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Abstract
Some Statistical Models for Prediction

Jonathan Auerbach

This dissertation examines the use of statistical models for prediction. Examples are drawn
from public policy and chosen because they represent pressing problems facing U.S. governments
at the local, state, and federal level. The first five chapters provide examples where the
perfunctory use of linear models, the prediction tool of choice in government, failed to produce
reasonable predictions. Methodological flaws are identified, and more accurate models are
proposed that draw on advances in statistics, data science, and machine learning. Chapter 1
examines skyscraper construction, where the normality assumption is violated and extreme value
analysis i1s more appropriate. Chapters 2 and 3 examine presidential approval and voting (a
leading measure of civic participation), where the non-collinearity assumption is violated and an
index model is more appropriate. Chapter 4 examines changes in temperature sensitivity due to
global warming, where the linearity assumption is violated and a first-hitting-time model is more
appropriate. Chapter 5 examines the crime rate, where the independence assumption is violated
and a block model is more appropriate. The last chapter provides an example where simple linear
regression was overlooked as providing a sensible solution. Chapter 6 examines traffic fatalities,
where the linear assumption provides a better predictor than the more popular non-linear
probability model, logistic regression. A theoretical connection is established between the linear

probability model, the influence score, and the predictivity.
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Chapter 1: Forecasting the Urban Skyline with Extreme Value Theory

with Phyllis Wan

The world’s urban population is expected to grow fifty percent by the year 2050 and exceed six
billion. The major challenges confronting cities, such as sustainability, safety, and equality, will
depend on the infrastructure developed to accommodate the increase. Urban planners have long
debated the consequences of vertical expansion—the concentration of residents by constructing tall
buildings—over horizontal expansion—the dispersal of residents by extending urban boundaries.
Yet relatively little work has predicted the vertical expansion of cities and quantified the likelihood
and therefore urgency of these consequences.

We regard tall buildings as random exceedances over a threshold and use extreme value theory
to forecast the skyscrapers that will dominate the urban skyline in 2050 if present trends continue.
We predict forty-one thousand skyscrapers will surpass 150 meters and 40 floors, an increase of
eight percent a year, far outpacing the expected urban population growth of two percent a year. The
typical tall skyscraper will not be noticeably taller, and the tallest will likely exceed one thousand
meters but not one mile. If a mile-high skyscraper is constructed, it will hold fewer occupants
than many of the mile-highs currently designed. We predict roughly three-quarters the number of
floors of the Mile-High Tower, two-thirds of Next Tokyo’s Sky Mile Tower, and half the floors of
Frank Lloyd Wright’s The Illinois—three prominent plans for a mile-high skyscraper. However,

the relationship between floor and height will vary considerably across cities.

1.1 Introduction

The world is urbanizing at an astonishing rate. Four billion people live in urban areas, up

from two billion in 1985. By 2050, the United Nations predicts the urban population will ex-



ceed six billion. The increase is due to growth in both the world population and the proportion
of the population that resides in urban areas. Roughly half the world’s population is urban, up
from forty-percent in 1985 and projected to rise above two-thirds in 2050 (UN, 2018). The future
preponderance of cities suggests the major challenges confronting civilization will be urban chal-
lenges. Moreover, the particular nature of these challenges will depend on how cities choose to
accommodate urbanization (Rose, 2016, p.15).

Cities change in response to population growth by either increasing density—the population per
land area—or extending boundaries—the horizontal distance between city limits. The prevailing
paradigm among urban planners is to preserve city boundaries and encourage density (Angel et
al., 2011). It argues that density affords certain economies of scale, such as reducing the cost
of infrastructure and social services like roads, water, safety, and health care. Density is also
advocated to promote sustainability by preserving the city periphery for agriculture or wildlife
(Swilling, 2016). Yet density, if not properly accommodated, can lead to overcrowding and impede
quality of life. Nearly one third of urban residents in developing regions live in overcrowded slums
that concentrate poverty (UN, 2015, p.2).

Some urban planners have argued that density requires vertical expansion, through the con-
struction of skyscrapers, to prevent overcrowding and maintain quality of life (Gottmann (1966),
Al-Kodmany (2012), Barr (2017)). This three-dimensional solution to a two-dimensional prob-
lem was stated as early as 1925 by the architect Le Corbusier: “We must decongest the centers of
our cities by increasing their density” (Kashef, 2008). In this spirit, Glaeser (2011) recommends
policies that ease height restrictions and increase financial incentives for skyscraper development.

Other urban planners warn that urbanization is too rapid to be adequately addressed by vertical
expansion (James (2001, p.484), Cohen (2006, p.73), Canepari (2014)). Angel et al. (2011) argue
cities must “make room” for urbanization by moving boundaries and recommend policies that
extend the radius of public services like the transit system.

It stands to reason that cities will utilize multiple strategies to accommodate urbanization. For

example, cities will incentivize some vertical expansion and extend the radius of some public



services. The challenges facing cities in 2050 will depend on which policies are implemented.
Anticipating these challenges requires an answer to questions such as: if present trends continue,
how much vertical growth will the typical city experience by 2050? How much farther will the
typical city boundary extend?

This paper demonstrates that extreme value theory provides a principled basis for forecasting
vertical growth. It regards tall buildings as random exceedances over a threshold and uses the
probabilistic laws governing extreme values to extrapolate the characteristics of the skyscrapers
that will dominate the urban skyline in 2050. Similar arguments have produced successful forecasts
in a wide variety of fields, most notably those concerned with risk management, such as finance
(Gencay and Selcuk (2004), Bao et al. (2006), Chan and Gray (2006), Herrera and Gonzélez
(2014)) and climate (Garreaud, RD. (2004), Ghil (2011), D’ Amico et al. (2015), Thompson et al.
(2017)). However, we know of no work that applies these arguments to forecast how cities will
respond to rapid urbanization.

