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Abstract

Some Statistical Models for Prediction

Jonathan Auerbach

This dissertation examines the use of statistical models for prediction. Examples are drawn

from public policy and chosen because they represent pressing problems facing U.S. governments

at the local, state, and federal level. The first five chapters provide examples where the

perfunctory use of linear models, the prediction tool of choice in government, failed to produce

reasonable predictions. Methodological flaws are identified, and more accurate models are

proposed that draw on advances in statistics, data science, and machine learning. Chapter 1

examines skyscraper construction, where the normality assumption is violated and extreme value

analysis is more appropriate. Chapters 2 and 3 examine presidential approval and voting (a

leading measure of civic participation), where the non-collinearity assumption is violated and an

index model is more appropriate. Chapter 4 examines changes in temperature sensitivity due to

global warming, where the linearity assumption is violated and a first-hitting-time model is more

appropriate. Chapter 5 examines the crime rate, where the independence assumption is violated

and a block model is more appropriate. The last chapter provides an example where simple linear

regression was overlooked as providing a sensible solution. Chapter 6 examines traffic fatalities,

where the linear assumption provides a better predictor than the more popular non-linear

probability model, logistic regression. A theoretical connection is established between the linear

probability model, the influence score, and the predictivity.
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Chapter 1: Forecasting the Urban Skyline with Extreme Value Theory

with Phyllis Wan

The world’s urban population is expected to grow fifty percent by the year 2050 and exceed six

billion. The major challenges confronting cities, such as sustainability, safety, and equality, will

depend on the infrastructure developed to accommodate the increase. Urban planners have long

debated the consequences of vertical expansion—the concentration of residents by constructing tall

buildings—over horizontal expansion—the dispersal of residents by extending urban boundaries.

Yet relatively little work has predicted the vertical expansion of cities and quantified the likelihood

and therefore urgency of these consequences.

We regard tall buildings as random exceedances over a threshold and use extreme value theory

to forecast the skyscrapers that will dominate the urban skyline in 2050 if present trends continue.

We predict forty-one thousand skyscrapers will surpass 150 meters and 40 floors, an increase of

eight percent a year, far outpacing the expected urban population growth of two percent a year. The

typical tall skyscraper will not be noticeably taller, and the tallest will likely exceed one thousand

meters but not one mile. If a mile-high skyscraper is constructed, it will hold fewer occupants

than many of the mile-highs currently designed. We predict roughly three-quarters the number of

floors of the Mile-High Tower, two-thirds of Next Tokyo’s Sky Mile Tower, and half the floors of

Frank Lloyd Wright’s The Illinois—three prominent plans for a mile-high skyscraper. However,

the relationship between floor and height will vary considerably across cities.

1.1 Introduction

The world is urbanizing at an astonishing rate. Four billion people live in urban areas, up

from two billion in 1985. By 2050, the United Nations predicts the urban population will ex-
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ceed six billion. The increase is due to growth in both the world population and the proportion

of the population that resides in urban areas. Roughly half the world’s population is urban, up

from forty-percent in 1985 and projected to rise above two-thirds in 2050 (UN, 2018). The future

preponderance of cities suggests the major challenges confronting civilization will be urban chal-

lenges. Moreover, the particular nature of these challenges will depend on how cities choose to

accommodate urbanization (Rose, 2016, p.15).

Cities change in response to population growth by either increasing density—the population per

land area—or extending boundaries—the horizontal distance between city limits. The prevailing

paradigm among urban planners is to preserve city boundaries and encourage density (Angel et

al., 2011). It argues that density affords certain economies of scale, such as reducing the cost

of infrastructure and social services like roads, water, safety, and health care. Density is also

advocated to promote sustainability by preserving the city periphery for agriculture or wildlife

(Swilling, 2016). Yet density, if not properly accommodated, can lead to overcrowding and impede

quality of life. Nearly one third of urban residents in developing regions live in overcrowded slums

that concentrate poverty (UN, 2015, p.2).

Some urban planners have argued that density requires vertical expansion, through the con-

struction of skyscrapers, to prevent overcrowding and maintain quality of life (Gottmann (1966),

Al-Kodmany (2012), Barr (2017)). This three-dimensional solution to a two-dimensional prob-

lem was stated as early as 1925 by the architect Le Corbusier: “We must decongest the centers of

our cities by increasing their density” (Kashef, 2008). In this spirit, Glaeser (2011) recommends

policies that ease height restrictions and increase financial incentives for skyscraper development.

Other urban planners warn that urbanization is too rapid to be adequately addressed by vertical

expansion (James (2001, p.484), Cohen (2006, p.73), Canepari (2014)). Angel et al. (2011) argue

cities must “make room” for urbanization by moving boundaries and recommend policies that

extend the radius of public services like the transit system.

It stands to reason that cities will utilize multiple strategies to accommodate urbanization. For

example, cities will incentivize some vertical expansion and extend the radius of some public
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services. The challenges facing cities in 2050 will depend on which policies are implemented.

Anticipating these challenges requires an answer to questions such as: if present trends continue,

how much vertical growth will the typical city experience by 2050? How much farther will the

typical city boundary extend?

This paper demonstrates that extreme value theory provides a principled basis for forecasting

vertical growth. It regards tall buildings as random exceedances over a threshold and uses the

probabilistic laws governing extreme values to extrapolate the characteristics of the skyscrapers

that will dominate the urban skyline in 2050. Similar arguments have produced successful forecasts

in a wide variety of fields, most notably those concerned with risk management, such as finance

(Gencay and Selcuk (2004), Bao et al. (2006), Chan and Gray (2006), Herrera and González

(2014)) and climate (Garreaud, RD. (2004), Ghil (2011), D’Amico et al. (2015), Thompson et al.

(2017)). However, we know of no work that applies these arguments to forecast how cities will

respond to rapid urbanization.

The findings are arranged into five sections. Section 2 motivates the use of statistical models to

characterize the uncertainty of skyscraper development. The data are described, and a brief review

of the skyscraper literature follows. Section 3 outlines the Poisson regression used to conclude

that forty-one thousand skyscrapers will be completed by 2050. Section 4 outlines the generalized

Pareto distribution (GPD) used to conclude that there is a seventy-three percent chance a skyscraper

will exceed one thousand meters by 2050 and an eleven percent chance it will exceed a mile.

Section 5 outlines the censored asymmetric bivariate logistic distribution used to conclude that a

mile-high skyscraper, if built, will have around 250 floors. The paper concludes with two sections,

highlighting the methodological and policy consequences of these predictions, respectively.

1.2 Modeling the Uncertainties of Skyscraper Development

This paper predicts the prevalence and nature of skyscrapers in the year 2050 if present trends

continue. This section reviews the definition of a skyscraper, motivates the statistical modeling of

tall buildings, and outlines our forecasting strategy.
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Strictly speaking, the term skyscraper refers not to height but to the mode of construction. A

skyscraper is defined as any multi-story building supported by a steel or concrete frame instead

of traditional load-bearing walls (Curl and Wilson, 2015, p.710). The tall buildings capable of

sustaining the dense cities of the future will almost certainly be skyscrapers. Over the past century,

building beyond a few floors has required a supporting frame.

In contrast to the precise definition of a skyscraper, the definition of a tall building depends on

context. From a public safety perspective, high-rises—multi-story buildings as short as 23 meters

(75 feet)—are harder to evacuate than low-rises. From an environmental perspective, however,

only a much taller structure (152 meters, 500 feet) would obstruct the migration pattern of birds

(Brown and Caputo, 2007, p. 17). The Council on Tall Buildings and Urban Habitat (CTBUH)

sets international standards for the purpose of research and arbitrating titles, such as the world’s

tallest building. They define buildings exceeding fifty meters as tall, three-hundred meters as

super tall, and six-hundred meters as mega tall. Height is measured from “the level of the lowest,

significant, open-air, pedestrian entrance to the architectural top of the building, including spires,

but not including antennae, signage, flag poles or other functional-technical equipment” (Council

on Tall Buildings and Urban Habitat, 2017).

This analysis retains the CTBUH measure of height but bases its definition of tall on statistical

considerations. It relies on data from The Skyscraper Center, a CTBUH directory of every tall

building worldwide. The directory is “the premier source for accurate, reliable information on tall

buildings around the world” (Council on Tall Buildings and Urban Habitat, 2017). Nevertheless,

it depends on CTBUH members and the public to add entries, resulting in the partial or complete

omission of some smaller buildings. The data appear complete for buildings exceeding 150 meters

and 40 floors, roughly the height of the Great Pyramid of Giza, the United Nations Headquarters,

or the Seagram Building in New York City. We refer to these skyscrapers as tall. The Skyscraper

Center catalogs 3,251 tall skyscrapers in 258 cities as of December 2017.

The height and year each tall skyscraper was completed is displayed in the top-left panel of

Figure 1. It appears from the panel as though a simple statistical relationship might govern the
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number of skyscrapers exceeding various heights, ignoring the hiatus between the Great Depres-

sion and the Second World War, which is assumed to be anomalous. If this is the case, forecast-

ing the prevalence and nature of skyscrapers in the year 2050 is simply a matter of extrapolating

that relationship. But it cannot be taken for granted that skyscrapers can be modeled statistically.

These buildings are modern marvels, requiring enormous cooperation across teams of architects,

engineers, financiers, and multiple levels of government. Extrapolation from the data is only mean-

ingful if the determinants underlying skyscraper construction are varied and independent enough

to be characterized statistically. The following is an argument supporting this view.

Skyscrapers appeared in the nineteenth century after technological innovations, such as the

elevator brake and the mass production of steel, made building beyond a few floors economical.

By the turn of the twentieth century, a handful of twenty floor buildings had been completed in

major cities across the United States. Advances in the mid-twentieth century permitted mile-

high buildings (1609.34 meters), and various architects have since proposed designs, such as the

Houston Pinnacle (1 mile, 500 floors), the Ultima Tower (2 miles, 500 floors), and the Sky Mile

Tower (1 mile, 400 floors). Perhaps most famously, the architect Frank Lolyd Wright proposed

The Illinois in 1957, a mile-high building with 528 floors (Council on Tall Buildings and Urban

Habitat, 2017).

But none of these designs have been realized. Despite the technical ability to build tall, mile-

high skyscrapers are considered impractical because they are unlikely to turn a profit. In fact,

ambitious skyscrapers frequently fail for financial reasons (Lepik, 2004, p.21-2). For example, the

Jeddah Tower was originally planned for one mile (330 floors). After the Great Recession, the

height was reduced by more than a third to one thousand meters (167 floors).

Skyscrapers are a commercial response to an economic phenomenon. They arise when land

values produce rents that exceed the enormous cost of construction and maintenance. Aesthetics

are a secondary concern (Clark and Kingston, 1930), (Willis, 1995), (Ascher and Vroman, 2011,

p.12,22). Indeed, it was in the aftermath of the 1871 Chicago fire that the urgent need for new

office space produced the First Chicago School of skyscrapers (Lepik, 2004, p.6). Construction
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has since followed the rise of oil-rich Middle Eastern countries in the 1980s, the former Soviet-bloc

countries in the 1990s, and the Pacific Rim countries in the 2000s (Sennott, 2004, p.1217). Barr

and Luo (2017) find that half of the variation in China’s skyscraper construction can be explained

by population and gross city product alone. As the architect Cass Gilbert famously summarized:

“A skyscraper is a machine that makes the land pay.”

The enormous cost of a skyscraper is not only the result of additional construction materials.

Taller buildings require concrete to be pumped at higher pressures (Ascher and Vroman, 2011,

p.83). Nor is the cost entirely in raising the building itself. Taller buildings require more elevators,

which reduces the floor area available for occupancy and thus the revenue potential of the building

(Ascher and Vroman, 2011, p.33). Human comfort is also a factor. Excessive elevator speed

(Ascher and Vroman, 2011, p.103) and building sway (Ascher and Vroman, 2011, p.1) can produce

motion sickness even if safe. Additional considerations include government policy (permits and

zoning, financial incentives, and public infrastructure), cultural values (equity, sustainability, and

security), and environment (foundation quality, prevailing winds, and natural disaster frequency).

In short, a litany of factors must align favorably to produce a skyscraper. One could hypothet-

ically observe every factor for every property and predict the future of skyscraper development.

Yet it is convenient, and perhaps more accurate, to regard unobserved heterogeneity among these

factors as a source of randomness that obeys the laws of probability. Statistical models quantify

the probability a property possesses the factors that will produce a particular skyscraper, where the

parameters of the models are determined from data.

In the following sections, we demonstrate that extreme value theory provides a principled strat-

egy for choosing a statistical model. We adopt the Peaks Over Threshold approach: First, we select

all observations exceeding a threshold. Then, we model the number of exceedances with Poisson

distributions and the sizes of the exceedances with generalized Pareto distributions. The challenge

with this approach is choosing the threshold. If the threshold is set too low, the assumptions under-

lying extreme value theory are not reasonably satisfied, and the model will not be flexible enough

to approximate the data. If the threshold is set too high, there will not be enough data to estimate
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the model parameters reliably.

Our forecasts use a different threshold for the Poisson and generalized Pareto distributions.

We choose the lowest thresholds such that each model appears accurate, and we extrapolate the

number or sizes of skyscrapers exceeding the respective threshold until the year 2050, thirty-three

years after the data was collected in 2017. We repeat each forecast on a subset of the data to validate

the results: We use data available only before 1984 to predict skyscraper development until 2017,

thirty-three years later, and compare the predictions with the actual data. In Section 3, we find

the threshold of 150 meters and 40 floors sufficiently high to forecast the number of buildings

exceeding that threshold in 2050. However, it is too low to forecast the heights of those buildings.

In Section 4, we find a threshold of 225 meters or 59 floors sufficient, roughly the size of One

Penn Plaza in New York City. We refer to these buildings as extremely tall since the assumptions

underlying extreme value theory appear to hold at this height. CTBUH catalogs 325 extremely tall

skyscrapers in 81 cities as of December 2017, one tenth the number of tall skyscrapers.

Our approach assumes skyscraper development is independent given the parameters of these

distributions. The assumption is certainly violated for contemporaneously completed skyscrapers

within the same city—the aforementioned factors producing such skyscrapers are linked inextrica-

bly. But a series of recent investigations suggest that these factors are largely independent across

cities and time periods. For example, Barr (2012) finds competition within cities is limited to pe-

riods close in time and space, Barr, Mizrach, and Mundra (2015) find skyscraper height is not a

useful indicator of economic bubbles or turning points, and Barr and Luo (2017) find little evidence

that cities in China compete for the tallest building.

The literature indicates that considerable economic pressure produces the factors that drive

skyscraper development, and the catalyst for this pressure varies idiosyncratically by city and time

period. It is perhaps because of this idiosyncratic variation—and the fact that no city possesses

more than ten percent of all skyscrapers—that the prevalence and nature of skyscrapers so closely

follows the distributions derived under extreme value theory, as demonstrated in the following sec-

tions, despite periods of economic and political turmoil within nearly every city since the Second
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World War.

1.3 Predicting the Quantity of Skyscrapers Completed by 2050

Skyscraper construction has increased at a remarkably steady rate. The number of tall skyscrapers—

skyscrapers exceeding 150 meters and 40 floors—has risen at the rate of eight percent a year since

1950. If this trend continues, the eight percent annual growth rate of skyscrapers will far outpace

the two percent annual growth rate of urban populations anticipated by the UN (2018). Forty-one

thousand tall skyscrapers will be completed by 2050, 6,800 per billion city residents compared to

the roughly 800 per billion city residents today.

The eight percent rate was determined by fitting the following Poisson regression model. Let

Nt be the number of tall skyscrapers completed in year t, t = 1950, . . . , 2017. The Nt’s are

assumed to be independent and follow a Poisson distribution with mean

E[Nt] = exp(α + βt).

The Poisson distribution can be justified theoretically by regarding Nt as the sum of independent

Bernoulli trials: Suppose D(t) is the set containing every building in the world completed in

year t. Define Du(t) to be the subset of all buildings in D(t) exceeding the height threshold u.

The Poisson Limit Theorem states that for sufficiently large u, the probability a building in D(t)

is also in Du(t) is small, and the number of buildings in Du(t), Nt , is well approximated by a

Poisson distribution. See Coles (2001, p.124) for a more detailed discussion of the Poisson limit

for threshold exceedances.

We use the glm function in the R Core Team (2018) package stats to obtain maximum

likelihood estimates α̂ and β̂ and to calculate their standard errors. The plug-in estimate, Ê[Nt] =

exp(α̂ + β̂t), is plotted against the data in the top-right panel of Figure 1.1. An inner 95 percent

predictive interval for the years 2020 to 2050 is added in the bottom-left panel. A cumulative

thirty-eight thousand skyscrapers is estimated for completion between 2018 and 2050 if present
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trends continue (forty-one thousand total, with a standard error of seven thousand), about twelve

times the current number.

To demonstrate the accuracy of the model for predicting 2050, thirty-three years after the data

was collected in 2017, we predict the last thirty-three years using only data that would have been

available before 1984. The bottom-right panel shows that if such predictions had been made in

1984 (dotted blue line), they would align closely with the actual number of skyscrapers built each

year. The log-linear model anticipates 3,082 skyscrapers by the end of 2017 when in fact 2,988

were built between 1950 and 2017, a difference of three percent.

Numerous populations grow at a log-linear rate, E[Nt] = exp(α + βt). The relationship arises

when, at any instant, a population increases 100 × β percent of its current size, dN
dt = βN—

notwithstanding random fluctuation. For more complicated phenomena, such as skyscraper con-

struction, the relationship provides an accurate yet parsimonious approximation. However, there

is no guarantee the approximation will remain accurate in future years, and one might reasonably

question the sensitivity of the predictions to the log-linear assumption. For example, the years

2015, 2016, and 2017 each saw fewer tall skyscrapers built than the year 2014. Perhaps it would

be more accurate to conclude that skyscraper growth is slowing and will continue to slow until

2050.

The logistic-linear relationship is a more flexible alternative that can capture a slowing growth

rate. Suppose for the moment that the Nt’s are independent and follow a Poisson distribution,

except now with mean

E[Nt] =
γ

1 + exp(−α′ − βt)
.

This relationship arises when, at any instant, a population increases by 100 × β(1 − Nt

γ ) percent of

its current size, dN
dt = β(1 − N

γ )N—notwithstanding random fluctuation. It is reasonable because,

for Nt

γ ≈ 0, a logistic-linear relationship is well approximated by a log-linear relationship, which

was shown to fit the data well in Figure 1.1. Unlike a log-linear relationship, however, as the

population increases, the growth rate of a logistic-linear relationship slows, and the population

reaches its maximum capacity, γ. Indeed, the factor (1 − Nt

γ ) encodes the remaining percent of
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the capacity at time t. The number of tall skyscrapers might reach a maximum capacity if only a

fixed number of skyscrapers is needed to accommodate demand or some other constraint prevents

additional construction.

We use the optim function in the R Core Team (2018) package stats to obtain maximum

likelihood estimates α̂′, β̂, and γ̂. However α̂′ and γ̂ diverge, indicating that the number of tall

skyscrapers increases with no discernible upper limit. The predictions from the limiting model are

identical to the log-linear model.

Even if the data were known to follow a log-linear relationship, residual dependence could

still produce predictions that underestimate uncertainty. We compare our results to a Box-Jenkins

analysis (Box et al. 2015) of the log number of skyscrapers completed each year since 1950.

We use the auto.arima function in the R Core Team (2018) package forecast to select

the best ARIMA model according to the Akaike information criterion (Hyndman et al. (2019),

Hyndman and Khandakar (2008)). Prediction paths are simulated from the selected ARIMA(0,

1, 2) with drift by nonparametric residual bootstrap using the forecast.Arima function. The

forecast is essentially identical to the Poisson regression—only three percent higher. However,

the standard error is 22,000—three times larger. We find this standard error conservative. For

example, it suggests the number of skyscrapers might grow fourteen percent per year over the next

33 years, nearly double the 2007-2017 and 1950-2017 rates. At the other extreme, it suggests that

no additional skyscrapers might built at all. Such scenarios would reflect a considerable departure

from present trends. Nevertheless, we include these results as a reference for the reader.

1.4 Predicting the Height of Skyscrapers Completed by 2050

The tallest skyscraper has doubled in height since 1950. Yet the height increase of the typical

extremely tall skyscraper—one exceeding 225 meters or 59 floors—is not statistically significant.

In fact, the same distribution describes the heights of extremely tall skyscrapers since 1950. We

conclude the tallest skyscraper is not increasing because skyscrapers are becoming taller. It is

increasing because more buildings are being constructed and thus more buildings are eligible to
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Figure 1.1: We predict the quantity of skyscrapers completed by 2050, thirty-three years after
the data was collected at the end of 2017. A Poisson regression model suggests the number of
skyscrapers will grow at a rate of eight percent a year.
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be the tallest. Assuming the same distribution continues to describe the heights of skyscrapers

completed by 2050, the probability a new building will exceed the current tallest—the Burj Khalifa

(828 meters)—is estimated to be nearly 100 percent. The probability a new building will exceed

the Jeddah Tower (1,000 meters)—scheduled to open in 2020—is 73 percent. The probability a

new building will exceed one mile is 11 percent.

These probabilities were determined by approximating the heights of extremely tall skyscrap-

ers with a generalized Pareto distribution (GPD). The GPD approximation can be justified theoret-

ically by regarding tall buildings as random exceedances over a threshold: Suppose X is a random

variable with an unknown distribution function F. Define Fu to be the exceedance conditional

distribution—the distribution of X − u given that X exceeds a threshold u, i.e.,

Fu(y) = Pr(X − u ≤ y |X > u).

The Pickands-Balkema-de Haan Theorem (Balkema and De Haan (1974), Pickands III (1975))

states that for a broad class of distributions, F,

Fu(y) ≈ H (y) = 1 −
(
1 +

ξy

σu

)−1/ξ

,

as u tends to F←(1) = sup{y : F (y) < 1}, the right end point of F. When ξ = 0, H (y) is defined

to be its limit, 1 − exp(−y/σu). The support of H (y) is y > 0 when ξ ≥ 0 and 0 ≤ y ≤ −σu

ξ when

ξ < 0. Thus, for a large enough threshold u, the distribution Fu(y) is governed by two parameters:

a scale, σu, which depends on u, and a shape, ξ, which does not depend on u. The shape parameter

is called the tail-index because it determines how fast the tail of the distribution, F, decays.

Now suppose D is the set containing every building in the world, and Du is the subset of all

buildings exceeding the height threshold u. Let X be the height of a building randomly selected

from Du. By setting y = x − u, the Pickands-Balkema-de Haan Theorem justifies, for sufficiently
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large u, approximating the distribution of X by a GPD with parameters (u, σu, ξ),

Pr(X ≤ x |X > u) ≈ H (x − u) = 1 −
(
1 +

ξ (x − u)
σu

)−1/ξ

.

The threshold, u, is a location parameter. See Coles (2001, p. 74) for a more detailed discussion of

the GPD limit for threshold exceedances.

The threshold u must be set high enough for the GPD approximation to hold. Unlike Section

3, the default threshold of u = 150 meters may be insufficient. Were u sufficiently high such that

X − u|X > u followed a GPD with parameters (σu, ξ), X − u′|X > u′ would follow a GPD with

(σu′, ξ) for any u′ > u. This suggests a strategy for choosing u: Produce a sequence of candidate

thresholds u1 < . . . < uI . At each threshold ui, obtain estimates (σ̂ui, ξ̂ui ) and their standard errors

by maximizing the likelihood with dataset Dui . Select a threshold u for which the estimates ξ̂u′

appear consistent for u′ > u (Smith, 1985; Davison and Smith, 1990).

The left side of Figure 1.2 shows the maximum likelihood estimates for the shape parameter,

ξ̂ui , when fit to skyscraper heights exceeding a sequence of thresholds, ui, from 150 to 350 meters.

Point estimates are colored red, and thick (thin) lines represent 50 (95) percent confidence intervals.

The point estimates increase with little uncertainty as the threshold increases from 0 at 150 meters

to .18 at 225 meters, after which a ξ of .18 is consistent with the data. Computational details are

discussed in the Appendix.

The choice of the 225 meter threshold and the .18 shape parameters is compared to a mean

excess plot and a Hill plot on the right side of Figure 1.2. The mean excess plot (top of Figure

1.2) displays the empirical mean excess function, Ê[X − u|X > u], for different thresholds u

(Bernktander and Segerdahl, 1960; Ghosh and Resnick, 2010). The Hill plot (bottom of Figure

1.2) displays the Hill estimator of ξ using the k largest observations for different choices of k

(Hill, 1975). Dark blue regions represent inner 50 percent confidence intervals, and light blue

regions represent inner 95 percent confidence intervals. When the data are consistent with a GPD,

the mean excess plot is expected to be linear in u, and the Hill estimator is expected to stabilize
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near ξ. We find the two plots are consistent with the 225 meter threshold and .18 shape parameters.

The GPD—and the choice of threshold and shape parameters—is validated by comparing sim-

ulations of skyscraper heights to the observed data. In fact, at the threshold of 225 meters, simula-

tions from the same GPD describe the heights of skyscrapers completed at different time periods.

We demonstrate this by first obtaining the maximum likelihood estimates for the GPD parameters,

µ̂225, σ̂225, and ξ̂225, where µ225 is the location of the GPD, considered unknown for the moment.

We then partition the skyscrapers built after 1950 into sextiles according to the year in which they

were completed. Since skyscraper growth is log-linear, the window lengths become shorter so that

the same number of skyscrapers are in each bin. Figure 1.3 shows a p-p plot for each time period.

That is, instead of a q-q plot, which plots the ordered skyscraper heights, x (i), against the ordered

heights simulated from the GPD with parameters µ̂225, σ̂225, and ξ̂225, we first apply the GPD

probability integral transformation: 1− [1+ ξ̂225(x (i) − µ̂225)/σ̂225)](−1/ξ̂225). After transformation,

the theoretical heights follow the standard uniform distribution.

The close fit in each time period suggests the height distribution of extremely tall skyscrapers

does not change. This is investigated further in Figure 1.4, which shows the median height of ex-

tremely tall skyscrapers each year since 1950 (blue points). A median regression line is estimated

using the R Core Team (2018) package quantreg (Koenker, 2018), and the blue region repre-

sents an inner 95 percent confidence interval. The height of the typical extremely tall skyscraper

increases less than half a meter each year, a negligible 3.6 percent over sixty-eight years. The

increase is not statistically significant (p-value = .25). For comparison, the same analysis is con-

ducted on tall skyscrapers—skyscrapers exceeding 150 meters and 40 floors—and shows a parallel

trend (red). We conclude that the urban skyline is driven primarily by the exponential increase in

the number of buildings completed each year. Years with more construction are more likely to

yield extremely tall skyscrapers, and the increase of the typical skyscraper is inconsequential by

comparison.

For the purpose of predicting the height of the tallest skyscraper in 2050, we assume this trend

will continue. We use the gpdSim function in the R Core Team (2018) package fExtremes
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(Wuertz, Setz, and Chalabi, 2017) to draw from a GPD with parameters ( µ̂225, σ̂225, ξ̂225) roughly

8,400 times, where 8,400 is the number of new skyscrapers estimated to be completed by 2050 in

the previous section multiplied by the empirical probability a tall skyscraper exceeds 225 meters.

The estimated maximum height is retained. The distribution of this prediction is then approximated

by parametric bootstrap. Figure 1.5 shows the result (blue). A right-sided 95 percent predictive

interval ends at 1,900 meters.

To demonstrate the accuracy of this approach for predicting 2050, thirty-three years after the

data was collected in 2017, we conduct a second simulation of 2017 using only data that would

have been available before 1984. The GPD is fit using all skyscrapers above the 225 meter thresh-

old, and we simulate the height of roughly five hundred skyscrapers, since, in 1984, three thousand

tall skyscrapers would have been estimated for completion between 1984 and 2017, fifteen percent

of which would have been expected to exceed 225 meters. The predictive distribution of the 2017

maximum height is approximated by parametric bootstrap and shown in Figure 1.5 (red). We find

that the current tallest skyscraper, at 828 meters, would have been considered likely. The predicted

height is 918 meters, eleven percent above this value.

We estimate an eleven percent chance the tallest skyscraper will exceed one mile in the year

2050. This assumes present trends continue: that the number of tall skyscrapers will continue to

increase at its historic rate of eight percent a year. Deviations from this rate are possible, and they

would influence the estimate. Using the 95 percent predictive interval from the Box-Jenkins anal-

ysis in the previous section, we find the probability of a mile high could be as low as 4 percent or

as high as 30 percent. We reiterate that these probabilities would require a considerable departure

from present trends. Nevertheless, we include them as a reference for the reader.

1.5 Predicting the Number of Floors in Skyscrapers Completed by 2050

The marginal number of floors in the typical skyscraper has decreased as height increases.

Height alone overstates the ability of skyscrapers to accommodate a growing population. Assum-

ing the marginal number of floors continues to decrease as height increases, the one thousand meter
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Figure 1.3: We demonstrate the distribution of skyscraper heights has changed little over time by
dividing extremely tall skyscrapers into sextiles based on the year completed and constructing a p-
p plot for each sextile. The distribution of theoretical heights is the generalized Pareto distribution
with parameters estimated by maximum likelihood.
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exceed one mile. There is a 0 percent chance the current tallest skyscraper will remain the tallest.

Figure 1.5: We predict the height of skyscrapers completed by 2050, thirty-three years after the
data was collected at the end of 2017. The simulated density (blue) suggests the tallest building
in the world is unlikely to exceed one mile (dashed line on right side). However, it will almost
certainly be taller than the current tallest building, the Burj Khalifa (828 meters, dashed line on
left side) and likely taller than the Jeddah Tower (one thousand meters), expected for completion
in 2020. Had the same simulation been conducted in 1984, the density (red) would have found the
tallest skyscraper in 2017 to be between six hundred and twelve hundred meters.
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building is estimated to have seventy percent of the floors of the mile-high building—despite being

sixty-two percent of the height. While diminishing marginal floors is reflected in most architectural

designs, we find the number of floors will diminish faster with height than most designs anticipate.

However, the exact relationship between height and number of floors will vary by city.

