1,m)
=
eT (Bm

1 )eT (Bm
5 )eT (Bm

6 )

eT (Bm
2 )eT (Bm

4 )
.

T. Graber and R. Pandharpande prove a localization theorem in [GP99] which is appli-

cable in our case. That is, the T -equivariant virtual fundamental class is a summation

of pushforward of virtual fundamental classes on the fixed loci after localization. In
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the case of Y = P1 ×P1, it reads

[MY ]vir
T =

∑
Γ∈Gg,1

(iFΓ
)∗(

[FΓ]vir
T

eT (Nvir
FΓ

)
).

In the case of X = T ∗P1 × P1, the ordinary virtual fundamental class vanishes, we

have to use the reduced virtual fundamental class which shows up as the ~-coefficient

of the construction of the T -equivariant virtual fundamental class. The localization

theorem in this case is given by

~ · [MX ]red
T =

∑
Γ∈Gg,1

(iFΓ
)∗(

[FΓ]vir
T

eT (Nvir
FΓ

)
).

As we mention above, [FΓ]vir
T is the virtual fundamental class from the perfect obstruc-

tion theory T 1,f−T 2,f , the equivariant Euler class of the virtual normal bundle eT (Nvir
FΓ

)

is given by T1,m − T2,m. The relative Gromov-Witten invariants on P1 × P1 needed

for the computation of Severi degree in [CP17b] is the point insertion
∫
MY

ev∗Y (pt).

Consider the following diagram

MX X

MΓ pt

MY Y

.

evX

πi

evY
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Apply the localization theorem we have

∫
MY

ev∗Y (pt) =
∑

Γ∈Gg,1

∫
MΓ

i∗Y ev∗Y (pt)

eT (Nvir
Γ/Y )

=
∑

Γ∈Gg,1

∫
MΓ

i∗Xev∗X(ι∗ω)

eT (Nvir
Γ/Y )

=
∑

Γ∈Gg,1

∫
MΓ

i∗Xev∗X(ι∗ω)

eT (Nvir
Γ/X)

eT (Nvir
Γ/X)

eT (Nvir
Γ/Y )

.

The second identity is because when restricted to the fixed loci, the constrain of

inserting a point of the base is the same as the curve to pass the intersection of

ιω with the base P1. To compare the Euler class of the two virtual normal bun-

dles, we go back to the exact sequences defining them. B1 = Ext0(ΩC(R),OC) and

B4 = Ext1(ΩC(R),OC) only depend on the source curve, they’re the same in both

cases. For B6 =
2⊕

α=1

mα−1⊕
`=0

H1
et(R

α•
` ), where H1

et(R
α•
` ) = H0(D

α,Lαk
(k) )n

α
k /H0(Dα

k , L
α
k ). In

our case, Lαk viewed as a line bundle on Dα
k is just the trivial bundle, the global func-

tions are constants, which are not affected by the torus action, thus Bm
6 = 0 and

eT (Bm
6 ) = 1 in both cases. By the formula for the virtual normal bundle above, the

difference boils down to
eT (Bm5 )

eT (Bm2 )
, which is just the T -equivariant Euler characteristics

of f ∗(ΩX[m1,m2](
∑2

α=1 logDα
(mα))

∨. Now, we can apply Grothendieck-Riemman-Roch

theorem to compute
eT (Nvir

Γ/X
)

eT (Nvir
Γ/Y

)
.

eT (Nvir
Γ/X)

eT (Nvir
Γ/Y )

=
eT (C, f ∗(ΩX[m1,m2](

∑2
α=1 logDα

(mα))))
∨

eT (C, f ∗(ΩY [m1,m2](
∑2

α=1 logDα
(mα))))

∨

= (t1 + t2)−2d−g+1

P1 × P1 is compact, thus all the relative invariants are numbers. By the localization

theorem, We also have 〈µ|pt|ν〉Y = (t1 + t2)−2d−g+1〈µ|ι∗ω|ν〉X . Therefore, all relative

invariants of P1×P1 appear as the coefficients of (t1+t2)2d+g−1-terms of the equivariant
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relative invariants of T ∗P1 ×P1.

Next we specialize the relative Gromov-Witten invariants computed by Maulik

[Mau09] to the case of T ∗P1 × P1 and illustrate the invariant level comparison in

proposition 5.1.1.

Proposition 5.1.2 ([MO09]). If µ, ν are partitions of m > 0 and the cohomology

classes labelling µ,ν are divisors, then we have

u`(µ)+`(ν)−1Z◦β 6=0(T ∗P×P1)−→µ ,(2),−→ν =
d

du
Θ◦(−→µ ,−→ν )

u`(µ)+`(ν)Z◦β 6=0(T ∗P×P1)−→µ ,(1,ω),−→ν = s
d

ds
Θ◦(−→µ ,−→ν ).

where Θ◦(−→µ ,−→ν ) above is given by

Θ◦(−→µ ,−→ν ) =
t1 + t2

|Aut(−→µ )||Aut(−→ν )|

∞∑
d=1

(du)`(µ)+`(ν)−2

`(µ)∏
k=1

S(dµku)

`(ν)∏
k=1

S(dνku)

dS(du)2
sd.

Otherwise, these invariants vanish.

Recall that S(u) =
sin(u

2
)

u
2

and S(du)2 in the denominator means (S(du))2. Now

we compute examples of the relative Gromov-Witten invariants of P1 × P1 by taking

the described limits of the formulae in the case of T ∗P1 ×P1.

Example 5.1.3 (µ = ν = (1)). When µ, ν are given by the trivial partition of 1, we

have ZdE 6=0,H = (t1 + t2)u−2
∑∞

d=1 s
d. By our discussion above, only the u2g−2sd(t1 +

t2)2d+g−1-coefficient contributes to the P1×P1 invariants. Since the exponent of t1 + t2

must be 1, it forces g = 0 and d = 1. That is Z◦(P1 × P1)dV 6=0,H = [u−2s1(t1 +

t2)]Z◦dE 6=0,H = 1.

Example 5.1.4 (µ = ν = (n)). This relates to the Type-A curve counting in [CP17b].
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In these cases, we have |Aut(µ)| = |Aut(ν)| = 1, `(µ) + `(ν)− 2 = 0. We thus have

Θ((n), (n)) = (t1 + t2)
∞∑
d=1

S(dnu)S(dnu)

dS2(du)
sd = (t1 + t2)

∞∑
d=1

sd

d
(
S(dnu)

S(du)
)2.

Proposition 5.1.2 specializes to

ZdE 6=0,nH(T ∗P1 ×P1)(n),ω,(n) = u−2(t1 + t2)
∞∑
d=1

sd(
S(dnu)

S(du)
)2.

Apply the same argument as above and notice that
sin(nu)

sin(u)
= 1− (ndu)2

6
+

(ndu)4

120
+

higher order terms. We recover the Type-B computation in [CP17b], that is

Z◦(P1 ×P1)dV 6=0,nH = [u−2s1(t1 + t2)]Z◦dE 6=0,nH = 1.

To go from the invariants to the operators, we have the following

Proposition 5.1.5. If µ, ν are partitions of m > 0 and the cohomology classes labelling

µ,ν are divisors, we have

〈µ|τ1[F ]ν〉◦g,β = 〈µ, (2), ν〉◦g,β

〈ν|τ0(ι∗ω)|ν〉◦g,β = 〈µ, ωk, ν〉◦g,β

Proof. See [MO09, Proposition 4.3, Page 1759].

Next, we match the classical and purely quantum parts of the quantum multiplica-

tion operator M(1,ω) with the parts of operator MS(u,Q) in [CP17a].
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5.2 Matching the classical multiplication

Lemma 5.2.1. The weights of the standard torus action on the tautological bundle Vk

on Hilb(An), 0 ≤ k ≤ n, restricted at a fixed point p = |λ1, . . . , λn〉, 1 ≤ ` ≤ n+ 1 are

given by

Vk|p =
k∑
`=1

[
(n+ 1− k)t1 +

∑
(i,j)∈µ`

(i− 1)wRi + (j − 1)wLi

]
+

n∑
`=k+1

[
kt1 +

∑
(i,j)∈µ`

(i− 1)wRi + (j − 1)wLi

]

Proof. Note that Vk|Z = H0(An,Vk ⊗OZ). At a fixed point p = |λ1, . . . , λn〉, H0(OZ)

contributes the part ∑
(i,j)∈µ`

(i− 1)wRi + (j − 1)wLi .

The lemma is equivalent to the property that as a one-dimensional torus module

Vk|p` =


(n+ 1− k)t1, ` ≤ k

kt2, ` > k

,

where p` is a fixed point on An. The framed quiver variety Hilb(An) 3.2.6 can be

realized as ordinary quiver variety by the work of King and Grawley-Bovey[Gin12] by

extending the stability condition to include θ∞ = −
∑
k

θk dimVk to remove the framing

at W0. We use the extended stability condition (θ; θ∞) = (n + ε, 1, 1, . . . , 1;−ε). For

a nontrivial subrepresentation (V ′0 , . . . , V
′
n,W

′
0) of the extented quiver to be stable, we

need −ε dimW ′
0 +

∑
k

θk dimV ′k > 0 and dimV ′0 = 0 or 1 since the dimension vector

v0 = (1, . . . , 1). Observe that for a subrepresentation to be fixed by the torus action,

it can’t contain any loop since such a loop carries nontrivial weights that cannot be

canceled by the structure group GV action. Thus a fixed subrepresentation must be
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of the form of a tree, the stability condition tells us W0 must generate all other Vk’s.

