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Abstract

New Analytics Paradigms in Online Advertising and Fantasy Sports

Raghav Singal

Over the last two decades, digitization has been drastically shifting the way businesses operate
and has provided access to high volume, variety, velocity, and veracity data. Naturally, access to
such granular data has opened a wider range of possibilities than previously available. We leverage
such data to develop application-driven models in order to evaluate current systems and make better
decisions. We explore three application areas.

In Chapter 1, we develop models and algorithms to optimize portfolios in daily fantasy sports
(DFS). We use opponent-level data to predict behavior of fantasy players via a Dirichlet-multinomial
process, and our predictions feed into a novel portfolio construction model. The model is solved
via a sequence of binary quadratic programs, motivated by its connection to outperforming stochas-
tic benchmarks, the submodularity of the objective function, and the theory of order statistics. In
addition to providing theoretical guarantees, we demonstrate the value of our framework by par-
ticipating in DFS contests.

In Chapter 2, we develop an axiomatic framework for attribution in online advertising, i.e.,
assessing the contribution of individual ads to product purchase. Leveraging a user-level dataset,
we propose a Markovian model to explain user behavior as a function of the ads she is exposed to.
We use our model to illustrate limitations of existing heuristics and propose an original framework
for attribution, which is motivated by causality and game theory. Furthermore, we establish that
our framework coincides with an adjusted “unique-uniform” attribution scheme. This scheme
is efficiently implementable and can be interpreted as a correction to the commonly used uniform
attribution scheme. We supplement our theory with numerics using a real-world large-scale dataset.

In Chapter 3, we propose a decision-making algorithm for personalized sequential marketing.
As in attribution, using a user-level dataset, we propose a state-based model to capture user be-
havior as a function of the ad interventions. In contrast with existing approaches that model only

the myopic value of an intervention, we also model the long-run value. The objective of the firm



is to maximize the probability of purchase and a key challenge it faces is the lack of understand-
ing of the state-specific effects of interventions. We propose a model-free learning algorithm for
decision-making in such a setting. Our algorithm inherits the simplicity of Thompson sampling for
a multi-armed bandit setting and we prove its asymptotic optimality. We supplement our theory

with numerics on an email marketing dataset.
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Introduction

This thesis focuses on application-driven developments in the data rich new economy. Over
the last two decades, digitization has been drastically shifting the way businesses operate and has
provided access to high volume, variety, velocity, and veracity data. Naturally, access to such
granular data has opened a wider range of possibilities than previously available. In this thesis, we
leverage such data to develop application-driven models in order to evaluate current systems and
make better decisions.

In Chapter 1, we develop models and algorithms to optimize portfolios in daily fantasy sports
(DFS). DFS is a multi-billion dollar industry with millions of annual users and widespread ap-
peal among sports fans across a broad range of popular sports. In this chapter, building on the
recent work of Hunter et al. 2016, we provide a coherent framework for constructing DFS port-
folios where we explicitly model the behavior of other DFS players. We formulate an optimiza-
tion problem that accurately describes the DFS problem for a risk-neutral decision-maker in both
double-up and top-heavy payoff settings. Our formulation maximizes the expected reward subject
to feasibility constraints and we relate this formulation to mean-variance optimization and the out-
performance of stochastic benchmarks. Using this connection, we show how the problem can be
reduced to the problem of solving a series of binary quadratic programs. We also propose an al-
gorithm for solving the problem where the decision-maker can submit multiple entries to the DFS
contest. This algorithm is motivated by submodularity properties of the objective function and by
some new results on parimutuel betting. One of the contributions of our work is the introduction
of a Dirichlet-multinomial data generating process for modeling opponents’ team selections and
we estimate the parameters of this model via Dirichlet regressions. A further benefit to modeling
opponents’ team selections is that it enables us to estimate the value in a DFS setting of both in-
sider trading and and collusion. We demonstrate the value of our framework by applying it to DFS
contests during the 2017 NFL season. A preliminary version of this work was a finalist in the Sloan
Sports Analytics Conference (2018) and the final version appeared as an article in Management

Science (Haugh and Singal 2020).



In Chapter 2, we tackle one of the central challenges in online advertising: attribution. Simply
put, we assess the contribution of individual advertiser actions such as e-mails, display ads and
search ads to eventual conversion (purchase). Several heuristics are used for attribution in practice;
however, most do not have any formal justification. The main contribution in this chapter is to
propose an axiomatic framework for attribution in online advertising. We show that the most
common heuristics can be cast under the framework and illustrate how these may fail. We propose
a novel attribution metric, that we refer to as counterfactual adjusted Shapley value (CASV), which
inherits the desirable properties of the traditional Shapley value while overcoming its shortcomings
in the online advertising context. We also propose a Markovian model for the user journey through
the conversion funnel, in which ad actions may have disparate impacts at different stages. We use
the Markovian model to compare our metric with commonly used metrics. Furthermore, under
the Markovian model, we establish that the CASV metric coincides with an adjusted “unique-
uniform” attribution scheme. This scheme is efficiently implementable, and can be interpreted as
a correction to the commonly used uniform attribution scheme. We supplement our theoretical
developments with numerical experiments using a real-world large-scale dataset. A preliminary
version of this work appeared in the WWW conference (Singal et al. 2019) and the current version
is under revision at Management Science.

In Chapter 3, we study the problem of optimal sequential personalized interventions from the
point-of-view of a firm promoting a product under the Markovian model proposed in Chapter 2.
Our model captures the state of each consumer (interaction history with the firm for example) and
allows the consumer behavior to vary as a function of both her state and firm’s interventions. In
contrast with existing approaches that model only the myopic value of an intervention, we also
model the long-run value by allowing the firm to make sequential interventions to the same con-
sumer. The objective of the firm is to maximize the probability of conversion (consumer buying the
product) and a key challenge is the firm does not know the state-specific effects of various interven-
tions. To help make personalized intervention decisions, we propose a decision-making algorithm,

which we call model-free approximate Bayesian learning. Our algorithm inherits the simplicity



of Thompson sampling for a multi-armed bandit setting and maintains an approximate belief over
the value (myopic plus long-run) of each state-specific intervention. The belief is updated as the
algorithm interacts with the consumers. Despite being an approximation to the Bayes update, we
prove the asymptotic optimality of our algorithm. We supplement our theory with numerics on
a real-world large-scale dataset, where we show the dominance of our algorithm over traditional
approaches that are myopic or estimation-based. Furthermore, in contrast to the estimation-based
approaches, our algorithm is able to adapt automatically to the underlying changes in consumer
behavior (concept shift) and maintains a high level of uncertainty on the value of less explored
consumer segments (covariate shift). Intuitively, one expects the value attributed to an advertising
action (Chapter 2) to be connected to the decision-making problem we tackle in Chapter 3. We
discuss this at the end of Chapter 3.

In addition to the application-driven work, we also pursued some theoretical research in rein-
forcement learning. Though not a part of this dissertation, an initial version of that work appeared

in COLT (Bhandari et al. 2018) and the final version has been accepted to Operations Research.



Chapter 1: How to Play Fantasy Sports Strategically (and Win)

Daily fantasy sports (DFS) is a multi-billion dollar industry with millions of annual users and
widespread appeal among sports fans across a broad range of popular sports. In this chapter, build-
ing on the recent work of Hunter et al. 2016, we provide a coherent framework for constructing
DFS portfolios where we explicitly model the behavior of other DFS players. We formulate an
optimization problem that accurately describes the DFS problem for a risk-neutral decision-maker
in both double-up and top-heavy payoff settings. Our formulation maximizes the expected reward
subject to feasibility constraints and we relate this formulation to mean-variance optimization and
the outperformance of stochastic benchmarks. Using this connection, we show how the problem
can be reduced to the problem of solving a series of binary quadratic programs. We also propose an
algorithm for solving the problem where the decision-maker can submit multiple entries to the DFS
contest. This algorithm is motivated by submodularity properties of the objective function and by
some new results on parimutuel betting. One of the contributions of our work is the introduction
of a Dirichlet-multinomial data generating process for modeling opponents’ team selections and
we estimate the parameters of this model via Dirichlet regressions. A further benefit to modeling
opponents’ team selections is that it enables us to estimate the value in a DFS setting of both in-
sider trading and and collusion. We demonstrate the value of our framework by applying it to DFS
contests during the 2017 NFL season. A preliminary version of this work was a finalist in the Sloan
Sports Analytics Conference (2018) and the final version appeared as an article in Management

Science (Haugh and Singal 2020).

1.1 Introduction

Daily fantasy sports (DFS) has become a multi-billion dollar industry (Anderton 2016; Kolodny
2015; O’Keeffe 2015; Wong 2015; Woodward 2016) with millions of annual users (FSTA 2015;

Wong 2015). The pervasiveness of fantasy sports in modern popular culture is reflected by the



regular appearance of articles discussing fantasy sports issues in the mainstream media. Moreover,
major industry developments and scandals are now capable of making headline news (Drape and
Williams 2015b; Johnson 2016). The two major DFS websites are FanDuel and DraftKings and
together they control approximately 95% of the U.S. market (Kolodny 2015; O’Keeffe 2015). Ap-
proximately 80% of DFS players have been classified as minnows (Pramuk 2015) as they are not
believed to use sophisticated techniques for decision-making and portfolio construction. Accord-
ingly, these users provide financial opportunities to the so-called sharks who do use sophisticated
techniques (Harwell 2015; Mulshine 2015; Pramuk 2015; Woodward 2015) when constructing
their fantasy sports portfolios. The goal of this chapter is to provide a coherent framework for con-
structing fantasy sports portfolios where we explicitly model the behavior of other DFS players.
Our approach is therefore strategic and to the best of our knowledge, we are the first academic
work to develop such an approach in the context of fantasy sports.

The number of competitors in a typical DFS contest might range from two to hundreds of
thousands with each competitor constructing a fantasy team of real-world athletes, e.g. National
Football League (NFL) players in a fantasy football contest, with each portfolio being subject to
budget and possibly other constraints. The performance of each portfolio is determined by the
performances of the real-world athletes in a series of actual games, e.g. the series of NFL games
in a given week. The competitors with the best performing entries then earn a monetary reward,
which depends on the specific payoff structure, e.g. double-up or top-heavy, of' the DFS contest.

Several papers have already been written on the topic of fantasy sports. For example, Fry et al.
2007 and Becker and Sun 2016 develop models for season-long fantasy contests while Bergman
and Imbrogno 2017 propose strategies for the survivor pool contest, which is also a season long
event. Multiple papers have been written of course on so-called office pools (which pre-date fan-
tasy sports contests) where the goal is to predict the maximum number of game winners in an

upcoming elimination tournament such as the March Madness NCAA college basketball tourna-

"Loosely speaking, in a double-up contest a player doubles her money if her entry is among the top 50% of
submitted entries. In a top-heavy contest, the rewards are skewed towards the very best performing entries and often
decrease rapidly in the rank of the entry. See Section 1.2 for further details.



ment. Examples of this work include Kaplan and Garstka 2001 and Clair and Letscher 2007. There
has been relatively little work, however, on the problem of constructing portfolios for daily fantasy
sports. One notable exception is the recent work of Hunter et al. 2016, which is closest to the work
we present in this chapter. They consider a winner-takes-all payoff structure and aim to maximize
the probability that one of their portfolios (out of a total of N) wins. Their approach is a greedy
heuristic that maximizes their portfolio means, that is, expected number of fantasy points, subject
to constraints that lower bound their portfolio variances and upper bound their inter-portfolio cor-
relations. Technically, their framework requires the solution of linear integer programs and they
apply their methodology to fantasy sports contests which are fop-heavy in their payoff structure as
opposed to winner-takes-all. Their work has received considerable attention, e.g. Davis 2017, and
the authors report earning? significant sums in real fantasy sports contests based on the National
Hockey League (NHL) and Major League Baseball (MLB).

There are several directions for potential improvement, however, and they are the focus of
the work in this chapter. First, Hunter et al. 2016 do not consider their opponents’ behavior. In
particular, they do not account for the fact that the payoff thresholds are stochastic and depend on
both the performances of the real-world athletes as well as the unknown team selections of their
fellow fantasy sports competitors. Second, their framework is only suitable for contests with the
top-heavy payoff structure and is in general not suitable for the double-up payoff structure. Third,
their approach is based on (approximately) optimizing for the winner-takes-all payoff, which is
only a rough approximation to the top-heavy contests they ultimately target. In contrast, we directly
model the true payoff structure (top-heavy or double-up) and seek to optimize our portfolios with
this objective in mind.

Our work makes several contributions to the DFS literature. First, we formulate an optimiza-
tion problem that accurately describes the DFS problem for a risk-neutral decision-maker in both
double-up and top-heavy settings. Our formulation seeks to maximize the expected reward subject

to portfolio feasibility constraints and we explicitly account for our opponents’ unknown portfolio

They donated their earnings to charity and we have done likewise with our earnings from playing DFS competi-
tions during the 2017 NFL season. The results of these real-world numerical experiments are described in Section 1.6.



choices in our formulation. Second, we connect our problem formulation to the finance literature
on mean-variance optimization and in particular, the mean-variance literature on outperforming
stochastic benchmarks. Using this connection, we show how our problems can be reduced (via
some simple assumptions and results from the theory of order statistics) to the problem of solv-
ing a series of binary quadratic programs. The third contribution of our work is the introduction
of a Dirichlet-multinomial data generating process for modeling opponents’ team selections. We
estimate the parameters of this model via Dirichlet regressions and we demonstrate its value in
predicting opponents’ portfolio choices.

We also show the DFS objective function for the problem with multiple entries is monotone
submodular under certain conditions that often apply approximately in practice. A classic result
(Nemhauser et al. 1978) on submodular maximization then suggests that a greedy algorithm should
perform very well on this problem. Unfortunately, it’s not possible to implement this greedy algo-
rithm and so instead we propose a modified version of it that we can implement. Further support
for our algorithm is provided by some new results for the optimization of wagers in a parimutuel
contest. Such a contest can be viewed as a special case of a DFS contest albeit with some important
differences. Parimutuel betting in the horse-racing industry has long been a topic of independent
interest in its own right, particularly in economics (Bayraktar and Munk 2017; Plott et al. 2003;
Terrell and Farmer 1996, Thaler and Ziemba 1988), where it has been used to test theories related
to market efficiency and information aggregation.

We demonstrate the value of our framework by applying it to both double-up and top-heavy
DFS contests in the 2017 NFL season. Despite the fact that DFS contests have a negative net
present value (NPV) on average (due to the substantial cut taken by the major DFS websites), we
succeeded in earning a net profit over the course of the season. That said, model performance in
DFS contests based on a single NFL season has an inherently high variance and so it is difficult to
draw meaningful empirical conclusions from just one NFL season. Indeed other sports (baseball,
ice hockey, basketball etc.) should have a much lower variance and we believe our approach is

particularly suited to these sports.



We also use our model to estimate the value of “insider trading”, where an insider, e.g. an
employee of the DFS contest organizers, gets to see information on opponents’ portfolio choices
before making his own team selections. This has been a topic of considerable recent media interest
(Drape and Williams 2015a; Drape and Williams 2015b) which was sparked by the case of a
DraftKings employee who won $350,000 in a FanDuel DFS contest by using data from similar
DraftKings contests to construct his entries. This problem of insider trading is of course also
related to the well known value-of-information concept from decision analysis. While insider
trading does result in an increase in expected profits, the benefits of insider trading are mitigated
by superior modeling of opponents’ team selections. This is not surprising: if we can accurately
predict the distribution of opponents’ team selection, then insider information on the composition
of these portfolios will be less valuable.

It 1s also straightforward in our framework to study the benefits of a stylized form of collu-
sion in DFS contests. Specifically, we consider the case where a number N oqe Of DES players
combine to construct a single portfolio of N onuge X Emax €ntries for a given contest, where Ey.x
is the maximum number of permitted entries per DFS player. In contrast, we assume that non-
colluders choose identical portfolios of E,,,x entries. We show the benefits of this type of collusion
can be surprisingly large in top-heavy contests. This benefit is actually twofold in that colluding
can simultaneously result in a significant increase in the total expected payoff and a significant
reduction in the downside risk of the payoff. In practice, however, it’s highly unlikely that non-
colluding players will choose identical portfolios and so we argue that the benefits of collusion to
a risk-neutral player are likely to be quite small.

Beyond proposing a modeling framework for identifying how to construct DFS portfolios, our
work also has other implications. To begin with, it should be clear from our general problem
formulation and solution approach that high levels of “skill” are required to play fantasy sports
successfully. But this is not necessarily in the interest of the fantasy sports industry. In order
to maintain popular interest (and resulting profit margins), the industry does not want the role of

skill to be too great. Indeed a recent report from McKinsey & Company (Miller and Singer 2015)



on fantasy sports makes precisely this point arguing, for example, that chess is a high-skill and
deterministic game, which is why it is rarely played for money. In contrast, while clearly a game
of high skill, poker also has a high degree of randomness to the point that amateur players often
beat professionals in poker tournaments. It is not surprising then that poker is very popular and
typically played for money. The framework we have developed in this chapter can be used by the
fantasy sports industry to determine whether the current DFS game structures achieve a suitable
balance between luck and skill. One simple “lever” to adjust this balance, for example, would be
to control the amount of data they release regarding the teams selected by the DFS players. By
choosing to release no information whatsoever, it will become more difficult for skillful players to
estimate their models and take advantage of their superior modeling skills. The industry can also
use (as we do) our framework to estimate the value of insider trading and collusion and propose
new rules / regulations or payoff structures to counter these concerns.

A recent relevant development occurred in May 2018 when the U.S. Supreme Court struck
down a 1992 federal law — the Professional and Amateur Sports Protection Act — that prohibited
states from authorizing sports gambling. As a result, some states are taking advantage of this
ruling by passing their own sports betting laws and encouraging gambling with the goal of raising
additional tax revenue. This remains a controversial development but would certainly appear to
be a positive development for the fantasy sports industry. To the extent that individual states seek
to regulate online gambling and DFS, the “skill-versus-luck” debate (referenced in the preceding
paragraph) may continue to play a role as it has done historically in the federal regulation of
gambling in the U.S.

The remainder of this chapter is organized as follows. In Section 1.2, we formulate both the
double-up and top-heavy versions of the problem while we outline our Dirichlet regression ap-
proach to modeling our opponents’ team selections in Section 1.3. In Section 1.4, we use results
from mean-variance optimization (that relate to maximizing the probability of outperforming a
stochastic benchmark) to solve the double-up problem. We then extend this approach to solve the

top-heavy problem in Section 1.5, where we prove the submodularity of the objective function.



We present numerical results based on the 2017 NFL season for both problem formulations in Sec-
tion 1.6. In Section 1.7 we discuss the value of information and in particular, how much an insider
can profit from having advance knowledge of his opponents’ team selections. We also consider
the benefits of collusion there. We conclude in Section 1.8, where we also discuss some directions
for ongoing and future research. Various technical details and additional results are deferred to the

appendices.

1.2 Problem Formulation

We assume there are a total of P athletes / real-world players whose performance, 6 € R”, in
a given round of games is random. We assume that § has mean vector us and variance-covariance
matrix 5. Our decision in the fantasy sports competition is to choose a portfolio w € {0, 1} of
athletes. Typically, there are many constraints on w. For example, in a typical NFL DFS contest,
we will only be allowed to select C = 9 athletes out of a total of P ~ 100 to 300 NFL players.
Each athlete also has a certain “cost” and our portfolio cannot exceed a given budget B. These

constraints on w can then be formulated as
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where ¢, denotes the cost of the p'" athlete. Other constraints are also typically imposed by the
contest organizers. These constraints include positional constraints, e.g. exactly one quarterback
can be chosen, diversity constraints, €.g. you can not select more than 4 athletes from any single
NFL team, etc. These constraints can generally be modeled as linear constraints and we use W to
denote the set of binary vectors w € {0, 1} that satisfy these constraints.

A key aspect of our approach to constructing fantasy sports portfolios is in modeling our oppo-
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nents, that is, other DFS players who also enter the same fantasy sports contest. We assume there
are O such opponents and we use W, := {w(,}g:1 to denote their portfolios with each w, € W.
Once the round of NFL games has taken place, we get to observe the realized performances
6 of the P NFL athletes. Our portfolio then realizes a points total of F := w'é whereas our
opponents’ realized points totals are G, := w}é for o = 1,...,0. All portfolios are then ranked
according to their points total and the cash payoffs are determined. These payoffs take different
forms depending on the structure of the contest. There are two contest structures that dominate
in practice and we consider both of them. They are the so-called double-up and top-heavy payoff

structures.

1.2.1 The Double-Up Problem Formulation

Under the double-up payoff structure, the top r portfolios (according to the ranking based
on realized points total) each earn a payoff of R dollars. Suppose now that we enter N << O
portfolios® to the contest. Then, typical values of r are » = (O + N)/2 and r = (O + N)/5
with corresponding payoffs of R = 2 and R = 5 assuming an entry fee of 1 per portfolio. The
(r =(0O+N)/2, R =2) case is called a double-up competition whereas the (r = (O + N)/5,R = 5)
is called a quintuple-up contest. We will refer to all such contests as “double-up” contests except
when we wish to draw a distinction between different types of double-up contests, e.g. (true)
double-up versus quintuple-up. In practice of course, the contest organizers take a cut and keep
approximately 15% of the entry fees for themselves. This is reflected by reducing r appropriately
and we note that this is easily accounted for in our problem formulations below. We also note
that this means the average DFS player loses approximately 15% of her initial entry. In contrast
to financial investments then, DFS investments are on average NPV-negative and so some skill is
required in portfolio construction to overcome this handicap.

While it is possible and quite common for a fantasy sports player to submit multiple entries,

that is, multiple portfolios, to a given contest, we will consider initially the case where we submit

3There is usually a cap on N, denoted by Epax, imposed by the contest organizer, however. Typical cap sizes we
have observed can range from Ep,x = 1 to Epax = 150.
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just N = 1 entry. Given the double-up payoff structure, our fantasy-sports portfolio optimization
problem is to solve

max P {wT6 > G"I(W,,, 6)}, (1.1)
weW

where we use G to denote the r" order statistic of {GU}(?:1 and we define v’ := O+ 1 —r.
Note that we explicitly recognize the dependence of G on the portfolio selections W,, of our O

opponents and the performance vector 6 of the NFL athletes.

1.2.2 The Top-Heavy Problem Formulation

The top-heavy payoff structure is more complicated than the double-up structure as the size of

the cash payoff generally increases with the portfolio ranking. In particular, we first define payoffs
R >--->Rp>Rps1:=0

and corresponding ranks

O=rp<r<---<rp.

Then, a portfolio whose rank lies in (r4—1, r4] wins Ry for d = 1, ... D. In contrast to the double-up
structure, we now account for the possibility of submitting N > 1 entries to the contest. We use
W = {wi}l.]i , to denote these entries and F; := w6 to denote the realized fantasy points total of

our i’ entry. It is then easy to see that our portfolio optimization problem is to solve for*

max W, W, 0] (12)

i(Rd - Rd+1)P{wiT6 > G

N
=1 d=1

where 1/, := O+ N —ry, G(_rl.) is the r'* order statistic of {G0}00:1 U {Fj}j.v N\ Fiand W_; := Ww;.

(We note there is a slight abuse of notation here since duplicate entries are possible and so the

“The probability term in (1.2) involves a strict inequality “>" but we note that the objective should also include an

additional term for P(wé = G(_rlf’ )(W_i, W,,, 6)) in which case a share of the reward (Ry — Ry+1) would be earned. To
keep our expressions simple, we don’t include this term in (1.2) as it is generally negligible (except when replication
is used) but we do account correctly for such ties in all of our numerical results.

12



union operator “U” should be interpreted with this in mind.)

Later in Section 1.5, we will discuss our approach to solving (1.2) and we will argue (based
on the submodularity of the objective function in (1.2) and our parimutuel betting formulation in
Appendix A.2) that diversification, i.e., choosing N different entries, is a near-optimal strategy. For
top-heavy payoffs where the reward R; decreases rapidly in d, it should be clear why diversification
might be a good thing to do. Consider the extreme case of a winner-takes-all structure, for example.
Then, absent pathological instances’, replication of entries means you are only giving yourself one
chance to win. This is accounted for in (1.2) by the fact that your wl’.h entry is “competing” with
your other N — 1 entries as they together comprise W_;. In contrast, when you fully diversify,
you are giving yourself N separate chances to win the prize in total. (We are ignoring here the
possibility of sharing the prize.)

We note that the top-heavy payoff structure is our main concern in this chapter. That said, it
should be clear that the double-up formulation of (1.1) is a special case of the top-heavy formu-
lation in (1.2). We will therefore address the double-up problem before taking on the top-heavy
problem. Before doing this, however, we must discuss the modeling of our opponents’ portfolios

W,

1.3 Modeling Opponents’ Team Selections

A key aspect of our modeling approach is that there is value to modeling our opponents’ portfo-
lio choices, W,,,. This is in direct contrast to the work of Hunter et al. 2016 who ignore this aspect
of the problem and focus instead on constructing portfolios that maximize the expected number
of fantasy points, subject to possible constraints® that encourage high-variance portfolios. Based

on numerical simulations of DFS contests during the 2017 NFL season, we noted it is possible to

For example, if the best team could be predicted in advance with perfect accuracy, then choosing and replicating
this team would be optimal since by replicating this entry you will be (a) guaranteed to win and (b) gain a greater share
of the reward if some of your competitors also chose it. If none of your competitors chose the team, you will earn the
entire reward for yourself.

They included constraints that encouraged high-variance portfolios because they too were focused on top-heavy
contests where very few contestants earn substantial payoffs. It is intuitively clear that high-variance portfolios are
desirable for such contests. We discuss this property in further detail in Sections 1.4 and 1.5 in light of the results from
mean-variance optimization that we bring to bear on the problem.
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obtain significant gains in expected dollar payoffs by explicitly modeling W,,. This is partly due
to the well-known fact that some athletes are (often considerably) more / less popular than other
athletes and because there is some predictability in the team selections of DFS players who may
be responding to weekly developments that contain more noise than genuine information. To the
best of our knowledge, we are the first to explicitly model W, and embed it in our portfolio con-
struction process. That said, we certainly acknowledge that some members of the fantasy sports
community also attempt to be strategic in their attempted selection of less popular athletes and
avoidance of more popular athletes, other things being equal; see for example Gibbs 2017.

If we are to exploit our opponents’ team selections, then we must be able to estimate W, rea-
sonably accurately. Indeed it is worth emphasizing that W, is not observed before the contest
and so we must make do with predicting / simulating it, which amounts to being able to predict
/ simulate the w,’s. To make things clear, we will focus on the specific case of DFS in the NFL
setting. Specifically, consider for example the following NFL contest organized by FanDuel (Fan-
Duel 2016). Each fantasy team has C = 9 positions which must consist of 1 quarterback (QB), 2
running backs (RB), 3 wide receivers (WR), 1 tight end (TE), 1 kicker (K) and 1 “defense” (D).
We now write w, = (W2, wt®, ... w") where w¢® denotes the quarterback component of w,, wt®
denotes the running back component of w, etc. If there are P,; QBs available for selection then

w

€ {0,1}Pe and exactly one component of w®® will be 1 for any feasible w,. In contrast,
wy? and w)* will have exactly two and three components, respectively, equal to 1 for any feasi-
ble w,. We refer to wy’, wt® etc. as the positional marginals of w,. Moreover, it follows that
Py + Py + - - - + P, = P since there are P athletes in total available for selection.

In order to model the distribution of w,, we will use a classic result from copula theory (Nelsen

2007), namely Sklar’s theorem (Sklar 1959). This theorem states that we can write

Fy, (WS, ..., wh) = C (Fps (WE),..., F, (W))) (1.3)

where F,,, denotes the CDF of w,, Fy, denotes the marginal CDF of w¢’ etc., and C is the copula of
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w’, ..., w>. We note that C, which is only uniquely defined on Range(Fy;) - - - XxRange(F,), mod-
els the dependence structure of the positional marginals. The representation in (1.3) is convenient

as it allows us to break our problem down into two separate sub-problems:
1. Modeling and estimating the positional marginals F, . . ., Fp.
2. Modeling and estimating the copula C.

Moreover, it turns out that the representation in (1.3) is particularly convenient from an estimation
viewpoint as we will have sufficient data to estimate the positional marginals reasonably well
whereas obtaining sufficient data to estimate the copula C is challenging. We note that this is
often the case in copula modeling applications. For example, in the equity and credit derivatives
world in finance, there is often plentiful data on the so-called marginal risk-neutral distributions

but relatively little data on the copula C. We begin with the positional marginals.

1.3.1 The Positional Marginals

To simplify matters, we will focus here on the selection of the QB from the total of P that are
available. We assume a Dirichlet-multinomial data generating process for a random opponent’s

selection. Specifically, we assume:
* pos ~ Dir(e;) where Dir(e;) denotes the Dirichlet distribution with parameter vector @ ;.

* A random opponent then selects QB k with probability p’Q‘B fork =1,..., Py, i.e., the chosen

QB follows a Multinomial(1, py;) distribution.

Note pos := { pr }fg‘i lies on the unit simplex in RPe® and therefore defines a probability distribution
over the available quarterbacks. It is important to note that p.; is not known in advance of the DFS
contest. Moreover, they do not appear to be perfectly predictable and so we have to explicitly
model’ their randomness. Accordingly, it is very natural to model pq, as following a Dirichlet

distribution.

"In initial unreported experiments, we assumed pgs was fixed and known but this led to over-certainty and poor
performance of the resulting portfolios.
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Available Data

In most fantasy sports contests, it is possible to obtain some information regarding W,, once
the contest is over and the winners have been announced. In particular, it is often possible to
observe the realized ownership proportions which (because O is assumed large) amounts to ob-
serving Pos, Prss - - - » Po after each contest. We therefore assume we have such data from a series of
historical contests. In practice, we will also have access to other observable features, e.g. expected
NFL player performance pgs, home or away indicators, quality of opposing teams etc. from these

previous contests.

Dirichlet Regression

We can then use this data to build a Dirichlet regression model for estimating the marginal
distributions of w,. We do this by assuming that the parameter vector @, € R’ is predictable. In

particular, we assume

@ = exp(XopBos) (1.4)

where B,; is a vector of parameters that we must estimate and X; is @ matrix (containing P,; rows)
of observable independent variables that are related to the specific features of the NFL games and
QBs underlying the DFS contest. To be clear, the exponential function in the r.h.s. of (1.4) is
actually an Py, X 1 vector of exponentials.

For example, in a DFS contest for week ¢, we might assume

@osr = eXP(Boy1 + Bl fonr + BasCanr + BgHanr) (1.5)

where fo5, € RF®® is an estimate of py, for week ¢ that we can obtain from the FantasyPros
website (FantasyPros 2017), ¢, € RFe® are the (appropriately scaled) week ¢ costs of the QBs in
the contest, and p;, is an (appropriately scaled) sub-vector of us for week + whose components

correspond to the QB positions in ps. Other features are of course also possible. For example,
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we might also want to include expected returns pos/Cos; (Where division is understood to be
component-wise), home-away indicators, quality of opponents etc. as features.
We can estimate the B,; vector by fitting a Bayesian Dirichlet regression. Assuming we have

data from weeks # = 1 to7 = T — 1 and a flat prior on B, then the posterior satisfies
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where B(@s,) is the normalization factor for the Dirichlet distribution. We fit this model using the

Bayesian software package STAN (Team 2017).

The Other Positions

It should be clear that we can handle the other positions in a similar fashion. In the case of
the three selected WRs for example, we assume py, ~ Dir(ayg) and that a random opponent then
selects her three WRs according® to a Multinomial(3, py) distribution. We can again use Dirichlet

regression to estimate the parameter vector By; where @y; = exp(XyrBwr)-

1.3.2 The Copula

Returning to (1.3), the question arises as to what copula C should we use? For the sake of
brevity, here we only summarize the copula that we use and defer the details to Appendix A.1.1.

Motivated by the prevalent QB-WR stacking practice among the fantasy players of NFL (Bales

81n fact, the rules of a DFS contest are likely to state that the same player can not be chosen more than once. In that
case, we could simply repeatedly draw from the Multinomial(3, pwg) distribution until 3 different WRs are selected.
Alternatively (but equivalently), we could draw each WR sequentially adjusting the multinomial distribution each time
so that once selected, a WR cannot be selected again.
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2016), we allow an opponent to be a stacker’ with probability g (the stacking copula) or sample
all positions independently of each other with probability 1 — g (the independence copula). We
therefore use a mixture of the stacking and independence copulas and note that such a copula is
itself a copula. Given the limitation on available data to model a more complicated copula, we
believe this rather simple copula is a reasonable choice. We show how well this simple copula
performs on real-world data when we present numerical results in Section 1.6 and Appendix A.3.3

in particular.

1.3.3 Generating Random Opponents’ Portfolios

Suppose now that the Dirichlet regression model has been fit for each of the positional marginals
and that we have also estimated the g parameter for the copula. It is then easy to simulate a candi-
date w,. We first generate Stack ~ Bernoulli(g) and if Stack = 0, we use the independence copula.

For example, to generate the QB selection, we must:
1. First draw a sample py; from the Dir(e ;) distribution.
2. Then draw a sample from the Mult(1, pys) distribution.

3. This draw then defines our chosen QB, i.e., it sets one component of w’ to 1 with the others

being set to 0.

We repeat this for all positions. If Stack = 1, however, then we use the stacking copula and therefore
follow the same steps except we must set the first WR to be the main WR from the selected QB’s
team. At this point, we only have a candidate w, as there is no guarantee that the resulting w,, is
feasible, i.e., that w, € W. We therefore use an accept-reject approach whereby candidate w,’s
are generated according to the steps outlined above and are only accepted if they are feasible. In
fact, we impose one further condition: we insist that an accepted w,, uses up most of the available

budget. We impose this condition because it is very unlikely in practice that a fantasy player in a

By a “stacker”, we mean the opponent picks the QB and the “main” WR from the same NFL team and samples
other positions independently of each other. By “main” WR of a team, we refer to the WR with the highest expected
points among all the WRs in the same team.

18



DFS contest would leave much of her budget unspent. This is purely a behavioral requirement and
so we insist the cost of an accepted w,, satisfy ¢ 'w, > B, for some lower bound B, < B that we
get to choose. Algorithm 7 in Appendix A.1.1 describes how to generate O random opponents’

portfolios W, and it therefore (implicitly) defines the distribution of W,

op*

1.4 Solving the Double-Up Problem

As mentioned earlier, we first tackle the double-up problem since our solution to this problem
will help inform how we approach the top-heavy problem. We begin first by recalling a result
from mean-variance optimization and in particular, the problem of maximizing the probability
of exceeding a stochastic benchmark. Our approach to solving both double-up and top-heavy

problems will be a mean-variance optimization based on this result.

1.4.1  Mean Variance Optimization and Outperforming Stochastic Benchmarks

We consider'® a one-period problem where at time ¢ = 0 there are P financial securities avail-
able to invest in. At time ¢ = 1 the corresponding random return vector & = (¢4, . . ., £p) is realized.
Let pg and X¢ denote the mean return vector and variance-covariance matrix, respectively, of £.
The goal is then to construct a portfolio w = (wy, ..., wp) with random return R, = w'§ that
maximizes the probability of exceeding a random benchmark R,. Mathematically, we wish to
solve

max P(R, — Ry, > 0) (1.7)
weW

where W includes the budget constraint w1 = 1 as well as any other linear constraints we wish to

impose. If we assume R, — R has a normal distribution so that Ry, — R, ~ N(uy, 0"%) for some!!

10The material and results in this subsection follow Morton et al. 2003 and they should be consulted for further
details and related results. In this subsection, we will sometimes use the same notation from earlier sections to make
the connections between the financial problem of this subsection and the DFS problem more apparent.

UTf the benchmark Ry, is deterministic, then 1, := w' e — Rp, and ol = wiZew.
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My and 0'3, that depend on w, then (1.7) amounts to solving

max 1 — @ (—”—W) (1.8)
weW

where @(-) denotes the standard normal CDF. Let w* be the optimal solution to (1.8). The following

result is adapted from Morton et al. 2003 and follows from the representation in (1.8).
Proposition 1.1. Suppose R, — R, ~ N(uy, 02) for allw € W.

1. Suppose p, < 0 forallw € W. Then

w' e {w(/l) s w(A) € arg max (uy + /10'3,), > O} . (1.9)
wew

2. Suppose py, > 0 for somew € W. Then

w* e {w(d) :w(d) € argmax (i, — /10'3,), 1>0 (1.10)
weW, 1, >0

so that w* is mean-variance efficient.

Proposition 1.1 is useful because it allows us to solve the problem in (1.8) efficiently. In
particular, we determine which of the two cases from the proposition applies. This can be done
when W is polyhedral by simply solving a linear program that maximizes u,, (which is affine in
w) over w € W. If the optimal mean is negative, then we are in case (i); otherwise we are in case
(i1). We then form a grid A of possible A values and for each 4 € A, we solve the appropriate
quadratic optimization problem (defining w()) from (1.9) or (1.10) and then choose the value of 1
that yields the largest objective in (1.7) or (1.8). See Algorithm 1 in Section 1.4.2 below for when

we apply these results to our double-up problem.
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1.4.2 The Double-Up Problem

Recall now the double-up problem as formulated in (1.1). We define ¥, := w'é — G"") and

note that
_ T
My, = W Hs — Hge)
Op = W EsW Ol — 2W O o) (1.11)
where pge) = E [G(")], O'é(r,) := Var (G(r')) and o7 ;o) 18 a P X 1 vector with p'" component

equal to Cov(d,, G"?). Our approach to solving (1.1) is based on Proposition 1.1 and is presented
in Algorithm 1 below. While this algorithm will deliver the optimal solution in the event that each
Y ~ N(uy,, oﬁw), it should yield a good approximate solution even when the Y,,’s are not normally
distributed. Indeed the key insights yielded by Proposition 1.1 do not rely on the normality of the
Y,’s. Specifically, if py, < O for all w € W, then it seems intuitively clear that we need to select a
team w that simultaneously has a high mean and a high variance. The appropriate balance between
mean and variance in the objective function will then be determined by A. Similarly, if there is at
least one w € W such that uy, > 0, then intuition suggests we can search for a team w with a large
(and positive) mean and a small variance. Again, the appropriate balance between the two will be
determined by A. Not insisting on the normality of ¥, also gives us the freedom to consider using
non-normal distributions for §. Indeed this parallels the situation in the asset allocation literature
in finance where the mean-variance paradigm remains'? very popular despite the well-known fact

that asset returns have heavy tails and therefore are not normally distributed.

Remark 1.1. Note that A* in line 10 can be computed using the Monte Carlo samples of (6, G"")
that are inputs to the algorithm. In this case, the computation of P{Y,,, > 0} does not rely on

any normal approximation. Alternatively, 1* could also be estimated via the assumption that each

12To be clear, we are not claiming the original mean-variance approach of Markowitz is popular. Indeed it’s
well known that parameter estimation issues render Markowitz useless in practice. Developments which build on
Markowitz such as Black-Litterman, robust mean-variance etc. are popular, however, and they too take a mean-
variance perspective.
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Algorithm 1 Optimization for the Double-Up Problem with a Single Entry

Require: W, A, ps, Zs, puge, 0'(2;(,,), 05 and Monte Carlo samples of (6, Gy
1: if 3w € W with uy, >0
2: foralldle A
3: w, = argmax {uy, — /10'; }
WEW, uy,, >0 v
4 end for
5: else
6: foralldeA
7 w, = argmax {uy, + Aoy, }
wew w
end for

9: end if

10: A* = argmax P{Y,,, > 0}
AeN

11: return w ;-

*®

Yy, is approximately normally distributed. We also note that if it turns out that 1* = 0, then the
optimization will basically seek to maximize w' ugs, thereby suggesting there is little value to be

gained from modeling opponents.

One potential difficulty that might arise in practice with Algorithm 1 is if the distribution of
the Y,,’s display a significant skew. In this case it’s possible that we end up seeking to increase
variance when we should be decreasing it or vice-versa. While this was never an issue in any of
our numerical experiments we discuss this possibility in Appendix A.1.3 and note that it’s easy to

adjust Algorithm 1 to allow for this possibility.

Generating Monte Carlo Samples

In order to execute Algorithm 1, we must first compute the inputs pge), 02

con and o o as

defined above. These quantities can be estimated off-line via Monte Carlo simulation as they do
not depend on our portfolio choice w. We simply note here that the Monte Carlo can be performed
relatively efficiently using results from the theory of order statistics. The specific details can be

found in Appendix A.1.2.
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Solving the Binary Quadratic Programs

The optimization problems in lines 3 and 7 of Algorithm 1 require the solution of binary
quadratic programs (BQPs). In our numerical experiments of Sections 1.6 and 1.7, we solved
these BQPs using Gurobi’s (Gurobi Optimization 2016) default BQP solver although the specific
algorithm used by Gurobi was not clear from the online documentation. (We do note in passing,
however, that it is straightforward to transform a BQP into an equivalent binary program (BP) at

the cost of adding O(P?) binary variables and O(P?) linear constraints.)

The Double-Up Problem with Multiple Entries

Since the top-heavy payoff structure is our main focus, we defer the discussion of the double-up
problem with multiple entries to Appendix A.1.3. We briefly note here, however, that we advocate
for a replication strategy. In particular, after purchasing N entries in the contest, the DFS player

should then submit N copies of w* where

w" ;= argmax P {wTé > GOTI(W,, 5)} :
wew

Appendix A.1.3 discusses the intuition behind this strategy and also provides (see Proposition A.1)

a simple certificate-of-optimality that can be used to confirm its optimality or near-optimality.

1.5 Solving the Top-Heavy Problem

We can now extend the analysis we developed for the double-up problem in Section 1.4 to
tackle the more interesting top-heavy problem. We consider first the single-entry case where N =

1. In that case, the problem in (1.2) simplifies to solving

D
max > (Rq— Rex1)P {wTa > GU(W,, 5)}, (1.12)
weWw e
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where r; := O+1-r,4. Following the development in Section 1.4.2, we can define Y4 :=wT§ -Gl

and define

Hyd = W' Hs = [ o)) (1.13)
2 . T 2 T
Oya = w Zsw + O'G(rc,l) - 2w O s G (1.14)

o () 2 ) o o th
where u Gy = E [G d ] UG%) := Var (G d ) and o sGUn 182 P x 1 vector with p'" component

equal to Cov(6),, G"2). Following our mean-variance approach, we can now approximate (1.12)

—%)) . (1.15)

Before proceeding, we need to make two additional assumptions, which we will state formally.

as

D
max ;(Rd_RdH) 1-®

Assumption 1.1. uys <0ford =1,...,D and forallw € W.

A justification for Assumption 1.1 can be found in Appendix A.1.4. Given Assumption 1.1, it
follows that each of the arguments — Hyd / Tyd to the normal CDF terms in (1.15) is positive. Given
the objective in (1.15) is to maximize, it is also clear that for a fixed value of w' g in (1.13), we
would like the standard deviation Tya to be as large as possible. Unfortunately, the third term,
2w'o s.GUa» on the r.h.s. of (1.14) suggests that w impacts the variance by a quantity that depends
on d. Fortunately, however, we found this dependence on d to be very small in our numerical
experiments with real-world DFS top-heavy contests. Specifically, we found these covariance
terms to be very close to each other for values of d corresponding to the top 20 percentiles and
in particular for the top few percentiles. We now formalize this observation via the following

assumption.

Assumption 1.2. Cov (5p, G(ré)) = Cov (6p, G(rn/i’)) forall d,d’" = 1,...,D and for all p €
{1,...,P}.

Further support for Assumption 1.2 is provided by the following proposition a proof of which may

be found in Appendix A.1.4.
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Proposition 1.2. Suppose the w,’s are IID given p and D is finite. Then, in the limit as O — oo,

we have
Cov (8, G'#) = Cov (8, G") forall d.d' =1,...,D (1.16)

forany p € {1,...,P}.

Given Assumption 1.2, it is clear from (1.14) that the impact of w on 0'}% , does not depend on d
when d is finite and O is “large”. Given the preceding arguments, it follows that for any fixed value

of wTus, we would like to make w'Zsw — 2w o ) (the terms from (1.14) that depend on w)

8,G"a
as large as possible. We are therefore in the situation of part (i) of Proposition 1.1 and so we have
a simple algorithm for approximately solving the top-heavy problem. This is given in Algorithm 2

below where we omit the dependence on d of those terms that are assumed (by Assumption 1.2)

to not vary with d.

Algorithm 2 Optimization for the Top-Heavy Problem with a Single Entry

Require: W, A, ps, X5, 05 ) and Monte Carlo samples of (6, G(’c't)) foralld=1,...,D
: forall1 € A
2:  w, = argmax {wTy,g +4 (WTZ,;W - 2WT0'6’G(r/))}

—_

weW
3: end for
T D _ T ")
4: A* = argmax ., (R4 Rd+1)P{w/16 > GV (W(,p,é)}
AEA

5. return w -

As with Algorithm 1, the w,’s are computed by solving BQPs and the optimal A* from line 4
can then be determined via the Monte Carlo samples that were used as inputs.
1.5.1 The Top-Heavy DFS Problem with Multiple Entries

We now discuss the more general top-heavy DFS problem where we must submit N entries to

the contest. Recalling the problem formulation from Section 1.2.2, we must solve for

max R(W)
WeWIWl|W|=N

25



where
IW| D

R(W):= 3. 3" (Ri-Ri)) P {w]6 > G

i=1 d=1

W W, ), (1.17)
ri =0+ |W[—ry, G(_ri) is the 7' order statistic of {GO}(?:1 U {Fj}L.‘L' \ Fiand W_; := W\w;. We
propose a greedy algorithm motivated by (i) the submodularity of the objective function in (1.17)
w.r.t. the decision variable W and (ii) our analysis of parimutuel betting which can be viewed as
a special case of our top-heavy DFS contests. For the sake of brevity, we defer our discussion of
parimutuel betting to Appendix A.2 but note that it serves as a useful tool to gain intuition regarding
the structure of an optimal portfolio in the multiple entries case for DFS top-heavy contests. In
particular, we show in Appendix A.2 that a greedy algorithm that adds an entry with the highest
“value-add” in each iteration returns an optimal portfolio in the parimutuel betting setup. We also
highlight there the subtle difference between the reward structures of parimutuel betting and DFS
contests and the implications this might have for good top-heavy DFS strategies.

We focus here on (i), i.e. the submodularity'® of the top-heavy objective function in (1.17).
We first state an assumption which will prove sufficient to guarantee the submodularity of the

top-heavy objective.

Assumption 1.3. Denote by Vi the payoff corresponding to rank k entry where V| > V, >
. > Vg = 0 where K := O + N corresponds to the last-ranked entry in the contest and define

A =V =V forallk =1,...,K —1. Then Ay > Agyy forallk =1,...,K - 2.

We note there is a close relationship between the Vi’s of Assumption 1.3 and the R;’s that
we have been using to define the payoff function of the top-heavy contest, and in fact we could
just as easily define the payoff function in terms of the Vi’s. Assumption 1.3 can be interpreted
as a convexity assumption on the payoffs of the top-heavy contest. This convexity assumption
is generally not satisfied in practice but is typically satisfied for the first several (and therefore

most important) ranks which have the highest payoffs. As such, Assumption 1.3 may be viewed

13We note the greedy algorithm proposed by Hunter et al. 2016 was also motivated by submodularity considerations
but their focus was on maximizing the probability of winning a WTA contest whereas our focus is on maximizing the
expected reward in general top-heavy contests.
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as holding approximately in practice. We discuss this further in Appendix A.1.4. We have the

following result, a proof of which is provided in Appendix A.1.4.
Theorem 1.1 (Submodularity). Under Assumption 1.3, R(W) is monotone submodular in W.

Given the submodularity of R(W), we can invoke a classic result of Nemhauser et al. 1978
for the maximization of monotone submodular functions subject to a cardinality constraint. In

particular, consider the following idealized greedy algorithm:
1. Set the first portfolio entry w; according to w := arg max,,.ywv R(w).

2. Fori =2,..., N, set the i-th entry w; to be the entry that provides the highest value-add to

{wi,...,w;i_1}, i.e., maximize R({wi,...,w;_1,w;}) over w; € W.

The result of Nemhauser et al. 1978 implies that this idealized greedy algorithm returns a portfolio
of N entries whose objective is guaranteed to lie within 1 —1/e (= 63.2%) of the optimal objective.
Motivated by this we propose a greedy-style algorithm in Algorithm 3 below to solve the top-heavy

DFS problem with multiple entries.