The findings are arranged into five sections. Section 2 motivates the use of statistical models to
characterize the uncertainty of skyscraper development. The data are described, and a brief review
of the skyscraper literature follows. Section 3 outlines the Poisson regression used to conclude
that forty-one thousand skyscrapers will be completed by 2050. Section 4 outlines the generalized
Pareto distribution (GPD) used to conclude that there is a seventy-three percent chance a skyscraper
will exceed one thousand meters by 2050 and an eleven percent chance it will exceed a mile.
Section 5 outlines the censored asymmetric bivariate logistic distribution used to conclude that a
mile-high skyscraper, if built, will have around 250 floors. The paper concludes with two sections,

highlighting the methodological and policy consequences of these predictions, respectively.

1.2 Modeling the Uncertainties of Skyscraper Development

This paper predicts the prevalence and nature of skyscrapers in the year 2050 if present trends
continue. This section reviews the definition of a skyscraper, motivates the statistical modeling of

tall buildings, and outlines our forecasting strategy.



Strictly speaking, the term skyscraper refers not to height but to the mode of construction. A
skyscraper is defined as any multi-story building supported by a steel or concrete frame instead
of traditional load-bearing walls (Curl and Wilson, 2015, p.710). The tall buildings capable of
sustaining the dense cities of the future will almost certainly be skyscrapers. Over the past century,
building beyond a few floors has required a supporting frame.

In contrast to the precise definition of a skyscraper, the definition of a tall building depends on
context. From a public safety perspective, high-rises—multi-story buildings as short as 23 meters
(75 feet)—are harder to evacuate than low-rises. From an environmental perspective, however,
only a much taller structure (152 meters, 500 feet) would obstruct the migration pattern of birds
(Brown and Caputo, 2007, p. 17). The Council on Tall Buildings and Urban Habitat (CTBUH)
sets international standards for the purpose of research and arbitrating titles, such as the world’s
tallest building. They define buildings exceeding fifty meters as tall, three-hundred meters as
super tall, and six-hundred meters as mega tall. Height is measured from “the level of the lowest,
significant, open-air, pedestrian entrance to the architectural top of the building, including spires,
but not including antennae, signage, flag poles or other functional-technical equipment” (Council
on Tall Buildings and Urban Habitat, 2017).

This analysis retains the CTBUH measure of height but bases its definition of tall on statistical
considerations. It relies on data from The Skyscraper Center, a CTBUH directory of every tall
building worldwide. The directory is “the premier source for accurate, reliable information on tall
buildings around the world” (Council on Tall Buildings and Urban Habitat, 2017). Nevertheless,
it depends on CTBUH members and the public to add entries, resulting in the partial or complete
omission of some smaller buildings. The data appear complete for buildings exceeding 150 meters
and 40 floors, roughly the height of the Great Pyramid of Giza, the United Nations Headquarters,
or the Seagram Building in New York City. We refer to these skyscrapers as tall. The Skyscraper
Center catalogs 3,251 tall skyscrapers in 258 cities as of December 2017.

The height and year each tall skyscraper was completed is displayed in the top-left panel of

Figure 1. It appears from the panel as though a simple statistical relationship might govern the



number of skyscrapers exceeding various heights, ignoring the hiatus between the Great Depres-
sion and the Second World War, which is assumed to be anomalous. If this is the case, forecast-
ing the prevalence and nature of skyscrapers in the year 2050 is simply a matter of extrapolating
that relationship. But it cannot be taken for granted that skyscrapers can be modeled statistically.
These buildings are modern marvels, requiring enormous cooperation across teams of architects,
engineers, financiers, and multiple levels of government. Extrapolation from the data is only mean-
ingful if the determinants underlying skyscraper construction are varied and independent enough
to be characterized statistically. The following is an argument supporting this view.

Skyscrapers appeared in the nineteenth century after technological innovations, such as the
elevator brake and the mass production of steel, made building beyond a few floors economical.
By the turn of the twentieth century, a handful of twenty floor buildings had been completed in
major cities across the United States. Advances in the mid-twentieth century permitted mile-
high buildings (1609.34 meters), and various architects have since proposed designs, such as the
Houston Pinnacle (1 mile, 500 floors), the Ultima Tower (2 miles, 500 floors), and the Sky Mile
Tower (1 mile, 400 floors). Perhaps most famously, the architect Frank Lolyd Wright proposed
The Illinois in 1957, a mile-high building with 528 floors (Council on Tall Buildings and Urban
Habitat, 2017).

But none of these designs have been realized. Despite the technical ability to build tall, mile-
high skyscrapers are considered impractical because they are unlikely to turn a profit. In fact,
ambitious skyscrapers frequently fail for financial reasons (Lepik, 2004, p.21-2). For example, the
Jeddah Tower was originally planned for one mile (330 floors). After the Great Recession, the
height was reduced by more than a third to one thousand meters (167 floors).

Skyscrapers are a commercial response to an economic phenomenon. They arise when land
values produce rents that exceed the enormous cost of construction and maintenance. Aesthetics
are a secondary concern (Clark and Kingston, 1930), (Willis, 1995), (Ascher and Vroman, 2011,
p-12,22). Indeed, it was in the aftermath of the 1871 Chicago fire that the urgent need for new

office space produced the First Chicago School of skyscrapers (Lepik, 2004, p.6). Construction



has since followed the rise of oil-rich Middle Eastern countries in the 1980s, the former Soviet-bloc
countries in the 1990s, and the Pacific Rim countries in the 2000s (Sennott, 2004, p.1217). Barr
and Luo (2017) find that half of the variation in China’s skyscraper construction can be explained
by population and gross city product alone. As the architect Cass Gilbert famously summarized:
“A skyscraper is a machine that makes the land pay.”