In other words, all fixed subrepresentations are parametrized by directed subgraphs of

the quiver with a root at the framing point, i.e. all other vertex can be reached by

following nonzero arrows. At a fixed point p`, the torus weight is given by wt(p`) =

(n+ 2− `)t1 + (n− `)t1 + · · ·+ t1 + 0 + t2 + . . . (`− 1)t2, the Z/(n+ 1)Z weight k part

is given by kt1 if ` − 1 ≥ k, otherwise it’s given by (n + 1 − k)t1, this is exactly the

weight of Vk.

Proposition 5.2.2. The divisor (1, ω) is the difference of the first Chern classes of

the tautological bundle V1 and V0 and the cup product acts diagonally in the fixed point

basis. More precisely,

(1, ω) = c1(V1)− c1(V0)

(1, ω) ∪ |λ, µ〉 = (t1|λ|+ t2|µ|)|λ, µ〉.

Proof. By Lehn’s formula[Leh99], for a line bundle L on X the Chern classes of the

tautological bundle L[n] is given by

∑
n≥0

c(L[n])zn = exp(
∑
m≥1

(−1)m−1

m
α−k(c(L))zm)v∅.

We have c1(OX) = 1, c1(OX(ω)) = 1+(1, ω). By the construction in [Kuz07], we know

that V0 = O[n]
X and V1 = OX((1, ω))[n]. Compute the expansion in Lehn’s formula and

note that

codim(α−µ(−→γ )v∅) =
∑
i

codim(γi) +
∑
i

(µi − 1) =
∑
i

codim(γi) + |µ| − `(µ).

That is to get a codimension 2 cycle, we can either let one part of the partition to be
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2 or we let one the the part to have the u insertion.

c1(V0) =
1

(n− 2)!
α−2(1)α−1(−1) . . . α−1(1)v∅

c1(V1) =
1

(n− 1)!
α−1(w)α−1(1) . . . α−1(1)v∅ + c1(V0).

Recall that the first term in c1(V1) is exactly (1, ω) in our definition. Thus (1, ω) =

c1(V1) − c1(V0). Now by Nakajima’s result[Nak], and the fact that at a length n

subscheme Z, Vk = H0(T ∗P1,Vk ⊗OZ). Since at a fixed point |µ, ν〉, OZ is generated

by monomials xiyj

c1(V0) ∪ |λ, µ〉 =
[ ∑

(i,j)∈λ

((i− 1)(t2 − t1) + (j − 1)(2t1))

+
∑

(i,j)∈µ

((i− 1)(t1 − t2) + (j − 1)(2t2)
]
|λ, µ〉

c1(V1) ∪ |λ, µ〉 =
∑

(i,j)∈λ

(t1 + (i− 1)(t2 − t1) + (j − 1)(2t1))

+
∑

(i,j)∈µ

(t2 + (i− 1)(t1 − t2) + (j − 1)(2t2)|λ, µ〉.

In summary, we get

(1, ω) ∪ |µ, ν〉 = (
∑

(i,j)∈µ

t1 +
∑

(i,j)∈ν

t2)|λ, µ〉 = (t1|µ|+ t2|ν|)|µ, ν〉.

Proposition 5.2.3. valt1+t2M
cl
(1,ω) = MA

S (u,Q).

Proof. By the invariant level comparison, we need to take (t1 + t2)u−2s part of the

operator.

• t1|µ|+ t2|λ| is divisable by t1 + t2 if and only if |µ| = |ν|.
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• The leading coefficient is u−`(µ)−`(ν)s. Thus we only contribution comes from

`(µ) = `(ν) = 1.

Combined we know the only possibility is that µ = ν = |µ| = |ν|, i.e. they are

partitions of only one part of the same size. This is exactly the type-A curve counting

in [CP17b]. Thus we know the valuation of M cl
(1,ω) at (t1 + t2) matches with the type-A

operator in [CP17b]

5.3 Matching the purely quantum multiplication

Now we consider certain relevant vertex operators and match the purely quantum part

of M in [MO09] with the type-B curve counting operator in [CP17b]. For any γ ∈ Q

and a complex variable z. The 2-cocycle in the ŝl2 case is given by ε(mα, nα) = (−1)mn.

Denote e(z) =
∑
k∈Z

e(k)z−k−1, f(z) =
∑
k∈Z

f(k)z−k−1. Then e(z) and f(z) acts on LΛ by

vertex operators:

e(z) 7→ Γ+(z) = X(α, z) = exp(
∑
k≥1

ak

k
α(−k)) exp(−

∑
k≥1

z−k

k
α(k))qz2q ∂

∂q cα

f(z) 7→ Γ−(z) = X(−α, z) = exp(−
∑
k≥1

ak

k
α(−k)) exp(

∑
k≥1

z−k

k
α(k))q−1z−2q ∂

∂q c−α,

where c±α(f ⊗ enα) = (−1)n is a special case of ε(α, nα), and z±2q ∂
∂q = z±2nqn.

Proposition 5.3.1. The qs-coefficient of Ω+ in [MO09] is the operator corresponding

to the type-B curve counting in [CP17b]. More precisely,

[qs]Ω+ =
∑
k 6=0

: f(k)e(−k) :=
∑

|µ|=|ν|>0

α−µαν .

They’re vertex operators of ŝl2.

Proof. Note that
∑
k 6=0

: f(k)e(−k) : is just the z0-coefficient of : Γ+(z)Γ−(z) :. We use
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the formula in [KR87, page 309],

Γα(z)Γβ(w) = (1− w

z
)(α|β)z(α|β)ε(α, β)

× exp(
∑
k≥1

α−k(z
k − wk)
k

) exp(−
∑
k≥1

αk(z
−k − w−k)
k

)× eα+βzα0wα0cαcβ

In our case, we have α = α, β = −α, 〈α,−α〉 = −2, ε(α,−α) = −1. By the previous

identification, we only act on the q0 piece of the basic representation, thus

eα+βzα(0)w−α(0)cαc−α = 1

The operator product is simplified to be

Γ+(z)Γ−(w) =
−1

(1− w
z
)2z2

exp(
∑
k≥1

α−k(z
k − wk)
k

) exp(−
∑
k≥1

αk(z
−k − w−k)
k

).

The normal ordering means taking the z0 of the the regular part of the expansion

above, thus

∑
k 6=0

: f(k)e(−k) : = Resz=0z
−1(

1

(z − w)2
+ Γ+(z)Γ−(z))

= [z0](
∑
k≥1

α(−k)

k
(1− (

w

z
)k)zk + (

∑
k≥1

α(−k)

k
(1− (

w

z
)k)zk)2 + . . . )

× (
∑
k≥1

α(k)

k
(−1 + (

w

z
)−k)z−k + (

∑
k≥1

α(k)

k
(1− (

w

z
)−k)z−k)2 + . . . ).

The position of a term means the length of the partition, the product gives all possible

combinations of two partitions, the z0-coefficient condition means the two partitions

have to have the same size. Also note that

lim
w
z
→1

(1− (w
z
)k)(−1 + (w

z
)−`)

(1− w
z
)2

= −k`,
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which kills the denominators. As a consequence, we get the desired matching

∑
|µ|=|ν|>0

α−µαν =
∑
k 6=0

: f(k)e(−k) : .

5.4 Bethe equations and eigenvalues

Now the relative Gromov-Witten theory of P1 ×P1 and T ∗P1 ×P1 can be viewed as

shades of the quantum cohomology theory of the Nakajima quiver variety Hilb(T ∗P1),

which is well-understood as in [MO12]. Moreover, the K-theoretic version of the story

is developed in [AO17]. Eigenvalues of quantum multiplications of any tautological

class are encoded in certain Bethe equations. To be more precise, if X is a Nakajima

quiver variety, the equivariant K-theoretic class of the tangent bundle is given by TX =

T (T ∗Rep(v, w)) −
∑

i(1 + ~−1)End(Vi). As we shall see in the Hilb(T ∗P1) example,

it’s a Laurent polynomial in terms of the Chern roots xi,k of the tautological bundles

and the equivariant parameters. The elliptic genus â is defined to be â(
∑
niχi) =∏

(χ
1
2
i − χ

− 1
2

i )ni , where χi are weights of T ×
∏
GL(Vi). In general, we have

Proposition 5.4.1 ([AO17]). The eigenvalues of M are
∑

i,k(−1)kxi,k, where xi,k are

the roots of the Bethe equations

â(xi,k
∂

∂xi,k
TX) = zi.