Algorithm 3 Top-Heavy Optimization for N Entries

Require: W, N, vy, A, us, s, O 560" and Monte Carlo samples of (6, G(’é)) foralld=1,...,D
I: W'=0
2: foralli=1,...,N
3: foralldeA

4: w, = argmax {wTy,; +A1 (WT25W -2w'og G(ﬂ))}
wew ’

5:  end for

A" = argmax R(W* Uw,) % pick A corresponding to biggest value-add

AeA

7. W =W*U{w,} % minor notation abuse since W* is a set with duplicates
88 W=Wn{w:wwy <y} % add diversification constraint for next entry
9: end for

10: return W*

We first note that Algorithm 3 reduces to Algorithm 2 when N = 1. It is modeled on the
idealized greedy algorithm above but with an important difference. In the idealized greedy algo-

rithm, we identify the entry that will add the most to the portfolio. However, that is a difficult
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optimization to solve in the DFS context. In particular, in iteration i of Algorithm 3, given the
current portfolio W consisting of i — 1 entries, it is a non-trivial task to identify the entry w; that
will add the most to W in terms of expected'* reward. The reason is that it is not necessarily true
that w; will lie on the “efficient frontier” constructed in lines 3 to 5 of Algorithm 3. Hence, even
though our optimization in line 6 of Algorithm 3 identifies the highest value-add entry in the set
{W}aea, it is possible and indeed very likely that w; does not belong to {w,},ea to begin with.
In fact, when y = C, we expect that the candidate entry w - will often coincide with a previously
chosen entry, i.e., an entry from {w7,...,w} }. Indeed this is what we observed in our numerical
experiments where we typically found just ~ 10 unique entries when N = 50. But this is simply a
reflection of our failure to find w;.

In order to find a better candidate w;, we introduce the parameter vy in line 8 of the algorithm.
This line ensures that our i entry can not have more than y athletes in common with each of
the previous i — 1 entries. Recalling that C is the number of athletes in a DFS entry, it therefore
follows that if we set y > C, then the constraint ww - < ¥ on line 8 is never binding. But if we
set y < C, then the candidate entry w - from iteration i will always be a new entry, i.e., an entry
not represented in the current portfolio {wj,...,w? }. In particular, setting y < C results in a
completely diversified portfolio of N distinct entries. In our real-world numerical experiments we
ultimately chose a value y < C. It is important to note that diversification is imposed only to find
a better choice of w;. More importantly, by setting y < C, we observed a much higher expected
reward for the final portfolio. In particular, the expected reward almost doubled. (In all of our
numerical experiments, we found that y = C — 3 = 6 was an optimal choice in that it led to final
portfolios with the highest expected reward.)

Though we defer our discussion of parimutuel betting markets to Appendix A.2, we emphasize

that our results on parimutuel betting provide further support for Algorithm 3 and in particular,

4Note that the R(-) appearing in Algorithm 3 is really an estimated version of the expected reward since we can
only evaluate it using the Monte-Carlo samples. On a related note we mention that samples of (8, G"")) for some
additional ranks r’ besides the r);’s will be required in order to properly estimate R. For example, suppose D = N =2
with i = 1 and r, = 20. Then we will also need samples corresponding to the 19" rank since if our first entry comes
5" say then our second entry will only be among the top 20 if it’s among the top 19 of our opponents’ entries.
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the imposition of diversification by choosing a value of y < C in Algorithm 3. Recognizing that
Algorithm 3 does not enjoy the “1 — 1/e” guarantee of Nemhauser et al. 1978, we now state a
simple proposition which allows us to bound the degree of suboptimality of the portfolio of N
entries returned by Algorithm 3, a proof of which is provided in Appendix A.1.4. (Note that this

suboptimality bound does not require Assumption 1.3.)

#

Proposition 1.3 (Suboptimality bound). Lerw* := arg max,,.w R(w) and W* = {w; }i]\il denote

optimal single-entry and N-entry portfolios, respectively, for the top-heavy contest where R(-)
is as defined in (1.17). Denote by W any arbitrary feasible portfolio of N entries and define

Vw = NR%XZ). Then the value of W is within vy of the optimal value, i.e., vy < R(W)/R(W¥) < 1.

In the top-heavy contests calibrated to real-data experiments of Section 1.6, we observed that
Algorithm 3 achieved a very satisfactory performance. In particular, during the 17 weeks of the
2017 NFL season, the lowest value of vy (for the portfolio W* returned by Algorithm 3) was
48.95%, the highest value was 80.21%, and the average'> was 62.27%. We also emphasize that
these are lower bounds on the algorithm’s suboptimality and it’s possible that the actual average
performance was much higher than 62.27% of the unknown optimal portfolio’s performance. Fi-
nally, we acknowledge that these numbers are only legitimate to the extent that our model and the
fitted parameters of our model are correct.

While we have taken N as given up to this point, it is perhaps worth mentioning that one can
always use Algorithm 3 to determine an optimal value of N. Specifically, we can continue to
increase N until the expected P&L contribution from the next entry goes negative or below some
pre-specified threshold. We also note it is straightforward to add additional linear constraints to W
if further or different forms of diversification are desired. Finally, we note it’s easy to estimate the

expected P&L of any portfolio of entries via Monte Carlo simulation.

15Tt is interesting but surely coincidental to see how close the average realized bound of 62.27% is to the guaranteed
bound of 1 — 1/e (= 63.2%) provided by the idealized greedy algorithm!
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1.6 Numerical Experiments

We participated in real-world DFS contests on FanDuel during the 2017 NFL regular season,
which consisted of 17 weeks. Each week, we participated in three contests: top-heavy, quintuple-
up and double-up. The cost per entry was $1 in top-heavy and $2 in both quintuple-up and double-
up contests. The number of opponents O was approximately 200, 000, 10, 000 and 30, 000 for the
three contests, respectively, with these numbers varying by around 10% from week-to-week. The

t!6 for rank 1 was approx. $5, 000, for rank 2 it was approx. $2, 500

payoff in the top-heavy contes
and then it declined quickly to approx. $100 for rank 30. The lowest winning rank was around
50,000, with a payoff of $2.

We used two different models for each contest: our strategic model and a benchmark model.
To be clear, for all top-heavy contests, our strategic model was Algorithm 3 with y = 6. Our
strategic model for the double-up and quintuple-up contests was also Algorithm 3 with!” y = 6 but
lines 3 to 5 replaced by lines 1 to 9 of Algorithm 1 and with the understanding that the expected
reward function R(:) (used to determine A1*) corresponds to the double-up / quintuple-up contest.
The second model is a benchmark model that does not model opponents and hence is not strategic;
the details are provided in Appendix A.3.1. For each model, we submitted N = 50, 25 and 10
entries to top-heavy, quintuple-up and double-up contests, respectively each week. Other details
regarding our model inputs such as g, s, stacking probability g, diversification parameter y, and
the budget lower bound B, are discussed in Appendix A.3.2 along with the specifications of the
hardware and software we use to solve the BQPs.

We now discuss the P&L-related results for the strategic and benchmark models across the three

contest structures for all seventeen weeks of the FanDuel DFS contests in the 2017 NFL regular

season. Figure 1.1 displays the cumulative realized P&L for both models across the three contest

16We note that there are other top-heavy contests with even more competitors and payoff structures that are even
more “top-heavy”. For example, a regular NFL contest on FanDuel often has approximately 400, 000 entries with a
top payoff of $250,000 to $1,000,000. Payoffs then decline quickly to approx. $500 for the 50" rank. Top-heavy
contests are therefore extremely popular and hence are our principal focus in this chapter.

"The reason for doing so in the double-up / quintuple-up contests was simply to reduce the variance of our P&L
albeit at the cost of a (hopefully slightly) smaller expected P&L. This is discussed further later on in this section.
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structures during the season. (Table A.1 in Appendix A.3.3 displays the actual numbers.) The
strategic portfolio has outperformed the benchmark portfolio since inception in the top-heavy series
of contests. The strategic portfolio has earned a cumulative profit of $280.74, which is over 3 times
the realized P&L of the benchmark portfolio. Moreover, the maximum cumulative loss, that is, the
max shortfall, for the strategic portfolio is just $18.5. In addition, the small initial investment of $50
plus two additional investments of $18.5 and $7.26 (total of $75.76) have been sufficient to fund
the strategic portfolio throughout the season. This suggests a profit of $280.74 on an investment of
$75.76, that is, a return of over 350% in just 17 weeks. In contrast, the benchmark portfolio needed
much more capital than the initial investment of $50. If we account for this additional required
capital, then the benchmark portfolio has earned a return of less than 50% in 17 weeks. Note that
given the so-called house-edge of approximately 15%, both models have performed considerably

better than the average portfolio which would have lost ~ 17 X 15% x 50 = $127.5 across the 17

weeks.
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Figure 1.1: Cumulative realized dollar P&L for the strategic and benchmark models across the
three contest structures for all seventeen weeks of the FanDuel DFS contests in the 2017 NFL
regular season.

With regards to the quintuple-up series, the strategic model was better until the end of week
6 but since then the benchmark portfolio has outperformed it. We note, however, that the differ-
ence in the cumulative P&L between the two models at the end of the season (20 — (—-40) = 60)
could easily be wiped out in just one week’s contest as we can see when we look at the relative

performances of the two strategies in week 7, for example.
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We are confident that the realized P&L to-date for each contest series is actually conservative
and that superior performance (in expectation) could easily be attained. There are at least three
reasons for this. First, we used off-the-shelf estimates of the input parameters us and X5, which
are clearly vital to the optimization model. Moreover, we obtained the us estimate a day before
the actual NFL games started and mostly ignored the developments in the last few hours preceding
the games, which can be very important in football. For example, in week 7, the main RB of
the Jacksonville Jaguars (Leonard Fournette) was questionable to play. Accordingly, their second
main RB (Chris Ivory) was expected to play more time on the field. However, our s estimate
did not reflect this new information. Our estimate projected 17.27 and 6.78 fantasy points for
Fournette and Ivory, respectively. Moreover, since FanDuel sets the price of the athletes a few
days before the games take place, Fournette was priced at 9000 and Ivory at 5900. There was
a clear benefit of leveraging this information as Fournette was over-priced and Ivory was under-
priced. In fact, our opponents exploited this opportunity as around 60% of them (in double-up)
picked Ivory. A proactive user would have updated his pus estimate following such news. In fact,
the so-called sharks do react to such last-minute information (Nickish 2015), meaning that we were
at a disadvantage by not doing so.

For another example, consider Devin Funchess, a wide-receiver (WR) for the Carolina Pan-
thers. During the course of the season, Funchess was usually the main WR for Carolina but in
week 16 he was expected to be only the second or third WR and in fact Damiere Byrd was ex-
pected to be the main WR. This was late developing news, however, and our us estimate did not
reflect this. Moreover, Byrd was priced at 4900 while Funchess was priced at 7000 and so Byrd
was clearly under-priced relative to Funchess. In the week 16 game itself, Byrd scored 9.6 points
while Funchess scored only 2.6 points. Because of our failure to respond to this late developing
news and update our parameters, it transpired that 52 of our entries picked Funchess. We observed
(after the fact) many similar situations during the course of the season and there is no doubt that
we could have constructed superior portfolios had we been more pro-active in monitoring these

developments and updating parameters accordingly.
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The second reason is simply a variance issue in that a large number of DFS contests (and cer-
tainly much greater than 17) will be required to fully establish the outperformance of the strategic
model in general. In fact, we believe the variance of the cumulative P&L is particularly high for
NFL DFS contests. There are several reasons for this. Certainly, the individual performance of an

18 as well as

NFL player in a given week will have quite a high variance due to the large roster size
the relatively high probability of injury. This is in contrast to other DFS sports where there is con-
siderably more certainty over the playing time of each athlete. To give but one example, in week
5 we witnessed a series of injuries that impacted many of our submitted portfolios (both strategic
and benchmark). Devante Parker (Miami Dolphins) was injured in the first quarter but was picked
by 56 of our entries. Charles Clay (Buffalo Bills) and Sterling Shepard (NY Giants) were injured
before halftime, affecting 70 and 4 entries, respectively. Bilal Powell (NY Jets) and Travis Kelce
(Kansas City Chiefs) left the field close to the halftime, impacting 44 and 25 entries, respectively.
Furthermore, the NFL season consists of just 16 games per team whereas teams in sports such
as basketball, ice hockey and baseball play 82, 82 and 162 games, respectively, per season. As
a result, the cumulative P&L from playing DFS contests over the course of an NFL season will
have a very high variance relative to these other sports. This high variance of NFL-based fantasy
sports has been noted by other researchers including for example Clair and Letscher 2007. We also
suspect that Hunter et al. 2016 focused on ice hockey and baseball (and avoided NFL) for precisely
this reason.

The third reason applies specifically to the quintuple-up contests. In our strategic model for
quintuple-up, there is a possibility of incorrectly minimizing portfolio variance when we should in
fact be maximizing it (along with expected number of points of course). Proposition 1.1 leads us
to try and increase variance if u,, < O for all w € W and to try and decrease variance otherwise.
But u,, must be estimated via Monte Carlo and is of course also model-dependent. As such, if we
estimate a maximal value of u, = 0, it is quite possible we will err and increase variance when

we should decrease it and vice versa. We suspect this may have occurred occasionally with the

8There are more than 45 athletes on a roster but only 11 on the field at any one time.
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quintuple-up contests where we often obtained an estimate of p,, that was close to zero. This of
course is also related to the median versus mean issue we mentioned immediately after Algorithm 1
and discuss in Appendix A.1.3. We note that one potential approach to solving this problem would
have been to use Algorithm 8 instead of Algorithm 1. We note that the benchmark portfolio is
always long expected points and variance of points.

Figure 1.2 displays the in-model P&L distribution for the diversification strategy from Sec-
tion 1.5.1 for both strategic and benchmark portfolios in week 10'° contests. For the strategic
portfolio, we use Algorithm 3 as explained in the beginning of Section 1.6 and for the benchmark
portfolio, we use the procedure outlined in Appendix A.3.1. We note this P&L distribution is as
determined by our model with the continued assumption of the multivariate normal distribution
for 6 as well as the Dirichlet-multinomial model for opponents’ portfolio selections. The strategic
model dominates the benchmark model in terms of expected profit. In the top-heavy contest, the
expected profit of the strategic portfolio is over 5 times that of the benchmark portfolio. The gain is
not as drastic in the quintuple-up and double-up contests. The substantial gain in top-heavy seems
to come from the fact that the strategic portfolio has considerably more mass in the right-tail. Note
this leads to the higher standard deviation of the top-heavy strategic portfolio®.

Figure 1.3 is similar to Figure 1.2 except it is based upon using the replication strategy from
Appendix A.1.3 instead of the diversification strategy. We note the strategic model continues to
have a higher expected P&L than the benchmark model. The main observation here is that the
expected P&L drops considerably when we go from the diversification strategy to the replication
strategy for top-heavy. This is consistent with our analysis from Appendix A.2 on parimutuel bet-
ting as well as our discussion surrounding Algorithms 3 and 10 in Section 1.5.1 and Appendix A.2
respectively. In contrast, the P&L increases for both quintuple-up and double-up when we employ
the replication strategy. Again, this is consistent with our earlier argument in favor of replication

for double-up style contests. In our numerical experiments, however, we used the diversification

190ther weeks have similar results as shown in Figure 1.4.
20The high standard deviation in the top-heavy strategic portfolio should be seen as a pro instead of a con, since it
is mostly coming from the right-tail of the P&L distribution.
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Strategic: E(P&L), sd(P&L), p(loss) = 10.0, 11.0, 0.17

Strategic: E(P&L), sd(P&L), p(loss) = 54.6, 68.7, 0.24
Benchmark: E(P&L), sd(P&L), p(loss) = 9.3, 11.0, 0.18

Strategic: E(P&L), sd(P&L), p(loss) = 578.6, 2953.8, 0.58
Benchmark: E(P&L), sd(P&L), p(loss) = 43.2, 75.2, 0.35

Benchmark: E(P&L), sd(P&L), p(loss) = 86.3, 694.5, 0.46
I Strategic Il Strategic Il Strategic
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Figure 1.2: P&L distribution for the diversification strategy for the strategic and benchmark port-
folios for week 10 contests of the 2017 NFL season. Recall N = 50, 25, and 10 for top-heavy,
quintuple-up and double-up, respectively. The three metrics at the top of each image are the ex-
pected P&L, the standard deviation of the P&L and the probability of loss, that is, P(P&L < 0).

strategy for both double-up and quintuple-up contests. This was only because of the variance is-
sue highlighted earlier and our desire to use a strategy which had a considerably smaller standard
deviation (while ceding only a small amount of expected P&L). As can be seen from Figures 1.2
and 1.3, the diversification strategy has (as expected) a smaller expected P&L as well as a smaller

probability of loss.

Strategic: E(P&L), sd(P&L), p(loss) = 123.9, 1265.9, 0.67 Strategic: E(P&L), sd(P&L), p(loss) = 58.0, 123.8, 0.57 Strategic: E(P&L), sd(P&L), p(loss) = 10.7, 16.9, 0.23
Benchmark: E(P&L), sd(P&L), p(loss) = 10.3, 17.2, 0.24

Benchmark: E(P&L), sd(P&L), p(loss) = 51.9, 286.9,0.52  Benchmark: E(P&L), sd(P&L), p(loss) = 51.0, 122.7, 0.60
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Figure 1.3: P&L distribution for the replication strategy for the strategic and benchmark portfolios
for week 10 contests of the 2017 NFL season. Recall N = 50, 25, and 10 for top-heavy, quintuple-
up and double-up, respectively. The three metrics at the top of each image are the expected P&L,
the standard deviation of the P&L and the probability of loss, that is, P(P&L < 0).

Figure 1.4 displays the realized and expected P&Ls. For both strategic and benchmark models
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and all three contests, the expected profit is greater than the realized profit. This is perhaps not
too surprising given the bias that results from optimizing within a model. In top-heavy, however,
the realized P&L is within one standard deviation of the expected P&L although this is not the
case for the quintuple- and double-up contests. As discussed above, we believe our realized results
are conservative and that a more proactive user of these strategies who makes a more determined
effort to estimate ys and 5 and responds to relevant news breaking just before the games can do
considerably better. Despite this potential for improvement, the strategic model has performed very
well overall. The small loses from the double-up and quintuple-up contests have been comfortably
offset by the gains in the top-heavy contests. As we noted earlier, the return on investment in top-
heavy is over 350% for a seventeen week period although we do acknowledge there is considerable
variance in this number as evidenced by Figure 1.4(a).
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Figure 1.4: Predicted and realized cumulative P&L for the strategic and benchmark models across
the three contest structures for all seventeen weeks of the FanDuel DFS contests in the 2017 NFL
regular season. The realized cumulative P&Ls are displayed as points.

More granular results are presented in Appendix A.3.3. For example, in that appendix we show
the performance of each week’s best entry for the strategic and benchmark models corresponding
to the top-heavy contests for all seventeen weeks of the FanDuel DFS contests in the 2017 NFL
regular season. We also present various statistics of interest, e.g., expected fantasy points, standard
deviation, A* for the first optimal entry in each week for the strategic and benchmark models. We
observe there that A* is closer to zero for the double-up and quintuple-up contests thereby indicat-

ing (see Remark 1.1) that the value of modeling opponents is much greater for top-heavy contests.
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In addition, Appendix A.3.3 also contains some additional anecdotes describing situations where
our strategic model went against the “crowd” and was successful in doing so. Finally, Dirichlet
regression results are also presented in Appendix A.3.3. Note that our Dirichlet regression mod-
els used the features described in (1.5) and we validated this choice of features by evaluating its
goodness-of-fit and comparing its out-of-sample performance against two “simpler” variations of

the Dirichlet regression model. Specific details are deferred to Appendix A.3.4.

1.7 The Value of Modeling Opponents, Insider Trading, and Collusion

In the numerical results of Section 1.6, we found that modeling opponents’ behavior can sig-
nificantly increase the expected P&L from participating in top-heavy DFS contests and we explore
it in more depth in Section 1.7.1. In Section 1.7.2, motivated by the issue of insider trading in
fantasy sports we described in Section 1.1, we evaluate how much a fantasy player gains by having
access to inside information. Finally, in Section 1.7.3, we analyze the value of collusion in fantasy
sports, that is, how much does a fantasy player gain by strategically partnering with other fantasy
players and submitting more portfolios than allowed. In each of these experiments, we employ the

same algorithms as we did for the numerical experiments of Section 1.6.

1.7.1  The Value of Modeling Opponents

As we saw in Figures 1.2 and 1.3, the value of modeling opponents is clearly contest-dependent.
Indeed our model, which explicitly models opponents, has a much bigger edge (in terms of ex-
pected P&L) over the benchmark model in the top-heavy contest?! as compared to the double-up
and quintuple-up contests. But the value of modeling opponents also depends on how accurately

we model their behavior. On this latter point, it is of interest to consider:

(a) How much do we gain (with respect to the benchmark model) if we use a deterministic

P = (Poss - - -, Pp)? For example, in the NFL contests, we could set p equal to the values

2IThis is discussed in more detail in Appendix A.1.4. The reason for the relative importance of modeling opponents
is largely due to the importance of selecting entries with both a high variance and expectation in top-heavy contests.
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predicted by the FantasyPros website.

(b) How much additional value is there if instead we assume (pgs, . - ., pp) ~ (Dir(@g), . . ., Dir(ay))
as in Algorithm 7 but now @, . . ., @, only depend on the first two features stated in Equation
(1.5), that is, the constant feature and the estimate of p that we obtain from the FantasyPros

website?

(c) Finally, how much additional value is there to be gained by assuming the model of Algo-

rithm 7 where @, . . ., @), 1s allowed to depend on any and all relevant features?

To answer these questions, we computed the optimal portfolios for each of the three cases described
above (and for the benchmark model) and also the corresponding expected P&Ls by assuming case
(c) to be the ground truth. We did this for all three contest structures for each of the 17 weeks in
the 2017 NFL regular season. All the parameter values such as N and y were as in Section 1.6. We
found the value of modeling opponents accurately to be most valuable in the top-heavy contests.
In particular, the total expected P&L (over 17 weeks) in the top-heavy series was approximately
$1,400, $5,400, $5,800, and $6,000 for the benchmark model, case (a), case (b), and case (c),
respectively. Accordingly, even though the deterministic model for p (case (a)) explains most of the
gain in expected P&L we reap by being strategic, there is approximately an additional 10% reward
we receive by modeling the opponents more precisely (cases (b) and (c)). It is worth emphasizing,
however, that this 10% additional gain depends on our “ground truth” model. For example, if we
had assumed some other ground truth where p was more predictable given additional and better

chosen features, then there might be more to gain in moving from case (a) to case (c).

1.7.2 The Value of Insider Trading

A question that is somewhat dual to the first question concerns the issue of insider trading
and the value of information. This question received considerable attention in 2015 (Drape and
Williams 2015a; Drape and Williams 2015b) when a DraftKings employee was accused of using

data from DraftKings contests to enter a FanDuel DFS contest in the same week and win $350,000.
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Without addressing the specific nature of insider trading in that case, we pose several questions:
1. How much does the insider gain if he knows the true positional marginals p = (pos, - - ., Pp)?

2. How much does the insider gain if he knows the entries of all contestants, that is, W,,? In
that case, the only uncertainty in the system is the performance vector é of the real-world
athletes. (Note that the problem of computing an optimal portfolio given full knowledge of

W,, is straightforward in our framework.)

To state these questions more formally, we note that the optimal expected P&L for a portfolio

consisting of N entries satisfies

max {El E [Reward(W,&, W,,) |p]}} (1.18)
WeWN [p |6.W,,

where Reward(W, 8, W,,) denotes the P&L function which is easy to compute given W, §, and

W,,. The answer to question (i) is then given by the difference between (1.18) and

E[max {E [Reward(W,é,Wop)lp]}]. (1.19)
p |WeWN |6,W,,

Similarly, the answer to question (ii) is given by the difference between (1.18) and

E [max {E |[Reward(W, 6, W,,) | p, W‘,p]}]. (1.20)
W, |[WeWN (6

However, computing both (1.19) and (1.20) is computationally expensive since the optimization
occurs inside the expectation over high-dimensional random variables and hence many expensive
optimizations would be required. Though one could perform such computations on an HPC cluster
over an extended period of time, we instead designed less demanding but nonetheless informative
experiments to evaluate the value of insider trading. In particular, we ran the following two exper-

iments for all three contest structures across all 17 weeks of the 2017 NFL season:

* Experiment 1: We first compute the optimal portfolio for each week conditional on know-
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ing the realized p. We call this portfolio the insider portfolio. We then compare the expected
P&L of the insider portfolio with the optimal strategic non-insider portfolio that we submit-
ted to the real-world contests. (We assume the ground truth in the P&L computations to be

the realized marginals p together with the same stacking parameters from Section 1.6.)

* Experiment 2: This is similar to Experiment 1 but we now replace p with W_,. However,
we do not have access to the realized values of W, during the NFL season. Instead, for each
week we sample one realization of W, using the realized p (with the same stacking parame-
ters from Section 1.6) and treat the sampled W, as the realized value. We then compute the
optimal portfolio (the insider portfolio) for each week conditional on knowing the realized
W,, and compare the expected P&Ls of the insider portfolio with the strategic non-insider

optimal portfolio assuming the ground truth in P&L computations to be the realized W,,,.

It is worth emphasizing that in both Experiments 1 and 2, we are taking expectations over 4, the
performance vector of the underlying NFL athletes. As such, we are averaging over the largest
source of uncertainty in the system.

In Experiment 1, we found the insider to have an edge (in terms of total expected P&L across
the season) of around 20%, 1%, and 2% in top-heavy, quintuple-up??, and double-up contests
respectively over the (strategic) non-insider. In Figure 1.5, we compare the weekly expected top-
heavy P&L of the insider and (strategic) non-insider portfolios and observe that the weekly increase
varies from 1% (week 6) to 50% (week 16). As one would expect, the insider portfolio’s P&L
dominates that of the non-insider’s. Of course, the insider will have an even greater edge over a
non-insider who is not strategic as we have already seen in Section 1.6 that the strategic non-insider
has roughly five times the expected P&L of the non-strategic non-insider in top-heavy contests.

Compared to this approximately 500% difference between the benchmark and strategic players, the

22As expected, the benefits of insider trading were much greater in top-heavy contests than in the double- and
quintuple-up contests where we expected the benefits to be quite small. It is quite interesting, however, to see that the
observed benefits in quintuple-up (1%) were less than the observed benefits in double-up (2%). We suspect this may
be related to the same issue with quintuple-up that we identified earlier in Section 1.6, namely the issue that arises
when the maximal value of w,, ~ 0. In this case, the optimal value of A in Algorithm 1 will be close to 0. Indeed this
is what we observed in Table A.3. As a result (and this should be clear from the expression for o-%w in (1.11) together
with lines 3 and 7 of Algorithm 1) the only benefit to inside information in this case is in estimating uy;, .
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additional 20% increase in expected P&L gained via insider trading seems modest. This modest
increase is due in part to how well our Dirichlet regression model allows the (strategic) non-insider
to estimate the positional marginals p. Accordingly, the value of inside information depends on
how well the non-insider can predict opponents’ behavior. In particular, the more sophisticated the
non-insider is, then the less value there is to having inside information.

In Experiment 2, we found the insider’s edge to be similar to that of Experiment 1. Intuitively,
one would expect the edge to be bigger in Experiment 2 due to the insider having the more gran-
ular information of W,,. Noting that the variance of G | (8,p) goes to zero as the number of
opponents O goes to infinity, however, we can conclude that the additional value of seeing the
realized W,, over and beyond the value of seeing the realized p should?® be small when O is large.
Given that the contests we participated in had large O, this observation supports our results from

Experiment 2.
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Figure 1.5: Weekly expected dollar P&L for the strategic model (N = 50) with and without inside
information p in the top-heavy series.

23But note we are assuming here that the dependence structure between the positional marginals in p is known
regardless of whether we only see p or W,,,.
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1.7.3 The Value of Collusion

In addition to the insider trading controversy, the subject of collusion in fantasy sports contests
has also received considerable attention. In one suspected case, two brothers were suspected of
colluding when one of them won 1 million dollars (Brown 2016; Reagan 2016) in one of DraftK-
ings’ “Fantasy Football Millionaire” contests, a particularly top-heavy contest where just the first
few places earn most of the total payoff. Collusion refers to the situation where two or more DFS
players form (unbeknownst to the contest organizers) a strategic partnership and agree to pool their
winnings. Maintaining separate accounts allows the partnership to submit N opuge X Emax €ntries to
a given contest where N¢ojude 1S the number of players in the partnership and E,, is the maximum
number of entries permitted per player. Collusion can be beneficial in top-heavy contests as it
allows the colluding players to avoid substantial overlap (and therefore achieve greater diversifi-
cation) in their portfolios thereby increasing the probability that the partnership will win a large
payout.

We will assume that the Nojuqe players will construct a single portfolio of N ojuge X Emax €ntries
when they collude. This portfolio can be constructed using Algorithm 3 from Section 1.5.1 with
N = Ngoiude X Emax- This portfolio can then be separated into Ngojuge S€parate sub-portfolios each
consisting of E ., entries and each colluding player can then submit one of these sub-portfolios as
his official submission.

In order to estimate the benefits of collusion, it is first necessary to understand the behavior
of the colluding players when they are unable to collude. Many different behaviors are of course
possible but it seems reasonable to assume that potentially colluding players are sophisticated and
understand how to construct good portfolios. We therefore assume®* that each of the potentially
colluding players has access to the modeling framework outlined in this chapter and that as a result,
each one submits identical portfolios of E.,x entries. This portfolio is constructed using the same

approach from Section 1.5.1. While this assumption is stylized and not realistic in practice, it does

24To the extent that our framework is a good framework for constructing DFS portfolios (which we believe to be
the case!), then this might overstate the value of collusion as most colluding players will not have access to such a
framework. Nonetheless, we can use this framework to consider just how beneficial colluding might be.
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allow us to compute an upper bound on how beneficial colluding might be. Specifically, we can
easily estimate and compare the expectations and standard deviations of the profits for the colluding
and non-colluding portfolios in order to estimate the potential benefits of colluding. We would
argue that the difference in expected values provides an upper bound on the value of colluding since
in practice non-colluders are very unlikely to choose identical or even near-identical portfolios.

Before describing our numerical experiments, it is worthwhile noting that the results of Sec-
tion 1.6 and specifically, Figures 1.2(a) and 1.3(a), can be used to estimate the benefits of colluding
in week 10 top-heavy25 contests of the 2017 NFL season if E.x = 1 and N.guge = 50. We see
from Figure 1.2(a) that collusion in this case results in an estimated expected profit of 578.6 with
a standard deviation of 2,953.8. In contrast, we can see from Figure 1.3(a) that the non-colluding
portfolio has an expected profit of 123.9 with a standard deviation of 1,265.9. In this case, the
colluding portfolio has an expected profit that is almost 5 times the expected profit of the non-
colluding portfolio. It may appear this gain is coming at a cost, namely a higher standard deviation,
but we note the higher standard deviation is entirely due to increased dispersion on the right-hand-
side of the probability distribution. This is clear from Figures 1.2(a) and 1.3(a). Indeed we note
that the probability of loss is 0.58 in Figure 1.2(a) (collusion) and increases to 0.67 in Figure 1.3(a)
(non-collusion). This increased standard deviation can therefore hardly be considered a cost of
collusion.

We also performed a more formal experiment to evaluate the value of collusion in top-heavy
contests. We assumed the larger value of E,,x = 50 which is quite common in practice and then
varied the number of colluders so that Noj¢e ranged from 1 to 5. To be clear, the non-colluding
portfolio comprised 50 strategic entries replicated Nouge times whereas the colluding portfolio
consisted of Ngudge X 50 strategic entries. In Table 1.1, we compare the performances of the
colluding and non-colluding portfolios over the 2017 NFL season in terms of the total expected

dollar P&L, the average weekly Sortino ratio, and the average weekly probability of loss over

2 Not surprisingly we do not see any benefits to collusion in the double-up or quintuple-up contest here and indeed
as pointed out earlier, we expect replication (which corresponds to non-collusion in the setting considered here) to be
very close to optimal.
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the 17 weeks of the 2017 NFL season. To be clear, both portfolios were constructed for each
week using our calibrated model for that specific week. The expected P&L for the week was
then computed by averaging (via Monte Carlo) over 4 and W,, where samples of (8, W,,) were
generated using the same?® calibrated model. In particular, the realized (6, W,,)’s across the 17
weeks played no role in the experiment.

The colluding portfolio clearly dominates the non-colluding portfolio across the three metrics
and for all values of N o For example, collusion among 5 sophisticated fantasy players can in-
crease the expected P&L for the 17-week season by 44%, increase the average weekly Sortino ratio
by 63%, and decrease the average weekly loss probability by 8%. It is also clear from these num-
bers that collusion also results in a decreased downside risk (square root of E[P&L2 X Lipgr<r}])
since the percentage increase in the Sortino ratio is more than the percentage increase in the ex-
pected P&L. Accordingly, collusion results in a win-win situation by increasing the expected P&L
and decreasing the downside risk simultaneously, which demonstrates that collusion can be sur-
prisingly valuable in top-heavy DFS contests.

Table 1.1: Total expected dollar P&L (over 17 weeks), average weekly Sortino ratio and average
weekly probability of loss related to the top-heavy contests for both the non-colluding (“NC”)
and colluding (“C”) portfolios with E,, = 50 and Neojuee € {1,...,5}. The average weekly

Sortino ratio is simply the average of the weekly Sortino ratios, SR; fori = 1, ..., 17. Specifically
SR; := (E[P&L;] — T)/DR; where E[P&L;] denotes the expected P&L for week i, T denotes the

target P&L which we set to 0, and DR; := \/E[P&Liz X 1pgr,<7}] denotes the downside risk
for week i. (The expected P&L is rounded to the nearest integer whereas the Sortino ratio and
probability of loss are rounded to two decimal places.)
Expected P&L (USD) Sortino Ratio Probability of Loss
Neollude NC C Increase | NC C Increase | NC C  Decrease

1 6,053 6,053 0% 14.60 14.60 0% 0.49 0.49 0%
9,057 10,240 13% 11.02 13.24  20% 0.49 047 4%
10,975 13,776  26% 896 1232  37% 0.49 0.46 6%
12,411 16,883 36% 7.64 1156  51% 0.49 0.46 7%
13,632 19,677  44% 6.75 1099  63% 0.49 0.45 8%

D B W

Of course the benefits from collusion are not as great as those from week 10 reported above

26Both colluding and non-colluding portfolios then benefitted in this experiment from the fact that the assumed
model was indeed the correct model. We are interested in the difference in performances of the two portfolios, however,
and so the bias that results from assuming the players know the true model should be relatively small.
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when E.,x = 1 and Ngouee = 50. This is because it is intuitively clear that these benefits, while
positive, are a decreasing function of E,,, all other things being equal. For example, in the extreme
case where E,x = oo, there are clearly no benefits to colluding. In practice, we suspect the gains
from collusion are much smaller for risk-neutral players since it is extremely unlikely that non-

colluders would ever choose identical or near-identical portfolios as we have assumed here.

1.8 Conclusions and Further Research

In this chapter, we have developed a new framework for constructing portfolios for both double-
up and top-heavy DFS contests. Our methodology explicitly accounts for the behavior of DFS
opponents and leverages mean-variance theory (for the outperformance of stochastic benchmarks)
to develop a tractable algorithm that requires solving a series of binary quadratic programs. Fol-
lowing Hunter et al. 2016, we also provide a tractable greedy algorithm for handling the multiple
entry, i.e., N > 1, case for top-heavy style contests. This is in contrast to the replication approach
we advocate for double-up style contests. Moreover, our greedy algorithm (or simple variations of
it) can be justified theoretically via the results we developed on parimutuel betting as well as the
classic result of Nemhauser et al. 1978 on the performance of an idealized greedy algorithm for
submodular maximization.

There are many potential directions for future research. We could back-test other benchmark
strategies as well as refine our own preferred strategies. It would also be interesting to further
develop our modeling and estimation approach for a random opponent’s portfolio w,. We assumed
in Section 1.3 that we had sufficient data to estimate the positional marginals of w, and we would
like to explore other features that might be useful in the Dirichlet regression to better estimate these
marginals. We would also like to explore other copula models for splicing these marginals together
to construct the joint distribution of w,. It is not clear, however, whether we could ever obtain a
rich enough data-set to estimate other copulas sufficiently accurately.

While NFL contests are among the most popular DFS contests, the season is quite short with

only 17 rounds of games. Moreover, as mentioned in Section 1.6, the individual performance
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of an NFL player in a given week has quite a high variance, potentially causing the cumulative
P&L in football DFS contests to be high relative to other sports such as basketball, ice hockey and
baseball. For these reasons and others, it would be interesting to apply our modeling framework to
DFS contests in these other sports. It would also be interesting to use domain knowledge of these
other sports to actively update estimates of s and X5 as the round of games approaches. This is
something we did not do in the current NFL season. Indeed we recorded many instances when
it would have been possible to avoid certain athletes in our DFS entries had we used up-to-date
information that was available before the games in question and before our entries needed to be
submitted. As aresult, we believe the net positive P&L achieved by our models is very encouraging
and can easily be improved (in expectation) by more active monitoring of the athletes.

Other directions for future research include the development of very fast re-optimization pro-
cedures / heuristics that could be performed on an already optimized portfolio of N entries when
new information regarding player injuries, availability, weather etc. become known in the hours
(and indeed minutes) before the portfolio of entries must be submitted to the DFS contest. As dis-
cussed in Section 1.6, such late-breaking developments are common-place and in order to extract
the full benefit of the modeling framework presented here, it is important that such developments
be reflected in updated parameter estimates which in turn calls for re-optimizing the entries. Of
course, it would be desirable to re-optimize the entire portfolio in such circumstances but given
time constraints, it may be necessary to make do with simple but fast heuristic updates. For the
same reason, it would also be of interest to pursue more efficient Monte Carlo strategies for esti-

mating the inputs uge), O'CZ; and 074 ;) that are required for the various algorithms we proposed.

")
While we did make use of results from the theory of order statistics to develop our Monte Carlo
algorithm, it should be possible to develop considerably more efficient algorithms to do this. In
the case of top-heavy contests, for example, the moments corresponding to the top order statistics
are particularly important and it may be possible to design importance-sampling or other variance

reduction algorithms to quickly estimate them.

Finally, we briefly mention the area of mean-field games. In our modeling of opponents, we
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did not assume they were strategic although we did note how some strategic modeling along the
lines of stacking to increase portfolio variance could be accommodated. If we allowed some op-
ponents to be fully strategic, then we are in a game-theoretic setting. Such games would most
likely be impossible to solve. Even refinements such as mean-field games (where we let O — oo
in some appropriate fashion) would still likely be intractable, especially given the discreteness of
the problem (binary decision variables) and portfolio constraints. But it may be possible to solve
very stylized versions of these DFS games where it is possible to purchase or sell short fractional
amounts of athletes. There has been some success in solving mean-field games in the literature
on parimutuel betting (Bayraktar and Munk 2017) in horse-racing and it may be possible to do
likewise here for very stylized versions of DES contests.

We hope to pursue some of these directions in future research.
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Chapter 2: Shapley Meets Uniform: An Axiomatic Framework for

Attribution in Online Advertising

One of the central challenges in online advertising is attribution, namely, assessing the con-
tribution of individual advertiser actions such as e-mails, display ads and search ads to eventual
conversion. Several heuristics are used for attribution in practice; however, most do not have any
formal justification. The main contribution in this work is to propose an axiomatic framework
for attribution in online advertising. We show that the most common heuristics can be cast under
the framework and illustrate how these may fail. We propose a novel attribution metric, that we
refer to as counterfactual adjusted Shapley value (CASV), which inherits the desirable properties
of the traditional Shapley value while overcoming its shortcomings in the online advertising con-
text. We also propose a Markovian model for the user journey through the conversion funnel, in
which ad actions may have disparate impacts at different stages. We use the Markovian model to
compare our metric with commonly used metrics. Furthermore, under the Markovian model, we
establish that the CASV metric coincides with an adjusted “unique-uniform” attribution scheme.
This scheme is efficiently implementable, and can be interpreted as a correction to the commonly
used uniform attribution scheme. We supplement our theoretical developments with numerical ex-
periments using a real-world large-scale dataset. A preliminary version of this work appeared in
the WWW conference (Singal et al. 2019) and the current version is under revision at Management

Science.

2.1 Introduction

With the rise of the Internet, the digital economy has become a trillion dollar industry account-
ing for over 6% of the U.S. GDP (Hagan 2018). Retailers reach consumers through different online
channels with the goal of acquiring new customers and managing relationships with the existing

ones. The wide range and frequency of economic activities taking place in the digital world has
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enabled data collection at a massive scale, allowing retailers to better understand customer behav-
ior and improve service quality using data-driven decisions. With over a billion people with access
to the Internet, it is not surprising that advertising has moved to the digital space. The global
digital marketing sector witnessed a growth of 21% in 2017, which increased its market size to
USD 88 billion (Sluis 2018). Key decisions in this space include allocating budget to various ad
channels and media (e-mail, display media platforms, and paid search for instance) and optimizing
tactical decisions in each channel. Such tactical decisions may be driven by the publishers; see,
e.g., Balseiro et al. 2014; Hojjat et al. 2017 and Lejeune and Turner 2019 or by the advertisers
themselves. For example, in display or search advertising, this would entail bidding for ads to
push one’s product towards the desired customer demographic at the right time; see, e.g., Iyer et al.
2014; Balseiro et al. 2015; Balseiro and Gur 2017 and Baardman et al. 2019. Furthermore, due
to the digital nature of such online ad exchanges, advertisers can access user-level information be-
fore placing a bid, which motivates the importance of understanding the state-specific value of an
advertiser action (ad action). All such tactical decisions require a deep understanding of the value
of showing an ad via a specific channel at a given time. How can an advertiser assign or attribute
value to the advertising actions taken across the different channels and media? Attribution is one
of the central questions in online advertising. The value of each channel is an important input to
media mix optimization, helps build an understanding of the customer journey, and also helps a
company justify its marketing spend (United 2012; Priest 2017). Incorrect understanding of the
effectiveness of online channels can result in suboptimal budget allocation, possibly resulting in
significant lost revenue (Kireyev et al. 2016). Recognizing the importance of the attribution prob-
lem, the Marketing Science Institute has consistently identified attribution as a topmost research
priority over the last few years (Institute 2016; Institute 2018; Institute 2020). Though multiple
heuristics have been proposed and studied in this domain, there is lack of a systematic approach
that has both theoretical foundations and is tractable.

Attribution is inextricably linked to causality since it involves quantifying the added value of

showing an ad over the baseline value of what would have happened if no ad was shown (counter-
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factual). We consider the following view of causality, which comes from the pioneering work of

Rubin 1974:

“Intuitively, the causal effect of one treatment, E, over another, C, for a particular
unit and an interval of time from #; to #, is the difference between what would have
happened at time #, if the unit had been exposed to E initiated at #; and what would

have happened at #, if the unit had been exposed to C initiated at #;.”

In the context of digital advertising, treatments E and C correspond to advertiser taking, and not
taking an ad action, respectively. Accordingly, attribution involves capturing the causal effect of
an ad where the baseline corresponds to not showing an ad.

Causality is an active research area, and there exist paradigms for capturing the causal effect of
a treatment. See, e.g. Pearl 2009; Halpern and Pearl 2005; Chockler and Halpern 2004; Hitchcock
1997; Morgan and Winship 2014; Collins et al. 2004; Eells 1991; Hume 2003 and Rubin 1974. We
comment on some of these alternative approaches in our concluding remarks. In addition to these
foundational or axiomatic approaches to causality, there also exist data-driven approaches, see e.g.,
Bottou et al. 2013, where one uses importance sampling in a Bayesian network to estimate coun-
terfactuals, without having to collect additional data. In particular, they get a handle on the “what
would have happened” scenario using the data that one has already collected. In Section 2.5.2, we
leverage this technique to construct data efficient algorithms.

As with the existing work in attribution, we also consider the setting where an advertiser is
interested in understanding the contributions of various ads to a single product they are promoting.
Even with a single product, attribution is a challenging problem. It involves distributing the value
generated by a network of actions to each individual action. Such a network might have a mix of
interaction effects that one needs to account for when decomposing the network value. Capturing

such (possibly non-linear) interaction effects is a fundamental challenge.
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2.1.1 Related Literature

The attribution problem has been studied widely and in diverse areas. We present a brief
overview of existing approaches and refer the reader to existing surveys (Choi et al. 2017; Kannan
et al. 2016) for a more complete treatment. Attribution methodologies can be classified into two

broad classes: rule-based or algorithmic. We discuss both the classifications below.

Rule-Based Heuristics.

Rule-based heuristics include approaches such as last touch attribution (LTA), uniform weights,
and customized weights (Arensman and Yeung 2016; Priest 2017; Quantcast 2013; Quantcast
2016). In LTA, an advertiser attributes all the value generated by a user to the last ad action,
whereas under a uniform weights scheme, all the ad actions on a conversion path are allocated an
equal credit. Ad actions receive tailored weights under a custom weights scheme. Although such
heuristics are transparent and tractable, there is no rationale justifying their appropriateness as a
measure for attribution. Metrics such as LTA can be unfair since they do not value the contribution
of channels that build product awareness. Uniform or customized weights might appear to be a fix

but there is no a priori reason to believe that attribution should be linear.

Algorithmic Approaches.

The algorithmic approaches can be classified as using either incremental value heuristic (IVH)

(or removal effect) or Shapley value (SV) as a measure for attribution.

IVH. IVH computes the change in the eventual conversion' probability of a user when a specific
ad is removed from her path. This is the most common metric for attribution (Abhishek et al. 2012;
Anderl et al. 2016; Arava et al. 2018; Archak et al. 2010; Danaher and Heerde 2018; KakalejCik et
al. 2018; Li and Kannan 2014; Li et al. 2017). In this approach, one calibrates a model that predicts

the conversion probability as a function of the ad actions and then, uses the estimated model to

IConversion refers to the event in which a user buys the underlying product.
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compute the incremental value of each action. The novelty comes from the model proposed to
describe user behavior, e.g., a hidden Markov model (HMM) (Abhishek et al. 2012) or a neural
network (Arava et al. 2018). There exists little (if any) formal justification for why IVH is a good

attribution scheme. In Section 2.3.2, we show that IVH can result in unjustifiable attribution.

SV. SV (Shapley 1953) is a well-accepted concept for assigning credit to individual players in a
cooperative game. The value generated by online advertising can be viewed as the outcome of a
cooperative effect of the actions taken on various channels and media platforms. Dalessandro et al.
2012 pose attribution as a causal estimation problem and propose SV as an approximation scheme
for the causally motivated problem. They also show that SV generalizes the probabilistic model
of Shao and Li 2011. Using a stylized model, Berman 2018 shows the use of SV for attribution
can be beneficial to the advertiser. Under a different stylized setting, Abhishek et al. 2017 analyze
attribution contracts (including SV) used by an advertiser to incentivize two publishers that affect
customer acquisition and they highlight an interesting tension between “fairness” to the publishers
and “optimality” for the advertiser. Unlike in Berman 2018 and Abhishek et al. 2017, in our
work, publishers are not strategic. Our work focuses on the “fairness” of the attribution to the
various channels and avenues available to the advertiser. It is also worth mentioning that the online

advertising industry is embracing using SV for attribution; see for example Google 2019.

Other works. Attribution has been tackled from various other angles. Jordan et al. 2011 use
a Markovian model to motivate a payment scheme that satisfies incentive compatibility for the
advertiser and is fair from the publisher’s point-of-view. Xu et al. 2014 propose a mutually exciting
point process to capture dynamic interactions among various ads. Zhang et al. 2014, Ji et al. 2016,
and Ji and Wang 2017 provide an interesting view of attribution via the lens of survival theory.
Zhao et al. 2018 propose a regression-based relative importance method to compute the marginal
contributions. From an empirical perspective, Blake et al. 2015 measure the return on investment

of paid search and document the importance of accounting for the counterfactual.
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2.1.2 Our Approach and Contributions

In spite of almost a decade of research, it remains unclear as to what is an “appropriate” or
“best” attribution measure. I[IVH appears to be the most popular; but, to the best of our knowledge,
there is no systematic framework to support it. In fact, as we later discuss, IVH suffers from seri-
ous drawbacks in certain settings. On the other hand, SV has a strong theoretical justification and
a number of desirable properties such as efficiency, symmetry, linearity, and null player; in fact,
SV is the unique solution to a cooperative game that has all these properties. However, estimat-
ing SV exactly is computationally intractable in general, and one has to resort to approximations
(Avrachenkov et al. 2012; Castro et al. 2009; Fatima et al. 2008; Liben-Nowell et al. 2012; Lit-
tlechild and Owen 1973; Maleki et al. 2013; Michalak et al. 2013; Owen 1972). In addition, as we
show in Section 2.4.2, SV is not counterfactual in nature. We seek a metric that has the desirable
properties of SV, and yet is tractable and able to accommodate counterfactual reasoning.