The enormous cost of a skyscraper is not only the result of additional construction materials.
Taller buildings require concrete to be pumped at higher pressures (Ascher and Vroman, 2011,
p-83). Nor is the cost entirely in raising the building itself. Taller buildings require more elevators,
which reduces the floor area available for occupancy and thus the revenue potential of the building
(Ascher and Vroman, 2011, p.33). Human comfort is also a factor. Excessive elevator speed
(Ascher and Vroman, 2011, p.103) and building sway (Ascher and Vroman, 2011, p.1) can produce
motion sickness even if safe. Additional considerations include government policy (permits and
zoning, financial incentives, and public infrastructure), cultural values (equity, sustainability, and
security), and environment (foundation quality, prevailing winds, and natural disaster frequency).

In short, a litany of factors must align favorably to produce a skyscraper. One could hypothet-
ically observe every factor for every property and predict the future of skyscraper development.
Yet it is convenient, and perhaps more accurate, to regard unobserved heterogeneity among these
factors as a source of randomness that obeys the laws of probability. Statistical models quantify
the probability a property possesses the factors that will produce a particular skyscraper, where the
parameters of the models are determined from data.

In the following sections, we demonstrate that extreme value theory provides a principled strat-
egy for choosing a statistical model. We adopt the Peaks Over Threshold approach: First, we select
all observations exceeding a threshold. Then, we model the number of exceedances with Poisson
distributions and the sizes of the exceedances with generalized Pareto distributions. The challenge
with this approach is choosing the threshold. If the threshold is set too low, the assumptions under-
lying extreme value theory are not reasonably satisfied, and the model will not be flexible enough

to approximate the data. If the threshold is set too high, there will not be enough data to estimate



the model parameters reliably.

Our forecasts use a different threshold for the Poisson and generalized Pareto distributions.
We choose the lowest thresholds such that each model appears accurate, and we extrapolate the
number or sizes of skyscrapers exceeding the respective threshold until the year 2050, thirty-three
years after the data was collected in 2017. We repeat each forecast on a subset of the data to validate
the results: We use data available only before 1984 to predict skyscraper development until 2017,
thirty-three years later, and compare the predictions with the actual data. In Section 3, we find
the threshold of 150 meters and 40 floors sufficiently high to forecast the number of buildings
exceeding that threshold in 2050. However, it is too low to forecast the heights of those buildings.
In Section 4, we find a threshold of 225 meters or 59 floors sufficient, roughly the size of One
Penn Plaza in New York City. We refer to these buildings as extremely tall since the assumptions
underlying extreme value theory appear to hold at this height. CTBUH catalogs 325 extremely tall
skyscrapers in 81 cities as of December 2017, one tenth the number of tall skyscrapers.

Our approach assumes skyscraper development is independent given the parameters of these
distributions. The assumption is certainly violated for contemporaneously completed skyscrapers
within the same city—the aforementioned factors producing such skyscrapers are linked inextrica-
bly. But a series of recent investigations suggest that these factors are largely independent across
cities and time periods. For example, Barr (2012) finds competition within cities is limited to pe-
riods close in time and space, Barr, Mizrach, and Mundra (2015) find skyscraper height is not a
useful indicator of economic bubbles or turning points, and Barr and Luo (2017) find little evidence
that cities in China compete for the tallest building.

The literature indicates that considerable economic pressure produces the factors that drive
skyscraper development, and the catalyst for this pressure varies idiosyncratically by city and time
period. It is perhaps because of this idiosyncratic variation—and the fact that no city possesses
more than ten percent of all skyscrapers—that the prevalence and nature of skyscrapers so closely
follows the distributions derived under extreme value theory, as demonstrated in the following sec-

tions, despite periods of economic and political turmoil within nearly every city since the Second



‘World War.

1.3 Predicting the Quantity of Skyscrapers Completed by 2050

Skyscraper construction has increased at a remarkably steady rate. The number of tall skyscrapers—
skyscrapers exceeding 150 meters and 40 floors—has risen at the rate of eight percent a year since
1950. If this trend continues, the eight percent annual growth rate of skyscrapers will far outpace
the two percent annual growth rate of urban populations anticipated by the UN (2018). Forty-one
thousand tall skyscrapers will be completed by 2050, 6,800 per billion city residents compared to
the roughly 800 per billion city residents today.

The eight percent rate was determined by fitting the following Poisson regression model. Let
N; be the number of tall skyscrapers completed in year 7, t = 1950, ..., 2017. The N;’s are

assumed to be independent and follow a Poisson distribution with mean

E[N;] = exp(a + Bt).

The Poisson distribution can be justified theoretically by regarding N; as the sum of independent
Bernoulli trials: Suppose D(¢) is the set containing every building in the world completed in
year t. Define D,(¢) to be the subset of all buildings in D(t) exceeding the height threshold u.
The Poisson Limit Theorem states that for sufficiently large u, the probability a building in D(t)
is also in D,(¢) is small, and the number of buildings in D,(¢), N;, is well approximated by a
Poisson distribution. See Coles (2001, p.124) for a more detailed discussion of the Poisson limit
for threshold exceedances.

We use the glm function in the R Core Team (2018) package stats to obtain maximum
likelihood estimates & and 8 and to calculate their standard errors. The plug-in estimate, E[N,] =
exp(& + ft), is plotted against the data in the top-right panel of Figure 1.1. An inner 95 percent
predictive interval for the years 2020 to 2050 is added in the bottom-left panel. A cumulative

thirty-eight thousand skyscrapers is estimated for completion between 2018 and 2050 if present



trends continue (forty-one thousand total, with a standard error of seven thousand), about twelve
times the current number.

