
Adaptive Group Mutation for Tackling Deception in Genetic Search

SHENGXIANG YANG
Department of Computer Science

University of Leicester
University Road, Leicester LE1 7RH

UNITED KINGDOM
s.yang@mcs.le.ac.uk http://www.cs.le.ac.uk/~syang

Abstract: In order to study the efficacy of genetic algorithms (GAs), a number of fitness landscapes have been
designed and used as test functions. Among these functions a family of deceptive functions have been developed
as difficult test functions for comparing different implementations of GAs. In this paper an adaptive group
mutation (AGM), which can be combined with traditional bit mutation in GAs, is proposed to tackle the
deception problem in genetic searching. Within the AGM, those genes that have converged to certain threshold
degree are adaptively grouped together and subject to mutation together with a given probability. To test the
performance of the AGM, experiments were carried out to compare GAs that combine the AGM and GAs that
use only traditional bit mutation with a number of suggested “standard” fixed mutation rates over a set of
deceptive functions as well as non-deceptive functions. The results demonstrate that GAs with the AGM
perform better than GAs with only traditional bit mutation over deceptive functions and as well as GAs with
only traditional bit mutation over non-deceptive functions. The results show that the AGM is a good choice for
GAs since most problems may involve some degree of deception and deceptive functions are difficult for GAs.

Key-Words: Genetic algorithm, adaptive group mutation, bit mutation, deceptive functions, building blocks.

1 Introduction
As a class of optimum-seeking algorithms based on
principles of natural evolution, genetic algorithms
(GAs) maintain a population of individuals. Each
individual is associated a fitness value according to a
given problem objective function. GAs iteratively
generate new population by selecting relatively fit
individuals of the present population and performing
recombination and mutation operations on these
individuals [8]. Due to the properties of robustness
and adaptability, GAs have been successfully applied
to solve many hard optimization problems in both
artificial and realistic. Yet GAs do fail.

In order to study the efficacy of GAs, a number of
fitness landscapes have been designed and used as
test functions. Among these functions a family of
fitness landscapes are called deceptive functions,
which are developed to challenge the building block
hypothesis. In order to analyze how GAs work,
Holland [11] introduced the concept of schema to
describe a subset of binary strings that have
similarities at certain positions and worked out the
schema theorem. The schema theorem states that
short, low-order, better than average schemas (or
building blocks) receive an exponentially increasing
number of trials in subsequent generations of a GA.
A direct result of the schema theorem is the building
block hypothesis that suggests that GAs work by
combining low-order building blocks to form

higher-order building blocks. The building block
hypothesis is the fundamental working mechanism of
GAs. Therefore, if in a function the low-order
building blocks do not combine to form higher-order
building blocks, GAs may have difficulty in solving
this function. Deceptive functions are such family of
functions where there exist low-order building blocks
that do not combine to form higher-order building
blocks: instead they form building blocks resulting in
a deceptive solution that is sub-optimal itself or near
a sub-optimal solution [15]. Deceptive functions are
quite general. In fact, most problems may involve
some degree of deception because one would not
expect that all low-order building blocks will be
consistent with relevant higher-order building blocks.

Since deceptive functions are supposedly difficult
for GAs, considerable effort has been made to
understand how to modify simple GAs to solve such
difficult fitness landscapes [4, 9]. In this paper, an
adaptive group mutation (AGM), which can be
combined with traditional bit mutation in GAs, is
proposed to tackle the deception problem in genetic
searching. Within the AGM, those genes that have
converged to certain threshold degree are adaptively
grouped together and subject to mutation together
with a given group mutation probability. The idea
behind the AGM is to set up a channel in the search
space for the GA to escape from the deceptive
solution to the global optimal solution.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Brunel University Research Archive

https://core.ac.uk/display/338165?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Deception in Genetic Search
In order to better understand the situations that are
likely to create difficulty for GAs Goldberg [7] first
introduced the concept of deception. Thereafter,
many researchers have developed partially and fully
deceptive functions [5, 9, 12]. In fully deceptive
functions all low-order building blocks are deceptive
with respect to the global optimal solution. The
motivation of developing such functions is to create
difficult test functions for comparing different GAs.
The existence of deceptive building blocks in
deceptive functions makes it difficult for GAs to
search the global optimal solution. It is even claimed
that the only challenging problems for GAs are
problems that involve some degree of deception [15].