Our contributions are as follows. First, we construct an abstract Markov chain model for the
customer journey through the conversion funnel that generalizes most of the existing Markovian
models in the attribution literature. In every period, the customer is in one of the finitely many
states. The advertiser observes the state and takes an action. The customer transitions to a random
state distributed according to a probability mass function that depends on the current state and the
advertising action. We propose attributing value to each state-action pair, which is a generalization
of the existing approaches that attribute only to advertising actions. This extension allows us to
capture state-specific attribution for each action, the need for which is supported by the finding in
Bleier and Eisenbeiss 2015. We analytically quantify the additional value of state-specific attribu-
tion and show that attributing at a state-action level allows one to capture a multitude of interactions
that are missed otherwise.

Second, we show that the Markov chain model allows us to generate intuitive canonical Marko-
vian networks that serve as a robustness check for an attribution scheme. Using these networks,
we show that the current attribution metrics (LTA, IVH, and uniform) have serious limitations.

Furthermore, we show how one can compute state-specific SV for each action in our Markovian
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model and highlight that it does not adjust for the counterfactual, and hence, is not an appropriate
metric for attribution in our setting. To the best of our knowledge, this is the first work in the
literature to analyze the various existing attribution metrics using a common framework.

Third, and the main contribution of this work, is an axiomatic framework for attribution in
online advertising that explicitly accounts for the counterfactual action. We propose a new met-
ric for attribution that we call counterfactual adjusted Shapley value (CASV). We show that our
proposed metric inherits the desirable axioms of the classical SV-based attribution. Note that we
do not need the Markovian model to define CASV and establish the uniqueness of this attribution
scheme. We show that this new metric leads to appropriate attribution in the Markovian networks
that highlighted limitations of the existing metrics. In addition, we establish that CASV admits
a crisp characterization under our Markovian model. It coincides with a unique-uniform attribu-
tion scheme that explicitly adjusts for the counterfactual; which, in turn, can be interpreted as a
correction to the commonly used uniform attribution scheme. Furthermore, we exploit this char-
acterization to develop simple algorithms to estimate our metric. We demonstrate the scalability
of CASV for the Markovian framework by performing numerical experiments on a real-world

large-scale dataset.

Outline. The remainder of this chapter is organized as follows. In Section 2.2, we introduce the
Markovian model that describes the user journey as a function of ad exposure. In Section 2.3,
we discuss how the existing attribution schemes (LTA, IVH, and uniform) apply to the Marko-
vian model and we construct canonical Markovian networks that highlight the limitations of these
attribution schemes. In Section 2.4, we introduce SV-based attribution and showcase its draw-
backs. Next, we present our axiomatic framework for CASV. In Section 2.5, we show that the
CASV-based attribution scheme is equivalent to the adjusted unique-uniform attribution scheme
for the Markovian model, and propose simple algorithms to estimate it. In Section 2.6, we apply
the proposed Markovian framework and the CASV-based attribution scheme to a large-scale real-

world dataset. In Section 2.7, we discuss the value of state-specific attribution. We conclude in
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Section 2.8 with some directions for ongoing and future research.

2.2 Model

We propose a Markovian model for user behavior where transitions in user’s state are stochas-
tic, and are a function of only the current state and the advertiser action. This process ends when
the user either quits (leaves the system) or converts (buys the product). In Section 2.2.1, we de-
fine the components of the Markov chain (denoted by AM). When constructing the Markov chain,
we keep most of its elements abstract to showcase its flexibility. In Section 2.2.2, we show how
many practical settings can be modeled using the proposed Markovian framework.We conclude
this section by defining the attribution problem for our Markovian model.

We note that our model builds upon existing works in this literature that have also used a
Markovian model to describe user behavior (Abhishek et al. 2012; Anderl et al. 2016; Kakalejc¢ik
et al. 2018). We define our model in abstract terms and therefore, most of the existing models can

be seen as special instances of our model.

2.2.1 Markovian Model of User Behavior
We first discuss the state space of the Markov chain, followed by the arrival process of the

users, then the action space of the advertiser, and finally, we define the transition probabilities.

State space. We define S := {s}" as the set of states excluding the two absorbing states (quit
g and conversion ¢) and S* := S U {g, ¢}. In order to highlight the flexibility of our model, we do

not give a concrete meaning to a state. We discuss some examples in Section 2.2.2.

Arrival process. External traffic arrives at state s € S w.p. Ay (initial state probability). We

define the vector A € R™ as [A]ses. We assume no external traffic arrives at ¢ and gq.
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Action space. We define A := {a}"_, as the set of advertiser actions, such as sending an e-mail
or showing a display ad. We include a baseline or no-ad action (a = 1)? in A that captures the
impact of both the baseline online actions and any offline promotion efforts of the advertiser that
have an impact on online transitions. Let 5¢ denote the probability that an advertiser takes action
a € A at state s € S. Note that taking the baseline action @ = 1 in state s may still move the traffic

along in the network. We denote by B the collection of all B¢ values and assume it is fixed.

Transition probabilities. We denote by p¢, the probability a user moves from s € Sto s’ € S
in one transition given the advertiser takes action a € A at s. Also, for all (s,s") € S2, we
define p’:Y := Yaea By DS, which denotes the average transition probability. To keep the notation
concise, for each a € A, we define the matrix P4 := [Pfs/](s,s/)es2 € R™™M_ Furthermore, P? :=
[ \(s.5nes? € R™™ and B® := diag([B¢]ses) € R"™" for each a € A is a diagonal matrix. Clearly,
P# represents the transition matrix over the partial state space S and P2 = Y, ., B*P®. For all
s € S, we define the vector p? € R™ as the s-th row of P4 for all a € A and p§ € R™ as the s-th

row of PE. Next, we state the only assumption we make on our problem primitives.

Assumption 2.1 (Absorption). The Markov chain corresponding to (4, P?) is absorbing, i.e.,

the probability each user will eventually either quit or convert from any state equals 1.

Assumption 2.1 is equivalent to saying that from any state, there exists a positive probability
path to one of the absorbing states. We discuss the precise definitions for the quit and convert states
in the context of our numerical study in Section 2.6.

So far, we have not discussed the transitions to and from states ¢ and ¢. We use the notation
p?. and pli. to denote the action-specific and average one-step transition probabilities from s € S to
¢ for all a € A. (For transitions from s € S to g, replace the index ¢ by ¢.) Since both ¢ and ¢ are
absorbing states, the transitions from them are self-loops w.p. 1. We define p2 := [p¢.]ses € R” for
each a € A and p? := [p?.]ses € R™. (Note that p? and pf for s € S correspond to the probabilities

of leaving s whereas p? and p? correspond to the probabilities of entering c.) Thus, a Markov

2We are reserving a = 0 for future use as it will become transparent in Section 2.4.2.
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chain M is specified by (/l, P2, p{.’, p’;) Next, we shift our focus to three quantities of interest for

the Markov chain M.

Expected number of visits. Let F# € R™™ denote the fundamental matrix of the Markov chain
M, i.e., the (i, j)-th entry of F# equals the expected number of visits to state j when the initial state

is i. Assumption 2.1 ensures that F# exists, and F# = (I — P#)~! (Grinstead and Snell 2012).

Effective arrival rate. Let 10 denote the effective arrival rate into state s € S and pf := [15]es €

R™. It is easy to show that AT + (¢#)" PP = (4#)T; hence, (1#)" = ATFP.

Eventual conversion probability. We define /% as the probability of eventually being absorbed
in ¢ from state s € S and the vector b¥ := [i}];cs € R™. It is easy to show that h¥ = PP + pf.

Thus, B = Ffp. We set i, = 0 and h{ = 1.

2.2.2 Model Discussion

We have defined the states and actions for the Markov chain M in abstract terms. Next, we
provide some possible settings for these quantities. These are, by no means, the only possible
mappings. Indeed, we expect the specific definitions of states and actions to be context dependent.

One possibility for the state is a summary of past interactions with the customer, e.g., the
number of visits to the product website, number of e-mails received, number of e-mails opened,
number of display ads seen, number of display ads clicked, etc. These counts will need to be
suitably quantized to control the size of the state space. The advertiser’s actions could be to do
nothing, or send an e-mail, or show a display ad, or bid for a search ad.

Another possibility for the state space is S = {unaware, aware, interest, desire} associated
with the conversion funnel used in the marketing literature (Strong 1925; Howard and Sheth 1969;
Barry 1987; Bettman et al. 1998; Court 2009; Elzinga et al. 2009; Kotler and Armstrong 2010;
Mulpuru 2011; Jansen and Schuster 2011; Bruce et al. 2012), which captures the journey of the

user from being unaware of the product to becoming interested, and finally purchasing. Given the
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fine granularity of data now available to advertisers, we believe the advertiser can infer such states
using an appropriate statistical model. The action space remains the same as above.

The conversion state ¢ refers to the user purchasing the underlying product, and is easily ob-
servable in data. The transition to the quit state ¢ indicates that the user has decided not to buy the
product?. In practice, the quit state is usually not explicitly observed in the data, but can be inferred
from the customer’s inactivity level. In our experiments with real data detailed in Section 2.6, we
present one simple heuristic to infer whether the customer has quit.

In order to contextualize the arrival process and the transition dynamics, it is useful to consider
an advertising campaign that is run for a fixed time period. The initial state of a user is her state on
the first day of the campaign. Different customers can have different initial states (depending on the
level of prior engagement with the product for example) and such heterogeneity is captured by our
arrival process. During the advertising campaign, the state of the customer evolves dynamically as
a (stochastic) function of the ads she is exposed to, which is captured by our transition probabilities.
(We provide an example based on real data when we present our numerical study in Section 2.6.)

We note that the definitions of state and action spaces can be customized as per the needs of the
advertiser (since our attribution framework is developed for the abstract Markovian model). The
state space is likely context-specific and driven by the user features that are relevant to a particular
advertiser. For example, one can even encode the time dimension in the state if one wishes to
explicitly model time. Learning context-specific state aggregation and Markov chain dynamics
from data is an active area of research. We refer the reader to Hallak et al. 2013 and references

therein.

2.2.3 The Attribution Problem

We assume that the sale of one unit of the product generates a value of 1. As a result, the total

value generated by the network equals ATh#. The goal of an attribution model is to allocate this

3To tie it with the existing literature, it can be seen as the user “leaving the system” (Abhishek et al. 2017).
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value to the underlying state-action pairs* in the system while accounting for the counterfactual of
not taking the particular action in the state. Note that in our setting, the state-action probability 55
for all (s, a) € Sx A is fixed, i.e., we do not consider the change in 8¢ as a function of an attribution
scheme. (Unlike the setting in Berman 2018 and Abhishek et al. 2017, the publishers here are not
strategic.) Our focus here is on developing a framework to attribute the total generated value to
each state-action pair in a manner that fairly accounts for the contribution of each state-action to the
eventual conversion of the user. Let 7¢ denote the attribution to the pair (s, a) € S X A. Naturally,
we require the total attribution across all state-action pairs to not exceed the total generated value,

i.e., Yes Daen T4 < ATHP. We will call an attribution scheme budget-balanced if it satisfies this

property.

2.3 Current Attribution Approaches and Their Limitations

Next, we consider commonly used attribution schemes, e.g., LTA, IVH, and uniform, in the
Markov chain setting, and illustrate their limitations. As we will see, our abstract Markov chain
model is a useful tool for constructing examples that illustrate these limitations. At a high-level,
both LTA and uniform are “backward looking” in the sense that they split the value of a path after
observing its realization (from the initial state to the end). LTA allocates all the value to the last
interacting state-action pair whereas uniform allocates it equally to all the state-action pairs that
appeared in the path to conversion. In contrast, IVH is “forward looking” since it attributes to a
given state-action pair based on what will happen in the future. It does not require the knowledge
of how the actual path will unfold. All it requires is a model that can predict the change in eventual
conversion probability that results if the state-action pair is removed from the path.

In many examples to come, we will sometimes assume that the no-ad action leads to the quit
state with probability 1 (this could be seen as an extreme case in which the act of not advertising
leads a customer to a competitor). We do so to find the simplest examples with the minimum

number of moving parts. Note that this is not a limitation of our approach, as our theory does not

4One might want to attribute value to actions as opposed to state-action pairs. However, we attribute to state-action
pairs because the impact of an action is likely to be state dependent.

59



require such an assumption.

2.3.1 Last Touch Attribution (LTA)

In LTA, all the value generated due to a purchase is attributed to the last state-action pair in
the path. Denote by # a random path (over state-action pairs) sampled uniformly from M. For

(s,a) € S x A, define

1 if P converts and (s, a) is the last state-action pair in P
Wa,LTA(P) —
. :

0 otherwise.

The attribution to (s, a) € S X A under the LTA scheme equals

ﬂ_a,LTA = EP~M [W?,LTA(P)] )

N

In other words, (s, a) receives complete credit if it is the last state-action pair before the convert
state ¢ on a path . Thus, LTA is clearly budget-balanced and easy to implement. However, LTA
appears “unfair” since state-action pairs are not rewarded for moving the user up in the conversion

funnel. We demonstrate this limitation next.

Example 2.1 (LTA is unfair). Consider the network in Figure 2.1 with self-loop probability p = 0
(line). Under LTA, all the value goes to the ad action at state m, i.e., i2"™ = 1 and 7*™ = 0 for
all other pairs of (s, a), even though the ad actions at the first m — 1 states are essential to move

the user to state m, because without them the user would have quit.

2.3.2 Incremental Value Heuristic (IVH)

IVH allocates to each state-action pair (s, a) the increase in the eventual conversion probability
by taking action a in state s as opposed to the no-ad action. For each a € A, we first define an

auxiliary variable that captures the corresponding forward looking increment conditioned on the
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Figure 2.1: Network for Examples 2.1, 2.2, and 2.4. The action space consists of two actions:
no-ad action (a = 1) and ad action (a = 2). The solid blue lines show transitions corresponding to
the ad action. We assume the no-ad action in every state leads to a transition to the quit state w.p.
1. The advertiser takes the ad action at all states w.p. 1.

user being at a given state:

1 1 1 1
=PV +p2—(P' W +p,) = (P*-P ¥ +(ps - p,),
———
action a no-ad action eventual immediate

a,lVH

where z#™ = [78™]es € R™. The scalar z3™"

can be interpreted as the allocation at a “trace”
level, i.e., if the advertiser observes a user at state s and decides to take action a, the corresponding
allocation would be zi"™". However, we need to scale this metric for it to be seen as attribution over
the entire population. In particular, given that at state s, the effective arrival rate is 4 and action a

is taken w.p. 8%, the IVH attribution is given by

T = B, @.1)

Although IVH is tractable and somewhat adjusts for the counterfactual, a serious limitation is
that it can distribute more value than the network generates because it pays for both eventual and
immediate conversions; consequently, each conversion may be accounted for several times. We

now show that this is, indeed, possible.

Example 2.2 (IVH can over-allocate). Consider the network in Figure 2.1 with p = 0. Under
IVH, the ad action at all states receives an attribution of 1 (i.e., 72" = 1 for s € {1,...,m})
and the no-ad action at all states receives an attribution of 0 (i.e., 7T1[VH =0fors e {l,...,m})

resulting in a total allocation of m even though the value generated equals 1.

A common workaround to ensure IVH is budget-balanced is to normalize the output by an
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appropriate constant (normalized IVH). Normalizing the numbers in Example 2.2 results in the
ad action at each state receiving 1/m, which appears reasonable. However, as we illustrate in

Example 2.3, even normalized IVH can be problematic.

Example 2.3 (Normalized IVH can be unjustified). Consider the network in Figure 2.2. IVH

2,IVH

[ = 1)and 1/2 to the ad action at all other states

attributes 1 to the ad action at state 1 (i.e.,

(i.e, 72" = 1/2 for s € {2, ...,m}). Thus, attribution under normalized IVH (denoted by n*"™")
equals
1+(m1—1)/2 for (s,a) = (1,2)
a,nlVH __ 1/2
s 1+(m/—1)/2 Jor (s,a) € {(s,2)}",
0 for all other (s, a) pairs.
As m — oo, all the value goes to the ad action at states 2 to m, i.e., 3,7, nf’”’v"' =1and n%””” =0

as m — oo. This appears inappropriate as the ad action at state 1 “deserves” at least half the

total value since 50% of the users convert immediately after seeing the ad at state 1.

© ©

0.5 1

S SIS
0.5 1 1

Figure 2.2: Network for Example 2.3. The action space consists of two actions: no-ad action
(a = 1) and ad action (a = 2). The solid blue lines show transitions corresponding to the ad action.
The no-ad action in every state leads to a transition to the quit state w.p. 1. The advertiser takes the
ad action at all states w.p. 1.

2.3.3 Uniform Attribution

Under a uniform attribution scheme, the credit generated is attributed equally to all the state-

action pairs that are encountered in a path. Denote by £ a random path (over state-action pairs)
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sampled uniformly from M. For (s,a) € S X A, define

n

pp  if P converts and (s,a) e P

“Q

we(P) =
0 otherwise,

where n¢ equals the number of times (s, a) appears in £ and |#| denotes the number of (not

necessarily unique) state-action pairs in #. The uniform attribution for (s,a) € S X A is
A& = Bp g [wE(P)] (2.2)

In other words, (s, a) receives an “equal cut” of each converted path it contributes to. Such a
scheme is budget-balanced and scalable. On the line network (Figure 2.1 with p = 0), it attributes
1/m to the ad action at each state (i.e., nf’u“i = 1/m for s € {1,...,m}), which seems reason-

able. However, it does not account for the counterfactual. Furthermore, it can result in “unfair”

attribution, which we show next.

Example 2.4 (Uniform attribution can be unfair). Consider the network in Figure 2.1 with’
p € (0,1). For a given path with ny occurrences of state-action pair (1,2), the uniform attribution
scheme attributes ny/(n; + m — 1) to the state-action pair (1,2). As p increases, the state-action
pair (1,2) receives more credit. However, this seems inappropriate since more value is attributed
to a state-action pair for “slowing down” the path to conversion. Ideally, an attribution scheme

should reward the state-specific ads to push the user towards conversion.

Remark 2.1 (Unique-uniform). A simple fix to the above drawback is to attribute based on
the number of unique state-action pairs. For instance, in the example above, the unique-uniform
scheme would attribute 1/m to the ad action at each state. However, this scheme still does not
account for the counterfactual, and there is no formal rationale for it. We show later that uniform

allocation adjusted for uniqueness and the counterfactual does, in fact, have a strong mathematical

Note that a positive value of p can be interpreted as the ad action at state 1 not changing the state (e.g., awareness
level) for a fraction of the user population, e.g. users who do not pay attention to promotional e-mails.
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rationale and will be part of our prescribed method.

To summarize this section, the above examples highlight some limitations of existing heuristics
but also point to the fact that no single heuristic “dominates the other”. In some way, IVH possesses
a counterfactual form giving it some practical appeal. At the same time, it is only forward looking,
ignoring all past actions and their potential contributions. Uniform, on the other hand, accounts
for past actions, but is not counterfactual. Ideally, an attribution scheme would provide the best
of both worlds, properly accounting for past actions while also accounting for the counterfactual
associated with not advertising. We also note that our proposed Markov chain model can be used
to generate simple canonical examples to test the robustness and intuitive appeal of attribution

schemes.

2.4 Shapley Value (SV)

In this section, we investigate SV-based attribution schemes. SV is a particular attractive met-
ric for attribution in our context, since the value, i.e., customer conversion, is the result of the
cooperative impact of actions taken during the course of the customer’s journey. We first present a
primer on SV (Section 2.4.1) followed by a discussion on why a direct application to our context
does not suffice (Section 2.4.2). Next, we propose a counterfactual adjusted SV (CASV) metric
for attribution (Section 2.4.3) and evaluate the performance of CASV on all the motivating exam-
ples (Section 2.4.4). In this section, we hope to convince the reader that, leaving computational
tractability aside, CASV is an attractive metric for attribution.

We emphasize that until Section 2.4.4, we do not assume that the customer journey is given
by the Markovian model and hence, the axiomatic support of CASV (Theorem 2.1) does not rely
on any Markovian assumption. However, we recycle the notation already introduced (s, a, 8, M)
with the understanding that the underlying dynamics can be non-Markovian. In particular, we let
the eventual conversion probability to be any arbitrary function of the state-action frequencies B.
For example, the transition probabilities can depend on the previous state-action pairs (as opposed

to just the current state-action pair).
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2.4.1 SV Primer

SV is solution concept in coalitional game theory (Shapley 1953). Consider a finite set P of
players with certain fixed strategies. Let the characteristic function v(X) denote the value gener-
ated by coalition X C P. The value v(0) of the empty coalition is normalized to 0. The goal is to
“fairly” distribute the value v(P) to the individual players. Note that the players are not assumed to
be strategic here, i.e., they do not choose strategies as a function of the distribution they are likely
to receive; the strategies are fixed, ex-ante.

SV distributes the value v(P) of the grand coalition to a player r € P as follows:

ﬂ_ihap = Z wx| X {V(X U {r}) - V(X)},

XCP\{r}

where

_ | XT(P] - X - 1)
M= P!

The attractiveness of SV is rooted in the fact that it is the unigue solution concept that satisfies the

following four desirable properties:

1. Efficiency: Y, .p 1, = v(P).

2. Symmetry: Consider players r,7” € P such that for any X C P\ {r,7’}, r and r’ are

equivalent,i.e., v(X U {r}) = v(X U {r'}). Then, nr, = 7,r.

3. Linearity: Consider two characteristic functions v(-) and v,(-). Linearity states that for all

players r € P, m,(vi + v2) = m,(v1) + m(v2) and 7, (avy) = an,(vy) for all @ € R.

4. Null player: Suppose player r € P does not add any value to any coalition, i.e., for all

X CP\{r},v(XU{r}) =v(X). Then, n, = 0.
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2.4.2 Direct Application

SV is a natural candidate for decomposing network value because the state-action pairs can
be viewed as players participating in a cooperative game to achieve a common goal of converting
the users. In particular, given the action intensities 8, the network generates a value of v(8) and
the state-action-specific SV 7¢*"* represents the credit allocated to each state-action pair (s, a) €
S x A. Note that we do not assume that the value function v(B) is given by the Markovian model
proposed in Section 2.2. We first define the underlying components (players, coalitions, and the

characteristic function) in our context and then discuss an important drawback of such a naive

application.

Player. We want to allow for the possibility that the value of an action a € A is state-dependent,
and thus want to attribute to state-action pairs (s,a). In order to make this possible in the SV
setting, we must define the set of players P = S X A. Note that we want to allow attribution to the
baseline no-ad action (a = 1), i.e., we are explicitly interested in understanding the value of the

baseline action.

Coalition. Next, we need to define the value associated with a coalition X C P = S x A. In the
usual application of SV, one computes the value v(X) generated by the coalition X, assuming that
the rest of the players P \ X are absent, i.e., not contributing to the value generation process in
any manner. In our setting, we accomplish this by postulating that the customer exits the network
when an action a is employed in state s and the pair (s, a) ¢ X. We operationalize this by defining
a “zero-value action” (a = 0) that transitions customers to the quit state with probability 1, and
setting the frequency S0 = 2a(s,a)ex Bs» 1-€., we take action 0 in state s whenever we intended to
take action a, but (s,a) ¢ X. Note that the zero-value action is merely a construct to define the
network behavior at (s,a) ¢ X, and is never an element of any coalition, and therefore, does not
receive any attribution. Let BX denote the state-action frequencies corresponding to the coalition

X where the effective set of actions is A U {0}. Note that when X = 0, the zero-value action is
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taken with probability 1 in all states, and therefore, v(0) = 0.

We note here that an alternative approach would be to attribute only to actions a # 1, i.e.,
actions other than the baseline no-ad action. In this setting, the set of players P = S x (A \ {1}),
and we take the baseline action 1 in state s whenever we intended to take action a, but (s, a) ¢ X.
In this setting, the value of the empty coalition corresponds to the value generated by taking only
baseline no-ad action in all states, and this value may not be zero in our setting because of offline
promotional activities, i.e., in this specification, v(0) # O is possible. Since SV allocates the
additional value v(X) —v(@)to X € P = S X (A \ {1}), the actions a # 1 are allowed to “free
ride” on the value generated by the baseline action. Our approach of introducing the zero-value
action, and explicitly attributing value to the baseline no-ad action prevents this free riding. See

Appendix B.1 for a more detailed discussion.

Characteristic function. Given X C S X A, we define v(X) to be the conversion probability
when the state-action frequencies are given by BX. For the Markov chain model, v(X) := ATh*".
Note that the key result in this section (Theorem 2.1) applies to any model where the conversion is
a function of the state-action frequencies B, i.e., we allow for the possibility of a non-Markovian
model. Since the value depends on the (possibly non-Markovian) model M, we will use the

notation v(-) when the emphasis on M is necessary.

Shapley value. The SV for each (s,a) € S X A is

)= g X X U {(s @)} - v(X)}, (2.3)
XC{SxAN{(s.a)}

where

X omn = | X] = 1)!

wix| = 2.4)

(mn)!
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SV depends on our choice of the characteristic function v(-) and the (possibly non-Markovian)
model M and hence, we will use the notation 7{"*"*(v) and 7> (M) when the emphasis on v(-)
and M is necessary. Though this view of attribution inherits the desirability of SV, it suffers from

a critical flaw: it does not adjust for the counterfactual (Example 2.5).

Example 2.5 (Need for counterfactual). Consider the network in Figure 2.3 and suppose the
customer behavior is described by a Markov chain model. Showing an ad in state 1 should not
get any attribution since it provides no additional value over the counterfactual action (no ad).

However, (2.3) attributes all the value to the ad action as shown below:

Z,Slzap 1

T = 2 (L 2)) = vO) + 5 ((L2), (L D) = V(L DY) = 5 {1 -0} + 5 (10} =1

“X=0” “X={(LD}"

1 sShap 1

R = 2 (L D) = vO) + 5 L D, (1,2)) = V(L)) = 5 {0 -0} + 3 {1~ 1} =0.

“X:® »» “X={(1,2)}”

Note that v({(1,1)}) = 0 since the action intensity of the no-ad action ,Bi is 0 in this example.

Furthermore, even LTA and uniform attribution fail this sanity check.

1
1 — O

Figure 2.3: Network for Example 2.5. The action space consists of two actions: no-ad action
(a = 1) and ad action (a = 2). Solid blue (dashed red) lines denotes transitions for the ad action
(no-ad action). The advertiser takes the ad action at state 1 w.p. 1, i.e., ,6’% =1 and ﬁ} =0.

2.4.3 Counterfactual Adjusted Shapley Value (CASV)

As we alluded to earlier, we seek a measure that provides the best of two worlds: (1) appropri-
ately captures the contributions of the past actions (a property of, e.g., uniform and SV)® and (2)

exhibits counterfactual reasoning (capturing a feature of IVH). To this end, we focus on adapting

%We will see in Section 2.5 that uniform and SV are closely linked.
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SV to account for the counterfactual with respect to the baseline no-ad action and we do so by
adhering to the causality framework of Rubin 1974. We first define a counterfactual player and
then define the counterfactual adjusted Shapley value (CASV). Next, we motivate the desirability

of CASV.

Counterfactual player. Following Rubin 1974, at state s, the counterfactual to taking action a
w.p. B¢ is to take the no-ad action (action 1) w.p. 8¢ (in addition to the default intensity of B!).
Accordingly, for a given player (s, a) € S X A, we denote the counterfactual player as (s, 1)¢, where

the “a” in the superscript captures the dependence on Sy .

Counterfactual adjusted Shapley value. The game theoretic setup (player, coalition, character-

istic function) is the same as in Section 2.4.2. For each (s, a) € S X A, we define CASV as

Sa,Shap = Z Wix| X {V(X @] {(s, a)}) — V(X U {(S, 1)“})}’ (25)
XC{SxAN{(s,a)}

where w) x| is the same as in (2.4). We use the symbol ¢ instead of r to differentiate CASV from SV.
The only change we make in going from 7™ to y{">™ is that we replace v(X) by v(X U {(s, 1)4}),
i.e., CASV captures the additional value added to the coalition X by a player (s, a) as compared to
the value added by its counterfactual player (s, 1)%. Note that the definition of v(X) assumes that
state-action pairs (s, a) ¢ X are replaced by the state-zero-action (s, 0).

It is unclear whether CASV under the current cooperative game is equivalent to SV under a

different cooperative game. However, CASV can be expressed as the difference between two SVs:
PE M) = TEM) = T (M), 2.6)
where M denotes the original network and M 4) denotes a counterfactual network for (s, a) where

we replace the state-action pair (s, @) by (s, 1), i.e., take action 1 with probability 8! + g¢. Here,

7 (Msa)) s the counterfactual value of (s, a), i.e., the value generated if no-ad action 1 was
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taken instead of the ad action a at state s. (Note that the models M and M) in (2.6) can be
non-Markovian.)

Next, we present an axiomatic justification for CASV. However, one needs to be careful when
defining the axioms in the counterfactual context. To be specific, efficiency should now pertain
to the redistribution of additional value generated over the counterfactual value. Similarly, the
definition of equivalent players should be adjusted, and the null player should correspond to a
player with zero value-add. We give an axiomatic definition for CASV in Theorem 2.1 under
a possibly non-Markovian model of customer behavior (see Appendix B.2 for the proof). The
relevance of these axioms in the context of online advertising is discussed in Section 2.4.4, where

we revisit the motivating examples.
Theorem 2.1 (Axioms). CASV is the unique solution of the following four counterfactual axioms.

1. Counterfactual efficiency: The sum of CASVs equals the additional value generated over

the counterfactual value, i.e.,

Z ?,Shap — V(S X A) — Z ﬂ?,Shap(M(S’a)).

(s,a)eSXA (s,a)eSxA

2. Counterfactual symmetry: If (s,a) € SXA and (s',a’) € SXA are counterfactual equivalent,

Le.,

(A) V(X U{(s,@)}) = v(X U{(s5,1)*}) = (X U {(5,@)}) = v(X U {(s,1)*'}) and
(B) v(X U {(s, 1) (5", a)}) = v(X U{(s', 1)“, (s, a)})

forall X € {S x A} \ {(s,a),(s",a’)}, then

a,Shap __ l’[/a,,shap
K R

3. Linearity: Consider two characteristic functions vi(-) and v,(-). For all (s,a) € S X A, we
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have

W0+ v2) = U)o+ ()

and for all @ € R,

W (av) = ey (vn).

4. Counterfactual null player: Consider a player (s,a) € S X A that has a zero value-add to

all coalitions that do not contain (s, a), i.e., forall X C {S x A} \ {(s,a)},

V(X UA{(s,a)}) = v(X U {(s, DT}).

Then, Y™ = 0.

In Theorem 2.1, we define (s,a) € S X A and (s,a’) € S X A to be counterfactual equivalent
if they satisfy (A) and (B). To better understand these conditions, consider the following three

conditions for all X C {S x A} \ {(s, a), (s/,a)}:
(AD) v(X U{(s,a)}) = v(X U{(s",a)}),
(A2) »(X U{(s,1)*}) = (X U{(s, 1)*'}), and
(B) v(X U {(s, 1)% (s, a)}) = v(X U{(s, DV, (s, a)}).

Condition (A1) states that adding either of the two players to any coalition X, containing neither
player, has the same effect on the network value, and condition (A2) states that the same is true
for the corresponding counterfactual players. The only remaining case of interest is that we add
the first player and the counterfactual of the second player, or the other way around. Condition
(B) states that doing either is equivalent in terms of the characteristic function. Note that we only
need conditions (A) and (B) for two players to be counterfactual equivalent, and (A1) and (A2) are
sufficient conditions for (A). It is worth mentioning that our definition of counterfactual equiva-

lent players is a generalization of equivalent players from Section 2.4.1. In particular, equivalent
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players only need to satisfy condition (A1) and since the notion of a counterfactual player does not
exist in the SV context, conditions (A2) and (B) are irrelevant.

Note that CASV is the unique solution to the counterfactual axioms for a (possibly non-
Markovian) model where the characteristic function v(-) is a function of state-action frequencies
B. However, the Markovian customer model will be useful in gaining better insights into the rather
involved and computationally intractable expression for CASV. We elaborate further in Section 2.5.

We conclude this subsection with a discussion regarding the attribution to the baseline no-ad
action. By definition of CASYV, the baseline no-ad action at each state receives zero counterfactual
credit. However, one can attribute the counterfactual value ¥ yesxa s (Ms.a)) (“residual”) to
the no-ad action in a post hoc fashion. In other words, the post hoc attribution to the no-ad action

at state s € S equals

n

DR (Mis) = TP M) + T8 ( M), (2.7)
=2

acA a=

where we use the fact that M 1) = M. The two terms in (2.7) have an intuitive interpretation. The
first term captures the value generated by the no-ad action due to a positive value of 8! whereas
the second term captures the value that would have been generated if the no-ad action was used in
place of the other actions. It is also worth highlighting that this post hoc attribution to no-ad action
also captures the value that could be attributed to any advertising action not being modeled (offline

ads for example). We discuss this further when we revisit Example 2.5 in Section 2.4.4.

2.4.4 Revisiting Canonical Examples

We now revisit the networks discussed so far and show that our CASV measure does not suf-
fer from the same limitations as the other existing heuristics. We also use these relatively simple
networks to illustrate the relevance of the counterfactual axioms (Theorem 2.1) in the online ad-

vertising context.
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Examples 2.1, 2.2, and 2.4. For the network in Figure 2.1 with p < 1, all state-action pairs
are counterfactual equivalent. Furthermore, since the counterfactual action, i.e., no-ad action,
directs the user to the quit state with probability 1, there is no counterfactual value in the network.
Therefore, it immediately follows that the CASV at every state equals 1/m for the ad action and 0

otherwise.

Example 2.3. For the network in Figure 2.2, CASV attributes O to the no-ad action at all the

states and the following to the ad action:

1 : _
+ﬁ ifs=1

(STl

o ifse{2...,m}.

This seems sensible as half of the paths convert just due to the ad action at state 1 whereas the other
half of the paths convert with the help of the ad action at all the m states. This example illustrates
the linearity axiom. The network in Figure 2.2 is the “sum” of two different Markov chains M;,
i = 1,2. In chain M|, users convert directly after the ad at state 1, and in chain M3, users convert
after the ad at state m, and a random user is equally likely to belong to either of the groups. The
CASYV on M trivially attributes a value of 1 to the ad action at state 1 and O to all other players,
whereas the CASV on M, attributes a value of 1/m to the ad action at each state (since it can be

seen as a “line” network). The CASV for the combined network follows from linearity.

Example 2.5. For the network in Figure 2.3, CASV allocates zero credit to the ad action, which
is appropriate. However, CASV of the no-ad action is, by definition, zero. So, who gets credit for
the value in the system? The answer, as discussed at the end of Section 2.4.3, is the baseline no-ad
action. Recall that the attribution to the baseline no-ad action includes attribution to all “hidden”
offline actions. This network exemplifies the counterfactual null player axiom since taking an ad
action does not generate any additional value over the counterfactual action of taking the no-ad

action.
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In sum, CASYV appears to be an appealing measure for attribution: it has a number of desirable
properties and appears robust to various network structures. That said, similar to SV, computing
CASYV using (2.5) requires an exponential runtime in the number of underlying players. This is
an important tractability concern that could render CASV impractical in settings with moderately-
sized state and action spaces. In the next section, we show that CASV can be computed efficiently

for the Markovian model.

2.5 CASYV for the Markov Chain Model

In this section, we characterize CASYV for the Markov chain model (Section 2.5.1) and use the

characterization to develop simple algorithms for estimating CASV (Section 2.5.2).

2.5.1 Characterization

To characterize CASV for the Markov chain model, we use the fact that CASV can be expressed
as a difference of two SVs (see (2.6)) and hence, analyze SV first. Proposition 2.1 connects the
coalition-oriented game-theoretic construct of SV to the paths sampled from the Markov model
M. In particular, we show that, under our Markovian setup, SV is, in fact, identical to the unique-

uniform attribution scheme (motivated in Remark 2.1).

Proposition 2.1 (SV equals unique-uniform). Consider (s,a) € S X A and the Markov chain

M. The SV of (s, a) as defined in (2.3) equals

7o = By [wi(P)]

where

if P converts and (s, a) € P

0 otherwise.
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The function u(-) returns the number of unique players and P is a path over players, i.e., state-

action pairs.

Proof. For convenience, we define r := (s,a) and P := S x A with the understanding that 7" :=

™ and w,(+) := w9(-). The proof is split into three parts.

Step 1: Express v(X) as an expectation over paths:

v(X) = ATH
:AT(I+PﬁX+(P"x)2+...)p"x

c
= EPNM()() [H{'P converts}]

= Ep.m []I{‘P converts}H{X(P)gX}] ,

where M(X) denotes the Markov chain in which only the players in coalition X are “active” and

X (%) denotes the set of unique players in path P.

Shap

Step 2: Use the representation from Step 1 in the definition of SV x,™ as stated in (2.3):

=Y g X (X U {r}) - v(X)}

XCP\{r}

= Z wixt {Bp-m [Lip converts) (Lx@ycxugryy — Lixeyexy) |}
XCP\{r}

= ESD~M [H{SD converts} X fr] >

where
fri= Z wix| (I[{X(P)gXu{r}} - I{X(P)Qz\’}) :
XCP\{r}

Step 3: Observe that for a given path P, f, can be seen as the SV of player r corresponding to
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a different game with characteristic function defined as
VX(;D)(X) = Ixp)cxy forall X C P.

A game with such a characteristic function is referred to as a carrier game and it is well-known
(see Lemma 2 of Shapley 1953 for instance) that the SV of a player in a carrier game equals 1/u(P)

if the player is in # and O otherwise. Therefore,

o ifre®

f;,:

0 otherwise,

which implies
" = Epom [wr(P)] -

This completes the proof.
[ ]
The above result enables one to characterize CASYV, which constitutes the main result of this

work.

Theorem 2.2 (CASV equals unique-uniform minus counterfactual). Consider (s,a) € Sx A,
the Markov chain M, and the counterfactual Markov chain M 4). The CASV of (s, a) as defined

in (2.5) equals

@ = Bp oy [WiP)] = Bpopg,, [WEP)]

where wl(-) is as defined in Proposition 2.1.

There is a striking resemblance between this characterization of CASV and uniform attribution

as defined in (2.2). In particular, the two expressions are identical except the definition of the
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weight function and the counterfactual adjustment. The weight function in CASV only rewards
based on whether a state-action pair appears in the path or not (as opposed to the number of times
it appears). In other words, if the ad-action a was taken multiple times (say n{) at the same state
s before the user moved to another state s, the CASV weight function only rewards it once (as
opposed to rewarding it n{ times). This seems very reasonable and, in fact, is the simple fix we
proposed in Remark 2.1.

It is noteworthy that the coalition-oriented construct of CASYV, which on the surface does not
seem to be related to the paths of the underlying Markovian model, reduces to being expressed as
a remarkably simple function of such paths. This connection is quite valuable as it helps to gain
deeper insights regarding the structure of CASV and hence, build a better understanding. Next, we

use this connection to develop simple algorithms to estimate CASV.

2.5.2 Algorithms

Given a set D of user paths where each user path consists of various state-action-state (s, a, ")
tuples, the action-specific transition probabilities and initial state probabilities can be estimated
using empirical frequencies’. To estimate CASV for player (s, a), one can sample paths from the
estimated Markov chains M and M, and use Theorem 2.2 directly. However, this involves sam-
pling from a different Markov chain M) to estimate CASV for each player, which we address
next.

A simple change of measure allows CASV to be expressed as

a,Shap __

s =Epom (2.8)

WO(P) (1 ~ g(s,a)(P))]

g(P)

where g(#) and g(;)(P) denote the probabilities of observing path # under Markov chains M

and M,,q), respectively. The ratio g(;4)(#)/g(#) denotes the importance weight and it is easy to

"We are assuming the advertiser knows 8. If not, then it can be estimated similarly.
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show that

sea®) 1_[ (p;S, )n?g,(P)
g — LLip, ’
where n{ ,(#) denotes the number of occurrences of the tuple (s, a, ) in . Given (2.8), it suffices
to sample paths from just one Markov chain (M) to estimate CASV for all the players. In fact, each
sample can be recycled for multiple players and the scheme can be implemented using a parallel
(over both players and samples) architecture. We state this estimation procedure in Algorithm 4,
where we assume we have access to the Markov chain M.

In practice, the true model M is not known, and one is forced to use a finite sample of data to
compute an estimate /T/(\, and attribute according to the CASV "> (M) of the estimate model M.
We discuss sensitivity to model estimation when we report the result of our numerical experiments
(Section 2.6). One can leverage the work of Bottou et al. 2013 to obtain confidence intervals of
the estimate of CASV obtained using the importance weights technique in (2.8). Such confidence
intervals are complementary to our sensitivity discussion and we refer the reader to Bottou et al.
2013 for more details.

Note that even if one has access to the true model M, the output of Algorithm 4 is an estimate
of the true CASYV since it relies on Monte Carlo sampling. It is easy to show that the resulting
estimate is unbiased, asymptotically consistent, and has a variance that decays at a rate of O(1/N),
where N denotes the number of samples used in Monte Carlo. Furthermore, as we discuss in
Section 2.6.3, we found N = 100,000 to be large enough to obtain a stable estimate of CASV.
Accordingly, moving forward, instead of focusing on the Monte Carlo error, we will focus on the
sensitivity to model estimation.

It is also possible to employ a Bayesian estimation approach where one maintains a belief
over the transition probability vector [p{,]ses+ in the form of a Dirichlet distribution for each
(s,a) € S x A. (One can also maintain a similar belief over the initial state probabilities vector

A and action intensities vector [S3{],eca for all s € S if required.) Since Dirichlet and multinomial
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Algorithm 4 Estimating CASV given Markov Chain M
Require Markov chain M and number of user paths N
. Tnitialize: ¢“"€ = 0 for all (s,a) € S X A
2: fori=1to N

3:  Sample path: $; ~ M

4 if $; converted

5: for (s,a) € P;

6 o=y 73 (1 —[Tyes (pisl/p?s,)"?“@"))
7 end for

8: endif

9: end for

10: Normalize: y*"'¢ = f’alg /N for all (s,a) € S x A
11: return .//alg = {% }(s,a)ESXA

are conjugate distributions, the posterior belief can be computed easily. The posterior belief can
be used to generate posterior samples for CASV as follows. Use the posterior belief to generate
samples of the entire Markov chain M, and for each sample of M, use Algorithm 4 to compute
an estimate for CASYV, potentially in parallel. These posterior samples quantify the uncertainty in

CASYV that arises due to the noise in data, or lack of data.

2.6 Numerical Experiments

We now shift our focus to evaluating the performance of our framework of attribution on a
large-scale real-world dataset and comparing it against competing metrics (LTA, IVH, uniform, and
SV). We first discuss the dataset composed of several million real-world user paths (Section 2.6.1),
and then the postulated Markovian model and its estimation using this real-world data (Section
2.6.2). Next, we present the attribution metrics (computed on data simulated from the estimated
model) corresponding to various schemes along with some discussion (Section 2.6.3). We note that
our numerics are for illustrative purposes and in particular, to see how various attribution schemes

differ.
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2.6.1 Dataset

Our real-world dataset corresponds to a single product (software) promoted and sold on the
Internet by a Fortune 500 company®. The dataset contains several million user paths with a few
hundred thousand conversions (purchases). Each path starts with a “sign-up”, i.e., the user creating
an account on the company’s website. From the date of the sign-up, we have access to the user’s
interaction with the company (touchpoints) for a period of 8 months®. The touchpoints can be

classified based on the type of ad:

* E-mail ad: There are three related touchpoints: (1) advertiser sending an e-mail (ad action),
(2) user opening an e-mail (user action), and (3) user clicking on a link in the e-mail (user

action).

* Display ad: There are two related touchpoints: (1) advertiser showing a display ad (ad

action) and (2) user clicking on a display ad (user action).

* Paid search ad: There is only one touchpoint corresponding to paid search impressions: user
clicking on the paid search ad (user action). Due to the way data is collected, an advertiser
usually does not know whether a paid search ad is shown to a user if the user does not click

on the ad.

There are two additional touchpoints: (1) “sign-up” (user creates an account) and (2) “conver-
sion” (user buys the product). If the user converted within 8 months, we truncate the path at the
time of conversion (since we are interested in activity up to first conversion). The quit state is not
explicitly observed in the data and we use the following rule to determine a transition to g: if there
is no activity (user and advertiser) in the last 30 days and in the future, we mark the next state as g.
Not every path ends in the conversion state or the quit state at the end of the 8 months period and

we let it be that way (as opposed to forcing it to transition to the quit state).

8We do not disclose the name of the company and specific statistics related to real data for anonymity reasons. The
company is the advertiser as opposed to a website / platform that serves ads for many advertisers.

?Our user paths data suffers from the common issues such as we lose track of a user if she clears cookies from the
web browser.
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We discarded certain dubious paths after discussing with our industry partner. In particular,
paths with over 100 touchpoints were thrown away with the suspicion of possible bots and paths
with any illogical sequence (for example, e-mail opened before being received) were also discarded

(possible data recording errors). The occurrence of such paths was very low (less than 1%).

2.6.2 Markovian Model and Estimation

Our Markov chain in earlier sections is defined with abstract action and state spaces to show-
case the flexibility of our framework. For the numerics, we use the following construction.

The action space A consists of four actions: (1) no-ad, (2) e-mail, (3) display ad, and (4)
paid search click'®. In our dataset, the no-ad action is not observed explicitly and we use the
following rule to “implant” no-ad actions in the user paths: if there has been no touchpoint activity
(user and advertiser) in the past 7 days, we implant the no-ad action. We use 7 = 10 in our
numerics and perform sensitivity analysis with respect to T after we present the results (at the end
of Section 2.6.3).

We assume that that a user goes through the following states during his decision process: (1)
unaware, (2) aware, (3) interest, and (4) desire. This definition of the state space S is motivated
by the widely used conversion funnel in the marketing literature (Strong 1925; Howard and Sheth
1969; Barry 1987; Bettman et al. 1998; Court 2009; Elzinga et al. 2009; Kotler and Armstrong
2010; Mulpuru 2011; Jansen and Schuster 2011; Bruce et al. 2012). However, unlike most of this
literature, we assume that our microscopic user level data allows us to objectively define the states

using the touchpoints as follows:

* Unaware: User has received no e-mail, no display ad, and clicked on no paid search ad so

far.

* Aware: At least one ad (e-mail or display) received by the user so far.

10Since we only observe a paid search impression when it is clicked, we use the “click” as an action even though it
is a user action (as opposed to an ad action). This is a limitation of the data and affects all attribution metrics, i.e., it is
not specific to the framework we propose.
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* Interest: At least one e-mail opened by the user so far.
* Desire: At least one ad (e-mail, display, or paid search) clicked by the user so far.

Clearly, a “back” transition (for example, transition from aware to unaware) is impossible in
our state space construction but we allow for the possibility of a “jump” (for example, transition
from unaware to interest). Furthermore, transitions to quit and conversion states are possible from
any of the four states in S. (The state space can be made more granular depending on the needs of
an advertiser and the type of data available. For instance, being “aware” as a result of receiving an
e-mail might be different from being “aware” due to seeing a display impression. Furthermore, the
“level of awareness” might depend on the number of ads seen and hence, it might be worthwhile
to define multiple states capturing different levels of awareness. We kept our construction simple
for illustrative purposes.)

Having defined the action and state spaces, we discuss the estimation of the corresponding
Markov model M using real data. In particular, we need to estimate A, B, and {P%},ca. The
touchpoints in the dataset allow us to construct “(s, a, s”)” tuples. Since each user path starts with
the “sign-up” touchpoint, the initial state is always “unaware” and hence, 4; = 1. To estimate 55
for all (s,a) € S x A, we simply compute the empirical frequencies, i.e., we count the number of
times action a was taken at state s and divide it by the number of times we observe state s in the
dataset. We employ the same technique!! to estimate pi forall (s,a,s") € SXAXS™. As mentioned
in Section 2.5.2, it is important to understand the impact of finite data set on the CASV estimate.
The CASV estimates reported here are robust because of the large number (several million) of user
paths in our dataset (see Appendix B.3 for details). See also Footnote 11.

We acknowledge that our simple estimation scheme could potentially be improved. In par-
ticular, there might be undesired endogeneity effects in our data, which might result in biased
estimates. For instance, a user who is more inclined to convert might be less likely to receive an

ad, which is against the spirit of our B-randomized policy. However, we note that such estima-

""We also experimented with the Bayesian approach discussed at the end of Section 2.5.2. Due to the enormous
number of user paths in our dataset, the posterior variance in the Bayesian approach was extremely small and hence,
the results obtained were very similar. We do not present them to be concise.
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tion issues are not peculiar to CASV but they also affect other attribution schemes that require the
model to be estimated (IVH for instance) and hence, we place these challenges outside the scope
of this work.

