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Abstract: In order to study the efficacy of genetic algorithms (GAs), a number of fitness landscapes have been 
designed and used as test functions. Among these functions a family of deceptive functions have been developed 
as difficult test functions for comparing different implementations of GAs. In this paper an adaptive group 
mutation (AGM), which can be combined with traditional bit mutation in GAs, is proposed to tackle the 
deception problem in genetic searching. Within the AGM, those genes that have converged to certain threshold 
degree are adaptively grouped together and subject to mutation together with a given probability. To test the 
performance of the AGM, experiments were carried out to compare GAs that combine the AGM and GAs that 
use only traditional bit mutation with a number of suggested “standard” fixed mutation rates over a set of 
deceptive functions as well as non-deceptive functions. The results demonstrate that GAs with the AGM 
perform better than GAs with only traditional bit mutation over deceptive functions and as well as GAs with 
only traditional bit mutation over non-deceptive functions. The results show that the AGM is a good choice for 
GAs since most problems may involve some degree of deception and deceptive functions are difficult for GAs. 
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1   Introduction 
As a class of optimum-seeking algorithms based on 
principles of natural evolution, genetic algorithms 
(GAs) maintain a population of individuals. Each 
individual is associated a fitness value according to a 
given problem objective function. GAs iteratively 
generate new population by selecting relatively fit 
individuals of the present population and performing 
recombination and mutation operations on these 
individuals [8]. Due to the properties of robustness 
and adaptability, GAs have been successfully applied 
to solve many hard optimization problems in both 
artificial and realistic. Yet GAs do fail. 

In order to study the efficacy of GAs, a number of 
fitness landscapes have been designed and used as 
test functions. Among these functions a family of 
fitness landscapes are called deceptive functions, 
which are developed to challenge the building block 
hypothesis. In order to analyze how GAs work, 
Holland [11] introduced the concept of schema to 
describe a subset of binary strings that have 
similarities at certain positions and worked out the 
schema theorem. The schema theorem states that 
short, low-order, better than average schemas (or 
building blocks) receive an exponentially increasing 
number of trials in subsequent generations of a GA. 
A direct result of the schema theorem is the building 
block hypothesis that suggests that GAs work by 
combining low-order building blocks to form 

higher-order building blocks. The building block 
hypothesis is the fundamental working mechanism of 
GAs. Therefore, if in a function the low-order 
building blocks do not combine to form higher-order 
building blocks, GAs may have difficulty in solving 
this function. Deceptive functions are such family of 
functions where there exist low-order building blocks 
that do not combine to form higher-order building 
blocks: instead they form building blocks resulting in 
a deceptive solution that is sub-optimal itself or near 
a sub-optimal solution [15]. Deceptive functions are 
quite general. In fact, most problems may involve 
some degree of deception because one would not 
expect that all low-order building blocks will be 
consistent with relevant higher-order building blocks. 

Since deceptive functions are supposedly difficult 
for GAs, considerable effort has been made to 
understand how to modify simple GAs to solve such 
difficult fitness landscapes [4, 9]. In this paper, an 
adaptive group mutation (AGM), which can be 
combined with traditional bit mutation in GAs, is 
proposed to tackle the deception problem in genetic 
searching. Within the AGM, those genes that have 
converged to certain threshold degree are adaptively 
grouped together and subject to mutation together 
with a given group mutation probability. The idea 
behind the AGM is to set up a channel in the search 
space for the GA to escape from the deceptive 
solution to the global optimal solution.     
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2   Deception in Genetic Search 
In order to better understand the situations that are 
likely to create difficulty for GAs Goldberg [7] first 
introduced the concept of deception. Thereafter, 
many researchers have developed partially and fully 
deceptive functions [5, 9, 12]. In fully deceptive 
functions all low-order building blocks are deceptive 
with respect to the global optimal solution. The 
motivation of developing such functions is to create 
difficult test functions for comparing different GAs. 
The existence of deceptive building blocks in 
deceptive functions makes it difficult for GAs to 
search the global optimal solution. It is even claimed 
that the only challenging problems for GAs are 
problems that involve some degree of deception [15]. 