To demonstrate the accuracy of the model for predicting 2050, thirty-three years after the data
was collected in 2017, we predict the last thirty-three years using only data that would have been
available before 1984. The bottom-right panel shows that if such predictions had been made in
1984 (dotted blue line), they would align closely with the actual number of skyscrapers built each
year. The log-linear model anticipates 3,082 skyscrapers by the end of 2017 when in fact 2,988
were built between 1950 and 2017, a difference of three percent.

Numerous populations grow at a log-linear rate, E[N;] = exp(a + ft). The relationship arises
when, at any instant, a population increases 100 x S percent of its current size, ”fi—]f = SN—
notwithstanding random fluctuation. For more complicated phenomena, such as skyscraper con-
struction, the relationship provides an accurate yet parsimonious approximation. However, there
is no guarantee the approximation will remain accurate in future years, and one might reasonably
question the sensitivity of the predictions to the log-linear assumption. For example, the years
2015, 2016, and 2017 each saw fewer tall skyscrapers built than the year 2014. Perhaps it would
be more accurate to conclude that skyscraper growth is slowing and will continue to slow until
2050.

The logistic-linear relationship is a more flexible alternative that can capture a slowing growth

rate. Suppose for the moment that the N,’s are independent and follow a Poisson distribution,

except now with mean

Y

Eli] = 1 +exp(—a’ — Bt)’

This relationship arises when, at any instant, a population increases by 100 x (1 — %) percent of

its current size, ‘é—’;’

= B(1 - %)N—notwithstanding random fluctuation. It is reasonable because,
for % ~ 0, a logistic-linear relationship is well approximated by a log-linear relationship, which
was shown to fit the data well in Figure 1.1. Unlike a log-linear relationship, however, as the
population increases, the growth rate of a logistic-linear relationship slows, and the population

reaches its maximum capacity, y. Indeed, the factor (1 — %) encodes the remaining percent of
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the capacity at time ¢. The number of tall skyscrapers might reach a maximum capacity if only a
fixed number of skyscrapers is needed to accommodate demand or some other constraint prevents
additional construction.

We use the opt im function in the R Core Team (2018) package stats to obtain maximum
likelihood estimates @’, 3, and 9. However @’ and ¥ diverge, indicating that the number of tall
skyscrapers increases with no discernible upper limit. The predictions from the limiting model are
identical to the log-linear model.

Even if the data were known to follow a log-linear relationship, residual dependence could
still produce predictions that underestimate uncertainty. We compare our results to a Box-Jenkins
analysis (Box et al. 2015) of the log number of skyscrapers completed each year since 1950.
We use the auto.arima function in the R Core Team (2018) package forecast to select
the best ARIMA model according to the Akaike information criterion (Hyndman et al. (2019),
Hyndman and Khandakar (2008)). Prediction paths are simulated from the selected ARIMA(O,
1, 2) with drift by nonparametric residual bootstrap using the forecast .Arima function. The
forecast is essentially identical to the Poisson regression—only three percent higher. However,
the standard error is 22,000—three times larger. We find this standard error conservative. For
example, it suggests the number of skyscrapers might grow fourteen percent per year over the next
33 years, nearly double the 2007-2017 and 1950-2017 rates. At the other extreme, it suggests that
no additional skyscrapers might built at all. Such scenarios would reflect a considerable departure

from present trends. Nevertheless, we include these results as a reference for the reader.

1.4 Predicting the Height of Skyscrapers Completed by 2050

The tallest skyscraper has doubled in height since 1950. Yet the height increase of the typical
extremely tall skyscraper—one exceeding 225 meters or 59 floors—is not statistically significant.
In fact, the same distribution describes the heights of extremely tall skyscrapers since 1950. We
conclude the tallest skyscraper is not increasing because skyscrapers are becoming taller. It is

increasing because more buildings are being constructed and thus more buildings are eligible to
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Figure 1.1: We predict the quantity of skyscrapers completed by 2050, thirty-three years after
the data was collected at the end of 2017. A Poisson regression model suggests the number of
skyscrapers will grow at a rate of eight percent a year.
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be the tallest. Assuming the same distribution continues to describe the heights of skyscrapers
completed by 2050, the probability a new building will exceed the current tallest—the Burj Khalifa
(828 meters)—is estimated to be nearly 100 percent. The probability a new building will exceed
the Jeddah Tower (1,000 meters)—scheduled to open in 2020—is 73 percent. The probability a
new building will exceed one mile is 11 percent.

These probabilities were determined by approximating the heights of extremely tall skyscrap-
ers with a generalized Pareto distribution (GPD). The GPD approximation can be justified theoret-
ically by regarding tall buildings as random exceedances over a threshold: Suppose X is a random
variable with an unknown distribution function F. Define F, to be the exceedance conditional

distribution—the distribution of X — u given that X exceeds a threshold u, i.e.,
F,(y) =Pr(X —u < y|X > u).

The Pickands-Balkema-de Haan Theorem (Balkema and De Haan (1974), Pickands III (1975))

states that for a broad class of distributions, F,

-1/¢
Fu) ~ H(y) = 1 - (1 +§—y) ,

u

as u tends to F (1) = sup{y : F(y) < 1}, the right end point of F. When ¢ = 0, H(y) is defined
to be its limit, 1 — exp(—y/o,). The support of H(y)isy > Owhené >0and0 <y < —% when
¢ < 0. Thus, for a large enough threshold u, the distribution F,(y) is governed by two parameters:
a scale, o, which depends on u, and a shape, &, which does not depend on u. The shape parameter
is called the tail-index because it determines how fast the tail of the distribution, F, decays.

Now suppose D is the set containing every building in the world, and D, is the subset of all
buildings exceeding the height threshold u. Let X be the height of a building randomly selected

from D,. By setting y = x — u, the Pickands-Balkema-de Haan Theorem justifies, for sufficiently
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large u, approximating the distribution of X by a GPD with parameters (u, o, £),

-l
Pr(XSx|X>u)zH(x—u):1—(1+§();_—u)) .