The summary'? of the parameter estimates is as follows. In terms of actions, e-mail has the
highest frequency ranging from 40% to 90% depending on the state followed by the no-ad action
(10% to 50%). Combined, e-mail and no-ad actions account for over 85% of the actions at each
state. The action intensity of display impression ranges from 2% to 10% and of paid search click
ranges from 0.1% to 7%"'3. In terms of transition probabilities, we note that from each state in S,
the eventual conversion probability is positive under each action, which validates the absorption
assumption (Assumption 2.1). Furthermore, the self-loop probability for each state-action pair
(except for the no-ad action at the unaware state and the impossible self-transitions) is over 90%,
indicating “slow-moving” users. For the no-ad action at the unaware state, it is around 50%. In
addition, there are other patterns in the estimates that are consistent with a priori expectations. For
example, a user is around 5 times more likely to move from the “aware” state to the “interest”
state under the e-mail action as compared to the no-ad action. Moreover, the one-step conversion
probabilities are highest for paid search click (5% to 10% depending on the state) followed by
display impression (0.2% to 1.5%). As one would expect, the eventual conversion probability
h. increases monotonically with s € S, i.e., as a user goes deeper into the conversion funnel,
she becomes more likely to buy the product. For instance, a user is around twice more likely to
purchase if she is in the “desire” state as compared to the “unaware” state.

We also observe some estimates to be counterintuitive. For instance, our estimate of one-step
conversion probability under the no-ad action is higher than under the e-mail action for all states
except “unaware”. This might be a consequence of the endogeneity issue we alluded to earlier
or advertising activity (such as offline ads) not captured in the online data. Recall that we use

the baseline no-ad action as a proxy for all offline promotion efforts. Furthermore, for all three

12We do not report the exact numbers to protect the private data of our provider.

Blnterestingly, the highest (among all the states) action intensity of paid search click was at the first state in the
funnel (“unaware”). We believe this is a result of “unaware” users actually knowing the product (from offline channels
for instance).
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ad actions (e-mail, display, and paid search click), the one-step conversion probability from the
“unaware” state is higher than in the “aware” state. We believe this is primarily a result of the user

actually being acquainted with the product (via offline channels for instance).

2.6.3 Results and Discussion

Given the model estimate from real data, we estimate CASV using Algorithm 4 with N =
100, 000 (number of paths to be sampled)!#. It took less than a second to compute the attribution
for each scheme!® on a single core of Intel Xeon E5-2650v2 2.6 GHz processor with 8 GB of
RAM. This highlights the scalability of our approach. Figures 2.4 and 2.5 display the results.
Interestingly, the five attribution schemes output quite different results and we discuss them next.
We first discuss the attributions to each action (Figure 2.4), and then, comment on the state-specific
attributions to each action (Figure 2.5).

In terms of attributions to actions (Figure 2.4), LTA allocates the majority of the share to e-mail
and paid search click, which seems appropriate for LTA since e-mail ads are the most prevalent in
our dataset and paid search click strongly hints a higher level of customer engagement (since it is a
user action as opposed to an ad action) and hence, a relatively high one-step conversion probability.
Since LTA does not adjust for the counterfactual, the no-ad action receives little credit. IVH allo-
cates almost all the credit to e-mail, which aligns with the facts that IVH scales with action intensity
(see (2.1)) and e-mail action occurs around 10 times more often than display and paid search click
actions. We make a similar observation for uniform attribution. Due to its unique-uniform nature,
SV accounts for the fact that players corresponding to e-mail action appear multiple times in cer-
tain paths and hence, the credit allocated to e-mail shrinks to roughly half (compared to uniform).
This can be seen as a correction to other schemes (IVH and uniform in particular) allocating higher
credit to e-mail than it deserves simply because it appears more often in the paths. Compared with

LTA, SV allocates less value to paid search click, which aligns with the observation that LTA al-

“We repeated our computation using different seeds and obtained almost identical results, indicating N = 100, 000
is high enough.

I5For LTA, TVH, and uniform, computing attribution is straightforward (see Section 2.3). To estimate SV, we used
the unique-uniform characterization (Proposition 2.1).
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Figure 2.4: Attributions to different actions under various schemes with 7 =

10. We report the

percentage attributions to each action by aggregating over states, i.€., 2 ¢/ 2 (sy.a) ﬂ?,/ for each
ae€A.

locates more credit than appropriate to channels appearing later in the conversion funnel. Finally,
CASYV corrects SV by adjusting for the counterfactual. As expected, CASV takes away a portion
from e-mail, display, and paid search click and allocates it to the no-ad counterfactual. This results
in no-ad receiving roughly half of the total network value'®. The action that is least affected by the
counterfactual adjustment is paid search click, which seems reasonable since replacing paid search

click (a user action) by no-ad (an ad action) can create a big difference in total value of the network

16 As noted earlier (around Equation (2.7) and when revisiting Example 2.5), the attribution to no-ad factors in the
value generated by advertising actions that are not modeled (offline ads for instance) and hence, is not necessarily the
value attributed only to no-ad.
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the natural order (unaware, aware, interest, desire).

and hence, the counterfactual value would be small.

Next, we briefly discuss the state-action-specific attributions (Figure 2.5), which are reported
on an absolute scale (contrast with the percentages in Figure 2.4). As is evident, each attribution
scheme can output quite different allocations to various states for a given action. LTA allocates the
most to paid search click at the “desire” state. Similar to the empirical finding of Blake et al. 2015,
it is possible that a user in a state of “desire” is already inclined to buy the product and performs

a Google search, leading to a paid search click and a conversion. However, in the counterfactual
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scenario, even if the paid search click did not occur, the user might have bought the product (by
clicking on the “organic” link). In fact, the relatively low allocation to paid search click at the
“desire” state under CASV provides empirical support to such a view. In terms of e-mail, existing
heuristics such as LTA, IVH, and uniform have an increasing pattern in the attribution allocated
with respect to the user state whereas CASV allocates the most to the first state. This also aligns
with the observation above, suggesting that the existing heuristics fail to account for the counter-
factual appropriately. Interestingly, all the schemes allocate a considerable amount to paid search
click at the “unaware” state. This might be a result of “unaware” users actually being aware of the
product (from offline sources for instance) and searching the product (on Google for example) just
to make a purchase but clicking the paid search ad in the process. In theory, CASV should adjust
for this phenomenon by allocating the “offline value” to the no-ad counterfactual. However, this
correction is not reflected in our numerics due to the hidden nature of data corresponding to paid
search impressions (recall we only observe them when they are clicked).

We conclude this section by performing sensitivity analysis on 7. Recall that to implant the
no-ad action in raw user paths, we used 7 = 10. We now experiment with a lower value of
7 = 7 (Figure 2.6) and a higher value of 7 = 14 (Figure 2.7) and analyze the resulting changes
in the attribution numbers. It is easy to see that all the discussions we did in the case of 7 = 10
(Figure 2.4) still apply, indicating robustness of high-level insights to the choice of 7. We do see
changes in the actual numbers but they align with our expectation. For example, with 7 = 7, we
implant more instances of no-ad action (as compared to 7 = 10) and hence, expect it to receive

more attribution (and vice versa with 7 = 14).

2.7 Value of State-Specific Attribution

In our cooperative game theory setup presented in Section 2.4, we defined each state-action
pair (s, a) € S X A to be a player (state-specific model) and hence, had CASV ¢ &> corresponding
to each state-action pair. As we mentioned previously, a naive implementation to exactly compute

{ ™} (s a)esxa using (2.5) would have an exponential runtime in the size of S X A. Interestingly,
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there is an alternative view that reduces the computational complexity of a naive implementation to
be exponential only in the size of A, which might be tractable. In particular, one can define players
in the cooperative game to be the actions in A (aggregated model) and compute CASV ¢4 for
each action ¢ € A. Under such a view, a coalition X corresponds to a collection of actions, i.e.,
X C A. To be more precise, we define the empty coalition in the same way as we defined earlier,
i.e., it corresponds to the Markov chain containing all the states but action O being taken at all of
them w.p. 1. If an action a € A is added to the empty coalition, then the advertiser takes action a

at each state s € S w.p. B¢ and so on. Under this aggregated model, each action a € A receives an
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attribution of
XM n =X = 1)

Z ke (X u{a)) —v(XU{1))} where Wil = n!
XcA\{a} !

&a,shap o

(2.9)

and 1¢ denotes the counterfactual player, i.e., the no-ad action (action 1) is taken at state s w.p. 55

(in addition to the default intensity 8!) for all s € S. Similar to the state-specific model, CASV in
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the aggregated model can be expressed as Yy*"* (M) = 7*"*(M) — 7**(M?) where

7MY = ) g X {r(& U {a)) =@} (2.10)

XcA\{a}
M denotes the original Markov chain and M¢ denotes the counterfactual network for a (in an
aggregated sense), i.e., it is identical to M except that we replace the transition probabilities of
(s, a) by those of (s, 1) for all s € S. Furthermore, SV 74* for a € A in the aggregated model can

be characterized as a unique-uniform scheme using the same proof technique as for Proposition 2.1:

ﬁ if P converts and a € P
g% = Ep p [W)(P)] where w(P):=

0 otherwise.

The function ii(-) returns the number of unique actions and # denotes the actions in the path
(over state-action pairs), i.e., P := {a : (s,a) € P}. Thus, the CASV > for ¢ € A in the

aggregated model equals

Yy = Ep pm [WHP)] = Ep_ e [W(P)],

which is analogous to Theorem 2.2.

If the size of A is relatively small (which might be the case for certain retailers), CASV can
be computed exactly in the aggregated model using (2.9). Accordingly, it is of interest to check
whether using the granular state-specific model (which is computationally demanding) provides
some quantifiable value over the aggregated model. However, one needs to be careful when com-
paring the attributions of two models as they are on different “scales”. The state-specific model
outputs attribution at a state-action level whereas the aggregated model outputs at an action level.
Furthermore, decomposing the action level allocation of the aggregated model to the state-action
level seems non-trivial. On the other hand, aggregating the state-action level allocations of the

state-specific model is straightforward (X, ¥y™"™). Therefore, we will compare Y s ™™ to
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&St to answer the following question: does computing state-specific attribution and then aggre-
gating over states provide a different answer than directly computing attribution that is not state-
specific? Clearly, this is a stronger notion of comparison in the sense that if Y . ¥y differs
from %" | then any state-specific decomposition of y**"* would be “inappropriate”.

Our unique-uniform characterizations imply that

Z w;l,shap _ Ja,shap — EP~M

seS

D IwiP) - (P

seS

Z Ep-Ma [Wi(P)] = Ep e WP

seS

which gives a path-based view of the difference between the two approaches. For instance, in a
network with zero counterfactual value, if a path contains x unique state-action pairs with x — 1
of them corresponding to the same action, the state-specific weight function allocates 1/x to each
state-action pair and hence, the repeated action receives an attribution of (x — 1)/x to account for
its state-dependent impact. On the contrary, the aggregated model allocates 1/2 to both the unique
actions. Though useful, such a path-based view does not build an understanding in terms of the
type of interactions among players captured (and missed) by the two approaches. To facilitate such
a fundamental understanding, we define two types of coalitions (assuming the underlying players

are state-action pairs).

Type 1 coalition. In a type 1 coalition (say X)), if a player (s, @) is in X}, then the player (s’, a)
is in X for all s* € S. In other words, if an action is present at a single state, then it is present at
all the states. We denote by T the set of all type 1 coalitions. Type 1 coalitions correspond to the
coalitions in the aggregated model. Intuitively, both the aggregated and the state-specific models
capture the interactions present in type 1 coalitions. However, it is not clear whether the “weights”
assigned to each of these interactions are the same in the two models. (We shed more light on this

issue in Theorem 2.3.)

Type 2 coalition. Any coalition that is a subset of S X A but not a type 1 coalition is defined as a

type 2 coalition. In other words, type 2 coalitions have at least one action that is present at one or
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more states but not at all the states. We define T, as the collection of all type 2 coalitions. It should
be intuitively clear from (2.9) that the aggregated model will miss all the interactions present in
type 2 coalitions. (We formalize this intuition in Theorem 2.3.)

We are now equipped to precisely quantify the value of state-specific attribution in terms of
the interactions among the underlying players and we do so in Theorem 2.3, the proof of which is

presented in Appendix B.4.

Theorem 2.3 (Value of state-specific attribution). For any action, computing state-specific
CASV and then aggregating over states is not the same as computing CASV over the aggregated

model. In particular, for all a € A,

DU =g = X)) = QM) = v (O} + ) D et X) {rmlX) = v, (X}

seS XeT, XeT, seS

where c*(X) := Y ses cHX),

wixi-1 if(s,a) € X WiX|-1 ifae X
c(X) := and ¢“(X) =

—wix| otherwise W otherwise.

The notation X denotes the actions in X, i.e., X := {a : (s,a) € X}.

We now parse the mathematical result presented above. The first term in the difference corre-
sponds to type 1 coalitions. Such coalitions are captured by both the models. However, it is not
true that the two models assign equal weights to them (¢*(X) vs. ¢*(X)). On the other hand, the
second term corresponds to type 2 coalitions, which the aggregated model completely disregards
(note that there is no ¢ weight in the second term). Hence, the aggregated model misses a multitude

of interactions that are captured by the state-specific model.

Remark 2.2. It is easy to show that ¢*(X) for any coalition X C S X A and action a € A equals

c(X) = m*(X)wix|-1 — (m = m*“(X))wx),
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where the scalar m*(X) equals the number of players in the set {(s, a)}ses that exist in the coalition
X and m equals the number of states in S (refer to the definition of S in Section 2.2.1). Furthermore,

for X € Ty, we have

m ifaeX
m*(X) =

0 otherwise.

As a result, the coefficient in the first term simplifies to

. » mW|X|_1—W|/\7|_1 l'faEX
c(X) —c*(X) =

Wix| — mwix| otherwise.

Having quantified the difference between the state-specific and aggregated models, we show
that the ratio of the two models can be arbitrarily large, which accentuates the importance of state-

specific attribution.

Proposition 2.2. The ratio of the aggregated model’s attribution to the aggregation of the state-

specific model’s attribution can be arbitrarily large. Mathematically,

sup sup g (M) = o0
M aeA Zses ‘//g’Slmp(M)

A proof of Proposition 2.2 is presented in Appendix B.4. We conclude this section by showing
Figure 2.8, which displays the difference between the two models (state-specific and aggregated)
on the simulated dataset from Section 2.6. The aggregated model underestimates the contributions

of no-ad and e-mail actions by around 10%.
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Figure 2.8: Value of state-specific attribution on the simulated dataset. For the state-specific
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2.8 Conclusions and Further Research

In this chapter, using a Markovian model for user behavior, we propose counterfactual adjusted
Shapley value (CASV) as a new metric for attribution in online advertising. We establish its theo-
retical foundations and appropriateness in two ways. First, we show the robustness of the proposed
measure over various canonical settings in which the existing metrics fail. Second, we provide an
underlying axiomatic framework motivated by game theory and causality that supports our choice.
We show that the CASV in our Markovian model is an adjustment to the unique-uniform attribu-
tion scheme. Finally, we propose multiple approaches to estimate our metric for the Markov chain
model and show its scalability through numerical experiments on a real-world large-scale dataset,
in addition to benchmarking it against existing metrics.

Our work proposes a very general Markovian model for the customer behavior and shows that
the CASV metric can be efficiently computed for any such Markov chain. In Section 2.6, we
propose a state space definition that is adequate for the particular application. Since the result-
ing attribution depends on the definition of state, defining an appropriate state space is important.

However, we expect that the appropriate definition for the state is likely to be very context specific.
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Learning context-specific state aggregation and Markov chain dynamics from data is an active area
of research. We refer the reader to Hallak et al. 2013 and references therein where the authors posit
a model selection procedure when the candidate models are generated by domain experts. Further-
more, since our axiomatic justification does not require the Markovian assumption, characterizing
CASYV under non-Markovian models is of interest.

Our work does not account for the cost of ad actions; a cost-aware attribution scheme is an
interesting extension to explore since a relatively cheap but less effective ad action might be more
valuable than an expensive but more effective ad action. Further, in this work, we implicitly as-
sume that the various ad actions / channels cooperate with each other towards the common goal of
maximizing network value instead of being strategic and maximizing their individual values. Moti-
vated by the works of Berman 2018 and Abhishek et al. 2017, it would be interesting to analyze our
framework when the individual channels are strategic. However, it is unclear if a cooperative game
theory framework is even appropriate under this strategic setting. For example, the unique-uniform
scheme provides each channel an incentive to pose as two smaller but distinct channels.

Our framework could be of interest in other domains. For instance, there has been a growing
interest in the field of “interpretable machine learning”, where the goal is to attribute the output
of a prediction model to the individual features of the input (Baehrens et al. 2010; Sundararajan
et al. 2017; Lundberg and Lee 2017) or to the components of the prediction model (Dhamdhere
et al. 2018; Leino et al. 2018). Extensions of the ideas presented in this work have implications to
answering such questions.

In this work, we modify Shapley value using Rubin’s definition of causality (Rubin 1974)
and the counterfactual we consider can be viewed as one of a family of possible counterfactual
constructs. In Appendix B.5, we describe other possible definitions that are worthy of further
exploration. In addition, it is of interest to explore alternative formulations for causality. See, e.g.
Pearl 2009; Halpern and Pearl 2005; Chockler and Halpern 2004; Hitchcock 1997; Morgan and
Winship 2014; Collins et al. 2004; Eells 1991 and Hume 2003 for approaches to causality in the

computer science and philosophy literature. Chockler and Halpern 2004 proposed metrics such
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as “degree of responsibility” and “blame” in order to guantify the causal effect of one variable
on another. However, computing these metrics is computationally expensive. Furthermore, these
metrics lack axiomatic support. Also, similar to IVH, these metrics are not budget balanced. In
fact, Chockler and Halpern 2004 mention adjusting their notions using Shapley value as a potential
future work. Accordingly, though we have unified the existing attribution literature in this work,

there is more to explore in terms of the set of counterfactuals to consider.
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Chapter 3: Beyond Myopia: Model Free Approximate Bayesian

Learning for Conversion Funnel Optimization

Deciding what ad to show based on consumer-level data is one of the most important decisions
in modern-day marketing. We study the problem of optimal sequential personalized interventions
from the point-of-view of a firm promoting a product under a fairly general conversion funnel
model of consumer behavior. Our model captures the state of each consumer (interaction history
with the firm for example) and allows the consumer behavior to vary as a function of both her state
and firm’s interventions. In contrast with existing approaches that model only the myopic value of
an intervention, we also model the long-run value by allowing the firm to make sequential interven-
tions to the same consumer. The objective of the firm is to maximize the probability of conversion
(consumer buying the product) and a key challenge is the firm does not know the state-specific
effects of various interventions. To help make personalized intervention decisions, we propose a
decision-making algorithm, which we call model-free approximate Bayesian learning. Our algo-
rithm inherits the simplicity of Thompson sampling for a multi-armed bandit setting and maintains
an approximate belief over the value (myopic plus long-run) of each state-specific intervention.
The belief is updated as the algorithm interacts with the consumers. Despite being an approxima-
tion to the Bayes update, we prove the asymptotic optimality of our algorithm. We supplement
our theory with numerics on a real-world large-scale dataset, where we show the dominance of
our algorithm over traditional approaches that are myopic or estimation-based. Furthermore, in
contrast to the estimation-based approaches, our algorithm is able to adapt automatically to the
underlying changes in consumer behavior (concept shift) and maintains a high level of uncertainty

on the value of less explored consumer segments (covariate shift).
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3.1 Introduction

Over the last two decades, digitization has been drastically shifting the way businesses operate.
A significant portion of a modern-day organization’s operations (ranging from marketing to sales)
happen over the Internet, boosting the size of the digital economy to be between 4.5 to 15.5 per
cent of world GDP (UNCTAD 2019). This shift from offline to online nature of operations has
provided businesses access to “big data” (IBM 2020), giving them an unprecedented opportunity
to understand customer behavior at a personalized level and make data-driven decisions to enhance
customer experience and ultimately, boost revenue (Misi¢ and Perakis 2020).

Consider a firm that promotes a product or service online (Netflix selling its paid membership
service for example). A central goal of such a firm is to maximize its conversion probability, i.e.,
given a new customer lead (consumer), maximize the probability the consumer buys its product.
To do so, the firm performs sequential interventions (Netflix sending promotional emails as shown
in Figure 3.1 for example) as a function of the information it collects on the consumer (state). The
intervention space of the firm includes multiple actions (type of email for example) and the con-
sumer’s state evolves dynamically as a function of the firm’s actions (in an endogenous manner).
For instance, a consumer who has interacted with a previous intervention (opening an email and
clicking on one of the links in it for example) might exhibit a different behavior (and hence, might
be in a different “state””) as compared to a consumer who has “avoided” previous interventions.
Adding more to the complexity, the firm does not know apriori the effect of its state-specific in-
terventions on the consumer’s behavior and hence, needs to learn or estimate as it interacts with
various consumers.

In this chapter, we focus on the conversion funnel optimization problem (formally defined in
Section 3.2). Informally, we consider a firm promoting a single product. The firm interacts with
multiple consumers in parallel and its goal is to maximize the conversion probability. We model
the consumer state by a conversion funnel, allowing different consumers to be in different states

at each point of time. The firm observes the state of each consumer and performs personalized
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NETFLIX
Always adding more.

‘We're always adding more, including original TV
shows and mavies that premiere exclusively on
Netflix. Action, Documentaries, Comedy, Family,
Horror and more - there’s a Netflix Original for
everyone to enjoy. Discover something great to
watch and enjoy your favorite shows your way.

online anytimea

NOW ON NETFLIX

The Boss Baby: Back In Business

Watch Netflix anytime, w18 T 13Epscdes

=5 Ba bbig brother Tim fo the office to teach him
anywhere. anmated saiss sprung om s it

Thanks for considering Netflix. Start watching, pause, then pick up SIGN UP NOW
right where you left off on the same device or anather device that
connects 1o Netflie Netflix is commercial-free — always!

SIGN UP NOW

(a) May 3, 2020 (b) May 18, 2020 (c) June 8, 2020

Figure 3.1: Sequence of emails received by one of the authors after providing his email to Netflix
(but not subscribing to the membership). The emails were sent with a 15-20 days gap in between
(May 3, May 18, and June 8) and the contents of each of the email were unique. The subject line
of the three emails were “Movies & TV shows your way”, “Watch TV shows & movies anytime,
anywhere”, and “Netflix - something for everyone”, respectively.

interventions, i.e., the intervention targeted at a consumer can depend on her state. As a function
of the current state and the personalized intervention, the consumer state evolves. The process for
each consumer continues until she buys the product (subscribing to Netflix’s paid membership for
example) or leaves (unsubscribing from Netflix’s email list for example). For any consumer, we
allow the firm to perform sequential interventions. We consider the setting where the firm apriori
does not know the underlying parameters of the conversion funnel (transition probabilities between
various states for example) and needs to learn / estimate the effects of state-specific interventions by

interacting with the consumers. This maps to a real-world scenario in which the firm is promoting

a new product, or an existing product to an unexplored consumer segment such as a new geography
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(covariate shift), or perhaps there has been a change in the underlying consumer behavior possibly
due to shifts in macroeconomic conditions, competitors’ policies, or other marketing activities of
the firm itself (concept shift). (For ease of exposition, we introduce our framework using a single
product and costless interventions. However, our framework extends to multiple products and
interventions with costs. We discuss these extensions in Section 3.5.)

Even with a single product and costless interventions, optimizing the conversion funnel is chal-
lenging, primarily due to complex consumer behavior. The consumer behavior can be affected by
the earlier interventions (carryover and spillover effects) and the consumer’s interactions with such
interventions (Manchanda et al. 2006; Abhishek et al. 2012; Braun and Moe 2013; Xu et al. 2014;
Li and Kannan 2014; Ghose and Todri 2015; Bleier and Eisenbeiss 2015; Kireyev et al. 2016;
Bruce et al. 2017; Zantedeschi et al. 2017). For example, a consumer who interacts with an initial
intervention (opening a promotional email) might be more likely to convert in the future than a
consumer who does not. These effects can be non-linear (Chatterjee et al. 2003). There can also be
temporal effects (Sahni 2015; Bleier and Eisenbeiss 2015; Sahni et al. 2019), including marketing
fatigue (Sinha and Foscht 2007; Cheng et al. 2010; Byers et al. 2012; Abebe et al. 2018; Cao
et al. 2019). For example, sending promotional emails to a consumer every day might annoy her,
leading her to leave the system (by unsubscribing to firm’s email list). The key challenge here is
that the consumer behavior can be a complicated function of her state (past interactions, time since
last intervention, etc.) and apriori, the firm does not know how the consumer behaves as a function
of her state and the intervention. The firm needs to learn / estimate such state-specific effects of its
various interventions. Doing so while optimizing the funnel at the same time is challenging.

It is worth mentioning that the problem of conversion funnel optimization is quite widespread
in real-life marketing applications. For instance, there are multiple firms operating in the space of
email campaign management! and the global market size for just email marketing is estimated to

be around USD 7.5 billion, with a projected growth to USD 17.9 billion by 2027 (ReportLinker

ISee https://www.privy.com/, https://www.klaviyo.com/, https://mailchimp.com/,
https://www.constantcontact.com/, https://sendgrid.com/, and https://cordial.com/
for a sample of firms operating in this space.
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2020). To define the focus of our work, we highlight an important characteristic that is omnipresent
in the email marketing industry. In particular, when a consumer journey begins (for instance,
consumer providing her email to Netflix), the firm has very limited data on the consumer. In
particular, all the firm has is consumer’s email and perhaps her name. Hence, in this work, we
focus on a limited consumer features regime. In particular, we do not assume the firm has access
to the features of the consumers (age, sex, location, for example) but we let the firm learn about
the consumers’ preferences as it interacts with them via sequential interventions. Nonetheless,
we discuss an extension of our framework to a setting in which the firm has access to consumer

features in Section 3.5.

3.1.1 Related Literature

Conversion funnel optimization relates to the existing work in the marketing literature focussed
on determining optimal marketing actions. Motivated by Bertsimas and Mersereau 2007, we
classify the related work into four sets as shown in Table 3.1: (1) estimation-based myopic ap-
proaches, (2) estimation-based non-myopic approaches, (3) learning-based myopic approaches,
and (4) learning-based non-myopic approaches. We say an approach is myopic if it maximizes
immediate / single-period reward (one-step conversion probability for example) and we say an
approach is non-myopic if it maximizes the long-run reward (eventual conversion probability for
example). We say an approach is estimation-based if it uses data from a fixed period of time to
estimate the underlying parameters and make decisions using such fixed estimates. On the other
hand, an approach is learning-based if it does not use a pre-specified period to estimate parameters

but learns them while optimizing for rewards at the same time.

Estimation-based myopic approaches. Most of the traditional work in marketing falls in the
first set, i.e., estimation-based myopic approaches. These approaches first propose a model that
predicts immediate reward (one-step conversion probability for example) as a function of the inter-

vention and possibly the consumer state / features and then, estimate the proposed model to make
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myopic | non-myopic

estimation 1 2

learning 3 4

Table 3.1: Classification of the related marketing literature into four sets. Most of the traditional
work belongs to set 1 and there has been noticeable progress in sets 2 and 3 over the last two
decades. We focus on set 4, which is a relatively unexplored space in marketing.

intervention decisions. Since such an approach is not our main focus, we do not discuss this litera-
ture extensively but briefly mention the recent work of Simester et al. 2020 and refer the reader to
references therein. Simester et al. 2020 consider seven widely used machine learning methods to
predict single-period reward and investigate how a firm can use experimentation to estimate their
parameters and then, use such estimates to optimize marketing decisions when prospecting for new
customers. A key limitation of such approaches is that even though the parameter estimates can
be specific to the state / features of the consumer, the final decision is myopic (since it maximizes
single-period reward) and hence, can result in suboptimal reward. In the words of Simester et al.

2006,

“As early as 1960, it was recognized that catalog companies may be able to profit

by focusing on long-run rather than immediate profits when designing their mailing

policies (Howard 2002).”

For example, in the Netflix example introduced earlier, an intervention that has a lower one-step
conversion probability will never be picked under a myopic policy even though if it leads consumer
to a state from where the conversion probability is higher than at the current state. We will demon-
strate this in our numerics (Section 3.6). Some other related work includes Bult and Wansbeek

1995; Rossi et al. 1996 Ansari and Mela 2003, and Feit and Berman 2019.

Estimation-based non-myopic approaches. Relatively little existing work falls in the second

set, 1.e., estimation-based non-myopic approaches. Examples include Bitran and Mondschein
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1996; Goniil and Shi 1998, Simester et al. 2006, Montoya et al. 2010; Schweidel et al. 2011;
Ariely and Bitran 2013, Ma et al. 2016; Zhang et al. 2016, Zhang et al. 2017, and Liberali and
Ferecatu 2019. These approaches first propose a model that predicts long-run reward (eventual
conversion probability for example) as a function of the intervention and possibly the consumer
state / features and then, estimate the proposed model to make intervention decisions. A key limi-
tation of such approaches is that they might suffer from issues such as concept shift and covariate
shift (Simester et al. 2020). Furthermore, arbitrarily setting aside an initial period of time to esti-
mate the underlying parameters can introduce suboptimality. We further discuss these limitations
in Sections 3.6 and 3.7. (We place Ariely and Bitran 2013 in this category since they assume

customer behavior to be known conditional on the customer segment.)

Learning-based myopic approaches. In the last two decades, we have seen a noticeable progress
here. As with estimation-based myopic approaches, these approaches propose a model that predicts
immediate reward as a function of the intervention, and possibly the consumer state / features. The
difference is that instead of estimating the model, they learn it. In the language of reinforcement
learning (Sutton and Barto 2018), these approaches are similar to a multi-armed bandit, where
the different arms represent the various interventions available to the firm. Works in this category
include Gooley and Lattin 2000; Bertsimas and Mersereau 2007; Hauser et al. 2009; Urban et al.
2014; Hauser et al. 2014, Schwartz et al. 2017, and Cao et al. 2019. Although such learning-based
approaches usually perform better than the estimation-based versions, both the approaches share
the same key limitation: the decision is myopic (since it maximizes single-period reward) and
hence, can result in suboptimal reward. We will highlight this in our numerical study that uses a

real-world dataset (Section 3.6).

Learning-based non-myopic approaches. The focus of our work is learning-based non-myopic
approaches. As in estimation-based non-myopic approaches, these approaches propose a model
that predicts long-run reward as a function of the intervention and possibly the consumer state

/ features. The difference is that instead of estimating the model, they learn it. Though such
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approaches have been around for almost two decades in the marketing literature (Abe et al. 2002;
Pednault et al. 2002), there has been little progress in this space. Some other examples include
Tkachenko 2015; Theocharous et al. 2015; Yao and Lu 2019, and AboEIHamd et al. 2020. The
existing works in this space have leveraged off-the-shelf reinforcement learning algorithms and
there seems to be little (if any) rigorous methodological advancements that are tailored to the
context of marketing, the focus of our work. One exception is the recent work of Moazeni et
al. 2019, which focuses on designing marketing campaigns for market entry using a sequential
learning approach. A key difference between Moazeni et al. 2019 and our work is that Moazeni
et al. 2019 focus on aggregate-level dynamics whereas we focus on consumer-level dynamics.

We conclude our literature review with the following quote from Bertsimas and Mersereau

2007, that, although a decade old, is still relevant today:

“...itremains a challenge to develop rigorous adaptive learning technologies for more
complicated and realistic models of customer behavior, for example, allowing depen-
dence among messages, dependence among customer segments, and customer hetero-
geneity. In short, we believe that there is much room for interesting future research in
this area. . . . it remains a challenge to interface such techniques tractably with dynamic
optimization formulations. We believe that approximations, either of the customer be-
havior model or of optimality or both, are necessary. . .. we also believe that functional
and distributional approximations of the Bayes updates warrant investigation. Possi-
ble alternatives to the Bayes solution include non-Bayesian approaches or approaches

that seek a weaker form of optimality (e.g., asymptotic optimality).”

3.1.2 Our Approach and Contributions

Our approach is motivated by the above quote of Bertsimas and Mersereau 2007. We consider
a fairly general model of consumer behavior and develop an asymptotically optimal decision-
making algorithm that approximates the Bayes update. In terms of the model, at each point of

time, we posit that the consumer is in some underlying state, which summarizes her interaction
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history with the firm (and possibly includes segment information such as age, sex, location). The
firm observes the state of the consumer and decides on which intervention to perform (if any).
As a result, the consumer transitions to another state as a stochastic function of her current state
and the firm’s intervention, i.e., we allow for interventions to have state-specific effects. The firm
then performs another intervention and the process repeats until the consumer makes a decision
to purchase or not. Due to the sequential nature of our model, it captures dependence among
various interventions. Furthermore, our model’s sequential nature allows it to accommodate both
the myopic and the long-run value of the interventions, which is in contrast with the existing
approaches that only model myopic rewards. Our model is at a consumer level and hence, allows
for personalized interventions (as a function of the consumer state). We emphasize that our model
is general enough to capture a wide array of consumer behaviors.

The main contribution of our work is to propose a decision-making algorithm, which guides
the firm in terms of what intervention to perform given the state of a consumer. Apriori, the firm
does not know the state-specific effects of the interventions and needs to learn / estimate them in
order to make optimal intervention decisions. To help the firm make decisions in such an unknown
environment, we propose the model-free> approximate Bayesian learning (MFABL) algorithm.
The high-level idea of MFABL is simple. It maintains a belief on the state-specific value (myopic
plus long-run) of each intervention. As it interacts with the consumers and gathers data, it updates
such beliefs in an approximate manner. Given the sequential nature of our model, maintaining
the exact model-free belief is challenging and hence, MFABL approximates the Bayes update.
MFABL’s belief structure, decision-making policy, and the update rule inherit the simplicity of
Thompson sampling for a multi-armed bandit. In particular, MFABL assigns a Beta belief to the
value of each state-specific intervention. When a consumer is in a certain state, MFABL uses the

belief to sample the value of all interventions available at that state and performs the intervention

2We use the terminology “model-free” to be consistent with the existing literature (Sutton and Barto 2018) and
note that “model-free” does not mean that there does not exist a true underlying model. Instead, it means that there
exists a true underlying model but our algorithm does not learn / estimate the model. Approaches that estimate / learn
the model are called “model-based”. We revisit this discussion in Section 3.3 (Footnote 4), where we formally define
our model-free algorithm.
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with the highest sample value. If doing so transitions the consumer to a state from where she
is “likely” / “unlikely” to convert, MFABL positively / negatively reinforces the corresponding
intervention using a Beta-Bernoulli style update. Despite being an approximation to the Bayes
update, we prove that MFABL is asymptotically optimal.

We supplement our theoretical developments with numerical experiments using a real-world
large-scale dataset corresponding to email interventions for a software product of a Fortune 500
firm, targeted at millions of consumers. We demonstrate the dominance of our algorithm over the
traditional algorithms that either optimize for the myopic reward or are estimation-based. Further-
more, in contrast to the estimation-based approaches, our algorithm is able to adapt automatically
to the underlying changes in consumer behavior (concept shift) and maintains a high level of un-

certainty on the value of less explored consumer segments (covariate shift).

Outline. The rest of this chapter is organized as follows. In Section 3.2, we define our model
for consumer behavior, i.e., the behavior of consumers as a function of the firm’s personalized se-
quential interventions. We call this model the conversion funnel and use it to define the underlying
optimization problem the firm wishes to solve (conversion funnel optimization). In Section 3.3,
we present the algorithm (model-free approximate Bayesian learning) that we propose in order
to tackle the conversion funnel optimization problem. We discuss the properties of our proposed
algorithm in Section 3.4, followed by some model extensions in Section 3.5. In Section 3.6, we
apply our algorithm to a real-world email marketing dataset composed of millions of consumers
corresponding to a Fortune 500 firm and benchmark it with some existing algorithms. In Sec-
tion 3.7, we present further numerics showcasing the performance of our approach under practical
issues such as concept shift and covariate shift. We conclude in Section 3.8 with some directions

for ongoing and future research.
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3.2 Consumer Model and Conversion Funnel Optimization

In this section, we formally define the underlying problem. To do so, we first discuss our
model for consumer behavior (Section 3.2.1) and then, the conversion funnel optimization problem
(Section 3.2.2). Finally, in Section 3.2.3, we map our model to a real-life example to provide

intuition.

3.2.1 Model for Consumer Behavior: The Conversion Funnel

We now define a model that explains how a consumer behaves as a function of the firm’s
interventions. For ease of exposition, we start with a single firm promoting a single product and
extend the model to multiple products in Section 3.5. Furthermore, as discussed in Section 3.1, we
focus on a limited consumer features regime where we do not assume the firm has access to the
features of the consumers (age, sex, location, for example). Nonetheless, we discuss an extension
to a setting in which the firm has access to such features in Section 3.5. We note that we leverage
the model from Chapter 2.

Motivated by the existing marketing literature on conversion funnel (Strong 1925; Howard
and Sheth 1969; Barry 1987; Bettman et al. 1998; Court 2009; Elzinga et al. 2009; Kotler and
Armstrong 2010; Mulpuru 2011; Jansen and Schuster 2011; Bruce et al. 2012), we model the
consumer behavior using a state-based model, i.e., at each point of time, the consumer is in some
state (possibly a function of her history). The firm observes? the state of the consumer and performs
an intervention. As a result, the consumer transitions to some other state as a stochastic function
of the firm’s interventions and her current state. The process ends when the consumer converts or
quits. If the consumer converts, the firm earns a corresponding reward. To showcase the flexibility
of our model, we keep most of its elements in this section general and connect it to a specific
application via an example in Section 3.2.3. We emphasize that our model is general enough to

capture an arbitrary consumer behavior. Our model for consumer behavior can be casted as a

3In the traditional conversion funnel models, the state is usually assumed to be hidden. However, given the gran-
ularity of consumer-level data available these days, we assume the state to be observable. We revisit this discussion
when we discuss our real-world dataset in Section 3.6.

107



Markov decision process (MDP) (Bertsekas 1995; Puterman 2014; Sutton and Barto 2018) and we
define the five underlying components of the MDP next: (1) state space S, (2) action space A, (3)
transition probabilities £, (4) initial state probabilities A, and (5) reward r. We refer to this MDP

as the conversion funnel and denote it by M = (S, A, P, A, r).

State space. We define S := {1,..., S} as the set of states an “active” consumer can be in, i.e.,
a consumer who has not converted or quit. In addition, there are two aborbing states {¢, ¢} with
S* := S U {g, c}. State c refers to conversion (consumer buys the product) and g refers to the quit
state (consumer leaves the system). At each point of time, a consumer is in one of the states in the
set S* and the firm observes this information. We allow for any arbitrary definition of a state space

and do not yet give it a physical meaning to highlight the flexibility of our framework.

Action space. The set of interventions available to the firm is defined as A := {0,1,..., A}
with 0 denoting no intervention. All actions are assumed to be zero-cost (extension discussed in
Section 3.5). Furthermore, we allow the action space to depend on the state, i.e., A for all s € S,
but to keep the notation simple, we will use A and note that all results hold for state-specific action
space too. We allow for any arbitrary definition of an action space and do not yet give it a physical
meaning to highlight the flexibility of our framework. We assume that the firm takes actions at
arbitrary but discrete time points [#;]}"_,. Note that we allow the gap between various time points
to be unequal, i.e., 0y := t;+1 — f; can be such that 6; # ;- for any k # k’. For ease of notation,

we will use #; = k for all k but we note that none of the results depend on this simplication.

Transition probabilities. If a consumer is in state s € S and the firm takes action a € A, the
consumer transitions to state s’ € S* with probability ps.s» € [0, 1]. Note that s’ can equal s
(self-loop). We allow for an arbitrary transition structure (as long as Assumption 3.1 stated below
holds). Trivially, o cs+ Psass = 1 V(s,a) € S X A and peae = pgag = 1 Ya € A (absorbing states).
Furthermore, py,. denotes the one-step conversion probability corresponding to (s,a) € S X A. We

denote by P the collection of all transition probabilities. The only restriction we impose on the
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transition behavior of a consumer is that she eventually absorbs, i.e., either converts or quits.
Assumption 3.1 (Absorption). Under any policy, every consumer eventually converts or quits.

A sufficient condition for Assumption 3.1 is that the sum of one-step conversion and one-step
quit probabilities corresponding to each state-action pair is positive. We will discuss this condition

in the context of our numerics in Section 6.

Initial state probabilities. We denote by A; the initial state probability corresponding to state
s € S, i.e., the probability a consumer starts her journey in state s. Trivially, ) s s = 1. We
define A := [A]ses and we allow the consumers to start in different initial states. Given A, consider
the set of initial states Sy := {s € S : 4; > 0}. We assume wlog that each state in S is reachable via
some state in S, under some policy. This assumption is wlog since if there exists a state s € S that
violates this assumption, then we can discard that state and re-define S «— S\ {s} (as no consumer
will ever visit state s). We will refer to this assumption as “connectedness”. (Since this assumption

is wlog, we do not classify it as a formal assumption.)

Reward structure. The firm earns an immediate reward of r € [0, o0) when a consumer con-
verts, i.e., transitions from a state in S to the conversion state c. All other transitions result in an
immediate reward of 0. Note that since r is a constant, we can assume it to equal 1 without loss of
generality and we will do so. We emphasize that such a terminal nature of the reward is specific
to the context of marketing and hence, our conversion funnel model belongs to a special class of
MDPs. We will exploit this application-specific structure of reward when developing our algorithm
in Section 3.3.

Before stating the conversion funnel optimization problem, we define some preliminaries of
our MDP model, which will be useful later on. All these preliminaries are part of a standard MDP

setup (Bertsekas 1995; Puterman 2014; Sutton and Barto 2018).

Policy. A policy 7 := [m](sa)esxa 1S @ mapping from states to action probabilities, i.e., 7y,

denotes the probability firm takes action a € A when a consumer is at state s € S.
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Value function of a policy. Given that the firm employs policy n, state-value function V”(s)
denotes the expected reward the firm reaps from a consumer who is in state s € S. With r = 1
wlog, V*(s) equals the eventual conversion probability from state s under policy n. Using the
Bellman equation (Bellman 1954) and the terminal reward structure of the conversion funnel, we

get

V*(s) = Z Tsa {Z Psas' VT (s") + psac} Vs € S.

acA s’eS

Given r, define the action-value function

0" (s,a) := Z Psas’ V(") +  psac Y(s,a) € S XA, (3.1)
7eS S~———
L,_/ myopic value
long-run value

which denotes the eventual conversion probability of a consumer who is in state s € S and firm
takes action a € A at state s but follows policy 7 from then on. (If state s is visited in the future,
then policy 7 is used.) Note that we have decoupled the eventual conversion probability into two
components: (a) long-run value (probability of converting in more than one step) and (b) myopic

value (one-step conversion probability).
Optimal policy and optimal value function. A policy 7 is optimal if and only if
Vi(s) > V¥ (s) Vs €S, Vr'.

We use the notation 7* to denote an optimal policy and define the optimal state-value function
V*(s) := V¥ (5) Vs € S and the optimal action-value function Q*(s, @) := Q™ (s,a) ¥(s,a) € S X A.

Trivially,

V*(s) = max Q*(s,a) Vs € S.
achA
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We will use the notation Q* := [Q*(s, @)](s,a)esxA-

3.2.2 The Conversion Funnel Optimization Problem

We now state the optimization problem the firm wishes to solve, i.e., the conversion funnel
optimization. Suppose there are N consumers, possibly interacting with the firm in parallel. Denote
by y, € {0, 1} whether consumer n € {1,..., N} converts or not. The objective of the firm is to
maximize the average expected reward over all consumers, i.e, ZnN:1 E[y,], which is equivalent
to maximizing the average conversion probability

LS By

N g
since r is a constant. (Hence, assuming r = 1 is wlog.) Had the firm known the true conversion
funnel MDP M, then it could have computed an optimal policy using standard MDP solution
techniques such as value / policy iteration (Bertsekas 1995; Puterman 2014; Sutton and Barto
2018) and hence, maximized the probability of converting each consumer. However, the main
challenge in the conversion funnel optimization is that the firm does not know the true model
M. In particular, we assume that the firm knows S, A, and r but does not know the consumers’
transition behavior # and A.

In order to make intervention decisions, the firm can use information it collects by interacting
with the consumers. Consider an arbitrary time ¢ and an arbitrary consumer n. Denote by s,; the
state of consumer # at time ¢ and by a,, the intervention directed by the firm at consumer 7 at time
t. As aresult, consumer n transitions to state s,;.1. Define the interaction history till an arbitrary

time t as

7_{1’ = {(Snl’ Anls Sn2s An2, Sp3 -+ «» S}’l,l‘—17 an,t—l» snt) ‘ne {1’ L 9N}}’

i.e., the set of all interactions the firm has had with all the consumers till time . To make an

intervention decision at time ¢, the firm is allowed to use the information in the set H;.
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3.2.3 The Netflix Example

We now shed light on our general conversion funnel model by connecting it to a real-life setting.
In particular, we revisit the Netflix example we introduced in Section 3.1 (recall Figure 3.1) and
discuss how the components of our model map to such a setting. In that direction, we first elaborate
on the sequence of events that we observed in real-life and then, show the mapping between real-
life and our model. (Note that our numerics in Section 3.6 provide another such example.)

One of the authors (B from here on) provided his email address to Netflix on May 3, 2020 but
did not subscribe to the paid membership. Netflix sent him a generic welcome email on May 3
(email #1 in Figure 3.1). 15 days later, on May 18, B received email #2 (see Figure 3.1), with a
few “trending now” titles on Netflix. 20 days later, on June 8, B received email #3 (see Figure 3.1),
displaying a diverse mix of shows across various genres (drama, comedies, documentaries, etc.).

To show the mapping between real-life and our model, it suffices to discuss the state space S
and the action space A. In terms of the state space, the conversion state ¢ refers to B subscribing
to the paid membership of Netflix and the quit state g refers to B opting to unsubscribe from
Netflix’s email list. On day 1 (May 3), B “arrives” with an initial state of 1, which corresponds
to Netflix having no information on B except his email address. As B interacts with Netflix, the
state of B evolves. For example, the state can capture information such as time since last email
(to capture temporal effects) and the type of emails B interacted with. It can also include more
granular information such as the titles B clicked on out of the ones displayed in emails (“Money
Heist” in email #2 for example). In terms of the action space, the discretization of time at which
Netflix sends emails can be at a weekly level. In addition to the zero action (do not send an email),
the action space can include various types of emails, such as “trending now” (email #2), “diverse”
(email #3), and “top 10 shows being watched on Netflix”. Another type of email can be to offer a
one-month free trial. Intuitively, such an email will have a lower myopic value but a higher long-
run value since it might not lead to an immediate conversion (subscription to paid membership)
but push a consumer to a state from where she is more likely to convert.

Building further on this real-life example, after the first three emails, B opted in for a one-month
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free trial, during which he received personalized emails specific to the shows he watched. After
the trial expired, B did not become a paying member and received emails with a pricing theme.
For example, the subject of one of the emails was “B, come back for just $8.99”, illustrating an
instance of state-specific email policy.

More broadly, we note that our conversion funnel model is not specific to email campaigns
since one can model other applications using it too, one example being the e-commerce purchase
funnel (a retailer selling clothes online and performing interventions such as changing the informa-
tion displayed on its website as a function of the state of the consumer). For example, a consumer
who has been reading product reviews might be persuaded by a message such as “1000 people like
this product" whereas a consumer who has added the product to the cart might be persuaded by

“only 1 unit left in the inventory".

3.3 Model-Free Approximate Bayesian Learning

In this section, we propose a algorithm to tackle the conversion funnel optimization problem
as defined in Section 3.2. To build intuition behind our algorithm, we first present the Thompson
sampling algorithm for multi-armed bandit (Section 3.3.1) and use it to motivate the construction

of our algorithm (Section 3.3.2).

3.3.1 Motivation: Thompson Sampling for Multi-Armed Bandit

To discuss the Thompson sampling algorithm, we briefly define the multi-armed bandit model
(Sutton and Barto 2018). The multi-armed bandit can be seen as a special case of our conversion
funnel model. In particular, if we restrict the number of states in S to 1 and only allow the firm
to interact once with the consumer (as opposed to sequential interactions), our conversion funnel
becomes a multi-armed bandit. The multiple actions available to the firm in the action space A
represent the “multiple arms” of the bandit. The consumer dynamics in a multi-armed model are

as follows:

¢ Consumer 1 arrives and firm takes action a € A.
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» Consumer converts with probability p, and quits with probability 1 — p,,.
* If consumer converts, firm earns a reward equal to r (equals 1 wlog).
¢ Then, consumer 2 arrives. And so on.