The joint distribution of skyscraper height and number of floors was extrapolated using the fol-

lowing bivariate extreme value model: Let (X,Y ) be a random vector with GPD margins. Denote

the respective parameter sets indexing the GPDs as (µx, σx, ξx) and (µy, σy, ξy), and consider the

log probability integral transformations

X̃ = − log *
,

[
1 +

ξx (X − µx)
σx

]−1/ξx
+
-

(1.1)

Ỹ = − log *
,

[
1 +

ξy (Y − µy)
σy

]−1/ξy
+
-
. (1.2)

Note that (X̃, Ỹ ) has standard exponential margins. The tail of the joint distribution (X̃, Ỹ ) is

assumed to follow the asymmetric bivariate logistic distribution, i.e. given thresholds u, v � 0, for

X > u,Y > v,

Pr(X̃ > x, Ỹ > y) ∝ exp
(
−(1 − θx)x − (1 − θy)y − (xrθr

x + yrθr
y)1/r

)
, (1.3)

where θx, θy ∈ [0, 1] and r ≥ 1. The asymmetric bivariate logistic distribution has the advantage

of being simple and flexible, and it is suitable for larger sample problems. See Tawn (1988) and

Coles (2001, p.142) for a detailed discussion of bivariate models for threshold exceedances.

Now suppose X is the height of a randomly selected skyscraper and Y the number of floors. We

choose the thresholds u = 225 and v = 59 based on the fit of the marginal distribution as described

in Section 4. Plots corresponding to the marginal analysis of skyscraper floors are displayed in

Figures 1.8, 1.9, and 1.10 in the Appendix. The nine parameters µx , σx , ξx , µy, σy, ξy, θx , θy, and

r are estimated using the heights and floors of all skyscraper exceeding 225 meters or 59 floors,

20



maximizing the censored likelihood:

Lc(µx, σx, ξx, µy, σy, ξy, θx, θy, r) =
∏

xi>u,yi>v

f (xi, yi) Pr(X > u,Y > v)∏
xi≤u,yi>v

fY (yi) Pr(X ≤ u)
∏

xi>u,yi≤v

f X (xi) Pr(Y ≤ v),

where f denotes the joint density function of (X,Y ) implied by the transformations (1.1) and (1.2)

and the distribution function (1.3), and f X and fY denote the marginal density functions of X and

Y , respectively.

The top left panel of Figure 1.6 displays the height and number of floors of every tall skyscraper,

colored by its contribution to the censored likelihood, Lc. Skyscrapers below 225 meters and

59 floors (blue) do not contribute to the likelihood and are not used to estimate the parameters.

Skyscrapers exceeding 225 meters and 59 floors (red) make up the first factor. The remaining

skyscrapers (green) make up the second two factors. For example, a 250 meter skyscraper with

50 floors is treated like a 250 meter skyscraper whose floors are only known to be below 59. This

approach is similar to the censored likelihood in Huser et al. (2016) except that skyscrapers at or

below 225 meters and 59 floors are excluded from the analysis. Computation is discussed further

in the Appendix.

The bivariate model fits the data well despite lacking the strong theoretical foundations that

support the approximations in Sections 3 and 4. The first six parameter estimates from the bivariate

model, µ̂x , σ̂x , ξ̂x , µ̂y, σ̂y, and ξ̂y, agree with the parameter estimates from the two marginal

analyses on skyscraper heights and floors. In addition, simulations from the fitted model produce

skyscrapers with heights and floors that are consistent with the data, as assessed visually and with

predictive checks. For example, the average of the 325 extremely tall skyscrapers rises 4 meters

per floor. The inner 95 percent of one thousand simulated averages rise between 3.7 and 4.5 meters

per floor, with fifteen percent of simulated averages exceeding the observed average.

The maximum likelihood parameters are retained to estimate the conditional density of the

number of floors for a one-thousand-meter skyscraper (Figure 1.6, top-right panel) and a one-mile
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tall skyscraper (Figure 1.6, bottom-left panel). Dark blue regions represent a right-sided 50 percent

interval, and light blue regions represent a right-sided 95 percent interval. These densities are

compared with actual skyscraper plans (dotted line). The median one-thousand-meter skyscraper

is estimated to have 107 percent the number of floors of the Jeddah Tower (to be completed in

2020). The median one-mile skyscraper is estimated to have roughly three-quarters the number of

floors of the Mile-High Tower, two-thirds of Next Tokyo’s Sky Mile Tower, and half the floors of

Frank Lloyd Wright’s The Illinois.

As in the previous two sections, the same analysis is performed with only data available before

1984. The bottom-right panel shows the conditional density of the 828 meter skyscraper as it

would have been estimated using the threshold of 225 meters or 59 floors. In 1984, an 828 meter

skyscraper would have been nearly twice the height of the current tallest building, the Willis Tower

(then the Sears Tower, 442 meters, 108 floors). The conditional median predicts the typical 828

meter skyscraper would have 179 floors, ten percent more than the Burj Khalifa completed twenty-

four years later. Simply scaling the Willis Tower to the height of the Burj Khalifa would yield 202

floors, overestimating the actual number by twenty-four percent. A linear regression model fit with

extremely tall skyscrapers overestimates by fifteen percent.

The estimated relationship between floor and height varies considerably across cities. The top

panel of Figure 1.7 shows the empirical median height and number of floors of extremely tall

skyscrapers in select cities. The medians are each based on roughly ten observations, and thus

sampling variation likely overstates the city-level differences between extremely tall skyscrapers

in the year 2050.

We augment the bivariate model to estimate city-level medians. We allow the marginal GPD

parameters to vary by city, according to a normal distribution with an unknown mean and variance.

Such hierarchical models are often used to produce city-level estimates that have smaller errors

on average than the corresponding stratified estimates. The use of a parameter hierarchy also

has a Bayesian interpretation. See Coles (2001, p.169) and Vehtari (2017) for two discussions of

Bayesian inference for threshold exceedances.
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Figure 1.6: We estimate the number of floors in the tallest skyscrapers. The top-left panel shows
the height and number of floors of tall skyscrapers—those exceeding 150 meters and 40 floors.
The line represents the 3.8 meter rise per floor of the typical tall skyscraper. This ratio is not
preserved as height increases. The other three panels compare the estimated conditional density of
the number of floors in a skyscraper given its height to actual skyscraper designs.

The bottom panel of Figure 1.7 shows the estimated median for select cities from the hierarchi-

cal model with parameters selected by maximum likelihood. The median of the non-hierarchical

model from the previous Figure is represented by a black dot. (Note that Hong Kong and New York

City contain a disproportionately large number of extremely tall skyscrapers.) These city-level es-

timates can be seen as a compromise between the noisy empirical medians in the top panel and

the more accurate but global median estimated by the non-hierarchical model. Yet despite partial

pooling across cities, the typical height per floor ratio still spans a considerably large range: 3.6

(Hong Kong) to 4 (Moscow).
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Figure 1.7: We estimate the height and number of floors of the extremely tall skyscrapers that
will be completed in major cities by 2050. Empirical medians in the top panel likely overestimate
between-city variation. Model estimated medians in the bottom panel compromise between the
noisy empirical medians in the top panel and the accurate, but global median estimated by the non-
hierarchical model. The line represents the 3.8 meter rise per floor of the typical tall skyscraper.
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1.6 Discussion

This paper applied extreme value theory to predict the prevalence and nature of skyscrapers

if present trends continue until the year 2050. The findings have methodological and policy con-

sequences. This section discusses the methodological consequences, while the following section

considers policy.

Section 3 found the number of skyscrapers completed each year followed a log-linear relation-

ship. The relationship suggests a constant instantaneous growth rate—and extrapolation assumes

construction will continue at this rate. When fit to the data, a logistic-linear relationship, which

permits a declining growth rate, defaulted to a log-linear relationship and produced identical pre-

dictions. However, it would be incorrect to conclude the data is inconsistent with a declining

growth rate in future years. It is possible growth is in fact logistic-linear, and the log-linear re-

lationship found in Section 3 is only approximately true before the year 2018. In that case, the

growth rate could decline substantially between 2018 and 2050. This scenario is speculative be-

cause it cannot be validated from the aggregated data. We therefore take the position that, though

possible, a declining growth rate would reflect a departure from present trends.

Section 4 found that the heights of extremely tall skyscrapers are well described by a GPD with

a positive shape, ξ̂ ≈ .2. This means that the distribution of skyscraper heights has a heavy tail,

and, theoretically speaking, the maximum does not exist. While this is obviously false—the laws of

physics limit the height of any earthbound structure—it suggests sample averages and sums may be

unreliable for inference and extrapolation. Researchers must be careful interpreting these quantities

as evidence for their theories, especially with small sample sizes. For example, the fact that the

average height does not increase with specific economic conditions may not indicate skyscraper

construction is unrelated to those conditions. Conversely, increasing average height in recent years

may provide a poor basis for predicting heights in future years. Quantiles, such as the median,

can be more stable representatives of their theoretical analogs and may prove better alternatives

for conducting inference and extrapolating as demonstrated in Figure 1.4. Cirillo and Taleb (2016)
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make similar points for researchers using the total number of war casualties to determine whether

humans are less violent than in the past and whether wide-scale war will return in the future.

Section 4 also found that the same GPD described extremely tall skyscraper heights over time.

This suggests that the height of the tallest skyscrapers is driven by the exponential increase in the

number of new buildings constructed each year and not a desire to build the typical building taller.

The distinction is important for researchers investigating the factors that determine skyscraper

height. For example, our findings are consistent with the theory that the demand for extremely

tall buildings led to the use of innovative technologies, such as faster elevators. Had the reverse

been true—had the development of innovative technologies prompted extremely tall skyscrapers—

a systematic increase in skyscrapers would have been observed across the board as the technology

became available, and the GPD parameters would have changed substantially over time. While it

is not the intent of this paper to draw causal conclusions, we point out that forecasters need to be

careful of “reverse-causality”, attributing taller buildings as a consequence of a given factor instead

of its cause. Bar (2016) documents a number of skyscraper myths that arise from the confusion

of correlation with causation, for example the bedrock myth: that Manhattan’s early skyscraper

developers sought locations of shallow bedrock (p.210). These spurious correlations provide a

poor basis for making predictions.

Section 5 demonstrated how city-level parameters might be estimated with a hierarchical model.

The dataset contains 258 cities, although the typical city has only one skyscraper exceeding 150

meters and 40 floors. Predictions are still possible for these cities because the model borrows in-

formation across cities. Future research might augment the hierarchy to include country and region

level parameters. Or alternatively, covariate information such as population and gross city product

at the time each skyscraper was completed could be used instead. These covariates would make

the modeling assumptions more plausible and may give insight into how cities might change poli-

cies to increase or decrease skyscraper activity—provided covariates are chosen judiciously and

not based on spurious correlations. Spatiotemporal dependence could also be modeled directly as

discussed by Bao et al. (2006), Chan and Gray (2006), and Ghil et al. (2011).

26



1.7 Conclusion

The major challenges confronting cities, such as sustainability, safety, and equality, will depend

on the infrastructure developed to accommodate urbanization. Some urban planners suggest that

vertical growth—the concentration of residents by constructing tall buildings—be used to accom-

modate density. Others argue that urbanization will be too rapid to be accommodated by vertical

growth alone.

This paper finds that the construction of tall skyscrapers will outpace urbanization if present

trends continue. Cities currently have around 800 tall skyscrapers per billion people. By 2050,

cities are estimated to have 6,800 per billion people. The tallest among these will be fifty per-

cent higher than those today and therefore able to accommodate more people. However, these

skyscrapers will not have fifty percent more floors since the marginal capacity will diminish as

heights increase. For example, the one thousand meter building will have seventy percent the

floors of the mile-high building, despite being sixty-two percent of the height.

Future research might consider a different forecast horizon, although our choice of 2050 was

not arbitrary. The UN World Population Prospects (UN, 2018) focuses on 2050, and many city

planners consider 2050 to be the “not so distant future” (Lake (1996), Kennedy (2010), Wakefield

(2013), Brown (2014)). Schuerman (2014) writes: “We chose the year 2050 for a reason: It is far

enough away so that we can demonstrate dramatic changes in the climate, and yet near enough that

many people alive today will still be living in the city.”

A 2050 forecast was also practical. Skyscraper construction began in earnest after 1950, result-

ing in sixty-seven years of data. The year 2050 is thirty-three years away, which allows us to assess

a thirty-three year forecast strategy by fitting the model on the first thirty-three years (1950-1983)

and evaluating its performance on the following thirty-three years (1984-2017). The year 1984 is

a meaningful break point. It marks the major shift in the second half of the twentieth century from

the international period to contemporary skyscraper construction (Ascher and Vroman, 2011, p.

18).
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This paper has not investigated whether skyscrapers will be constructed in the cities that need

them most. Nor has it investigated whether skyscraper development should be used to accommo-

date density in the first place. Instead, extreme value theory provided a principled basis to forecast

future trends and quantify uncertainty. It relies on the assumption that present trends continue, and

there are a variety of reasons why future trends may deviate from the past sixty-eight years. For

example, unprecedented technological change may result in new materials or methods that sub-

stantially reduce the cost of construction. Cultural changes could shift how residents live or work,

perhaps freeing up commercial space for residential purposes. There is also the possibility of a

hiatus due to global upheaval, not unlike the period spanning the Great Depression and Second

World War.

We conclude by stressing that extreme value theory is one of many principled strategies that

could be used to predict skyscraper development and the effects of urbanization more broadly.

The previous sections could be augmented by integrating theories from architecture, engineering,

policy, and social science. The incorporation of expert knowledge is always useful, but it is partic-

ularly desirable with extreme value analysis, as heavy tailed distributions are sensitive to outliers

and benefit from the context afforded by the theory of other disciplines. More importantly, all dis-

ciplines will be necessary to anticipate how cities will respond to the greatest migration in human

history and solve perhaps the principal challenge of our time.

1.8 Appendix

All models in Sections 4 and 5 are written in the Stan probabilistic programming language

(Carpenter et al., 2017), and maximum likelihood estimates are computed using the LBFGS al-

gorithm in the R Core Team (2018) package rstan (Stan Development Team, 2018), unless

otherwise noted. Standard errors are computed from the observed Fisher information. Constrained

parameters such as scales and shapes are transformed so that they are unconstrained, the Fisher in-

formation is calculated, and the constrained standard error is approximated using the delta method.

Vehtari (2017) provides an introduction to univariate extreme value analysis with Stan. Carpen-
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Figure 1.8: We approximate the distribution of the number of floors of tall skyscrapers using a
GPD. The left panel shows maximum likelihood estimates and confidence intervals (50 and 95
percent) of the GPD shape parameter, excluding observations below a sequence of thresholds {ui}.
The right panel shows a Mean Excess plot (top) and a Hill plot (bottom)

ter et al. (2017, Section 2.6) discuss the LBFGS algorithm for maximum likelihood estimation.

Predictive intervals are estimated by parametric bootstrap.

A 225 meter threshold for height (59 for floors) is used when fitting the GPD model. Note that

in the limit, µ should equal the threshold u. We allow µ to vary (0 < µ < min(xi)) in order to

add flexibility to the model. This choice does not impact the conclusions in Section 4. Our point

estimates match the output from the univariate gpdFit function in the package fExtremes

(Wuertz, Setz, and Chalabi, 2017), which sets µ = u.

Before fitting the bivariate models, the number of floors was scaled by 3.8. The median

skyscraper rises 3.8 meters per floor, and scaling by this number aligns the marginal distributions.
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Figure 1.9: We demonstrate the distribution of the number of floors has changed little over time
by dividing extremely tall skyscrapers into sextiles based on the year completed and constructing a
p-p plot for each sextile. The distribution of theoretical floors is the generalized Pareto distribution
with parameters estimated by maximum likelihood.
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Figure 1.10: The median number of floors of extremely tall skyscrapers (blue points) has not
increased significantly over the last forty years. A median regression indicates extremely tall
skyscrapers grow by .06 floors each year (p-value = .11). A 95 percent confidence interval for
the median regression line is shaded blue. The median number of floors of tall skyscrapers (red) is
shown for comparison.
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Chapter 2: Forecasting the 2020 American Presidential Election with a

Generational Voting Model

with Yair Ghitza and Andrew Gelman

We predict how the political events that occurred during the Trump administration will factor

into the 2020 American Presidential Election. We begin by motivating the advantage of a gen-

erational voting model, in which voters’ partisan preferences are modeled as a running tally of

impressions left by the political events they live through. We then state the model explicitly. Fi-

nally, we predict how different generations will respond to the political events that occurred during

the Trump presidency. Our results raise new questions about the comparability of generations in

an era of extreme political polarization.

2.1 Introduction

The outcome of the 2020 American presidential election will depend on how voters assess the

political events that occurred during the Trump administration—from the aftermath of the 2016

election, Mueller Report, and impeachment hearings to the coronavirus pandemic, recession, and

widespread protests. Although unprecedented in several respects, it is because history repeats that

past elections provide a scientific basis for predicting how voters will assess these events. The

challenge is determining the manner in which history repeats, and thus the exact relevance of past

elections, which may only be clear long after the 2020 election.

We predict how voters will assess the political events of the Trump administration using a gen-

erational voting approach. The model builds on political socialization theory, which describes how

political events influence voting behavior (for example, see Hyman (1959), Campbell et al. (1960),

and Jennings and Markus (1981)). Generally speaking, the value of this or any theory is that, if the
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underlying assumptions are reasonable, the problem of predicting a complex phenomenon such as

voting behavior is reduced to a manageable number of unknown factors. The advantage of politi-

cal socialization theory specifically is that the assumptions are supported by decades of research,

transparent, and easily discussed among experts or communicated to a lay audience. We believe

this advantage is particularly desirable given the unusual circumstances in which the 2020 election

will take place.

We proceed in three sections. We first motivate the main assumption underlying our genera-

tional voting model, which permits the comparison of voters across generations. We then describe

the data and model (for related literature, see for example Burnham (1970), Beck and Jennings

(1979), and Beck (1991)). Finally, we forecast how voters will assess the political events that

occurred during the Trump presidency. Our main finding is that Generation Z has become more

Democratic over the course of the Trump administration, but appear to lean only slightly Demo-

cratic overall when compared to previous generations—raising questions about the comparability

of generations in our era of extreme political polarization.

2.2 We use the Gallup Organization’s presidential approval rating time series to compare

voters across generations.

Political socialization theory provides a broad framework for understanding how voters assess

political events. To summarize, political events make impressions on voters, and the cumulative

weight of those impressions determines which candidate a voter prefers. While every impression is

unique, they typically coincide with a voter’s demographic characteristics—such as age, race, eth-

nicity, and sex—reflecting the common conditions under which voters experience political events.

Forecasting an election with political socialization theory requires modeling how voters form

their impressions. The model is then extrapolated to predict the impressions left by new political

events. The problem is that both the political events and the manner in which voters assess them

change over time, and the two must be disentangled before prediction is possible. For example,

that older voters prefer conservative candidates could reflect the fact that voters become more
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conservative with age or the fact that the current generation of older voters acquired conservative-

leaning ideologies from political events unique to their adolescence. In the first case, we would

expect future voters to become more conservative with age, while in the second case, we would

expect future voters to retain their childhood ideologies, all else equal.

The natural solution is to compare voters from different generations when they were the same

age and of arguably similar impressionability. Continuing the previous example, we could calcu-

late the proportion of the older generation’s conservative leanings that are due to adolescence by

comparing the childhood of this generation to the childhoods of other generations. Such compar-

isons fill our public discourse, from the specific advice beginning “if I were your age . . . ” to the

general nostalgia of a previous generation. However, there are any number of ways to compare

two childhoods, and few articulate what exactly they mean if they were another’s age. (Strictly

speaking, if you were another’s age, you would share their experiences and thus behave like them,

although that is rarely what anyone means.) Even seasoned researchers speak casually about the

effect of age without clarification.

The conceptual ambiguity inherent in intergenerational comparisons extends to all concomitant

variables—variables that cannot be manipulated experimentally and represent abstract experiences

whose relevance is subjective and case dependent, such as age, race, ethnicity, and sex. In order

to fully realize the advantages of political socialization theory, namely transparent and easily com-

municated predictions, we must be explicit how different generations are compared. Our approach

uses the Gallup Organization’s presidential approval rating time series to represent political events

and capture the changing zeitgeist; our main assumption is that voters who live through similar

ratings adopt similar political ideologies. The approval ratings thus permit the comparison of vot-

ers across generations, not unlike how the consumer price index permits the comparison of prices

across generations or the human development index permits the comparison of standard of living.

The following section describes how exactly we make these comparisons, and the final section

questions whether approval ratings sufficiently capture our new era of political polarization.

39



2.3 We model partisan preferences as a running tally of impressions left by the political

events.

We assemble a dataset of responses to public opinion surveys about the American presidential

election from five sources: (1) the ANES (elections 1952-2016), (2) the Gallup presidential polling

dataset from the Roper Center’s iPoll database (1952-2016), (3) the Annenberg National Election

Studies (2000, 2004, and 2008), (4) the Greenberg Quinlan Rosner Research internal campaign

polls (2012), and (5) the CNN/ORC and Pew polls (2016). The dataset has 215,693 complete

responses after discarding undecided voters.

Let a = {1, 2, . . . , 70} denote the age of the respondent, p = {1956, 1960, . . . , 2016} the year of

the response, g = {non-Southern white male, Southern white male, minority male, non-Southern

white female, Southern white female, and minority female} the demographic group of the respon-

dent, and h = {Annenberg, Gallup, NES, GQRR, CNN/ORC/Pew} the survey house that collected

the response. We group all minority respondents together by sex since the data does not distinguish

consistently between minority groups in early years; white refers to non-Hispanic white.

We also collect the Gallup Organization’s long-running presidential approval rating time series

from August 1937 to June 2020. Let xt denote the Republican-directional presidential approval

rating in year t, which is calculated by (1) subtracting 50% from the Gallup presidential approval

rating in the year t, and (2) multiplying the difference by −1 if the sitting president was a Democrat.

The covariates, a, p, g and h, partition respondents into mutually exclusive cells. For each cell,

j, we denote the age, period, group, and source of the responses by a[ j], p[ j], g[ j], and h[ j]. Let

y j denote the number of respondents supporting the Republican candidate in cell j, and n j the

number preferring either the Republican or Democratic candidate. We model

y j ∼ Binomial(n j, θ j ),

where θ j is the proportion supporting the Republican presidential candidate within cell j.

We decompose θ j into four effects. We define a generational effect as the running tally of
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impressions left by the political events experienced by the voters of cell j up until period p[ j],

γ j = Ωg[ j]

a[ j]∑
i=1

wi xp[ j]−a[ j]+i

where wi denotes the age-specific weight of the rating at age i, and Ωg denotes the scale of the

age-specific weights for group g.

We define a period effect for each group, βpg, a period and age-weight interaction, λgwa βpg,

and an election effect,

B j = βp[ j]g[ j] + λg[ j]wa[ j] βp[ j]g[ j]

=
(
1 + λg[ j]wa[ j]

)
βp[ j]g[ j]

We also define an age effect αa and a house effect ηh. Put together, these effects sum to θ j on

the logit scale,

logit(θ j ) = αa[ j] + B j + γ j + ηh[ j]

We smooth the age weights,

wi ∼ Normal (wi−1, 0.01) ,

and specify normal distributions for α, β, and η with mean zero and standard deviations σα, σβ,

and ση . The scale parameters, λ and Ω, are constrained to be positive.

41



2.4 Our model suggests the political events of the Trump administration will have smaller

influence on average than the events experienced by previous generations of the same

age.

We fit our generational model with Stan (Carpenter et al. (2017)) using the R (R Core Team

(2020)) package cmdstanr (Gabry and Češnovar (2020)). We sample 4 chains for 2000 iterations

each. In each iteration, we generate θ̂ j , the proportion supporting the Republican presidential

candidate, for all groups, ages 0 to 70, and years 1937 to 2020. NOTE: We set βpg = β2016g

and η = 0 so that the θ̂ j are comparable across years—at this time there is insufficient data to

estimate β2020g. We ensure satisfactory diagnostic and posterior predictive performance (Gelman

et al. (2013)) before using sample quantiles for estimates (median) and credible intervals in the

following five figures. Darker intervals represent 50 percent posterior regions and lighter intervals

represent 95 percent regions.

Figures 1-4 each examine four age groups of voters representing four different generations—

18-year-olds (Generation Z), 35-year-olds (Millennials), 52-year-olds (Generation X), and 68-

year-olds (Baby Boomers). The top half shows the estimated Republican support from that age

group since 1950. Generation Z and Millennials lean Democratic compared to previous voters of

that age, while Generation X and Baby Boomers lean Republican. The bottom half shows how

the political events experienced by the different generations (labeled by birth year for consistency

across Figures) have shaped their political ideology. Each generation is politically agnostic at age

0. They then develop unique trajectories of partisan preferences according to the political events

they live through—displayed up until the age of the current generation. Under our model, younger

generations have become more Democratic from the events experienced during the Trump admin-

istration. For non-minority Generation Z and Millennials, the shift is smaller than past generations,

suggesting recent political events have had a smaller on average influence than the events experi-

enced by older generations at the same age. For older generations, such as Generation X and Baby

Boomers, and minorities of all generations, the change is consistent with previous generations.
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We conclude by revisiting our main assumption: that approval ratings permit intergenerational

comparisons. If this assumption is reasonable, one explanation for our findings is that the Internet

and 24-hour news cycle have dampened the long-term influence of political events. If this assump-

tion is not reasonable, as recent polls appear to suggest, approval ratings may understate the extent

to which younger generations support the Democratic candidate. Future work should examine

how these ratings might be adjusted to better facilitate intergenerational comparisons. However,

any adjustment would likely forgo the eighty-three year length of the approval rating time series

or overall interpretability of the model. Whether the benefit of adjustment exceeds the cost will

be clearer after the 2020 American presidential election, which is sure to test the assumptions of

every forecasting method.
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Figure 2.1: Comparing 18-year-olds (currently Generation Z, birth year 2002, magenta): Estimated
Republican support from 18-year-olds since 1950 (top) and cumulative partisan impressions pro-
ducing this support from birth to age 18 for select birth years (bottom).
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Figure 2.2: Comparing 35-year-olds (currently Millennials, birth year 1985, blue): Estimated Re-
publican support from 35-year-olds since 1950 (top) and cumulative partisan impressions produc-
ing this support from birth to age 35 for select birth years (bottom).
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Figure 2.3: Comparing 52-year-olds (currently Generation X, birth year 1968, teal): Estimated
Republican support from 52-year-olds since 1950 (top) and cumulative partisan impressions pro-
ducing this support from birth to age 52 for select birth years (bottom).
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Figure 2.4: Comparing 68-year-olds (currently Baby Boomers, birth year 1952, green): Estimated
Republican support from 68-year-olds (Baby Boomers) since 1950 (top) and cumulative partisan
impressions producing this support from birth to age 68 for select birth years (bottom).
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Figure 2.5: Relative vote share: Estimated Republican support by age, race, ethnicity, and sex.
These estimates can be post-stratified to predict the outcome of the 2020 election, which we plan
on doing when data becomes available.
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Chapter 3: A Deeper Look at the Generational Voting Model

with Yair Ghitza and Andrew Gelman

We build a model of American presidential voting in which the cumulative impression left by

political events determines the preferences of voters. The impression varies by voter, depending on

their age at the time the events took place. We find the Gallup presidential approval rating time

series reflects the major events that influence voter preferences, with the most influential occurring

during a voter’s teenage and early adult years. Our fitted model is predictive, explaining more than

ninety percent of the variation in voting trends over the last half-century. It is also interpretable,

dividing voters into five meaningful generations: New Deal Democrats, Eisenhower Republicans,

1960s Liberals, Reagan Conservatives, and Millennials. We present each generation in context

of the political events that shaped its preferences, beginning in 1940 and ending with the 2016

election.

3.1 Introduction

We study generational voting in American presidential elections by modeling voters’ partisan

preferences as a running tally of impressions left by the political events they live through. When fit

to data, the tally is weighted heavily by events that occur in a voter’s teenage and early adult years.

After early adulthood, voter preferences become consistent, and political events hold considerably

less weight. The fitted model is predictive—explaining nearly all of the macro-level variation in

voting trends over the past half-century—and interpretable—dividing voters into five meaningful

generations.

Our model builds on a substantial literature in political science, sociology, and social psychol-

ogy, beginning with the theory of “political socialization” (Hyman, 1959) and developed through
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seminal works on American political behavior, such as The American Voter. These works used

panels of high school students to establish the micro-level determinants of voting behavior. For ex-

ample, Campbell et al. (1964) found party identification, the basis of political attitudes and voting

behavior, is formed early in life and is influenced primarily by parents.1

However, these works were unable to agree on the macro-level determinants. For example,

researchers observed that older voters were more likely to identify as Republican. Some argued

this was the effect of aging: a social or psychological process pushed individuals towards a conser-

vative viewpoint later in life. Others argued the effect was generational: the shared experiences of

individuals from the same cohort happened to skew these voters Republican. Much ink was spilled

attempting to disentangle the two. Crittendon (1962)emphasized age effects, while Cutler (1969)

and Glenn and Hefner (1972) emphasized cohort effects.

Scholars soon discovered the problem with decomposing voter behavior into age, period, and

cohort effects, the second of which refers to short-term influences of political attitudes that fail

to leave a lasting impression. The effects are not identified because age, period, and cohort are

collinear; a voter’s age and cohort uniquely determine the period in which they vote (Converse,

1976; Glenn, 1976; Markus, 1983). Perfunctory attempts to estimate all three require model con-

straints that are difficult to interpret and cannot be validated from the data (Fienberg and Mason,

1979).

We resolve the age-period-cohort problem by directly modeling the impressions left by political

1Reviews of the early literature include Niemi and Sobieszek, 1977; Delli Carpini, 1989; Niemi and Hepburn,
1995), with Jennings and Niemi (1981) summarizing many of their substantial contributions. We briefly highlight how
our approach compares to research in this area.

Burnham (1970) studies generational voting patterns over the long term, explaining system-wide shifts of roughly
thirty-year increments. In contrast, our generations cover roughly fourteen-year increments, explaining the more rapid
swing between liberal and conservative. The two definitions are best suited for studying their respective phenomenon;
Burnham’s theory does not explain rapid partisan swings between presidential administrations, while we do not model
slower shifts, such as the gradual partisan shift of the South.