The cohomological Bethe equations can be extracted from the K-theoretic version

by taking the linear term. We work this computation out in the Hilb(T ∗P1) case. To

simplify the notation a little bit, we denote the Chern roots of V∗1 by xi and those of
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V∗2 by yj. Then in KC×a ×C×~
(Hilb(T ∗P1)), we have

TX =
∑
i

axi + ~−1
∑
i

1

axi

+
∑
i,j

yj
xi

+ ~−1
∑
i,j

xi
yj

+
∑
i,j

xi
yj

+ ~−1
∑
i,j

yj
xi

− (1 + ~−1)
∑
i,j

(
xi
xj

+
yi
yj

).

The partial derivative w.r.t xi is

xi
∂

∂xi
TX =axi − ~−1 1

axi

−
∑
j

yj
xi

+ ~−1
∑
j

xi
yj

+
∑
j

xi
yj
− ~−1

∑
j

yj
xi

− (1 + ~−1)
∑
j

(
xi
xj
− xj
xi

).

Take the Euler class of the expression above, we get the Bethe equation

q =
a+ xi

−~− a− xi

∏
j

(xi − yj)(xi − yj − ~)

(yj − xi)(yj − xi − ~)

∏
j 6=i

xj − xi
xi − xj

xj − xi − ~
xi − xj − ~

=
a+ xi

a+ xi + ~
∏
j

xi − yj − ~
yj − xi − ~

∏
j 6=i

xj − xi − ~
xi − xj − ~

.

Similar for yi and s (the curve degree corresponding to (1, ω)). In summary, we get

Corollary 5.4.2. The eigenvalues of M(1,ω) are given by
∑
i

(xi− yi), where xi, yi are

the roots of the Bethe equations

q =
a+ xi

a+ xi + ~
∏
j

xi − yj − ~
yj − xi − ~

∏
j 6=i

xj − xi − ~
xi − xj − ~

s =
a+ yi

a+ yi + ~
∏
j

yi − xj − ~
xj − yi − ~

∏
j 6=i

yj − yi − ~
yi − yj − ~

.
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Remark 5.4.3. To be compatible with our previous torus action, just let ~ = t1 + t2

and a = t2 − t1.
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Chapter 6

Perverse sheaves and weights

6.1 Perverse sheaves

6.1.1 Fonctions-faisceaux dictionary

Let X be a scheme over a finite field Fq, according to Grothendieck’s “fonctions-

faisceaux dictionary”, instead of considering Q`-valued functions on X(Fq)—the set of

Fq-points, the “correct” geometric object is the notion of complex of `-adic sheaves.

Given an `-adic sheaf F on X and a morphism f : X ′ → X, the group of auto-

morphisms of f acts on the f ∗F . Specially, let x ∈ X be a Fq-point and x the Fq

point corresponding to an inclusion Fq ↪→ Fq. By pulling back along the composition

x → x → X, we get a sheaf Fx on x, which is just the fibre of F at x, which is a

Q`-vector space. Gal(Fq/Fq) ∼= Ẑ, as the group of automorphisms of the morphism

x → x, acts naturally on Fx. In particular, the geometric Frobenius element Frx in

the Galois group acts on the Q`-vector space Fx. Then we can construct a function on

X(Fq) by taking the trace of the Frobenius element,

fF(x) = Tr(Frx,Fx).
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More generally if we have a complex C of `-adic sheaves, the associated function is

obtained by taking the alternating sums of the Frobenius traces

fC(x) =
∑
k

(−1)kTr(Frx, Ckx) =
∑
k

(−1)kTr(Frx,H
k
x(C)),

where Ck is the degree k component of C and Hk(C) is the k-th cohomology of the

complex C. The construction C → fC preserves most intuitions on the function side,

for example, pull-back of sheaves corresponds to pull-back of functions, tensor product

of sheaves corresponds to product of functions, push-forward of sheaves corresponds to

integration of functions along the fibres.

The construction only depends on the alternating sum of the cohomologies, two

homotopic complexes give the same function, this leads us to the consideration the

derived category of sheaves. Even so, the map C → fC is not injective, since two

complexes not isomorphic in the derived category might have the same alternating

sum of cohomologies, therefore the same associated functions. A trivial example is the

zero complex and 0→ F d=0−−→ F → 0, their assicated functions are the same, namely,

the zero function, although the second has non-trivial cohomologies and thus not a

zero complex in the derived category. For these reasons, it would be very nice if we

can construct an abelian subcategory A of the derived category of sheaves such that

the restriction to A of the sheaf-function construction gives rise to an injective map

from the Grothendieck group of A to the space of functions on X. Surely, we have

many different candidates for A, for example, the category of sheaves, which can be

viewed as complexes concentrated all on degree 0. However, this subcategory doesn’t

have many good properties, for instance, it’s not stable under the Verdier duality. The

invention of perverse sheaves fixes these problems and realizes the “fonctions-faisceaux

dictionary” in an injective and faithful way.
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6.1.2 Preliminary on perverse sheaves

Definition 6.1.1 (Local system, locally constant sheaf). A locally constant sheaf on

a topological space X is a sheaf F on X such that for each x in X, there is an open

neighborhood U of x such that the restriction F|U is a constant sheaf on U . It is also

called a local system

Example 6.1.2 (local system, locally constant sheaf). Let X = C2 \ {0}, and define

the nth root sheaf µ
n

µ
n
(U) = {f ∈ C∞(U)|fn = x}.

Note that if the monodromy of U is 0(which means im(π1(U) → π1(C∗)) = 0) ,

µ
n
(U) ∼= Z/nZ consisting of the n functions {ζ inx

1
n}n−1

i=0 , otherwise µ
n
(U) = 0.

Definition 6.1.3 (Constructible sheaf). A sheaf F is called constructible if there exists

a finite partition X =
⊔
S∈S

S of X as a union of locally closed subschemes, such that

for each subscheme S, the sheaf F|S = i∗SF is a finite locally constant sheaf.

Example 6.1.4 (Weierstrass family of elliptic curves). Consider the family of degen-

erating elliptic curves over C π : E → C given by Et = V (y2 − x(x − 1)(x − t)).

Et is a nodal curve if t = 0 or 1, otherwise it’s an elliptic curve. Then R0π∗(QX
) ∼=

R2π∗(QX
) ∼= Q

C
and R1π∗(QX

) ∼= LC\{0,1} ⊕ Q{0,1}, where the stalks of the local

system LC\{0,1} are isomorphic to Q2.

Example 6.1.5 (Constructible but not locally constant). Consider the skyscraper

F sheaf at a point on X = P1, the point is that although every point in X has a

neighborhood U , such that F(U) = 0 or k. But, locally constant means it has to be a

constant sheaf when restricted to some U , not just the section being constant.

Let Db(X, k) denote the bounded derived category of sheaves of k-vector spaces. For

any complex C ∈ Db(X, k), we denote the k-th cohomology sheaf by Hk(C). We denote
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Figure 5: Perverse sheaf

Db
c(X, k) the full subcategory of Db(X, k) with objects C such that all its cohomology

sheaves Hk(C) are constructible.

The category P (X, k) of (constructible) perverse sheaves is the full subcategory

of Db
c(X, k) consists of objects F ∈ Db

c(X, k), constructible with respect to certain

stratification S, such that

1. ∀Sα ∈ S, i∗SαF is concentrated in degrees ≤ −dimSα, and

2. ∀Sα ∈ S, i!SαF is concentrated in degrees ≥ −dimSα.

We note that the Verdier dual D functor interchanges condition 1. and 2., thus the

category of perverse sheaves is stable under the Verdier duality. Let Sk denote the

union of strata of dimension k, then by induction one shows that F|Sk only have non-

trivial stalks for degree at least −k, together with condition 1., we know that F is

a perverse sheaf if and only if the cohomology sheaves of both F and DF have the

form in Figure 5 Namely, restriction of F to the dimension k strata Sk has non-trivial

cohomology sheaves only from degree −d = −dim X to −k.
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Figure 6: Intersection cohomology complex IC(S,L)

6.1.3 The intersection cohomology complex

The category of perverse sheaves is an abelian category, it’s important to understand

the simple objects. They are given by the so-called IC-sheaves (or intersection coho-

mology complex) IC(S,L) associated to a pair (S,L), where S ∈ S is a strata and L is

an irreducible local system on S. IC(S,L) is characterized by the following conditions

1. i∗SIC(S,L) = L[dS],

2. IC(S,L) is supported on S,

3. ∀ strata T ⊂ S, T 6= S, i∗T IC(S,L) is concentrated in degrees < −dim(T ),

4. ∀ strata T ⊂ S, T 6= S, i!T IC(S,L) is concentrated in degrees > −dim(T ).

Thus intersection cohomology complex is a special perverse sheaf, the corresponding

cohomology sheaves have the form in Figure 6.