The objective of the firm is to maximize its expected reward over all consumers and the chal-
lenge is that the firm does not know the underlying parameters [p,]sea. Thompson sampling
(Thompson 1933) is a well-known algorithm to tackle the multi-armed bandit problem. The idea
behind Thompson sampling (Algorithm 5) is simple: maintain a belief on the “value” of each
action and when a consumer arrives, take action a € A with probability it is optimal. Once an
action is taken and a corresponding outcome is observed (consumer converts or quits), update the
belief corresponding to that action. For a € A, since the belief is over the conversion probability
Pa € [0, 1], it seems natural to use a Beta distribution and exploit the Beta-Bernoulli conjugacy to
update the belief. So, if the consumer converts, we increase the a of the corresponding action by 1
(and hence, increase the expected value of our belief over the value of that action) and if the con-
sumer quits, we increase the S of the corresponding action by 1 (and hence, decrease the expected
value of our belief over the value of that action). Despite its simplicity, Thompson sampling for the
multi-armed bandit problem is known to exhibit strong theoretical guarantees (Agrawal and Goyal

2012) and work well in marketing applications (Chapelle and Li 2011; Schwartz et al. 2017).

Algorithm 5 Thompson Sampling for Multi-Armed Bandit with N Consumers
Require: Prior counts (@, 8,) Ya € A
1: forn=1to N

2: g4 ~ Beta(ay, B,) Ya € A % generate samples
3 a" =argmax,q, % play action with the highest sample value
4:  if consumer n converts

5: Qg — g+ + 1 9% update belief using Beta-Bernoulli conjugacy
6: else

7 Bar — Bar + 1 % update belief using Beta-Bernoulli conjugacy
8: endif

9: end for
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3.3.2 Our Algorithm: Model-Free Approximate Bayesian Learning (MFABL)

Our algorithm, model-free* approximate Bayesian learning (MFABL), extends the simple
Beta-Bernoulli structure of Thompson sampling to the general conversion funnel model and is
presented as Algorithm 6. Due to the terminal reward structure in our conversion funnel, the Q-
value of an action at a given state represents the eventual conversion probability (as discussed
in Section 3.2.1). Hence, motivated by Thompson sampling, we give a Beta(a,,, B54) belief to
the “value” of taking action @ € A at state s € S. We represent this belief by Q(s, a) for all

. d d e
(s,a) € Sx A, ie., O(s,a) = Beta(ay,, Bsq) Where = denotes “equal in distribution”.

Algorithm 6 Model-Free Approximate Bayesian Learning with N Consumers
Require: Prior counts (g, Bsq) V(s,a) € S X A, €
. (@eas Pea) = (00, 1) and (g4, Bga) = (1,00) foralla € A % prior counts for states ¢ and g

—_—

2. fort=1,2,... % until there exists an “active” consumer (has not converted or quit)
3 forn=1to N

4 Observe state s = s,; of consumer 7 at time ¢

5 ifsesS % filter for “active” consumers
6: qsa ~ Beta(agy,, Bsq) Ya € A % generate samples
7 a* = argmax, g5, With e-greedy % highest sample value with e-greedy
8 Consumer transitions to state s’ = s+ € S*

9: fs» ~ Bernoulli (maxareA %) % generate feedback
10: if /v =1

11: g — Ay + 1 % approximate posterior update mimicking Beta-Bernoulli
12: else

13: Bsar — Bsar + 1 % approximate posterior update mimicking Beta-Bernoulli
14: end if

15: end if

16:  end for

17: end for

18: return Q := [O(s, a)](s,a)eSxA where Q(s, a) i Beta(a'sa’ lgsa)

In terms of picking an action, MFABL mimics Thomposon sampling (lines 6 and 7 in Algo-

rithm 6). When a consumer is in state s € S, MFABL samples ¢;, ~ Beta(ay,, Bs4) for a € A and

4As noted in Section 3.1 (Footnote 2), “model-free” does not mean that there does not exist a true underlying
model. Instead, it means that there exists a true underlying model M (the conversion funnel MDP) but our algorithm
does not learn / estimate the model M. In particular, our algorithm (MFABL) never attempts to learn / estimate the
transition probabilities # corresponding to the MDP M but only attempts at learning Q*. Approaches that estimate /
learn the transition probabilities P are called “model-based”.
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plays the action with the highest sample value (with e-greedy), i.e.,

arg max,c s Jsa wp.1-€

UniformAtRandom(A) w.p. €.

In words, MFABL plays the action with the highest sample value with probability 1 — € and plays
an action sampled uniformly at random from A with probability €. (Note that e-greedy is used
to ensure convergence of MFABL to Q*, as it will become clear in Section 3.4. In theory, the
parameter € can be arbitrarily small but strictly positive.)

However, unlike in a bandit, updating the belief in a conversion funnel is non-trivial since a
reward is observed after a consumer visits a sequence of states. For example, suppose the consumer

path is as follows:

(s,a) = (s",a") - c.

That is, consumer starts in state s € S. The firm takes action a € A. This makes the consumer
transition to state s” € S, where the firm takes action a’ € A, which leads to conversion. Given this
path, how does one update the parameters (@4, Bsq) and (g, Byrar)? Does one increase both ag,

and ay, by 1?7 As another example, suppose the consumer path is as follows:

(s,a) > (s',a") — q.

Given the consumer quit after visiting (s, @) and (s’, a’), does one increase both 3;, and B, by 1?
But what if taking action a at state s was optimal and it was the action @’ at state s’ that was the
“culprit”? Should (s, a) be still “penalized”? The challenge here is to identify the “contributions”
of various state-specific actions to the final outcome (consumer converting or quitting).

To overcome this challenge, MFABL adopts the following strategy (lines 9 to 13 in Algo-

rithm 6). Suppose taking action a € A at state s € S transitions the consumer to state s € S*. Intu-
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itively speaking, if the eventual conversion probability from state s” is “high”, the state-action pair
(s, a) should be “positively reinforced”. For example, in the extreme case when s’ = ¢, we should
increase a;, by 1. On the other hand, if the eventual conversion probability from state s” is “low”,
the state-action pair (s,a) should be “negatively reinforced”. For example, in the extreme case
when s’ = g, we should increase S, by 1. However, the eventual conversion probability from state
s’ is not necessarily known in advance and MFABL maintains a belief Q(s’, a’) 4 Beta(ayyr, Bsrar)
for each @’ € A. To operationalize such positive / negative reinforcement, MFABL generates a

binary “feedback” f;- from state s” as follows:

. a’sra/
+ ~ Bernoulli [max ———|. 3.2
fs " (a/eif Ay + 5) 3-2)

If the feedback equals 1, MFABL positively reinforces (s, @) by increasing a,, by 1. On the other
hand, if the feedback equals 0, MFABL negatively reinforces (s, a) by increasing Sy, by 1. Note

A’ g
that the term m

in (3.2) equals the expected value of the belief Q(s’, a’). Hence, the feedback
in MFABL is generated using the action with the highest expected value at state s’. We note that
MFABL recovers Thompson sampling when the conversion funnel is simplified to a bandit.
Despite aesthetical similarities, it is important to note that there are fundamental differences
between Thompson sampling for bandit (Algorithm 5) and MFABL for conversion funnel (Algo-
rithm 6). In particular, the Beta belief maintained in Thompson sampling is exact whereas the Beta
belief maintained in MFABL is approximate. This is because the parameter update in Thompson
sampling obeys the Bayes’ theorem (via Beta-Bernoulli conjugacy) whereas the update in MFABL
does not necessarily do so. In fact, it is not clear if one can maintain an exact model-free belief in
the conversion funnel model in a tractable manner. Accordingly, the belief we maintain in MFABL
can be seen as an approximation to the true posterior. A natural question to ask is whether our
approximate belief converges to Q, which we will explore in Section 3.4 (and prove that it does).
We note that there do exist ideas such as Dearden et al. 1998, Osband et al. 2019, and Ryzhov

et al. 2019 that maintain a model-free belief over the value of each state-action pair in an MDP.
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However, none of these ideas exploit the terminal reward structure of the conversion funnel and
hence, do not maintain a Beta belief. Instead, the belief structures they maintain are rather com-
plicated and their update policy is significantly different than the simple “Beta-Bernoulli” type
update in MFABL. Furthermore, their action selection can be quite different than MFABL’s. For
example, Ryzhov et al. 2019 use a knowledge-gradient technique for action selection, which in
fact, requires one to estimate the transition probabilities £, making the overall algorithm model-
based. It is also worth mentioning the recent work of Jin et al. 2018 and Dong et al. 2019, which
attempt at solving similar problems in a model-free manner, but by using upper confidence bound
(UCB) algorithms. We also briefly mention an alternative line of work (Strens 2000; Osband et
al. 2013; Agrawal and Jia 2017) that attempts at solving similar problems but by maintaining a
model-based belief over the underlying MDP. However, such model-based algorithms requires one
to optimize an entire MDP in each “iteration”, which poses a higher computational burden than
the model-free approaches, especially when the number of states S is large. Furthermore, since
model-based approaches store belief over the transition probabilities P, their storage requirement
is O(S?A), compared with O(SA) of MFABL. In our numerical study (Section 3.6), we will bench-

mark MFABL with such state-of-the-art algorithms.

3.4 Properties of MFABL

We now discuss the theoretical properties (Section 3.4.1) and the practical appeal (Section 3.4.2)
of MFABL. In this section, we hope to convince the reader that in addition to exhibiting desirable
theoretical properties, MFABL is a practical algorithm, mainly due to the simplicity it inherits from

Thompson sampling.

3.4.1 Theoretical Properties

As we noted earlier, the belief we maintain in MFABL is an approximation to the true posterior
and a natural question to ask is whether our approximate belief converges to Q*. The following

theorem provides a positive answer to this question. A formal proof can be found in Appendix C.1
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and we provide the high-level intuition in the proof sketch.

Theorem 3.1 (Asymptotic convergence). Denote by QN the output of Algorithm 6 with N

consumers. Then,
QY — Q with probability 1 as N — oo.

Proof sketch. The key idea here is to analyze how the belief in MFABL evolves in expectation.
Denote by Q; := [Qi(s, a)](sa)esxa the belief in MFABL at the start of iteration i € {1,2,...}
where Q;(s, a) 4 Beta(a;(s, a), Bi(s,a)) ¥(s,a) € S x A. (By an “iteration”, we refer to a (¢, n)
pair in Algorithm 6.) We use 61‘ = [Q(s, a)](s,u)esxa to denote the expected value of Q;. We
first show how the MFABL update in the Q-space translates to an update in the Q-space. Second,
we establish that the update process in the a—space is an asynchronous stochastic approximation
scheme to the Bellman optimality equations corresponding to Q*. Third, we leverage the stochastic
approximation theory to prove that Q; converges to Q*. Finally, we show that the variance of the
Beta belief Q; goes to zero and hence, Q; converges to Q*.
]
Theorem 3.1 establishes that our belief on the “value” of each state-action pair converges to
the optimal value. Combined with how MFABL picks an action (lines 6 and 7 of Algorithm 6), an
immediate consequence is that, asymptotically, MFABL picks an optimal action with probability
at least 1 — €. This establishes the asymptotic optimality of MFABL with high probability. In
other words, as the firm interacts more and more with the consumers, MFABL learns the optimal
personalized interventions. Note that this result holds irrespective of the prior counts supplied to

Algorithm 6 as an input.

3.4.2 Practical Considerations

Despite the generality of our conversion funnel model, we wish to propose a solution that is

both supported by theory and is practically appealing. Having stated the theoretical properties of
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MFABL, we now discuss some properties of MFABL that highlight its desirability from a practi-
tioner’s point-of-view. In this direction, we first touch upon the scalability of MFABL. We then
mention the ability of MFABL to enable a practitioner to encode prior information. Finally, given
the real-life importance of issues such as concept shift and covariate shift (Simester et al. 2020),

we discuss how MFABL handles them.

Scalability

Here, we discuss the tractability of MFABL (storage and computational requirements). Of
course, tractability affects the scalability of a solution, which is critical when interacting with a
large number of consumers on a daily basis. It is easy to see that MFABL only stores approxi-
mately 2SA parameter35 {@sa» Bsa }(s,a)esxa- In terms of computational cost, taking an intervention
decision for a consumer at a given time requires MFABL to generate a sample from A + 1 Beta
distributions and pick the maximum among them (lines 6 and 7 of Algorithm 6), which can be
done in real-time. We contrast such tractability with model-based approaches (Strens 2000; Os-
band et al. 2013; Agrawal and Jia 2017), which store O(S?A) parameters and require solving an
MDP in each “iteration”, which can be computationally demanding, especially with large state and

action spaces.

Prior Information

Since a firm might have some prior information regarding the consumer behavior, it seems
desirable to allow the firm to use such information when sending personalized interventions to
consumers. For instance, using third-party data or its experience with an earlier version of the
product, the firm might know that the consumers who are in a certain state are highly likely to
convert if they are shown a specific intervention. MFABL allows the firm to encode such state-
action specific prior knowledge via the prior counts on the “value” of each state-action pair. We

will explore the value of such prior information in Section 3.7. It is worth mentioning that even if

3To be exact, MFABL stores 2(S + 2)(A + 1) parameters (accounting for the two absorption states and the action of
doing nothing).
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the firm provides an incorrect prior, the convergence of MFABL to optimality (Theorem 3.1) still

holds.

Concept Shift

We now shift our attention to one of the key data challenges a practitioner faces, which has
been highlighted in the recent work of Simester et al. 2020: concept shift. In the words of Simester

et al. 2020,

“If the underlying response function is different in the training data than in the im-
plementation setting in ways that are not captured by the predictor variables, this will
generally result in suboptimal targeting policies. The risk of this is high if the target-
ing policy is implemented several months after the training data is collected. In the
intervening period, changes in the environment through shifts in macroeconomic con-
ditions, competitors’ actions, the firm’s other marketing activities, or just seasonality

can all contribute to changes in how customers respond to the firm’s actions.”

Mapping to our conversion funnel model, concept shift refers to the possibility of the consumer
behavior (transition probabilities) changing over time. Consider a two-phase setting such that the
transition probabilities equal #; in phase 1 and change to $, in phase 2, with the underlying state
space S and action space A held constant. The initial state probabilities can change too. The firm
does not know apriori either #; or $,. Nor does the firm know when the phase will shift. As
discussed in Simester et al. 2020, an algorithm that estimates the model using data from phase
1 but uses the estimated model to make decisions in phase 2 will generally result in suboptimal
policies. Fortunately, given its learning nature, MFABL does not suffer from such a limitation. In
particular, under such a two-phase setting, MFABL will initially make progress towards learning
the Q corresponding to #;, say Q]. As soon as there is a phase shift, the exploratory nature of
MFABL will force it to learn the Q" corresponding to %, say Q3. One way to see this is that

when phase 2 begins, the status-quo of MFABL (the belief at the end of phase 1) can be seen as
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the prior before phase 2 begins. Since Theorem 3.1 holds for all values of prior counts, it follows
that MFABL will automatically detect the phase shift and start learning Q3. Of course, the speed at
which MFABL moves towards Q3 will depend on the strength of the belief at the end of phase 1 and
the difference between the two phases. For instance, if the two phases are very different and phase
1 induces a strong belief, then MFABL can take longer to learn phase 2 dynamics as compared to a
setting in which MFABL starts “fresh” (weak prior) in phase 2. Note that the same argument holds

for a multi-phase setting and we will explore concept shift in more depth in Section 3.7.

Covariate Shift

As discussed in Simester et al. 2020, another critical data challenge in real-life is that of co-

variate shift. In the words of Simester et al. 2020,

“Most methods assume that the distribution of the targeting variables in the training
data will be representative of the implementation data, but this is not always the case.
For example, if the targeting method is implemented in different geographic regions
than the regions in which the training data was gathered, the characteristics of the

targeting pool may differ from the implementation pool.”

Mapping to our conversion funnel model, covariate shift can refer to two possibilities: (1)
encountering a state s € S that the firm has not encountered before and (2) encountering a consumer
with features that the firm has not encountered before. We will defer the discussion of possibility
2 to Section 3.5.2 (Remark 3.2 in particular) since we introduce consumer features then. In terms
of the first possibility, under MFABL, if a state-action pair (s,a) € S X A is unexplored, then the
variance in the belief Q(s, a) will be as it was at initialization. Naturally, such variance affects the
action selection in MFABL (since MFABL picks the action via sampling). Accordingly, MFABL
accommodates covariate shift by implicitly accounting for the high variance in the parts of the state

space that are unexplored. We will illustrate this in Section 3.7.
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3.5 Model Extensions

In this section, we show how the conversion funnel model presented in Section 3.2 can be
extended to capture a broader class of real-life settings. We discuss three extensions. In extension
1 (Section 3.5.1), we show how the conversion funnel for a single product can be generalized
to accommodate multiple products. In extension 2 (Section 3.5.2), we allow for the actions to
incur a non-negative cost (as opposed to zero-cost actions). In extension 3 (Section 3.5.3), we
show how the conversion funnel can be used to model consumer behavior if the firm has access to
exogenous consumer features such as age, sex, and location. For each extension, we also discuss
the corresponding changes needed in the MFABL algorithm to ensure the validity of the properties
discussed in Section 3.4. Note that we always start with the “base” conversion funnel (the one
from Section 3.2) and make one change at a time (either multiple products or actions with costs or
consumer features). However, we do so only to keep the presentation simple and note that one can
come up with a “hybrid” model and a corresponding MFABL algorithm with the same properties

as in Section 3.4.

3.5.1  Multiple Products

We now show how the conversion funnel for a single product can be generalized to accom-
modate multiple products. Suppose there are M € N underlying products. The partial state
space S remains the same as in the base conversion funnel but now, there are M + 1 absorbing
states {cy,...,cpm,q} with ST := S U {cy,...,cm, q}. State ¢, refers to conversion to product
m € {1,..., M}. The action space and the timeline remains the same as before and so do the tran-
sition probabilities along with the absorption assumption (consumer eventually converts to some
product or quits). Initial state probabilities remain unchanged. The firm earns an immediate reward
of r,, € [0, c) when a consumer buys product m € {1, ..., M}, i.e., transition from a state in S to

the state c¢,,,. All other transitions result in an immediate reward of 0. As before, we normalize the
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rewards wlog so that the maximum reward equals 1, i.e.,

r
P m Vme{l,...,.M}.
maXe{1,...,M} 'm’

This is wlog since dividing by the constant max,,e(1,.. m) ' does not change the objective of
maximizing expected reward. As before, the reward exhibits a terminal nature. The corresponding
preliminaries (value function, optimal policy, etc.) can be defined as before and we note that the
Q-value of each state-action still lies in [0, 1] due to the normalization and the terminal nature of
reward. Furthermore, the conversion funnel optimization problem can be defined as before with

the objective of maximizing % nN=l E[y,.], where foralln =1,..., N,

0 if consumer n does not convert
Yn =
rm  if consumer n converts to product m € {1,..., M}.

To be concise, the corresponding algorithm, which generalizes MFABL to a multiple products
setting, is presented in Appendix C.2.1. We note that all the properties as discussed in Section 3.4

apply to this generalization of MFABL.

3.5.2 Actions with Costs

We now allow for the actions to incur a cost to the firm. Everything except the reward structure
remains the same as in the base conversion funnel (Section 3.2). The terminal reward firm reaps
when a consumer converts remains the same, i.e., r € [0, o0). However, we now introduce imme-
diate costs. In particular, the firm incurs a (possibly random) cost ¢y, € (—oo, 0] for taking action
a € A when the consumer is in state s € S. (If the cost ¢y, is random, we assume its variance to be
finite as in Tsitsiklis 1994.)

Given that the firm employs policy 7, state-value function V”(s) no longer equals the eventual
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conversion probability (due to immediate costs) from state s under policy n. It satisfies

Vi(s) = Z msqBlcsa] + Z Tsa {Z psas’vﬂ(sl) + psacr} Vs €S.

achA achA s’eS

The action-value function corresponding to policy r is defined as

0" (s,a) = E[csa] + Z Peas V' (s)) + Psacr ¥(s,a) € S x A.

s’eS

Optimal policy and the corresponding value functions can be defined in a similar fashion to before.
They key observation here is that the O-value of a state-action pair no longer represents a proba-
bility and can be outside [0,1] even if we normalize the costs and reward (due to the non-terminal
nature of reward). Hence, assigning a Beta belief to the value of a state-action pair seems inappro-
priate. In this setting, we modify the MFABL algorithm such that it maintains Gaussian beliefs on
the values of various state-action pairs. The modification is presented in Appendix C.2.2. We note

that all the properties as discussed in Section 3.4 apply to this modification of MFABL.

3.5.3 Consumer Features

We now show how the conversion funnel can be used to model consumer behavior if the firm
has access to exogenous consumer features such as age, sex, and location. By “exogenous”, we
mean that such features do not change as a function of the action the firm takes. We denote
the features of a consumer by x € X, where X denotes the features space. For example, x =
(young, female) denotes a consumer whose age category is “young” and sex is “female”. The
underlying feature space might have age € {young, middle, old} and sex € {male, female} with
X containing all 6 possible combinations of the (age, sex) pair. To accommodate such consumer
features, we can simply define a new state space S X X where the new state corresponds to (s, x).
Doing so allows for the possibility of the consumer behavior to be a function of both s € S and x €
X. In particular, the transition probabilities are denoted by p(s v).4,(s,x) for all (s,a,s”) € Sx A X S*

and x € X. Everything else (including the MFABL algorithm) remains the same as before with
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the understanding that the state captures both the endogenous component s € S and the exogenous
component x € X, i.e., s « (s, x) with S «— S xX. All properties as discussed in Section 3.4 apply

trivially.

Remark 3.1 (High-dimensional features). The above definition of state space (S «— S x X)
can potentially result in the number of states to be extremely large, especially if the firm has “fine-
grained” data on consumer features. However, as discussed in Section 3.1, when a consumer
Jjourney begins (for instance, consumer providing her email to Netflix), the firm usually has very
limited data on the consumer. Accordingly, such settings can be modeled tractably. Nonetheless,
in applications other than email campaign management, the firm might have access to lots of
data on consumer features. Even though our model-free approach is quite scalable (as discussed
in Section 3.4.2), we reckon a high-dimensional feature space can lead to tractability concerns.
Accordingly, it is of interest to extend our ideas to such high-dimensional settings. We mention
in passing that there exists work for such “contextual” settings but when the underlying model is
myopic (Li et al. 2010; Agrawal and Goyal 2013; Tang et al. 2013). Extending such ideas to non-
myopic models (such as our conversion funnel) in a model-free manner remains an open question.
We refer the reader to the relatively recent work of Hallak et al. 2015 for a model that accounts for
contextual information in a non-myopic manner. To the best of our knowledge, there does not exist

any model-free approaches that solve the optimization problem in Hallak et al. 2015.

Remark 3.2 (Covariate shift). As mentioned in Section 3.4.2, we discuss here covariate shift in
the presence of consumer features, which refers to the firm encountering a consumer with features
previously not encountered. Similar to our discussion in Section 3.4.2, if (s,x,a) € SX X X A
in unexplored, then the variance in the corresponding belief will be as it was at initialization and

MFABL will account for it in its action selection.

3.6 Numerical Experiments

We now shift our focus to numerically evaluating the proposed algorithm (MFABL). To do

so, we benchmark its performance on a large-scale real-world dataset against some existing algo-
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rithms. In Section 3.6.1, we provide details on the real-world dataset we use. In Section 3.6.2,
we define a possible state space and an action space of the conversion funnel specific to our data
and discuss its estimation. Note that we estimate the conversion funnel (in particular, its transition
probabilities) to enable us to simulate consumer behavior from a “ground truth” model. None of
the decision-making algorithms (including MFABL) will have access to the “ground truth” but only
observe data sampled from it. We briefly discuss the benchmark algorithms in Section 3.6.3. In
Section 3.6.4, we compare the performance of the various algorithms using the estimated “ground
truth” model to simulate consumer behavior, followed by a sensitivity analysis in Section 3.6.5. We
note that our numerics are for illustrative purposes and in particular, to see how various decision-
making algorithms differ in terms of the number of conversions (given an underlying conversion
funnel model). We admit that the ultimate test would be to perform an experiment in real-life; how-
ever, obtaining such decision-making control is challenging, as noted by Bertsimas and Mersereau

2007:

“A second challenge in studying adaptive experimentation in marketing contexts is in
testing the methodologies. Testing an adaptive learning model requires not just data
but also decision-making control in a real-world system. While examples of successful
field testing exist (e.g., Simester et al. 2006), it is understandable why marketers have

been reluctant to cede this control to academic researchers.”

3.6.1 Dataset

Our real-world data is for a software product promoted and sold on the Internet by a Fortune
500 firm. Firm details and microscopic data statistics are not disclosed for anonymity reasons. The
dataset consists of a couple million consumer paths, out of which a few ten thousand consumers
made a purchase. Each path corresponds to a unique consumer and starts with the consumer
creating an account on the firm’s website (sign-up). Once a consumer signs-up, the firm sends her

a sequence of emails. The firm classifies these emails into four categories: (1) awareness email, (2)
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promotional email, (3) ROI email, and (4) type 4 email®. For each type of email, the firm knows
the time it was sent to a specific consumer and the time at which the consumer opened the email
(if at all). In addition, for type 1 and 3 emails, the firm can track the time at which the consumer
clicked on an embedded link in the email (if at all). From the date of the sign-up, the data tracks
a consumer for 8 months to give her enough time to make a decision’. After discussing with the
firm, certain consumer paths were removed. These include paths with over 100 “touchpoints”
(every firm and consumer activity is called a touchpoint) with the suspicion of bots. Illogical paths
(for example, consumer opening the email before receiving it) were also discarded. The frequency
of such paths was low (less than 1%).

Some high-level statistics of the dataset are as follows. A total of over 20 million emails were
sent, with an average of around 5 emails per consumer. Note that a consumer can receive same
type of email multiple number of times. Type 3 email (“ROI”’) was the most prevalent in the dataset
and each type of email was sent at least a few hundred thousand times. In terms of the frequency
of emails, average time between two successive emails to a consumer was around 7 days. The
average length of paths (in days) that ended up in a purchase (conversion) was approximately 75
days but most conversions happened within the first couple of weeks after sign-up. The median
was slightly below 50 days. In Figure 3.2, we illustrate the consumer journey as a function of her
interactions with the firm. Out of all the consumers who sign-up, around 65% received at least one
email, around 30% opened at least one email, around 2% clicked on at least one link, and around
1.5% converted. Such a progression is not unexpected and it resembles the well-known “funnel”
shape in marketing. The eventual conversion probability of a consumer who received at least one
email is around 2%. It increases to around 3% for a consumer who opens at least one email and to
around 7% for a consumer who clicks on at least one link. Hence, as a consumer goes “deeper” in

the funnel, she is more likely to convert.

% Actual name of “type 4 email not disclosed for anonymity reasons.
7Our data suffers from common issues such as we lose track of a consumer if she clears cookies from the web
browser.
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Consumer journey Conversion probability

Sign-up (100%) 1.5%
Email received (65%) 2%
Email opened (30%) 3%
Email clicked (2%) 7%

Purchase (1.5%)

Figure 3.2: Consumer journey as a function of her interactions with the firm. On average, out
of 100 consumers who sign-up, around 65, 30, and 2 receive, open, and click an email, respec-
tively. Around 1.5 convert. As a consumer interacts more with the firm, her eventual conversion
probability increases from 1.5% to 7%.

3.6.2 Conversion Funnel and Estimation

Motivated by the dataset, we now postulate a conversion funnel M. In particular, we define the
underlying components of M, i.e., action space A, state space S, initial state probabilities 4, reward
r, and transition probabilities . We note that the funnel we propose below is one possibility out
of many and in practice, the construction of the funnel will very much be context-specific and the
granularity of data the firm can observe. Constructing context-specific state space is an active area
of research and we refer the reader to Hallak et al. 2013 and references therein. We emphasize that
our framework (both model and algorithm) is general enough to capture an arbitrary (finite) state
space. Our goal is to work with a relatively straightforward yet a practical state space and compare
various decision-making algorithms using it. As we will see in our results (Section 3.6.4), even
a simple setup can be useful in understanding shortcomings of various algorithms, especially the
ones that are either myopic or estimation-based.

The action space consists of the 4 types of emails (a = 1,2,3,4) along with the action of
sending no email (a = 0), i.e., A = {0,1,2,3,4}. The state tracks the stage of the consumer in
the funnel, i.e., her interaction history with the firm as illustrated in Figure 3.2. In particular, the

interaction history can be classified into the following 5 stages:
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1. Unaware: Consumer has signed-up but not received any email yet.

2. Aware: Consumer has received at least one email but not opened / clicked on any email.
3. Interest: Consumer has opened at least one email but not clicked.

4. Desire: Consumer has clicked on a link in at least one email but not made a purchase.

5. Conversion: Consumer has made a purchase.

Accordingly, S* = {1,2,3,4} U{q, c} where “1” denotes stage 1 (unaware) and so on. Such a state
space is motivated by the widespread literature on conversion funnel models (Strong 1925; Howard
and Sheth 1969; Barry 1987; Bettman et al. 1998; Court 2009; Elzinga et al. 2009; Kotler and Arm-
strong 2010; Mulpuru 2011; Jansen and Schuster 2011; Bruce et al. 2012), with the key difference
being we assume the state to be observable (given our path-level data on each consumer). Our state
space allows us to capture consumer behavior in a dynamic fashion and perform interventions at a
personalized level. For example, a consumer who is in the initial stages of the funnel might engage
with more “broader” messages to help her learn about the firm / product whereas a consumer who
has already shown interest (by clicking for instance) might be persuaded by “call to action” type
interventions. Having the ability to encode such information in the consumer state is useful as it
allows the decision-making algorithm to personalize appropriately.

For simplicity, we do not explicitly model time with the understanding that the frequency of
decision-making is fixed, once every week for example. Note that since A includes no email
(a = 0), this does not mean an email will be sent every week. Furthermore, we note that it is
possible to capture the time dimension as part of the state space. For example, the state can track
“number of days since last email”.

In terms of the initial state probability vector A = [A]ses, since each consumer path starts with
a sign-up, the initial state is always s = 1. Hence, 4y = 1 and A4, = O forall s € S\ {1}. As
discussed in Section 3.2, we normalize the terminal reward r to 1 wlog.

The only component of the conversion funnel M that remains to be discussed is the consumer

transition behavior, which is governed by the transition probabilities P = [psas(s,4,5)esxaxs+> and
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we discuss it now. Recall that p,,s € [0, 1] denotes the probability consumer transitions from state
s € S to state s* € S* given the firm takes action a € A. Given our definitions of action space
and state space as above, the physical meaning of a transition is straightforward. By construction
of our state space, the only transitions allowed are in the “forward” direction, i.e., a consumer can
either remain at her state and go “deeper” in the funnel, in addition to either quitting or converting.
Formally, from s € S, a consumer can transition to s* > s or s* € {q, c}. This is an implication
of the way we constructed the state space in this section and not a necessity of our framework, for
which Assumption 3.1 is sufficient.

Given the dataset we described in Section 3.6.1, it should be apparent that the state space
defined above is observable to the firm at a consumer level. All that remains before benchmarking
MFABL with existing algorithms is to estimate the transition probabilities . As discussed at
the beginning of Section 3.6, this will give us a handle on a “ground truth” model, allowing us
to simulate consumer behavior and do an “in vitro” comparison of the various decision-making
algorithms. We emphasize that none of the decision-making algorithms will have access to the
“ground truth” and will only observe paths sampled from it. Furthermore, we note that for model-
free algorithms such as MFABL, this step of estimating # will not be required in practice since
the firm will have access to the real-world paths generated as a function of MFABL. We follow
Simester et al. 2006 and estimate the transition probabilities by taking the ratio of counts in the
data, i.e., we estimate p,y for (s,a,s’) € S X A x S* as the ratio of the number of times taking
action a at state s resulted in a consumer transitioning to state s’ and the number of times action
a was taken at state s. We refer the reader to Simester et al. 2006, which discusses multiple
advantages of using such a non-parametric approach. Note that we do not explicitly observe the
consumer quitting in the dataset and we use the following heuristic to classify a transition to the
quit state g: if there is no consumer activity (opening / clicking / purchasing) in the future, we
mark the next state as g. (Receiving an email is not a consumer activity but an intervention by the
firm.) Furthermore, since we do not observe the action of not sending an email (a = 0), we simply

implant no emails whenever there is a gap of 24 hours since a previous email. We acknowledge

131



that our simple estimation procedure could potentially be improved. However, our primary focus is
on decision-making algorithms and we emphasize that model-free algorithms such as MFABL do
not require one to estimate ¥ in practice. If anything, this highlights an advantage of model-free
approaches. Irrespective, in Section 3.6.5, we show that our results are robust to changes in the
estimate of P.

We found the estimates of the funnel to be in alignment with our intuition. For example,
averaged over s € S, the one-step conversion probability corresponding to the no email action was
the lowest among all actions whereas the one-step quit probability was the highest. The one-step
conversion probabilities were generally very low (less than 0.1%) and the self-loop probabilities
(i.e., consumer not changing her state) were high (over 90%). Given a consumer in state 1, the
average email open rate was around 20% and the click rate was around 2%. Such a “slow-moving”
traffic seems consistent with the data in the email marketing industry (CampaignMonitor 2020).
Finally, we note that our estimated funnel satisfies Assumption 3.1 as we found the sum of one-step

conversion and one-step quit probabilities to be strictly positive for each state-action pair.

3.6.3 Benchmark Algorithms

Before presenting our results, we discuss the benchmark algorithms we use. These cover all
four possibilities presented in Table 3.1 and we show such categorization in Table 3.2. For each
of the algorithms, we assume N sequential consumers (as not all benchmarks can be defined over
parallel consumers). To the best of our knowledge, this work is the first to evaluate state-of-the-art

non-myopic learning algorithms (e.g. QL-UCB and PSRL) for a marketing application.

Random policy. Given a state s € S, the random policy samples an action uniformly at random

from the action set A. We use it to establish a lower bound on the performance.

Myopic estimate-then-optimize (mETO). mETO works in two phases: exploration and ex-
ploitation. For the first Ny < N consumers, it employs the random policy (“exploration”). At the

end of phase 1, mETO uses the collected data to estimate one-step conversion probability p;,. for
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each (s, a) € SxA. To do so, it simply takes the ratio of the counts. In phase 2 (consumers N; +1 to
N), it uses the estimates to play a myopic policy, i.e., at state s € S, it plays action arg max ¢, Psac»

where p,,. denotes the estimate of p,,. (“exploitation”). Nj is a parameter that needs to be tuned.

(Myopic) Thompson sampling (TS). TS is a Bayesian version of mETO. Instead of explicitly
dividing into two phases, it maintains a Beta belief over the one-step conversion probability of each
state-action pair, i.e., Beta(a,,, Bss). When a consumer is in state s € S, TS generates a sample from
Beta(ag,, Bsq) for all a € A and plays the action with the highest sample value. If the consumer
transitions to the conversion state (in one-step), TS increases a;, by 1 of the corresponding action.
Else, it increases Sy, by 1 of the corresponding action. At initialization, a;, and Sy, are set to 1 for

all (s, a) € S x A. There are no additional tuning parameters.

Q-learning with e-greedy (QL). QL (Watkins and Dayan 1992) is perhaps the most widely
used non-myopic learning algorithm. It maintains an estimate on the value of each state-action
pair. Denote the estimate by Q(s, a) for all (s, a) € S X A. Given a consumer at state s € S, it plays
an action with highest Q(s, a) over a € A (with e-greedy). Then, if the consumer transitions to

state s” € S*, it updates Q(s, a) as follows:

O(s,a) «— (1 — kgq) X O(s, a) + Kgq X n/lag o(s',a").

1

b
nsa

The parameter «;, denotes the stepsize and we set it to

where n,, denotes the number of visits
to (s, a) so far. We initialize Q(s,a) = 0 for all (s,a) € S X A, Q(g,a) = 0, and Q(c, a) = 1 for all

a € A. The only remaining tuning parameter is €.

Q-learning with upper confidence bounds (QL-UCB). QL-UCB (Jin et al. 2018; Dong et al.
2019) is a variant of QL that leverages UCB ideas and is known to exhibit strong theoretical
properties. We refer the reader to Jin et al. 2018 and Dong et al. 2019 for its formal description.

We use the version presented in Dong et al. 2019 since it allows for a variable horizon (i.e., length
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of a consumer path) whereas the version in Jin et al. 2018 assumes a deterministic horizon. We note
that both Jin et al. 2018 and Dong et al. 2019 assume the presence of a discount factor y € [0, 1).
In our MDP, we do not discount the terminal reward and hence, MFABL implicitly sets v = 1. For
comparison purposes, in the algorithm of Dong et al. 2019, we set y to be close to 1 (as setting it to
1 results in some of their parameters being undefined). There are 2 other parameters: € and 6. The
physical meaning of ¢ is that the theoretical guarantee of Dong et al. 2019 holds with probability
1 — ¢ (hence, ¢ should be close to 0) and € quantifies the degree of suboptimality (hence, € should
be close to 0 as well). We initialize Q(s, a) for all (s,a) € S X A as suggested in Dong et al. 2019,

0(g,a) =0,and Q(c,a) = 1 forall a € A.

Estimate-then-optimize (ETQO). ETO is a non-myopic extension of mETO. Similar to mETO,
it works in two phases. For the first Ny < N consumers, it employs the random policy. At the end
of phase 1, ETO uses the collected data to estimate the entire transition structure P, i.e., pyqs for
all (s,a,5") € Sx A x S*. To do so, it simply takes the ratio of the counts. At the end of phase
1, it computes an optimal policy to the estimated MDP /T/(\ = (S, A, ﬁ, A,r), where P denotes the
estimate of . This computed policy is used to interact with consumers in phase 2, i.e., consumers

Ni +1to N. Asin mETO, N, is a parameter. ETO requires solving an MDP only once.

Posterior sampling for reinforcement learning (PSRL). PSRL (Strens 2000; Osband et al.
2013; Agrawal and Jia 2017) generalizes Thompson sampling in a model-based manner. It main-
tains a belief over the entire transition probabilities . In particular, given (s,a) € S X A, it main-
tains a Dirichlet(a,,) belief over the one-step transition probability vector py, = [Psas’ |s7es+ Where
@, = [@gu5]ses+. Before each consumer arrives, PSRL generates a sample from Dirichlet(a;,)
for all (s,a) € S X A. Denoting the corresponding sampled transition probabilities by P, it com-
putes an optimal policy of the MDP M = (S, A, P, A, r) and plays the computed policy. Using
the transition data of the form “(s, a, s")” observed in the realized consumer path, it updates the
belief over # using Dirichlet-multinomial conjugacy. For example, if taking action a € A at state

s € S transitioned the consumer to state s* € S*, PSRL increases @y, by 1. This updated belief
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myopic non-myopic

estimation mETO ETO

learning TS QL, QL-UCB, PSRL

Table 3.2: Classification of the benchmark algorithms into four sets we introduced in our literature
review.

is used to generate a sample of # and re-compute an optimal policy for the next consumer and so
on. Hence, given N consumers, PSRL solves N MDPs. At initialization, ., is set to 1 for all
(s,a,s") € S x A xS?. There is no additional parameter.

Table 3.2 categorizes the benchmarks along the two dimensions of interest, namely, myopic
/ non-myopic and estimate / learn. MFABL, though not shown in Table 3.2, lies in the fourth
category: non-myopic and learning-based. In addition to these two dimensions, we highlight a third
dimension of model-free versus model-based since that affects the scalability of an algorithm. In
particular, all algorithms except ETO and PSRL are model-free since they do not estimate / learn
the entire . ETO and PSRL, on the other hand, are model-based as they attempt to estimate /
learn the entire $ and compute an optimal policy using such information. Note that benchmarking
a model-free approach such as MFABL with model-based approaches such as ETO and PSRL can
be seen as “unfair” since model-free approaches are constrained in the type of information thay
can store. In particular, they do not store information on the transition dynamics of the funnel,
which leads to better tractability, but possibly at a loss in performance. To state it differently, the
information stored by model-based approaches is a superset of the information stored by model-
free approaches since the Q-values can be computed using the transition probabilities £ but not
vice-versa. In fact, empirical work has suggested that model-based approaches may require less
samples to learn as compared to model-free (Deisenroth and Rasmussen 2011; Schulman et al.
2015). Hence, model-based benchmarks seem too optimistic to begin with but nonetheless, we
include them to understand how much performance loss we incur by being model-free.

Finally, we introduce a variant of MFABL that we refer to as MFABL2. There is only one
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change. In particular, if taking action a € A at state s € S results in a self-loop, i.e., a transition to
s itself, then MFABL2 does not do any update. Intuitively, this should increase the learning rate of

MFABL by discarding redundant transitions.

3.6.4 Results and Discussion

We now present our results. We first discuss the setup we used followed by the parameter
values for various algorithms. Then, we define the two metrics used to compare the algorithms and
finally, we showcase and discuss the results.

In terms of the setup, we used the estimated MDP from Section 3.6.2 as the “ground truth”
funnel. For each algorithm, we let it “interact” with a sequence of N = 100,000 consumers

sampled from the ground truth and repeated the entire process for R = 100 runs (each with a

ALG

nr

different seed) to account for the random evolution. Given algorithm ALG, denote by y €
{0, 1} the indicator whether consumer n € {1,..., N} converted in run r € {1, ..., R}. Given the
extensive computational load required, we used over 100 cores on a high-performance computing
cluster and parallelized over r € {1, ..., R}.

For estimation-based approaches (mETO and ETO), we set N; = 2, 500 (number of consumers
used to estimate). Given that we are estimating around 50 parameters, this number seems high
enough to estimate the transition probabilities of our relatively simple funnel and not high enough
(contrast with N = 100, 000) to “sacrifice” too many consumers. (In fact, as we will see in our
sensitivity analysis (Section 3.6.5), N; = 2500 is near-optimal.) For e-greedy, we used € = 0.01
for MFABL / MFABL?2 and € = 0.02 for QL. We discuss the sensitivity of these four algorithms
with respect to the underlying parameters in Section 3.6.5. For QL-UCB, we tried 8 possible
combinations in the set {(¢,7,6) : € € {0.01,0.05},y € {0.95,0.99},6 € {0.01,0.05}} and
obtained very similar results for each combination. So, we arbitrarily picked (0.01,0.95,0.01).

None of the other algorithms require any parameter to be set.

We use two performance metrics. First, for algorithm ALG, we define the performance ratio
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as

PRALG _ Expected number of conversions under ALG

~ Expected number of conversions under OPT’

where OPT denotes an optimal policy corresponding to the ground truth funnel. The denominator
equals Nv*, where v* denotes the optimal conversion probability. Since 4; = 1 in our funnel,

= V*(1), where V*(s) denotes the optimal value function corresponding to state s € S (recall
from Section 3.2). We estimate the performance ratio using the following unbiased Monte-Carlo

estimator:

ALG

Z Zanynr

Trivially, PRALG ¢ [0, 1] and a value closer to 1 denotes a better performance. Moreover, we note
that the denominator here is “too optimistic” since it assumes knowledge of the ground truth from
the beginning (consumer 1). Second, we evaluate algorithms using their expected total regret as a

function of N, an unbiased estimator for which is

Ny __ZZyALG_

r=1 n=

Naturally, a smaller regret is better. Note that our first metric provides a static snapshot of the
performance after N consumers whereas the second metric provides a fluid story from consumer 1
to N. We split our presentation of results in two steps. First, we benchmark MFABL with respect
to model-free approaches and second, with respect to model-based approaches.

Figure 3.3(a) shows the performance ratio of MFABL benchmarked with various model-free
algorithms. For the performance ratio, we have shown the unbiased estimate discussed above
(blue dots in the figure) along with the standard deviation over r € {1,..., R} (blue lines in the
figure denote +1 standard deviation). MFABL?2 achieves a performance ratio of around 93%,

outperforming all other model-free algorithms. MFABL is the second-best (73%), followed by
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QL, TS, and mETO (all three around 66%). Surprisingly, QL-UCB is as good as the random
policy (45%). In Figure 3.3(b), we plot the corresponding regret as the number of consumers
increases from 1 to 100, 000. MFABL2 clearly dominates all others. Notice that MFABL2 seems
to have “converged” for N as low as 10,000. (Since MFABL?2 employs e-greedy, its regret curve

will always have a positive slope.)
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Figure 3.3: Benchmarking MFABL / MFABL2 with model-free algorithms.

Before discussing model-based algorithms, we discuss the key shortcoming of myopic ap-
proaches such as TS and mETO. Intuitively, myopic approaches “fail” when the long-run value of
an action dominates its myopic value (see (3.1)). In our MDP, we expect such instances to occur
in earlier stages of the funnel since there might be an intervention that does a good job of pushing
the consumer deeper into the funnel but has a lower one-step converison probability. In fact, this is
what we found in our data. In particular, at stage 1, the myopic value (one-step conversion proba-
bility) was highest for email type 1 whereas the optimal policy was to use email type 2, which had
the third highest myopic value. We observed a similar finding at stage 2. At stage 3, the myopic
value of the non-myopic optimal action was close to that of the myopic optimal action and at stage
4, the myopic optimal was the non-myopic optimal. Accordingly, as we move away from the end

of the funnel, a myopic policy degrades as it fails to account for the long-run value. This explains
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the significant difference observed between the performance of myopic approaches and MFABL2
and highlights the importance of capturing long-run value in such settings.

We benchmark MFABL?2 with model-based approaches (ETO and PSRL) in Figure 3.4. The
performance ratio is shown in Figure 3.4(a) and the regret in Figure 3.4(b). All three approaches
achieve a performance ratio of over 90%, with PSRL almost close to 1 (98%), followed by MFABL2
(93%) and ETO (92%). Given our earlier discussion surrounding the appropriateness of bench-
marking a model-free approach with model-based, it is interesting to see that MFABL?2 can be
comparable to ETO. In fact, as seen in Figure 3.4(b), the performance of ETO seems to degrade
(with respect to that of MFABL2) as the number of consumers increases. This observation is sup-
ported by the fact that ETO, being an estimation-based approach, stops learning after the initial
phase of N; consumers. It employs the policy computed using the estimate of £ from the first N
consumers, which might be suboptimal (and it is in our numerics as seen in Figure 3.4(b)!) due to
the noise in the estimate of . In general, this is a key limitation of estimation-based approaches

and this 1s amplified under the presence of concept shift, as we will see in Section 3.7.
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Figure 3.4: Benchmarking MFABL2 with model-based algorithms.

PSRL achieves a better performance than MFABL2. Given the near-optimality of PSRL with

respect to any learning algorithm (Osband and Van Roy 2017), this is not too surprising. Intuitively,
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since PSRL is model-based and learns on a continuing basis, it is able to use data much more
efficiently. However, this comes at an increased computational cost of solving an MDP in each
iteration and storing O(S2A) parameters.

We summarize our findings in Figure 3.5, where we plot the various algorithms along two di-
mensions: (1) performance and (2) scalability. By scalability, as discussed in Section 3.4.2, we
refer to both the storage and computational requirements of an algorithm. Among the model-free
approaches, MFABL2 dominates since it has a better performance and similar storage and compu-
tational requirements. ETO achieves similar performance as MFABL2 but has a lower scalability
(since it stores the entire # and requires solving the MDP once). PSRL has the best performance
but the least scalability. It should be clear that myopic approaches are dominated by non-myopic
(MFABL2 for instance delivers a better performance than all myopic approaches at a similar com-
putation cost) and that estimation-based approaches are dominated by learning-based ones (con-

sider MFABL2 versus mETO / ETO).

PSRL

ETO MFABL2
3 QL
£ mETO
Re)
o QL-UCB
o

Scalability

Figure 3.5: Summarizing the various algorithms across two dimensions: (1) performance and (2)
scalability. The scale of the y-axis (performance) is consistent with the performance ratios in
Figures 3.3(a) and 3.4(a). The x-axis (scalability) is partitioned into 3 levels as follows. PSRL is
least scalable since it stores the entire transition structure and solves an MDP per consumer (i.e., N
MDPs across all consumers) whereas ETO stores the entire transition structure but only solves one
MDP (across all consumers). All other algorithms are model-free and exhibit similar scalability.
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3.6.5 Sensitivity Analysis

We conclude this section with some sensitivity analysis. First, we evaluate the performance ra-
tio of various algorithms by varying the underlying parameters. For e-greedy approaches (MFABL2
and QL), we vary € € {0,0.01,...,0.10}. For estimation-based approaches (mETO and ETO),
we vary N; € {100, 1000, 2500, 5000, 10000, 15000,20000}. For each parameter setting, we use
N = 100,000 (number of consumers) and R = 100 (number of runs) as before. Figure 3.6 shows
the results corresponding to e-greedy approaches. The performance ratio of MFABL?2 seems to
degrade as € decreases. This is not unexpected (especially for large N) as MFABL?2 sacrifices
approximately e-optimality by definition. Despite this decreasing pattern, MFABL2 dominates
among the model-free approaches. The performance ratio of QL seems to be around 0.66 for all
values of € we experimented with. In Figure 3.7, we plot the sensitivity results corresponding
to estimation-based approaches. As can be seen, our choice of N; = 2,500 reflected almost the
best-case scenario for estimation-based approaches since the performance ratio seems to exhibit a
unimodal pattern with respect to Nj and 2,500 is near-optimal.
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Figure 3.6: Sensitivity of MFABL2 and QL with respect to €. (Note that QL with € = 0 is
equivalent to the random policy.)