Beck and Jennings (1991) and Ostrom and Smith (1992) study the dynamics of presidential approval; a topic that
remains relevant in our hyper-polarized era. Our work differs in that they model approval directly, while we use
approval to model how voters choose candidates.

Beck and Jennings (1991) study the interaction between age and cohort effects in American politics, focusing on
the period during the late 1960s and early 1970s when young voters were a major force in American politics. Our
work follows their insight that “opportunities for political action . . . vary with changes in the political stimuli across
different periods.” Beck and Jennings (1982), Beck (1991) use panel data to study political socialization of young
Americans. We again follow their idea that adult political attitudes are a product of individual and social inputs.
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events that researchers typically interpret as cohort effects. We use the Gallup presidential approval

rating time series to instantiate these events for three reasons. First, the president is the most public

and notable in American politics. The position is prominently associated with major political

events, even when those events are unrelated to the presidency. Second, presidential elections are

among the most salient events in American politics. By a wide margin, presidential turnout is

higher than any other form of political participation. Lastly, the series continuously measures the

public’s evaluation of the president since the 1930s.

Because presidential approval ratings reflect the political events that determine presidential

voting, we need only estimate the influence of those events at each age—along with a relatively

small number of additional parameters discussed in the following sections. As a result, our model

not only resolves the age-period-cohort problem, but, when fit to our massive dataset, quantifies

generational trends with a precision unprecedented in the literature. Our three main findings are:

First, the political events that influence partisan preferences occur largely between the ages of

14-24, and a generation’s preferred party is essentially locked-in by 40. This influence varies by

race and region. It is strongest among non-Southern whites and relatively weak among minorities,

suggesting considerable differences in the political socialization process.

Second, the impressions left by these events delineate five distinct generations. For example,

consider white voters born in 1952 and socialized during the Kennedy and Johnson administrations.

These voters are consistently 5-10 percentage points more likely to support Democratic presidential

candidates than those born in 1968, who came of age during the presidencies of Carter, Reagan,

and Bush I. We name these generations New Deal Democrats, Eisenhower Republicans, 1960s

Liberals, Reagan Conservatives, and Millennials.

Third, period effects are important despite our focus on generations. But a simple model of

period effects is insufficient for explaining voter preferences, even when voters are further divided

by race and region. Our model explains significantly more macro-level variation, especially among

non-Southern white voters. This suggests a single defining political event is less important in the

formation of voter preferences than the cumulative impression left by a lifetime of events.
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Figure 3.1: Raw data and loess curves, indicating the relationship between age and presiden-
tial voting preferences among non-Hispanic white voters for the 2000-2016 elections. From the
left: (1) The relationship is non-monotonic and quite peculiar in 2012; instead of a linear or even
quadratic relationship, the curve changes directions multiple times. (2) Non-monotonicity char-
acterizes other elections as well. No clear pattern is apparent from this graph alone. (3) The true
relationship emerges when the curves are lined up by birth year instead of age. The peaks and
valleys occur at almost identical locations, indicating a generational trend.

We present the details and additional findings in five sections: (1) We describe the data and

motivate our model in the context of the age-period-cohort problem. (2) We present the technical

details of our model. (3) We fit the model to the data and interpret the results. (4) We narrate

presidential preference over the past half-century, using the fitted model to quantify how political

events left differential impressions on five generations of American voters. (5) We conclude with

a brief discussion.

3.2 Data and Preliminary Evidence

We assemble a massive dataset from five sources: (1) the ANES cumulative dataset covering

elections (1952-2016), (2) the Gallup presidential polling dataset from the Roper Center’s iPoll

database (1952-2016), (3) the Annenberg National Election Studies (2000, 2004, and 2008), (4)

the Greenberg Quinlan Rosner Research internal campaign polls (2012 election cycle), and (5) the
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CNN/ORC and Pew polls (2016 election cycle). We only use responses collected during presiden-

tial election years. There are 319,678 observations after removing incomplete records.2

Graphing the combined data provides strong—albeit preliminary—evidence of generational

voting. To illustrate the reasoning behind our assessment and motivate the importance of our

model, consider Figure 3.1, which displays the relationship between age and presidential vote

choice for white respondents across all data sources.

The left panel combines the preference of voters in 2012 by age. That is, for each age group

on the x-axis, the y-axis indicates the percent supporting the Republican candidate. The size of

each bubble represents the number of voters surveyed. A best-fit curve is estimated using locally

weighted regression (LOESS).

From the panel, it is clear that support for the 2012 Republican candidate, Romney, varied by

age: The youngest white voters slightly supported Romney; voters around the age of 24 preferred

Obama, the Democratic incumbent; Romney’s vote grew steadily with age until 45, only to reverse

direction until 60; it then climbed one last time to 70, before finally flattening. But the reason for

this pattern is not obvious.

The center panel overlays curves for all presidential elections from 2000 to 2016. We remove

the bubbles for clarity. As with the left panel, the patterns in each election are difficult to interpret.

Moreover, there is no common trend across elections.

It is only in the right panel—when the data are combined by birth year (birth cohort) instead

of age—that a common pattern emerges. The five curves align. Their peaks and valleys coincide,

and, with the exception of the 2008 election, all curves are essentially on top of each other. This is

especially true for voters born between 1940 and 1970, where the bulk of the data lie.

The common pattern establishes that voters share preferences with their birth cohort and main-

tain these preferences across elections. We reason this is evidence of generational voting: Voters

from the same cohort live through the same interval of history; the cumulative impression left by

2Variables of interest are presidential vote choice, race/ethnicity, sex, state of residence, and age (or equivalently
birth year (birth cohort), defined as the year of the survey response minus age). Responses are not weighted. Through-
out this paper, white refers to non-Hispanic white.
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the events of that interval produce a stable political identity, which explains the stable partisan

preferences we observe in the right panel.

The weight of the evidence appears strong because of the simplicity of the explanation—the

curve has two peaks around the birth years of 1941 and 1968 and one pro-Democratic valley around

1952, delineating five meaningful generations—and its consistency—the curve repeats over five

elections, measured across multiple surveys conducted by different organizations, and unaltered

by any complicated adjustment or statistical model. In comparison, the center panel suggests

neither a simple nor consistent explanation.

Yet the evidence is preliminary because our reasoning does not explicitly account for non-

generational explanations of vote choice. For example, political events during election years have

been known to influence preferences monotonically across cohorts and create “uniform swings”

(Ghitza and Gelman, 2013). We noticed a uniform swing earlier in the right panel, where the 2008

curve is lower for nearly every birth cohort.

Uniform swings suggest events, such as recessions, natural disasters, or war, can influence

voters during the period in which they occur but not subsequent periods. It also stands to reason

that life-cycle events, such as education, marriage, and retirement, can influence voters at the age

in which they occur but not subsequent ages. We do not consider such period-specific and age-

specific influences generational voting because they do not leave the lasting impression that defines

a generation.

We build a model that includes both generational and non-generational determinants of voter

preference in order to identify the events that define a generation and quantify their import. Our

model avoids the well-known limitation of the traditional age-period-cohort model, which we

briefly review in order to motivate our approach. An authoritative discussion of age-period-cohort

models is given by Fienberg and Mason (1979).

The traditional age-period-cohort model for categorical data decomposes the log-odds addi-

tively into static age components (α), period components (β), and cohort components (γ). Let

θap denote the expected proportion of voters supporting the Republican candidate at age a during
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election period p with birth year (birth cohort) c = p − a. We assume without loss of generality

that the age and period indices have been centered:
∑

a a =
∑

p p = 0. Then the traditional model

is written

logit(θap) = αa + βp + γp−a (3.1)

If we knew the summands, αa, βp, and γp−a, we could indirectly determine the generational

import of political events. We might identify two cohorts, c1 and c2, differentially affected by those

events and compute the difference, γc1−γc2 . (Indeed, when we interpreted the curves in Figure 3.1,

we compared the difference between cohorts.) However, the summands are not known, only the

sum, and as it stands the system of equations given by (3.1) is indeterminate; the parameters αa,

βp, and γp−a cannot be determined uniquely from logit(θap) and are said to be unidentified.

We divide the identification problem into two cases for ease of explanation. Contrasting the

two sheds light on what exactly can be learned from age-period-cohort data. The first case is

routine in categorical data analysis. If some solution, α′a, β′p, γ′p−a, did exist, we could obtain an

observationally equivalent second solution, α′′a , β′′p , γ′′p−a, by adding and subtracting a constant of

magnitude δ to the right side of (3.1):

logit(θap) = α′a + β
′
p + γ

′
p−a

= α′a + β
′
p + γ

′
p−a ± δ

= α′a + (β′p + δ) + (γ′p−a − δ)

= α′′a + β
′′
p + γ

′′
p−a

This case poses no difficulty because δ is the same across cohorts, and therefore the difference

between cohorts remains the same: γ′c1
− γ′c2

= γ′′c1
− γ′′c2

regardless of δ. We impose the restriction∑
a αa =

∑
p βp = 0 to avoid this problem, justifying our choice on the basis that any other

restriction, for example α0 = β0 = 0, results in the same intercohort comparisons.
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But even with this restriction, equation (3.1) is unidentified. A consequence of the linear rela-

tionship between age, period, and cohort, c = p− a, is that we can add and subtract (p− a)δ to the

right side of (3.1):

logit(θap) = α′a + β
′
p + γ

′
p−a

= α′a + β
′
p + γ

′
p−a ± (p − a)δ

= (α′a − aδ) + (β′p + pδ) + (γ′p−a − (p − a)δ)

= α′′a + β
′′
p + γ

′′
p−a

This second case poses significant difficulty because (p − a)δ = cδ is not the same across

cohorts. For any solution, α′a, β′p, γ′p−a, we can generate an observationally equivalent second

solution, α′′a , β′′p , γ′′p−a, whose difference,

γ′′c1
− γ′′c2

= (γ′c1
− c1δ) − (γ′c2

− c2δ)

= (γ′c1
− γ′c2

) + (c2 − c1)δ (3.2)

can be made arbitrarily small or large by choosing δ accordingly. Put simply, the data cannot

distinguish between the determinants that produce two different cohorts and the chance timing of

age and period determinants.3

We could impose additional restrictions to force a unique solution, but, unlike the first case,

we cannot justify our choice of restriction on the basis that all restrictions are equivalent. The fact

3It is important to note that not all cohort comparisons are unidentified. For example, relative differences can be
estimated. By equation (3.2),

(γ′′c1
− γ′′c2

) − (γ′′c2
− γ′′c3

)

= (γ′c1
− γ′c2

) − (γ′c2
− γ′c3

) − (c3 + c1 − 2c2)δ

= (γ′c1
− γ′c2

) − (γ′c2
− γ′c3

)

for equally spaced cohorts, c3 − c2 = c2 − c1. But this difference in differences does not serve our purpose because it
only establishes the relative influence of events.
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that no perfunctory solution identifies the system of equations (3.1) is called the age-period-cohort

problem.4

We resolve the age-period-cohort problem, not by restricting the cohort parameters that indi-

rectly determine the generational import of political events, but by directly modeling the gener-

ational voting process that explains the pattern in Figure 1. We build a dynamic “running tally”

model in which the cumulative impression left by political events—in addition to age and period

determinants—influence the preferences of voters.5

Our running tally consists of two parts. We use the Gallup Organization’s long-running presi-

dential approval rating time series, displayed in Figure 3.2, to measure the political events voters

experience. We then weight this measure according to the age of the voter at the time the events

took place. That is, we replace γp−a in equation (3.1) with
∑a

i=0 wi xp−a+i where xp−a+i is the

(observed) measurement of the political events when a voter from cohort c = p − a was age i, and

wi is the (unobserved) influence of the events at age i.

Unlike the static age-period-cohort model, our cohort parameter is dynamic and changes with

a, and we therefore call it the generational parameter. Our model also accounts for the sex, race,

and region of voters, the survey house that collected the data, and choice interactions. We present

the technical details of our model in the following section.

One limitation of Gallup’s approval ratings is that, despite being one of the longest-running

time series available for the study of American political behavior, it is “only” available from 1937

onward. Because this analysis examines the formation of preferences over a voter’s entire life

4Although called the age-period-cohort problem, the linear relationship that produces this identification problem
arises whenever exposure to a phenomenon of interest is not measured directly but approximated from the timing of
a life event such as birth year, graduation, employment, or retirement. For example, consider the linear model with
explanatory variables age, number of years married, and number of years not married. The problem also extends to
interactions, which are not identified since the relationship c = p − a implies c2 = p2 − 2ap − a2, cp = p2 − ac, and
ca = pc − a2.

5In the typical “running tally” model, voters choose their partisan identification by evaluating each party’s per-
formance over their lifetime (Fiorina, 1981; Achen, 1992). The simplest versions give each evaluation equal weight
regardless of age or recency. Several papers have generalized the model, for example see Gerber and Green (1998).
In another example, independent of our work, Bartels and Jackman (2014) combine age-specific weights with period-
specific shocks. Both parameters are estimated from the American National Election Study (ANES) cumulative
dataset. While these parameters are not underidentified, see footnote 17, (Bartels and Jackman, 2014: pg 14), the
model is statistically underpowered; the age-specific weights oscillate between negative and positive, and the uncer-
tainty bounds are large with almost none statistically distinguishable from zero.
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Figure 3.2: The Gallup Organization’s presidential approval rating time series, 1937-2016. The
data reflects political events that influence voter’s partisan preferences.

cycle, and due to the importance of early life political socialization indicated in the literature, we

discard observations for which we do not have presidential approval data over the respondents’

entire life span. That is, we drop respondents born before 1937, leaving 215,693 responses. The

data are plotted by election year and year of birth in Figure 3.3. They cover the 1960-2016 elections

and sixty-one birth-year cohorts (1937-1998), with at least 1,000 responses for any individual year.

3.3 Statistical Model

We model the partisan preference of the survey respondents described in the previous section.

We index each response by five identifiers: (1) the age of the respondent a = {1, 2, . . . , 70}, (2)

the year of the response p = {1960, 1961, . . . , 2016}, (3) the race/region group of the respondent
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Figure 3.3: After removing survey respondents born before 1937, the analysis includes 215,693
survey respondents in total, here displayed by election year and year of birth. The data, and thus
the analysis, have a strong emphasis towards the most recent four elections, and may be interpreted
as weighted towards the contemporary political climate. The data encompass generational cohorts
defined by their individual birth year from 1937-1998, with at least 1,000 responses for each birth
year until 1986.

g = {non-Southern white, Southern white, and minority}, (4) the sex of the respondent s = {female,

male}, and (5) the survey house that collected the response h = {Annenberg, Gallup, NES, GQRR,

CNN/ORC/Pew}.6

These identifiers partition the responses into mutually exclusive cells. For each cell j, we

denote the age, period, group, sex, and source of the responses by a[ j], p[ j], g[ j], s[ j], and h[ j].

Let y j denote the number of respondents preferring the Republican candidate in cell j, and

n j the number preferring either the Republican or Democratic candidate. Undecided voters are

6Our index includes non-election years because voters continuously form preferences even though they only ex-
press those preferences in election years. We also group all minority respondents together. Although we prefer to
separate African Americans, Hispanic Americans, Asian Americans, etc., the data does not distinguish consistently
between minority groups in early years.
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discarded. We model

y j ∼ Binomial(n j, θ j ),

where θ j is the proportion of Republican presidential support within cell j.

Our primary goal is to quantify the generational effect: the extent to which logit(θ j ) is ex-

plained by the cumulative impression left by political events. We use the Gallup presidential ap-

proval rating time series to instantiate these events as follows.

Let xt denote the Republican-directional presidential approval rating in year t. The rating is

calculated by (1) subtracting 50% from the Gallup presidential approval rating in the year t, and (2)

multiplying the difference by −1 if the sitting president was a Democrat. It is positive under two

conditions: a Republican president had ratings above 50% or a Democratic president had ratings

below 50%. Conversely, it is negative under a popular Democratic or an unpopular Republican

president.

Respondents of cell j experience the rating xp[ j]−a[ j]+i at age i. For example, respondents

surveyed at a = 53 in p = 2012 were born in c = 2012 − 53 = 1959 at i = 0. In 1960 (i = 1), the

average approval rating for Republican president Eisenhower was 71%, so x2012−53+1 = (71−50) =

+21%. In 1961 (i = 2), the presidency flipped to Democratic president Kennedy, who had an

average rating of 88%, yielding x2012−53+2 = −1 × (88 − 50) = −38%.7

The generational effect is defined as

γ j = Ωg[ j]

a[ j]∑
i=1

wi xp[ j]−a[ j]+i

where wi denotes the age-specific weight of the rating at age i, and Ωg denotes the scale of the

age-specific weights for group g.

In addition to the generational effect, we define a period effect for each group, βpg, and a

7We set xp[ j]−a[ j]+i = 0 if i > a. We top-censor x at age 70 because few approval ratings are observed above that
age.
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period and age-weight interaction, λgwa βpg. The interaction accounts for the impressionability

of respondents to political events at election time, and λg denotes the scale of the interaction for

group g, similar to Ωg in the generational effect. Put together, these define the election effect,

B j = βp[ j]g[ j] + λg[ j]wa[ j] βp[ j]g[ j]

=
(
1 + λg[ j]wa[ j]

)
βp[ j]g[ j].

We also define an age effect αa, a house effect ηh, and the following linear-in-period sex effect

δsp =




−1
2 (δ0 + δ1 p) if female

1
2 (δ0 + δ1 p) if male

The log-odds is the sum of the effects as in equation (3.1)

logit(θ j ) = αa[ j] + B j + γ j + ηh[ j] + δs[ j]p[ j]

We complete the model by smoothing the age weights,

wi ∼ Normal (wi−1, 0.005) ,

and specifying normal distributions for α, β, and η with mean zero and standard deviations σα, σβ,

and ση . The scale parameters, λ, and Ω are constrained to be positive.

We fit the model using Stan (Stan Development Team, 2013) and R (R Core Team, 2012). Stan

runs a No U-Turn (NUTS) sampler (Hoffman and Gelman, 2014), an extension to Hamiltonian

Monte Carlo (HMC) sampling, which is itself a form of Markov Chain Monte Carlo. We generate

4 chains for 5000 iterations. The final 2500 iterations of each chain converge as indicated by

post-modeling diagnostics such as Gelman-Rubin R̂ (Gelman et al., 2004). We ensure satisfactory

posterior predictive model performance (Gelman et al., 2004) before using sample means (for
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Figure 3.4: Estimates of the generational effect. (L) We find the 14-24 age range is most import
for the formation of long-term presidential voting preferences. Political events before 14 have little
impact. After 24, the age weights decreases. (R) These weights, and the political socialization pro-
cess implied by them, are substantially more important for non-Hispanic whites than for minorities
as a whole.

estimates) and sample quantiles (for credible intervals) in the following section.

3.4 Model Results

We interpret the fitted model with a series of graphs. In Figure 3.4 we examine the generational

effect, Figure 3.5 the election effect, and Figure 3.6 the amount of variation explained by the model.

3.4.1 Generational Effect

The left side of Figure 3.4 shows the estimated age-specific weights, wi, along with 50% and

95% credible intervals. The weights quantify the formative years of political socialization with
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precision unprecedented in the literature: At a very young age, political events leave virtually

no impression—the weight at age 1, w1, is essentially zero. The weights then increase steadily,

peaking around 14-24 and gradually decreasing thereafter. At the height of their influence, around

the age of 18, events are nearly three times as meaningful as those later in life.

The importance of adolescence and early adulthood in the socialization process is supported

by an enormous literature. For example, Erikson, MacKuen and Stimson (2002) also find political

events have the largest impact at age 18-19 before declining. Yet despite the decline—and the fact

that a generation’s preferred party is all but locked-in by 40—we find political events continue to

influence voter preferences. The age-weights only return to zero around age 60.

No children were interviewed, leaving one to perhaps wonder how the model can determine

the impressions left by childhood events. To understand how, consider a year in a respondent’s

childhood, say the year the respondent was 14 years old. We know the age the respondent was

interviewed and therefore the year in which the respondent was 14. We also know the political

events of that year, as reflected in the presidential approval rating. Our model uses this data to

“back out” the size of the impression left by the events the respondent experienced at age 14.

For example, a 45-year old who was interviewed in 2012 would have been 14 in 1981. President

Reagan had an average approval of 66% in 1981. The fitted model estimates the weight 14-year-

olds must give events instantiated by a 66% approval rating in order to explain the preference of

voters 31 years later, in 2012.

The right side of Figure 3.4 shows Ωg, the amount the age-weights are scaled to produce the

generational effect for each group. The estimated generational effect is found to be over twice as

large for non-Hispanic whites as for minorities as a whole, suggesting considerable differences in

the political socialization process.

The difference could reflect the fact that African Americans are consistent Democratic voters,

and Hispanic or Asian American immigrants may not have been in the United States during peak

socialization to experience the political events captured by the Gallup series. In addition, the

political participation of naturalized citizens has been shown to vary depending on their community
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Figure 3.5: (L) Estimates of the period effect. Minorities are consistently more likely to vote for
Democratic presidents, and Southern whites have steadily trended pro-Republican over the past 50
years. (R) Election effects are similar between young and old minority voters and in the South.
The evidence is inconclusive for non-Southern whites.

(Pantoja, Ramirez and Segura, 2001).

Whatever the reason, the political socialization process observed with white voters is less ev-

ident with minority voters. A more rigorous investigation would separate minority subgroups,

which, unfortunately, we are unable to do from the data.

3.4.2 Election Effect

The left side of Figure 3.5 shows a time series plot of the estimated period effects, βpg, along

with 50% and 95% credible intervals. The effects vary by race/region group, reflecting 50 years

of political polarization. Minorities are consistently more likely to vote Democratic, and Southern

whites, Republican.
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The right side shows the interaction between period and age-weight, λgwa βpg. The interaction

allows us to determine whether the election effects are more pronounced during the formative

years shown in Figure 3.4. However, interactions are difficult to interpret directly (Gelman and

Hill, 2007). Instead we examine the following ratio, where the numerator is the first factor of B j ,(
1 + λgw18

)
, for an 18-year old voter (one of the most impressionable ages as determined by the

peak of the age-weight curve), and the denominator is the corresponding factor,
(
1 + λgw70

)
, for

a 70-year old voter (one of the least impressionable ages as determined by the nadir).

We do not find clear evidence that the election effect varies according to the age-weights. For

Southern whites and minorities, the mode of the ratio gathers at the boundary 1.0, implying no

difference. For non-Southern whites, the effect has substantial mass between 1.0 to 1.4. That is,

the model indicates that election effect for non-Southern whites are between 0% and 40% greater

for young voters than old voters.

3.4.3 Explanatory Power

Figure ?? compares the sample R2 of the fitted model against a simpler model with only period

and race/region effects. The comparison is made overall and within each group. We use R2 because

of its simplicity and near-universal recognition among researchers. However, we note that R2 is

one of many possible measures of explanatory power, with other choices typically trading between

reliability and interpretability. We weight R2 by the size of the j cells.

Overall, the model explains 91% of the variance in the data. Much of this variation, 89%, is

also explained by the simpler model. However, that merely reflects the enormous difference in

voting preferences between groups and across elections.

Within race/region groups, our model explains considerably more variation—although the im-

provement is not equal across all groups. For non-Southern whites, the fit increases nearly twenty

percentage points, from 51 to 69%. For Southern whites, it improves a modest seven, from 47 to

54%. For minorities, there is little difference.

We conclude that our model accounts for a substantial portion of the variation in presidential
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Figure 3.6: The model accounts for 91% of the macro-level variance in voting trends over the past
half century, more than the simpler model incorporating only period/group effects. The model fits
considerably better within race/region groups, particularly among non-Southern whites.

voting over the last half century. It is a demonstrable improvement over a model with only period

and race/region, suggesting a single defining political event is less important in the formation of

voter preferences than the prolonged impression left by a lifetime of events.

3.5 Generations of Presidential Voting

We demonstrate how the fitted model aids the study of elections. We provide a narrative of the

presidential approval time series, emphasizing how political events, generally associated with the

presiding administration, formed the preferences of five distinct generations: New Deal Democrats,
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Eisenhower Republicans, 1960s Liberals, Reagan Conservatives, and Millennials. Each generation

is epitomized by the birth years in which partisan preferences were the strongest: 1929 (pro-

Democrat), 1941 (Republican), 1952 (Democrat), 1968 (Republican), and 1985 (Democrat).

These labels are for convenience and should not be taken too literally; generations are not the

byproduct of a single year, but rather the result of sustained periods of partisan influence. The

following figures plot model results for white voters. Under our model, the generational effects

for minority groups are proportional. However, as discussed in the previous section, the evidence

of generational voting is weaker for minority voters, and thus any generalizations made from the

model are weaker.

3.5.1 New Deal Democrats

Since the approval ratings begin in 1937, the model is limited in its description of the New Deal

Democrats, who are epitomized by the 1929 birth year. Nevertheless, we use the general principles

learned from the model in other generations to piece together how political events influenced this

group.

New Deal Democrats include a large and diverse group, dominated by a single towering figure:

Franklin Delano Roosevelt. As president, FDR guided the country through the Great Depression

and World War II, and, with the New Deal, laid the foundation for the modern American welfare

state. He was enormously popular, winning four elections and serving for twelve years, more than

any president in American history.

For the first half of this group, voters born between 1910 and 1920, their peak formative years

were spent during the Great Depression and World War II. They experienced Republican presi-

dent Hoover’s inability to help a struggling United States, followed by economic recovery and the

greatest war in world history—both under Democrat FDR.

To these voters, the United States became a leader of the free world under Roosevelt’s watch.

This left a strong impression that remains to the present day. Recall Figure 3.1, where these

now elderly voters continue to have comparatively pro-Democratic preferences in the 2000-2016
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elections.

For the second half of this group, voters born after 1930, their exposure to FDR was limited.

Their formative years occurred after the country recovered from the Depression, and, for many,

after World War II as well. Though they lived through the tail end of his presidency, during which

FDR remained enormously popular, their peak years were spent with Truman at the helm. Truman

had mixed and limited popularity over his two terms, ending his presidency at 36% approval. As a

result, these voters’ long-term voting preferences are mixed.

3.5.2 Eisenhower Republicans

The approval ratings are available for the entire life span of the remaining generations. As a

result, we can directly interpret the fitted model, which we do with the aid of the two panels in

Figure 3.7.

The top panel shows the approval ratings, highlighted to emphasize the generational import of

each time period: The ratings are colored red to blue, with red reflecting pro-Republican approval

ratings, blue pro-Democratic, and shades of grey in between. The width and darkness of the line

correspond to the estimated, age-specific weights w. Thus, the darkest and widest lines emphasize

the peak formative years, when the events represented by the approval ratings were most influential.

The bottom panel shows the cumulative weighted approval ratings, which define the genera-

tional effect of the political events experienced up until the age indicated on the x-axis. The series

starts at the grey line (age 0).

With this Figure, we examine the presidential preferences of the Eisenhower Republican gen-

eration, epitomized by voters born in 1941. These voters were too young to remember FDR’s

many accomplishments, instead entering their years of peak socialization in anti-Democratic and

pro-Republican times; their earliest impressions were formed in 1951 when Truman, who had

barely won reelection three years earlier, sent American troops into Korea. After the unconditional

victory of World War II, Americans were unaccustomed to the apparent stalemate in Korea, and

Truman’s popularity plummeted.
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Figure 3.7: Presidential approval, and the cumulative generational effects, for Eisenhower Repub-
licans born in 1941. The graph emphasizes peak years of socialization, according to age weights
found by the model. Blue indicates pro-Democratic years, red for pro-Republican, grey in be-
tween. This generation missed most of the FDR years and was socialized through 10 straight pro-
Republican years (Truman and Eisenhower). Their partisan voting tendencies were drawn back
towards the neutral grey line by the pro-Democratic 1960s, and they reached a rough equilibrium
by the end of the Nixon presidency.
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When Eisenhower assumed office in 1953, his approval was a near unanimous 91%. While

most presidential terms begin with high ratings (Erikson, MacKuen and Stimson, 2002), Eisen-

hower remained popular over his entire presidency. The heroic World War II general promised to

end the Korean War during his campaign and quickly did so. Although he did not end the larger

Cold War, as he desired, international conflicts were relatively minor over his tenure. The 1950s

were a time of relative peace, prosperity, and progress.

The most prominent dip in Eisenhower’s popularity came around 1957-1958. The country was

in a recession, the Soviet Union had launched Sputnik and appeared to be winning the space race,

and Eisenhower was forced to send federal troops to Little Rock to enforce a federal desegregation

policy, indicative of national tensions over civil rights. But the dip was short lived, reaching a bot-

tom point of 57% in March of 1958 and rebounding quickly back to the 70-80% range. Eisenhower

left office with a 69% approval rating.

The Eisenhower Republican generation experienced 10 straight years of pro-Republican pres-

idential evaluations, much within the peak years of socialization. The impact of this period on

their long-term presidential voting preferences is apparent in the bottom panel of Figure 3.7. The

curve ascends steeply, peaking at the end of the Eisenhower administration. Their preferences were

then moderated by the Kennedy and Johnson years, reaching equilibrium by the end of the Nixon

presidency.

3.5.3 1960s Liberals

The generation of the 1960s Liberals is epitomized by voters born in 1952. As can be seen in

Figure 3.8, these voters came of age during the Kennedy, Johnson, and Nixon years.

Kennedy, like Eisenhower, began his presidency with immense popularity, at a 92% approval

rating. The political mood of the country was at a liberal high-point (Stimson, 1991), and there

was widespread optimism about the role of government. That optimism was reflected in Kennedy’s

bold “New Frontier” agenda, in which he committed to sending a man to the moon by the end

of the decade, and in his sweeping initiatives to combat poverty, expand medical care, increase
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Figure 3.8: The generation we refer to as 1960s Liberals are best epitomized by those born in 1952,
whose presidential political events are emphasized here. Too young to be highly influenced by
the Eisenhower years, they experienced an intense period of pro-Democratic sentiment during the
1960s. After 1968, however, roughly 25 years of near-consistent pro-Republican events neutralized
their presidential voting preferences.

educational aid, and progress the cause of civil rights.