Ackley [1] first introduced trap functions that are
defined in terms of unitation (the number of 1's in the
string). A function of unitation has the same function
value for all strings of identical unitation. In an L -bit
unitation function, there are 1+L different function
values. An L -bit trap function)(uf is defined as a
function of unitation u as follows:

�
�

�
�

�

−∗
−

≤−∗
=

otherwisezu
zL

b

zuifuz
z

a

uf
),(

),(
)((1)

where a and b are the function values of the
deceptive and global optimal solutions respectively,
the parameter z is the location where the unitation
search space of the function is divided into two
basins: one leading to the global optimal solution and
other leading to the deceptive solution. Fig. 1 shows a
4-bit trap function with 6.0=a , 0.1=b , and 3=z .

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

Fu
nc

ti
on

 V
al

ue

Unitation

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.0

0.2

0.4

0.6

0.8

1.0

Fu
nc

ti
on

 V
al

ue

Decoded Value of String

Fig.1 A 4-bit trap function with 6.0=a , 0.1=b ,
and 3=z as a function of unitation (Top) and as a
function of decoded value of binary strings (Bottom).

By explicitly calculating and comparing all
schema fitness values, Goldberg [10] devised a 3-bit
minimum fully deceptive problem as follows:

 f(000) = 28, f(001) = 26, f(010) = 22, f(011) = 0
 f(100) = 14, f(101) = 0, f(110) = 0, f(111) = 30

where all the order-1 and order-2 building blocks
(e.g., “0** ” and “*00”) in the search space are
deceptive and will lead the genetic search away from
the global optimum “111” and instead toward the
local optimum “000” . Using an algorithm of
constructing fully deceptive function, Whitley [15]
developed a 4-bit fully deceptive problem as follows:

 f(0000)= 28, f(0001)= 26, f(0010)= 24, f(0011)=18
 f(0100)= 22, f(0101)= 16, f(0110)= 14, f(0111)= 0
 f(1000)= 20, f(1001)= 12, f(1010)= 10, f(1011)=2
 f(1100)= 8, f(1101)= 4, f(1110)= 6, f(1111)=30

As can be seen from above examples, a deceptive
function usually has at least two optimal solutions:
one global optimal solution and one local
sub-optimal solution. The local solution is the best
solution in its neighbourhood but inferior to the
global solution and is usually known as the deceptive
solution or deceptive attractor (by Whitley [15]) of
the deceptive function. The deceptive attractor
consists of deceptive building blocks and is usually a
stable point in the search space of a deceptive
function. The deceptive attractor need not be a local
optimum in Hamming space. However, it has been
shown by Whitley [15] that in a fully deceptive
function the deceptive solution can be at most one-bit
dissimilar to a local optimal solution in Hamming
distance. Whitley has also proved the deceptive
attractor theorem that states that in a fully deceptive
function the deceptive attractor must have a
complementary bit pattern to that found in the binary
representation of the global optimum solution. The
deceptive attractor theorem gives us a hint that the
deception problem for GAs may be tackled by
building up a bridge from the deceptive attractor to
the global solution in the search space. This is where
the adaptive group mutation comes in this paper.

3 Tackling Deception with Adaptive
Group Mutation
According to Whitley's deceptive attractor theorem,
the deceptive solution must be the complement of the
global optimum in Hamming space. This information
can be of practical significance. As discussed in [15],
if deception occurs in a known or predictable location
remapping strategies that move the global solution
closer in Hamming space to the deceptive attractor

can be used to reduce the level of deception.
However, the problem with remapping strategies is
that in general it is not practical to know the exact
location of deception in deceptive functions. Finding
where deception locates is as difficult as optimizing
the deception function. This also precludes such
simple fixes for deception as inverting the final
solution or inverting strings during the search and
evaluating their complements.