The most important result in terms of intersection complex is arguably the decom-

position theorem [BBD82] proved by Beilinson, Bernstein, Deligne and Gabber. An
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IC-sheaf looks like a block, the decomposition theorem tells us we can construct per-

verse sheaves by taking the direct sum of shifted IC sheaves. We define an object K to

be semi-simple if

K ∼= ⊕PS,LS · IC(S,L).

where PS,LS are some Laurent polynomials with Z coefficients, i.e. PS,LS =
∑
i

ait
i,

then

PS,LS · F := ⊕F [i]⊕ai .

Some authors like to use another essentially equivalent description

π∗kX [dim(X)] ∼=
⊕
β

IC(Sβ,L)⊗k Vβ,

where Vβ is a graded finite dimensional k-vector space.

Theorem 6.1.6 (Decomposition theorem[BBD82]). Let π : X → Y is a proper mor-

phism with X smooth, then

• π∗kX [dim(X)] is semisimple.

• If π is semismall, then π∗kX [dim(X)] is a perverse sheaf.

• If π is small, then π∗kX [dim(X)] is an intersection cohomology complex.

In general the decomposition theorem fails in positive characteristics. The de-

composition theorem actually gives us a way to compute the intersection cohomology

sheaves in practice. We give some examples here.

Example 6.1.7 (Nilpotent cone in sl2). The nilpotent cone in sl2 is given by all the

traceless 2-by-2 matrices with vanishing determinant, namely

N =
{x y

z −x

 |x2 + yz = 0
}
⊂ sl2 ∼= A3.
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The Springer resolution in this situation is just the blow up of the cone

π : Bl{0}N ∼= Tot(OP1(−2)) = Tot(T ∗P1)→ N .

On the regular locus Oreg = N \{0}, this is an isomorphism, the fiber over 0 is P1
k, we

thus get π∗kT ∗P1 [2]

−2 −1 0

S2 = Oreg k 0 0

S0 = {0} k 0 k

In the case that char(k) = 0, by the decomposition theorem we have π∗kT ∗P1 [2] =

IC(N , k) ⊕ IC({0}, k), where IC({0}, k) is just the skyscraper sheaf at the point in

degree 0, and IC(N , k) ∼= kT ∗P1 [2].

6.1.4 Intermediate extension

We then review the construction of intersection cohomology complexes via the so-called

intermediate extensions. From now on we abuse notation:

f∗ = Rf∗, f! = Rf!, f
∗ = Rf ∗,Hom = RHom.

Note that, if f : X → pt is the projection to a point, then f∗ = RΓ(X,−) and

f! = RΓc(X,−). We have a natural morphism of functors f! → f∗.

Definition 6.1.8 (Intermediate extension). Suppose X is purely of dimension n, and

let j : U → X be the inclusion of the smooth locus U of X in U . Then the intermediate

extension functor is

Db
c(U, k)→ Db

c(X, k)

j!∗F := Im(j!F → j∗F)
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The intermediate extension has several properties, for example j!∗ has no subobject

or subquotient supported on the complement of U [BBD82]. It turns out this con-

struction gives us intersection cohomology complexes. Depending on the field k we’re

working with, we can define the IC-sheaves accordingly, for latter use, we define the

`-adic intersection complex.

Definition 6.1.9 (`-adic intersection complex). Suppose X is purely of dimension n,

and let j : U → X be the inclusion of the smooth locus U of X in U . Then the `-adic

intersection complex is

IC•(X) := (j!∗Q`,U [n])[−n],

where Q`,U is the constant sheaf Q` on U . The `-adic intersection cohomology is the

cohomology of IC•(X), it’s denoted by IH•(X,Q`).

When we have more strata, Deligne gives an inductive construction of the inter-

mediate extension by cohomological truncation. First let Xk = S≥k :=
⋃
d≥k

Sd, the

union of all strata of dimension at least k. Then we have a sequence of inclusions

Xd

jd−1

↪−−→ Xd−1 ↪→ . . .
j1
↪−→ X1

j0
↪−→ X0 = X.

Then the construction could be thought as first build the highest dimension dS part,

and then build the degree dS − 1, so on so forth, and stops at the dimension 0 part. In

formula,

IC(S,L) := (τ≤−1 ◦ j0,∗) ◦ · · · ◦ (τ≤−dS ◦ jdS−1,∗)(L [dS]),

where τ≤k means truncation by cohomological degree. Note that if SdS 6= S, L[dS]

means the extension by 0. Moreover, if X is pure of dimension d, U is open in X, Z is

the compliment. Z
i
↪−→ X

j
←−↩ U , we have

pj!F = τZ≤d−3j∗F , j!∗F = τZ≤d−2j∗F , pj∗F = τZ≤d−1j∗F .
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Example 6.1.10 (Deligne’s Cohomological truncation). Consider ∗ i
↪−→ C

j
←−↩ C×.

Then the stalks of j∗Q[1] are

−1 0

C× Q 0

∗ Q Q

By Deligne’s cohomological truncation

construction, the stalks of pj!F = τZ≤−2j∗F are

−1 0

C× Q 0

∗ 0 0

, and the stalks of j!∗F =

τZ≤−1j∗F are

−1 0

C× Q 0

∗ Q 0

. That is j!∗Q[1] = QX [1] as expected.

6.2 Review of weights

Definition 6.2.1 (Weight of a complex, [Del80]). F ∈ Db
c(X,Q`) is said to be mixed of

weight ≤ w if for any k ∈ Z, the cohomology sheaf Hk(F) is mixed of weight ≤ w + i.

F is said to be pure of weight w if F is mixed of weight ≤ w and its Verdier dual

DX/kF is mixed of weight ≤ −w.

Remark 6.2.2. If F is mixed of weight ≤ w, F [n] is mixed of weight ≤ w+ n. Namely

shift operator in the derived category also shifts the Frobenius weights.

Definition 6.2.3 (Trace function). For an object F in Db
c(X,Q`), its trace function

is the Q`-valued function on pairs (a finite field extension E/k, a point x ∈ X(E))

defined by

Tr : (E, x) 7→
∑
k

(−1)iTrace(FrobE,x|Hk(F)).

Trace functions of `-adic perverse sheaves can be thought of analogues of character

functions of representations. Actually, Katz proves the orthogonality theorem in this

context.
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Theorem 6.2.4 (The orthogonality theorem, [Kat05]). Let F and G on X/k be per-

verse sheaves and both pure of weight 0. Write the pullbacks FX and GX of F and G

to X = X ⊗k k as sums of irreducible perverse sheaves with multiplicities, say

FX =
∑
k

mkVk, GX =
∑
k

nkVk,

with {Vk}k a finite set of pairwise non-isomorphic irreducible perverse sheaves on X,

and with non-negative integer coefficients mk, nk [BBD82][5.3.8].

- For any n ∈ Z+, denoting by kn/k the extension field of degree n, we have

∑
k

mknk = lim sup
E/kn

|
∑

x∈X(E)

TrF(E, x)TrG(E, x)|,

the lim sup is taken over all finite extensions E/kn.

- If
∑

kmknk = 0, i.e. if FX and GX have no common irreducible components,

then for variable finite extensions E/k, we have

∑
x∈X(E)

|TrF(E, x)TrG(E, x)| = O((#E)−
1
2 ).

- The following two conditions are quivalent

– For variable finite extensions E/k, we have

∑
x∈X(E)

|TrF(E, x)|2 = 1 +O((#E)−
1
2 ).

- F is geometrically irreducible, i.e., FX is an irreducible perverse sheaf on

X.
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6.3 Weight truncation

Let X be a quasi-separated scheme of finite type over a finite field Fq. We have

defined the category of mixed `-adic complexes Db
m(X,Q`) on X. As discussed in

previous sections [BBD82, 5], we get a subcategory Pm(X) of mixed `-adic perverse

sheaves. Moreover Pm(X) admits a canonical weight truncation operators w≤a, such

that {w≤aK}a∈Z gives a filtration of K, where each w≤aK is a perverse subsheaf of K

of weight ≤ a, K/w≤aK is of weight > a.

The weight truncation operator w≤a doesn’t extend to Db
m(X,Q`). However, ac-

cording to [Mor08], we can consider wD≤a(X), the full subcategory of Db
m(X,Q`) whose

objects are complexes K such that the k-th perverse cohomology pHkK is of weight

≤ a for any k ∈ Z. Then the inclusion wD≤a(X) ↪→ Db
m(X,Q`) admits a right adjoint

functor that extends the previous w≤a, we still denote it by the same notation. Simi-

larly, we can define wD≥a(X) ↪→ Db
m(X,Q`), which admits a left adjoint functor that

extends the previous w≥a : K 7→ K/wa−1K functor. We denote it by w≥a.

Morel’s main idea is that instead of viewing the intersection complex IC•(X) as a

truncation of j∗Q`,U by cohomological degree, we want to view it as a truncation by

Frobenius weights.

Theorem 6.3.1 ([Mor08]). Let j : U → X a nonempty open subset of X and K a

pure perverse sheaf of weight a on U . Then there are canonical isomorphisms:

j!∗K ∼= w≤aj∗K ∼= w≥aj!K.