Second, to check sensitivity of our results to changes in the estimate of , we do the following.

We repeat our computations from Section 3.6.4 but for each run r € {1,..., R} (R = 100), we
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Figure 3.7: Sensitivity of mETO and ETO with respect to Nj.

perturb our estimate of . In particular, for (s, a, s") € S X A X S*, we add noise to p,, as follows:

Psas’ < Psas’ X (1 + n;as/) >

where 7}, , ~ uniform[-0.25,0.25]. After adding the noise, we ensure [pyuy]ses+ sums to 1
by appropriate normalization. We report the corresponding performance ratios in Figure 3.8 and
observe they are almost identical to the ones in Figures 3.3(a) and 3.4(a). This highlights the

robustness of our results to changes in P.

3.7 Value of Prior Information, Concept Shift, and Covariate Shift

In this section, using the estimated funnel from Section 3.6.2, we shed light on some of the
practical considerations we discussed in Section 3.4.2. In particular, we first showcase the ability of
MFABL to let the firm encode prior information and the value of such information (Section 3.7.1).
Second, we demonstrate the robustness of MFABL to concept shift and benchmark it with ETO

(Section 3.7.2). Third, we discuss the working of MFABL under covariate shift (Section 3.7.3).
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Figure 3.8: Performance ratios corresponding to pertubations in the transition probabilities.

3.7.1  Value of Prior Information

As mentioned in Section 3.4.2, if a firm might has some prior information regarding the con-
sumer behavior, it seems desirable to allow the firm to leverage such information. Our algorithm
allows the firm to encode state-action specific prior knowledge via the prior counts on the “value”
of each state-action pair (recall the inputs to Algorithm 6). In this subsection, under a somewhat
stylized setup, we illustrate the ease with which prior information can be encoded and how valuable
such information can be. In particular, we perform the following experiments using the estimated
funnel from Section 3.6.2. In the zeroth experiment, we assume the firm has access to no prior
information whereas in experiment x € {1,2, 3,4}, we assume the firm has prior information on
stage x and beyond. For example, if x = 3, we assume the firm knows the true values of Q*(s, a)
for all s > 3 and a € A and sets the prior counts (@, Bs,) such that the expected value equals
Q*(s, a) and the variance is essentially zero. We reduce the value of N from 100,000 to 10,000 to
leave more room for improvement (recall performance ratio with N = 100, 000 was already 0.93).

The results for MFABL?2 (with € = 0.01 as before) are shown in Figure 3.9. In Figure 3.9(a),
we display the performance ratios corresponding to the five experiments. Note that under the “no

prior information” setting, the performance ratio is now 0.75. This decrease from 0.93 (when N
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Figure 3.9: Value of prior information corresponding to MFABL2.

was set to 100,000) seems intuitive since we are giving the firm less number of consumers to learn
from. As the x-axis decreases, the firm has more prior information and hence, the performance
gets better. In particular, having information on just the last stage improves the performance ratio
from 0.75 to 0.79 whereas having information on last 2 and 3 stages increases it to 0.85 and 0.94,

respectively. Figure 3.9(b) shows the corresponding regret curves.

3.7.2 Concept Shift

We now discuss the topic of concept shift. As discussed in Section 3.4.2, in our conversion
funnel model, concept shift refers to the possibility of the consumer behavior (transition probabili-
ties) changing over time. To understand how our algorithm operates under concept shift, we do the
following simple experiment. We set N = 10, 000 and split the consumer behavior in two phases.
In phase 1, transition probabilites are $; (the ones estimated in Section 3.6.2) and in phase 2, they
change to $,. To generate $,, we randomly permute the actions so that the optimal conversion
probability remains the same. Phase 1 corresponds to the first Ny < N consumers and phase 2
corresponds to consumers Ny + 1 to N. We experiment with N; € {1000, 2500, 5000} and evaluate

MFABL2 (with € = 0.01 as before) and ETO, where ETO uses the first N; consumers to estimate
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(similar to the real-life setup of Simester et al. 2020). As before, we perform R = 100 runs (#;
in run r can be different from %, in run r’ due to the random permutation). The decision-making
algorithms do not know that a switch from #; to $, will happen.

The performance ratios for both MFABL?2 and ETO are shown in Figure 3.10. MFABL?2 per-
forms better for all values of N;. In fact, on further digging, we found that MFABL?2 exhibits a
“win-win” behavior in the sense that it has a higher performance ratio in both phases. This makes
sense because in phase 1, ETO just plays a random policy whereas MFABL?2 makes an attempt to
learn. In phase 2, ETO plays the policy computed using phase 1 data (which is likely to be subop-
timal) whereas MFABL?2 eventually adapts to phase 2 consumers (due to its learning nature).
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Figure 3.10: Performance ratio for concept shift corresponding to various values of Ny with N =
10, 000.

In Figure 3.11, we display the corresponding regret curves. It is clear that MFABL?2 incures a
lower regret. Furthermore, on closer examination, one should be able to see kinks corresponding to
the concept shift in these curves (especially for MFABL?2). Initially, MFABL?2 learns the behavior
of phase 1 consumers and hence, the regret starts to “decay”. However, as soon as the phase shifts,
the regret jumps up but eventually, MFABL?2 adapts. We note that MFABL?2 detects the phase shift
automatically due to its learning nature.

As noted in Section 3.4.2, the speed at which our learning algorithm adapts to the phase shift
will depend on the strength of the belief at the end of phase 1. To induce a strong belief, we

increased N; to 50,000 with N = 100, 000. The corresponding results are shown in Figure 3.12.
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(We did not change € for MFABL?2, i.e., ¢ = 0.01.) Observations from above still hold, showing the
robustness of our approach. In fact, we highlight an important trade-off in a setting with large N;.
Due to large Ny, the belief at the end of phase 1 is strong, making the adaptation to phase 2 slower.
However, at the same time, our algorithm enjoys a higher performance ratio in phase 1 since it
can exploit its learning on more consumers (compared to a setting with a smaller Np). In fact, the
average performance ratio of MFABL?2 in Figure 3.12(a) (78%) is higher than in Figure 3.10 (65%
to 71%).
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Figure 3.12: Illustration of concept shift for N; = 50,000 with N = 100, 000.
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3.7.3 Covariate Shift

To understand covariate shift, we peform the following experiment. We use the estimated
funnel from Section 3.6.2 and augment the state space to include a second dimension x € {1,2},
which one can think of capturing a consumer feature such as age (young / old), sex (male / female),
or location (city / rural). So, the new state is represented as (s, x) where s denotes the stage and
x denotes the type. For x = 1, we let the transition behavior be the same as in the estimated
funnel and for x = 2, we randomly permuted the actions (not important). We sampled N = 10, 000
consumers under the following split: a consumer is of type 1 with probability w; = 95% and type
2 with probability w, = 5%. Hence, we expect to see 9500 type 1 and 500 type 2 consumers. In
other words, this dataset is not very representative of type 2 consumers and if in the future, the firm
encounters a type 2 consumer, the information gathered from this dataset might not be enough to
make a good decision. Note that the absolute value of N is not important here but the number of
type 2 consumers the firm encounters is, i.e., the scale of w; with respect to N is important. As
noted in Simester et al. 2020, estimation-based approaches struggle in such settings. To illustrate
the mechanics of MFABL2, we show in Figure 3.13 the Beta belief over the state-action pairs
((s,x),a)fors =1, x € {1,2}, and a € A after MFABL?2 has interacted with 10,000 consumers
(corresponding to just one run). Given the 0.95-0.05 split between type 1 and 2 consumers, the
posterior variance in the beliefs corresponding to x = 1 is quite low compared to that of x = 2.
By construction of how MFABL?2 picks an action (mimicking Thompson sampling with e-greedy),
such higher posterior variance for x = 2 forces MFABL?2 to explore the unexplored actions. So,
if in the future, the firm encounters a consumer of type 2, MFABL2 implicitly accounts for the

uncertainty present due to lack of encounters with type 2 consumers in the initial dataset.

3.8 Conclusions and Further Research

In this work, we study the problem of optimal sequential personalized interventions from the

point-of-view of a firm promoting a product under a fairly general model of consumer behavior,
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Figure 3.13: Covariate shift illustration.

which we call the conversion funnel. Our state-based conversion funnel model explains the jour-
ney of a consumer (at an individual level) from her initial interactions with the firm till the time
she makes a decision to purchase or not. The behavior of the consumer is driven by the sequential
intervention decisions the firm makes as a function of the consumer state at various points of time.
The effect of each intervention on the consumer behavior is allowed to be state-specific. Due to
its sequential nature, our model captures both the myopic value and the long-run value of each
intervention. Apriori, the firm does not know the state-specific effects of the interventions and
needs to learn / estimate them in order to make optimal intervention decisions. In that direction,
we propose a decison-making algorithm, which we call model-free approximate Bayesian learn-
ing. Our algorithm inherits the simplicity of Thompson sampling for a multi-armed bandit in the
sense that it maintains an approximate belief on the value of each state-specific intervention and

updates this belief (mimicking the Beta-Bernoulli rule in Thompson sampling) as it interacts with
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the consumers. We establish the asymptotic optimality of our algorithm and benchmark it with var-
ious algorithms on a real-world large-scale dataset. In the numerics, our algorithm dominates the
traditional algorithms that either optimize for the myopic reward or are estimation-based. It also
outperforms state-of-the-art model-free learning algorithms that are non-myopic. Furthermore, in
contrast to the estimation-based approaches, our algorithm is able to adapt automatically to the
underlying changes in consumer behavior (concept shift) and maintains a high level of uncertainty
on the value of less explored consumer segments (covariate shift).

We believe there is immense potential for non-myopic learning-based approaches to person-
alized marketing and we highlight some interesting research directions now. In our conversion
funnel model, consumer behavior is captured using the notion of a state and the firm makes de-
cisions as it observes the consumer state. It should be clear that the out-of-sample performance
of any decision-making algorithm that optimizes conditioned on a state space would depend on
how well the state space represents reality. Though our framework (both model and algorithm) is
general enough to capture an arbitrary (finite) state space, constructing an appropriate state space
is an interesting research avenue. We note that the “appropriateness” of a state space would very
much vary between firms and industries and constructing such context-specific state space is an
active area of research (Hallak et al. 2013).

Our work focuses on a “limited consumer features regime” and it is of interest to extend our
framework to a setting where consumers can have high-dimensional features (and the firm can
observe such information). As noted in Remark 3.1, works such as Li et al. 2010; Agrawal and
Goyal 2013, and Tang et al. 2013 handle high-dimensional consumer features but they optimize
for a myopic reward function. There appears to be some progress in modeling high-dimensional
contextual information along with long-run rewards (see Hallak et al. 2015). We believe the idea
of “value function approximation” from the reinforcement learning literature (Sutton et al. 2000;
Sutton and Barto 2018) can be leveraged here, especially if the value function is parameterized
using domain expertise from marketing. Such approximations can allow efficient learning across

consumers.
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From a theoretical perspective, it is important to understand the properties such as regret and
convergence rate of our algorithm (or its variants). Given the connection of our algorithm to Q-
learning (which we used while proving its asymptotic convergence), recent works such as Wain-
wright 2019a; Wainwright 2019b; Qu and Wierman 2020, and Li et al. 2020 that establish theo-
retical guarantees for Q-learning can possibly be leveraged. Furthermore, as touched upon at the
beginning of Section 3.6, the ultimate test to evaluate any proposal is to perform a real-life exper-
iment. Though we do not have such decision-making control yet, we hope to follow-up with an
empirical study.

We conclude this chapter with some thoughts on the connection between attribution (Chapter
2) and optimizing actions. The goal in attribution is to compute the return-on-investment of various
advertising actions. Therefore, it is natural to ask whether attribution can be utilized to construct
an improved advertising policy: an advertising action that is attributed “high” value should be used
“more” often. In fact, from our interaction with the industry, such a policy iteration is one of the
desired property for any attribution scheme. However, from a theoretical perspective, the mapping
from attribution to prescription is not as straightforward. In the language of learning theory, attribu-
tion is a form of “policy evaluation” (given an existing advertising policy) and using attribution to
increase the conversion probability corresponds to “policy improvement”. For attribution to serve
as an input to a policy improvement algorithm, it needs to point in the direction of the gradient
corresponding to the underlying objective function (maximize conversion probability). However,
to the best of our knowledge, we are not aware of such a connection. We leave this as an open

question and hope to pursue it in the future.
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Concluding Remarks

We leveraged the granularity of data available in the new economy to develop application-
driven models, leading to better understanding and decision-making in complex systems. In daily
fantasy sports, we used data on athletes and opponents to construct strategic portfolios and in online
advertising, we used user-level data to understand the value of a targeted ad and propose a decision-
making algorithm for sequential personalized marketing. In addition to our thoughts at the end of

each chapter, we briefly highlight some broader avenues of research that we are pursuing.

Fairness and pricing dynamics in ridesharing. We are developing models for the ridesharing
industry with the goal of improving driver welfare. Though the rise of the gig economy has given
drivers flexibility, “fairness” to drivers has been debated. With platforms being able to track local
supply and demand conditions, dynamic policies such as turning a driver off under demand surplus
has become the norm. Such profit-maximizing policies often result in a high uncertainty for drivers,
forcing them to drive without passengers for extended periods and earn low wages. Using data on
temporal preferences of drivers, we are developing models that increase driver welfare without
hurting platform profit. In addition, motivated by a real-world dataset on trip price quotes of
major platforms, we are developing models to understand the temporal pricing dynamics under

competition.

Experimentation in two-sided markets. With access to a user-level dataset corresponding to
a music streaming app, we are exploring optimal ways to experiment in two-sided markets. To
maximize revenue in such settings, the platform needs to satisfy the two sides: content creators
and viewers. Given a newly created content, a key operational decision is how to experiment in
order to learn the quality of the content. In order to retain viewers, the platform wants to show
“high” quality content to more viewers and discard “low” quality content without exposing it to
too many viewers. Using the granular dataset, we are developing models to understand optimal

experimentation policies as a function of the “state” of the viewer.
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Hot-hand in sports. Finally, we are developing a Bayesian statistical framework to test for hot-
hand with a rigorous characterization of its statistical power. We plan to test our framework on a

point-level tennis dataset, consisting of over 25,000 matches between 2011 and 2018.

Given the rise of the new economy, we believe this is an exciting time to pursue data-driven
research in operations, capturing aspects of reality that were previously not possible. In addition
to providing academic insights, we hope our models ultimately lead to a better understanding of

complex systems and equip practitioners with improved decision-making capabilities.
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Appendix A: Additional Details for Chapter 1

A.1 Further Technical Details

A.1.1 Details for Modeling Opponents’ Team Selections
The Copula

Determining which copula C to use when modeling opponents via (1.3) is a difficult issue as
we will generally have very limited data available to estimate C. To be clear, the data we do have
available is typically data on the positional marginals. In order to obtain data that is useful for
estimating C, we would need to have access to the teams selected by contestants in historical DFS
contests. Such data is hard to come by although it is often possible to obtain a small sample of
selected teams via manual' inspection on the contest web-sites. As a result, we restrict ourselves

to three possible choices of C:

1. The independence copula C,, satisfies C,4(u1, ..., up) = [172, u; where m is the number of
positional marginals. As the name suggests, the independence copula models independence
among the selected positions so that when a contestant is choosing her TE position, for ex-
ample, it is done so independently of her selections for the other positions. The independence

copula can therefore be interpreted as the copula of a non-strategic contestant.

2. The stacking copula C,, is intended to model the well known (Bales 2016) stacking behavior
of some strategic contestants. In the NFL setting, for example, it is well known that the
points scored by a given team’s QB and main WR? are often strongly positively correlated.
Selecting both players then becomes attractive to contestants who understand that positive
correlation will serve to increase the overall variance of their entry, which is generally a

desirable feature in top-heavy contests as we will argue in Section 1.5. Rather than explicitly

I'These web-sites are generally not easy to “scrape” nor do the owners look favorably on web-scrapers.
’By “main” WR of a team, we refer to the WR with the highest expected points among all the WRs in the same
team.
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defining the stacking copula (which would require further notation), we simply note that it
is straightforward to simulate a value of w, when C is the stacking copula. We first generate
the QB position, i.e., wo'. We then select the first WR to be the main WR from the generated
QB’s team. The remaining 2 WRs are generated from the Multinomial(2, py) distribution.

It is easy to ensure that all 3 WRs are different; see Footnote 8 (main text).

3. The mixture copula sets C() := (1 — q)C,u(+) + gCyu(+) for some g € (0, 1). Note that a finite
mixture of copulas remains a copula. While very little data on complete team selections is
available, as mentioned above, it is possible to observe a small sample of teams and such a
sample could be used to estimate g. We can then interpret ¢ as being the probability that a

random contestant will be a “stacker” and therefore be represented by the stacking copula.

We note that different contest structures tend to result in more or less strategic behavior. Top-
heavy contests, for example, encourage high variance teams, which suggests that stacking might
be more common in those contests. Indeed that is what we observe and so the estimated g is
typically higher for top-heavy contests. Finally, we note that the main fantasy sports companies
will themselves have access to the team selections of all players and these companies could easily
fit more sophisticated copulas to the data. This might be of general interest to these companies but

it might also be useful to help them understand the skill-luck tradeoff in playing fantasy sports.

Algorithm for Sampling Opponent Portfolios

See Algorithm 7. We note that Algorithm 7 is guaranteed to terminate in a finite time since

each accepted w, may be viewed as a draw from a geometric distribution.
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Algorithm 7 Sampling O Opponent Portfolios
Require: (B, ..., Bb), Xgss - - -» Xp), €, By, g

1: (aQBa coap) = (exp(XQBﬂQB)’ ) eXp(XDﬁD))
2: (Pgss - - -» Po) ~ (Dir(@g), . . ., Dir(ay))

3: foro=1:0

4:  Stack ~ Bernoulli(g)

5:  Reject = True

6:  while Reject

7. (Koss ks - - - kp) ~ (Mult(1, pos ), Mult(2, pgg), - . ., Mult(1, p,,))

8: % Mult(2, pg;s) etc. should be understood as being without replacement; see Footnote 8 (main text)

9: if Stack = 1

10: Replace ky(1) with main WR from team of kg

11: end if

12: Let w, denote the portfolio corresponding to (kqg, - - ., kp)
13: ifw, e Wandc'w, > B,

14: Reject = False and

15: Acceptw,

16: end if

17: end while
18: end for

19: return W,, = {w,}? |

A.1.2 Efficient Sampling of Order Statistic Moments

Monte Carlo simulation is required to generate samples of (8, G""), which are required to:

1. Estimate the input parameters (uge), 05 o) that are required by the various algorithms in

Sections 1.4, 1.5 and 1.7.
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2. Estimate the expected payoff from a given entry in the various algorithms, e.g. line 4 in

Algorithm 2.
3. Estimate the P&L distribution for a given portfolio of entries using samples of (8, GU").

Recalling G, = w6 is the fantasy points score of the o' opponent, we first note the G,’s, 0 =
1,...,0,are IID given (6, p) where p denotes the multinomial probability vectors for the positional
marginals as discussed in Section 1.3. This then suggests the following algorithm for obtaining

independent samples of (6,G"):

1. Generate® § ~ N(us, Z5) and (p, W

{wolo.,.

) using Algorithm 7 where p := (pgg, - . ., Pp) and W, =

op op

2. Compute G, :=w,éforo=1,...,0.
3. Order the G,’s.
4. Return (6,G")).

While all of the contests that we participated in had relatively large values of O, it is worth noting
there are also some very interesting DFS contests with small values of O that may range* in value
from O = 1to O = 1000. These small-O contests often have very high entry fees with correspond-
ingly high payoffs and there is therefore considerable interest in them. At this point we simply
note that (based on unreported numerical experiments) the algorithm described above seems quite
adequate for handling small-O contests. Of course, if we planned to participate in small-O contests
and also be able to quickly respond to developing news in the hours and minutes before the games,
then it may well be necessary to develop a more efficient Monte Carlo algorithm. This of course is

also true for the large-O algorithm we develop below.

3We note that the normal assumption for & is not necessary and any multivariate distribution with mean vector s
and variance-covariance matrix X5 could also be used.

4 All of the contests that we participated in during the 2017 NFL season had values of O that exceeded 8,000. That
said, the cutoff between small O and large O is entirely subjective and indeed we could also add a third category
— namely moderate-O contests. These contests might refer to contests with values of O ranging from O = 500 to
O = 5,000.
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Efficient Monte Carlo when O is Large

When O is large, e.g. when O = 500,000 which is often the case in practice, the algorithm
above is too computationally expensive and so a more efficient algorithm is required. Recalling
that the conditional random variables G, | (8, p) are IID for o = 1,..., O, it follows (David and

Nagaraja 2004) from the theory of order statistics that GV | (8, p) satisfies
P
GY9 | (8,p) = Fgsp (@)  as O > (A.1)

where g € (0, 1) and “2y» denotes convergence in probability. In large-O contests, we can use the
result in (A.1) by simply setting GV = FG‘|1(6,p) (%) Of course in practice we do not know the
CDF Fg5p) and so we will have to estimate it as part of our algorithm. The key observation now
is that even if the DFS contest in question has say 500,000 contestants, we can estimate Fg|(sp)

with potentially far fewer samples. Our algorithm for generating Monte Carlo samples of (6, GU")

therefore proceeds as follows:

1. Generate 6 ~ N(ugs,Z5) and (p, W,,) using Algorithm 7 (or the stacking variant of it) where

p = (pQBa CECIR 9pD) and Wop = {WO}OO:]'
2. Compute G, :=w,éforo=1,...,0.
3. Use the G,’s to construct Fg 16.p)(*)-

= F1 (2
4. 8etGW = Pl (5)

5. Return (6, G")).

Note in this algorithm O now represents the number of Monte Carlo samples we use to estimate
FG|(s,p) rather than the number of contestants in a given DFS contest. One issue still remains with
this new algorithm, however. Consider for example the case where ' = O + N — 1 (corresponding
to the # 1 ranked opponent) in a top-heavy contest with say 100,000 contestants. This corresponds

to the quantile ¢ = 1 — 10~ and according to line 4 of the algorithm we can generate a sample of
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GO*+N-1 by setting it equal to I?G_ﬂ(&p) (1 —107°). We cannot hope to estimate I?G_ﬂ(&p) (1-107%)
with just a moderate number of samples from line 2 of the algorithm, however, and this of course
also applies to the values of r’ corresponding to the # 2 ranked opponents, the # 3 ranked opponent
etc.

We overcome this challenge as follows. We set O to a moderate value, e.g. O = 10,000, and
then estimate the conditional CDF fGK‘g,p)(-) with the empirical CDF of those O samples from line
2 of the algorithm. For r’ values that are not deep in the tail, we use F C_?Il( 6,p)(') to sample G"). For
r’ values that are deep in the right tail (corresponding to the largest payoffs), however, we will use
an approximation based on the normal distribution. Specifically, we choose the mean and variance
of the normal distribution so that it has the same 99.0"” and 99.5" percentiles as I?GK(;J,)(-); see
Cook 2010. We then use this normal distribution in place of F in line 4 of the algorithm for values
of r’ that correspond to extreme percentiles.

Further efficiencies were obtained through the use of splitting. The high-level idea behind
splitting is as follows. If a system is dependent on two random variables and it takes more time
to sample the second variable but the first variable influences the system more, then one should
generate multiple samples of the first variable for each sample of the second variable. In our

context, W,, takes more time to sample but § appears to influence G"”) more. Accordingly, in

op

our experiments we implemented splitting® with a ratio of 50:1 so that for each sample of W,, we
generated 50 samples of 4.

A.1.3 Additional Details for the Double-Up Problem Formulation

Accounting for a Skew in the Distribution of Y,, Double-Up Contests

One difficulty that might arise with the mean-variance approach is if the distribution of the ¥,,’s

display a significant skew. While we have seen no evidence® of this when & is assumed multivariate

SWe empirically tested several split ratios and found a ratio of 50:1 to perform best. See Chapter V of Asmussen
and Glynn 2007 for further details on splitting.

®In unreported experiments, we found ¥, to be unimodal and very well approximated by a normal distribution for
a test-set of w’s when é was also normally distributed.
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normally distributed, we might see such a skew if we assumed a distribution for 6 which also had
a skew. A significant skew in the ¥,’s could then result in us mistakenly seeking a portfolio with
a small variance or vice versa. To see this, consider a double-up contest where the top 50% of
contestants earn a reward. If the ¥,’s display a significant right skew, then their medians will be
less than their means. It’s then possible there exists a w such py, > 0 but that median(¥,,) < O for
allw’ € W. In that event, the condition of the if statement on line 1 of Algorithm 1 will be satisfied
and so we end up seeking a team with a large mean and a small variance. It’s possible, however,
that we should be seeking a team with a large mean and a large variance since median(¥,) < 0
for all w € W. Note that such a mistake might occur because the reward cutoff of the contest
is determined by the median and not the mean, which is what we use in Algorithm 1. Of course
this issue doesn’t arise if the ¥, s are normal since then the means and medians coincide. An easy
solution to this problem is to simply ignore the if-else statements in Algorithm 1 and consider both

possibilities. This results in Algorithm 8.

Algorithm 8 Adjusted Optimization for the Double-Up Problem with a Single Entry
Require: W, A, us, X5, ugo, O'é(r,), 05 and Monte Carlo samples of (6, G("))
I: forall 1 € A

2:  wy- = argmax {,uyw - Aoy, }
weW, uy,, >0 v

3:  wy+ = argmax {,uyw + Aol }
weW v
4: end for
5: return w* =  argmax  P{Y¥, > 0}
we{w,-w i+ 1 1eA}

The Double-Up Problem with Multiple Entries

Here we consider the problem of submitting a fixed but finite number of N > 1 entries to the
double-up contest. In the case of a risk-neutral DFS player, it seems intuitively clear that if O — oo
so that N/O — 0, then a replication strategy is an optimal or near-optimal strategy. In particular,

under such a replication strategy, the DFS player should submit N copies of w*, which is defined as
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follows. Consider a double-up style contest in which we have purchased N entries’ and let R(W)
denote the expected reward function when we submit the portfolio of entries W := {w,-}!?i'. That
18,

W]

R(W) := ) P {W,T 5> G (W_, W, 6)} (A2)
i=1

where r’ := O+ |W|-r, G(_ri) is the 7" order statistic of {G0}00=1 U {F]}L‘;Vl' \F;and W_; := W\w,.

The entry that we replicate is defined as

w" ;= argmax R(w) (A.3)
weWw

where it follows from (A.2) that
R(w) = P {wT6 > GU(W,, 5)}

withr’' =0 +1-r.

To gain some intuition for our advocacy of the replication strategy where we submit N copies
of w* to the double-up contest, consider such a contest where the top 50% of entries double their
money and let w* be the optimal entry as defined in (A.3). Now consider the |W| = 2 case with
O large and suppose we submit two copies of w*. Given the optimality of w*, submitting two
copies of it can only be suboptimal to the extent that w* is at or near the boundary cutoff G"”. But
this event will (in general) occur with vanishingly small probability in the limit as O — oco. Even
when O is not large, we suspect the replication strategy will still be close to optimal. While we
can derive conditions guaranteeing the optimality or near-optimality of replication for double-up

contests, these conditions are not easily expressed in terms of the observable parameters of the

7We assume we have already purchased the N entries and hence the cost associated with the purchase of these N
entries can be viewed as a sunk cost. However, we allow ourselves to submit less than (or equal to) N entries, i.e.,
|[W| < N with the understanding that if |W| < N, then we simply “waste” N — |W]| entries. As such the rank r that
determines the cutoff between winning and not winning in double-up style contests (as discussed near the beginning
of Section 1.2.1) is constant and does not depend on the number |W| of entries that we actually submit. Note that
we also need to allow for the possibility of submitting less than N entries when we discuss the submodularity of the
top-heavy objective function in Appendix A.1.4.
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contest. This is not surprising since we know the double-up payoff structure can be viewed as a
special case of the top-heavy payoff structure and certainly replication in general is not optimal for
top-heavy contests.

There is a simple test we can deploy, however, to check if replication is indeed optimal in any
given double-up style contest. To see this, let R(N X w*) denote the expected reward when we
replicate w* N times. Using Monte-Carlo, we can easily check to see whether or not R(N X w*) ~
N R(w™). If this is the case, then we know that replication of w* is near-optimal because it must
be the case that the expected reward of any portfolio of N entries is less than or equal to N R(w™).

We formally state these observations regarding a “certificate-of-optimality” as a proposition.

Proposition A.1. Consider w* as defined in (A.3) and denote by N X w* the portfolio consisting
of N replications of w*. Defined := N R(w*)—R(N xw*) where R(-) is as defined in (A.2). Finally,

denote by Wh = {w?}fi | an optimal porifolio of N entries for the double-up contest, i.e.,

W= argmax R(W).
WewnN

Then, the following statements hold:

(a) [Suboptimality bound]. The suboptimality of N X w* is bounded above by D, i.e.,

R(WH) — R(N x w*) < d

(b) [Certificate-of-optimality]. If d equals O, then N X w* is optimal, i.e., replication is optimal.

Proof. To prove the suboptimality bound (a), it suffices to show that R(W*) < NR(w*), which
holds since R(W#) < R(w?) + ...+ R(w?v) < NR(w*). The second inequality follows from the
optimality of w* (see (A.3)). The first inequality holds since for an arbitrary portfolio W := {wl-}il\i {
of N entries, we have R(W) < f\i | R(w;). To see this, recall that the expected reward R(-) is an

expectation over (6, W,,) so consider an arbitrary (6, W,,) realization and denote by Rsw,,(-) the
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reward function conditional on the realization (6, W,,). Using I{-} to denote the indicator function,

it follows from the definition of R(-) in (A.2) that

Rs.w,,(W) = JI{W,-T 6> G(_?”V (W_i, W, 6)} (A.4)

IA

M= IM=

I[{wl-Té > GO1-(W,, 5)} (A.5)

I
—_

M-

Il
—_

Rs.w., (W)

where the inequality holds since G(_(l?“LN_r)(W_,-, W, 6) > G(O“")(Wop, 6)foralli € {1,...,N}.

Taking an expectation over (8, W,,) allows us to conclude R(W) < Zf\il R(w;).

op
To prove the certificate-of-optimality (b), we note that it follows directly from the suboptimality

bound since d = 0 implies
0 < RWH —R(N xw*) <d =0,

where the first inequality holds due to the optimality of WH,
[ ]
Part (b) of Proposition A.1 allows us to check if replication is indeed optimal in any given
double-up contest. Indeed in the various numerical experiments of Section 1.6 we found (modulo
the statistical noise arising from our Monte-Carlo simulations) that replication was optimal for all

of our double-up contests.
A.1.4 Details for the Top-Heavy Problem Formulation

Justification of Assumptions 1.1 and 1.2

Assumption 1.1 can be interpreted as stating that, in expectation, the points total of our optimal
portfolio will not be sufficient to achieve the minimum payout Rp. In option-pricing terminology,

we are therefore assuming our optimal portfolio is “out-of-the-money”. This is a very reasonable
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assumption to make for top-heavy contests where it is often the case that only the top 20% or so
of entries earn a cash payout. In numerical experiments, our model often predicts that our optimal
portfolio will (in expectation) be at or around the top 20" percentile. The assumption therefore
may break down if payoffs extend beyond the top 20% of entries. Nonetheless, the payoff sizes
around the 20" percentile are very small and almost negligible. Indeed within our model, most of
the expected profit and loss (P&L) comes from the top few percentiles and Hyd < 0 is certainly
true for these values of d. Finally, we note the well-known general tendency of models to over-
estimate the performance of an optimally chosen quantity (in this case our portfolio). We therefore
anticipate that our optimal portfolio will not quite achieve (in expectation) the top 20" percentile

and may well be out of the money for all payoff percentiles as assumed in Assumption 1.1.

Proof of Proposition 1.2. First note that the number of feasible lineups is finite and so any w,
which is selected with strictly positive probability will be chosen infinitely often as O — oo. In
particular, the top team will be chosen infinitely often and so it follows that the top D teams will be
identical for any finite D and any realisation of (6, p). It therefore follows that conditioned on (6, p),
GUd = GUa) w.p. 1 in the limit as O — oo. (1.16) will then follow from a simple interchange of
limit and expectation, which can easily be justified assuming ¢ is integrable.

In many of the contests we participated in, we saw values of O ~ 200, 000 which, while large,
is actually quite small relative to the total number of feasible lineups. As such, we do not expect
to see the top D teams being identical in practice or even to see much if any repetition among
them. Nonetheless, we do expect to see sizeable overlaps in these top teams, especially for the
very highest ranks, which are our ultimate target given the lop-sided reward structure of typical
top-heavy contests. It was no surprise then that in our numerical experiments we observed a very

weak dependence of Cov (6 s G(’&)) on d as stated earlier.
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Submodularity of Top-Heavy Objective Function

We first discuss here the practicality of Assumption 1.3, which assumes Ay > Ag4p for all
k=1,...,K—2where A, := Vi — Vi4+1 and V} denotes the payoff corresponding to rank k entry.
We first give an example of a simple top-heavy payoff structure that satisfies this assumption and
then, discuss how the payoff structure of real-world top-heavy contests compares with our simple
structure.

To gain intuition regarding what type of payoff structure satisfies Assumption 1.3, consider the

payoff structure in which V, = 7 X V4 forall k = 1, ..., K — 1 with the parameter 7 > 1. Then, it
follows trivially that Ay > Ag4q forall k = 1,..., K — 2. Furthermore, observe that one can make
the parameter 7 specific to rank, i.e., Vy = 7 X Vi41, aslongas 7y > I forallk = 1,...,K — 1.

Connecting this simple payoff structure to the real-world top-heavy contests we particiapted in, we
show in Figure A.1 the payoffs corresponding to the top few ranks and observe that the “convex”

shape clearly demonstrates that the payoff structure satisfies 7, > 1 for all k£ shown.

10000

8000

6000 r o

Payoff

4000 - L4

2000 r .

Figure A.1: Payoffs corresponding to ranks 1 to 8 of the week 10 top-heavy contest we participated
in during the 2017 NFL season. We note the payoff structure of the top-heavy contests in other
weeks were very similar and we do not show them here for the sake of brevity.

We note however that not all ranks satisfy Assumption 1.3. For example, in the contest cor-
responding to Figure A.1, both ranks 999 and 1000 had a payoff of $10 each whereas rank 1001

had a payoff of $8. Hence, Agg9 = 0 < 2 = Ajpoo, Which violates Assumption 1.3. But it is
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worth mentioning that Assumption 1.3 holds for the top few ranks where most of the action in
top-heavy contests lies. Furthermore, as discussed in Section 1.5.1, though our proposed approach
(Algorithm 3) is motivated by the submodularity considerations, it does not necessarily enjoy the
classical “1 — 1/¢” theoretical guarantee since finding an entry with the highest value-add is non-
trivial. Recognizing this, we provide a bound (Proposition 1.3) in Section 1.5.1 on the degree of
suboptimality of our approach and used it to evaluate the performance of our approach on real-
world data. This bound does not require Assumption 1.3.

We now recall the definition of a submodular function (Schrijver 2003).

Definition A.1 (Submodular function). Let Q be a finite set and suppose f : 2% — R is
a function where 2% denotes the power set of Q. Suppose f(X U {x1}) + f(X U {x2}) > f(X U

{x1, x2})+ f(X) forevery X C Q and every x1, x; € Q\ X such that x|, # x. Then, f is submodular.
We also need the following definition.

Definition A.2 (Monotonic function). A function f : 2% — R is monotonic if f(X) < f(Y)

whenever X C Y.

A function that is both monotonic and submodular is called a monotone submodular function.
We now state the proof of Theorem 1.1, which asserts that the objective function of the top-heavy
DFS problem with N entries, denoted by R(W) is monotone submodular in W when Assump-

tion 1.3 holds.

Proof of Theorem 1.1. Consider a top-heavy style contest and let R(W) denote the expected
reward function when we submit the portfolio of entries W := {w;}! . Recall from (1.17) the

definition

n

D
RW):= > > (Rg — Raz1) P {w,ﬂs >G
i=1 d=1

(rg)

—1

(W—i’ Wop’ 6)} D)
where /1= O +n—ry, G(_rl.) is the 7! order statistic of {GO}(?=1 U {Fj};‘:1 \Fiand W_; := W\ w;.
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We first show that R(W) is monotonic increasing in W. Note that the expected reward R(-)
is an expectation over (6, W,,) so consider an arbitrary (6, W,,) realization and two arbitrary and

feasible portfolio choices W and W5 such that W € W. It is easy to see that
Rsw,,(W1) < Rsw,,(W2)

where Rsw,,(-) denotes the reward function conditional on the realization (6, W,,). Taking an
expectation over (8, W,,) allows us to conclude that R(W) is monotonic increasing.

Second, we show the submodularity of R(W) with respect to W. Consider an arbitrary (6, W.,)
realization, an arbitrary feasible portfolio choice W := {w;} |, and two arbitrary feasible entries
xpand x,. Foralli = 1,...,n,denote by F; := w;r6 the fantasy points of entry w; and by F = x?&
and F> := x, 6 the fantasy points of entries x; and x5, respectively. As explained in Remark A.1

below, assume without loss of generality that all of the values in the collection {Fy, ..., F,, F, Fz}

are unique. Without loss of generality we can assume the entries are ranked according to

Fi>Fh>...>F>F >Fua>...>Fyn > F > Fana > 00> Fuginn (A.6)

n n n
Wy := {W,'}l.zol Wi = {Wno+i}i:ll W, = {wn0+n1+i}[:21

with W partitioned into {Wq, W1, W5} as shown in (A.6) with ng := |Wy|, n; := |W|, np := [Wa|,
and ng + ny + ny = n trivially. Now, for any entry w € WU {x1, x»}, define p(w) as the rank of w in

a contest in which the entries {W,,, W, x1, x»} are submitted. Recalling that Vi denotes the payoff
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corresponding to rank k, the reward function conditioned on (6, W,,) can be expressed as follows:

Ro.w,, (WU {x1,x2}) = { Z Vow) + Z Voow) + Z Vp(W)} + Vo) + Vo) (A.7a)

WEW() W€W1 WGWZ

R&Wop(W) = Z Vow) + Z Vow)-1 + Z Vow)-2 (A.7b)
weWw, wew, weW;

Rsw,, (WU {x1}) = { 2, Vet D Vo + D Vit 1} + Vo) (AT0)
WGW() WEWl WEWZ

Rsw,,(WU {x2}) = { Z Vow) + Z o(w)—1 + Z Voiw)- 1} + Voxa)-1- (A.7d)

weW, weW; weW,

Following Definition A.1 we must show
Row,,(W U {x1}) + Rsw,, (WU {x2}) > Rsw,, (WU {x1,x2}) + Rsw,,(W)  (A.8)

in order to establish the submodularity of R‘;,wop(-). Using (A.7a) to (A.7d), we can see that (A.8)

is equivalent to

{ D Vo1 + D, Vp(w)—l} + Vot)-1 2 { D Vo2t D, Vp<w>} Vo) (A9)

weW, weW, weW, weW,

np n
At {Vp(xz)_l - Vp(x2)} + Z {Vp(wilo+l’l1+i)_l p(wn0+n1+1)} Z { p(wl’lo-H’ll-H) 2~ Vp(wn0+n1+i)_1}

=:Bp(xy)-1

(Wno+n1 +i)-1 =:AP(Wn0+n1 +i)=2

ny—1
S Apxy)-1 + {Z A pWigyeny +i)- 1} + Apwa)-1 2 Bpwigan )2+ Z A p Wiy iny )2
i=1 i=2
ny—1
< {Ap(xZ)_l - AP(Wr10+r11+1)—2} + {Ap(wn0+nl+i)_1 - Ap(wn0+nl+i+l)_2} + AP(Wn)—l 2 O (AIO)
i=] R/—/
—:(%) —:(o7) =@

But (A.10) is true because:
* (%) > 0 since p(x2) < pWpy4n+1) — 1 and Ay — Ay > 0 for k < £ by Assumption 1.3.

* (0;) = 0since pWyyin +i) = 1 < pWhgan+iv1) —2foralli =1,...,np —land Ay —Ar >0
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for k < ¢ again by Assumption 1.3.
* (O) = 0ssince A > O for all k since by assumption the payoffs are non-increasing in k.

It therefore follows that R(;,wop is submodular for each (8, W,,) realization. Taking expectation over
(6, W,,) then yields the submodularity of R(W).

Remark A.1. While establishing the submodularity in the proof of Theorem 1.1, we assumed that
each of the values in {F\, . . ., Fy, F\, F>} was unique. This assumption is without loss of generality.
To see this, suppose F| = F, > F3 and hence the entries w\ and wy have the same rank, say k.
Then the decision-maker will earn a payoff of (Vi + Vi41)/2 from Fy and F, and hence, earn a total
payoff of Vi + Vi1 from these two entries. However, the decision-maker also earns a total payoff
of Vi + V41 from these two entries if we re-define F, to equal F| — € for € sufficiently small so that
the rank of wy equals k + 1, the rank of w| remains k and the ranks (and hence, rewards) of the
other entries {ws, ..., Wy, X1, X2} remains unchanged. More generally, if € values are equal, say
Fy =F, =...=Fy, then we can re-define F; «<— Fy—(i—1)X € foralli = 2,...,{ where € is again
sufficiently small. We can extend this reasoning to scenarios in which there are multiple “blocks”
of equal values. In particular, we can adjust them so that there are no ties but the total payoff to

the DFS portfolio remains unchanged.

Remark A.2. Theorem 1.1 states that the top-heavy objective R(-) is submodular under the “con-
vexity” assumption (Assumption 1.3), i.e. if Ay > Apy1 for all k. In fact it is even easier (and
perhaps surprising) to see that R(-) is also submodular under the “concavity” assumption, i.e.,

A < Agy1 for all k. To see this, note that (A.9) is equivalent to

Z Vo1 = Vot } + {Votxa-1 = Vot } 2 Z {Vow)-2 = Vowy-1} -

weW, weW,
=0 =Apw)-2

=Bpw)-1

Hence, submodularity follows even if Ay < A1 for all k. We chose to focus on Assumption 1.3,

however, as the payoff structures in real-world top-heavy contests are more convex in nature as
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discussed around Figure A. 1.

Proof of Proposition 1.3

Proof of Proposition 1.3. We have R(W) < R(W#) < R(w?) +ooo R(wlﬁv) < N R(w*) where the
first inequality follows from the optimality of WF for the N -entry problem, the second inequality
holds due to reasons discussed below, and the third inequality follows from the optimality of w*.
Dividing across by R(W) yields 1 < R(WH/R(W) < N R(w*)/R(W) = 1/vy from which the
result follows.

The second inequality holds since for an arbitrary portfolio W := {w; f\i , of N entries, we
have R(W) < Zf.\i] R(w;). To see this, we follow the same argument used for proving part (a) of
Proposition A.1. In particular, recall that the expected reward R(-) is an expectation over (6, W,,)
so consider an arbitrary (6, W,,) realization and denote by Rs w,, (-) the reward function conditional
on the realization (6, W,,). Using I{-} to denote the indicator function, it follows from the definition

of R(-) in (1.17) that

M-

Rs.w,,(W) = (Rq — Ryy1) 1 {W,T 6> G(_(,)-W_rd)(w—t, W, 5)}

s B0

(R = Ras)1{w]§ > GO 0(W,, )}

M-

i
Y
I
KN

Rs. W, Wi),

M-

Il
—_

where the inequality holds since G(_?JFN_”)(W_,-, W, 6) > G(O“_’d)(Wop, o) foralli e {l,...,N}
and for all d € {I,...,D}. Taking an expectation over (8, W,,) allows us to conclude R(W) <

l]'\il R(w;).
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Why Skill Matters More for Top-Heavy Contests

In the numerical experiments that we reported in Section 1.6, the performance of our strategic
model was better in top-heavy contests than in double-up contests. While we would be reluctant
to draw too many conclusions from this observation given the high variance of NFL games and the
relatively few games in an NFL season, we do nonetheless believe skill is more important for top-
heavy contests than for double-up contests. In fact, our numerical experiments also point to this.
In particular, we report the optimal values of A in Table A.3 in Appendix A.3.3 for the top-heavy,
double-up and quintuple-up contests of Section 1.6. We see there that the top-heavy contests have
a considerably higher value of A* than the double-up and quintuple-up contests whose values of 1*
are close to zero. This points to the fact that variance is important for top-heavy contests and that
it plays a much smaller role for double-up contests. Moreover, because the variance of the fantasy
points total includes the covariance term —2w "o .G (see (1.14) for example), we know that our
ability to estimate o 5.GU is very important in determining the optimal entry w* for top-heavy
contests. This was not the case for the double-up or quintuple-up contests we played, however,
since 4™ was close to zero for them. This then can be viewed as a “structural” explanation for why
top-heavy contests are more amenable to skill than double-up contests. (Of course, if the cutoff
point for rewards in double-up contests was very high, e.g. the top 5% or 1% of entries, then we’d

expect variance to start playing a more important role for these contests as well.)

A.2 Parimutuel Betting Markets and Their Relation to DFS

In this appendix, we consider the setting of parimutuel betting markets, which can be viewed
as a special case of our top-heavy DFS contests. Parimutuel betting is widespread in the horse-
racing industry and has often been studied in the economics literature (Bayraktar and Munk 2017;
Plott et al. 2003; Terrell and Farmer 1996; Thaler and Ziemba 1988) with the goal of studying
the efficient markets hypothesis and the investment behavior of individuals in a simple and well-

defined real-world setting. Our goal here is to use the simplified setting of parimutuel betting to

185



gain some insight into the structure of the optimal strategy for constructing multiple entries in a
top-heavy DFS contest. The results we establish here are straightforward to obtain but are new to
the best of our knowledge.

Consider then a horse race where there are H horses running and where there will be a single
winner so there is no possibility of a tie. Each wager is for $1 and we have $N to wager. We
let n;, denote the number of wagers, i.e., dollars, that we place on horse 4. It therefore follows
that Zf: (7 = N and we use (ny, n, n3, . . ., ng) to denote the allocation of our N wagers. We let
qn > 0 denote the probability that horse & wins the race. We assume there are a total of O wagers
made by our opponents so that Zle Oy = O, where Oy, is the number of opponent wagers on horse
h. We assume® the O},’s are deterministic and known. The total dollar value of the wagers is then
O + N and w.l.o.g. we assume the cut or “vig” taken by the race-track is zero. To make clear the
connection between parimutuel and DFS contests, we can equate each horse to a feasible team in

DFS.

A.2.1 Parimutuel Winner-Takes-All Contests

In a parimutuel winner-takes-all (WTA) contest, the players that pick the winning horse share
the total value wagered. In particular, if horse 4 wins, then our winnings are (O + N)n;, /(O + np)
so that our share is proportional to the number of wagers we placed on A. If the winning horse is
picked by no one, then we assume that none of the contestants receives a payoff. This is in contrast
to the DFS setting where the reward O + N would be allocated to the highest ranked team that was
submitted to the contest. This difference is quite significant and we will return to it later. For now,
we note that it results in what we refer to as reward independence whereby the expected reward

we earn from our wagers on horse / does not depend on ny, for any 4" # h.

Definition A.3. Suppose our current portfolio of wagers has n, = k with at least as yet one
“unassigned” wager. Let ,u’;l” denote the expected gain we obtain from assigning this wager to

horse h.

8We could model the 0},’s as being stochastic but this makes the analysis unnecessarily complicated.
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Reward independence allows us to easily compute ,u’;l“. In particular, we obtain

i1 _ (k+1)gn(O +N)  kgn(O+N) _ qn(O+N) o Oy,

_ _ Al
Hh Op+k+1 O + k Op+k Op+k+1 (A1D

“after” “before”

It follows immediately from (A.11) that u’;l is strictly decreasing in k for k = 1,..., N and for all
horses h. We refer to this as the saturation effect. W.l.o.g., we assume hereafter that the horses
have been sorted in decreasing order of the y,’s so that yi > ,u; > ... 2 ,u}{. This ordering and

the saturation effect then imply the following partial ordering of the y;’s:

plo> W= o>
\Y \Y . v
Hi It e Ky
\Y% \Y . \Y%
\Y4 \Y2 e \Y%
. .