Kennedy succeeded in passing a number of initiatives, but his presidency was overshadowed

by a series of tumultuous, foreign policy events. He was at the helm during the failed Bay of
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Pigs invasion and the Cuban Missile Crisis. Though Kennedy averted war, many questioned his

strength as a leader in the face of the Soviet Union. His approval ratings declined steadily over his

three-year presidency with only a short positive burst following the Cuban Missile Crisis.

Right before Kennedy’s assassination in November 1963, his approval ratings bottomed out

at 66%. The assassination, however, resulted in an enormous popularity spike—the second pro-

Democratic spike in less than a three-year time span. Perhaps for this reason, the 1960s Liberals

remember Kennedy more for his charisma, his beautiful and sophisticated family, and his opti-

mistic vision of the future.

When Johnson assumed the presidency, he was the second Democratic president to start in the

90% range, this time at 97% approval, the highest in the series. In the name of the fallen president,

and as the quintessential Washington insider, Johnson promoted his vision of a “Great Society”.

He signed foundational legislation, such as the Civil Rights Act of 1964 and the Voting Rights Act

of 1965. He established landmark programs, such as Medicare, Medicaid, food stamps, and Project

Head Start. He expanded student loans and increased federal funding, including universities and

the nongovernmental Corporation for Public Broadcasting. He protected the environment, regu-

lating pollution through the Water Quality Act and Air Quality Act and establishing the national

wilderness, rivers, and trails systems.

Johnson enjoyed immense popularity for an extended period of time, as reflected in his high ap-

proval ratings and landslide election victory over Barry Goldwater in 1964. These dramatic events

socialized the 1960s Liberals generation unusually early, with a steep pro-Democratic shift from

1961-1966 (corresponding roughly to 9-14 years old)—well before the peak years of socialization

(14-24). This shift was strong enough to influence their preferences for decades to come.

The Vietnam War and increasing racial and social tension in the late 1960s, however, marred

Johnson’s presidency and legacy. By 1967, his approval ratings had fallen, and in 1968 the once

powerful president decided against running for reelection.

In that election, Nixon played on the generation gap, speaking to the “silent majority” and ex-

plicitly denouncing the political concerns of the 1960s Liberals. Four years later, after the national
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voting age was lowered to 18, the generation gap reached its largest. White voters under the age

of 25 (first-time voters in 1972) supported Nixon at 53%, compared to 70% for white voters 25 or

older. This 17-point gap is the largest in the dataset, not exceeding 9 points in any other election.

The continuation of the Vietnam war under Nixon, when this generation reached draft age, and

ultimately the Watergate scandal, helped keep the 1960s Liberals pro-Democratic until their 40s.

Yet, the cumulative curve of Figure 3.8 shows that the 1960s Liberals never returned to their 1968

pro-Democratic highpoint.

3.5.4 Reagan Conservatives

The generation of the Reagan Conservatives is epitomized, ironically, by the 1968 birth cohort—

the year the 1960s Liberals hit their pro-Democratic highpoint. These voters were not alive for the

popular, pro-Democratic Kennedy and Johnson years, and the Nixon and Ford presidencies had

little impact, as shown in Figure 3.9. Their political socialization started with president Carter.

Carter was initially popular, but his ratings plummeted as adverse political events overtook his

presidency. By the time he left office, an energy crisis, stagflation, and the Iran hostage crisis,

among other events, left him with approval ratings in the 30-40% range.

Reagan captivated this generation with his optimistic vision of America as a shining city on a

hill. Though his early years were defined by a lack of economic recovery and Republican defeats

in the 1982 midterm elections, Reagan’s popularity dipped below 50% for only a short period. The

recovery hit full swing shortly thereafter, and Reagan, whose campaign famously declared that it

was “Morning in America” again, was reelected in a landslide.

The Reagan “Revolution” had a powerful impact on this generation, who, at 16 years old, were

reaching their peak years of socialization. Despite the Iran-Contra scandal and ballooning deficits

near the end of his second term, Reagan ended his presidency with a 68% approval rating.

Figure 3.9 suggests President Bush I’s presidency extended pro-Republican sentiment in ways

that are perhaps underestimated in the collective public memory. From a foreign policy perspective,

Bush was enormously successful. The fall of the Berlin Wall and the end of the Cold War came
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Figure 3.9: The Approval series as seen by the generation we call Reagan Conservatives, best
epitomized by those born in 1968. This generation missed the Kennedy and Johnson years entirely,
and their peak socialization fell under the popular Republican presidents Reagan and Bush I. By
the time the Democratic president Clinton reached his peak popularity in the late 1990s, they were
already roughly 30 years old.

under his watch, and Operation Desert Storm demonstrated the power of American leadership in

the post-Cold War era. As a result, Bush’s ratings rarely fell below 80% for over 2 years, only

dipping below 50% right near the end of his term.
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Ultimately, economic problems at home doomed his presidency. The Clinton campaign mocked,

“It’s the Economy, Stupid,” winning the presidency in 1992 and ending over a decade of nearly

continuous pro-Republican sentiment. The pro-Democratic Clinton years curbed this generation’s

long term preferences, but the Reagan Conservatives were roughly 30 years old by the time Clinton

reached the height of his popularity in the late 1990s, past the peak age of socialization.

3.5.5 Millennials

For the last generation—the Millennials, epitomized by the 1985 birth year—we only observe

31 years of preferences. Nevertheless, the political events that have shaped their voting preferences

are clear in Figure 3.10. If past generations are any guide, these impressions will continue to

influence their preferences for the rest of their lives.

The Millennials did not experience the uncertainty of the Cold War or the foreign policy suc-

cesses of the Reagan and Bush I administrations. The Clinton years were the first to influence their

voting patterns.

Clinton’s biggest political defeat, the Republicans’ Contract with America, took place in 1994

when Millennials were around 9 years old. But as Millenials entered their peak socialization years,

America had become the globe’s lone superpower, and the country was experiencing tremendous

economic growth. Clinton enjoyed positive approval ratings for roughly four straight years, and

despite his impeachment, ended his presidency at 67% approval.

Republican Bush II took office in 2001, beginning one of the most turbulent presidencies in

American history. After an initial popularity of 94% following the 9/11 terrorist attacks, his ap-

proval declined precipitously. His administration undertook costly and unpopular wars in two

countries. Some supported the president’s vision of America as a crusader for democracy, but

many grew to oppose the war in Iraq, in particular. On the domestic front, Bush II’s most notable

accomplishment was his 2001 tax cuts, which created massive federal deficits. He ended his pres-

idency amid the largest financial crisis since the Great Depression. Eleventh hour legislation, the

Troubled Asset Relief Program (TARP), was unable to avert the crisis.
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Figure 3.10: The Approval series as seen by the last generation, the Millennials. Their experience
had only lasted 31 years by the 2016 election, but the model indicates that these years should
remain highly influential over the rest of their lives. Their formative years have been primarily
characterized by the popular Democratic president Clinton and the unpopular Republican Bush II,
resulting in their relatively strong pro-Democratic sentiment.

These events are reflected in his approval ratings. Bush II fell below 50% in 2004, barely

winning reelection that year. He fell below 50% again in 2005, and his ratings stayed in negative

territory for the remainder of his presidency—almost an entire four years, by far the longest stretch
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in the series. His approval hit its low point of 26% in October of 2008, in the midst of the financial

crisis.

We conclude with Democratic president Barack Obama, who ends the series. Obama, like the

other presidents, began with a high 76% rating—less than the 90% levels of earlier presidents,

but in line with the start of the Clinton and Bush II presidencies. His popularity quickly declined,

dropping to 50% in February 2010 and hovering around 50% for the remainder of his presidency.

The Millennials’ preferences thus far reflect the popular Democrat Clinton and the deeply un-

popular Republican Bush II. But consider the youngest voters, born in 1998 and 18 years old during

the 2016 election. They were barely alive during Clinton’s presidency and were only ten years at

Obama’s election, essentially missing both of these consequential time periods. Instead, they were

socialized during the relatively even Obama years. Referring back to Figure 3.1, we can see that

they trended Republican compared to their slightly older counterparts. However, their ultimate

life-long voting patterns remain to be seen.

3.5.6 The Changing White Electorate

We examine the white electorate as the changing composition of five generations. Figure 3.11

combines each of the generational curves from the previous sections on a single graph. However,

instead of plotting each generation by its representative birth cohort, we broaden each generation

to the scale of decades. The narrative remains the same though; narrow definitions of generations

are not indicated by the data.

The changing width of each curve reflects the proportion of the electorate that each generation

contributes at any given time: At the start of the series, the oldest generation comprises the entire

electorate. As time marches on, they become a smaller and smaller portion, and by 2016 all five

generations are represented.8 The overall electorate is shown in black.

Before the 1960s, partisan preferences moved back and forth between Republican and Demo-

8Instead of plotting each generation’s full curve from age zero onward, we only plot the curves from their first
election onward. We have also included New Deal Democrats and older voters in this graph, even though they were
not included in the statistical model.
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Figure 3.11: The cumulative preferences of each generation is shown, along with the weighted
summation of the full white electorate. The generations are loosely defined so that the entire
electorate can be plotted at once. The width of each curve indicates the proportion of the white
electorate that each generation reflects at any given time. The model—in this graph reflecting only
the approval time series and the age weights—explains much of the voting tendencies of the white
electorate over time.

crat, in response to the popularity of Roosevelt, Truman, and Eisenhower. The Kennedy/Johnson

years pulled the electorate Democratic over the course of the 1960s. Then followed a long period
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of Republican ascendancy—slightly trending upward through the Nixon and Ford years, slowed in

part by the entry of the 1960s Liberals.

The Reagan administration moved all generations upward. The New Deal Democrats were

too old for a large change, but the remaining generations, especially the Reagan Conservatives,

moved dramatically, with the black curve crossing the 50% boundary line in late 1984. The Reagan

Conservatives were then moderated by the Clinton presidency, but not enough to shift the electorate

as a whole. A Bush II spike followed 9/11, only to drop under his slow and steady decline.

Our model is relatively simple, but it explains a substantial amount of the voting character of

the electorate. Figure 3.11 is driven entirely by approval ratings and age weights. It recreates the

familiar “parallel lines” of public opinion, in which different groups exhibit respond proportionally

to political events (Page and Shapiro, 1992). Though the fluctuations in partisan preference may

seem small—the black curve spans only 10 percentage points altogether—they are large enough to

determine an election and thus the political direction of the United States.

3.6 Discussion

We build a generational model of American presidential voting. In our model, the political

events voters experience leave lasting impressions that inform their partisan preferences. The size

of the impression depends on the age of the voter at the time the event took place.

We demonstrate the fitted model is both predictive—explaining a substantial portion of voting

trends over the last half-century—and interpretable—dividing voters into five meaningful gener-

ations. The predictivity and interpretability remain even after controlling for changes in cohort

composition, such as age, race, region, and sex. We conclude the data strongly support genera-

tional voting.

Our analysis is at the macro-level in that we do not study specific voters or political events in

detail, but rather the broad strokes of events across the electorate. We believe the quantification

of macro-level trends is an important contribution in its own right; we illustrate in detail how the

fitted model aids the study of elections. Nevertheless, we believe our work has two important
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implications for micro-level analysis.

First, while many of the events we identify with our model have been suggested in the lit-

erature, the length and size of our dataset allow us to assess their importance with unprecedented

precision. We find some events were so impactful, they left an impression on individuals we would

not typically consider impressionable. For example, the events during the Kennedy and Johnson

administrations defined the 1960s Liberals while they were still children. Researchers can further

study these events using detailed surveys or quasi-experiments.

Second, the age-period-cohort problem arises in micro-level as well as macro-level analyses. It

occurs whenever exposure to the phenomenon of interest is not measured directly but backed out

from the timing of a life event such as birth year, graduation, employment, or retirement. Moreover,

it occurs regardless of whether additional individual-level covariates are included or age, period,

and cohort are treated as continuous measurements.

We believe our approach is an effective solution to the age-period-cohort problem, which con-

tinues to challenge researchers despite its discovery nearly a century ago. For example, consider a

variant of the problem, which puzzled pollsters after the 2012 presidential election: In 2008, 55%

of white voters aged 18-29 voted for then-Democratic candidate Obama. In 2012, that advantage

flipped to 54% in favor of Republican candidate Romney. Why did this happen? Was this a tempo-

rary shift in the preferences of young voters? Or would young white voters support the Republican

candidate in 2016?

Our model provides a clear answer. Heading into 2008, young, impressionable voters had only

experienced the popular Clinton and unpopular Bush II years. The winds were in Obama’s favor.

By 2012, however, the years of poor Bush II performance that had swayed the young voters of

2008 were replaced by the more recent, mediocre ratings of Obama himself. The shift of young,

white voters to the Republican Party was not temporary. In fact, our model predicted it in 2012,

and the 2016 election confirmed this trend.

We could paint these events in a positive light for the Democrats. The year 2008 was spe-

cial, similar to 1972, in that a strongly pro-Democratic cohort entered the electorate following a
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deeply unpopular Republican president. The impression left by the Clinton and Bush II years may

be strong enough to keep an entire generation of voters pro-Democratic throughout their entire

lifetime.

We conclude on this note. When we think about generations of presidential voting, it is im-

portant not to think about a single defining political event. Rather, generations are formed through

prolonged periods of presidential excellence: FDR and the New Deal, Eisenhower, Kennedy and

Johnson’s Great Society, the Reagan/Bush conservative revolution, and the Clinton years. Each is

characterized by long periods of high approval ratings. Each defined a generation by slowly and

steadily winning over the electorate’s most impressionable voters.
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Chapter 4: Forecasting Declining Temperature Sensitivity with a

First-hitting-time Model

with E. M. Wolkovich, C. J. Chamberlain, D. M. Buonaiuto, A. K. Ettinger, I. Morales-Castilla,

and A. Gelman

Temperature sensitivity—the magnitude of a biological response per ◦C—is a fundamental

concept across scientific disciplines, especially biology, where temperature determines the rate

of many plant, animal and ecosystem processes. Recently, a growing body of literature in global

change biology has found temperature sensitivities decline as temperatures rise (Fu et al., 2015;

Güsewell et al., 2017; Piao et al., 2017; Dai et al., 2019).. Such observations have been used

to suggest climate change is reshaping biological processes, with major implications for fore-

casts of future change. Here we present a simple alternative explanation for observed declining

sensitivities: the use of linear models to estimate non-linear temperature responses. Corrections

for the non-linearity of temperature response in simulated data and long-term phenological data

from Europe remove the apparent decline. Our results show that rising temperatures combined

with linear estimates based on calendar time are expected to produce observations of declining

sensitivity—without any shift in the underlying biology.

4.1 Introduction

Climate change has reshaped biological processes around the globe, with shifts in the timing

of major life history events (phenology), carbon dynamics and other ecosystem processes (IPCC,

2014). With rising temperatures, a growing body of literature has documented changes in temper-

ature sensitivity—the magnitude of a biological response scaled per ◦C. Many studies have found

declining responses to temperature in recent decades (Fu et al., 2015; Güsewell et al., 2017; Piao

86



et al., 2017; Dai et al., 2019), and some have reported more uniform sensitivities across elevation

(Vitasse et al., 2018), or lower sensitivities in warmer, urban areas areas (Meng et al., 2020).

Most studies attribute changes in temperature sensitivity to shifts in underlying biological pro-

cesses. For example, researchers have suggested weaker temperature sensitivities are evidence of

increased light limitation in the tundra (Piao et al., 2017), or a decline in the relative importance

of warm spring temperatures for spring phenological events (e.g., leafout, insect emergence) in the

temperate zone (Fu et al., 2015; Meng et al., 2020), as other environmental triggers (e.g., winter

temperatures that determine ‘chilling’) play a larger role. Yet, despite an increase in studies re-

porting declining or shifting temperature sensitivities, none have provided strong evidence of the

biological mechanisms underlying these changes (e.g., Fu et al., 2015; Meng et al., 2020). The

missing mechanisms may be hidden in the data: environmental factors moderate biological pro-

cesses in complex ways (Chuine et al., 2016; Güsewell et al., 2017), are strongly correlated in

nature (e.g., Fu et al., 2015), and temperature variance shifts over time and space (Keenan et al.,

2020).

Here we propose a simpler alternative explanation: the use of linear models for non-linear

responses to temperature. Researchers generally use methods with assumptions of linearity to

calculate temperature sensitivities, often relying on some form of linear regression to compute a

change in a quantity—days to leafout or carbon sequestered over a fixed time, for example—per ◦C,

thus ignoring that many biological responses to temperature are non-linear. We show, theoretically

then with simulated and empirical data, how the use of linear methods for non-linear processes can

produce an illusion that the mechanisms underlying biological processes are changing.

4.2 A first-hitting-time model of leafout

Many observed biological events are the result of continuous non-linear processes that depend

on temperature, which are discretized into temporal units for measurement. For example, a bio-

logical response, such as leafout, occurs when a certain thermal sum is reached, and plants will

reach this threshold more quickly—in calendar time—when average daily temperatures are warmer
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(Chuine, 2000). Biologically, however, the plants may require the same temperature sum. Indeed

any process observed or measured as the time until reaching a threshold is inversely proportional

to the speed at which that threshold is approached. Temperature determines the speed of many

biological processes. Thus, at very low temperatures plants would never leaf out and at higher

temperatures they could leaf out in only a matter of days—yet sensitivities estimated from linear

regression at higher (warmer) temperatures would appear much lower than those observed at lower

temperatures. Warming acts to step on the biological accelerator, and thus may produce declining

sensitivities without any change in the underlying process.

We show this by deriving the relationship between a biological response and temperature using

simple stochastic model, which describes the first time a random process hits a threshold (called a

‘first-hitting-time model). Our model holds the temperature threshold for leafout constant. Even

though the mechanism by which temperature leads to leafout does not change, the model produces

declining sensitivity—as measured in days per ◦C—with warming. Indeed, under this model con-

stant temperature sensitivity would be evidence that the temperature threshold is not constant and

the mechanisms underlying the leafout process have changed.

We derive the relationship between daily temperature and leafout in two common scenarios. In

the first, we take the average daily temperature up until the leafout date. In the second, we take the

average daily temperature over a fixed window, such as March 1st to April 30th. In both cases, we

discretize time since, although many biological processes depend continuously on time, research

typically measures time in discretized units, such as days, weeks, or months. We also assume

normality—appealing implicitly to the Markov chain central limit theorem.
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4.2.1 Scenario 1: Using average daily temperature until the leafout date

We use the following notation:

n = day since temperatures start to accumulate, n = 0, 1, ..., N

Xn = observed temperature on day n

Sn
0 =

n∑
i=0

Xi, the cumulative daily temperature from day 0 to day n

Mn
0 =

Sn
0

n
, the average daily temperature from day 0 to day n

β = the threshold of interest, β > 0, (thermal sum required for leafout)

nβ = argmin
n

Sn > β, the first day the cumulative daily temperature passes the threshold

(for example, day of year (doy) of leafout).

We model Xn as a Gaussian random walk, Xn
i.i.d
∼ normal (α0 + α1n, σ), where α0 > 0 is the

average temperature on day n = 0, α1 > 0 is the day-over-day increase in average temperatures,

and σ is the standard deviation. This model differs from the traditional Gaussian random walk

because of the factor n.

This model has two important consequences:

(1) Leafout time is inversely related to average temperature at leafout time.

Under this model, Mnβ
0 and nβ are inversely proportional. To see why, assume for the moment

that the cumulative daily temperature hits the threshold exactly on leafout day. That is, Snβ
0 = β.

Then

Mnβ
0 =

Snβ
0

nβ
=

β

nβ
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rearranging yields

nβ =
β

Mnβ
0

Many global change biology studies use linear regression to quantify the relationship between

nβ and Mnβ
0 (or similar metrics, see Wolkovich et al., 2012; Piao et al., 2017; Keenan et al., 2020,

for examples). Regressing nβ on Mnβ
0 finds a best fit line to the inverse curve, nβ =

β

M
nβ
0

. The

relationship is linearized with the logarithm transformation: log(nβ) = log(β) − log(Mnβ
0 ). That

is, log(nβ) is linear in log-average daily temperature with slope -1 and intercept log(β).

(2) The variance of the average temperature may decreases as temperatures rise.

Under the model, the mean and variance of Mn
0 are E(Mn

0 |α0, α1) = 1
n
∑n

i=0(α0 + α1i) =

α0 + α1
(n+1)

2 and Var(Mn
0 |α0, α1) = σ2

n .

By the law of total variance,

Var(Mn
0 ) = E(Var(Mn

0 |α0, α1)) + Var(E(Mn
0 |α0, α1))

=
σ2

n
+ Var(α0 + α1

n + 1
2

)

=
σ2

n
+ Var(α0) +

(n + 1)2

4
Var(α1) + (n + 1)Cov(α0, α1)

As temperatures rise and leafout date becomes earlier, the variance of the average temperature

will decline—provided the variation in temperatures, σ, is sufficiently small.
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4.2.2 Scenario 2: Using average daily temperature over a fixed window

We slightly modify the notation:

n = day since temperatures start to accumulate, n = 0, . . . , a, . . . , b

Xn = observed temperature on day n

Sn
a =

n∑
i=a

Xi, the cumulative daily temperature from day a to day n

Mn
a =

Sn
a

n − a
, the average daily temperature from day a to day n

β = the threshold of interest, β > 0, (thermal sum required for leafout)

nβ = argmin
n

Sn
0 > β, the first day the cumulative daily temperature passes the threshold

(for example, day of year (doy) of leafout).

As before, we model Xn as a Gaussian random walk, Xn
i.i.d
∼ normal (α0 + α1n, σ), where

α0 > 0 is the average temperature on day n = 0, α1 > 0 is the day-over-day increase in average

temperatures, and σ is the standard deviation. We make the additional assumption that Xn ≥ 0 for

all n and a < nβ < b. That is, the cumulative temperature acquired by the plant always increases.

Note that

Sb
a ∼ normal

(
α0(b − a) + α1

2 (b − a)(b + a + 1), σ
√

b − a
)

Mb
a ∼ normal

(
α0 +

α1
2 (b + a + 1), σ√

b−a

)

Sb
n − Sa

0 ∼ normal
(
α0(b − a − n) + α1

2 ((b − n)(b + n + 1) − a(a + 1)), σ
√

b + a − n
)
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so that

Pr
(
nβ ≤ n �� Mb

a = m
)
= Pr

(
nβ ≤ n �� Sb

a = (b − a)m
)

= Pr
(
Sn

0 ≥ β �� Sb
a = (b − a)m

)
= Pr

(
Sb

n ≤ (b − a)m + Sa
0 − β

)
= Pr

(
Sb

n − Sa
0 ≤ (b − a)m − β

)
= Φ

(
(b − a)m − β − [α0(b − a − n) + α1

2 ((b − n)(b + n + 1) − a(a + 1))]

σ
√

b + a − n

)

The distribution of Mb
a shows that consequence (2) above still holds with this model. Conse-

quence (1) no longer holds directly, but will in many situations where average daily temperature

until an event correlates strongly with average daily temperature because the window is chosen

based, in part, on the expected hitting time (Figs. 4.2-4.3). We note two additional consequences:

(3) The conditional median is quadratic in n:

1
2

set
= Pr

(
nβ ≤ n �� Mb

a = m
)

⇒ 0 = (b − a)m − β − [α0(b − a − n) +
α1

2
((b − n)(b + n + 1) − a(a + 1))]

⇒ m =
1

(a − b)
[−β − α0(b − a − n) −

α1

2
((b − n)(b + n + 1) − a(a + 1))]

=
1

(a − b)
[−β − α0(b − a) −

α1

2
(b − a)(b + a + 1)] +

α0 +
α1
2

(a − b)
n +

α1
2

(a − b)
n2

:= γ0 + γ1n + γ2n2

(4) The conditional mean and variance are sums of negative sigmoids, according to the follow-
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ing identities

E
(
nβ �� Mb

a = m
)
=

∑∞
n=0 Pr

(
nβ ≥ n �� Mb

a = m
)

E
(
n2
β

�� Mb
a = m

)
=

∑∞
n=0 n Pr

(
nβ ≥ n �� Mb

a = m
)

4.3 Simulations

Simulations show that correcting for non-linearity removes apparent declines in temperature

sensitivity (Fig. 4.1, 4.3, code link). Assuming a model where warming increases the required

thermal sum for a biological event—a common hypothesis for declining sensitivities in spring

phenological events—yields declining sensitivities that remain after correcting for non-linearity

(Fig. 4.4).

Further, after correcting for non-linearity in long-term leafout data from Europe, we find little

evidence for declining sensitivities with warming (Figs. 4.1, 4.5, 4.6). An apparent decline in

sensitivity for silver birch (Betula pendula) from -4.3 days/◦C to -3.6 days/◦C from 1950-1960

compared to 2000-2010 disappears using a log-log regression (-0.17 versus -0.22). We see similar

corrections using 20-year windows, and a potential increase in sensitivity for European beech

(Fagus sylvatica, see Tables 4.1-4.2). Moreover, the variance of the leafout dates of both species

declines as temperatures rise—(declines of roughly 50%, see Tables 4.1-4.2), which is expected

under our model as warming accelerates towards the thermal threshold that triggers leafout (and in

contrast to predictions from changing mechanisms, see Ford et al., 2016).

Our theoretical model and empirical results show that rising temperatures are sufficient to ex-

plain declining temperature sensitivity. It is not necessary to invoke changes to the mechanisms

that underlie the biological processes themselves.
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Figure 4.1: Shifts in temperature sensitivities with warming occur when using linear models for
non-linear processes. Estimated sensitivities decline with warming in simulations (left) with no
underlying change in the biological process when sensitivities were estimated with linear regres-
sion (estimated across 45 sites with a base temperature of normal(6,4)). This decline disappears
when performing the regression on logged predictor and response variables (right). Such issues
may underlie declining sensitivities calculated from observational data, including long-term ob-
servations of leafout across Europe (‘observations,’ using data for Betula pendula from PEP725
from for the 45 sites that had complete data for 1950-1960 and 2000-2010), which show a lower
sensitivity with warming when calculated on raw data, but no change in sensitivity using logged
data. Symbols and lines represent means ± standard deviations of regressions across sites. See SI
for a discussion of why estimated sensitivities are -1 or lower in non-linear models.
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4.4 Long-term empirical data from PEP725

To examine how estimated sensitivities shift over time, we selected sites of two common Eu-

ropean tree species (silver birch, Betula pendula, and European beech, Fagus sylvatica) that have

long-term observational data of leafout, through the Pan European Phenology Project (PEP725,

Templ et al., 2018). We used a European-wide gridded climate dataset (E-OBS, Cornes et al.,

2018) to extract daily minimum and maximum temperature for the grid cells where observations

of leafout for these two species were available. We used sites with complete leafout data across

both our 10-year (and 20-year) windows to avoid possible confounding effects of shifting sites

over time (see Tables 4.1-4.2 for numbers of sites per species x window).

Our estimates of temperature sensitivity from a linear model using untransformed variables

show a decline in sensitivity with recent warming for Betula pendula over 10 and 20-year win-

dows, but no decline for Fagus sylvatica; using logged variables estimates appeared more similar

over time or sometimes suggested an increase in sensitivity (see Figs. 4.5-4.6, Tables 4.1-4.2).

This shift in estimated sensitivity when regressing with untransformed versus logged variables

suggests the declining estimates with untransformed variables may not be caused by changes in

the underlying mechanisms of leafout (i.e., reduced winter chilling) and driven instead by using

linear regression for a non-linear process. This hypothesis is supported further by large declines in

variance of leafout in recent decades.

Shifts in variance provide another hurdle to robust estimates of temperature sensitivity. Previ-

ous work has highlighted how shifting temperature variance (over space and/or time) could lead

to shifting estimates of temperature sensitivities (Keenan et al., 2020), but our results stress that

variance in both leafout and temperature are shifting. If both shift in step, estimates would not be

impacted by changes in temperature variance, but our results suggest variance in temperature—for

these data—has declined more than variance in leafout, though both have declined substantially in
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recent decades (Tables 4.1-4.2).

Estimated sensitivities for the empirical data (PEP725) using logged variables are far lower

than the value obtained in our simulations (-1). This likely results from a contrast between our

simulations—where we can accurately define the temperature plants experience and the temporal

window that drives leafout—and our empirical data, where we do not know how measured temper-

atures translate into the temperatures that plants accumulate and where we have no clear method

to define the relevant temporal window (Güsewell et al., 2017).

These results highlight how the acceleration of biological time due to climate change requires

researchers to clarify their assumptions. Expecting temperature sensitivity to remain constant as

temperatures rise assumes the relationship between response and temperature is proportional. But

the underlying biological processes suggest this relationship is seldom proportional, or even linear.

In fact, when our model holds, declining sensitivity with rising temperatures should be the null

hypothesis of any analysis of temperature sensitivity based on linear regression or similar methods.

Inferring biological processes from statistical artifacts is not a new problem (e.g., Nee et al.,

2005), but climate change provides a new challenge in discerning mechanism from measurements

because it affects biological time, while researchers continue to use calendar time. Other fields

focused on temperature sensitivity often use approaches that acknowledge the non-linearity of

responses (e.g., Yuste et al., 2004). Researchers have called for greater use of process-based models

(Keenan et al., 2020), which often include non-linear responses to temperature, but rely themselves

on exploratory methods and descriptive analyses for progress (Chuine et al., 2016). The challenge,

then, is to interrogate the implicit and explicit models we use to interpret data summaries, and to

develop null expectations that apply across biological and calendar time.
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Table 4.1: Climate and phenology statistics for two species (Betula pendula, Fagus sylvatica, across
45 and 47 sites respectively) from the PEP725 data across all sites with continuous data from
1950-1960 and 2000-2010. ST is spring temperature from 1 March to 30 April, ST.leafout is
temperature 30 days before leafout, and GDD is growing degree days 30 days before leafout.
Slope represents the estimated sensitivity using untransformed leafout and ST, while log-slope
represents the estimated sensitivity using log(leafout) and log(ST). We calculated all metrics for
for each species x site x 10 year period before taking mean or variance estimates. See also Fig. 4.