More generally, let {Sk}nk=0 be a partition ofX as above, and define Tk =
⋃

r=dimX−k

Sr,

the union of codimension exactly k strata, we also require Tk is open in X −
⋃
l<k

Tk. By

abuse of notation, we denote by ik the embedding Tk ↪→ X. Then Morel proves the

following
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Theorem 6.3.2 ([Mor08]). Let F be a perverse sheaf on T0 pure of weight a ∈ Z. We

have an equivalence in the Grothendieck group of the derived category Db
m(X,Q`) of

bounded complex of Q`-sheaves with mixed weights:

[i0!∗F ] =
∑

1≤n1<n2···<nr<n

(−1)r[inr!w≤ai
!
nr . . . in1!w≤ai

!
n1
i0!F ]

+
∑

1≤n1<n2···<nr=n

(−1)r[inr!w<ai
!
nrinr−1!w≤ai

!
nr−1

. . . in1!w≤ai
!
n1
i0!F ]

Remark 6.3.3. If no sequence satisfies 1 ≤ n1 < · · · < nr < n, the first summation is

NOT empty, it’s i0!F instead.

Example 6.3.4 (Weight truncation). Consider X = A1
Fp

= Spec(Fp[t]) and U =

Spec(Fp[t, t
−1]). X = U ∪ {0}, let j : U → X be the inclusion. The theorem

above says that [j!∗Q`,U [1]] = [j!Q`,U [1]]− [i!w<0i
!j!Q`,U [1]]. The stalks of j!Q`,U [1] are

−1 0

U Q`(−1) 0

∗ 0 0

. Apply the excision sequence, we have [i!j!Q`,U [1] = [Q` → Q`(1)],

which is in degree 0 and 1 and it’s nontrivial only over the point ∗. Thus we have

the stalks of its dual
−1 0

∗ Q`(−1) Q`

. Now apply the weight truncation w < 0

and pushforward (here i∗ = i!) to X, the stalks of the intermediate extension are

−1 0

U Q`(−1) 0

∗ Q`(−1) 0

. This recovers the fact that j!∗Q`,U [1] = QX [1], since X is smooth

of dimension 1.

Remark 6.3.5. Note that in Morel’s definition of the intersection complex, we have

to shift the degree back, i.e. ICX = (j!∗Q`[dimX])[− dimX], as a consequence, it’s

NOT a perverse sheaf. Some authors define the intersection complex just as ICX =

j!∗Q`[dimX]. This has the advantage that an intersection complex is a perverse sheaf,

however, this is not what goes into the Kazhdan-Lusztig theorem, we have to take the
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cohomology sheaf of intersection complex with support in non-negative degrees.

For latter use, we have another way to encode the trace function. Let T (X) denote

the subcategory of Db
m(X,Q`) generated by objects isomorphic to Q`(m), m ∈ Z.

Then the Grothendieck group K(T (X)) is isomorphic to Z[t, t−1], t can be identified

with Q`(1). Actually, this isomorphism is given by the Frobenius trace function:

φ : T (X)→ Z[t, t−1]

φ([K])(qk) = Tr(Frobk∗, i∗xK), ∀x ∈ X(Fqk).

Thus give an object in T (X), we can always get a Laurent polynomial, this paves the

way to go from intersection cohomology complex j!∗Q` to the R-polynomials as we

shall see in the coming chapter.

Lemma 6.3.6. Let X be smooth and connected over Fq. For any object K ∈ T (X)

and a ∈ Z, we have

φ([w≤aK]) = w≤a−dim(X)(φ(K)).

Proof. See [Mor08].

Similarly, the weight truncation operators have simple incarnations in the Laurent

polynomial ring.

Definition 6.3.7 (Truncation operator on Larent polynomials). The truncation op-

erator τ≤d on the Larent polynomials is defined to be the Q-linear endormorphism of

the Laurent polynomial ring Q[q
1
2 , q−

1
2 ],

τ≤d

(∑
k∈Z

akq
k
2

)
=
∑
k≤d

akq
k
2 .

In other words, q has degree 2, this minor point sometimes causes confusions in

computation.
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Chapter 7

Nonrecursive formula for

Kazhdan-Lusztig polynomials

7.1 Geometry of G/P

Let (W,S) be a general crystallographic Coxeter group, J a subset of S. Let WJ be

the subgroup generated by J ⊂ S. W J , the set of minimal coset representatives of

W/W J . we have a notion of “standard” parabolic subgroup PJ associated to J ⊂ S.

PJ is the subgroup of G generated by the Borel subgroup B and U−J (the one-parameter

subgroups {Uα|α ∈ Φ−, α ∈ Span(J)}). Let WJ be the subgroup of W generated by

J and UJ be the subgroup of U generated by {Uα|α ∈ Φ+, α ∈ Span(J)}. Moreover,

we denote BJ = HUJ and B−J = HU−J . One then has a decomposition of PJ and

analogues of Bruhat and Birkoff decompositions.

Proposition 7.1.1. In the settings as above, PJ and G can be decomposed into affine

spaces,

- PJ =
⋃

w∈WJ

BwB =
⋃

w∈WJ

UJwB =
⋃

w∈WJ

U−J wB.

- G =
⋃

w∈WJ

BwP =
⋃

w∈WJ

B−wP .
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This proposition can be used to describe the geometry of π : G/B → G/P . Let σ ∈

W J , then the restriction to BσB to BσP is an isomorphism, moreover π−1(BσP ) →

BσP is smooth fibre bundle over the affine base with fibre PJ/B =
⋃

w∈WJ

BwB/B, the

fibre is given by the Bruhat cells associated to elements in WJ ⊂ W . We denote the

Bruhat cell BwP/P (resp. B−wP/P ) by Xw (resp. Xw).

Example 7.1.2 (Affine Grassmannian of PGL2). The affine Grassmannian Gr =

PGL2((t))/PGL2[[t]] has two irreducible components since π1(PGL2(C)) ∼= Z/2Z.

We denote them by Gr(0) and Gr(1). In fact Gr(0)is isomorphic to SL2((t))/SL2[[t]],

the affine Grassmannian associated to SL2(C).

The Bruhat decomposition of Gr are given by PGL2[[t]]-orbits, they are parametrized

by dominant weights of SL2, the dual group of PGL2. These dominants thus can be

identified with Z+. More precisely, we denote the n-th orbit by

Grn = PGL2[[t]]

tn 0

0 1

 /PGL2[[t]].

For example, Gr0
∼= pt, Gr1

∼= CP1. When n = 2k, Grn is isomorphic to the Bruhat

cells in the affine Grassmannian of SL2,

Grn ∼= SL2[[t]]

tn 0

0 t−n

 /SL2[[t]].

Then Gr(0) =
⊔
n=2k

Grn and Gr(1) =
⊔

n=2k+1

Grn. The closure Grn is the union of all Grm

for m with the same parity as n. It is in general singular, the IC-sheaf on it is just

the constant sheaf with cohomological dimension −2n. The analogue of the opposite

Bruhat decomposition in this case is given by the N((t))-orbits of Gr, where N is the
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upper triangular unipotent subgroup. We denote them by

Sm = N((t))

tm 0

0 1

PGL2[[t]]/PGL2[[t]].

Then Grn is the union of Sm for |m| ≤ n and has the same parity as n. In this case

Grn ∩ Sm =
{

1
∑n−1

n−m
2
ait

i

0 1

 ·
tn 0

0 1


 , ai ∈ C

} ∼= C
n+m

2 .

All other Grn∩Sm are empty. Note that this example belongs to the G/P case, instead

ofG/B. To be more precise, let I be the Iwahori subgroup π−1(B), where π : G[[t]]→ G

is the reduction by t. We have a natural projection G((t))/I → G((t))/G[[t]]. The

Weyl group of the affine flag variety is W nX∗(T ). The subgroup corresponding to the

affine Grassmannian is the finite weyl group W , a set of minimal length representatives

can be identified with the dominant weights P+ = W\W nX∗(T )/W .

Two other geometric inputs are important for later proof of the main theorem

1. Refined Bruhat decomposition of the Schubert cell Xw.

2. Local structure of Xw along Xv for v < w.

1. will be used to give a geometric interpretation of the so-called R-polynomials, and

2. is essential in the computation of i!vjw!Q`.

We first discuss a refined Bruhat decomposition of Schubert cells first studied by

[Deo87]. To describe the combinatorics of this decomposition, we define the so-called

J-distinguished expressions.

Definition 7.1.3 (J-distinguished expressions). Let WJ be the subgroup generated

by J ⊂ S. W J , the set of minimal coset representatives of W/W J . Let σ ∈ W J . We

fix a reduced expression σ = s1 . . . sr. The set of J-expressions Γ = {(θ1, . . . , θr+1) ∈
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(W J)r+1|θr+1 = 1, θp ∈ {θp+1, spθp+1} ∀ 1 ≤ p ≤ r}. Let DJ denote the set of J-

expressions such that `(spθp+1) ≥ `(θp+1) if θp = θp+1. The natural projection π :

DJ → W J is given by π((θ1, . . . , θr+1)) = θ1.