Ackley [1] first introduced trap functions that are 
defined in terms of unitation (the number of 1's in the 
string). A function of unitation has the same function 
value for all strings of identical unitation. In an L -bit 
unitation function, there are 1+L  different function 
values. An L -bit trap function )(uf  is defined as a 
function of unitation u as follows: 
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where a and b are the function values of the 
deceptive and global optimal solutions respectively, 
the parameter z  is the location where the unitation 
search space of the function is divided into two 
basins: one leading to the global optimal solution and 
other leading to the deceptive solution. Fig. 1 shows a 
4-bit trap function with 6.0=a , 0.1=b , and 3=z . 
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Fig.1  A 4-bit trap function with 6.0=a , 0.1=b , 
and 3=z  as a function of unitation (Top) and as a 
function of decoded value of binary strings (Bottom).  

By explicitly calculating and comparing all 
schema fitness values, Goldberg [10] devised a 3-bit 
minimum fully deceptive problem as follows: 

  f(000) = 28,  f(001) = 26,  f(010) = 22, f(011)  =  0  
  f(100) = 14,  f(101) = 0,    f(110) =  0,  f(111) = 30 

where all the order-1 and order-2 building blocks 
(e.g., “0** ”  and “*00”) in the search space are 
deceptive and will lead the genetic search away from 
the global optimum “111”  and instead toward the 
local optimum “000” . Using an algorithm of 
constructing fully deceptive function, Whitley [15] 
developed a 4-bit fully deceptive problem as follows: 

 f(0000)= 28, f(0001)= 26, f(0010)= 24, f(0011)=18 
 f(0100)= 22, f(0101)= 16, f(0110)= 14, f(0111)= 0 
 f(1000)= 20, f(1001)= 12, f(1010)= 10, f(1011)=2 
 f(1100)= 8,   f(1101)= 4,   f(1110)= 6,   f(1111)=30 

As can be seen from above examples, a deceptive 
function usually has at least two optimal solutions: 
one global optimal solution and one local 
sub-optimal solution. The local solution is the best 
solution in its neighbourhood but inferior to the 
global solution and is usually known as the deceptive 
solution or deceptive attractor (by Whitley [15]) of 
the deceptive function. The deceptive attractor 
consists of deceptive building blocks and is usually a 
stable point in the search space of a deceptive 
function. The deceptive attractor need not be a local 
optimum in Hamming space. However, it has been 
shown by Whitley [15] that in a fully deceptive 
function the deceptive solution can be at most one-bit 
dissimilar to a local optimal solution in Hamming 
distance. Whitley has also proved the deceptive 
attractor theorem that states that in a fully deceptive 
function the deceptive attractor must have a 
complementary bit pattern to that found in the binary 
representation of the global optimum solution. The 
deceptive attractor theorem gives us a hint that the 
deception problem for GAs may be tackled by 
building up a bridge from the deceptive attractor to 
the global solution in the search space. This is where 
the adaptive group mutation comes in this paper. 

 
 
3   Tackling Deception with Adaptive 
Group Mutation 
According to Whitley's deceptive attractor theorem, 
the deceptive solution must be the complement of the 
global optimum in Hamming space. This information 
can be of practical significance. As discussed in [15], 
if deception occurs in a known or predictable location 
remapping strategies that move the global solution 
closer in Hamming space to the deceptive attractor 



can be used to reduce the level of deception. 
However, the problem with remapping strategies is 
that in general it is not practical to know the exact 
location of deception in deceptive functions. Finding 
where deception locates is as difficult as optimizing 
the deception function. This also precludes such 
simple fixes for deception as inverting the final 
solution or inverting strings during the search and 
evaluating their complements.  