The threshold, u, is a location parameter. See Coles (2001, p. 74) for a more detailed discussion of
the GPD limit for threshold exceedances.

The threshold u must be set high enough for the GPD approximation to hold. Unlike Section
3, the default threshold of # = 150 meters may be insufficient. Were u sufficiently high such that
X — ulX > u followed a GPD with parameters (o, £), X — u’|X > u’ would follow a GPD with
(o, &) for any u” > u. This suggests a strategy for choosing u: Produce a sequence of candidate
thresholds u; < ... < u;. At each threshold u;, obtain estimates (&, g?ui) and their standard errors
by maximizing the likelihood with dataset D,,. Select a threshold u for which the estimates E
appear consistent for ' > u (Smith, 1985; Davison and Smith, 1990).

The left side of Figure 1.2 shows the maximum likelihood estimates for the shape parameter,
g?ui, when fit to skyscraper heights exceeding a sequence of thresholds, u;, from 150 to 350 meters.
Point estimates are colored red, and thick (thin) lines represent 50 (95) percent confidence intervals.
The point estimates increase with little uncertainty as the threshold increases from 0 at 150 meters
to .18 at 225 meters, after which a & of .18 is consistent with the data. Computational details are
discussed in the Appendix.

The choice of the 225 meter threshold and the .18 shape parameters is compared to a mean
excess plot and a Hill plot on the right side of Figure 1.2. The mean excess plot (top of Figure
1.2) displays the empirical mean excess function, E[X — u|X > u], for different thresholds u
(Bernktander and Segerdahl, 1960; Ghosh and Resnick, 2010). The Hill plot (bottom of Figure
1.2) displays the Hill estimator of & using the k largest observations for different choices of &
(Hill, 1975). Dark blue regions represent inner 50 percent confidence intervals, and light blue
regions represent inner 95 percent confidence intervals. When the data are consistent with a GPD,

the mean excess plot is expected to be linear in u, and the Hill estimator is expected to stabilize
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near £. We find the two plots are consistent with the 225 meter threshold and .18 shape parameters.

The GPD—and the choice of threshold and shape parameters—is validated by comparing sim-
ulations of skyscraper heights to the observed data. In fact, at the threshold of 225 meters, simula-
tions from the same GPD describe the heights of skyscrapers completed at different time periods.
We demonstrate this by first obtaining the maximum likelihood estimates for the GPD parameters,
f225, 07225, and 5225, where w5 is the location of the GPD, considered unknown for the moment.
We then partition the skyscrapers built after 1950 into sextiles according to the year in which they
were completed. Since skyscraper growth is log-linear, the window lengths become shorter so that
the same number of skyscrapers are in each bin. Figure 1.3 shows a p-p plot for each time period.
That is, instead of a g-q plot, which plots the ordered skyscraper heights, x(;), against the ordered
heights simulated from the GPD with parameters fi225, 0225, and ‘;9225, we first apply the GPD
probability integral transformation: 1 —[1 + 5225 (xq) — fl225)/ G25)]CY &n5) | After transformation,
the theoretical heights follow the standard uniform distribution.

The close fit in each time period suggests the height distribution of extremely tall skyscrapers
does not change. This is investigated further in Figure 1.4, which shows the median height of ex-
tremely tall skyscrapers each year since 1950 (blue points). A median regression line is estimated
using the R Core Team (2018) package quantreg (Koenker, 2018), and the blue region repre-
sents an inner 95 percent confidence interval. The height of the typical extremely tall skyscraper
increases less than half a meter each year, a negligible 3.6 percent over sixty-eight years. The
increase is not statistically significant (p-value = .25). For comparison, the same analysis is con-
ducted on tall skyscrapers—skyscrapers exceeding 150 meters and 40 floors—and shows a parallel
trend (red). We conclude that the urban skyline is driven primarily by the exponential increase in
the number of buildings completed each year. Years with more construction are more likely to
yield extremely tall skyscrapers, and the increase of the typical skyscraper is inconsequential by
comparison.

For the purpose of predicting the height of the tallest skyscraper in 2050, we assume this trend

will continue. We use the gpdSim function in the R Core Team (2018) package fExtremes
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(Wuertz, Setz, and Chalabi, 2017) to draw from a GPD with parameters (1225, 0225, 5225) roughly
8,400 times, where 8,400 is the number of new skyscrapers estimated to be completed by 2050 in
the previous section multiplied by the empirical probability a tall skyscraper exceeds 225 meters.
The estimated maximum height is retained. The distribution of this prediction is then approximated
by parametric bootstrap. Figure 1.5 shows the result (blue). A right-sided 95 percent predictive
interval ends at 1,900 meters.

To demonstrate the accuracy of this approach for predicting 2050, thirty-three years after the
data was collected in 2017, we conduct a second simulation of 2017 using only data that would
have been available before 1984. The GPD is fit using all skyscrapers above the 225 meter thresh-
old, and we simulate the height of roughly five hundred skyscrapers, since, in 1984, three thousand
tall skyscrapers would have been estimated for completion between 1984 and 2017, fifteen percent
of which would have been expected to exceed 225 meters. The predictive distribution of the 2017
maximum height is approximated by parametric bootstrap and shown in Figure 1.5 (red). We find
that the current tallest skyscraper, at 828 meters, would have been considered likely. The predicted
height is 918 meters, eleven percent above this value.