Table 4.2: Climate and phenology statistics for two species (Betula pendula, Fagus sylvatica, across
17 and 24 sites respectively) from the PEP725 data across all sites with continuous data from 1950-
2010. ST is spring temperature from 1 March to 30 April, ST.leafout is temperature 30 days before
leafout, and GDD is growing degree days 30 days before leafout. Slope represents the estimated
sensitivity using untransformed leafout and ST, while log-slope represents the estimated sensitivity
using log(leafout) and log(ST). We calculated all metrics for for each species x site x 20 year period
before taking mean or variance estimates. See also Fig. 5.
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Figure 4.2: Simulated leafout as a function of temperature across different temperatures highlights
non-linearity of process. Here we simulated sets of data where leafout constantly occurs at 200
growing degree days (thermal sum of mean daily temperatures with 0◦C as base temperature)
across mean temperatures of 10, 15, 20 and 30◦C (constant SD of 4), we calculated estimated
mean temperature until leafout date (top row) or across a fixed window (bottom row, similar to
estimates of ‘spring temperature’). While within any small temperature range the relationship may
appear linear, its non-linear relationship becomes clear across the greater range shown here (left).
Taking the log of both leafout and temperature (right) linearizes the relationship.
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Figure 4.3: A simple model generates declining sensitivities with warming. We show declines
in estimated sensitivities with warming from simulations (top: using average temperature un-
til leafout, bottom: using a fixed window) with no underlying change in the biological process
when sensitivities were estimated with simple linear regression (“Simple linear regression”). This
decline disappears using regression on logged predictor and response variables (“Using logged
variables”).
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Figure 4.4: Simulated leafout as a function of temperature across different levels of warming with
shifts in underlying biology. Here we simulated sets of data where leafout occurs at a thermal sum
of 200 (sum of mean daily temperatures with 0◦C as base temperature) when chilling is met, and
requires a higher thermal sum when chilling is not met. We show estimated sensitivities in the top
panel, and the shifting cues in the bottom panel.
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Figure 4.5: Sensitivities from PEP725 data using 10 year windows of data
for two species (top – Betula pendula, bottom – Fagus sylvatica; all lines show 78% confidence
intervals from linear regressions). Amounts of warming are calculated relative to 1950-1960 and
we used only sites with leafout data in all years shown here. See Table 4.1 for further details.
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Figure 4.6: Sensitivities from PEP725 data using 20 year windows of data
for two species (top – Betula pendula, bottom – Fagus sylvatica; all lines show 78% confidence
intervals from linear regressions). Amounts of warming are calculated relative to 1950-1970 and
we used only sites with leafout data in all years shown here. See Table 4.2 for further details.

102



4.5 References

Chuine, I. 2000. “A unified model for budburst of trees.” Journal of Theoretical Biology

207:337–347.

Chuine, I., M. Bonhomme, J.-M. Legave, I. Garcıa de Cortazar-Atauri, G. Charrier, A. La-

cointe, and T. Ameglio. 2016. “Can phenological models predict tree phenology accurately in the

future? The unrevealed hurdle of endodormancy break.” Global Change Biology 22:3444–3460.

Cornes, R. C., G. van der Schrier, E. J. van den Besselaar, and P. D. Jones. 2018. “An ensemble

version of the E-OBS temperature and precipitation data sets.” Journal of Geophysical Research:

Atmospheres 123:9391–9409.

Dai, W. J., H. Y. Jin, Y. H. Zhang, T. Liu, and Z. Q. Zhou. 2019. “Detecting temporal changes

in the temperature sensitivity of spring phenology with global warming: Application of machine

learning in phenological model.” Agricultural and Forest Meteorology 279.

Ford, K. R., C. A. Harrington, S. Bansal, J. Gould, Peter, and J. B. St. Clair. 2016. “Will

changes in phenology track climate change? A study of growth initiation timing in coast Dou-

glas–fir.” Global Change Biology 22:3712–3723.

Fu, Y. S. H., H. F. Zhao, S. L. Piao, M. Peaucelle, S. S. Peng, G. Y. Zhou, P. Ciais, M. T. Huang,

A. Menzel, J. P. Uelas, Y. Song, Y. Vitasse, Z. Z. Zeng, and I. A. Janssens. 2015. “Declining global

warming effects on the phenology of spring leaf unfolding.” Nature 526:104–107.

G’́usewell, S., R. Furrer, R. Gehrig, and B. Pietragalla. 2017. “Changes in temperature sensi-

tivity of spring phenology with recent climate warming in Switzerland are related to shifts of the

preseason.” Global Change Biology 23:5189–5202.

IPCC. 2014. “Climate Change 2014: Impacts, Adaptation, and Vulnerability.” Cambridge

University Press, Cambridge, United Kingdom and New York, NY, USA.

Keenan, T. F., A. D. Richardson, and K. Hufkens. 2020. “On quantifying the apparent temper-

ature sensitivity of plant phenology.” New Phytologist 225:1033–1040.

Meng, L., J. Mao, Y. Zhou, A. D. Richardson, X. Lee, P. E. Thornton, D. M. Ricciuto, X.

103



Li, Y. Dai, X. Shi, and G. Jia. 2020. “Urban warming advances spring phenology but reduces

the response of phenology to temperature in the conterminous united states.” Proceedings of the

National Academy of Sciences 117:4228.

Nee, S., N. Colegrave, S. A. West, and A. Grafen. 2005. “The illusion of invariant quantities

in life histories.” Science 309:1236–1239.

Piao, S., Z. Liu, T. Wang, S. Peng, P. Ciais, M. Huang, A. Ahlstrom, J. F. Burkhart, F. Cheval-

lier, I. A. Janssens, et al. 2017. “Weakening temperature control on the interannual variations of

spring carbon uptake across northern lands.” Nature climate change 7:359.

Templ, B., E. Koch, K. Bolmgren, M. Ungersböck, A. Paul, H. Scheifinger, T. Rutishauser,

M. Busto, F.-M. Chmielewski, L. H’ajkov’a, S. Hodzi’c, F. Kaspar, B. Pietragalla, R. Romero

Fresneda, A. Tolvanen, V. Vu’ceti’c, K. Zimmermann, and A. Zust. 2018. “Pan European Pheno-

logical database (PEP725): a single point of access for European data.” International Journal of

Biometeorology 62:1109–1113.

Vitasse, Y., C. Signarbieux, and Y. H. Fu. 2018. “Global warming leads to more uniform spring

phenology across elevations.” Proceedings of the National Academy of Sciences 115:1004–1008.

Wolkovich, E. M., B. I. Cook, J. M. Allen, T. M. Crimmins, J. L. Betancourt, S. E. Travers, S.

Pau, J. Regetz, T. J. Davies, N. J. B. Kraft, T. R. Ault, K. Bolmgren, S. J. Mazer, G. J. McCabe,

B. J. McGill, C. Parmesan, N. Salamin, M. D. Schwartz, and E. E. Cleland. 2012. “Warming

experiments underpredict plant phenological responses to climate change.” Nature 485:494–497.

Yuste, J., I. A. Janssens, A. Carrara, and R. Ceulemans. 2004. “Annual Q10 of soil respiration

reflects plant phenological patterns as well as temperature sensitivity.” Global Change Biology

10:161–169.

104



Chapter 5: Forecasting Migration Patterns with an Infinitesimal Block

Model

Learning migration patterns is of central importance in business, government, and the so-

cial and biological sciences. But migration data—the flow of individuals between locations or

“units”—are not easily observed. Only longitudinal data—population snapshots at each unit—are

readily available. We propose a model that identifies latent migration patterns from longitudinal

data by combining a continuous-time Markov chain (CTMC) with a stochastic block model (SBM).

In our model, migrations are represented by a system of differential equations, and the infinites-

imal generator by a low-rank, block matrix. We outline a Markov Chain Monte Carlo (MCMC)

algorithm for drawing samples from the posterior distribution of this matrix, and a variational

approximation for high dimensions. We then use these algorithm to discover migration patterns

from two datasets: the U.S. Internal Revenue Service Population Migration data and the U.S. Cen-

sus American Community Survey. We find our model retains the interpretability of an SBM and

captures migration patterns better than a group-based trajectory model. In addition, our model

explains nearly all the variation in the data, and its predictions are competitive with the predic-

tive but less interpretable Lee-Carter matrix factorization model. Finally, we extend our model to

solve a problem uniquely suited to our approach: estimating the number of crimes prevented by

the NYPD practice Stop, Question, and Frisk. We find SQF prevented relatively few crimes, with

99 percent of the observed crime reduction between 2002 and 2012 explained by migrations.

5.1 Introduction

We propose a model that learns latent migration patterns from longitudinal data. Learning

these migrations is of considerable interest in business, government, and the social and biological
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sciences. But migration data are difficult to obtain because cost, privacy restrictions, and other

extenuating circumstances typically preclude the following of individuals across time, which is

necessary to collect migration data. The only data available are longitudinal—the number of indi-

viduals in each location or “unit” at various time periods.

For example, demographers want to learn how individuals move, but all they observe are the

counts of neighborhood populations each year; epidemiologists want to learn how contaminants

spread, but all they observe are the number of disease cases admitted to hospitals each week; firms

want to learn how buyer preferences change, but all they observe are the quantity of competing

products sold each quarter. In these and many other cases, the units of interest are measured at

multiple time points, but the interaction between units is not. Migrations of individuals between

units—typically represented as the edges of a directed graph or “flow network”—cannot be ob-

served directly.

Our goal is to learn network flows from longitudinal stocks. We assume the data can be repre-

sented by a matrix whose rows are time series, columns are cross sections, and entries are counts.

Our model builds primarily on two bodies of work that are commonly applied to such data. In

the matrix factorization literature (Lee and Carter, 1992; Kanjilalet al., 1997; Lee, 2000; Pedroza,

2006), researchers decompose the data matrix according to its spectrum. In the mixed membership

literature (Lin et al., 2002; Hannah et al., 2011; Lecci, 2014; Manrique-Vallier, 2014), researchers

decompose each time series into a few, simple trajectories.

These and similar algorithms work by taking advantage of the correlation between units in-

duced by latent migrations. Yet neither literature explicitly identifies the latent migration pattern.

Our contribution is the direct estimation of migration flows from longitudinal data. We represent

these flows with a system of differential equations and approximate the infinitesimal generator by

a low-rank matrix. Since the infinitesimal generator is an adjacency matrix, the block assumption

made in the Stochastic Block Model (SBM) is natural here. For reference purposes, we call the

proposed model the Infinitesimal Block Model (IBM).

Our work is conceptually similar to—but meaningfully distinct from—the literature on longi-
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tudinal network data. With longitudinal network data, a network is observed over multiple time

periods. In our framework, network data is not observed at all. Complicated models that have

proven successful with longitudinal network data, for example the logistic map, the Hawkes pro-

cess, and VARIMA, are generally unstable when applied to longitudinal data; A single migration

can drastically alter subsequent migrations, making algorithms extremely sensitive to initial con-

ditions and unreliable for inference.

5.2 Model

In our model, each unit is one state of a continuous-time Markov chain (CTMC). We refer

to units as “locations” among which “individuals” migrate. However, the proposed model is ap-

plicable to a wide range of phenomenon. For ease of presentation, we begin with a system that

is homogeneous and closed, and at all times individuals reside in exactly one of n locations. The

model is easily generalized to accommodate inhomogeneous, open systems, which we demonstrate

in Section 5 and discuss further in the Appendix.

The instantaneous migration rate between locations is represented by the n × n matrix Q =

[qi j]. Off-diagonal element qi j is the rate at which individuals move to location i from location j.

Diagonal element qii is the rate at which individuals leave location i. It follows that qi j > 0 and

qii = −
∑

j,i qi j (Lawler, 2018).

Were migration data collected—perhaps a sample of individuals observed across time—a weighted

adjacency matrix A = [ai j] could be constructed and Q inferred by a Stochastic Block Model

(SBM) (Holland et al., 1983; Aicher et al.,2014). The SBM assumes each location i belongs to

one of K ≤ n clusters or “communities”, denoted ki ∈ {1, . . . , K }, and models ai j as independently

distributed F (ki, k j ). The clusters are frequently interpreted as a discretization of a (asymmet-

ric) graphon (Bickel and Chen, 2009), the functional which parameterizes the set of exchangeable

(directed) graphs (Diaconis and Janson, 2007).

We take this interpretation here. The graphon encodes the migration rate from one location to

any other and discretization delineates the major flow or “blocks” of migration. But the migration

107



data necessary to fit this model are not available—we can only observe the number of individuals

at each location each time period. In this section, we derive the data as a function of Q and then

apply a block approximation.

5.2.1 Derivation

Let yi (t) denote the population of location i at time t. We assume the data are balanced: every

location i ∈ {1, . . . , n} is measured at every time t ∈ {1, . . . ,T }. The result is an n × T matrix of

counts y = [yi (t)], whose ith row is denoted yi and tth column y(t).

In an arbitrarily small amount of time, ∆t, the net migration to location i, ∆yi, is the difference

between the number of immigrants—all individuals leaving locations j , i for location i—and the

number of emigrants—all individuals leaving location i. We assume migration between times t and

t +∆t is linear in the population so that migrants arrive at a constant rate qi j . Since qii = −
∑

j,i qi j ,

net migration to location i is:

∆yi =
(
qi1y1 + qi2y2 + · · · + qinyn

)
∆t.

Sending ∆t → 0 yields a system of ordinary differential equations:

dy1

dt
= q11y1 + q12y2 + · · · + q1nyn

dy2

dt
= q21y1 + q22y2 + · · · + q2nyn

...

dyn

dt
= qn1y1 + qn2y2 + · · · + qnnyn,

whose solution is

y(t) = eQt y(0)

where eQt is the matrix exponential of Qt (Leonard, 1996).
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The matrix Q, called the infinitesimal generator, is given low-rank block structure

Q = Z BZT − diag(Z BZT 1).

Z is an n × K binary matrix of cluster assignments, i.e. Ziki = 1 and 0 otherwise. B is a K × K

positive matrix of instantaneous migration rates, and 1 is a K ×1 vector of ones. Z BZT is the SBM

block decomposition (Holland et al. 1983). Since the system is closed, we account for emigrations

by subtracting column sums from the diagonal of Z BZT , i.e. diag(Z BZT 1).

5.2.2 Identification

Not all migration patterns can be identified from longitudinal data. Cyclical patterns cannot be

represented uniquely; It is impossible to learn from the data if five individuals moved from i to j

and five individuals moved from j to i, or there were no migrations at all. Therefore, we restrict

our model to monotonic, acyclic migration patterns by constraining the lower subdiagonal of B

to be monotonic and zero elsewhere—except for the diagonal, which is always chosen so that the

columns sum to zero.

Figures 5.1 and 5.2 show two such block migration patterns. On the left side, migrations are

shown as a directed acyclic graph (DAG). On the right side, they are shown as an infinitesimal

generator Q. In both Figures, migrants move from all red locations to all green locations at rate

B21 and from all green locations to all blue locations at rate B32.

We note that this restriction eliminates the label-switching problem and is sufficiently flexible

to learn the mass migrations generally of interest to researchers—e.g. displacement by conflict

or gentrification—as we demonstrate in Section 5. The triangular parameterization of Q also has

computational benefits. However, the matrix can be reparametrized for other patterns.
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1	 2	 3	
B21 B32

(a) Directed Acyclic Graph (DAG)

0

-B21	 0

-B21	 -B32

0

0	 -B32	 0

(b) Block Infinitesimal Genera-
tor Q

Figure 5.1: Two equivalent representations of a block migration pattern. Migrants move from one
location in the red cluster to one location in the green cluster at rate B21 and from one location in
the green cluster to one location in the blue cluster at rate B32.

1	

2	

3	B21	

B32	1	 3	B21	

B32	

(a) Directed Acyclic Graph (DAG)

0 0 B32

B21 B21

0 0 B32

0 0

-B21 0

0 0

-2B32 0 0

-0 0

0 0

0 0

-B21

0

(b) Infinitesimal Generator Q

Figure 5.2: Two equivalent representations of a block migration pattern. Migrants move from two
locations in the red cluster to one location in the green cluster at rate B21 and from one location in
the green cluster to two locations in the blue cluster at rate B32.
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5.2.3 Specification

We assume individuals who do not follow the block migration pattern do so randomly. We

model the number of individuals at location i as distributed i.i.d. Poisson with mean equal to the

ith element of eQt y(0). This allows locations to experience population increases despite long-term

out-migrations. The final result is the Infinitesimal Block Model (IBM):

y(t) ∼ Poisson(eQt y(0)),

where the K − 1 subdiagonal elements of B and n rows of Z = (Z1, Z2, . . . , Zn)T follow the

distributions typical of mixture models:

Bk (k−1) ∼ Gamma(θ, φ)

Zi ∼ Categorical(π)

π ∼ Dirichlet(α).

5.3 Inference

The posterior distribution of Q cannot be expressed in closed form because the model is not

conjugate. Markov Chain Monte Carlo (MCMC) algorithms are commonly used to draw (approxi-

mate) samples from a posterior. We implement the Metropolis-within-Gibbs sampler shown in Al-

gorithm 1 (Gelfand and Smith, 1990; Metropolis et al. 1953; Geman and Geman, 1987)—we detail

a large-sample approximation in the Appendix. The state of the sampler at iteration t is the set of all

n + K − 1 parameters: the n rows of the cluster assignment matrix, z(t) =
(
z(t)

1 , z(t)
2 , . . . , z(t)

n

)T
, and

the K −1 elements of the migration matrix subdiagonal, b(t) =
(
b(t)

21, b
(t)
32, . . . , b

(t)
K (K−1)

)
. Metropolis

proposals are made sequentially across z(t) (b(t)) by simple (Gaussian) random walk: A simple

random step is proposed for each z(t)
i , followed by one multivariate Gaussian random step for

all b(t). The Appendix details the acceptance probability, and an R language (2020) code imple-

mentation is available upon request. In the remainder of this section, we highlight two important
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considerations when implementing Algorithm 1.

Algorithm 1: IBM Metropolis-within-Gibbs Sampler

1: Input: z0 =
(
z0

1, . . . , z0
n

)
, b0 =

(
b0

21, b
0
32, . . . b

0
K (K−1)

)
, y, convergence criteria.

2: repeat
3: for i = 1 to n do
4: propose z∗i
5: U ∼ uniform(0, 1)

6: if U <
p
(
z∗i

���b
(t−1), z(t)

1:(i−1), z(t−1)
(i+1):n, y

)
p
(
z(t−1)

i
���b

(t−1), z(t)
1:(i−1), z(t−1)

(i+1):n, y
) then

7: z(t)
i ← z∗i

8: else
z(t)

i ← z(t−1)
i

9: end if
10: end for
11: propose b∗

12: U ∼ uniform(0, 1)

13: if U <
p
(
b∗���z

(t), y
)

p
(
b(t−1) ��z(t), y

) then

14: b(t) ← b∗

15: else
b(t) ← b(t−1)

16: end if
17: t ← t + 1
18: until convergence criteria met

5.3.1 Parameterization

The subdiagonal of B is constrained to be monotonic, which may make Algorithm 1 inefficient.

We recommend two different parameterizations of the IBM, depending on whether K is small or

large. For small K , we suggest a Gaussian random walk in η-space

η1 = b21, η2 = b32 − b21, . . . , ηK−1 = bK (K−1) − b(K−1)(K−2),
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rejecting samples that fail to satisfy the constraint η j > 0. For large K , most samples will be

rejected, and we recommend the unconstrained transformation

η1 = log b21, η2 = log (b32 − b21) , . . . , ηK−1 = log
(
bK (K−1) − b(K−1)(K−2)

)
.

The Appendix describes the Jacobian adjustment necessary for the second transformation.

5.3.2 Update Schedule

Algorithm 1 does not force each cluster to have a location, which may result in a posterior

sample where one or more clusters are assigned no locations. This problem of vanishing clusters

is common in clustering algorithms. We find it typically arises during the first few iterations of

Algorithm 1 when the state of migration matrix b is in a low probability region, and the cluster

assignments, zi, are forced to compensate for the implausible b.

We recommend the alternative update schedule shown in the Appendix (Algorithm 2) to mit-

igate the problem of vanishing clusters. With probability β ∈ [0, 1], a new zi is proposed by

swapping the current cluster assignment of location i with a randomly chosen location in a neigh-

boring cluster j. With probability 1 − β, a new zi is proposed by simple random walk—switching

the label of location i to a randomly chosen, neighboring cluster. Swapping does not change the

number of locations in each cluster so large β protects against vanishing clusters.

Swapping has additional benefits. For example, the matrix exponential is computationally

expensive. When a swap occurs, the proposal acceptance probability can be computed using the

matrix exponential from the previous iteration of the sampler and permuting the data.

5.4 Evaluation

We evaluate the IBM with both simulated and real-world data. We first test whether Algo-

rithm 1 can recover the infinitesimal generator Q using computer-generated data from the IBM

likelihood. We then test whether Algorithm 1 can discover real migration patterns using two pub-

113



licly available datasets: the U.S. Internal Revenue Service (IRS) Population Migration data and the

U.S. Census Bureau (Census) American Community Survey (ACS).

All evaluations use the R language (2020). In the first real-world dataset, the true migration

rate is known, and the IBM is compared to a SBM using the package Blockmodels (Leger,

2016) and a group-based trajectory model (Manrique-Vallier, 2014) (referred to as M-GLM) using

the package FlexMix (Leisch, 2004). In the second real-world dataset, the true migration rate is

not known, and predictions from the IBM are compared to predictions from the trajectory model

and the Lee and Carter (1992) (referred to as SVD) matrix factorization model.

These comparison algorithms are popular tools for clustering and prediction, and we demon-

strate that the IBM is a competitive alternative. However, we stress that neither competitor explic-

itly learn migration patterns from longitudinal data, which is the express purpose of the IBM.

5.4.1 Simulation

Algorithm 1 can recover the infinitesimal generator Q in a wide variety of simulations. Gen-

erally, the step size of the Gaussian proposal must be tuned by grid search, which is easily paral-

lelized. See the Appendix for simulation details.

5.4.2 IRS Data

IBM correctly identifies major migration patterns from real data. The IBM approximation is

more accurate than a group-based trajectory model.

We use the U.S. Internal Revenue Service’s Population Migration data, a rare dataset that fol-

lows the county-to-county migrations of U.S. taxpayers each year. We restrict our attention to the

last T = 10 available years of the IRS data (2006, . . . , 2015) and the n = 35 counties that make up

the New York–Newark, NY–NJ–CT–PA Combined Statistical Area (CSA). This area is the largest

urban economic agglomeration in the Americas and experienced rapid urbanization over the last

decade. The question is how well IBM captures that migration. Both the data and the CSA are

described in greater detail in the Appendix.
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We create two matrices from this data. The first is the n × T matrix of county populations, y,

where yi (t) is the number of taxpayers who file in county i in year t. The second is an n× n matrix

of net-migrations, A = [ai j], where ai j is the number of taxpayers that immigrated to county i from

county j between 2006 and 2015 minus the number that emigrated. Negative numbers are set to

zero. The former is used to fit IBM and the latter is used to validate the results.

We run Algorithm 1 using yi (t) and K = 3. We sample one thousand chains for one thousand

iterations each and retain the maximum a posteriori (MAP) cluster assignment, ẐMAP. We normally

recommend clustering on the trajectories, yi, to initialize IBM. However, since these clusters are

the benchmark algorithm, we initialize cluster assignments randomly.

The top left panel of Figure 5.3 plots the MAP assignment for each county in the CSA. As

in Section 2, individuals migrate from the red counties to the green counties and from the green

counties to the blue counties. The IBM well-captures urbanization: the blue counties are the four

major boroughs of New York City, the urban center of the CSA. The green reflect the suburban

areas that commute to New York City, and the remaining are satellite cities and rural areas.

While we cannot observe the infinitesimal generator, the net-migration matrix, A, is a rea-

sonable check. We fit a Poisson SBM and plot the clusters assignments in the top right panel of

Figure 5.3. The top two plots agree on 30/35 assignments.

We then compare the IBM to an algorithm that clusters on each trajectory, yi, directly. We fit

a K = 3 hard-mixture of Poisson regressions with a log link (M-GLM) using the EM algorithm.

We run the algorithm one thousand times and choose the cluster assignments that maximize the

likelihood. The bottom left panel of Figure 5.3 plots the results. M-GLM agrees with SBM on

27/35 assignments, picking up some of the structure caused by the migration patterns without

explicitly modeling migration. The confusion matrix is shown in the bottom right panel.

5.4.3 ACS Data

The IBM explains nearly all the variation in a real dataset, and its predictions are competitive

with the predictive but less interpretable Lee-Carter matrix factorization model.

115



(a) Infinitesimal Block Model (IBM) (b) Stochastic Block Model (SBM)

(c) Mixed Generalized Linear Model (M-GLM)
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(d) Confusion Matrix n = 35

Figure 5.3: A comparison of the Infinitesimal Block Model (IBM) and a (hard) mixture of Poisson
regressions (M-GLM) to a Poisson Stochastic Block Model (SBM). IBM and M-GLM are fit to
longitudinal data, while SBM is fit to the underlying migration data. The first three panels show
the cluster assignments from each algorithm. Assuming SBM found the “correct” assignments, the
bottom-right panel shows the confusion matrix: IBM correctly identified 86 percent of counties;
M-GLM 77 percent.
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We use data from the U.S. Census Bureau’s American Community Survey, perhaps the most

common source of U.S. population statistics. Instead of 35 counties observed over ten years, the

ACS reports the CSA population for the more granular n = 196 Public Use Microdata Areas

(PUMAs) over T = 6 years (2012-2017). We use the first four years as training and evaluate pre-

dictive performance on the last two years. Thus, [yi (t)] is the 196×4 matrix of PUMA populations,

and [yi (tnew)] the 196 × 2 matrix of PUMA populations to be predicted.

We run Algorithm 1 with yi (t) for one thousand chains of one thousand iterations each, first

with K = 3 and then with K = 20. We retain the MAP infinitesimal generator:

Q̂MAP = ẐMAPB̂MAP ẐT
MAP − diag(ẐMAPB̂MAP ẐT

MAP1),

and make predictions

ŷ(tnew) = eQ̂MAPtnew
y(0)

Figure 4 summarizes the quality of the predictions using a pseudo R2 that normalizes mean

squared error. For a set of locations I and time periods T , we define

R2(T ) = 1 −
∑

T
∑

I (yi (t) − ŷi (t))2∑
T
∑

I (yi (t) − ȳi (t))2 .

The pseudo R2 is loosely interpreted as the amount of variation explained. Larger values are

better. In sample—i.e. for T = {2012, 2013, 2014, 2015} and I = {1, . . . , 196}—IBM with K = 3

(20) explains 98 (99) percent of the variation. Out of sample—i.e. for T = {2016, 2017} and I =

{1, . . . , 196}—IBM explains roughly 94 (93) percent of the variation. IBM beats a (hard) mixture

of Poisson regressions (M-GLM) by a considerable margin, and its performance is comparable to

the Lee-Carter model (SVD).
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      2012 - 2015

M−GLM K =3   M−GLM K = 20     IBM K = 3        IBM K = 20 SVD

Figure 5.4: A comparison of the Infinitesimal Block Model (IBM) and a (hard) mixture of Poisson
regressions (M-GLM) to the Lee-Carter model (SVD). Normalized mean squared error (“pseudo”
R2) is reported for in-sample predictions (top) and out-of-sample predictions (bottom). IBM and
M-GLM are fit with both K = 3 and K = 20 clusters. IBM predictions are comparable with SVD.

5.5 Extension

Our main example is a problem well suited to the IBM: estimating the number of crimes pre-

vented by the New York Police Department (NYPD) practice of Stop, Question, and Frisk (SQF).

SQF refers to the temporary detention, interrogation, and search of pedestrians for illegal contra-

band like guns and drugs. Proponents argue enforcing lower-level crimes such as these prevents

violent offenses—citing New York City’s reduction in crime following the increasing use of SQF.

Critics argue the reduction in crime is better explained by gentrification—victims and/or perpetra-

tors were gradually displaced from New York City. See Zimring (2011) for details.

We estimate the relationship between violent crime and SQF stops using two publicly available

datasets: the the NYPD Stop, Question, and Frisk database and the number of crimes reported to

the NYPD. Crime is limited to the number of seven major felony offenses: murder, rape, robbery,

assault, burglary, larceny, larceny (motor vehicle); Misdemeanors and violations are excluded.

To motivate our application of IBM, consider Figure 5.5. The top half of Figure 5.5 plots the

total number of crimes in New York City for the years 2002 to 2012. The bottom half plots the

number of stops under SQF. Proponents of SQF might quantify the number of crimes prevented by

SQF by specifying the simple relationship:
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y′(t) = −αx(t),

where y(t) = [yi (t)] is a 76× 1 vector containing the number of crimes in each New York City

precinct at time t, t ∈ {1, . . . , 10} and x(t) = [xi (t)] is a 76 × 1 containing the number of stops. α

is a positive scalar, representing the reduction in the instantaneous crime rate from an additional

stop. The relationship captures the belief that one stop can prevent multiple future crimes.

The equation can be solved

y(t) = y(0) − α
∫ t

0
x(s)ds,

where the integral is simply the cumulative number of stops. We assume crime is measured

with error, yielding the model

y(t) ∼ Poisson(y(0) − α
∫ t

0
x(s)ds).

Since α is one-dimensional, the posterior is calculated sufficiently accurately by grid approx-

imation, and the number of crimes prevented by stops is estimated to be 120,000. A 95 percent

uncertainty interval is 119,000 to 122,000.

However, this simple relationship does not capture the rapid gentrification that occurred in

New York City between 2002 and 2012. We now expanded to allow crime to “migrate” between

precincts. Crime might migrate between precincts because of gentrification; The composition of

precincts changed drastically over the 2002-2012 decade, and the declining number of crimes in

Figure 5.5 could be explained by victims and/or perpetrators moving through and out of New York

City.

We apply IBM to the previous model by defining the inhomogenous linear differential equa-

tions,

y(t) = Qy(t) − αx(t),
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where Q is as defined in Section 3, except the system is open: crime migrates into cluster one

locations and out of cluster K locations at unknown rates B10 and B(K+1)K . The solution to this

equation is

y(t) = eQt y(0) − α
∫ t

0
eQ(t−s) x(s)ds

and implies the likelihood

y(t) ∼ Poisson(eQt y(0) − α
∫ t

0
eQ(t−s) x(s)ds).