But when the deception problem is considered 
more deeply we may find a way around the need of 
explicitly locating where deceptive building blocks 
reside. Let's look at the dynamic behaviour of 
deception in genetic search. Because deceptive 
schemas that represent the deceptive solution have 
better fitness than any other competitor schemas 
including that representing the global solution, GAs 
process them favourably in early generations. 
Solutions with these schemas dominate the 
population and GAs will finally be misled to the 
deceptive solution instead of the global optimal 
solution. The dynamic appearance in genotype will 
be that during early generations of search the alleles 
of those bits where deception occurs will converge to 
values that are consistent with the bit pattern of 
deceptive building blocks. Hence, we can use simple 
statistics of allele distribution in genotype to locate 
deceptive building blocks and group those bits 
converged to certain level together to be mutated in a 
whole with certain probability.  

In this paper we assume that binary encoding is 
used for GAs. Due to the property of symmetry we 
can use the frequency of 1's in the alleles on a locus 
over the population to calculate the degree of 
convergence of that locus. Let ),(1 tif  ( Li �1=  

where L denotes the string length through this paper) 
denote the frequency of 1's in the alleles on locus i 
over the population at generation t and ),( tid c  
denote the degree of convergence on locus i at 
generation t. Then ),( tid c  can be calculated from 

),(1 tif  as follows: 

{ }),(1),,(max),( 11 tiftiftid c −=              (2) 

Now during the progress of the GA, after a new 
population t has been generated we first calculate the 
frequency of 1's ),(1 tif  on each locus i and from this 

the degree of convergence ),( tid c  is calculated for 
each locus i. Then, those loci that have the degree of 
convergence ),( tid c  going up to a given threshold 

level Td  are grouped together. And then, after the 
population t has undergone the crossover operation, it 
will undergo mutation operations as follows. Each 

individual x is first subjected to the group mutation 
with a given group mutation probability gp . If a 

randomly created number )1,0(randr =  is less than 

gp , x will undergo the group mutation and those 

alleles that correspond to grouped loci will be 
inverted to their complement values while those not 
grouped loci will keep their alleles intact. However, 
if gpr ≥ , x will not undergo the group mutation: 

instead it will undergo the traditional bit mutation 
with a probability mp . The pseudo-code for AGM is 
shown below, where )(' tP  is the intermediate 
population after crossover at generation t. 

Procedure AGM:  
begin 
  Calculate ),(1 tif  and ),( tid c  for locus i at gen. t; 

for 1:=i  to L do   { group loci by a mask vector G}  
   if Tc dtid ≥),(  then 1:),( =tiG ; 
   else 0:),( =tiG ; 
endfor; 
for each member )(')( 21 tPxxxx L ∈= �  do 

   if gprandr <= )1,0( then { group mutation on x}  

       for 1:=i  to L do 
           if  1),( =tiG  then ii xx −=1: ; 
        endfor; 
   else 
       Perform traditional bit mutation on x with mp ; 
endfor; 

end; 
 

 

4   Computer Experiment Study 
 
4.1 Design of Experiments    
To test the performance of the AGM, in this study we 
constructed two deceptive functions: 1DF  that 
contains 10 copies of Goldberg’s 3-bit fully 
deceptive subfunction (see Section 2) and 2DF  that 
contains 10 copies of Whitley's 4-bit fully deceptive 
subfunction (see Section 2). The optimal solutions 
for both 1DF  and 2DF  have a fitness of 300. We 
also constructed a Trap Function that contains 10 
copies of Ackley's 4-bit trap function (see Fig. 1) and 
has an optimal fitness of 10. 

Experiments were carried out to compare GAs 
that combine the AGM with traditional bit mutation 
and GAs that use only traditional bit mutation. To 
better understand the effect of the AGM, the mutation 
probability mp  for the bit mutation was varied from 
a series of recommended “standard”  values: 1/L by 



Mühlenbein [14], )/(75.1 LN ∗  by Bäck  [3] where 
N is the population size, and 0.001 by De Jong [6]. 
And the 2-point crossover with a fixed crossover 
probability 6.0=cp  and the 0.5 uniform crossover 
were chosen as crossover operators for GAs. Within 
the AGM, the group mutation probability gp  and the 

threshold convergence degree Td  were set to 0.01 
and 0.85 respectively. For all the GAs, the fitness 
proportionate selection with the Stochastic Universal 
Sampling [2] and elitist model [6] were used and the 
population size N was set to 100. 