We estimate an eleven percent chance the tallest skyscraper will exceed one mile in the year
2050. This assumes present trends continue: that the number of tall skyscrapers will continue to
increase at its historic rate of eight percent a year. Deviations from this rate are possible, and they
would influence the estimate. Using the 95 percent predictive interval from the Box-Jenkins anal-
ysis in the previous section, we find the probability of a mile high could be as low as 4 percent or
as high as 30 percent. We reiterate that these probabilities would require a considerable departure

from present trends. Nevertheless, we include them as a reference for the reader.

1.5 Predicting the Number of Floors in Skyscrapers Completed by 2050

The marginal number of floors in the typical skyscraper has decreased as height increases.
Height alone overstates the ability of skyscrapers to accommodate a growing population. Assum-

ing the marginal number of floors continues to decrease as height increases, the one thousand meter
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The maximum likelihood estimate of the The mean excess is linear in u after 225.
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Figure 1.2: We approximate the height distribution of tall skyscrapers using a GPD. The left panel
shows maximum likelihood estimates and confidence intervals (50 and 95 percent) of the GPD
shape parameter, excluding observations below a sequence of thresholds {;}. The right panel
shows a Mean Excess plot (top) and a Hill plot (bottom)
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The same generalized Pareto distribution fits skyscraper heights over different time periods.
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Figure 1.3: We demonstrate the distribution of skyscraper heights has changed little over time by
dividing extremely tall skyscrapers into sextiles based on the year completed and constructing a p-
p plot for each sextile. The distribution of theoretical heights is the generalized Pareto distribution
with parameters estimated by maximum likelihood.
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The median height of a tall (extremely tall) skyscraper has grown 0.43 (0.19) meters per year.
4001

3001

~—~~
S
N
—
= ° ° ° °
52001 ¢ o o ® ., o o o 00002
[} ® [ (YY) L (]
c o o ° o g0 °® 00,% o ... oe .. P .... o%0
@ [ ) [ J
'Y
1001
o
1950 1960 1970 1980 1990 2000 2010 2020
year completed

Figure 1.4: The median height of extremely tall skyscrapers (blue points) has not increased sig-
nificantly over the last forty years. A median regression indicates extremely tall skyscrapers grow

.19 meters each year (p-value = .25). A 95 percent confidence interval for the median regression
line is shaded blue. The median height of tall skyscrapers (red) is shown for comparison.
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The tallest skyscraper is predicted to be 1145 meters in 2050. There is a 11 percent chance it will
exceed one mile. There is a 0 percent chance the current tallest skyscraper will remain the tallest.
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Figure 1.5: We predict the height of skyscrapers completed by 2050, thirty-three years after the
data was collected at the end of 2017. The simulated density (blue) suggests the tallest building
in the world is unlikely to exceed one mile (dashed line on right side). However, it will almost
certainly be taller than the current tallest building, the Burj Khalifa (828 meters, dashed line on
left side) and likely taller than the Jeddah Tower (one thousand meters), expected for completion
in 2020. Had the same simulation been conducted in 1984, the density (red) would have found the
tallest skyscraper in 2017 to be between six hundred and twelve hundred meters.
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building is estimated to have seventy percent of the floors of the mile-high building—despite being
sixty-two percent of the height. While diminishing marginal floors is reflected in most architectural
designs, we find the number of floors will diminish faster with height than most designs anticipate.
However, the exact relationship between height and number of floors will vary by city.

The joint distribution of skyscraper height and number of floors was extrapolated using the fol-
lowing bivariate extreme value model: Let (X, Y) be a random vector with GPD margins. Denote
the respective parameter sets indexing the GPDs as (,, oy, £€x) and (uy, 0y, &), and consider the

log probability integral transformations

BT

% = —log( 1+w] ) (1.1)
1V

v = —log( 1+M] ) (1.2)
y

Note that (X,Y) has standard exponential margins. The tail of the joint distribution (X,Y) is
assumed to follow the asymmetric bivariate logistic distribution, i.e. given thresholds u, v > 0, for

X>uY >v,
Pr(X > x,7 > y) o exp (—(1 = 0)x = (1= 6,)y — (X6, +y'0;) /"), (1.3)

where 6,60, € [0,1] and r > 1. The asymmetric bivariate logistic distribution has the advantage
of being simple and flexible, and it is suitable for larger sample problems. See Tawn (1988) and
Coles (2001, p.142) for a detailed discussion of bivariate models for threshold exceedances.

Now suppose X is the height of a randomly selected skyscraper and Y the number of floors. We
choose the thresholds u = 225 and v = 59 based on the fit of the marginal distribution as described
in Section 4. Plots corresponding to the marginal analysis of skyscraper floors are displayed in
Figures 1.8, 1.9, and 1.10 in the Appendix. The nine parameters p,, oy, &x, iy, 0y, &y, O, 0y, and

r are estimated using the heights and floors of all skyscraper exceeding 225 meters or 59 floors,
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maximizing the censored likelihood:

Lc(,ux, T x, fx’ lly’ O-y’ fy, 9)67 gy’ r) = 1_[ f(-xi’ )’z) Pr(X > u, Y > V)

Xi>U,y; >v

[T rooerx<w [] APy <,

Xi <u,y;>v Xi>UW,yi<v

where f denotes the joint density function of (X, Y) implied by the transformations (1.1) and (1.2)
and the distribution function (1.3), and fx and fy denote the marginal density functions of X and
Y, respectively.

The top left panel of Figure 1.6 displays the height and number of floors of every tall skyscraper,
colored by its contribution to the censored likelihood, L.. Skyscrapers below 225 meters and
59 floors (blue) do not contribute to the likelihood and are not used to estimate the parameters.
Skyscrapers exceeding 225 meters and 59 floors (red) make up the first factor. The remaining
skyscrapers (green) make up the second two factors. For example, a 250 meter skyscraper with
50 floors is treated like a 250 meter skyscraper whose floors are only known to be below 59. This
approach is similar to the censored likelihood in Huser et al. (2016) except that skyscrapers at or
below 225 meters and 59 floors are excluded from the analysis. Computation is discussed further
in the Appendix.