We run a modified version of Algorithm 1, alternating between sampling α and Q using yi (t),

xi (t), and K= 3. We sample one thousand chains for one thousand iterations each and retain the

maximum a posteriori (MAP) cluster assignment, ẐMAP, which is plotted in Figure 5.6. We cluster

on the trajectories, yi, to initialize the Algorithm.

The number of crimes prevented by stops is estimated to be 460. A 95 percent uncertainty

interval is 440 to 480. Migration therefore explains 1 − 460/120000 = 99 percent of the crime

reduction between 2002 and 2012.

5.6 Conclusion

We proposed a model that identifies latent migration patterns from longitudinal data. These

patterns are of considerable interest in business, government, and the social and biological sciences,

where migration data is difficult to obtain. We outlined an algorithm for fitting the model and

demonstrated the result is flexible, interpretable, and predictive. We then applied the algorithm

to estimate the number of crimes prevented by the NYPD practice Stop, Question, and Frisk,

decomposing the instantaneous crime rate into a migration effect and a stop effect.

The proposed model has other straightforward extensions not considered here. For example,

the initial state, y(0), could be treated as unobserved and estimated as a parameter. For long time

series, the homogeneity assumption may only be appropriate over short time intervals. Multiple
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Figure 5.5: The annual number of major felony offenses (crimes, top) and stops under the Stop,
Question, and Frisk policy (stops, bottom) in New York City between 2002 and 2012. Crimes
and stops appear negatively correlated, suggesting to policymakers that SQF prevents crime. The
relationship at the precinct level is similar—albeit weaker.
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Figure 5.6: The MAP cluster of New York City precincts identified by the extended Infinitesimal
Block Model (IBM) with K = 3. Between 2002 and 2012 crime “migrated” from red precincts to
blue precincts to green precincts.
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IBMs can be combined piecewise: The series could be divided into four or five year increments,

and a different IBM fit to the data in each interval. Each IBM could assign the same unit to the

same cluster, or the same unit could be assigned to different but correlated clusters.

The fit of the IBM at the end of the interval could form the initial state, y(0), of the following

IBM. Sometimes a longitudinal survey coincides with an infrequent, but more accurate census. For

example, the annual American Community Survey coincides with the U.S. decennial Census. In

such cases, the Census could serve as the initial state of each interval.

5.7 Appendix

5.7.1 Inhomogenous Extension

Consider the inhomogeneous linear differential equations,

dy1

dt
= q11y1 + q12y2 + · · · + q1nyn + f1

dy2

dt
= q21y1 + q22y2 + · · · + q2nyn + f2

...

dyn

dt
= qn1y1 + qn2y2 + · · · + qnnyn + fn,

whose solution is

y(t) = eQt y(0) +
∫ t

0
eQ(t−s) f (s)ds

where f (t) = [ fi (t)] is an n × 1 vector of counts, whose ith element is denoted fi at time t. eQt is

the matrix exponential of Qt.

As before, we interpret the coefficients qi j as the instantaneous rate at which individuals migrate

from location i to location j. However in addition, we have a time-varying filter, f (t): fi (t)

denotes the number of individuals removed from location i at time t. The integral can be evaluated

empirically or f (t) can be approximated by a polynomial in t,

123



f (t) = a0 = a1t + a2t2 + . . . + apsp.

For example, for p = 2, integration by parts yields

y(t) = eQt y(0) + eQt y(0) +Q−1(eQt − I)a0 +Q−2(eQt −Qt − I)a1 +Q−3(2eQt −Q2t2 − 2Qt − 2I)a2

Function of polynomials, such as splines, can also be easily accommodated in this way.

5.7.2 Alternative Update Schedule

Algorithm 2: Z Update
1: for i = 1 to n do
2: V ∼ uniform(0, 1).
3: if V < β then
4: propose cluster to swap, k∗

5: propose z j from cluster k∗

6: Swap cluster assignments of zi and z j
7: else
8: propose z∗i
9: U ∼ uniform(0, 1)

10: if U <
p
(
z∗i

���b
(t ),z(t )

1:(i−1),z
(t−1)
(i+1):n,y

)
p
(
z(t−1)
i

���b
(t ),z(t )

1:(i−1),z
(t−1)
(i+1):n,y

) then

11: z(t)
i ← z∗i

12: end if
13: end if
14: end for

5.7.3 Algorithm 1 Acceptance Probability

For ease of presentation, we suppress the iteration number of the sampler, t, in this section. Let

Z be the current matrix of cluster assignments and Z∗ be the proposed matrix of cluster assign-

ments, where the i-th row zi is replaced with proposal z∗i . Similarly, let B∗ denote the proposed
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block matrix, where subdiagonal element b j, j−1 is replaced with b∗j, j−1. Define

D = diag(Z BZT 1) D∗ = diag(Z∗BZ∗T 1) D∗B = diag(Z B∗ZT 1).

Then the posterior conditional is proportional to

p(zi |b, z−i, y) ∝ p(y |z, b)p(z, b)

=
∏
i,t

Poisson(yi (t) |[e(Z BZT−D)t y(0)]i)
∏

i

Multinomial(zi |1, π)
∏

k

Gamma(bk,k−1 |φ, ψ)

∝
∏
i,t

exp
{
−[e(Z BZT−D)t y(0)]i

}
[e(Z BZT−D)t y(0)]yi (t)i

∏
i,k

πzik
ik

∏
k

bθ−1
k,k−1e−φbk,k−1

∝
∏
i,t

exp


−

∑
j

[e(Z BZT−D)t]i j y(0) j





∑
j

[e(Z BZT−D)t]i j y(0) j



yi (t) ∏
i,k

πzik
ik

×
∏

k

bθ−1
k,k−1e−φbk,k−1

∝
∏
i,t, j

exp
{
−[e(Z BZT−D)t]i j y(0) j

} 

∑
j

[e(Z BZT−D)t]i j y(0) j



yi (t) ∏
i,k

πzik
ik

×
∏

k

bθ−1
k,k−1e−φbk,k−1,

and the rejection probability is

p(z∗i |b, z−i, y)
p(zi |b, z−i, y)

=

∏
i,t, j exp

{
−[e(Z∗BZ∗T−D∗)t]i j y(0) j

} [∑
j[e(Z∗BZ∗T−D∗)t]i j y(0) j

] yi (t)

∏
i,t, j exp

{
−[e(Z BZT−D)t]i j y(0) j

} [∑
j[e(Z BZT−D)t]i j y(0) j

] yi (t)

×

∏
k π

z∗
ik

ik∏
k π

zik
ik

.
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Similarly,

p(b∗j, j−1 |b−( j, j−1), z, y)

p(b j, j−1 |b−( j, j−1), z, y)
=

∏
i,t, j exp

{
−[e(Z B∗ZT−D∗B )t]i j y(0) j

} [∑
j[e(Z B∗ZT−D∗B )t]i j y(0) j

] yi (t)

∏
i,t, j exp

{
−[e(Z BZT−D)t]i j y(0) j

} [∑
j[e(Z BZT−D)t]i j y(0) j

] yi (t)

×

∏
k b∗θ−1

j, j−1e−φb∗
j, j−1∏

k bθ−1
j, j−1e−φb j, j−1

.

Note we take
p(b∗

j, j−1 |b−( j, j−1),z,y)
p(b j, j−1 |b−( j, j−1)

= 0 whenever b∗j, j−1 does not satisfy the constraint: 0 < · · · <

b j−2, j−1 < b∗j−1, j < · · · < bK−1,K .

For the sampler to remain efficient when the number of clusters is high, we reparameterize to

the unconstrained space:

η1 = log b21, η2 = log (b32 − b21) , . . . , ηK−1 = log
(
bK (K−1) − b(K−1)(K−2)

)
.

We require the following adjustment to the rejection probability. Let f be the function such that

f (b) = η.

p(η j |η− j, z, y) ∝ p(y |η, z)p(η)p(z)

= p(y |η, z)p(z)p( f −1(η)) |J f −1(η) |.

Let H be the matrix B with each b j+1, j replaced with η j = f (b j+1, j ) and DH be diagonal matrix

populated with the negative column sums of H .

p(η∗j |η− j, z, y)

p(η j |η− j, z, y)
=

∏
i,t, j exp

{
−[e(Z H∗ZT−DH∗ )t]i j y(0) j

} [∑
j[e(Z H∗ZT−DH∗ )t]i j y(0) j

] yi (t)

∏
i,t, j exp

{
−[e(Z H ZT−DH )t]i j y(0) j

} [∑
j[e(Z H ZT−DH )t]i j y(0) j

] yi (t)

×
((eη

∗
j + eη j−1 )(eη

∗
j + eη j+1 ))θ−1 exp(−φ(eη

∗
j + eη j−1 ) − φ(eη

∗
j + eη j+1 ))

((eη j + eη j−1 )(eη j + eη j+1 ))θ−1 exp(−φ(eη j + eη j−1 ) − φ(eη j + eη j+1 ))

×
eη
∗
j

eη j
.
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5.7.4 High dimensional approximation

When the dimension is to large for rejection sampling, we recommend the following approxi-

mation, which requires the following notation.

1. yi (t) is the population of location i ∈ {1 . . . n} at time t ∈ {1 . . .T }, and y = [yi (t)] is an

n × T matrix of counts, whose ith row is denoted yi and tth column y(t). µi (t) := E(yi (t))

and x := y(0).

2. ki ∈ {1, . . . , K } is the cluster assignment of location i, Z is an n × K binary matrix of cluster

assignments, i.e. Zi j = δ j=ki , and nki =
∑n

j=1 Z j ki is the number of locations in cluster ki.

3. Bi j ≥ 0 is the instantaneous migration rate from a location in cluster j ∈ {1, . . . , K − 1} to

a location in cluster i ∈ {2, . . . , K }, and B = [Bi j] is a K × K migration matrix. Individ-

uals migrate across clusters sequentially: Bi j > 0 only if i = j + 1. The system is open:

B01, B(K+1)K > 0 where 0 and K + 1 denote locations outside of the system.

4. mki = n(ki+1) B(ki+1)ki is the emigration rate B(ki+1)ki from location i in cluster ki to all

n(ki+1) locations in cluster ki + 1, and m = [mki ] is the n × 1 vector of emigration rates.

The emigration rate from a location in cluster 0 is m0 = nB01, and from cluster K , mK =

nB(K+1)K . In addition, define

rki k j =




1 if ki = k j∏ki−k j

l=1

m(k j+l−1)

m(k j+l) − mk j

if ki > k j

r−1
k j kp =




1 if k j = kp∏k j−kp
l=1

m(k j−l)

m(k j−l) − mk j

if kp < k j
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5. Q = Z BZT − diag(m) is an n × n instantaneous migration matrix. The diagonal of Q is

the total emigration rates. The rows of the off-diagonal are the immigration rates to location

i from each location in cluster ki − 1, and the columns of Q are the emigration rates from

location i to each location in cluster ki + 1.

Assume the entries of m, m1, . . . ,mk , are nonzero and distinct. Define n × n matrices Λ and

V :

Λi j =




Q j j = −mk j if i = j

0 if i , j

Vi j =




1 if i = j

0 if i , j and ki ≤ k j

rki k j
nki

if ki > k j

Then VΛV−1 is a orthogonal (though not orthonormal) eigendecomposition of Q where V−1

has entries

V−1
jp =




1 if p = j

0 if p , j and kp ≥ k j

r−1
k j kp

nk j
if kp < k j

If ki is monotonically increasing, Q is lower triangular. Otherwise, Q can be premultiplied

by a set of row-switching transformations so that it is lower triangular. In either case, the

diagonal of Λ is the diagonal of Q.

V can then be found by forward substitution: Fix the jth column of V , v j . The identity

(Q − λ j I)v j = (Q + mk j I)v j = 0 is the system of linear equations
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Vi j (mk j − mki ) +
∑

i′:ki ′=ki−1

mki−1

nki
Vi′ j = 0

Since the entries of m are distinct, Vi j must be 0 if ki < k j . Setting Vj j = 1 and Vi j = 0 for

ki = k j , the remaining elements of v j are obtained recursively from i : ki = k j + 1, . . . , K .

Vi j =
1

nki

mki−1

(mki − mk j )

∑
i′:ki ′=ki−1

Vi′ j

V−1 can be similarly found by backward substitution: Fix the jth row of V−1, v−1
j . The

identity v−1
j (Q + mk j I) = 0 is the system of linear equations

V−1
jp (mk j − mkp ) +

∑
p′:kp′=kp+1

mkp

nkp−1
V−1

jp = 0

This time V−1
jp is 0 if kp > k j . Setting Vj j = 1 and Vjp = 0 for kp = k j , the remaining

elements of v j are obtained recursively from p : kp = k j − 1, . . . , 0.

V−1
jp =

1
nkp−1

mkp

(mkp − mk j )

∑
p′:kp′=kp+1

Vjp′

Assume [n1, . . . , nK ] ∼ Multinomial(n; [α1, . . . , αK ]) and
∑

i:ki=k
xi

nki
−→
n→∞

x̄ki so that

1.
mki

n −→
n→∞

m̄ki := α(ki+1) B(ki+1)ki

2. rki k j −→n→∞
r̄ki k j :=

∏ki−k j

l=1

m̄(k j+l−1)

m̄(k j+l) − m̄k j

3. r−1
k j kp
−→
n→∞

r̄−1
k j kp

:=
∏k j−kp

l=1

m̄(k j−l)

m̄(k j−l) − m̄k j

4.

−
∑

j:k j=k

n∑
p=1

Vi jV−1
jp

m0

mk j

δkp=1 −→
n→∞




0 if ki < k j

d̄ki k j := α1
αi

r̄ki k j

m̄0
m̄k j

r̄−1
k j1

if ki ≥ k j
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5.

∑
j:k j=k

Vi j

n∑
p=1

V−1
jp xp −→

n→∞




0 if ki < k j

c̄i := xi +
∑ki−1

kp=1
αp

αi
r̄−1

ki kp
x̄kp if ki = k j

c̄ki k j := α j

αi
r̄ki k j ( x̄k j +

∑k j−1
kp=1

αp

α j
r̄−1

k j kp
x̄kp ) if ki > k j

Combining 1-6 yields the following large sample approximation,

µi (t) ≈ e−mki
t (c̄i − d̄ki ki ) + d̄ki ki +

ki−1∑
k j=1

[e−mk j
t (c̄ki k j − d̄ki ki ) + d̄ki ki ]

5.7.5 Simulation

We demonstrate Algorithm 1 can recover the infinitesimal generator Q by simulation. We

generate longitudinal data from the IBM with K = 3 clusters and n = 100 locations. One such

simulation is shown in Figure 5.7. The top panel shows the trajectory of all 100 locations, colored

according to their cluster assignment. Individuals move from green locations to red at instanta-

neous rate b21 = 3e−04 and from red locations to blue locations at rate b32 = 3e−03.

We run one chain of Algorithm 1 for two thousand iterations. Cluster assignments are initalized

randomly and b(0)
21 = b(0)

32 = 0. The algorithm correctly identifies all 100 assignments and the true

B. Trace plots show convergence for b21 (left) and b32 (right) after around one thousand iterations.

The second thousand iterations are thinned to produce one hundred samples from the posterior.

The red horizontal line marks the true data-generating value.

5.7.6 Real Data

This paper identifies migration patterns in the New York–Newark, NY–NJ–CT–PA Combined

Statistical Area (CSA) between 2006 and 2017. The CSA includes the five counties of New York

City, and its surrounding suburban and rural communities. The counties are highly connected,
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Figure 5.7: Results from an IBM simulation study. The trajectory of 100 locations is colored
by cluster assignment (top). Individuals move from green locations to red at instantaneous rate
b21 = 3e−04 and from red locations to blue locations at rate b32 = 3e−03. Trace plots show
convergence for b21 (left) and b32 (right) after around one thousand iterations. The red horizontal
line marks the true data-generating value.
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forming the largest urban agglomeration of economies in the Americas. Two datasets are used,

one from the U.S. Internal Revenue Service (IRS) and one from the U.S. Census Bureau (Census).

The Statistics of Income Division (SOI) of the U.S. Internal Revenue Service (IRS) maintains

a database of all income tax forms filed. They tabulate the number of county-to-county migrations

of tax filers and their dependents each year, and release the data to the public.

The data have two notable limitations. First, non-filing and late-filing households are not rep-

resented in all years so the data under-represent the very poor, the very wealthy, and the elderly

(Gross, 2003). Second, the methodology changed starting with the 2011-2012 data (Pierce, 2015).

For the purpose of estimating major migration flows, however, these limitations are not particularly

consequential.

The American Community Survey has been conducted monthly by the U.S. Census Bureau

since 2005. Roughly 1 percent of the U.S. population is sampled each year, and participation is

required by law. We use the “ACS-1-year” population estimates from this survey. Public Use

Micro Areas (PUMAs) is the smallest area for which year-over-year data is publicly available for

all locations. PUMAs contain around 100,000 residents, conceptually the size of a neighborhood.

The PUMA boundaries were redrawn in 2012 according to the 2010 decennial Census. We confine

our study to 2012-2017, however, the model can be adjusted for a longer time frame.
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Chapter 6: Forecasting Pedestrian Fatalities with the Linear Probability

Model

with Shaw-Hwa Lo

The linear probability model (LPM) approximates the probability of a dichotomous variable

with a linear combination of covariates. The model is as old as least squares and remains popular

in applied statistics and data science: It is used to approximate nonlinear curves and marginal

effects (for example, the test for trend (Armitage 1958), (Cochran 1955), and (Cox 1958, p. 222),

and the derivative rule (Berkson 1951), (King 1998, p. 105), and (Gelman 2006, p. 81); it provides

an initial solution to iterated algorithms like feasible generalized least squares and iteratively

weighted least squares. (Freedman 2009, p. 123); and it is a powerful predictor, serving as a point

of comparison to more complex classifiers. Friedman (2001, p. 104) note that "on many problems

it [the LPM] gives similar results to more standard linear methods for classification".

The popularity of the LPM is due to its analytic and computational simplicity: It is easy to

prove theoretical properties (such as the order of the error when approximating nonlinear curves)

and compute the fit (such as via least squares or weighted least squares). Yet despite its popular-

ity, the LPM has been largely dismissed as a stand-alone tool for statistical inference. It seldom

appears in inferential tasks such as collapsing contingency tables (or variable selection in gen-

eral), analysis of variance, or causal inference. This is primarily because setting the coefficients

of the LPM to zero does not correspond to an independence assumption and has been heretofore

considered uninterpretable (see Cox (1989, p. 118) and Bishop (2007, p. 23-24)). It is because

of this limitation that secondary considerations, such as heteroskedasticity and boundary viola-

tions (when the model fit falls outside the unit interval), has led researchers to prefer alternative

models—even though these limitations are not specific to the LPM and are therefore not themselves
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a sufficient basis for its rejection (Cochran 1940).

We reevaluate the role of the LPM for describing contingency tables in three sections. We first

demonstrate that the LPM parameters are related to the Bayes error rate, serving the same role

for predictivity as log-linear models serve for independence. This allows researchers to assess the

predictivity of a covariate as a parametric inference problem. We then demonstrate the relation-

ship between ordinary least squares and the influence score, which have both been demonstrated

effective in problems of predictivity. For example, see Battey (2019) on the robustness of least

squares for LPMs and Chernoff (2009) and Lo (2016) on prediction with the influence score. The

influence score is key to any analysis with the LPM because, unlike traditional measures of model

fit such as χ2 or G2, it does not fail when the estimated probabilities are close to 0 and 1 or outside

the unit interval. Our final section compares the LPM and the log-linear model (LLM) using a data

set describing the New York City traffic safety policy, Vision Zero.

6.1 Linear Probability Model for Partitions

Consider a class of partitions, Π, where each partition π ∈ Π divides n objects into J groups,

1 ≤ J ≤ n. Our goal is to choose the partition that best summarizes a gold standard variable,

Yi. Unlike the traditional classification problem, we assume Yi is measured without error. Instead,

any proposed partition is subject to classification error according to a linear probability model—

reflecting the fact that the partitions under consideration were chosen with the gold standard in

mind. Though the goal is to predict Yi on the same or similar units in the future, we find the best

partition by calibration, modeling Π |Y and solving for Y .

To fix ideas, suppose Yi measures the risk of a fatality on a randomly chosen traffic intersection

between 2011 and 2013, and Xi = [X1, . . . , XJ] is a multivariate random vector indicating whether

the road segment belongs to group j = 1, . . . , J. We assume that for each intersection, classification

is made with error according to a linear probability model; the partition imperfectly separates roads

into groups of different risk levels.

In the fist subsection, we consider the joint LPM, and in the second subsection, the conditional
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LPM. In both, we suppress the index i for clarity. The results extend to higher dimensional tables

(both the I × J table and K 2 × 2 tables), as we partially outline in the Appendix, but the single

2 × 2 table is sufficient for the task of choosing the best, summarizing partition π ∈ Π for a single,

gold-standard measure Y .

6.1.1 Interpreting the joint LPM

In the remainder of this section, we assume Y is dichotomous so that Y and X j partition the

n observations into four cells, which form the following 2x2 contingency table; see Appendix for

details. To avoid overloading the notation in this section, we denote the arbitrary X j by Z . Also,

let pY denote Pr(Y = 1), qY denote Pr(Y = 0), pZ denote Pr(Z = 1), qZ denote Pr(Z = 0), pY Z

denote Pr(Y = Z ), and qY Z denote Pr(Y , Z ). It will be convenient to represent the entries of the

contingency table with letters:

Z = 0 Z = 1

Y = 0 a b

Y = 1 c d

where

a = Pr(Y = 0, Z = 0)

b = Pr(Y = 0, Z = 1)

c = Pr(Y = 1, Z = 0)

d = Pr(Y = 1, Z = 1)

The (saturated) joint LPM is defined as

Pr(Y = i, Z = j) = α + αY (i) + αZ ( j) + αY Z (i j)

The model is unidentified, and it is common to use the centered parameterization: αY := αY (1) =

−αY (0), αZ := αZ (1) = −αZ (0), and αY Z := αY Z (00) = αY Z (11) = −αY Z (10) = −αY Z (01)

For a 2x2 table, i = j = 0, 1 so there are 9 parameters and 6 constraints for a total of 9 - 6 = 3

“free parameters” to be estimated from 4 observations. It follows from the constraints and the total

law of probability that:
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α =
a + b + c + d

4
=

1
4

αY (1) = −αY (0) =
c + d − a − b

4
=

1
4

(pY − qY )

αZ (1) = −αZ (0) =
b + d − a − c

4
=

1
4

(pZ − qZ )

αY Z (0, 0) = αY Z (1, 1) = −αY Z (0, 1) = −αY Z (1, 0) =
a + d − b − c

4
=

1
4

(pY Z − qY Z )

The constraints only identify the magnitude of the coefficients; an equivalent decomposition is

given by µi j = α − αY (i) − αZ ( j) − αY Z (i j). Let θY be the marginal predictivity of Y , defined

as θY = pY ∨ qY , θZ the marginal predictivity of Z , defined as θZ = pZ ∨ qZ , and θY Z the co-

predictivity of Y and Z , defined as θY Z = pY Z ∨ qY Z (see Appendix for details). From Identity I.1:

|p − q | = 2θ − 1,

|αY | =
1
4
|pY − qY | =

1
2
θY −

1
4
=

1
2
θY − α

|αZ | =
1
4
|pZ − qZ | =

1
2
θZ −

1
4
=

1
2
θZ − α

|αY Z | =
1
4
|pY Z − qY Z | =

1
2
θY Z −

1
4
=

1
2
θY Z − α

When the LPM coefficient, αY , is large, Y is much more predictable than a random guess

(2α = 1
2 ). When the LPM coefficient is zero, Y is no more predictable than a random guess. In

comparison, the parameters of the log-linear model correspond with the odds ratio, which is a

relative measure of risk and whose size is uninformative of the marginal or co-predictivity (unless

it is zero, see Appendix).

6.1.2 Interpreting the conditional LPM

We retain the setup from the previous subsection, where dichotomous variables Y and X j parti-

tion the n observations and form a 2x2 contingency table, and Z denotes an arbitrary X j . Let pZ |y
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denote Pr(X j = 1|Y = y), qZ |y denote Pr(X j = 0|Y = y), pY denote Pr(Y = 1), and qY denote

Pr(Y = 0). Consider again the joint LPM from the previous section,

Pr(Y = i, Z = j) = α + αY (i) + αZ ( j) + αY Z (i j)

As before, the parameters are not identified, and we use the centered parameterization, αY :=

αY (1) = −αY (0), αZ := αZ (1) = −αZ (0), and αY Z := αY Z (00) = αY Z (11) = −αY Z (10) =

−αY Z (01) so that

Pr(Y = i) = (Pr(Y = i, Z = 0)) + (Pr(Y = i, Z = 1))

= (α + αY (i) + αZ (0) + αY Z (i0)) + (α + αY (i) + αZ (1) + αY Z (i1))

= (α + αY (i) + αZ (0) + αY Z (i0)) + (α + αY (i) − αZ (0) − αY Z (i0))

= 2(α + αY (i))

and the conditional mass function is

Pr(Z = 1|Y = i) =
α + αY (i) + αZ (1) + αY Z (i1)

2(α + αY (i))
=

1
2
+
αZ (1) + αY Z (i1)

2(α + αY (i))
=




1
2 +

αZ−αYZ

qY
if i = 0

1
2 +

αZ+αYZ

pY
if i = 1

Let θZ |y be the conditional predictivity, defined as θZ |y = pZ |y ∨ qZ |y. From Identity I.1:

|p − q | = 2θ − 1,
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2θZ |y=i − 1 = |Pr(Z = 1|Y = i) − Pr(Z = 0|Y = i) |

= |2Pr(Z = 1|Y = i) − 1|

=
|αZ (1) + αY Z (i1) |
|α + αY (i) |

=




2|αZ−αYZ |

qY
if i = 0

2|αZ+αYZ |

pY
if i = 1

Thus, θZ |1 =
1
2 +

|αZ+αYZ |

pY
, θY |0 =

1
2 +

|αZ−αYZ |

qY
, and EZ (θY |Z ) = 1

2 + |αZ + αY Z | + |αZ − αY Z |.

Similar to the predictivity measures of the previous section, the conditional predictivity is a simple

function of αY and αY Z , except now weighted to the population of Y .

If we were to consider the “reduced form” model, Pr(Z = 1|Y = i) = m i + b, we would

identify the intercept b with 1
2 +

αZ−αYZ

qY
and the slope m with Pr(Z = 1|Y = 1) − Pr(Z = 1|Y =

0) = αZ+αYZ

pY
−

αZ−αYZ

qY
. It follows from the triangle inequality that

|m | =
�����
αZ + αY Z

pY
−
αZ − αY Z

qY

�����
≥

�����
αZ + αY Z

pY

�����
−

�����
αZ − αY Z

qY

�����
= θZ |1 − θZ |0

Thus, for small m, Y can be ruled out as a predictor of Z . This is not true for the conditional log-

linear model (or logistic regression, whose parameters are relative measures of conditional risk, see

Appendix for details). If J models are fit for each of the J X j resulting in slopes m = [m1, . . . ,mK ],

the total predictivity can be assessed: | |m | |22 , as we justify in the following section.

6.2 The influence score assesses the fit of the LPM

We demonstrate the role of the influence score in fitting the LPM. The first subsection intro-

duces the influence score and its relationship to the covariance. The covariance is itself related to

the predictivity (see Appendix, which generalizes the relationship between the influence score and

marginal predictivity found in Lo (2016)). The second subsection demonstrates how comparing
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a partition to a gold standard reduces to evaluating the influence score. The main advantage of

the influence score for summarizing contingency tables over traditional measures of association is

that the influence score does not require the estimated probabilities to lie in the interior of the unit

interval. For example, chi-square and model based measures (like AIC or G2) do not work if p̂ = 0

or p̂ = 1.

6.2.1 The general relationship between the influence score and predictivity

Consider a partition of Y , π, that associates with each observation one of J cells. Let n j denote

the number of observations associated with the jth cell. Let X = [X1, . . . , XJ] be a vector of

dichotomous variables denoting which cell contains the jth observation. Without loss of generality,

we suppose Yi j is standardized, Yi j =
Y ′i j−Ȳ ′

σY ′
; the right side can be substituted for the left to examine

the non-standardized case. We begin by defining the (average) influence score to be the weighted

sum of squares:
∑

j (
n j

n Ȳj )2. Since n j

n →
n→∞

Pr(X j = 1) and Ȳj →
n→∞

E(Y |X j = 1),

∑
j

[(
n j

n
)(Ȳj )]2 →

n→∞

∑
j

[Pr(X j = 1)E(Y |X j = 1)]2

=
∑

j

[1 Pr(X j = 1)E(Y |X j = 1) + 0 Pr(X j = 0)E(Y |X j = 0)]2

=
∑

j

E(X jE(Y |X j ))2

=
∑

j

E(E(Y X j |X j ))2

=
∑

j

E(Y X j )2

=
∑

j

Cov(Y, X j )2

where the last equality follows from the fact that Y has zero mean.

Let β = [β1, . . . , βJ] be the slopes from J regressions of X j on Y . Using the least squares

estimator, β̂ j = Ĉov(Y, X j ) so that the (average) influence score can be seen as the norm of the
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estimated regression slopes: | | β | |22 =
∑

j Ĉov(Y, X j )2. This measure arises naturally in the analy-

sis of variance (see next section). The covariance has several ideal properties, such as symmetry

and invariance. It also bounds the predictivity tighter than other summary measures. (We com-

pare other common measures of contingency tables in the Appendix.) We point out here that the

relationship to covariance is similar but meaningfully distinct from χ2, which, for 2x2 tables, is

equivalent to ρ2
j =

Cov(Y,X j )
Var(Y )Var(X j )

.

6.2.2 Influence score as a measure of the conditional LPM’s fit.

Recall that the goal is to assess how well a partition of n objects, i = {1, . . . , n}, represents a

gold standard variable Yi. For example, Yi could be the number of fatalities on the ith road. As

in the previous sections, we suppress the index i, writing Y for the measurement of an randomly

chosen unit, and we assume Y has been standardized so that E(Y ) = 0 and Var(Y ) = 1.