For each experiment of combining the test 
function and the GA with different crossover and 
mutation, 100 independent runs were executed. In 
order to have a strict comparison the same 100 
different random seeds were used to generate initial 
populations for the 100 runs of each experiment. For 
each run, the initial population was randomly created 
using a technique that generates exactly equal 
number of 0s and 1s for each locus, that is, 

5.0),(1 =tif  for each locus i ( Li �1= ) in the initial 
population. In this way the random sampling bias in 
the initial population (e.g., for some locus j, 

9.0)0,(1 =jf  or 0.1 and hence 9.0)0,( =jd c ) that 
may misleads the AGM is cancelled. For each run, 
the best-so-far fitness was recorded every 100 
evaluation1 and the maximum allowable number of 
evaluations was set to 20000. Each experiment result 
was averaged over 100 independent runs. 

 
4.2 Experiment Results and Discussions 
The experiment results on different deceptive 
functions are shown in Fig. 2 through Fig. 4 (where 
BM means traditional bit mutation) respectively. 
From these figures, it can be seen that in general GAs 
with the AGM perform better than GAs without the 
AGM on the three deceptive functions. GAs with the 
AGM perform greatly better than GAs without the 
AGM on the deceptive functions when the mutation 
probability mp  for traditional bit mutation is set to 

)/(75.1 LN ∗ or 0.001. For example, on 1DF  and 

with 2-point crossover, when )/(75.1 LNpm ∗=  
the GA with the AGM found the global optimal 
solution 86 times out of 100 runs while the GA 
without the AGM only succeeded 31 times and when 

001.0=mp  the GA with the AGM found the global 
optimal solution 81 times out of  100 runs while  the 
GA without the AGM only succeeded 5 times. When 

                                                           
1 Here, only those chromosomes changed by crossover and 
mutation operations were evaluated and counted into the 
number of evaluations. 
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Fig.2  Average best-so-far fitness against evaluations 

of GAs with 2-Point Crossover (Top) and Uniform 
Crossover (Bottom) on Deceptive Function 1DF . 

 

0 50 100 150 200
250

260

270

280

290

300

Evaluations (x 100)

Av
er

ag
e 

Be
st

 F
it

ne
ss

1/L BM+AGM             
1/L BM                 
1.75/(N*L1/2) BM+AGM
1.75/(N*L1/2) BM    
0.001 BM+AGM           
0.001 BM               

 

0 50 100 150 200
250

260

270

280

290

300

Evaluations (x 100)

Av
er

ag
e 

Be
st

 F
it

ne
ss

1/L BM+AGM             
1/L BM                 
1.75/(N*L1/2) BM+AGM
1.75/(N*L1/2) BM    
0.001 BM+AGM           
0.001 BM               

 
 

Fig.3  Average best-so-far fitness against evaluations 
of GAs with 2-Point Crossover (Top) and Uniform 
Crossover (Bottom) on Deceptive Function 2DF . 
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Fig.4  Average best-so-far fitness against evaluations 
of GAs with 2-Point Crossover (Top) and Uniform 
Crossover (Bottom) on Trap Function. 

 
Lpm /1=  it seems that the AGM has little effect on 

the performance of GAs. The reason lies in that 
Lpm /1=  is quite large for the domain of the three 

deceptive functions: 033.0/1 =L  for 1DF and the 

Trap Function and 025.0/1 =L  for 2DF . This large 

setting of mp  heavily slows down the building up of 
deceptive  building blocks as well as non-deceptive 
building blocks. 