The bivariate model fits the data well despite lacking the strong theoretical foundations that
support the approximations in Sections 3 and 4. The first six parameter estimates from the bivariate
model, [i,, 0y, éx, fiy, &y, and éy, agree with the parameter estimates from the two marginal
analyses on skyscraper heights and floors. In addition, simulations from the fitted model produce
skyscrapers with heights and floors that are consistent with the data, as assessed visually and with
predictive checks. For example, the average of the 325 extremely tall skyscrapers rises 4 meters
per floor. The inner 95 percent of one thousand simulated averages rise between 3.7 and 4.5 meters
per floor, with fifteen percent of simulated averages exceeding the observed average.

The maximum likelihood parameters are retained to estimate the conditional density of the

number of floors for a one-thousand-meter skyscraper (Figure 1.6, top-right panel) and a one-mile
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tall skyscraper (Figure 1.6, bottom-left panel). Dark blue regions represent a right-sided 50 percent
interval, and light blue regions represent a right-sided 95 percent interval. These densities are
compared with actual skyscraper plans (dotted line). The median one-thousand-meter skyscraper
is estimated to have 107 percent the number of floors of the Jeddah Tower (to be completed in
2020). The median one-mile skyscraper is estimated to have roughly three-quarters the number of
floors of the Mile-High Tower, two-thirds of Next Tokyo’s Sky Mile Tower, and half the floors of
Frank Lloyd Wright’s The Illinois.

As in the previous two sections, the same analysis is performed with only data available before
1984. The bottom-right panel shows the conditional density of the 828 meter skyscraper as it
would have been estimated using the threshold of 225 meters or 59 floors. In 1984, an 828 meter
skyscraper would have been nearly twice the height of the current tallest building, the Willis Tower
(then the Sears Tower, 442 meters, 108 floors). The conditional median predicts the typical 828
meter skyscraper would have 179 floors, ten percent more than the Burj Khalifa completed twenty-
four years later. Simply scaling the Willis Tower to the height of the Burj Khalifa would yield 202
floors, overestimating the actual number by twenty-four percent. A linear regression model fit with
extremely tall skyscrapers overestimates by fifteen percent.

The estimated relationship between floor and height varies considerably across cities. The top
panel of Figure 1.7 shows the empirical median height and number of floors of extremely tall
skyscrapers in select cities. The medians are each based on roughly ten observations, and thus
sampling variation likely overstates the city-level differences between extremely tall skyscrapers
in the year 2050.

We augment the bivariate model to estimate city-level medians. We allow the marginal GPD
parameters to vary by city, according to a normal distribution with an unknown mean and variance.
Such hierarchical models are often used to produce city-level estimates that have smaller errors
on average than the corresponding stratified estimates. The use of a parameter hierarchy also
has a Bayesian interpretation. See Coles (2001, p.169) and Vehtari (2017) for two discussions of

Bayesian inference for threshold exceedances.
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The marginal number of floors diminishes as The typical one-thousand—-meter skyscraper
height increases. Blue observations are will have 178 floors.
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Figure 1.6: We estimate the number of floors in the tallest skyscrapers. The top-left panel shows
the height and number of floors of tall skyscrapers—those exceeding 150 meters and 40 floors.
The line represents the 3.8 meter rise per floor of the typical tall skyscraper. This ratio is not
preserved as height increases. The other three panels compare the estimated conditional density of
the number of floors in a skyscraper given its height to actual skyscraper designs.

The bottom panel of Figure 1.7 shows the estimated median for select cities from the hierarchi-
cal model with parameters selected by maximum likelihood. The median of the non-hierarchical
model from the previous Figure is represented by a black dot. (Note that Hong Kong and New York
City contain a disproportionately large number of extremely tall skyscrapers.) These city-level es-
timates can be seen as a compromise between the noisy empirical medians in the top panel and
the more accurate but global median estimated by the non-hierarchical model. Yet despite partial
pooling across cities, the typical height per floor ratio still spans a considerably large range: 3.6

(Hong Kong) to 4 (Moscow).
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The height and number of floors of the typical extremely tall building varies across cities.
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Figure 1.7: We estimate the height and number of floors of the extremely tall skyscrapers that
will be completed in major cities by 2050. Empirical medians in the top panel likely overestimate
between-city variation. Model estimated medians in the bottom panel compromise between the
noisy empirical medians in the top panel and the accurate, but global median estimated by the non-
hierarchical model. The line represents the 3.8 meter rise per floor of the typical tall skyscraper.
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1.6 Discussion

This paper applied extreme value theory to predict the prevalence and nature of skyscrapers
if present trends continue until the year 2050. The findings have methodological and policy con-
sequences. This section discusses the methodological consequences, while the following section
considers policy.

Section 3 found the number of skyscrapers completed each year followed a log-linear relation-
ship. The relationship suggests a constant instantaneous growth rate—and extrapolation assumes
construction will continue at this rate. When fit to the data, a logistic-linear relationship, which
permits a declining growth rate, defaulted to a log-linear relationship and produced identical pre-
dictions. However, it would be incorrect to conclude the data is inconsistent with a declining
growth rate in future years. It is possible growth is in fact logistic-linear, and the log-linear re-
lationship found in Section 3 is only approximately true before the year 2018. In that case, the
growth rate could decline substantially between 2018 and 2050. This scenario is speculative be-
cause it cannot be validated from the aggregated data. We therefore take the position that, though
possible, a declining growth rate would reflect a departure from present trends.