Let the partition be represented by a J-vector of dichotomous variables X = [X1, . . . , XJ]. We

assume X ∼ Multinomial(p = [α1, . . . , αJ]) and use the explained variation, E(Var(X |Y )), as the

measure of assessment. This measure arises in the multivariate analysis of variance (MANOVA,

although usually normal errors are assumed).

We assume a conditional linear probability model: Pr(X j = 1|Y = y) = β0 j + β1 j y. However,

since β0 j = α j by the iterated law of expectation,

α j := Pr(X j = 1) = E(Pr(X j = 1|Y )) = E(β0 j + β jY ) = β0 j

we simply write Pr(X j = 1|Y = y) = α j + β j y.

Since X is multinomial, the total variation is
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E(X j ) = α j

Var(X j ) = α j (1 − α j )

Cov(X j1, X j2 ) = −α j1α j2

and, by the iterated laws of variance and covariance, the between variation is

Var(E(X j |Y )) = Var(α j + β jY ) = β2
j

Cov(E(X j1 |Y ),E(X j2 |Y )) = Cov(α j1 + β j1Y, α j2 + β j2Y ) = β1 j1 β1 j2

and the within variation is

E(Var(X j |Y )) = E[(α j + β jY )(1 − α j − β jY )] = α j (1 − α j ) − β2
j

E(Cov(X j1, X j2 |Y )) = E[−(α j1 + β j1Y )(α j2 + β j2Y )] = −α j1α j2 − β j1 β j2

In matrix form, we write ΣT = diag(α) − ααT, ΣB = β βT , and ΣW = ΣT − ΣB = diag(α) −

ααT − β βT , where α and β are column vectors [α1, . . . , αJ] and [β1, . . . , βJ]. T, B, and W stand

for the total, between and within.

Due to the decomposition ΣT =ΣB + ΣW , a one-dimensional summary of ΣB (or ΣB and ΣT )

is used to assess fit. For example, Wilk’s lambda Λ = ΣBΣ
−1
W = ΣB (ΣT − ΣB)−1. Since our goal

is prediction, we are interested in the magnitude of ΣB (see (Miller 1997) and (Breiman 1984) for

details). We use tr(ΣB) =
∑J

j=1 β
2
j as our summary.
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We estimate β j using the least squares estimator: β̂ j =
∑

i (yi−ȳ)(xi j−x̄ j )∑
i (yi−ȳ)2 =

∑
i yi xi j = n j ȳ j ,

where n j is the number of observations in partition cell j and ȳ j is the average of y for the observa-

tions in partition j. The plug-in estimator of tr(ΣB) is thus tr(Σ̂B) =
∑J

j=1(
∑

i yi xi j )2 =
∑J

j=1 n2
j ȳ

2
j .

Consistency of the estimator follows from the consistency of least squares and the continuous

mapping theorem.

Other measures are possible, although not explored in detail here. For the percent of the vari-

ation explained, we can estimate tr(Σ̂BΣ̂
−1
T ). However, for Σ̂T to be invertible, the last row/column

of ΣB and ΣT must be removed and the constraints
∑J

j=1 α̂ j = 1 and
∑J

j=1 β̂ j = 0 enforced. The

first constraint follows from the fact that the α̂ j are probabilities. The second from the fact that∑
j β̂ j =

∑
j n Cov(Y, X j ) = n Cov(Y,

∑
j X j ) = n Cov(Y, 1) = 0.

By the Sherman-Morrison Identity, Σ̂−1
T = diag([ 1

α̂1
, . . . , 1

α̂J−1
]) + 1

α̂J
1J−1×J−1, where 1J−1×J−1

is a J − 1 × J − 1 matrix of 1s. Therefore,

tr(Σ̂BΣ̂
−1
T ) = β̂ β̂T (diag([

1
α̂1
, . . . ,

1
α̂J−1

]) +
1
α̂J

1J−1×J−1) =
J∑

j=1

β̂2
j

α̂ j
= n

J∑
j=1

n j ȳ
2
j

6.3 Predicting NYC Traffic Fatalities

We examine a dataset of traffic fatalities occurring in New York City intersections between the

years 2011-2013 and 2016-2018. The years were chosen to capture the conditions before and after

the implementation of the traffic-safety policy, Vision Zero. (Though Vision Zero began in 2014

and is ongoing, we compare the fatalities between 2016-2018 on the roads impacted by Vision

Zero between 2014-2015 to the fatalities between 2011-2013 on similar roads as of 2011.)

Vision Zero aims to eliminate traffic fatalities by reengineering roads so that drivers are forced

to reduce their speeds. Typically, traffic safety countermeasures are added to roads that selectively

combine capital investments, like speed humps and signal retimings, and community investments,

like education and outreach. The ultimate policy goal is to evaluate which countermeasures re-

duced fatalities. Our narrower goal here, however, is to determine whether the countermeasures
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installed up until 2013, and the fatalities between 2011-2013, are predictive of the fatalities be-

tween 2016-2018 on roads that received the new countermeasures between 2014-2015.

Vision Zero researchers view traffic fatalities as deterministic (as the predictable consequence

of road features), and New York City selected traffic safety countermeasures for Vision Zero based

on the fatalities between 2011-2013. For this reason, we model traffic fatalities as non-random,

and the partition formed by traffic safety countermeasures as random (given traffic fatalities in the

before period). An alternative interpretation is that we model the treatment assignment process,

which is a common strategy in causal inference.

We compare our approach of using the LPM with linear regression (assuming normal errors)

and the conditional log-linear model (logistic regression). We choose logistic regression as a com-

parison for several reasons. First, because it is perhaps the most popular prediction algorithm for

binary variables. Second, because the linear and log-linear models are related: the log-linear model

is a linear hazard model; a linear model of the instantaneous death rate corresponds to a log-linear

model of the prevalence (number of deaths per unit period). See Appendix for details.

6.3.1 Vision Zero dataset

We begin by comparing the three approaches on a subset of the data. The number of New

York intersections is broken down in the following 8 2x2 contingency tables (Table 1a and 1b), the

first four by whether there was a fatality between 2011 and 2013 (Death) and three of the twelve

road characteristics (Leading Pedestrian Interval (Interval), Speed Hump (Hump), and Slow Zone

(Slow)), and the second four by whether there was a fatality between 2016 and 2018. A 0 indicates

the intersection lacked that characteristic, and a 1 indicates the intersection has that characteristic.

We fit the conditional linear and log-linear models (logistic regression) for all 11 possible

models predicting the number of 2011-2013 fatalities given Interval (I), Hump (H), and Slow (S).

The results are shown in Table 2. The first column records the model fit using hierarchical notation

(see Agresti (2003)). We summarize the log-linear model with AIC (assuming Y|X binomial with
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Table 1a: Vision Zero Data (2011-2013)

Table 1b: Vision Zero Data (2016-2018)

logistic link, AIC1) and the linear model with the influence score (IS) and AIC (assuming Y|X

normal, AIC2). We then calculate the mean absolute error on the 2016-2018 data using the log-

linear fit (MAE1, per 100) and linear fit (MAE2, per 100). The superscript a denotes the model

selected from comparing all subsets. The superscript b denotes the model selected from iteratively

collapsing the saturated model, denoted IHS.

Table 2: All subsets for I, H, and S
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model AIC1 AIC2 I MAE1 MAE2

455.4 -22183 0.0 4.91 4.91

I 449.5 -22190.0 3.3 4.96 4.96

H 456.1 -22182.3 0.5 4.88 4.88

S 444.1 -22198.3 4.8 4.90 4.90

IH 452.1 -22188.9 5.1ab 4.59 4.59

IS 443.4a -22198.9 5.1 4.85 4.85

HS 445.6 -22196.2 4.6 4.88 4.88

IH IS 445.6 -22198.2 3.8 4.86 4.85

IH HS 445.1b -22198.7 3.8 4.86 4.85

IS HS 445.1 -22196.7 3.8 4.86 4.88

IHS 445.6 -22201.3ab 0.0 4.88 4.88

MAE1 and MAE2 differ little for each model, likely because the probability of a fatality is so

low that it is closely resembles the incidence. What is different is the selection criteria. AIC1 and

AIC2 favor larger models than I and miss a more predictive subset.

The prediction gain from using I is modest in Table 2, but it becomes magnified when we

search for the best model over the entire Vision Zero dataset. Table 3 shows the result from itera-

tively collapsing the saturated model with all 12 covariates (best subsets is not possible): Leading

Pedestrian Interval, Speed Hump, and Slow Zone, Enhanced Crossings, Street Improvement, Traf-

fic Calming, Signal Retiming, Street Teams, Senior Centers, Outreach, facility type (direction of

road: one way, two way, etc.), system type (purpose of road: major collector, minor, arterial, etc.),

and through type (number of through lanes: 1, 2, 3, etc.) I leads to a nearly 50 percent reduction

in overall error.

Comparing selection criteria from iteratively collapsing saturated model (backwards step-wise

selection)
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selection criteria best value MAE1 MAE2

AIC1 443.4 4.85 4.85

AIC2 -22406.9 4.85 4.85

I 7.2 2.62 2.62

6.4 Appendix

6.4.1 The 2x2 Contingency Table.

Let Y ∼ B(pY ) and Z ∼ B(pZ ) be Bernoulli random variables. The goal is to best summarize

the relationship between Y and Z .

Denote pY = Pr(Y = 1), qY = Pr(Y = 0), pZ = Pr(Z = 1), and qZ = Pr(Z = 0). Also denote

the entries of the 2x2 contingency table formed by Y and Z by

Z = 0 Z = 1

Y = 0 a b

Y = 1 c d

with

a = Pr(Y = 0, Z = 0)

b = Pr(Y = 0, Z = 1)

c = Pr(Y = 1, Z = 0)

d = Pr(Y = 1, Z = 1)

Note that pY = c + d, qY = a + b, pZ = b + d, and qZ = a + c. For completeness, denote

pY Z = Pr(Y = Z ) = a + d and qY Z = Pr(Y , Z ) = b + c.

6.4.2 Summarizing a 2x2 Contingency Table by its predictivity

Define the predictivity (Lo 2016) of Y and Z to be
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θY = max(pY, qY ) = pY ∨ qY = (c + d) ∨ (a + b)

θZ = max(pZ, qZ ) = pZ ∨ qZ = (b + d) ∨ (a + c)

and the co-predictivity of Y and Z to be

θY Z = max(pY Z, qY Z ) = pY Z ∨ qY Z = (a + d) ∨ (b + c)

Three identities relate predictivity to more common parameters. Suppressing subscripts,

I.1 Net Risk := |p − q | = 2θ − 1

I.2 Var := pq = θ(1 − θ)

I.3 Bayes rate := p ∧ q = 1 − θ

The net risk is also caled the excess probability (Breslow 1980, p. 51-55), Var denotes the

variance, and Bayes rate the Bayes optimal error rate. The first identity (Lo 2016, eq. 2) follows

from the fact that p ∨ q + p ∧ q = 1 and p ∨ q − p ∧ q = |p − q |. Adding the right and left sides of

the equations yields 2(p ∨ q) = 1 + |p − q |.

The second follows directly from the definition of predictivity: θ(1−θ) = (p∨ q)(p∧ q) = pq.

The third can be defined as the frequentist error rate if the estimator 1p>q were used for a large

number of binary decisions. c.f. (Gelman 2006, p. 99), (Friedman 2001, p. 20), (Bickel 2015, ch.

12.2.2, p. 320).

The predictivity corresponds with the L∞ norm of the centered random variable Y − pY .

The Bayes rate corresponds with L0. These follow from the definition of the Lr norm,
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| |Y − pY | |r =
r√

E|Y − pY |
r =

r
√

pr
Y qY + qr

Y pY

where | |Y − pY | |r measures the amount of "uncertainty".

It turns out that different values of r produce different averages of pY and qY :

Setting r = 2 produces the geometric mean (or sd), | |Y − pY | |2 =

√
p2

Y qY + q2
Y pY =

√
pY qY .

Setting r = 1 produces the harmonic mean (or mad), | |Y − pY | |1 = |pY qY + qY pY | = 2pY qY =

2
p−1
Y +q−1

Y

.

Letting r → ∞, produces the max-norm (or predictivity). Multiplying and dividing by (pY∨qY )

yields,

lim
r→∞
| |Y − pY | |r = lim

r→∞
(pY ∨ qY )

r

√(
pY

pY ∨ qY

)r

qY +

(
qY

pY ∨ qY

)r

pY = (pY ∨ qY )

since
( pY

pY∨qY

)r
→

r→∞
1pY≥qY .

Letting r → 0, produces the min-norm (or Bayes rate). Following the same argument as

r → ∞, except multiplying and dividing by (pY ∧ qY ) and noting that
( pY

pY∨qY

)r
→

r→0
1.

n.b. if Yi ⊥⊥ Yj | pY , then for any r , | |Yi −Yj | |r = E(1r
Yi,Yj

) = pY qY +qY pY = 2pY qY = | |Yi − pY | |1.

An immediate consequence is the following inequalities:

θY = pY ∨ qY ≥
pY + qY

2
=

1
2
≥
√

pY qY ≥
2

p−1
Y + q−1

Y

≥ 1 − θY = pY ∧ qY

Predictivity corresponds with a linear model of a 2x2 table:

Consider the following ANOVA model with centered parameterization

µi j = α + αY (i) + αZ ( j) + αY Z (i j)

where
∑

i αY (i) =
∑

j αZ ( j) =
∑

i αY Z (i j) =
∑

j αY Z (i j) = 0.

For a 2x2 table, i = j = 0, 1 so there are 9 parameters and 6 constraints for a total of 3 “free
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parameters” to be estimated from 4 observations. It follows from µi j = Pr(Y = i, Z = j) and the

constraints that:

α =
a + b + c + d

4
=

1
4

αY (1) = −αY (0) =
c + d − a − b

4
=

1
4

(pY − qY )

αZ (1) = −αZ (0) =
b + d − a − c

4
=

1
4

(pZ − qZ )

αY Z (0, 0) = αY Z (1, 1) = −αY Z (0, 1) = −αY Z (1, 0) =
a + d − b − c

4
=

1
4

(pY Z − qY Z )

The constraints only identify the magnitude of the coefficients; an equivalent decomposition is

given by µi j = α − αY (i) − αZ ( j) − αY Z (i j). From identity |p − q | = 2θ − 1,

|αY | =
1
4
|pY − qY | =

1
2
θY −

1
4
=

1
2
θY − α

|αZ | =
1
4
|pZ − qZ | =

1
2
θZ −

1
4
=

1
2
θZ − α

|αY Z | =
1
4
|pY Z − qY Z | =

1
2
θY Z −

1
4
=

1
2
θY Z − α

The intercept α = 1
4 is the maximum uncertainty if no data are collected and thus each cell

is assumed to have µi j =
1
4 . The strength of marginal and joint association is measured in L∞

distance–e.g. one of αY (0) and αY (1) is 1
2θY above α, the other is 1

2θY below alpha, and the two

are θY apart. If θY Z = 2α = 1
2 , the marginal measures θY and θZ completely characterize the

table and the table is said to be "collapseable". c.f. Section 6.4.3, this does not imply Y and Z are

independent, the collapseability condition for the log-linear model.

Put another way, suppose the interaction term αY Z were not included and µ̂i j = α + αY (i) +

αZ ( j). Then the mean absolute error MAE−αYZ :=
∑

i j µi j | µ̂i j − µi j | = |αY Z |
∑

i j µi j =
|pYZ−qYZ |

4 =

1
2θY Z −

1
4 . If the co-predictivity θY Z =

1
2 , then no error is made by excluding the term αY Z .

That the marginal terms of the linear model corresponds to the marginal probabilities of the
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contingency table was recognized by (Bishop 2007, p. 23-24). However, they did not seem to

recognize that a unit change in the margins (from row 1 to row 2, or column 1 to column 2)

correspond to the predictivity. In fact, their recommendation to use the log-linear model presented

in Section 6.4.3 over the linear model rests on the assumption that the interaction of the linear

model has no interpretation.

Generalization for an IxJ table The predictivity interpretation of the ANOVA model with cen-

tered parameterization generalizes to the IxJ case. Letting i ∈ {1, . . . , I} and j ∈ {1, . . . , J},

assume without loss of generality that I ≤ J. There are 1 + I + J + I J parameters and I + J + 2

constraints, resulting in I J − 1 “free parameters” to be estimated from I J observations. It follows

from µi j = Pr(Y = i, Z = j) and the constraints that:

1 =
I∑

i=1

J∑
j=1

µi j = I Jα

Pr(Y = i) − Pr(Y , i) = 2Pr(Y = i) − 1 = 2
J∑

j=1

µi j − 1 = 2J (α + αY (i)) − 1

Pr(Z = j) − Pr(Z , j) = 2Pr(Z = j) − 1 = 2
I∑

i=1

µi j − 1 = 2I (α + αZ ( j)) − 1

Pr(Y = Z ) − Pr(Y , Z ) = 2Pr(Y = Z ) − 1 = 2
I∑

i=1

µii − 1 = 2(Iα +
I∑

i=1

αZ (i) +
I∑

i=1

αY Z (i, i)) − 1

If I = J, the last equation reduces to Pr(Y = Z ) − Pr(Y , Z ) = 2(Iα +
∑I

i=1 αY Z (i, i)) − 1

Conditional predictivity corresponds with a weighted linear model of a 2x2 table:

Conditional predictivity, the focus of Section ??, is defined to be θZ |y = pZ |y ∨qZ |y, where pZ |y

denotes Pr(Z = 1|Y = y) and qZ |y denotes Pr(Z = 0|Y = y). It satisfies all the identities of Section

6.4.1. For this Subsection, Y is assumed dichotomous so that the conditional predictivity can be
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derived directly from the linear model of Subsection 6.4.2:

µi j = α + αY (i) + αZ ( j) + αY Z (i j)

Due to the centered parameterization, αZ (1)) = −αZ (0)) and αY Z (i1)) = −αY Z (i0)) so that

pY = Pr(Y = i) = (Pr(Y = i, Z = 0)) + (Pr(Y = i, Z = 1))

= (α + αY (i) + αZ (0) + αY Z (i0)) + (α + αY (i) + αZ (1) + αY Z (i1))

= (α + αY (i) + αZ (0) + αY Z (i0)) + (α + αY (i) − αZ (0) − αY Z (i0))

= 2(α + αY (i))

The conditional mass function is

Pr(Z = 1|Y = i) =
α + αY (i) + αZ (1) + αY Z (i1)

2(α + αY (i))
=

1
2
+
αZ (1) + αY Z (i1)

2(α + αY (i))
=




1
2 +

αZ−αYZ

qY
if i = 0

1
2 +

αZ+αYZ

pY
if i = 1

where αY = αY (1) and αY Z = αY Z (11). By Identity I.1, the conditional predictivity satisfies

2θZ |i − 1 = |Pr(Z = 1|Y = i) − Pr(Z = 0|Y = i) |

= |2Pr(Z = 1|Y = i) − 1|

=
|αZ (1) + αY Z (i1) |
|α + αY (i) |

=




|αZ−αYZ |

2qY
if i = 0

|αZ+αYZ |

2pY
if i = 1
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Thus, θZ |1 =
1
2 +

|αZ+αYZ |

4pY
and EY (θZ |Y ) = 1

2 +
|αZ+αYZ |+|αZ−αYZ |

4 .

As in the previous section, conditional predictivity is directly interpreted from the coefficients

of the linear. However, where in the previous model assessing predictivity involved observing the

magnitude of a coefficient, conditional predictivity requires assessing the sum of two coefficients.

Also as in the previous section, the mean absolute error of the conditional model is a function

of the co-predictivity. Suppose αY Z was thought to be zero so that the probability Pr(Z = 1|Y = 1)

were estimated simply by P̂r(Z = 1|Y = 1) = 1
2 +

αz

pY
. Then

MAE−αYZ = |P̂r(Z = 0|Y = 1) − Pr(Z = 0|Y = 1) |Pr(Z = 0|Y = 1)

+ |P̂r(Z = 1|Y = 1) − Pr(Z = 1|Y = 1) |Pr(Z = 1|Y = 1)

=
|αY Z |

pY

and as before EY (MAE−αYZ ) = |αY Z | =
1
2θY Z −

1
4 , and no error is made if and only if the

co-predictivity is zero.

6.4.3 Alternative measures of uncertainty and association

For comparison, consider two traditional measures of uncertainty—the standard deviation,

SD(Y ) =
√

Var(Y ) =
√

pY qY and the (marginal) odds (Yule 1912), O(Y ) = pY
qY

, and two tradi-

tional measures of association—the covariance Cov(Y, Z ) = d − pY pZ , and the (co) odds ratio

OR(Y, Z ) = ad
bc . The odds is typically normalized: γY =

O(Y )−1
O(Y )+1 and γY Z =

OR(Y,Z )−1
OR(Y,Z )+1 .

The covariance is a common measure of association as the angle or "inner product", and the

variance is the corresponding "norm". It arises frequently in linear models.

The normalized odds can be rewritten

γY =
O(Y ) − 1
O(Y ) + 1

=

pY
qY
− 1

pY
qY
+ 1
=

1
qY

(pY − qY )
1

qY
(pY + qY )

= pY − qY
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so that |αY | =
1
4 |γY |, where αY was defined in Section 1.1b. An identical argument shows that

|αZ | =
1
4 |γZ | and |αY Z | =

1
4 |γY Z |. n.b. OR(Y, Z ) , O(Y Z ).

This measure arises in calculating the unconditional net risk Pr(Y = 1, Z = 0) − Pr(Y = 0, Z =

1) = pY (1 − pZ ) − (1 − pY )pZ = pY − pZ . The conditional net risk (for matched pairs) produces

the marginal odds ratio MOR(Y, Z ) = pY (1−pZ )
(1−pY )pZ

(not to be confused with the (co) odds ratio defined

above, which arises in log-linear models, see 6.4.3):

Pr(Y = 0, Z = 1|Y + Z = 1) =
(1 − pY )pZ

(1 − pY )pZ + pY (1 − pZ )
=

1
1 +MOR(Y, Z )

so that Pr(Y = 1, Z = 0|Y + Z = 1) − Pr(Y = 0, Z = 1|Y + Z = 1) = MOR(Y,Z )−1
MOR(Y,Z )+1 .

The odds ratio corresponds with a log-linear model of a 2x2 table.

The odds ratio can be derived using the ANOVA model from 6.4.2, except with a log-link:

Consider the following ANOVA model with centered parameterization

log µi j = β + βY (i) + βZ ( j) + βY Z (i j)

where
∑

i βY (i) =
∑

j βZ ( j) =
∑

i βY Z (i j) =
∑

j βY Z (i j) = 0. The relationship in 1.1b holds with

differences being replaced by ratios:

β =
1
4

log abcd

βY =
1
4

log
cd
ab
=

1
4

log OR(Z,Y Z )

βZ =
1
4

log
bd
ac
=

1
4

log OR(Y,Y Z )

βY Z =
1
4

log
ad
bc
=

1
4

log OR(Y, Z )
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Thus, testing whether the reduced marginal model or “independent” model holds is equivalent

to testing whether the odds ratio is one or γY Z is zero.

The log-linear model is multiplicative on the original probability scale, where the coefficients

measure the relative difference (relative risk) between any two rows/columns. Relative risk may

be preferred to absolute risk and the linear model because it is invariant to conditioning: For any

events A, B, and C, Pr(A,C)
Pr(B,C) =

Pr(A|C)
Pr(B |C)

Pr(C)
Pr(C) =

Pr(A|C)
Pr(B |C) . In other words, the relative risk does not

depend on the prevalence of C in the population. In contrast, the risk difference scale with the

prevalence of B: Pr(A,C)−Pr(B,C) = Pr(A|C)Pr(C)−Pr(B |C)Pr(C) ≤ Pr(A|C)−Pr(B |C). The

fact that predictivity and the Bayes rate depend on the prevalence suggests the log-linear model

may not be ideal tools for prediction.

The linear and log-linear parameterizations are not equivalent.

The linear and log-linear probability models correspond with uniform and exponential thresh-

olding function.

Zero covariance or zero log-odds are necessary and sufficient conditions for zero independence.

Predictivity is neither a necessary or sufficient condition for independence. However, “large” sta-

tistical dependence, as measured by either covariance or the odds implies high predictivity.

The following tables (Fienberg 2007) show an undesirable property of the odds ratio when cells

are sparse/zero. Here, OR(Y, Z ) = ∞, but Table 2 is clearly stronger evidence of a relationship

than Table 1. The problem is fixed by adding ε to all cells, with large samples, (Cox 1989, p. 33)

and (Agresti 2003, p. 617) for ε = 1
2 (it eliminates the bias by an order of n as demonstrated by

expansion), however OR(Y, Z ) is then sensitive to ε .

Alternatively, the difference in the tables is captured by predictivity: θY = .8 in both tables, but

θZ and θY Z are larger in the second table (.6 and .8) compared to (.8 and 1).
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Table 1 Z = 0 Z = 1

Y = 0 60 20

Y = 1 0 20

Table 2 Z = 0 Z = 1

Y = 0 80 0

Y = 1 0 20

Independent tables range from θY Z =
1
2 to 1. For example, in Table 2, OR(Y, Z ) is 1 and Y and

Z are independent for any d = {0, . . . ,∞}. As d increases, the predictivity (d−1)2

(d+1)2 rises from 1
2 to 1.

Table 2 Z = 0 Z = 1

Y = 0 1 d

Y = 1 d d2

Log-linear probability model implies a linear model of average risk.

Reparameterization clarifies the relationship between predictivity and the odds ratio.

Let probability pY (t) denote the net risk of Y between time 0 and t < 1. Let λY denote the

incidence or instantaneous percent of new cases at time t: λY (t) = lim
h→0

1
h

pY (t)−pY (t+h)
pY (t) = −

d
dt pY (t)
pY (t)

(Breslow 1980, p. 51). The average incidence ΛY (t) =
∫ 1

0 λY (s)ds = −log(pY (t)). Taking t = 1

and suppressing subscripts yields, ΛY = −log(pY ). Thus, a log-linear model that summarizes a

table based on odds ratios is equivalent to a linear model of average (negative) risk.

The empirical relationship is asymptotic: Let Y ∼ Binomial(n, pY ). Define empirical estimates

p̂Y =
Y
n and Λ̂ =

∑n
i=n−Y

1
i . Each term in the sum Λ̂Y is the empirical incidence at each positive

event—the number of positive units at the event divided by the number at risk—and the sum

converges to the integral in ΛY .

That the sum convergences at rate n−1 follows from the bound
∑c

i=1
1
i ≤

1
c+1 + log(c)+γ, where

γ is the Euler-Mascheroni constant and

158



Pr
(
|

Y∑
i=1

1
i
− log(Y ) − γ | ≥

ε

n
)
≤

n
ε

E��
Y∑

i=1

1
i
− log(Y ) − γ��

≤
n
ε

E
( 1
c + 1

)
=

n
ε

1 − (1 − p)n+1

(n + 1)p

→
n→∞

1
pε

Λ̂Y =

n∑
n−Y

1
i
=

n∑
1

1
i
−

Y∑
1

1
i
= log(n) − log(Y ) + Op(n−1) = − log(p̂Y ) + Op(n−1)

Since βY Z =
1
4 log OR(Y, Z ) = 1

4 log ad
bc =

1
4 (Λa + Λd − Λb − Λc), coefficient βY Z measures

whether the average incidence is different if Y = Z or Y , Z . Thus, if subjects are divided into

two groups, assessing the predictivity of the incidence is identical to assessing the odds of a case.

However, it is easy to imagine events with large incidences and low prevalence—suggesting the

log-linear model is not a replacement for the linear model for prediction.

Conversely, the p(t) could be interpreted as the hazard rate of some underlying life time: p(t) =

f (t)
S(t) . The same argument shows the linear model of the average hazard is itself implied by a log-

linear survival model: pY (t) = −
d
dt SY (t)
SY (t) ⇒ log(SY (t)) = −

∫ t
0 pY (s)ds := −PY (t). Suppressing

subscripts yields PY = − log(SY ). If the Kaplan-Meier estimate is ŜY =
∏Y

i=1
n−i

n−i+1 , then P̂Y =

− log
(∏Y

i=1
n−i

n−i+1
)
=

∑Y
i=1

( ∑n−i+1
j=1

1
j −

∑n−i
j=1

1
j
)
+ Op(n−1) =

∑n
i=n−Y

1
i + Op(n−1)

6.4.4 Connection between predictivity and co-predictivity.

This and the following subsections investigate the relationship between predictivity and other

measures of uncertainty/association. In general, marginal measures of association are 1-1 functions

of each other, whereas joint measures (interactions) are not. Thus, choosing a marginal measure

and dropping the interaction term forgoes specific information—unless that term was zero. How
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much information is forgone depends on how tight the bound is between measures. Similar bounds

exist in information theory (e.g. Fano’s Inequality).

Predictivity is a sufficient, but not necessary condition of dependence. In comparison, (non-

zero) correlation and (non-unitary) log-odds are necessary and sufficient conditions for depen-

dence.

Invariance to permutation:

Referring to θY and θZ as the predictivity and θY Z as the co-predictivity is somewhat arbitrary.

Permuting elements below produces a table (left) with margins Z and Y Z and diagonal Y , and a

table (right) with margins Y and Y Z and diagonal Z . Therefore, any formula relating θY Z with θY

and θZ could be rewritten to relate θY with θZ and θY Z .

Z = 0 Z = 1

YZ = 0 c b

YZ = 1 a d

YZ = 0 YZ = 1

Y = 0 b a

Y = 1 c d

Any two measures of predictivity, θY , θZ , and θY Z are unrelated:

Individually, 1
2 ≤ θY, θZ, θY Z ≤ 1, and knowing any one measure does not narrow down the

range of the other two. For example, if a = b = 1
2, c = d = 0, then θY = 1 and θZ = θY Z =

1
2 . If

a = 1, b = c = d = 0, then θY = θZ = θY Z = 1. However, not all combinations of θY , θZ , θY Z are

possible; no contingency table can yield, for example, θY =
1
2 , θZ = θY Z = 1. (See next point.)