We also define certain “statistics” on J-distinguished expressions

n1(θ) = #{p|θp = θp+1 and spθp+1 ∈ W J}

n2(θ) = #{p|θp = θp+1 and spθp+1 /∈ W J}

m(θ) = #{p|θp = spθp+1 and `(θp) ≤ `(θp+1)}

The following refined Bruhat decomposition was first stated without proof in [Deo87],

we give a proof following Morel’s method [Mor11]in the G/B-case.

Proposition 7.1.4 ([Deo87]). The Schubert cell Xσ = Bσ · P decomposes canonically

into a disjoint union of locally closed subvarieties:

Bσ · P =
⋃
θ∈DJ

Dθ.

Moreover Dθ
∼= Am(θ)+n2(θ) ×G

n1(θ)
m . For τ ∈ W J , we have

Bσ · P ∩B−τ · P =
⋃

θ∈DJ ,π(θ)=τ

Dθ.

Proof. Consider the composition of the Bott-Samelson resolution of singularity p :

Ps1 ×B · · · ×B Pαr/B → BwB/B and π : G/B → G/P . If w ∈ W J , the image

of π ◦ p is just BwP/P ∈ G/P . We let T ⊂ B act on the Bott-Samelson variety

by multiplication from the left on the first factor and act on G/P by multiplication

on the left. The T -fixed points on (G/P )T are precisely {wP}w∈WJ , for v, w ∈ W J ,

BwP ∩B−vP 6= ∅ iff v ≤ w [Kum02]. The T -fixed points on the Bott-Samelson variety

are parametrized by the set Γ = {1, s1} × · · · × {1, sr}. For (γ1, . . . , γk) ∈ Γ, consider

the morphism uλ = (pγ1(−α1), . . . , pγr(−αr)) : Ar → BS, where pα : A1 → Uα ⊂ G is the
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one-parameter subgroup associated to the root α. Let Uλ be the image, then we have

U(s1,...,sr) = (π ◦ p)−1(BwP/P ) = p−1(BwB/B). Moreover, for any (γ1, . . . , γr) ∈ Γ,

Uλ ∩ U(s1,...,sr) = uλ({(x1, . . . , xr) ∈ Ar|xi 6= 0 if γi = 1}). [Har04] also shows that the

cell of contraction associated to the fixed point [γ1, . . . , γr] is

Cγ = uγ({(x1, . . . , xr) ∈ Ar, xi = 0 if i /∈ J(γ)}).

Similarly the cell of repelling associated to the fixed point [γ1, . . . , γr] is giving by the

complimentary directions, that is

Cγ = uγ({(x1, . . . , xr) ∈ Ar, xi = 0 if i ∈ J(γ)}).

Since the Bott-Samelson variety is a disjoint union of locally closed subvarieties Cγ,

for γ ∈ Γ, we know p : BS → BwB/B is an isomorphism on BwB/B, hence

Xw =
⋂
γ∈Γ

U(s1,...,sr) ∩ Cγ

. Moreover, we have [Deo87, Lemma 4.3]

Bσ · P ∩B−τ · P =
∑
τwJ≤σ

π(Bσ ·B ∩B−1τwJ ·B).

By the discussion above, Bσ ·P ∩B−τ ·P is uλ({x1, . . . , xr} ∈ Ar) under the following

conditions

• xp = 0 if γ1 . . . γp(−αp) ∈ Φ+, this is possible if and only if θp = spθp+1 and

`(θp) > `(θp+1). For a component to contribute, the index p must lie in the

compliment of θp = spθp+1 and `(θp) > `(θp+1), which is {p|θp = spθp+1and`(θp) ≤

`(θp+1)}
⋃
{p|θp = θp+1}, its cardinality is exactly m(θ) + n1(θ) + n2(θ)

• xp 6= 0, if θp = θp+1 and spθp+1 ∈ W J . This is because if spθp+1 /∈ W J , we can
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always find another sequence λ in Γ, such that Uλ ∩U(s1,...,sr) contains the image

of xp = 0 and under the projection, it goes to the same locus parametrized by

the θ-sequence. Thus xp 6= 0 if and only if p ∈ {p|θp = θp+1 and spθp+1 ∈ W J}.

In Summary, we have the desired decomposition

Bσ · P ∩B−τ · P =
⋃

θ∈DJ ,π(θ)=τ

Dθ.

Remark 7.1.5. The Bott-Samelson resolution can also be described as p : Pα1 × · · · ×

Pαr/B
r where the product group acts on Pα1 × . . . Pαr from the right by

(p1, . . . , pr)(b1, . . . , br) = (p1b1, b
−1
1 p2b2, . . . , bn−1pnbn).

Lemma 7.1.6. For any v, w ∈ W J with v ≤ w, the varieties XJ
w ∩ Bv

J and XJ
w ∩ vBe

J

are both affine.

Proof. See [Kum02, Lemma 7.3.5].

Now we briefly describe the local structure of Xv ↪→ Xw for v ≤ w.

Lemma 7.1.7. For v, w ∈ W J with v ≤ w, the map

θv,w : Uv × (XJ
w ∩Bv

Y )→ XY
w × vBe

Y

(g, x) 7→ gx

is a biregular T -equivariant isomorphism, where T -acts by conjugation on Uv and by

left-multiplication on the other two factors.

Proof. See [Kum02, Lemma 7.3.10].
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Remark 7.1.8. Note that Uv is a set of representatives of Uv ·P in our notation, namely,

θv,w actually defines an affine open neighborhood of Uv ·P in Uw ·P . When G is finite

dimensional, what we’re saying is that

• U ∩ vU−v−1 is an affine space of dimension `(v). Because U and U− are affine

spaces viewed subspaces of An2
. Conjugate by a given v is a linear map on An2

.

The intersection is just a intersection of two affine subspaces.

• Bv ·B ∼= Bv · P ∼= U ∩ vU−1v−1.

7.2 Kazhdan-Lusztig theory of G/P

Let W be a Coxeter group and let S be the set of simple reflections. The associated

Hecke algebra H is the Z[q±
1
2 ]-algebra generated by Tw for w ∈ W , with the relations:

TwTw′ = Tww′ , if `(ww′) = `(w) + `(w′)

(Ts + 1)(Ts − q) = 0

H has an Z-linear involution as defined in [KL80], given by q
1
2 = q−

1
2 , and T−1

w−1 .

We first recall the definition of generalized R-polynomial. Let MJ be a free Z[q±
1
2 ]-

module generated by {mJ
v |σ ∈ W J}. Let u be a root of (u+ 1)(u− q) i.e. u = 1 or q.

For s ∈ S, L(s) ∈ End
Z[q±

1
2 ]

(MJ) is defined by

L(s)(mJ
w) =


qmJ

sw + (q − 1)mJ
w, if `(sw) ≤ `(w)

qmJ
sw, if `(sw) ≥ `(w) and sw ∈ W J

umJ
w, if `(sw) ≥ `(w) and sw /∈ W J .

The H-module structure on MJ is defined by the map φJ : H 7→MJ , Ts 7→ u`(wJ )L(s),

where wJ comes from the decomposition s = σwJ with σ ∈ W J , wJ ∈ WJ . MJ inherits
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a Z-linear involution, that is, for w ∈ W J , mJ
w = φJ(Tw) := φJ(Tw) = φJ(T−1

w−1). Then

the generalized R-polynomial is defined as follows

Definition 7.2.1. RJ
v,w ∈ Z[q±

1
2 ] are defined to be

mJ
w =

∑
v∈WJ

(−1)`(v)+`(w)q−`(w)RJ
v,wm

J
v .

The generalized Kazhdan-Lusztig polynomials P J
v,w can be characterized by the

involution invariant elements {CJ
w} [Deo87] in MJ . We have

Proposition 7.2.2. For any w ∈ W J , the involution invariant element CJ
w can be

written as

CJ
w =

∑
v∈WJ

(−1)`(v)+`(w)q
−(`(w)−`(v))

2 P J
v,wm

J
v ,

where P J
v,w ∈ Z[q] are characterized by the formula above and the conditions

• P J
v,v = 1,

• degq(P
J
v,w) ≤ `(w)−`(v)−1

2
, for all v ≤ w.

Example 7.2.3. Let s, t be two different simple reflections, then we have

C1 = 1

Cs = t−1(Ts + 1)

Cst = t−2(Tst + Ts + Tt + 1)

Then by the definition, we have P1,s(q) = Ps,st(q) = P1,st = 1.

Example 7.2.4 (SL4). Let s1, s2, s3 be the simple reflections associated to the simple

roots in SL4, one can check that Ps2,s2s1s3s2 = 1 + q. We’ll explain the geometric

meaning
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The geometry of G/P in section 7.1 together with works of Kazhdan-Lusztig [KL79,

KL80], we can give P J
v,w and RJ

v,w explicit geometric meaning.