This partial ordering suggests an approach for allocating the N wagers. We start by allocating
the first wager to the first horse. (This is optimal in the N = 1 case due to the presumed ordering
of the horses.) We then consider allocating the second wager to either the first horse (and thereby
replicating the first wager) or to the second horse. Because of the partial ordering, this must be
optimal for the N = 2 case. Suppose the optimal choice was to allocate the second wager to
the second horse. Then the third wager should be allocated to either one of the first two horses
(thereby replicating an earlier wager) or to the third horse. In contrast, if the optimal choice for
the second wager was to replicate the first wager and place it on the first horse, then only the first
and second horses need be considered for the third wager. These observations all follow from the
partial ordering of the expected gains and they lead immediately to Algorithm 9, which handles

the case of general N. It is a greedy algorithm where each successive wager is placed on the horse

187



with the highest expected gain given all previous wagers.

Algorithm 9 Greedy Algorithm for Constructing a Portfolio of N Horses for Parimutuel WTA
Contests
Require: {y}:1<h<H1<k<N},N

1: np=0forallh=1,....H % 1initialize

2:n =1 % assign first wager to horse 1

3:forj=2:N

4. A={(hhny+1):n,>0}U{(h1):n,=0, np_1 >0} % next wager will be a replication

or first horse

5: % 1n ordering that has not yet been wagered upon

6: h" = argmax ,uﬁ % horse in A with highest expected gain
{h:(hk) €A}

70 np =npe+ 1 % fill entry j with horse h*

8: end for

9: return (ny,n,ns,...,NnyH)

The following proposition asserts the optimality of Algorithm 9.

Proposition A.2. Algorithm 9 returns an optimal wager portfolio for the parimutuel WTA con-

test.

Proof. Let {nh}hH=1 denote the output of Algorithm 9 and define H := {(h, k) : 1 <h < H, 1 <k <
np}. Note that [H| = N. The expected reward of this wager allocation is X, )em ,u’;l. Let H¢ denote
the complement of H so that H® := {(h, k) : 1 < h < H, 1 < k, (h, k) ¢ H}. By construction of

our greedy algorithm (which follows the partial ordering described after (A.11)) we have
b > pk for all (h, k) € H and for all (i, k') € HC. (A.12)

Consider now any alternative wager allocation {n2"} ~where oy nd' = N. Define H' :=
{(hk): 1 <h<H1<kZ«< nzh} and note that H¥ = H; U H, where H; := H* N H and

H, := H¥ N HC. Since H; NH, = 0 the expected reward of the alternative wager allocation can be
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written as

Doowk= DL e D

(h,k)eHalt (hk)eH, (W.k")eH)
=D I D R Y (A.13)
(hk)eH (hk)eH\H| (W k")eHa
< > uf (A.14)
(h,k)eH

where (A.14) follows because the term in parentheses in (A.13) is non-negative which itself follows
from (A.12) and the fact that |H \ H;| = |Hy|. (To see that |H \ H;| = |Hj| observe that |H \ H;| =
N — |H;| and H, = H¥ \ H; so that |H| = [H¥ \ H;| = N — |H;|.) The result now follows.
[
A natural question that arises when solving the N > 1 problem is whether to replicate or
diversify our wagers. Some insight into this issue can be provided in the N = 2 case. From Propo-
sition A.2, we know the optimal portfolio of wagers (n, nz, n3, . . ., ng) is of the form (2, 0,0, . . ., 0)
or (1,1,0,...,0). A simple calculation that compares the expected values of these portfolios then

implies

1
(270909-~-,0) lf/l':_i>05‘:’2

(n,n2,m3,...,ng) = (A.15)

(1,1,0,...,0) otherwise.

We see from the condition in (A.15) that diversification becomes relatively more favorable when O
is small so that horse 1 is not very popular among opponents. Our expected gain from replicating
our wager on this horse declines as O; decreases. For example, if O; = 0, then we would have
made O+ N if this horse won and the expected gain from replicating our wager on this horse equals
0. Diversification (by applying our second wager on horse 2) is clearly optimal in this case and
this is reflected by the fact that u]/uj > (O +2)/ O} = oo can never be satisfied.

In contrast, replication becomes relatively more favorable when O; is large and horse 1 is
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therefore very popular among opponents. This horse has a good chance of winning the race (since
it has the highest ,u{) and by replicating our wager on it we can almost double our share of the total
reward should the horse win. This follows because replicating our wager on horse 1 increases our
total expected reward from (O+N)/(O1+1) to (O+N)2/(01+2), which is an approximate doubling
when O is large. This must be close to optimal given that it was optimal to place our initial wager
on horse 1 in the first place. Indeed this is reflected in the condition /1} / ,u; > (01 + 2)/0; from
(A.15), which will typically be satisfied when O is large since it is always the case that ,u} / /,té > 1.

It is perhaps worth mentioning at this point that unlike the parimutuel setting, there will typi-
cally be far more feasible teams than contestants in the DFS setting. This will be the case even for
contests with several hundred thousand contestants. As such, in DFS contests we are invariably in

the setting of small Oy,’s, which results in diversification being favored.

A.2.2 Extension to Parimutuel Top-Heavy Contests

The previous analysis for parimutuel WTA contests can be easily extended to more general
parimutuel top-heavy contests. Suppose the horse that places d'” in the race carries a reward Ry
ford = 1,...,D < H. This reward is then allocated to all contestants who placed wagers on this

horse. Again, we assume that if no wagers were placed on it, then the reward is not allocated. We

k+1

let q,‘f := P{horse h places d'" in race} and then update our expression for the expected gain u b

A simple calculation leads to

,uk” _ q]11R1+q}21R2+...+q}?RD o Oy
h O, +k On+k+1

To maintain consistency with our earlier WTA setting, we can assume ZdD: {Ra = O+ N. Ev-
erything now goes through as before. In particular, Algorithm 9 still applies as does the proof of
Proposition A.2, which guarantees its optimality. (We note that this also applies to double-up style

parimutuel contests by simply assuming that for d = 1,..., D we have R; = R, a constant.)
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A.2.3 Difference Between Parimutuel and DFS Contests

The key difference between DFS contests and our parimutuel setup is that in the DFS con-
tests, the reward Ry is allocated to the submitted entry that has the d'* highest ranking among
the submitted entries. As such, the prize is always awarded for each d = 1,..., D. To make the
distinction concrete, suppose’ there are 10 billion feasible teams (“horses”) in a given DFS contest
with 500,000 entries and a WTA payoff structure. In this case, at most 0.005% of the feasible
teams will have had wagers placed on them and so it’s very unlikely!® that the ex-post best team
will have received a wager. In our parimutuel setup, the O + N would simply not be allocated
in that case. It is allocated in the DFS contest, however, and is allocated to the best performing
team among the teams that were wagered upon. This might appear like a minor distinction but it
is significant. In particular, reward independence no longer holds. To see this, consider a team that
we have wagered upon and suppose it is ex-post the third ranked team out of the 10 billion possible
entries. Again assuming a WTA structure, then that wager will win the reward of O + N only if
there were no wagers placed by anyone else and ourselves in particular, on the first two horses.
Our expected gain from the wager therefore depends on the other wagers we have placed. Because
reward independence no longer holds, it means Proposition A.2 no longer holds even with updated
ks,

Nonetheless, it is easy to see this loss of reward independence points towards a strategy of even
greater diversification than that provided!! by Algorithm 9. To see this, consider the following
stylized setting. Suppose the space of feasible teams for the DFS contest can be partitioned into

M ““clusters” where M is “large”. The clustering is such that the fantasy points scores of teams

To give these numbers some perspective, the typical top-heavy DFS contest that we entered had 24 NFL teams
playing in a series of 12 games. We calculated the number of feasible entries for these contests to be approx. 2 x 103
of which approx. 7 x 10! utilized 99% of the budget. (In our experience, the vast majority of DFS contestants like to
use > 98% of their budget when constructing their entries.)

10Tn Section 1.6, we describe our results from playing various DFS contests during the 2017 NFL regular season.
In the top-heavy contests of each of the 17 weeks of the season, we found that the ex-post best performing team was
not wagered upon!

! Algorithm 9 can yield portfolios anywhere on the spectrum from complete replication to complete diversification
but, as mentioned earlier, the Oy,’s tend to be very small and often 0 in DFS contests and this strongly encourages
diversification.
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in the same cluster are strongly positively correlated (owing to significant player overlap in these
teams) while teams in different clusters are only weakly correlated. Suppose cluster 1 is ex-ante
the “best” cluster in that the teams in cluster 1 have the highest expected reward. Clearly, in the
N =1 case, it would be optimal to wager on the best team in cluster 1. In the N =2 case, however,
it may not be optimal to place the second wager on a team from cluster 1 even if this team has
the second highest expected reward when considered by itself. This is because in some sense, the
first wager “covers” cluster 1. To see this, suppose none of our opponents wagered on a team from
cluster 1 and that ex-post, the best team was another team from cluster 1. While we did not wager
on the ex-post best team, neither did anyone else and as we were the only contestant to wager on a
team from cluster 1, there’s a good chance our team will win the reward of O + N (assuming again
a WTA structure) due to the strong positive correlation among teams within a cluster. It therefore

may make more sense to select a team from another cluster for our second wager.

A.2.4 Our Initial Approach for Top-Heavy DFS Contests

We now discuss our initial approach for tackling the top-heavy DFS problem where we must
submit N entries to the contest. As mentioned towards the end of Section 1.5.1, our discussion
here provides further support for Algorithm 3 and in particular, the imposition of diversification.
In that direction, this section sheds light on how we arrived at Algorithm 3 by discussing our initial
approach which allows for some replication.

Recalling the problem formulation from Section 1.5.1, we must solve for

max R(W)
WeW Wl |W|=N

where
W] D
(r

R(W) := ; de (Ri = Ract) B {w]8 > G'I(W_, W, 8}, (A.16)

r =0+ |W|=ry, G(_rl.) is the 7 order statistic of {GO}OO=1 U {117]-}}‘51| \ F; and W_; := W\ w,. Our

initial algorithm (which was not discussed in the main text) for solving (A.16) was a greedy-style
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algorithm that we formally state in Algorithm 10.

Algorithm 10 Top-Heavy Optimization for N Entries (with Backtracking)

Require: W, N, v, A, ps, X5, 0 5 o) and Monte Carlo samples of (o, G(’cll)) forald=1,...,D
I: W'=0
2: foralli=1,...,N
3: foralldeA

4: w, = argmax {wTy5 + A1 (WT25W -2w'og G(ﬂ))}
wew ’
5:  end for
6: A" =argmax R(W"Uw,) % pick A corresponding to biggest value-add
AeA
7. Wi = max R(W*Uw) % best addition from {w},...,w’ ,,wy} to W*
we{wl,...wi_ wy«} !

8 W' =W'U{w} % minor notation abuse since W* is a set with duplicates
9 W=Wn{w:wiw’ <y} % add diversification constraint for next candidate entry

10: end for
11: return W*

We note that Algorithm 10, which reduces to Algorithm 2 when N = 1, is modeled on Al-
gorithm 9 from the parimutuel setting. To see this, first note that the constraint w w; < y from
line 9 restricts the next candidate entry w to have less than or equal to y players in common with
the previously selected entries. Recalling that C is the number of players in a DFS entry, it there-
fore follows that if we set y > C, then the constraint w'w} < y is never binding. But if we set
v < C, then the candidate entry w - from iteration i will always be a new entry, i.e., an entry not
represented in the current portfolio {w*l‘, .. .,w;ﬁ_l}. As such, the set {w”f, LWL W 2+ ) in line 7
is analogous to the set A in Algorithm 9 and so our definition of w? from line 7 corresponds to the
definition of 4 in line 6 of Algorithm 9.

There is an important difference, however. In Algorithm 9, we identify the horse who will add
the most to the portfolio. As mentioned following Algorithm 3 in Section 1.5.1, that is difficult in
the DFS setting. Similar to our discussion in Section 1.5.1, setting y < C significantly boosted the
expected reward and hence, helped us to identify entries with relatively high value-adds.

However, observe that even with y < C, Algorithm 10 and Algorithm 3 can output different
portfolios. The key difference between the two algorithms lies in line 7 of Algorithm 10, where

we allow for “backtracking”, i.e., where w can be one of the previous i — 1 entries {w},...,w!  }.
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Hence, Algorithm 10 allows for the possibility of replication even if y < C. On the other hand, in
Algorithm 3, we force w; to be w+ and the output portfolio is completely diversified if y < C. To
gain intuition behind our advocacy of Algorithm 3 (over Algorithm 10), recall from Section A.2.3
that we do not have reward independence in DFS contests. This is why even an idealized greedy
algorithm (where we could find an entry with the highest value-add) would not be optimal in gen-
eral. This is in contrast to our parimutuel setup and led to us arguing that even more diversification
might be called for in the DFS setting. An easy way to test this is to set y < C and to simply add
entry w - to the portfolio W without considering replicating one of the previously chosen entries.
This then results in full diversification and the selection of N distinct entries (Algorithm 3). In
all of our numerical experiments, we found that y = C — 3 = 6 was an optimal choice in both
Algorithms 3 and 10 in that it led to final portfolios with the highest expected value in each case.
We also found that for any fixed value of y, the portfolio resulting from Algorithm 3 was approxi-
mately 5% to 20% better (in expected value terms) than the portfolio resulting from Algorithm 10.
In light of our earlier comments, this was not very surprising and so Algorithm 3 is our preferred

algorithm and the one we used in our numerical experiments.

A.3 Further Details of Numerical Experiments

A.3.1  Benchmark Models for the Numerical Experiments of Section 1.6

Our two benchmark models do not model opponents and in fact, they (implicitly) assume the

benchmarks G or GV are deterministic.

Benchmark Model 1 (For Double-Up Contests)

To optimize in the N = 1 case, our first benchmark model simply maximizes the expected
points total subject to the feasibility constraints on the portfolio. The resulting optimization model
is a binary program (BP):

T
maxw Us.
wew K
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For N > 1 (which is the case in our numerical experiments), we employ the greedy diversification
strategy discussed in Section 1.5.1 but suitably adapted for the case where we do not model op-
ponents. In particular, when optimizing over the i’ entry, we add the constraints that ensure the
i'" entry can not have more than y athletes in common with any of the previous i — 1 entries. We
use this benchmark model for the double-up contest because, according to our calibrated model,
we are comfortably in the case (ii) scenario of Proposition 1.1 where, other things being equal, we

prefer less variance to more variance.

Benchmark Model 2 (For Top-Heavy and Quintuple-Up Contests)

The second benchmark model is similar to the first and indeed the objective functions are
identical. The only difference is that we add a stacking constraint to force the model to pick the
QB and main WR from the same team. We denote this constraint as “QB-WR”. Mathematically,
the resulting BP for N = 1 is:

max w'us.
weW,QB-WR

Again for N > 1, we employ a suitably adapted version of the greedy diversification strategy
from Section 1.5.1, i.e., the i"" entry can not have more than y athletes in common with any of
the previous i — 1 entries. As discussed in Appendix A.1.1, the purpose of the stacking constraint
is to increase the portfolio’s variance. This is because we are invariably “out-of-the-money” in
these contests as we noted in Appendix A.1.4 and so variance is preferred all other things, that
is, expected number of points, being equal. We note this model is very similar to the model
proposed by Hunter et al. 2016 for hockey contests. They presented several variations of their
model typically along the lines of including more stacking (or anti-stacking'?) constraints, e.g.
choosing athletes from exactly 3 teams to increase portfolio variance. We note that we could

easily construct and back-test other similar benchmark strategies as well but for the purposes of

12 An example of an anti-stacking constraint in hockey is that the goalie of team A cannot be selected if the attacker
of team B was selected and teams A and B are playing each other in the series of games underlying the DFS contest
in question. Such an anti-stacking constraint is also designed to increase variance by avoiding athletes whose fantasy
points would naturally be negatively correlated.
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our experiments, the two benchmarks above seemed reasonable points of comparison.

A.3.2 Parameters and Other Inputs for the Numerical Experiments of Section 1.6

Our models rely on the following five input “parameters”: the expected fantasy points of the
real-world athletes ug, the corresponding variance-covariance matrix s, the stacking probability
q from Section 1.3.2, the diversification parameter y from Section 1.5.1 and the lower bound on
the budget for accepting an opponent’s portfolio B,, from Section 1.3.3.

We obtain the estimate of us from FantasyPros (FantasyPros 2017). This estimate is specific
to each week’s games and we normally obtained it a day before the NFL games were played.
We decompose the variance-covariance matrix Xs into the correlation matrix ps and the standard
deviations of the individual athletes o5 € R”. The estimate of ps was obtained from RotoViz
(RotoViz 2017) and o5 is estimated using the realized é values from the 2016 and 2017 seasons.
In particular, RotoViz provides correlations pegged to positions. For instance, using historical
data, RotoViz has estimated the average correlation between the kicker of a team and the defense
of the opposing team to be —0.50 and the average correlation between the kicker of a team and
the defense of the same team to be 0.35. These estimates are not specific to any teams or athletes
but are averages. (As a sanity check, we verified that the resulting correlation matrix ps is positive
semi-definite.) Hence, ps does not change from week to week whereas o s is updated weekly using
the realized é from the previous week.

It was also necessary to assume a distribution for 6 as we needed to generate samples of this
random vector. We therefore simply assumed that 8 ~ MVNp (s, £5) where MVNp denotes the
P-dimensional multivariate normal distribution. Other distributions may have worked just as well
(or better) as long as they had the same first and second moments, that is, the same ps and Xs.

We also needed the input features X and the realized p values for the Dirichlet regressions. Such
data is available on the internet. For example, the f feature (point estimate of p) was available
at the FantasyPros website and FanDuel contains the cost vector ¢ (before a contest starts) and

the realized positional marginals p (after a contest is over). We note that accessing the positional
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marginals data at FantasyPros required us to create an account and pay for a six-month subscription
costing $65.94.

For the stacking probability g, we first note that we expect it to be contest-specific as we
anticipate more stacking to occur in top-heavy style contests where variance is relatively more
important than in double-up contests. Accordingly, we empirically checked the proportion of
opponents who stacked using data'? from the 2016-17 season for each contest-type. We then
calibrated ¢ to ensure that our Dirichlet-multinomial model for generating opponents implied the
same proportion (on average). We estimated g to be 0.35, 0.25 and 0.20 for top-heavy, quintuple-
up and double-up contests, respectively. In principle, one can perform out-of-sample testing to
pick the “best” ¢ in order to avoid in-sample over-fitting. However, given we are estimating a
one-dimensional parameter using a reasonably large (and random) dataset, over-fitting was not our
concern.

We set B, = 0.99B using a straightforward moment matching technique. In particular, we
observed that most of our opponents used 100% of the budget and the average budget usage was
around 99.5%. Using our Dirichlet-multinomial model for generating opponent portfolios, we
simply calibrated B,, so that the average budget usage was approximately 99.5%, which resulted in
an estimate of B, = 0.99B.

We used y = 6 for the strategic and benchmark models across all contests since we found this
value of y to produce a near maximum within-model expected P&L. We note that the sensitivty
of the expected P&L with respect to y (around vy = 6) is relatively low in all contest types for
both strategic and benchmark portfolios. For instance, in the top-heavy contest with N = 50,
the average weekly expected P&L (averaged over 17 weeks of the 2017-18 NFL season) for the
strategic portfolio equals USD 342, 357, and 344 for y equals 5, 6, and 7, respectively. Futhermore,

if we allow y to vary from week-to-week, i.e., in week t, pick y; € {5,6,7} that results in the

13Because of the user interface of FanDuel.com, collecting entry-level data on each opponent was very challenging
and had to be done manually. Instead of collecting data for each entry (which would have been too time consuming),
we therefore collected data on 300 entries for each reward structure type. We also ensured the 300 entries were spread
out in terms of their ranks so that they formed a representative sample of the entire population. For each contest type,
we then estimated g by inspecting the 300 data-points and checking to see whether or not stacking of the QB and main
WR was present.
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maximum expected P&L in week ¢, then the average weekly expected P&L changes to USD 358
(an increase of only 1). This indicates the robustness of setting y = 6.

We used a data sample from DFS contests in the 2016 NFL season to select an appropriate
choice for A (the grid of A values required for our optimization algorithms). In all of our contests,
we set A = (0.00,0.01,...,0.20). We could of course have reduced the computational burden
by allowing A to be contest-specific. For example, in the case of quintuple-up contests, a choice
of A =(0.00,0.01,...,0.05) would probably have sufficed since A* for quintuple-up was usually
close to zero as discussed in Appendix A.3.3.

All of our experiments were performed on a shared high-performance computing (HPC) cluster
with 2.6 GHz Intel E5 processor cores. Each week, we first estimated the parameters pg;¢), O'é(r,)
and 05 ¢ (as required by Algorithms 1 and 3) via Monte Carlo simulation. We typically ran the
Monte-Carlo for one hour each week on just a single core and this was sufficient to obtain very
accurate estimates of the parameters. We note there is considerable scope here for developing more
sophisticated variance reduction algorithms which could prove very useful in practical settings
when portfolios need to be re-optimized when significant late-breaking news arrives. In addition,
it would of course also be easy to parallelize the Monte-Carlo by sharing the work across multiple
cores.

The BQPs were solved using Gurobi’s (Gurobi Optimization 2016) default BQP solver and
all problem instances were successfully solved to optimality with the required computation time
varying with P (the number of real-world athletes), A (see Algorithms 1 and 3) and the contest
structure (double-up, quintuple-up or top-heavy). A typical BQP problem instance took anywhere
from a fraction of a second to a few hundred seconds to solve. It was possible to parallelize with
respect to A and so we used 4 cores for double-up and quintuple-up contests and 8 cores for the
top-heavy contests where the BQPs required more time to solve. Our experiments required up to
8 GB of RAM for double-up and quintuple-up contests and up to 16 GB of RAM for top-heavy

contests.
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A.3.3 Additional Results from the 2017 NFL Season

Here we present some additional numerical results from the 2017 NFL season. First, we discuss
results related to the P&L and portfolio characteristics and second, we discuss results related to the

performance of the Dirichlet regressions.

Additional P&L Results and Portfolio Characteristics

Table A.1 displays the cumulative realized P&L for both models across the three contest struc-

tures during the 2017 season; see the discussion around Figure 1.1 in Section 1.6.

Table A.1: Cumulative realized dollar P&L for the strategic and benchmark models across the
three contest structures for all seventeen weeks of the FanDuel DFS contests in the 2017 NFL
regular season. We invested $50 per week per model in top-heavy series with each entry costing
$1. In quintuple-up the numbers were $50 per week per model with each entry costing $2 and in
double-up we invested $20 per week per model with each entry costing $2. (We were unable to
participate in the quintuple-up contest in week 1 due to logistical reasons.)

Top-heavy Quintuple-up Double-up
Week | Strategic Benchmark | Strategic Benchmark | Strategic Benchmark

1 25.5 -39.5 - - 3.13 15.13

2 -18.5 =77 =50 =50 -16.87 —4.87
3 85.24 =97 30 —-60 -8.87 3.13

4 61.74 12.5 80 20 11.13 15.13

5 15.74 -34.5 30 -30 —-8.87 -4.87
6 -7.26 -52.5 30 =70 -16.87 -8.87
7 92.74 -6.5 -10 20 -36.87 -24.87
8 170.74 0.5 -10 20 —28.87 —24.87
9 290.74 325 40 110 —-8.87 -4.87
10 437.74 -17.5 0 60 —-8.87 —4.87
11 406.74 189.5 20 130 -8.87 7.13

12 384.74 154.5 -30 80 -20.87 -8.87
13 347.74 112.5 10 40 —28.87 -8.87
14 341.74 87.5 -30 -10 —44.87 —24.87
15 320.74 59.5 -80 -30 —60.87 —44.87
16 317.74 29.5 -90 =50 —-76.87 —60.87
17 280.74 91.5 -40 20 —-60.87 —40.87

In Table A.2, we display the performance of each week’s best realized entry (out of the 50 that
were submitted) for the strategic and benchmark models corresponding to the top-heavy contests
for all seventeen weeks of the FanDuel DFS contests in the 2017 NFL regular season. Perhaps the

most notable feature of Table A.2 is the variability of our highest rank entry from week to week.
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Table A.2: Performance of each week’s best realized entry for the strategic and benchmark models
corresponding to the top-heavy contests for all seventeen weeks of the FanDuel DFS contests in
the 2017 NFL regular season.

Total # Rank Percentile Reward (USD)
Week | of entries | Strategic Benchmark | Strategic Benchmark | Strategic Benchmark

1 235,294 2,851 40,421 1.21% 17.18% 8 1.5
2 235,294 46,909 26,728 19.94% 11.36% 1.5 2
3 235,294 429 5,715 0.18% 2.43% 25 5
4 238,095 2,566 864 1.08% 0.36% 8 15
5 208,333 46,709 24,695 22.42% 11.85% 2 3
6 208,333 10,466 59,45 5.02% 2.85% 4 5
7 208,333 139 647 0.07% 0.31% 20 10
8 208,333 550 5,767 0.26% 2.77% 10 5
9 178,571 138 3,103 0.08% 1.74% 25 5
10 178,571 211 60,938 0.12% 34.13% 20 0

11 178,571 7,480 24 4.19% 0.01% 4 100
12 148,809 4,301 11,994 2.89% 8.06% 4 3
13 190,476 8,263 6,759 4.34% 3.55% 4 4
14 166,666 5,503 8,566 3.30% 5.14% 4 3
15 142,857 5,189 7,601 3.63% 5.32% 4 3
16 142,857 1,424 6,835 1.00% 4.78% 6 3
17 142,857 11,920 87 8.34% 0.06% 3 30

This reflects the considerable uncertainty that is inherent to these contests. While the best strategic
entry did well, we are confident that it could do much better (at least in expectation) by being more
vigilant in updating parameter and feature estimates each week.

In Table A.3, we present various statistics of interest for the ex-ante optimal entry w of the
strategic model across all three reward structures for all seventeen weeks of the FanDuel DFS
contests in the 2017 NFL regular season. It is interesting to note that none of the numbers vary
much from week to week. It is also interesting to see how the top-heavy entry w} has a lower mean
and higher standard deviation than the corresponding entries in the double-up and quintuple-up
contests. This is not surprising and is reflected by the fact that the top-heavy contests have a higher
value of A* than the double-up and quintuple-up contests. This is as expected since variance is
clearly more desirable in top-heavy contests and the optimization over A recognizes this. It is also
interesting to see that 4* for the quintuple-up contests is approximately 0.

Table A.4 below shows the same results as Table A.3 except this time for the benchmark port-

folios. It is interesting to see how similar!# the statistics are for all three contest-types in Table A .4.

l4Recall the benchmark quintuple-up model enforces stacking and hence, the optimal strategic quintuple-up entry
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Table A.3: Various statistics of interest for the ex-ante optimal entry w} of the strategic model
across all three reward structures for all seventeen weeks of the FanDuel DFS contests in the
2017 NFL regular season. Mean and StDev refer to the expected fantasy points and its standard
deviation. (We were unable to participate in the quintuple-up contest in week 1 due to logistical
reasons.)

Top-heavy Quintuple-up Double-up
Week Mean StDev A" Mean StDev  A* Mean StDev  A*
12445 2476 0.03 - - 127.35 20.00 0.00
120.70  26.94 0.05 | 12422 23.69 0.01 | 123.58 21.50 0.01
115.08 27.54 0.04 | 121.15 2234 0.00 | 120.54 21.03 0.01
114.18 27.54 0.04 | 121.85 21.67 0.00 | 121.85 21.67 0.00
11548 23.65 0.05 | 12322 2049 0.00 | 123.22 2049 0.00
10645 2796 0.05 | 118.82 21.37 0.00 | 11828 17.53 0.02
108.69 29.82 0.06 | 120.53 22.08 0.00 | 119.34 21.02 0.02
107.61 28.26 0.04 | 120.73 20.22 0.00 | 120.61 20.11 0.01
105.16 2852 0.05 | 11642 21.83 0.01 | 11594 1948 0.01
10 110.25 2899 0.05 | 12336 2149 0.00 | 122.74 1942 0.02
11 107.79 2943 0.04 | 123.28 20.88 0.00 | 122.44 19.88 0.02
12 117.60 2547 0.03 | 12490 19.72 0.00 | 12490 19.72 0.00
13 116,70  29.30 0.03 | 123.10 22.65 0.00 | 122.20 1944 0.02
14 111.50 28.15 0.04 | 119.70 20.68 0.00 | 119.40 19.33 0.01
15 116.80 27.79 0.06 | 129.30 19.30 0.00 | 129.30 19.30 0.00
16 117.60 2638 0.04 | 122.20 2340 0.01 | 12090 16.96 0.02
17 110.70 27.68 0.07 | 126.80 19.02 0.00 | 12640 17.29 0.01
Average | 113.34 27.54 0.05 | 12247 21.30 0.00 | 122.29 19.66 0.01

—_—

O 00 1 O\ L A~ W

Indeed these statistics are similar to the statistics for the double-up and quintuple-up strategic port-
folios in Table A.3 which is not surprising because the value of 1* in those contests was close to
0. (We know that when A" is close to 0, then there is less value to being able to model opponents
accurately. This merely reinforces the view that our strategic model adds more value in top-heavy
style contests.)

In Table A.5, we present some information on the QB selected by the best performing entry
of the strategic and benchmark models in the top-heavy contests for all seventeen weeks of the
FanDuel DFS contests in the 2017 NFL regular season. It’s clear that, on average, the strategic
model picks less popular QBs than the benchmark model - an average p; of 6.88% for the strategic
model versus an average of 12.74% for the benchmark model. In addition, QBs picked by the

strategic model cost less (approx. 3% lower on average) and have lower expected fantasy points

might differ from the optimal benchmark portfolio even if A* = 0. There is no enforced stacking in the benchmark
model for double-up and so if A* = 0 for the strategic double-up model, then the two entries will coincide and have
same expected fantasy points.
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Table A.4: Mean fantasy points and its standard deviation for the first optimal entry w] of the
benchmark model across all three reward structures for all seventeen weeks of the FanDuel DFS
contests in the 2017 NFL regular season. (We were unable to participate in the quintuple-up contest
in week 1 due to logistical reasons.)

Top-heavy Quintuple-up Double-up
Week Mean StDev | Mean StDev | Mean  StDev
12571  19.28 - - 127.35  20.00
122.65 23.70 | 122.65 23.70 | 124.24 23.19
117.28 23.53 | 117.28 23.53 | 121.15 22.34
118.07 21.67 | 118.07 21.67 | 121.85 21.67
120.17 20.16 | 120.17 20.16 | 123.22 20.49
116.71 1897 | 116.71 1897 | 118.82 21.37
118.35 2237 | 118.35 2237 | 120.53 22.08
119.12  20.04 | 119.12 20.04 | 120.73 20.22
113.60 21.78 | 113.60 21.78 | 116.51 21.40
10 121.85 22.80 | 121.85 22.80 | 123.36 21.49
11 121.00 2194 | 121.00 21.94 | 123.28 20.88
12 121.40 22.03 | 121.40 22.03 | 12490 19.72
13 120.40 23.39 | 12040 23.39 | 123.10 22.65
14 117.80 20.81 | 117.80 20.81 | 119.70 20.68
15 126.40 20.96 | 126.40 20.96 | 129.30 19.30
16 119.90 22.10 | 119.90 22.10 | 122.30 22.70
17 12530 18.88 | 125.30 18.88 | 126.80 19.02
Average | 120.34 21.44 | 120.00 21.57 | 122.77 21.13

—_—

O 01O LN B~ W

(approx. 9% lower on average) than the QBs picked by the benchmark model. To put the cost
numbers in perspective, the budget that was available for entry was set by the contest organizers at
B = 60, 000.

We end this appendix with two anecdotes highlighting top-heavy contests where our strategic
portfolio went against the “crowd” and was successful in doing so. In week 3, our strategic model
selected an entry that consisted of some crowd favorites, in particular Tom Brady (QB) and A.J.
Green as one of the three WRs. The entry also included four underdog picks from the Minnesota
Vikings: two WRs (S. Diggs and A. Thielen), the kicker K. Forbath and the defense. Each of these
four picks were expected to be chosen by less than 5% of our opponents and by choosing four
players from the same team, the entry was stacked which resulted in a reasonably high variance.
The Minnesota Vikings ended up having a good game, winning 34-17 at home against Tampa
Bay. Our entry ended up ranking 429" out of 235,294 entries in total. In contrast, none of the

benchmark entries were similar to this team. While some of them picked Thielen, none of them
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Table A.5: Characteristics of the QB picked by the best performing entry of the strategic and
benchmark models in the top-heavy contests for all seventeen weeks of the FanDuel DFS contests
in the 2017 NFL regular season.

Strategic Benchmark
Week QB DB Cost  ps QB Das Cost s
1 D. Carr (OAK) 9.80% 7700 18.63 R. Wilson (SEA) 7.30% 8000 20.23
2 A.Rodgers (GB) 9.80% 9100 26.19 M. Ryan (ATL) 10.90% 8200 24.28
3 T. Brady (NE) 7.20% 9400 20.72 A. Dalton (CIN) 2.40% 6800 15.85
4 R. Wilson (SEA)  13.20% 7900 21.19 A. Dalton (CIN) 3.50% 7100 17.19
5 J. Brissett IND) ~ 4.40% 7000 15.79 A. Rodgers (GB) 18.10% 9500 24.67
6 D. Carr (OAK) 1.10% 7500 16.48 D. Watson (HOU) 29.70% 7900 20.76
7 D. Brees (NO) 8.50% 8300 22.75 D. Brees (NO) 8.50% 8300 22.75
8 D. Watson (HOU)  3.70% 8000 17.30 A. Dalton (CIN) 9.70% 7600 19.02
9 R. Wilson (SEA)  16.30% 8500 24.52 R. Wilson (SEA) 16.30% 8500 24.52
10 C. Keenum (MIN) 0.70% 6800 15.50 | B. Roethlisberger (PIT) 12.70% 7600 18.53
11 C. Keenum (MIN) 2.80% 7300 15.26 T. Brady (NE) 20.50% 8600 24.60
12 M. Ryan (ATL) 8.80% 7600 19.20 M. Ryan (ATL) 8.80% 7600 19.20
13 C. Keenum (MIN) 6.50% 7600 17.80 R. Wilson (SEA) 8.50% 8200 21.90
14 C. Keenum (MIN)  3.40% 7500 17.20 P. Rivers (LAC) 12.80% 8100 20.30
15 C. Keenum (MIN) 8.00% 7400 18.30 | B. Roethlisberger (PIT) 13.70% 8000 21.10
16 A. Smith (KC) 7.50% 7800 19.20 C. Newton (CAR) 24.00% 8300 22.30
17 M. Ryan (ATL) 520% 7400 18.40 P. Rivers (LAC) 9.10% 8300 19.90
Average 6.88% 7812 19.08 12.74% 8035 21.01

picked Diggs, Forbath or the Vikings defense and so there was no strategic stacking.

Another such example can be found in week 10. One of the entries selected by the strategic
model included an underdog QB (C. Keenum) again from the Minnesota Vikings. Keenum was
predicted to be chosen by fewer than 3% of our opponents. This could be explained by his low ¢,
i.e., his low expected fantasy points, and his low expected return. Choosing Keenum was quite a
bold choice since the QB position is particularly important as QBs typically have the highest ex-
pected points and expected returns among all positions. In that particular week, Matthew Stafford
was predicted to be the most popular QB with approx. 25% of opponents expected to pick him;
see Figure A.2(a) in Appendix A.3.3. In addition to Keenum, our strategic entry was also stacked
with 2 WRs (A. Thielen and S. Diggs) and the kicker (K. Forbath) all chosen from the Vikings and
all predicted to be chosen by only approx. 5% of opponents. In the NFL game itself, the Vikings
won 38-30 away to the Redskins with Keenum, Thielen, Diggs and Forbath scoring 26.06, 26.6,
15.8 and 10 fantasy points, respectively. Our entry ended up ranking 211/ out of 178,571 entries.

In contrast, all 50 benchmark entries chose Ben Roethlisberger as the QB, who was considerably
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more popular than Keenum.

Dirichlet Regression Results

Before concluding this section, we shed light on the performance of our Dirichlet-multinomial
data generating process for modeling team selections of opponents and the corresponding Dirichlet
regression introduced in Section 1.3 in terms of how well they predict the marginals pgs, . . ., pp and
how well they predict the benchmark fantasy points G (double-up) and GUd ford = 1,...,D
(top-heavy). Our Dirichlet regression models used the features described in (1.5) and we validated
this choice of features by evaluating its goodness-of-fit and comparing its out-of-sample perfor-
mance against two “simpler” variations of the Dirichlet regression model. Specific details are
deferred to Appendix A.3.4. In this subsection we focus instead on the key results and anecdotes
we witnessed during the 2017-18 NFL season.

In Figure A.2, we show the performance of our approach in terms of predicting the QB marginals
Pos for the top-heavy and double-up contests' in week 10 of the 2017 NFL season. First, we ob-
serve that in both top-heavy and double-up contests, our model correctly forecasted one of the
top-picked QBs in week 10, namely Matthew Stafford. Second, we observe that our 95% predic-
tion intervals (PI) contain around 95% of the realizations. This speaks to the predictive power of
our statistical model. Of course, we expect roughly 5% of the realizations to lie outside the 95%
intervals and we do indeed see this in our results. For example, in Figure A.2, out of a total of 24
QBs, the number of QBs that lie outside the intervals for top-heavy and double-up equal 2 and 1,
respectively.

Of course, we did not do as well across all seventeen weeks as we did in week 10 but in general,
our 95% prediction intervals contained 95% of the realizations. Over the course of the season, we
did witness instances where our models under-predicted or over-predicted the ownerships by a
relatively large margin. See Ryan Fitzpatrick in Figure A.2(b), for example. Accordingly, there is

room for improvement, specifically in the quality of features provided to our Dirichlet regression.

I5We do not present Dirichlet regression results corresponding to quintuple-up contests for brevity. We note that the
results in quintuple-up are very similar.
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Figure A.2: Predicted and realized QB ownerships (py:) for week 10 contests of the 2017 NFL
season.

Retrospectively speaking, including a feature capturing the “momentum’” of athletes, that is, how
well they performed in the previous few weeks, would have been beneficial in terms of predicting
opponents’ behavior. This statement is supported by multiple cases we noticed in the 2017 season.
To give but one example, in week 9, Ezekiel Elliott (Dallas Cowboys) was picked by around 80%
of our opponents in double-up but our 95% interval predicted 0% to 10%. It turns out that Elliott
had performed extremely well in the two weeks prior to week 9. In fact, he was the top-scoring
RB in week 7 and the second highest scoring RB in week 8.

We also would expect a significant improvement in predicting the player selections of our
opponents if we were more proactive in responding to late developing news as discussed in Sec-
tion 1.6. Such late developing news would typically impact our estimate of s which in turn would
change both our optimal portfolios as well as our opponents’ team selections. Continuing on with
the week 7 Fournette-Ivory case study from Section 1.6, due to our low estimate of the expected
points of Ivory, we predicted his ownership to be below 5% with high probability (in top-heavy).
In reality, around 15% of fantasy players in the top-heavy contest picked Ivory, which aligns with

the sequence of events we discussed earlier. If we had updated our expected points estimate cor-
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)16 we would have fared better. This is illustrated

responding to Ivory to a value of 15 (from 6.78
in Figure A.3(a) where we plot our original predictions (“before”) in blue and updated predictions
(“after”)!” in red. It’s clear that our original over-prediction of the ownership of Le’Veon Bell can
be largely attributed to our stale ps estimate of Ivory. As a side note, we can also observe that
both our “before” and “after” predictions in Figure A.3(a) under-predict the ownership of Adrian
Peterson (first point on the x-axis). We believe the reason for this is “momentum” (a feature we
omitted from our Dirichlet regressions) as Peterson scored over 25 fantasy points in week 6 but was
expected to score only 7 points, making him the RB with the highest points to cost ratio (among
all week 6 RBs) that week.

An interesting illustration of the importance of good features can be found in Figure A.3(b)
where we display the positional marginals for QBs in week 12’s double-up contest. We clearly
over-predicted Tom Brady’s ownership and under-predicted Russell Wilson’s ownership. Perhaps
the main reason for this was the point estimate f provided by FantasyPros (29.5% for Brady
and 20.9% for Wilson) which was a feature in our Dirichlet regression. FantasyPros therefore
severely overestimated the ownership of Brady and underestimated the ownership of Wilson and
our regression model followed suit. However, it is well known in football that Tom Brady (arguably
the greatest QB of all time) and the New England Patriots generally perform very poorly in Miami
where his team were playing in week 12. It is no surprise then that the realized ownership of
Tom Brady that week was very low. Unfortunately FantasyPros did not account for this in their
prediction and so none of our features captured this well known Tom Brady - Miami issue. To
confirm that it was indeed the FantasyPros point estimate that skewed our predictions we re-ran
the regression after deducting 11% from Brady’s FantasyPros’ estimate (making it 18.5%) and
adding it to Wilson’s estimate. The resulting fit is displayed in red in Figure A.3(b) and it’s clear
that it does a much better job of predicting the realized ownerships.

In Figure A.4(a), we plot the realized fantasy points total against the rank r; in the top-heavy

16 An estimate of 15 for the expected points of a “main” RB is quite reasonable.
7For our updated predictions, we did not include the FantasyPros point estimate feature f in our Dirichlet regression
model since we do not know how FantasyPros would have updated their estimate.
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Figure A.3: Highlighting instances where the Dirichlet regression either under-predicted or over-
predicted ownerships of some athletes (“before”) and what would have happened (“after”) if we
had (a) reacted to breaking news or (b) access to better quality features that accounted for historical
factors such as Brady’s poor track record in Miami.

contest of week 10. We also show our 95% prediction intervals for these totals as well as our 95%
prediction intervals conditional on the realized value of 6. These conditional prediction intervals
provide a better approach to evaluate the quality of our Dirichlet-multinomial model for W, as
they depend only on our model for W,,. Not surprisingly, the interval widths shrink considerably
when we condition on § and it is clear from the figure that we do an excellent job in week 10. In
Figure A.4(b), we display the results for the double-up contests across the entire 17 weeks of the
2017 NFL season. While our model appears to perform well overall, there were some weeks where
the realized points total was perhaps 3 conditional standard deviations away from the conditional

mean. This largely reflects the issues outlined in our earlier discussions, in particular the need to

better monitor player developments in the day and hours immediately preceding the NFL games.

A.3.4 Model Checking and Goodness-of-Fit of the Dirichlet Regressions

In our numerical experiments of Section 1.6, we used the Dirichlet regression model of Sec-

tion 1.3.1 to predict our opponents’ behavior and in particular, the positional marginals pgg, . . ., P
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Figure A.4: Predicted and realized portfolio points total of various opponent ranks for (a) the top-
heavy contest in week 10 and (b) all weeks of the double-up series during the 2017 NFL season.
For double-up, the rank of interest for each week was around 13,000 and the number of opponents
was around 30,000.

of the players in our opponents’ team selections. In Appendix A.3.3, we discussed the perfor-
mance of these Dirichlet regressions but not in a systematic fashion. In this appendix, we revisit
this issue and evaluate the goodness-of-fit of our particular model and benchmark it against two

simpler variations using the data from the 2017-18 NFL season. We first state the three variations

of the Dirichlet regression model that we considered.
1. Variation 1 has 2 features: the player cost vector ¢ and the expected points vector ps.
2. Variation 2 has 1 feature: the point estimate f of the positional marginals from FantasyPros.

3. Variation 3 has 3 features: the player cost vector ¢, the expected points vector gs, and the

point estimate f of the positional marginals from FantasyPros.

All three variations also include the constant vector 1 as an intercept. Variation 3 is therefore the
model proposed in (1.5) and used in the numerical experiments of Section 1.6. Clearly, variations
1 and 2 are simpler versions of variation 3. We also note that we scaled the features to ensure

they were roughly on the same scale as this helped STAN in fitting the model. In particular, we
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divided the costs by 10,000 and divided the expected points by 25 so that all the feature values
were typically in [0, 2].

Before proceeding, we note our Dirichlet regression model is very simple and that modern
software packages such as STAN can fit such models within seconds. One could therefore easily
include additional features as well as interaction / higher-order terms with the goal of increasing
the predictive power of the model. Our goal here was not to find the best set of features, however,
but simply to find features that explain the data reasonably well. As we will show later in this ap-
pendix, the three variations listed above all explain the data quite well while variation 3 performed
best in the cross-validation tests. These results justified the use of variation 3 in our numerical ex-
periments in Section 1.6. The plots and discussion in Appendix A.3.3 also provide further support
for the model. That said, the anecdotes from Appendix A.3.3 (which are reflected in the results
in this subsection below) suggest how the performance of the model could have been significantly
improved had we focussed more on the correctness of the features particularly in the light of new
player developments before the games.

Finally, we note that the model checking and the cross-validation results done here are standard
Bayesian techniques and are discussed for example in Gelman et al. 2013. We used data from the

2017-18 NFL season for both of these tasks.

Data Collection

We were able to obtain complete data on the features {f s, Cop ss ,uQB’,}IT=1 where T = 17 was
the number of weeks in the season. There was a minor issue with obtaining the realized positional
marginals and to explain this issue, we will focus on the QB position whose realized marginals are

_ : : P P,
{Pos,s}-!. Consider now week ¢ with pey; = {pf,,},2] and note that 37,

péBJ = 1. If there were
O opponents in a given contest in week 7, then we would like to inspect their lineups to determine
Pos,- Unfortunately, there was no way to do this in an automated fashion and so we had to resort

to sampling their lineups. Fortunately, however, if a particular QB appeared in a lineup, then

the web-site listed the realized positional marginal for that particular QB in the underlying DFS
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contest. See Figure A.5. As a result, it would only be necessary to sample lineups until each QB
appeared at least once. Unfortunately, some QBs were selected very rarely if at all and sampling
sufficient lineups to find them proved too time consuming. Instead, we typically sampled approx.
100 lineups each week and we let Cy; € {1, ..., Py} denote the set of QBs for which we collect
the marginal in week 7. Since Cq, is a subset of {1,..., Po}, it follows that X ¢, pr,, < 1

Typical values of Xxcc,y, p’éBJ were 95% to 99%.

. QB Matthew Stafford
‘GB1112DE735

$78%0 8%, 2712 v

= RB Alex Collins
CIN 31 @ BAL 27

FINAL
8 ssaoo 26% 16.6 -
RB Dion Lewis
| NYJ6 @ NE26
FINAL
\/ $7200 253% 283 -

WR JuJu Smith-Schuster
CLE 24 @ PIT 28

s7,3Z>o 88% 30.8 v

= WR Marvin Jones Jr

‘ GB 11 @ DET 35
FINAL
S7 300 12.3% 161 v

WR Keenan Allen

VT o ¢
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< 1.8 v
P K Matt Bryant
( | CAR10 @ ATL 22
\ | FINAL
$5,000 6.3% 19 v
D Washington Redskins
( m ) Was 10 & NYG 18
/ saeoo 4% 7~

Figure A.5: Screenshot of a web-page from FanDuel . com when we click on an opponent lineup.
The lineup has 9 athletes. For each athlete selected in the lineup we can observe the realized posi-
tional marginal of that athlete in the underlying contest. For example in the contest corresponding
to this screenshot the realized positional marginal of Matthew Stafford equals 8.9%.

We defined the vector of collected marginals for week 7 as p,, := [pr,t] keCqs, and the cor-
responding vector of FantasyPros estimates fQB,, = fQ’;J] keCos,- Both of these vectors are then
re-scaled so that they sum to 1. We similarly define &g := [cX; Jxecy,, and flyy, = (b, Jkecys,

and then use these features to fit the three Dirichlet regression models using non-informative priors
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for Bos; see (1.6). While this data collection procedure might introduce some bias in the estimation
of Bos, we expect this to be a second order effect as X iecy,, p’éB’, and X recyy, f o Were (before

scaling) always close to 1. That said, further investigation of this may be worth pursuing.

Model Checking and Posterior Predictive Checks

The purpose of model checking and posterior predictive checks is to obtain a general idea of
how well the model in question explains the data and what its weaknesses are. It may be viewed
as a form of checking for internal consistency; see Gelman et al. 2013. For each possible tuple
of the form (model variation, reward structure, position), we fit a Bayesian Dirichlet regression
model with STAN. We ran each of 4 MCMC chains for 1,000 iterations and then discarded the
first 500 iterations from each one. This left us with 2,000 posterior samples of the corresponding
B parameter. All of our R values'® were between 1.00 and 1.05, indicating the MCMC chains had

mixed well.

Marginal Posterior Predictive Checks

For each of the 2,000 posterior samples of 8, we generated a sample of all of the positional
marginals using the appropriate Dirichlet distribution and then used these samples to construct
95% posterior intervals for the marginals. We then computed the proportion of times the 95%
posterior intervals contain the true realized values. For each (variation, reward structure, position)
tuple, we computed a summary statistic as follows.