All three measures of predictivity are related:

For any 1-1 assignment of θY, θZ, θY Z to X1, X2, X3,

X2 + X3 ≤ 1 + X1
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For example, θY Z ≤ θY + θZ ≤ 1 + θY Z . This follows from the definitions of θY , θZ , θY Z :

θY + θZ = (a + b) ∨ (c + d) + (a + c) ∨ (b + d)

= (2a + b + c) ∨ (a + 2c + d) ∨ (a + 2b + d) ∨ (b + c + 2d)

= (a + 1 − d) ∨ (c + 1 − b) ∨ (b + 1 − c) ∨ (d + 1 − a)

≤ (a + 1) ∨ (c + 1) ∨ (b + 1) ∨ (d + 1)

= 1 + a ∨ b ∨ c ∨ d

≤ 1 + (a + d) ∨ (b + c)

= 1 + θY Z

As mentioned in Section 6.4.1, an identical argument establishes the other relationships, such

as θY ≤ θY Z + θZ ≤ 1 + θY .

Two consequences follow immediately. The first is that, since the arithmetic mean is an upper

bound to the geometric and harmonic means, we also have

1
2
+

1
2

X1 ≥
X2 + X3

2
≥

√
X2X3 ≥

2
X−1

2 + X−1
3

≥
1
2
≥

1
2

X1

The averages reach the upper bound when X2 = X3. For example, if θY Z =
1
2 , then the average

marginal predictivity of Y and Z cannot exceed 3
4 , with equality if θY = θZ =

3
4 . Conversely, if

θY = 1 and θZ =
1
2 , then θY Z =

1
2 , which was observed at the end of Section 6.4.2.

The second consequence is that the estimands, 2×average(θY, θZ )−θY Z and 1−(2×average(θY, θZ )−

θY Z ) = 1+θY Z−2×average(θY, θZ ), are measures of association. They are between 0 and 1 for any

average, and indicate the percent of the marginal predictivity of Y and Z not captured (captured)

by the co-predictivity.
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6.4.5 Connection between predictivity and deviation.

The standard deviation is a deterministic function of the predictivity.

SD(Y ) =
√
θY (1 − θY )

From Section 6.4.1, Identity 1.2, θY (1 − θY ) = (pY ∨ qY )(pY ∧ qY ) = pY qY = Var(Y ).

An immediate consequence is that

θY = 1 −
Var(Y )
θY

≥ 1 − 2Var(Y )

Quadratic formula yields

θY =
1
2
+

√
1
4
− SD(Y )2

This also follows from Section 6.4.1, Identity 1.1,

(pY + qY )2 = 1 ⇐⇒ p2
Y + q2

Y − 2pY qY = 1 − 4pY qY ⇐⇒ |pY − qY | =
√

1 − 4Var(Y )

A second immediate consequence is that, dropping αY from the linear probability model and

calculating µ̂i j = α + αZ ( j) ++αY Z (i) produces residual ±αY = ±
1
4 (pY − qY ). The resulting mean

squared error is MSE−αY :=
∑

i j µi j ( µ̂i j−µi j )2 = 1
16 (pY−qY )2 ∑

i j µi j =
1
4 (θY−

1
2 )2 = 1

16−
1
4Var(Y ).

As with the mean absolute error from Section 1.1b, if the predictivity of Y is θY =
1
2 , then there is

no error by excluding the term αY Z . While MAE is linear in θY , MSE is linear in Var(Y ).

Finally, by the Cauchy-Schwarz inequality, Cov(Y, Z )2 ≤ Var(Z )Var(Y ) ≤ Var(Y ) implies

that θY ≤
1
2 +

√
1
4 − Cov(Y, Z )2. For example, if Y ≈ Z and Cov(Y, Z ) ≈ Var(Y ) = .25, then the

predictivity of either θY or θZ is 1
2 −

√
1
4 −

1
16 =

2+
√

3
4 ≈ .93.

The co-predictivity is greater than twice the standard codeviation:

θY Z ≥ 2
√
|Cov(Y, Z ) |

162



First note that Cov(Y, Z ) = ad − bc since

Cov(Y, Z ) = E(Y, Z ) − E(Y )E(Z )

= d − (c + d)(b + d)

= d − (d2 + bd + cd + bc)

= (1 − b − c − d)d − bc

= ad − bc

The inequality is established by considering the four cases where either of a + d ≥ b + c or

ad ≥ bc is true or false. If a + d ≥ b + c and ad ≥ bc, then

θ2
Y Z = (a + d)2 = 4ad + (a − d)2 ≥ 4|ad − bc| = 4|Cov(Y, Z ) |

If a + d ≥ b + c and ad < bc, then θY Z ≥
1
2 and b + c ≤ 1

2 together imply bc ≤ 1
16 and

θ2
Y Z ≥

1
4
≥ 4bc ≥ 4bc − 4ad = 4|ad − bc| = 4|Cov(Y, Z ) |

The argument establishing the other two cases is identical, except with the role of a + d and

b + c reversed.

The relationship between θY Z and
√
|Cov(Y, Z ) | is not deterministic. Equality holds iff a =

d = 1
2, b = c = 0 or a = d = 0, b = c = 1

2 . Since, for a 2x2 table, Cov(Y, Z ) = 0 ⇐⇒ Y ⊥⊥ Z ,

an immediate consequence is that dependence is a sufficient (but not necessary) condition for

predictivity.
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6.4.6 Connection between the odds and deviation.

The standard deviation is a deterministic function of the odds:

SD(Y ) =
√

O(Y )
O(Y )+1

This follows directly from the definition of the odds
√

O(Y )
O(Y )+1 =

√
pY
qY

pY
qY
+1
=

√
pY
qY

qY =
√

pY qY =

SD(Y ).

The odds can be "normalized" to produce a measure of "certainty", γY =
O(Y )−1
O(Y )+1 , where γY

takes the value −1 iff pY = 0, the value 0 iff pY = .5, and the value 1 iff pY = 1. The same

normalization of the odds ratio produces a measure of association. Recall that

γY =
O(Y ) − 1
O(Y ) + 1

=

pY
qY
− 1

pY
qY
+ 1
=

1
qY

(pY − qY )
1

qY
(pY + qY )

= pY − qY

It follows that

1 − γ2
Y = pY + qY − γ

2
Y

= pY + qy − (pY − qY )2

= py + qy + p2
y + q2

Y + 2pyqy

= pY (1 − pY ) + qY (1 − qY ) + 2pY qY

= 4pY qY

= 4SD(Y )2

and therefore |γY | =
√

1 − 4SD(Y )2

Combining this result with Section 6.4.6

|γY | =

√
1 − 4SD(Y )2 ≤ 1 − 2Var(Y ) ≤ θY
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with equality iff the variance is zero.

The squared normalized odds ratio is greater than twice the standard codeviation:

γ2
Y Z ≥ 2

√
|Cov(Y, Z ) |

Similar to Section , and assuming γY Z ≥ 0,

γY Z =
OR(Y, Z ) − 1
OR(Y, Z ) + 1

=

ad
bc − 1
ad
bc + 1

=
ad − bc
ad + bc

≥ 4(ad − bc) = 4Cov(Y, Z )

The inequality is reversed if γY Z < 0. A tighter bound is found by using the following mono-

tonic transformation of γY Z :

1 −
√

1 − γ2
Y Z

γY Z
=

√
OR(Y, Z ) − 1
√

OR(Y, Z ) + 1
=

√
ad
bc − 1√
ad
bc + 1

=

√
ad −

√
bc

√
ad +

√
bc
≥ 4Cov(Y, Z )

where the inequality follows from

1
2
≥
√

ad +
√

bc

⇒ 1 ≥ 4(
√

ad +
√

bc)2

⇒

√
ad −

√
bc

√
ad +

√
bc
≥ 4(
√

ad +
√

bc)(
√

ad −
√

bc) = 4(ad − bc)

Solving for γY Z yields |γY Z | ≥
2(4Cov(Y, Z ))

1 + (4Cov(Y, Z ))2 =
Cov(Y, Z )

1
8 + 2Cov(Y, Z )2

Covariance is zero iff the odds ratio is one. For a 2x2 table, both conditions are equivalent to

independence:

This follows directly from Section 6.4.6, since OR(Y, Z ) = ad
bc = 1 iff Cov(Y, Z ) = ad−bc = 0.

Independence is defined as d = (b+d)(c+d), which is true iff Cov(Y, Z ) = d− (b+d)(c+d) = 0.
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In contrast, predictivity is unrelated to independence.

6.4.7 Connection between predictivity and odds.

The predictivity is a deterministic function of the odds:

Combining the results from 2.1 and 3.1 yields

θY =
1
2
+

√
1
4
−

O(Y )
(O(Y ) + 1)2

Furthermore, the same sections imply θY =
1
2 +

√
1
4 − SD(Y )2 = 1

2 +

√
1
4 −

1
4 (1 − γ2

Y ) = 1
2 +√

γ2
Y

4 =
1
2 +

|γY |
2 .

This also follows immediately from identity I.1 θY =
1
2 +

1
2 |pY − qY |.

6.4.8 Connection between predictivity and regression slope.

The slope of the linear probability model is the difference in conditional probabilities:

β :=
Cov(Y, Z )

Var(Y )
= Pr(Z = 1|Y = 1) − Pr(Z = 1|Y = 0)

Proof:
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β =
Pr(Z = 1,Y = 1) − Pr(Z = 1)Pr(Y = 1)

Var(Y )

=
Pr(Z = 1|Y = 1)Pr(Y = 1) − Pr(Z = 1)Pr(Y = 1)

Pr(Y = 1)Pr(Y = 0)

=
Pr(Z = 1|Y = 1) − [Pr(Z = 1)]

Pr(Y = 0)

=
Pr(Z = 1|Y = 1) − [Pr(Z = 1|Y = 1)Pr(Y = 1) + Pr(Z = 1|Y = 0)Pr(Y = 0)]

Pr(Y = 0)

=
Pr(Z = 1|Y = 1)[1 − Pr(Y = 1)] + Pr(Z = 1|Y = 0)Pr(Y = 0)]

Pr(Y = 0)

=
Pr(Z = 1|Y = 1)[Pr(Y = 0)] + Pr(Z = 1|Y = 0)Pr(Y = 0)]

Pr(Y = 0)

= Pr(Z = 1|Y = 1) − Pr(Z = 1|Y = 0)

The slope of the linear probability model bounds the difference in conditional predictivity:

| β | :=
�����
Cov(Y, Z )

Var(Y )

�����
≥ |θZ |Y=1 − θZ |Y=0 |

where

θZ |Y=1 := Pr(Z=1|Y=1) ∨ Pr(Z=0|Y=1) =
1
2
+

1
2
|Pr(Z=1|Y=1) − Pr(Z=0|Y=1)|

and

θZ |Y=0 := Pr(Z=1|Y=0) ∨ Pr(Z=0|Y=0) =
1
2
+

1
2
|Pr(Z=1|Y=0) − Pr(Z=0|Y=0)|
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Proof (reverse triangle inequality):

| |θZ |Y=1 | − |θZ |Y=0 | | ≤ |θZ |Y=1 − θZ |Y=0 |

=
1
2
| |Pr(Z=1|Y=1) − Pr(Z=0|Y=1)| − |Pr(Z=1|Y=0) − Pr(Z=0|Y=0)| |

≤
1
2
|Pr(Z=1|Y=1) − Pr(Z=0|Y=1) − Pr(Z=1|Y=0) + Pr(Z=0|Y=0)|

=
1
2
|Pr(Z=1|Y=1) − (1 − Pr(Z=1|Y=1)) − Pr(Z=1|Y=0) + (1 − Pr(Z=1|Y=0)) |

=
1
2
|2[Pr(Z=1|Y=1) − Pr(Z=1|Y=0)]|

= |Pr(Z=1|Y=1) − Pr(Z=1|Y=0)|

= | β |

The slope of the linear probability model bounds the difference in conditional and uncondi-

tional predictivity:

| β | :=
�����
Cov(Y, Z )

Var(Y )

�����
≥ |θZ |Y=1 − θZ |

where

θZ |Y=1 := Pr(Z=1|Y=1) ∨ Pr(Z=0|Y=1) =
1
2
+

1
2
|Pr(Z=1|Y=1) − Pr(Z=0|Y=1)|

and

θZ := Pr(Z=1) ∨ Pr(Z=0) =
1
2
+

1
2
|Pr(Z=1) − Pr(Z=0)|

Cor: The coding Y = 1 is arbitrary; an identical argument establishes that β ≥ |θθZ |Y=0−θZ .
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Proof of the upper bound θZ ≤ | β | + θZ |Y=1 (triangle inequality):

2θZ − 1 = |Pr(Z = 1) − Pr(Z = 0) |

= |Pr(Z = 1,Y = 1) + Pr(Z = 1,Y = 0) − Pr(Z = 0,Y = 1) − Pr(Z = 0,Y = 0) |

≤ |Pr(Z = 1,Y = 1) − Pr(Z = 0,Y = 1) | + |Pr(Z = 1,Y = 0) − Pr(Z = 0,Y = 0) |

= |Pr(Z = 1|Y = 1) − Pr(Z = 0|Y = 1) |Pr(Y = 1) + |Pr(Z = 1|Y = 0) − Pr(Z = 0|Y = 0) |Pr(Y = 0)

= (2θZ |Y=1 − 1)Pr(Y = 1) + (2θZ |Y=0 − 1)Pr(Y = 0)

= 2θZ |Y=1Pr(Y = 1) + 2θZ |Y=0Pr(Y = 0) − 1

⇒ θZ ≤ θZ |Y=1Pr(Y = 1) + θZ |Y=0Pr(Y = 0)

= θZ |Y=1(1 − Pr(Y = 0)) + θZ |Y=0Pr(Y = 0)

= −(θZ |Y=1 − θZ |Y=0)Pr(Y = 0) + θZ |Y=1

≤ | β |Pr(Y = 0) + θZ |Y=1

≤ | β | + θZ |Y=1

Proof of the lower bound θZ ≥ θZ |Y=1 − | β | (reverse triangle inequality):

First note that

Pr(Z = 1) = Pr(Z = 1|Y = 1)Pr(Y = 1) + [(Pr(Z = 1|Y = 0)]Pr(Y = 0)

= Pr(Z = 1|Y = 1)Pr(Y = 1) + [Pr(Z = 1|Y = 1) − β]Pr(Y = 0)

= Pr(Z = 1|Y = 1) − βPr(Y = 0)

and
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Pr(Z = 0) = Pr(Z = 0|Y = 1)Pr(Y = 1) + [(Pr(Z = 0|Y = 0)]Pr(Y = 0)

= Pr(Z = 0|Y = 1)Pr(Y = 1) + [Pr(Z = 0|Y = 1) + β]Pr(Y = 0)

= Pr(Z = 0|Y = 1) + βPr(Y = 0)

imply Pr(Z = 1) − Pr(Z = 0) = Pr(Z = 1|Y = 1) − Pr(Z = 0|Y = 1) − 2βPr(Y = 0) so that

2θZ − 1 = |Pr(Z = 1) − Pr(Z = 0) |

= |Pr(Z = 1|Y = 1) − Pr(Z = 0|Y = 1) − 2βPr(Y = 0) |

≥ |Pr(Z = 1|Y = 1) − Pr(Z = 0|Y = 1) | − |2βPr(Y = 0) |

= 2θZ |Y=1 − 1 − 2| β |Pr(Y = 0)

⇒ θZ ≥ θZ |Y=1 − | β |Pr(Y = 0)

≥ θZ |Y=1 − | β |

The average conditional predictivity exceeds the unconditional predictivity:

EθZ |Y = θZ |Y=1Pr(Y = 1) + θZ |Y=0Pr(Y = 0) ≥ θZ

Proof (triangle inequality)
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2θZ − 1 = |Pr(Z = 1) − Pr(Z = 0) |

= |Pr(Z = 1,Y = 1) + Pr(Z = 1,Y = 0) − Pr(Z = 0,Y = 1) − Pr(Z = 0,Y = 0) |

≥ |Pr(Z = 1,Y = 1) − Pr(Z = 0,Y = 1) | + |Pr(Z = 1,Y = 0) − Pr(Z = 0,Y = 0) |

= |Pr(Z = 1|Y = 1) − Pr(Z = 0|Y = 1) |Pr(Y = 1) + |Pr(Z = 1,Y = 0) − Pr(Z = 0,Y = 0) |Pr(Y = 0)

= (2θZ |Y=1 − 1)Pr(Y = 1) + (2θZ |Y=0 − 1)Pr(Y = 0)

= 2θZ |Y=1Pr(Y = 1) + 2θZ |Y=0Pr(Y = 0) − 1

⇒ θZ ≤ θZ |Y=1Pr(Y = 1) + θZ |Y=0Pr(Y = 0)

= EθZ |Y

Example 1:

Z = 0 Z = 1 Pr(Y)

Y = 0 10d d 11d

Y = 1 d 1 d+1

Pr(Z) 11d d + 1 12d + 1

Pr(Z = 1|Y = 1) =
1

d + 1
Pr(Z = 0|Y = 1) =

d
d + 1

Pr(Z = 1|Y = 0) =
1

11
Pr(Z = 0|Y = 0) =

10
11

Pr(Z = 1) =
d + 1

12d + 1
Pr(Z = 0) =

11d
12d + 1
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α = Pr(Z = 1|Y = 1) − Pr(Z = 1|Y = 0) =
1

d + 1
−

1
11
→

d→∞
−

1
11
≈ −.09

β = log
(

Pr(Z = 1|Y = 1)
Pr(Z = 1|Y = 0)

)
= log

(
11

d + 1

)
→

d→∞
−∞

γ = log
(

Pr(Z = 1|Y = 1)Pr(Z = 0|Y = 0)
Pr(Z = 1|Y = 0)Pr(Z = 0|Y = 1)

)
= log

(
10d
d2

)
→

d→∞
−∞

θZ =
1
2
+

1
2
|Pr(Z = 1) − Pr(Z = 0) | =

1
2
+

1
2

�����
d + 1 − 11d

12d + 1

�����
→

d→∞

11
12
≈ .92

θZ |Y=1 =
1
2
+

1
2
|Pr(Z = 1|Y = 1) − Pr(Z = 0|Y = 1) | =

1
2
+

1
2

�����
1 − d
d + 1

�����
→

d→∞
1

θZ |Y=0 =
1
2
+

1
2
|Pr(Z = 1|Y = 0) − Pr(Z = 0|Y = 0) | =

1
2
+

1
2

�����
1 − 10

11

�����
=

10
11
≈ .91

E(θZ |Y ) = θZ |Y=1Pr(Y = 1) + θZ |Y=0Pr(Y = 0) →
d→∞

1 ×
1

12
+

10
11
×

11
12
=

11
12

The influence score (divided by n) is the sum of squared covariances:

1
n

I :=
1
n

∑
j n2

j (Ȳj − Ȳ )2

nσ2
Y

=
∑

j

Cov(X j,Y )2

σ2
Y

where n j is the number of the n observations falling in cell j and Pr(X j = 1) is the probability

an observation falls in cell j.
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Proof:

1
n

I =

∑
j n2

j (Ȳj − Ȳ )2

n2σ2
Y

=
∑

j

(n j

n

)2
(
Ȳj − Ȳ
σY

)2

=
∑

j

(n j

n
Y ′j

)2

=
∑

j

(
Pr(X j = 1)E(Y ′|X j = 1)

)2

=
∑

j

(
1Pr(X j = 1)E(Y ′|X j = 1) + 0Pr(X j = 0)E(Y ′|X j = 0)

)2

=
∑

j

E(X jY ′)2

=
∑

j

Cov(X j,Y ′)2

=
∑

j

Cov(X j,Y )2

σ2
Y

where E(Y ′|X j = 1) := 1
n j

∑n j

i=1
Yi j−Ȳ
σY
=

1
n j

∑n j
i=1 Yi j− 1

n j

∑n j
i=1 Ȳ

σY
=

Ȳj−Ȳ
σY
= Y ′j and Pr(X j = 1) := n j

n

The influence score (divided by n) summarizes the between variation of the multivariate

LPM:

Let Pr(X j |Y = y) = E(X j |Y = y) = α j + β j y. Then

1
n

I :=
1
n

∑
j n2

j (Ȳj − Ȳ )2

nσ2
Y

=
∑

j

β̂2
j

where β̂ j =
Cov(X j,Y )

σ2
Y
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Proof: By the iterated laws of variance and covariance,

Var(E(X j |Y )) = Var(α j + β jY )

= β2
jσ

2
Y

≈ β̂2
jσ

2
Y

=
Cov(X j,Y )2

σ2
Y

and

Cov(E(X j1 |Y ),E(X j2 |Y )) = Cov(α j1 + β j1Y, α j2 + β j2Y )

= β1 j1 β1 j2Cov(Y,Y )

= β1 j1 β1 j2σ
2
Y

≈ β̂1 j1 β̂1 j2σ
2
Y

=
Cov(X j1,Y )Cov(X j2,Y )

σ2
Y

6.4.9 Derivations of the Influence Score

The influence score summarizes the explained variation.

The goal is to assess how well a partition of n objects, i = {1, . . . , n}, represents a gold standard

variable Yi. For example, Yi could be the height of the ith subject. In this section, we suppress the

index i, writing Y for the measurement of an randomly chosen subject. We assume Y has been

standardized so that E(Y ) = 0 and Var(Y ) = 1.

Let the partition be represented by a J-vector of dichotomous variables X = [X1, . . . , XJ]. For

example, these variables could represent demographic characteristics like sex, race, and ethnicity.
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However, we assume X is random, X ∼ Multinomial(p = [α1, . . . , αJ]), that is, the partition has

been randomly selected from a set of possible summarizing partitions, while Y , being the gold

standard, is measured without error. We use the explained variation, E(Var(X |Y )), as the measure

of assessment. Since the dependent variable is a vector, the use of this measure in this way is often

called an Multivariate Analysis of Variance (MANOVA).

We assume a conditional linear probability model: Pr(X j = 1|Y = y) = β0 j + β1 j y. However,

β0 j = α j by the iterated law of expectation,

α j := Pr(X j = 1) = E(Pr(X j = 1|Y )) = E(β0 j + β jY ) = β0 j

so we simply write Pr(X j = 1|Y = y) = α j + β j y.

Since X is multinomial, we have the total variation

E(X j ) = α j

Var(X j ) = α j (1 − α j )

Cov(X j1, X j2 ) = −α j1α j2

and by the iterated laws of variance and covariance, the between variation,

Var(E(X j |Y )) = Var(α j + β jY ) = β2
j

Cov(E(X j1 |Y ),E(X j2 |Y )) = Cov(α j1 + β j1Y, α j2 + β j2Y ) = β1 j1 β1 j2

and within variation
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E(Var(X j |Y )) = E[(α j + β jY )(1 − α j − β jY )] = α j (1 − α j ) − β2
j

E(Cov(X j1, X j2 |Y )) = E[−(α j1 + β j1Y )(α j2 + β j2Y )] = −α j1α j2 − β j1 β j2

In matrix form, we write ΣT = diag(α) − ααT, ΣB = β βT , and ΣW = ΣT − ΣB = diag(α) −

ααT − β βT , where α and β are column vectors [α1, . . . , αJ] and [β1, . . . , βJ]. T, B, and W stand

for the total, between and within.

Typically, a one-dimensional summary of ΣB (or ΣB relative to ΣT ) is used to assess fit. For

example, Wilk’s lambda Λ = ΣBΣ
−1
W = ΣB (ΣT − ΣB)−1. Since our goal is prediction, we want to

see whether ΣB is large (see Miller (1997) and Breiman (1984). We use tr(ΣB) =
∑J

j=1 β
2
j as our

summary—this ignores the correlation structure in the data.

We estimate β j using the least squares estimator: β̂ j =
∑

i (yi−ȳ)(xi j−x̄ j )∑
i (yi−ȳ)2 =

∑
i yi xi j = n j ȳ j ,

where n j is the number of observations in partition cell j and ȳ j is the average of y for the observa-

tions in partition j. The plug-in estimator of tr(ΣB) is thus tr(Σ̂B) =
∑J

j=1(
∑

i yi xi j )2 =
∑J

j=1 n2
j ȳ

2
j .

Consistency of the estimator follows from the consistency of least squares and the continuous

mapping theorem.

For the percent of the variation explained, we can estimate tr(Σ̂BΣ̂
−1
T ). However, for Σ̂T to be

invertible, the last row/column of ΣB and ΣT must be removed and the constraints
∑J

j=1 α̂ j = 1 and∑J
j=1 β̂ j = 0 enforced. The first constraint follows from the fact that the α̂ j are probabilities. The

second from the fact that
∑

j β̂ j =
∑

j n Cov(Y, X j ) = n Cov(Y,
∑

j X j ) = n Cov(Y, 1) = 0.

By the Sherman-Morrison Identity, Σ̂−1
T = diag([ 1

α̂1
, . . . , 1

α̂J−1
]) + 1

α̂J
1J−1×J−1, where 1J−1×J−1

is a J − 1 × J − 1 matrix of 1s. Therefore,

tr(Σ̂BΣ̂
−1
T ) = β̂ β̂T (diag([

1
α̂1
, . . . ,

1
α̂J−1

]) +
1
α̂J

1J−1×J−1) =
J∑

j=1

β̂2
j

α̂ j
= n

J∑
j=1

n j ȳ
2
j
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Adjustment for other LPM.

The least squares algorithm can also be applied in a similar fashion to the joint LPM or condi-

tional LPM Y |X , although the partition and resulting influence score would need to be adjusted as

we briefly outline with the joint LPM here.

We would first augment the partitionΠ′ ⊃ Π to include Y and regress the proportion of observa-

tions in each cell, W = n j

n , on some or all of the partition indicators (no intercept), x = [x1, . . . , x J ′]

where J′ > J. Under the linear probability model,

Var(E(W |X )) = Var(X β)

=
∑

i j

βi β jCov(Xi, X j )

and β can be estimated via least squares,

β̂ = (XT X )−1(XTW ) = diag([
1

m1
, . . . ,

1
mJ ′

])[m1W̄1, . . . ,mJ ′W̄J ′] = [W̄1, . . . , W̄J ′]

If the model is saturated, the m j = 1. Otherwise, the least squares solution is the average of all

partitions with the same coefficients.

The influence score as the unweighted residual sum of squares.

Suppose Yi j ∼ Bernoulli(θ j ), i ∈ {1, . . . , n j }, j ∈ {1, . . . , J}, with θ j unknown. The question is

whether θ j can be approximated by θ?j without appreciable loss. However, unless θ?j is close to

zero or one, observations must be combined to assess the goodness of fit.

Typically, the goodness of fit of θ?j is assessed by combining the standardized residuals: Ri j =
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Yi j−θ?j√
θ?j (1−θ?j )

. If θ?j = θ, E(Yi j ) = 0 and Var(Yi j ) = 1, and the combined can be evaluated using the

central limit theorem.

If residuals with the same fit are grouped together, inference can be done on the individual fit θ j ;

this is possible when the observations have similar predictors. The grouped standardized residuals

are, R+ j =
∑n j

i=1 Ri j =
n j (Ȳj−θ̂ j )√
θ̂ j (1−θ̂ j )

. When θ̂ = θ, Ri j ∼ Normal(0, 1) and R+ j ∼ Normal(0, n j ). The

standardized residuals can then be combined in any number of ways:

WLSRi j = OLSRi j =
∑

i j

R2
i j =

∑
i j

(Yi j − θ̂ j )2

θ̂ j (1 − θ̂ j )

WLSR+ j =
∑

j

R2
. j

n j
=

∑
i

n j (X̄ j − θ̂ j )2

θ̂ j (1 − θ̂ j )
=

∑
i j

(Ȳj − θ̂ j )2

θ̂ j (1 − θ̂ j )

OLSR+ j =
∑

j

R2
. j =

∑
i

n2
j (Ȳj − θ̂ j )2

θ̂ j (1 − θ̂ j )
=

∑
i j

n j (Ȳj − θ̂ j )2

θ̂ j (1 − θ̂ j )

WLSR+ j is equivalent to the Wald statistic and Neyman chi square approaches for categorical

data (Bishop 2007, p. 352-354)

OLSR+ j provides a fair comparison of nested partitions:

Let Yi j be cross classified data: Yi j ∼ Fi j where i ∈ {1, . . . , n j }, j ∈ {1, . . . , J}, E(Yi j ) = µi j and

Var(Yi j ) = τi j . Suppose Yi j is to be approximated by θ j where Var(Yi j |θ j ) = σ2
θ j

. The challenge is

to assess the goodness of fit of θ = {θ1, . . . , θJ }.

Without knowledge of F, it is common to standardize the observations and appeal to the central

limit theorem: Define standardized residual Ri j =
Yi j−θ j
σθ j

and grouped residual R+ j =
∑n j

i=1 Ri j =

n j (Ȳj−θ j )
σθ j

. If µi j = θ j , E(Ri j ) = 0, Var(Ri j ) = 1, and R+ j is approximately normal with mean

zero and standard deviation √n j . A small sum of squared residuals,
∑J

j=1 R2
+ j , is consistent with fit

µi j = θ j , and a large sum of squared residuals is inconsistent.
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If the residuals are uncorrelated, the expected sum of squared residuals is not reduced with a

finer partition. Suppose the jth group were subdivided into K j subgroups of sizes {n1, . . . , nk j, . . . , nK j }

so that
∑K

k j=1 jnk j = n j . Let Rik j denoting the ith observation in the k j th group.

The sum of residuals is preserved: R+ j =
∑n j

i=1 Ri j =
∑K

k j=1 j
∑nk j

i=1 Rik j =
∑K j

k j=1 R+k j . It follows

that

R2
+ j = (

K j∑
k j=1

R+k j )
2 =

K j∑
k j=1

R2
+k j
+

K j∑
k j

K j∑
k ′j,k j

R+k j R+k ′j ⇒ R2
+ j −

K j∑
k j=1

R2
+k j
=

K j∑
k j

K j∑
k ′j,k j

R+k j R+k ′j

where
∑K j

k j

∑K j

k ′j,k j
R+k j R+k ′j =

∑K j

k j
R+k j

∑K
k ′j,k j

j R+k ′j =
∑K j

k j
R+k j R+(−k j )

If the residuals are uncorrelated,

E(R2
+ j −

K j∑
k j=1

R2
+k j

) = E(
K j∑
k j

K j∑
k ′j,k j

R+k j R+k ′j ) =
K j∑
k j

K j∑
k ′j,k j

E(R+k j )E(R+k ′j ) = 0
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