Theorem 7.2.5 ([Deo87]). Let σ ∈ W J . The sheaf of cohomology Hk(ICXσ
) is zero

if k is odd. If k is even and B′ ∈ Xσ is stable under Frobr, the power of the Frobenius

action Frob. Then the eigenvalues of (Frobr)∗ on the fibre Hk(ICXσ
)B′ are all equal

to q
ik
2 . Moreover, for any τ ≤ σ, we have

P J
τ,σ(t) =

∑
k≥0

dimH2k((ICXσ
)τ ·P )ti.

Corollary 7.2.6. For all v, w ∈ W J with v ≤ w, we have

P J
v,w(q) = φ([i∗v,wICXw

]).

Proof. Note that since Xv is a T -equivariant orbit, φ([i∗v,wICXw
]) can be computed at

the fixed point xv. By the purity of Frobenius action in Theorem 7.2.5, H2k((ICXw
)v·P )

is exactly the weight k part of the stalk at xv. We’re done.

Corollary 7.2.7. For v, w ∈ W J with v ≤ w, we have

RJ
v,w(qk) = #(Xw ∩Xv)(Fqk)

Proof. This is [Deo87, Proposition 4.2], with the notation in the previous section, we

have

RJ
v,w =

∑
θ∈DJ ,π(θ)=v

(q − 1)n1(θ)+n2(θ)qm(θ).

Thus the result follows from the refined Bruhat decomposition ofXw∩Xv in Proposition

7.1.4.
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7.3 Proof of the theorem and examples

7.3.1 Proof of the main theorem

Lemma 7.3.1. iv,wICXw
is in T (Xv).

Proof. See [Mor11].

Lemma 7.3.2. For all v, w ∈ W J with v ≤ w, for any K ∈ T (Xw), the complex

i!v,wjw!K is in T (Xv) and there’s a Gal(Fq/Fq)-equivariant isomorphism

i!v,wjw!K ∼= RΓc((Xw ∩Xv)Fq , K|Xw∩Xv).

Moreover φ(i!v,wjw!K) = φ(K)RJ
v,w(t).

Proof. We have the following commuting diagram,

Xw Xw

Xv Xv × (Xw ×Xv) Xv × (Xw ∩Xv).

jw

iv,w

(id,xv) (id,j)

Thus

i!v,wjw!K = (id, xv)
!(id, j)!(Q`,Xv � Q`,Xw∩Xv)

= Q` � (x!
vj!Q`(m)).

This implies that

(i!v,wjw!K)xv = x!
vj!Q`(m) = x!

vjw!(Q`|Xw∩Xv).

Since the torus action contracts Xw ∩Xv to xv, according to [Mor11][Sous-lemme 1],
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we have a Gal(Fq/Fq)-isomorphism

x!
v(j!Q`(m)) ∼= RΓc((Xw ∩Xv)Fq ,Q`(m)|Xw∩Xv).

Now we can compute the value of the Laurent polynomial φ([i!v,wjw!K]) at t = qk by

the Grothendieck-Lefschetz trace formula

φ([i!v,wjw!K]) = Tr(Frobk∗, RΓc((Xw ∩Xv)Fq ,Q`(m)|Xw∩Xv))

=
∑

x∈(Xw∩Xv)(F
qk

)

Tr(Frob∗x,Q`(m)))

= q−km#(Xw ∩Xv)(Fqk)

= q−kmRJ
v,w(qk)

= φ([K])RJ
v,w(qk).

Theorem 7.3.3 ([WZ19]). For any τ , σ ∈ W J , the generalized Kazhdan-Lusztig poly-

nomial can be computed from the generalized R-polynomials:

P J
τ,σ = τ`(σ)−`(τ)−1

∑
τ=v1<···<vr<σ

(−1)r(T1 ◦ · · · ◦ Tr−1 ◦ Tr)1,

where 1 is the constant polynomial 1 and

Tr(f) = τ`(σ)−`(vr+1)(R
J
vr+1,σ

· f)

Proof. We specialize Theorem 6.3.2 to the case F = j!∗Q`[n]. Apply φ to both sides,

the left-hand side gives us P J
τ,σ by 7.2.6. Then the result follows from Lemma 7.3.2 and

Lemma 6.3.6.
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7.3.2 Examples: sl3 and sl4 partial flag varieties

Example 7.3.4 (SL3). Let G = SL3, B =


∗ ∗ ∗

0 ∗ ∗

0 0 ∗

, the standard Borel subgroup.

P =


∗ ∗ ∗

0 ∗ ∗

0 ∗ ∗

, the standard parabolic subgroup corresponding to the simple root

{α2−α3}. Then G/B is the variety of complete flags in C3, G/P parametrizes lines in

C3, in other words, G/P ∼= P2. The G-action on P2 is just the matrix multiplication

on column vectors


x0

x1

x2

 from the left. WJ = 〈(2, 3)〉 ∼= Z/2Z, the right cosets and

minimal length representatives are given as follows:

()WJ = {(), (2, 3)}

(1, 2)WJ = {(1, 2), (1, 2, 3)}

(1, 3, 2)WJ = {(1, 3), (1, 3, 2)}.

Note that although (1, 3) is a simple permutation, it has the longest length 3 in the

Bruhat order. The geometry of the fibration is encoded in the SL3 Bruhat order graph

and the subgraph associated to the partial flag variety, in our case, it’s just P2. See

Fig 7. The pink line segments encodes the cell structure of G/P ∼= P2, the green, blue

and purple line segments are the corresponding P1-fibration over each strata.

First we lift elements in W J = {(), (1, 2), (1, 3, 2)} to G for later computation.

() =


1 0 0

0 1 0

0 0 1

 , (1, 2) =


0 1 0

1 0 0

0 0 1

 , (1, 3, 2) =


0 1 0

0 0 1

1 0 0

 .
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Figure 7: SL3 Bruhat graph and fibration
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The corresponding points are given by the image of the action these elements on


1

0

0

 ∈
P2. The Bruhat decomposition is given by the B-orbits:

X() = {x1 = x2 = 0} ∼= pt

X(1,2) = {x1 6= 0, x2 = 0} ∼= A1

X(1,3,2) = {x2 6= 0} ∼= A2.

The opposite Bruhat decomposition is given by the B−-orbits,

X() = {x0 6= 0} ∼= A2

X(1,2) = {x0 = 0, x1 6= 0} ∼= A1

X(1,3,2) = {x0 = x1 = 0} ∼= pt.

Next we demonstrate the key local structure of Xw along Xv has a nice product

description. For example X(1,2) ↪→ X(1,3,2) = P2. It’s given by the following multipli-

cation

X(1,2) ×X(1,2) → P2

(bv · P, [gP ]) 7→ [bgP ].

Namely, the first component is viewed as elements in the group, the second component

X(1,2) = B−(1, 2)-orbits of


1

0

0

 is viewed as points in G/P ∼= P2, the map is induced
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from the group action on the left. In our case, it’s given by

(


a b c

0 d e

0 0 f




0 1 0

1 0 0

0 0 1

 ,


0

x

y

) 7→


bx+ cy

dx+ ey

fy

 ,

where a, d, f, x 6= 0. dx = (dx + ey) − e
f
(fy), thus we know the image is isomorphic

to A2. To be more clear, the morphism defined above has some ambiguity in the

first factor, actually, we have to choose representatives in X(1,2)
∼= U ∩ (1, 2)U−J (1, 2),

where U−J =


1 0 0

∗ 1 0

∗ 0 1

. That is X(1,2)
∼=


1 ∗ 0

0 1 0

0 0 1

. Thus in the map above, we’re

safe to assume that a = d = f = 1, c = e = 0, the image is given by


bx

dx

y

, since

d, x 6= 0, this is just A2 ∼= {x1 6= 0} ⊂ P2, which is surely an open neighborhood of

X(1,2) = {x1 6= 0, x2 = 0}, even more down to earth, the local picture of X(1,2) is just

the second axis embedded in a plane. This is essential for our computation of i!vjw!Q`.

Next, we try to compute all the relative R-polynomials and relative P -polynomials.

By the geometric interpretation of R-polynomials, we have

RJ
u,v () (12) (132)

() 1 q − 1 q(q − 1)

(12) 1 q − 1

(132) 1

On the other hand, G/P ∼= P2 is smooth in our case,the Bruhat decomposition

agrees with the ordinary cell decomposition of P2, all the associated intermediate

extension complexes are constant Q` sheaves, thus we have
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P J
u,v () (12) (132)

() 1 1 1

(12) 1 1

(132) 1

We demonstrate what does the weight truncation theorem says in this case.

• v = () and w = (12), then `(v) = 0 and `(w) = 1, we have one and only one

possible path from () to (12) in the Bruhat order. Then the main theorem 7.3.3

says

P J
(),(12) = τ≤0(−1)1τ≤1R

J
(),(12)(q)

= τ≤0(−1)1τ≤1(q − 1)

= τ≤0(−1)1(−1)

= 1.

• v = (12) and w = (132), `(v) = 1 and `(w) = 2, exactly similar to the case above,

the main theorem says that

P J
(12),(132) = τ≤0(−1)1τ≤1R

J
(12),(132)(q)

= τ≤0(−1)1τ≤1(q − 1)

= τ≤0(−1)1(−1)

= 1.