Section 4 found that the heights of extremely tall skyscrapers are well described by a GPD with
a positive shape, £ ~ .2. This means that the distribution of skyscraper heights has a heavy tail,
and, theoretically speaking, the maximum does not exist. While this is obviously false—the laws of
physics limit the height of any earthbound structure—it suggests sample averages and sums may be
unreliable for inference and extrapolation. Researchers must be careful interpreting these quantities
as evidence for their theories, especially with small sample sizes. For example, the fact that the
average height does not increase with specific economic conditions may not indicate skyscraper
construction is unrelated to those conditions. Conversely, increasing average height in recent years
may provide a poor basis for predicting heights in future years. Quantiles, such as the median,
can be more stable representatives of their theoretical analogs and may prove better alternatives

for conducting inference and extrapolating as demonstrated in Figure 1.4. Cirillo and Taleb (2016)
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make similar points for researchers using the total number of war casualties to determine whether
humans are less violent than in the past and whether wide-scale war will return in the future.

Section 4 also found that the same GPD described extremely tall skyscraper heights over time.
This suggests that the height of the tallest skyscrapers is driven by the exponential increase in the
number of new buildings constructed each year and not a desire to build the typical building taller.
The distinction is important for researchers investigating the factors that determine skyscraper
height. For example, our findings are consistent with the theory that the demand for extremely
tall buildings led to the use of innovative technologies, such as faster elevators. Had the reverse
been true—had the development of innovative technologies prompted extremely tall skyscrapers—
a systematic increase in skyscrapers would have been observed across the board as the technology
became available, and the GPD parameters would have changed substantially over time. While it
is not the intent of this paper to draw causal conclusions, we point out that forecasters need to be
careful of “reverse-causality”, attributing taller buildings as a consequence of a given factor instead
of its cause. Bar (2016) documents a number of skyscraper myths that arise from the confusion
of correlation with causation, for example the bedrock myth: that Manhattan’s early skyscraper
developers sought locations of shallow bedrock (p.210). These spurious correlations provide a
poor basis for making predictions.

Section 5 demonstrated how city-level parameters might be estimated with a hierarchical model.
The dataset contains 258 cities, although the typical city has only one skyscraper exceeding 150
meters and 40 floors. Predictions are still possible for these cities because the model borrows in-
formation across cities. Future research might augment the hierarchy to include country and region
level parameters. Or alternatively, covariate information such as population and gross city product
at the time each skyscraper was completed could be used instead. These covariates would make
the modeling assumptions more plausible and may give insight into how cities might change poli-
cies to increase or decrease skyscraper activity—provided covariates are chosen judiciously and
not based on spurious correlations. Spatiotemporal dependence could also be modeled directly as

discussed by Bao et al. (2006), Chan and Gray (2006), and Ghil et al. (2011).
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1.7 Conclusion

The major challenges confronting cities, such as sustainability, safety, and equality, will depend
on the infrastructure developed to accommodate urbanization. Some urban planners suggest that
vertical growth—the concentration of residents by constructing tall buildings—be used to accom-
modate density. Others argue that urbanization will be too rapid to be accommodated by vertical
growth alone.

This paper finds that the construction of tall skyscrapers will outpace urbanization if present
trends continue. Cities currently have around 800 tall skyscrapers per billion people. By 2050,
cities are estimated to have 6,800 per billion people. The tallest among these will be fifty per-
cent higher than those today and therefore able to accommodate more people. However, these
skyscrapers will not have fifty percent more floors since the marginal capacity will diminish as
heights increase. For example, the one thousand meter building will have seventy percent the
floors of the mile-high building, despite being sixty-two percent of the height.

Future research might consider a different forecast horizon, although our choice of 2050 was
not arbitrary. The UN World Population Prospects (UN, 2018) focuses on 2050, and many city
planners consider 2050 to be the “not so distant future” (Lake (1996), Kennedy (2010), Wakefield
(2013), Brown (2014)). Schuerman (2014) writes: “We chose the year 2050 for a reason: It is far
enough away so that we can demonstrate dramatic changes in the climate, and yet near enough that
many people alive today will still be living in the city.”

A 2050 forecast was also practical. Skyscraper construction began in earnest after 1950, result-
ing in sixty-seven years of data. The year 2050 is thirty-three years away, which allows us to assess
a thirty-three year forecast strategy by fitting the model on the first thirty-three years (1950-1983)
and evaluating its performance on the following thirty-three years (1984-2017). The year 1984 is
a meaningful break point. It marks the major shift in the second half of the twentieth century from
the international period to contemporary skyscraper construction (Ascher and Vroman, 2011, p.

18).

27



This paper has not investigated whether skyscrapers will be constructed in the cities that need
them most. Nor has it investigated whether skyscraper development should be used to accommo-
date density in the first place. Instead, extreme value theory provided a principled basis to forecast
future trends and quantify uncertainty. It relies on the assumption that present trends continue, and
there are a variety of reasons why future trends may deviate from the past sixty-eight years. For
example, unprecedented technological change may result in new materials or methods that sub-
stantially reduce the cost of construction. Cultural changes could shift how residents live or work,
perhaps freeing up commercial space for residential purposes. There is also the possibility of a
hiatus due to global upheaval, not unlike the period spanning the Great Depression and Second
World War.

We conclude by stressing that extreme value theory is one of many principled strategies that
could be used to predict skyscraper development and the effects of urbanization more broadly.
The previous sections could be augmented by integrating theories from architecture, engineering,
policy, and social science. The incorporation of expert knowledge is always useful, but it is partic-
ularly desirable with extreme value analysis, as heavy tailed distributions are sensitive to outliers
and benefit from the context afforded by the theory of other disciplines. More importantly, all dis-
ciplines will be necessary to anticipate how cities will respond to the greatest migration in human

history and solve perhaps the principal challenge of our time.

1.8 Appendix

All models in Sections 4 and 5 are written in the Stan probabilistic programming 