 
4.3   Experiments on Non-Deceptive Problems 
Above experiment results showed the benefit of 
combining the AGM within GAs on deceptive 
functions. How about the effect of combining the 
AGM within the GA on non-deceptive functions? 
According to the “No Free Lunch”  theorem [16], one 
might expect that the introduction of the AGM may 
degrade the performance of GAs on non-deceptive 
functions since the AGM may invert and hence 
destruct non-deceptive building blocks found so far 
as well. To test this further experiments were carried 
out on two typical non-deceptive functions: the 
One-Max problem introduced by Ackley [1] and the 
Royal Road function 1R  devised by Mitchell, Forrest 
and Holland [13]. The One-Max problem simply 
counts the 1's in a binary string as its fitness. The aim 
is to maximize ones in a string. A string length of 100 
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Fig.5  Average best-so-far fitness against evaluations 
of GAs with 2-Point Crossover on One-Max (Top) 
and Royal Road Function 1R  (Bottom). 

 
bits was used for this study. The Royal Road 
Function 1R , based on 64-bit binary strings, contains 
8 disjunctive order-8 tailor-made building blocks 
(schemas). Each schema has 8 adjacent ones and 
contributes 8 to the fitness of a string when it exists in 
the string. The fitness of a string x is the summation 
of contributions from each schema, of which x is an 

instance. The optimal solution 111�=∗x  for 1R  
has a fitness of 64.  

The experiment results of GAs with 2-point 
crossover on the two non-deceptive problems are 
shown in Fig. 5. The experiment results of GAs with 
uniform crossover are similar and not shown here. 
From Fig. 5 it can be seen that GAs with the AGM 
perform as well as GAs without the AGM on these 
two problems. It seems that the introduction of the 
AGM doesn't affect the performance of the GA 
greatly if there is any effect. This is because the group 
mutation probability within the AGM can be set to a 
small value, e.g., 01.0=gp  in this study. This means 

that a small portion of individuals in the population 
(statistically 1 out of 100) will actually undergo the 
group mutation. On non-deceptive functions this 
small portion of individuals that undergo the group 
mutation operations will usually be discarded during 
the next selection since their non-deceptive building 



blocks are destructed and hence their fitnesses are 
decreased. However, on deceptive functions this 
small portion of group mutations can be of significant 
effect because they may invert deceptive building 
blocks to correct building blocks or invert the 
deceptive solution directly to the global optimal 
solution. 
 
 

5   Conclusions 
In this paper, an adaptive group mutation (AGM) is 
proposed with the aim to tackle the deception 
problem in genetic search. The AGM is an adaptive 
mutation operator that uses the statistics information 
from the search process as feedback information to 
adaptively group those loci that have currently 
converged to certain degree and then give these 
grouped loci chance to mutate together with a given 
group mutation probability. 

To test the performance of the AGM, experiments 
were carried out to compare GAs that combine the 
AGM and GAs that use only traditional bit mutation 
with a number of suggested “standard” fixed 
mutation rates on a set of deceptive functions as well 
as non-deceptive functions. The experiment results 
demonstrate that GAs with the AGM perform better 
than GAs without the AGM on deceptive functions 
while perform as well as GAs without the AGM on 
non-deceptive functions though the AGM is aimed at 
tackling the deception problem in genetic search. The 
experiment results indicate that the AGM is a good 
adaptive mutation operator for GAs since deceptive 
functions are quite general and difficult for GAs. 

Within the AGM, besides the mutation probability 

mp  for traditional bit mutation, there are other two 
key parameters: the threshold degree of convergence 

Td  and the group mutation probability gp . The 

value of Td controls when gene loci should be 
grouped, i.e., when the AGM should take action, 
while the value of gp  is used to control how deeply 

the AGM should take action. In this study, both Td  

and gp  are set to fixed values. However, adapting 

their settings with the progress of searching may 
further improve GA's performance, which is one 
future work about the AGM. Combining the AGM 
with other adaptation techniques for GAs is another 
future work about the AGM. 
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