• v = () and w = (132), `(v) = 0 and `(w) = 2. Now we have two different paths

from () to (132) in the Bruhat order, () → (12) → (132) and () → (132). The
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main theorem says

P J
(),(132) = τ≤1(−1)2RJ

(),(12)τ≤1R
J
(12),(132)(q) + τ≤1(−1)1τ≤2R

J
(),(132)(q)

= τ≤1(−1)2(q − 1)τ≤1(q − 1) + τ≤1(−1)1τ≤2q(q − 1)

= τ≤1(−1)2(q − 1)(−1) + τ≤1(−1)1(−q)

= 1 + 0

= 1.

We thus conclude that in the SL3 case we have fully checked the validity of the main

theorem for G/P .

Remark 7.3.5. Note that deg(q) = 2.

Example 7.3.6 (SL4 and Grassmannian). Take a maximal parabolic subgroup P

of SL(n), we can get a relation between the Kazhdan-Lusztig polynomials of Schu-

bert varieties in Grassmannian and the R-polynomials. For example, G = SL4, the

corresponding parabolic subgroup is given by the isotropic group of the standard

flag, P =



∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

0 0 ∗ ∗

0 0 ∗ ∗


. In the language of Coxeter groups, we have W = S4,
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J = {α1− α2, α3− α4}. WJ
∼= Z/2Z×Z/2Z, |W J | = 6. The Bruhat order is given by

34 (1, 3, 4, 2)

24 (1, 2, 4, 3)

14 23 (2, 4, 3) (1, 2, 3)

13 (2, 3)

12 id

W J , the set of minimal length representatives of W/WJ is on the right-hand side. More

precisely, the corresponding cosets are

()WJ = {(), (3, 4), (1, 2), (1, 2)(3, 4)}

(2, 3, 4)WJ = {(2, 3), (2, 3, 4), (1, 3, 2), (1, 3, 4, 2)}

(2, 4, 3)WJ = {(2, 4, 3), (2, 4), (1, 4, 3, 2), (1, 4, 2)}

(1, 2, 3)WJ = {(1, 2, 3), (1, 2, 3, 4), (1, 3), (1, 3, 4)}

(1, 2, 4, 3)WJ = {(1, 2, 4, 3), (1, 2, 4), (1, 4, 3), (1, 4)}

(1, 3)(2, 4)WJ = {(1, 3)(2, 4), (1, 3, 2, 4), (1, 4, 2, 3), (1, 4)(2, 3)}.

The geometry of the fibration π : G/B → G/P is shown in the SL4 Bruhat order

graph and the subgraph associated to the corresponding partial flag variety G/P ∼=

Gr(2, 4). See Figure 8. The bold pink line segments give the cell structure of G/P , the

4-gons over each vertex on the pink subgraph means the P1 ×P1-fibration.

Now we compute some of the R-polynomials and Kazhdan-Lusztig polynomials.

We first collect some information of WJ and reduced expressions of elements for ele-

ments in W J . If we denote the simple reflections by s1 = (12), s2 = (23), s3 = (34),
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Figure 8: SL4 Bruhat graph and fibration
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then we have WJ = {1, s1, s3, s1s3}, s1s3 is the longest element in WJ . W J =

{1, s2, s3s2, s1s2, s3s1s2, s2s3s1s2}. We can compute the generalized R-polynomials and

Kazhdan-Lusztig polynomials similarly as in the previous examples. The results are

given in the following two tables, note that an empty cell means 0.

P J
u,v 1 s2 s3s2 s1s2 s3s1s2 s2s3s1s2

1 1 1 1 1 q + 1 1

s2 1 1 1 1 1

s3s2 1 1 1

s1s2 1 1 1

s3s1s2 1 1

s2s3s1s2 1

RJ
u,v 1 s2 s3s2 s1s2 s3s1s2 s2s3s1s2

1 1 q − 1 q2−q q2−q q3 − q2 q4−q3−q2+q

s2 1 q − 1 q − 1 q2−2q+1 q3 − q2

s3s2 1 q − 1 q2 − q

s1s2 1 q − 1 q2 − q

s3s1s2 1 q − 1

s2s3s1s2 1

We only demonstrate the most non-trivial case when u = 1 ((1234) in the Bruhat

graph) and v = s3s1s2 ((3142) in the Bruhat graph). We have 6 path in total, we

compute the contribution one by one

• (1234)→ (3142). τ≤2(−1)R1,s3s1s2 = τ≤2(q2 − q3) = 0

• (1234)→ (1324)→ (3142). τ≤2(−1)2R1,s2τ≤2Rs2,s3s1s2 = τ≤2(q − 1)τ≤2(q2 − 2q +

1) = 3q − 1

• (1234) → (1342) → (3142). τ≤2(−1)2R1,s3s2τ≤1Rs3s2,s3s1s2 = τ≤2(q2 − q)τ≤1(q −

1) = q
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• (1234) → (3124) → (3142). τ≤2(−1)2R1,s1s2τ≤1Rs1s2,s3s1s2 = τ≤2(q2 − q)τ≤1(q −

1) = q

• (1234) → (1324) → (1342) → (3142). τ≤2(−1)3R1,s2τ≤2Rs2,s3s2τ≤1Rs3s2,s3s1s2 =

−τ≤2(q − 1)τ≤2(q − 1)τ≤1(q − 1) = −2q + 1

• (1234) → (1324) → (3124) → (3142). τ≤2(−1)3R1,s2τ≤2Rs2,s1s2τ≤1Rs1s2,s3s1s2 =

−τ≤2(q − 1)τ≤2(q − 1)τ≤1(q − 1) = −2q + 1.

In total, we get

3q − 1 + q + q + (−2q + 1) + (−2q + 1) = q + 1,

which is exactly P1,s3s1s2 = q + 1!
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Appendix

Cohomology of infinite dimensional Lie algebras

In this extra section, explain the relation between non-trivial class in H2(g,C) and

central extension of the Lie algebra g. This clarifies certain aspects of the central

extension in the construction of Kac-Moody Lie algebras.

Central extension and H2(g,C)

Recall that a central extension of a Lie algebra g is defined to be an exact sequence of

Liealgebras

0→ C→ g̃→ g→ 0,

such that the image of C is contained in the center of g̃. For a cohomology class

c ∈ H2(g,C), the corresponding one-dimensional central extension is

0→ C
λ7→(λ,0)−−−−→ g̃

(λ,g)7→g−−−−→ g→ 0,

where the Lie bracket if given by

[(λ, g), (µ, h)] = (c(g, h), [g, h]).
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The Jacobi identity of this bracket is equivalent to the cocycle condition of c in Lie alge-

bra cohomology, namely 0 = dc(g1, g2, g3) = c([g1, g2], g3)−c([g1, g3], g2)+c([g2, g3], g1).

The boundary condition is equivalent to the trivial direct sum extension, note that two

central extensions g̃ and g̃′ are equivalent if there exist a Lie algebra morphism f such

that the following diagram commutes

g̃

0 C g 0

g̃′.

(λ,g)7→g

∃f

λ 7→(λ,0)

λ 7→(λ,0) (λ,g′)7→g′

The commuting condition forces the morphism between g̃ and g̃′ to be of the form

f : (λ, g) 7→ (λ+µ(g), g), where µ is a linear map. Then if f is an isomorphism between

the associated central extension and direct sum extension, we have

f [(λ1, g1), (λ2, g2)] = f((c(g1, g2), [g1, g2]))

= (c(g1, g2) + µ([g1, g2]), [g1, g2])

= (0, [g1, g2])(= [f((λ1, g1)), f((λ2, g2))] in the trivial extension).

This means exactly c = dµ. In conclusion, we know H2(g,C) is one-to-one correspond

to equivalent classes of central extensions of the Lie algebra g.

Remark 7.3.7. It’s straightforward from the Lie algebra (co)homology definition, we

have

H1(g) = g/[g, g]

H1(g) = (g/[g, g])′

.
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Example 7.3.8 (Virasoro algebra). The Lie algebra cohomology ring of Vect(S1)—

the Lie algebra of complex polynomial vector fields on S1 is a tensor product of the

algebra of polynomial generated by a single element x in degree 2 and the exterior

algebra generated by a single element y in degree 3

H•(Vect(S1),C) = C[x]⊗ ∧•y.

Specially, Hk(g,C) = C if k 6= 1, and H1 = 0. Thus we know the Virasoro algebra

is the unique nontrivial central extension of Vect(S1), though we use a specific two-

cocycle a(m,n) = m3−m
12

. Vect(S1) is semisimple, it’s obvious from the definition, it’s

good to also have a cohomological interpretation that H1(Vect(S1)) = 0.

Example 7.3.9 (ŝl2). By [Fuk86, Page 194], we have

dim Hk(sl2[t, t−1],C) =


0, for k = 0

1, otherwise.

The central extension of sl2[t±1] contained in ŝl2 is essentially the unique non-trivial

extension of sl2[t±1] that we can think of.
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