As before, we will use the QB position to explain our procedure. There were T = 17 weeks
and for each week ¢, there were Py, QBs available for selection. Hence there were Zthl Py QB
“instances” in total and for each such instance, we know the true realized marginal from the real-
world data that we used to fit the model. We also have the posterior samples for that instance and
therefore a 95% posterior interval for it. If the realized marginal is in the 95% posterior interval,

then we assign the instance the value 1. Otherwise we assign it the value 0. The summary statistic

18R is a commonly used metric to determine how well the Markov chains have mixed. The closer R is to 1 the better
and a common rule of thumb is that an R between 1.00 and 1.05 indicates that the chains have mixed sufficiently well.
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Table A.6: Posterior predictive test summary statistic for each variation (denoted by V1, V2, and
V3) of the Dirichlet regression model across all reward structures corresponding to the QB, RB,
and WR positions.

QB RB WR
VI V2 V3 [ VI V2 V3|Vl V2 V3
Top-heavy | 096 097 0.96 | 095 097 095 | 0.96 096 096
Quintuple-up | 0.95 093 095 | 095 095 095|094 095 0.95
Double-up | 0.93 093 094 | 0.94 095 095 | 094 094 0.94

is then the average of these binary indicators over all Zthl P instances. The summary statistic for
each combination of model variation and reward structures is shown in Table A.6 for the QB, RB,
and WR positions'®. The three model variations seem to pass this check (at least at the aggregate

level) as each of the summary statistics lie between 93% and 97%.

Most-Picked Athlete Predictive Checks

We also computed predictive checks of the test quantity “most-picked athlete” for each com-
bination of model variation, reward structure, position, and week. To see how these p-values were
computed, consider a specific combination where the position (as usual) is the QB and the week is
week ¢. Each posterior sample of p,;; has a maximum value corresponding to the most popular QB
that week in that posterior sample. We take all of these maximum values and compute the percent-
age of them that exceeded the realized*® maximum. Ideally, the resulting percentile should be away
from the extremes, i.e., 0 and 1. They are reported in Tables A.7 (top-heavy) and A.8 (double-up)
below for the QB, RB and WR positions. We omitted the other positions and quintuple-up contests
for the sake of brevity. Highlighted instances correspond to percentiles less than 2.5% (blue) or
greater than 97.5% (red). While we would expect to see extreme values approx. 5% of the time
even if the model in question was correct, we see such extreme values approx. 12.5% of the time
for the top-heavy contests and 19.5% of the time for the double-up contests. While variation 3 does

perform the best of the models on this test, there is clearly some room for improvement here. It is

19The results are similar for the other positions and are not shown for the sake of brevity.

20The realized maximum is the percentage of people who picked the most popular QB that week in that contest. So
for example, if Matthew Stafford was the most popular QB in the week 10 top-heavy contest with 23% of contestants
picking him, then the realized maximum for that week was 23%.
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interesting to note that in the double-up contests, the extreme values (when they occur) are almost
invariably on the low end, i.e., less than 2.5%. This means that in these instances, the Dirichlet re-
gression model is predicting that the most popular player in the given position will be considerably
less popular among opponents than the realized most popular player in that position.

There are two obvious directions for improving the model performance in light of these results.
First of all, we have outlined in Section 1.6 some of our occasional failures to obtain accurate
data for the features or to adjust features to account for relevant information that would be known
to most DFS players and in particular, our DFS opponents. For example, in Appendix A.3.3,
we discussed the failure of the FantasyPros feature f to account for Russell Wilson’s popularity
in week 12 double-up — in part because it also failed to account for Tom Brady’s well-known
difficulties with playing in Miami. As depicted in Figure A.3(b), Wilson’s realized ownership that
week was over 50% and so this was the realized maximum in week 12 for the QB position in
double-up contests. Given our feature values that week and in particular the point estimate f, our
fitted models were generally unable to produce such a high value in the posterior samples of the
most-picked QB. As a result, we observed the low values that we see for the QB position in week
12 in Table A.8. In contrast, we can see from Figure A.2 that we had no difficulty in predicting
the popularity of the most popular QB in the week 10 double-up and top-heavy contests. It is

2! extreme.

not surprising then to see that the week 10 QB results in Tables A.7 and A.8 are no
It is no surprise then that our explanation for the less than perfect results here are explained by
a combination of occasionally inaccurate feature data as well as possibly missing other useful
features, e.g. momentum. It should be clear, however, that these are issues with the features and

occasional accuracy of the features rather than a problem with our Dirichlet regression, which

certainly seems to be the right way to model this problem.

2'While it is clear from Figure A.2(b) that we severely underestimated the ownership of Ryan Fitzpatrick in week
10 double-up, this isn’t reflected in Table A.8 because we are focusing on the most popular player in that table and we
did predict correctly a very popular player that week, i.e., Matthew Stafford.
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Table A.7: Bayesian p-values for the test statistic “most-picked athlete” for each variation of the
Dirichlet regression model and each week corresponding to the QB, RB, and WR positions in the
top-heavy reward structure.

QB RB WR
Week | VI V2 V3 | VI V2 V3| VI V2 V3
077 0.88 077 | 098 095 099 | 090 086 090
092 095 094 | 046 048 048 | 037 071 046
037 091 046 | 034 090 0.57 | 027 084 035
022 034 021|061 090 074 |0.15 033 022
078 095 0.87 | 028 087 040 |0.14 081 020
0.01 0.02 001|061 064 065|004 044 007
074 036 071|092 096 096|044 093 0.60
0.00 0.02 0.00 | 0.98 098 0.99 | 0.14 0.13 021
0.87 0.87 091 | 020 032 024|049 091 0.57
10 | 009 087 014|065 027 070 | 1.00 044 1.00
11 068 073 075|015 017 0.17 | 0.80 0.95 0.80
12 1074 080 082|084 1.00 089|094 084 0.89
13 /030 051 039|043 083 044 | 006 0.16 0.06
14 1007 021 009|072 063 070|012 098 0.16
15 | 096 096 096|080 0.89 088 | 1.00 1.00 1.00
16 |003 022 004|011 033 011035 077 046
17 1078 078 077|099 029 097 | 0.09 0.07 0.09

—

O 001N N B~ Wi

Table A.8: Bayesian p-values for the test statistic “most-picked athlete” for each variation of the
Dirichlet regression model and each week corresponding to the QB, RB, and WR positions in the
double-up reward structure.

QB RB WR
Week | VI V2 V3 |Vl V2 V3|Vl V2 V3
041 049 040 | 007 054 059 | 0.02 0.08 0.07
0.15 040 035|004 0.2 003|001 008 0.06
0.12 022 0.11 005 072 065000 009 0.07
0.18 0.15 0.18 | 0.03 0.15 0.11 | 0.07 0.13 0.11
0.03 021 006 | 0.03 065 039 |0.15 067 0.58
0.00 0.00 0.00 | 0.36 045 033 ]0.02 0.12 0.04
0.64 055 0.53]009 024 015|032 073 047
025 0.8 027|029 046 048 | 0.03 0.02 0.02
0.80 0.66 0.86 | 0.05 004 005|019 025 024
10 [027 070 054|003 003 005|058 011 0.13
11 001 0.0 0.01 002 002 002|036 036 032
12 1001 006 006|007 093 088|024 021 022
13 | 004 011 0.07 009 037 027|004 008 0.07
14 | 008 0.09 006|001 0.01 001|001 047 025
15 | 041 043 056|009 044 044 | 097 1.00 1.00
16 | 0.0 0.00 0.0 | 002 005 003|032 058 043
17 | 030 022 028|014 005 0.13|0.00 0.01 0.00

—
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Table A.9: Comparing the three variations of the Dirichlet regression model using normalized
cross-validation scores for each position and each reward structure.

Top-heavy Quintuple-up Double-up
Position V1 V2 V3 Vi V2 V3 V1 V2 V3
D 1.0000 0.9376 0.9822 | 1.0000 0.9910 0.9998 | 0.9961 0.9895 1.0000
K 0.9700 0.9565 1.0000 | 0.9747 0.9843 1.0000 | 0.9649 0.9863 1.0000
QB 0.9998 0.9299 1.0000 | 0.9852 0.9808 1.0000 | 0.9708 0.9792 1.0000
RB 0.9978 0.9260 1.0000 | 0.9737 0.9878 1.0000 | 0.9607 0.9977 1.0000
TE 0.9983 0.9023 1.0000 | 0.9693 0.9655 1.0000 | 0.9744 0.9682 1.0000
WR 1.0000 0.9593 0.9911 | 0.9870 1.0000 0.9832 | 0.9806 1.0000 0.9887

Cross-Validation

In order to compare the models in terms of out-of-sample performance, we perform leave-one-
out cross-validation. For each combination of (model variation, reward structure, position), we do
the following. We pick 16 weeks (the training set) out of the 17 available. We then fit the model
on the data from those 16 weeks and use it to generate posterior samples of 8. We then compute
the log-likelihood on the data for the holdout week (the test set). We repeat this 17 times, each
time with a different holdout week, and sum the 17 log-likelihoods to get a “raw” cross-validation
score. See Chapter 7 (page 175) of Gelman et al. 2013 for further details.

The results are displayed in Table A.9 for all positions across all variations and reward struc-
tures. In the table we report a “normalized” cross-validation score to make the results easier to
interpret. Consider the QB position and the top-heavy reward structure for example. The “raw”
cross-validation scores are 742.71, 690.79, and 742.88 for variations 1, 2, and 3, respectively and
we normalize these scores by simply dividing across by their maximum. Hence, a normalized
score of 1 denotes the “winner” and this winner is displayed in bold font in Table A.9. Variation 3

clearly performs the best among the three models.
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Appendix B: Additional Details for Chapter 2

B.1 Coalition Value

A key ingredient to use the concept of Shapley value is to define the value of a coalition, i.e.,
the value that a subset of players generates. The key decision here is with regards to the players
that are not in the coalition, and this decision can be very context dependent.

We illustrate the issues with a simple example. An organization consists of P players, and each
player s takes the baseline action a = 1, or an enhanced action a = 2. Let a = [a,];ep denote the
action of all the players. Let f(as, S) denote the value generated by the organization when only
S C P players are present, and they take actions ag, with f(ag, 0) = 0, and f(1,P) > 0, i.e., there
is value to the organization even if all players take the baseline action. Next, consider a coalition

X C P of players. We have two options for treating the players P \ X:

1. A player p ¢ X is treated as absent from the organization. Thus, the value v(X) is only
generated by the players in X, i.e. v(X) = f(ax, X). This is the typical specifications in SV
applications. In this setting, v(0) = O since, with no players, there is no organization, and

therefore, no value.

2. A player p ¢ X is assumed to be still present in the organization and taking the baseline
action a = 1,1i.e. v(X) = f((ax, 1p\x),P). In this case, v(0) = f(1,P) > 0, the value gener-
ated when all players in the organization take the baseline action a = 1. Next, consider any
player s € P that takes the baseline action a; = 1, then v(X U {s}) = v(X) = f((ax, 1p\x), P);
consequently, the SV allocated to any such player is, identically, zero. Thus, all of the addi-
tional value f(a,P)— f(1,P) is allocated to players taking action 2, i.e. players taking action
2 are able to “free ride” on the effort of the players taking the baseline action. The players
taking the baseline action a = 1 at most get a share of the baseline value f(1,P), which can

be arbitrarily small. Note that this approach implicitly attributes the counterfactual value of
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taking a = 2; however, it attributes action a = 2 too much of the value. To further highlight
the “unfairness” of this free-riding, consider a setting f(1,P) = 0, i.e. the value is zero if all
players take the baseline action, and, in addition, player sq is essential for the organization,
ie., flax,X) = 0if so ¢ X. Suppose, the player 5o plays the baseline action a = 1, then s

gets zero attribution even though she is essential.

This simple setting shows that if there is “value” in the baseline action, and we want to be able
to attribute to the baseline action, we must define coalitions by ensuring that players P \ X are not
contributing to value generation. In the online advertising setting, we can achieve this by assuming
that the traffic exits the system with probability 1 when one employs a state-action pair (s, a) ¢ X.

To illustrate the implications of the two choices in a Markov chain setting, consider the network
in Figure B.1. The total value in the system is 1. States 1 and 2 are both essential for completion;
however, in state 2 it does not matter whether we take the baseline no-ad-action or the ad-action.
Thus, any reasonable attribution scheme should assign a value of 1/2 to each of the states, and
further assign a counterfactual adjusted value of 1/2 to the ad-action in state 1, and a counterfactual
adjusted value of 0 to the ad-action in state 2.

Under the construct in the setting 2 where the “empty” coalition consists of taking the baseline
“no-ad” in each state, the ad-action at state 1 receives the entire value, 1.e. the baseline action in

state 2 does not receive any attribution.

11—~ OFO
©

Figure B.1: The action space consists of two actions: no-ad-action (¢ = 1) and ad-action (a =
2). Solid blue (dashed red) lines denote transitions if the ad-action (no-ad-action) is taken. The

advertiser takes the ad-action at state 1 w.p. 1 and takes the no-ad-action in state 2 w.p. 1, i.e.,

g=p=1
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B.2 Proof of Theorem 2.1

Proof of Theorem 2.1. Counterfactual efficiency and linearity follow from (2.6) when used with
the efficiency and linearity of SV, respectively. Counterfactual null player follows from (2.5). For
counterfactual symmetry, consider (s,a) € S X A and (s',a’) € S X A satisfying (A) and (B) and

observe that

= Z wix| X {v(X U A{(s,a)}) = v(X U {(s, D)D)}

XC{SxAN{(s.,a)}

_ 3w x X U @) - (X U {(s 1))}
XC{SxAN{(s,a)(s".a”)}

¥ 2 Wixpe X V(X U {(s,a), (s',a)}) = (X U {(s. D (5", @)D}
XC{SXAN{(s,a),(s".a’)}

=Y xR UGN X UL D)
XC{SxAN{(s,a).(s",a”)}

+ Z WIX[+1 X {V(X U {(s,a), (s, @)}) = v(X U{(s', DV, (s, a)})}
XC{SxA\{(s,a)(s",a’)}

= Z W|X| X {V(X U {(S’a al)}) - V(X U {(S” l)a,})}
XC{SxAN{(s",a")}

— l//;lll,shap.

To show uniqueness, consider {¥¢}(;q)esxa such that it satisfies the counterfactual axioms.

Motivated by (2.6), express ¥¢ as

w? = %a + ﬂ?’Shap(M(s,a)) _ﬂg,Shap(M(s,a))

=:d

a,Shap

for all (s,a) € S X A. To show ¢¢ = y ™" for all (s,a) € S X A, it suffices to show that 7% =
for all (s,a) € S x A. We do so by proving {r{ }(5a)esxa satisfies the four desirable properties of
SV from Section 2.4.1 (recall {7y }(; »)esxa 18 the unique solution to those properties).

Efficiency: Since 7¢ = ¢ + 7" (Msq)) for all (s,a) € S x A and {Y?}(sa)esxa satisfies
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counterfactaul efficiency, we get

Doomi= D e D A (M) = V(S X A).

(s,a)eSxA (s,a)eSXA (s,a)eSXA

Symmetry: Consider (s,a) € S X A and (s, a’) € S X A. We need to show that

VX U{(s,a)}) =v(X U{(s",a")}) VX C {Sx A} \ {(s,a),(s,d")} = =nl= ﬂf

(0)

We can use the fact that {¢/¢, 1//5‘,'} satisfy counterfactual symmetry, i.e., if (A) and (B) hold for all

X C {SxA}\ {(s,a),(s",a’)}, then
ﬂ_;l _ n_?,smp(M(&a)) = 71-?,/ — ﬂ?/,’Shap(M(sl’a’)).

For the purposes of a contradiction, suppose that (¢) holds but 7¢ # ﬂs“ It suffices to show that
this results in {y¢, 1//;1,'} violating counterfactual symmetry. Suppose (A) and (B) hold. Given (o),

statement (A) implies

WX U{(s, 1)) = v(X U{(s', )"} ¥X S {Sx A} \ {(5,a), (5", @)}
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Together with (B), this implies 71y (M, 4)) = n?,"s*“'"“( Msan):

M) = D, wa X X U (s DD - (X))
X{SxAN{(s.a)}

= Z wix| X {v(X U {(s, DY) = v(X)}

XC{SxAN{(s,a)(s",a")}

* > Wixpe X (X U {(s, 1) (5, @)}) = v( X U (s, @)1}
XC{SxAN{(s,a).(s".a")}

= Z Wix| X {V(X U{(s. D*}) - V(X)}
XS{SxAN{(s,a).(s"a")}

Y e X XU D (@) - v X U (.
XC{SxAR\{(s,a),(sa")}

= x XU DT - v

XC{SXAN{(s"a")}

— ﬂ,a’,shap (M(S”a’)) .

s/

Hence, we require n{ = ns“,' for {y¢, wf,'} to satisfy counterfactual symmetry, which contradicts
nl# nf,/.

Linearity: Since ¢ = y¢ + 77" (M, ) for all (s, a) € S x A and both ¢¢ and 715" (Ms.4))
satisty linearity, it follows that 7r{ does so too.

Null player: Consider (s,a) € S X A. We need to show that

V(X UA{(s,a)}) =v(X) VX C {Sx A} \ {(s,a)} = =¢=0.

(%)

We can use the fact that ¢ satisfies counterfactual null player, i.e.,

V(X U{(s,a)}) = v(X U{(s, )P VX S {Sx A} \{(s,a)} = 77 =73 (Msa)-
(0)

For the purposes of a contradiction, suppose that (x) holds but 7¢ # 0. It suffices to show that

this results in ¢ violating counterfactual null player. Suppose (O) holds. Subtract v(X) from both
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sides of (1) to get
V(X UA{(s,a)}) = v(X) = v(X U{(s, D)}) = v(X) YX C {Sx A} \ {(s5,a)},
which combined with (x) yields
0 =v(X U{(s, )} = v(X) VX € {SXx A} \ {(s, a)}.

This implies 715" (M, ) = 0 and hence, we require 7¢ = 0 for ¢ to satisfy counterfactual null
player, which contradicts 7¢ # 0.

This completes the proof.

B.3 Sensitivity of CASV Due to Finite Size of Data

In this appendix, we discuss the sensitivity of CASV due to the finite amount of data one
observes in practice. Throughout the discussion, we assume there exists a true underlying Markov
model M but we only observe a finite dataset of D sample paths' D := {Pi}lg |» Where each path
is sampled independently from M. The goal is to estimate CASV using the data 9 and understand
the difference between the estimated CASV and the true CASV.

We use the data 9 to compute an estimate M for the Markov model M (step 1) and then,
use M to estimate CASV (step 2). We followed this process for the results presented in Section
2.6. For step 2, we used Algorithm 4 with the inputs M (estimated model) and N = 100, 000
(number of Monte Carlo samples). As discussed in Section 2.5.2, N = 100, 000 is large enough to
obtain a stable estimate of CASV and hence, we do not discuss Monte Carlo error here. For ease of
notation, we use {¢;""(M)}(sa)esxa and {W?’Shap(ﬂ)}(s’a)egx 4 to denote the output of Algorithm 4

when the input model to the algorithm is M and /T/(\, respectively?.

I'The notation D should not be confused with the number of Monte Carlo samples N used in Algorithm 4. Instead,
D corresponds to the number of user paths we have in our real-world dataset, which is several million.

2To be technically correct, we should use the notation 5" (M) and ﬁ?’sm"(ﬂ) to acknowledge the Monte Carlo
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In order to understand the difference between the true CASV {y/§""**(M)}(5.0)esxa and the esti-
mated CASV {wf’s"ap(/‘-/(\)}(s,a)egx 4, we conducted the following simple yet informative experiment.
We fix M to be the model we estimated using real-world data in Section 2.6 and then repeat the

following steps 1,000 times:
1. Sample a dataset D := {#;}7 | of D independent paths from M.
2. Use D to obtain the estimated Markov model M.
3. Use K/(\ in Algorithm 4 with N = 100, 000 to obtain an estimate of CASV.

We experiment with D € {100, 1000, 10000} to understand how the finite sample size of data
affects the estimate of CASV. In particular, we expect the distribution of the estimator to become
more concentrated around the true value as we increase the sample size D.

The results are summarized in Figure B.2. As in Figure 2.4, we have condensed the state-action
attributions into attributions to only actions by aggregating over states after computing state-action
attributions. Note that the dotted red line in each subfigure of Figure B.2 is the attribution cor-
responding to the true model M, i.e., it corresponds to the attribution displayed under CASV in
Figure 2.4. For instance, the dotted red line in the no-ad column corresponds to an attribution of
50%, which matches the attribution to no-ad under CASV in Figure 2.4. The histogram in each
subfigure characterizes the distribution of the estimator and the solid black line is the empirical
mean of the distribution. Each column corresponds to a different ad action and each row corre-
sponds to a different value of D (number of paths used to estimate the Markov model).

Clearly, as we expected, the distribution of the estimator concentrates around the true value as
we increase the sample size D. This is perhaps not too surprising since the estimator is asymp-
totically consistent (because M — MasD — 00). Howeyver, it is remarkable that the estimator
almost converges to the true value with a value of D as low as 10,000. Contrasting this sample
size of 10,000 to the size of our real-world data (several million) highlights the robustness of our

numerics presented in Section 2.6.3.

error in Algorithm 4 but as discussed earlier, we found the Monte Carlo error to be negligible with N = 100, 000.
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Figure B.2: Summary of the sensitivity experiment. Each column corresponds to an ad action and
each row corresponds to a different value of D. The dotted red line denotes the true CASV and
the histogram denotes the distribution of the estimator. The solid black line equals the empirical
mean of the distribution. (We report the percentage attributions to each action by aggregating over
states, i.e., X ¢/ X(s.a) 1//?,' foreacha € A.)

Furthermore, the difference between the solid black line (empirical mean) and the dotted red
line (true value) in Figure B.2 for D = 100 suggests that CASV estimator might be biased. In fact,
we believe that to be quite likely. Even if M is an unbiased estimator of M, it is not necessarily
the case that %" (M) is an unbiased estimator of ¥****(M) since the mapping from M to y**™
is non-linear for an arbitrary (s,a) € S X A. Furthermore, characterizing such bias analytically is
challenging due to the complicated nature of this mapping. Fortunately, given the enormous size

of our real-world dataset (which is quite common in the context of online advertising where data
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is relatively cheap to collect), we do not have to be concerned about this bias.

B.4 Proofs of Theorem 2.3 and Proposition 2.2

Proof of Theorem 2.3. We split the proof into four parts.

Step 1: We use the fact that CASV equals the difference between two SVs

w;{,Shap(M) — ﬂ_f,Shap(M) _ ﬂ?,ShaP(M(s’a)) V(s,a) € S X A

&a,shap(M) — —a,Shap(M) _ ﬁ.a,Shap(Ma) Va c A
to express the difference Y cq ™™ — @™ as

Z TSP (M) — ﬁ_a,smp(M)] _ [Z n_;l,Shap(M(s’a)) _ ﬁ.a,shap(Ma) )

seS seS

=: (¢) =: (o)

Step 2: To analyze (¢), we observe the state-specific and aggregated SVs (see (2.3) and (2.10))

equal

M) = Y Xvm(X)

XeTUT,

R M) = Y S Xvm@X),

XeT,

where T| and T, are the sets of type 1 and 2 coalitions, respectively. This implies

(©) = > {c"X) =X}y + Y " cUX)wm(X).

XeT, XeT, seS

Step 3: We analyze (o) similarly to obtain

(8) = D X)) = E X} vyaX) + D > cX)vm, , (X),

XeT, XeT, seS
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where we use the fact that if X' € Ty, then vy, (X) = v ya(X) for all (s,a) € S X A.
Step 4: Putting steps 1, 2, and 3 together concludes the proof.
[
Proof of Proposition 2.2. It suffices to show the existence of one such instance of (M, a). Consider
the network in Figure B.3. In the aggregated model, the two players (¢ = 1 and a = 2) are
symmetric since a user can not convert if either one is absent. Accordingly, for a € {1, 2}, y*» =
1/2. On the other hand, in the state-specific model, players (1,2) and {(s, 1)}'" , are null players and
the remaining m players are symmetric and hence, each of them receives an attribution equal to the
1.Shap 2,Shap

total value in the system divided by m. Accordingly, > s ¥y ¢ = 1/mand ) s ¥ " = (m—1)/m.

Clearly, limyy_,o0 4/ %7/ s 1" = oo, which concludes the proof.

11:1_.@_1.? O
O,

1 1
© O, O,
Figure B.3: Network for the proof of Proposition 2.2. The action space consists of three actions:
show no-ad, show ad 1, and show ad 2. Solid blue (dashed brown) lines denote transitions if an ad 1
(ad 2) is shown. At state 1, taking action 1 moves the traffic to state 2 w.p. 1 whereas taking action
2 directs the traffic to quit state. At state s € {2, ..., m}, taking action 1 results in a transition to
the quit state whereas action 2 moves the users to the “next” state. For brevity, we do not show the

transitions if an ad is not shown (to quit state w.p. 1). The advertiser shows ad 1 at state 1 w.p. 1

and ad 2 at all other states w.p. 1.

B.5 Counterfactuals: Local, Global, and Forward-Looking

In Section 2.4.3, we defined the counterfactual of player (s, a) as (s, 1)*, which is equivalent
to replacing the transition probabilities of (s, @) by that of (s, 1). Given the original Markov chain

M (which corresponds to players {(s’,a’)}(s.a’)esxa) and an arbitrary player (s,a) € S X A, we

225



defined the counterfactual network M, ) such that we “replace” the player (s, a) by its counter-
factual player (s, 1)%, keeping everything else as it is and stated that our notion of CASV equals the

difference between two SVs:
P M) = T OM) = T M ). (B.1)

In this appendix, we will call such a view of a counterfactual as local since we replace a player
(s, a) by its counterfactual (s, 1)* “locally” and keep everything else as it is. Furthermore, we will
call M(y,q) as the local counterfactual network. Though our local counterfactual construct is ax-
iomatically appealing (recall Theorem 2.1), there are alternative ways to construct a counterfactual
in the Markovian network M and we discuss some possibilities in this appendix. In this direc-
tion, we first revisit our local counterfactual construct in Appendix B.5.1 and show its potential
limitation. We then introduce two alternative constructs of counterfactuals in Appendices B.5.2
(“global”) and B.5.3 (“forward-looking”) and contrast these three different constructs. Note that
the discussion in this appendix is applicable to non-Markovian models as well but we ground

ourselves to Markovian models for ease of exposition.

B.5.1 Local Counterfactual

Although the “local” counterfactual has an axiomatic grounding, it has the potential to “take
away” too much value from the player (s, a) since it allows the counterfactual player (s, 1)? to
“have access” to all of the remaining players that were present in the original network M. To shed
light on this limitation, we now discuss a simple example.

Consider the network in Figure B.4. This network is time-indexed, and a user converts if and
only if she sees at least 1 ad in total. The current policy is to show ad on both the days and the
path P corresponding to the original network M is always A0 G Bl G c. Then, CASV attributes
zero to the ad action on both the days. To see this, observe that under the original network M,

since the path P is always AO Xpr ¢, both the players (A0, ad) and (B1, ad) have a SV of
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1/2 each. However, since “locally” replacing either of the players by their counterfactuals also
results in a conversion w.p. 1, the SV under the counterfactual network M, is also half for
(s,a) € {(A0,ad),(B1,ad)}. Hence, it follows from (B.1) that CASV equals zero for both the
players.

Thus, we see that the “local” counterfactual construct has the potential to “take away’ too much
value from the players. The key reason here is that when turning ad #1 off, ad #2 is assumed to
be on and when turning ad #2 off, ad #1 is assumed to be on. In other words, the counterfactual is

local and it “gets access” to all of the remaining players that were present in the original network.

day A day B

p=1 — ()1 --»@
Q—._'@

Figure B.4: There are two days (day A and day B) and the state equals (day, number of ads seen
so far). For notational simplicity, we use “A0” to denote state (A, 0), “B0” to denote state (B, 0),
and “B1” to denote state (B, 1). The action space consists of two actions: no-ad-action (@ = 1) and
ad-action (a = 2). Solid blue (dashed red) lines denote transitions if an ad-action (no-ad-action)
is taken. The advertiser takes the ad-action on both the days w.p. 1. User’s decision to make a
purchase is made after the second day and she converts if and only if she sees at least 1 ad in total.

B.5.2 Global Counterfactual

In direct contrast to the local counterfactual, we now discuss the global CASV (G-CASV),
where the no-ad-action in state s is not allowed to “exploit” the ads in states s” # s. We define
the global counterfactual network MO as the network where all the players are replaced by their
counterfactuals, i.e. no-ad-action is taken at all the states w.p. 1. The G-CASV attribution to player

(s,a) € S x A is given by

X;l,Shap(M) — ﬂ.?,shap(M) _ ﬂ.?,Shap(MG)' (B.2)
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The G-CASYV satisfies a (different) set of axioms but for brevity, we do not discuss such axioms
here. Instead, we focus on the difference between G-CASV and (local) CASV.

For the network in Figure B.4, the SV 7&%*(M9) is identically equal to zero for all (s,a) €
S X A because the user converts if, and only if, she sees at least one ad. Hence, (B.2) implies that
the ad on day 1 and the ad on day 2 will each receive an attribution of 1/2.

Clearly, G-CASV moves in the right direction in that it recognizes that there is value to showing
ads and does not “take away” all the value from the ads. However, it appears that this global view
may end up attributing too much value to ads. For instance, in Figure B.4, once the user has
seen the first ad (which happens w.p. 1 in our setup), there is no added value in showing the
second ad. This line of reasoning implies that the second ad should receive zero attribution but
the global counterfactual still attributes a value of 1/2. Accordingly, it seems desirable to have a
middleground between the two extremes of local and global counterfactuals, and we propose one

such middleground next.

B.5.3 Forward-Looking Counterfactual

The forward-looking counterfactual asks “conditioned on being in state s, what would have
happened if instead of taking the ad-action a at state s, no-ad-action was taken at state s and at all
the states encountered from then on?”. In contrast, the local counterfactual view asks the question
“conditioned on being in state s, what would have happened if instead of taking the ad-action a at
state s, no-ad-action was taken at state s but other state-ad pairs were as in the original network?”
and the global counterfactual view does not even condition on state s and simply asks the question
“what would have happened if no-ad-action was taken at all the states?”.

Define the “expanded” Markov chain M on the state space S*' = S x A, and for each state
(s,a) € S™, there is a single action, with the transition probability (s, a) to state (s,a’) € S
equal to p?, ﬁ? Note the original Markov chain M and M®" are equivalent in the sense that the
sequence of state-action pairs have the same distribution. Define the Markov chain MS on the

extended state space S! by setting the transition from state (s, a) to state (s/, a’) € S™' to be equal
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to pis, ?,', i.e. we take the baseline no-ad action in each state (s, a) € S
For a given state-action pair (s, a), define the “forward-looking” Markov chain MFS o 3 fol-

lows:
1. Start in the Markov chain M with the expanded state space S°*'.

2. When the given (s, a) is encountered in ME®*, transition to the corresponding state in MO
g p g

and follow that chain until absorption.

Given these definitions, the forward-looking CASV (F-CASV) for the state (s, a) is given by
L M) = 7L M) = mE MG ). (B.3)

This characterization can be converted into an appropriate axiomatic characterization for F-CASV.
For the network in Figure B.4, F-CASV attributes 1/2 to the ad-action on day 1 and O to the ad-
action on day 2. The remaining half is attributed to no-ad.

For all reasonable networks, we expect
local CASV < forward-looking CASV < global CASV;

however, we are able to prove the statement for very strong assumptions on the underlying Marko-

vian network.
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Appendix C: Additional Details for Chapter 3

C.1 Proof of Theorem 3.1

In this appendix, we present the proof of Theorem 3.1. To do so, we leverage the stochastic ap-
proximation theory, for which, we provide a brief primer (Appendix C.1.1). We then establish a few

supporting lemmas (Appendix C.1.2), which we invoke to prove Theorem 3.1 (Appendix C.1.3).

C.1.1  Primer on Asynchronous Stochastic Approximation

The contents of this subsection are based on Tsitsiklis 1994 and hence, we refer the reader
to Tsitsiklis 1994 for further details. Here, we only present the results of Tsitsiklis 1994 that are
relevant to us. To help the reader connect these results to our setup, we alter some of the notation
in Tsitsiklis 1994 so that it matches our notation.

First, observe that the optimal Q-value vector Q" := [Q*(s, a)](s,a)esxa for the conversion fun-
nel is the unique solution to the following system of equations (Bertsekas 1995; Puterman 2014;

Sutton and Barto 2018):

0*(s,a) = Z Dsas X Max Q*(s',a’) V(s,a) € S X A, (C.1)
a’eA

s’eS*

where we set Q*(c,a) = 1 and Q*(q, a) = 0 for all a € A. For ease of notation, we will denote the

RHS of (C.1) by F;,(Q") and hence, we get:
Q" (s,a) = Fsa(Q") V(s,a) € S X A. (C.2)

Second, we define an asynchronous stochastic approximation scheme with respect to the sys-
tem of equations (C.2). Our goal here is to be able to find a vector X := [X(s, @)](sq)esxa such that

it satisfies (C.2) (and hence, equals Q). We initialize X (s, a) arbitrarily in [0, 1] for all (s, a) € SXA
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and X(c,a) = 1 and X(g,a) = 0 for all @ € A. We will update X iteratively and use the notation
Xi+1 = [Xi+1(5, @)](s,0)esxa to denote the value of X just after iteration t € {1,2,...}. The ini-
tialization corresponds to X;. The value corresponding to a state-action pair (s,a) € S X A might
not be updated in each iteration and we denote by T(s,a) C {1,2,...} the iterations in which it is
updated. In an asynchronous stochastic approximation scheme, the updates are as follows for all

(s,a) € SXA:

X (s,a) if t ¢ T(s,a)
Xiv1(s, a) (C.3)

Xi(s,a) + k(s, a) (Fso(Xy) = Xi(s,a) + wi(s,a))  ift € T(s,a)

Here, «,(s,a) € [0, 1] is a stepsize parameter and w,(s, a) is a noise term. For all t € {1,2,...},
the information set 7; is defined such that it captures the history of the algorithm till the time the
stepsizes (s, a) are selected, but does not include the noise information w;(s, a).

Finally, we state the result we will leverage, which follows Theorem 3 of Tsitsiklis 1994 and

uses Assumption 3.1 (absorption) from Section 3.2.

Proposition C.1. Under Assumption 3.1, X; converges to Q* w.p. 1 as t — oo if the following

conditions hold:
1. Forevery (s,a) e SXA, t € {1,2,...}, w(s, a) is F;+1-measurable.
2. Forevery(s,a) € Sx A, t €{1,2,...}, k(s,a) is F;-measurable.
3. Forevery(s,a) € SxX A, t€{l1,2,...}, E[w(s,a)|F] = 0.

4. There exist deterministic constants A and B such that for every (s,a) € SX A, t € {1,2,...},

we have

B[wi (s, @) 7] < A + B max max |Q«(s', ).
T

(s".a")

231



5. Forevery (s,a) € S X A,

Z Ki(s,a) = o w.p. 1
=0
Z K (s,a) < cowp. 1.
t=0

Remark C.1. Theorem 3 of Tsitsiklis 1994 requires “Assumptions 1, 2, 3, and 5” (as stated in
Tsitsiklis 1994). Assumption 1 of Tsitsiklis 1994 is trivially satisfied by the asynchronous stochastic
approximation we defined above and our conditions in Proposition C.1 cover Assumptions 2 and 3
of Tsitsiklis 1994. Finally, our absorption assumption implies Assumption 5 of Tsitsiklis 1994 (see

the discussion above Theorem 4 in Tsitsiklis 1994).

C.1.2 Supporting Lemmas

We now establish a few supporting lemmas that will help us in proving Theorem 3.1. In partic-
ular, we show that the expected update in our MFABL algorithm is an instance of the asynchronous
stochastic approximation scheme above.

Consider an arbitrary iteration' i in Algorithm 6 such that the corresponding consumer was
in state s € S, the firm took action a € A, and the consumer transitioned to state s’ € S*. De-
note by Q;(s, a) 4 Beta(a,,(7), Bsaq(i)) the belief over the value of (s, a) before the update and by
Qir1(s,a) 4 Beta(asq(i + 1), Bsa(i + 1)) the belief after the update. Denote by Q;(s, @) and Q;, (s, a)
the expected values of Q;(s, a) and Q;+(s, a), respectively. Finally, define n,(i) := a,(i) + Bsa(i)
and ng, (i + 1) := az(i + 1) + Bga(i + 1). Recall that f;- denotes the feedback generated from state

s’

. Ay l
fs ~ Bernoulli { max < @) S
a’eA Clsla'(l) + ﬁs’a’(l)

The following lemma characterizes the expected update.

By “iteration”, we refer to specific (t, n) pair in Algorithm 6.

232



Lemma C.1. The expected update obeys the following equation:

Nsa(i)

)+ 12O

§i+1(s’ Cl) f

nsa(i) + 1

Proof. We split the proof into two parts: (1) fir = 0and (2) fy = 1.
Case 1. If f;; = 0, MFABL increases B, by 1, i.e.,

q(i + 1) = g, (i)

ﬁsa(i + 1) = ﬂsa(i) + 1.

Before the update, the expected value of Q;(s, a) = Beta(a/m(z) Bsa(i)) equals

@0 (7)

Q‘(S’ a) = Hea(i)’

After the update, the expected value of Q;,1(s,a) = Beta(asa(l + 1), Bsa(i + 1)) equals

asq(i + 1)
Nea(i + 1)
q(i)
ngq(i) + 1
nsa(i) a’sa(i) i 1
Nga(i) + 1 ngo (i) nga(i) + 1
nsa(i) —
= in(& a) +
Na(T)

=.—Q(S a) +

ngq(i) + 1

§i+1(s7 (1)

—0
nga(i) + 1

@10

Case 2. If f;; = 1, MFABL increases a;, by 1, i.e.,

aso(i + 1) = az,(i) + 1

ﬁsa(i +1)= ﬁsa(i)'

233



Before the update, the expected value of Q;(s, a) 4 Beta(a,, (i), B5q(i)) equals

After the update, the expected value of Q;,(s, a) 4 Beta(a,,(i + 1), Bsa(i + 1)) equals

asqa(i +1)

nga(i + 1)

asq(i) + 1

Nea(i) + 1
@sali) 1

nga(@) + 1 nge(i) + 1
nea(i)  sa(i) " 1

Nsa(i) + 1 n5q(0) — nga(@) + 1
Na (i)

— 1
= ————0(s,a) + ———f.

ngq(i) + 1 nea(i) + 1

Q‘H (s, a)

This completes the proof.

[ ]

In iteration i, MFABL updates belief Q;(s, a) to Q;+1(s, a) by updating the corresponding pa-
rameters «;(s,a) and B;(s,a) to @;;1(s,a) and B;;1(s,a). The belief over the value of all other
state-action pairs (s',a’) # (s,a) remains unchanged. This process repeats for multiple itera-
tions and the corresponding process is denoted by {Q;}; where Q; := [Q;(s, a)](sa)esxa for all i.
By the “counterpart of MFABL in the expectation space”, we refer to the process {Q,}; where
6,~ = [04(s, a)](s,a)esxa for all i. Lemma C.1 enables us to draw a connection between MFABL
and the asynchronous stochastic approximation scheme above. In particular, we claim that the
“counterpart of MFABL in the expectation space” is an instance of the asynchronous stochastic

approximation scheme.

Lemma C.2. The process {6,-},- is an asynchronous stochastic approximation scheme with respect

to the system of equations (C.2).
Proof. Given any prior counts as an input to MFABL, Q(s, a) € [0, 1] for all (s,a) € S X A. Line
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1 of Algorithm 6 ensures Q;(c,a) = 1 and Q,(g,a) = 0 for all a € A. Lemma C.1 implies (C.3) is

satisfied with the stepsize parameter equal to x;(s,a) = which is in [0,1] since nz,(i) > 0

1
ngq(i)+1°

for all (s,a) € S x A and for all i. To see this, observe that

Na(i)

nsa(i) + 1 nsa(i) + 1

= 0i(sa) + ——— m() - (= 0s.0)

§i+l(s’ Cl) = éi(s’ a) + fi’

= 0:(5.0) + ——— (Fua(@) = 0i(5. @) + fi = Fa(@)

sa( )

= 0(5.0) + ——— Fal@) = 05, @) + w5, @),

Nsa(i )

where w;(s, a) := f; — Fy.4(Q;) represents the noise term:

Bwi(s.a)l7) = E | - Fa(@)I7]
= B[fy|i] - E | Fu(@)I7]

Bernoulli (max @y (0) )

=B a+
s7es aeh aya(i) + Byar ()

a] - Z Psas Max Q;(s’, a’)
a’eA
s’eST
= Z Dsas’ MaX Qi(sla a/) - Z Dsas’ MAX Qi(sl, a/)
Pt a’eA et a’eA

=0.

Note that 7; includes the information that MFABL played action « in iteration i but it does not

include the information that the consumer transitioned to state s’. This completes the proof.

C.1.3 Proof of Theorem 3.1

To prove Theorem 3.1, we first establish that the expectation counterpart Q; converges to Q*
w.p. 1 as i goes to infinity. Then, we show that the variance of the Beta belief Q; goes to zero as i

goes to infinity, and hence, Q; converges to Q*. The following lemma claims the first part.
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Lemma C.3. Under Assumption 3.1, Q; converges to Q* w.p. I asi — o.

Proof. Given Lemma C.2, it suffices to show that the conditions in Proposition C.1 are satisfied.
For condition 1, as shown in the proof of Lemma C.1, the noise term equals w;(s, a) = fy—F. W(Gi),
which is F;,-measurable for every (s,a) € SxA,i € {1,2,...}. From the proof of Lemma C.1, the

stepsize equals «;(s,a) = which is F;-measurable for every (s,a) € SX A, i € {1,2,...}.

_ 1
Nsq (i)+1 ’
We verified condition 3 (noise is mean-zero) in the proof of Lemma C.1. For condition 4, note that

A =1and B = 0 works since for all (s,a) € Sx A,i € {1,2,...},and s’ € S*, we have

wi(s,a) = (fs' - Fs,a@))z

2
= f:ﬁ’ - Z Psas’ g}gg@i(s/a a,))

s’eSt

IA
—

Final inequality is true because f; € [0, 1] and Q;(s’,a’) € [0, 1]. Finally, condition 5 is true

because the stepsize sequence corresponding to k;(s,a) = forms a harmonic series and

1
ngq(i)+1
each state-action pair is visited infinitely often due to the e-greedy construction of MFABL and
the “connectedness” assumption (recall the discussion when defining initial state probabilities in

Section 3.2).

[
Proof of Theorem 3.1. Given Lemma C.3, it suffices to show that the variance of the Beta belief
Q; goes to zero as i goes to infinity. Observe that in each visit to (s, a) € S X A, the “count” n(s, a)
increases by 1 since either a(s, a) is increased by 1 or B(s, a) is increased by 1. Furthermore, due
to the e-greedy construction of MFABL and the “connectedness” assumption (recall the discussion
when defining initial state probabilities in Section 3.2), each state-action pair is visited infinitely

often and hence n;(s,a) — oo as i goes to infinity for all (s,a) € S x A. This implies that the
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variance of Q;(s, a) goes to 0 because

Var (Q;(s, a)) = Var (Beta(a;(s, a), Bi(s, a))
(s, a) X Bi(s, a)
niz(s, a) X (ni(s,a) + 1)
ni(s,a) X n;(s, a)
B nl.z(s, a) X (ni(s,a) + 1)
1
ni(s,a)+1°

C.2 Algorithms for Model Extensions

In this appendix, we discuss the algorithms corresponding to the model extensions discussed
in Section 3.5. Since the algorithm for extension #3 (consumer features) is the same as the original
MFABL (Algorithm 6), we skip that extension here and only discuss the first two extensions: (1)

multiple products (Appendix C.2.1) and (2) actions with costs (Appendix C.2.2).

C.2.1  Multiple Products

The MFABL algorithm for the conversion funnel with multiple products is essentially the same
as the one corresponding to a single product (Algorithm 6). The only change is in line 1 of Algo-
rithm 6, i.e., the initialization of the counts corresponding to the absorbing states. In particular, the

initialization in line 1 is as follows:

(@qas Bga) = (1,00) forall a € A

(acma,ﬁcma) =(1+L (1+L)1-ry)/ry) foralla e A, Yme {1,...,M},
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where L is a “large” constant. Such an initialization of the conversion states ensures the belief in

MFABL is such that
Olemya) =rpwp. 1Vme{l,...,M}as L — co.

Hence, a transition to a conversion state generates the “true” reward. The convergence result

(Theorem 3.1) for this generalization mimics the same arguments as in Appendix C.1.

C.2.2 Actions with Costs

The MFABL algorithm for actions with costs is presented as Algorithm 11. The key change
is that instead of maintaining a Beta belief on the value of a state-action pair, we now maintain
a Gaussian belief Normal(,, Ts,) Where g, denotes the mean and 7y, denotes the precision for
all (s,a) € S x A. The action selection remains the same as in MFABL (pick maximum sam-
ple value with e-greedy). The parameters update is done to mimic the G—update in the original
MFABL algorithm (Algorithm 6). In particular, compare line 11 of Algorithm 11 to Lemma C.1
in Appendix C.1. Due to such construction, convergence of Algorithm 11 to Q* can be shown
in a similar manner as the convergence of Algorithm 6 (Theorem 3.1). To be precise, (C.1) from

Appendix C.1 changes to the following:

0'(s.0) = Elcsal + ), pray max 0'(s', ") ¥(s,a) € S x A, (C.5)

s’eSt

where we set Q*(c,a) = r and Q*(g,a) = 0 for all a € A. As in Appendix C.1, we denote the RHS
of (C.5) by Fy,(Q):

0*(s,a) = Foo(Q) Y(s,a) € S X A, (C.6)

The definition of an asynchronous stochastic approximation scheme remains the same as in Ap-

pendix C.1 (see (C.3)) but now Fj,(+) is as defined above and the initialization X; need not be in
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[0, 1]. Proposition C.1 still holds due to Tsitsiklis 1994. By construction of Algorithm 11 (lines 11

and 12 in particular), Lemma C.1 still holds, and so does Lemma C.2 with «;(s,a) = Tli)H’ ie.,

Tsq(i) replaces ny,(i). The noise w;(s, a) is still mean-zero as shown below:

B [wi(s, )|7] = B | fy = Fua(@)I7]
= B [fy|1] - B | Foa(@)I7]

= Eyes+ [Csq + Normal (l-ls’a’, Ts’a’)

a,a’ = arg max ,us’d] — Elcsal - Z Psas' max 0i(s,a")
a

aeA s’eSt

= E[gsa] + Z Psas’ MAX Us'q’ — E[Csa] - Z Psas’ MAX Us’ g
a’eA a’eA

s’eS+ s’eS+

=0.

To ensure the validity of Lemma C.3, we need to re-establish condition 4 of Proposition C.1, which
is known to hold (see the discussion above Theorem 4 in Tsitsiklis 1994). All other conditions of
Proposition C.1 hold for similar reasons as in Appendix C.1. Finally, to conclude the analysis, we
need to ensure the variance of our Beta belief Q(s, a) goes to zero for all (s, a) € S X A. This is true
since our e-greedy construction of Algorithm 11 and the “connectedness” assumption (recall the
discussion when defining initial state probabilities in Section 3.2) ensures each state-action pair is
visited infinitely often and hence the precision 7y, (which equals the inverse of variance) goes to

infinity for each (s, a) € S X A (follows line 12 of Algorithm 11).
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Algorithm 11 MFABL with Non-Zero Cost Actions (N Consumers)

Require: Prior parameters (i, 7o) V(s,a) € S X A, €

12 (Hea Tea) = (1, 00) and (pgq, Tga) = (0, 00) for all a € A % parameters for states ¢ and ¢
2: forr=1,2,... % until there exists an “active” consumer (has not converted or quit)
3: forn=1toN

4: Observe state s = s,; of consumer 7 at time ¢

5: ifsesS % filter for “active” consumers
6: qsa ~ Normal(u,, 754) Ya € A % generate samples
7: a* = argmax, g5, With e-greedy % highest sample value with e-greedy
8: Firm incurs a cost ¢+ ~ Cyu % csq+ possibly random
0: Consumer transitions to state s” = 5,41 € ST
10: fsr ~ €sq» + Normal (uy 47, 7o) Where a’ = arg max 5 tsa % generate feedback
11: Hsar — T::fil Usar + ﬁ fy % update mean
12: Tear < Tsar + 1 % update precision
13: end if
14:  end for
15: end for

t6: return Q := [Q(s. )]sa)esxa Where Q(s, a) £ Normal(jiyq. 7sa)
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