But when the deception problem is considered
more deeply we may find a way around the need of
explicitly locating where deceptive building blocks
reside. Let's look at the dynamic behaviour of
deception in genetic search. Because deceptive
schemas that represent the deceptive solution have
better fitness than any other competitor schemas
including that representing the global solution, GAs
process them favourably in early generations.
Solutions with these schemas dominate the
population and GAs will finally be misled to the
deceptive solution instead of the global optimal
solution. The dynamic appearance in genotype will
be that during early generations of search the alleles
of those bits where deception occurs will converge to
values that are consistent with the bit pattern of
deceptive building blocks. Hence, we can use simple
statistics of allele distribution in genotype to locate
deceptive building blocks and group those bits
converged to certain level together to be mutated in a
whole with certain probability.

In this paper we assume that binary encoding is
used for GAs. Due to the property of symmetry we
can use the frequency of 1's in the alleles on a locus
over the population to calculate the degree of
convergence of that locus. Let),(1 tif (Li �1=

where L denotes the string length through this paper)
denote the frequency of 1's in the alleles on locus i
over the population at generation t and),(tid c
denote the degree of convergence on locus i at
generation t. Then),(tid c can be calculated from

),(1 tif as follows:

{ }),(1),,(max),(11 tiftiftid c −= (2)

Now during the progress of the GA, after a new
population t has been generated we first calculate the
frequency of 1's),(1 tif on each locus i and from this

the degree of convergence),(tid c is calculated for
each locus i. Then, those loci that have the degree of
convergence),(tid c going up to a given threshold

level Td are grouped together. And then, after the
population t has undergone the crossover operation, it
will undergo mutation operations as follows. Each

individual x is first subjected to the group mutation
with a given group mutation probability gp . If a

randomly created number)1,0(randr = is less than

gp , x will undergo the group mutation and those

alleles that correspond to grouped loci will be
inverted to their complement values while those not
grouped loci will keep their alleles intact. However,
if gpr ≥ , x will not undergo the group mutation:

instead it will undergo the traditional bit mutation
with a probability mp . The pseudo-code for AGM is
shown below, where)(' tP is the intermediate
population after crossover at generation t.

Procedure AGM:
begin
 Calculate),(1 tif and),(tid c for locus i at gen. t;

for 1:=i to L do { group loci by a mask vector G}
 if Tc dtid ≥),(then 1:),(=tiG ;
 else 0:),(=tiG ;
endfor;
for each member)(')(21 tPxxxx L ∈= � do

 if gprandr <=)1,0(then { group mutation on x}

 for 1:=i to L do
 if 1),(=tiG then ii xx −=1: ;
 endfor;
 else
 Perform traditional bit mutation on x with mp ;
endfor;

end;

4 Computer Experiment Study

4.1 Design of Experiments
To test the performance of the AGM, in this study we
constructed two deceptive functions: 1DF that
contains 10 copies of Goldberg’s 3-bit fully
deceptive subfunction (see Section 2) and 2DF that
contains 10 copies of Whitley's 4-bit fully deceptive
subfunction (see Section 2). The optimal solutions
for both 1DF and 2DF have a fitness of 300. We
also constructed a Trap Function that contains 10
copies of Ackley's 4-bit trap function (see Fig. 1) and
has an optimal fitness of 10.

Experiments were carried out to compare GAs
that combine the AGM with traditional bit mutation
and GAs that use only traditional bit mutation. To
better understand the effect of the AGM, the mutation
probability mp for the bit mutation was varied from
a series of recommended “standard” values: 1/L by

Mühlenbein [14],)/(75.1 LN ∗ by Bäck [3] where
N is the population size, and 0.001 by De Jong [6].
And the 2-point crossover with a fixed crossover
probability 6.0=cp and the 0.5 uniform crossover
were chosen as crossover operators for GAs. Within
the AGM, the group mutation probability gp and the

threshold convergence degree Td were set to 0.01
and 0.85 respectively. For all the GAs, the fitness
proportionate selection with the Stochastic Universal
Sampling [2] and elitist model [6] were used and the
population size N was set to 100.

For each experiment of combining the test
function and the GA with different crossover and
mutation, 100 independent runs were executed. In
order to have a strict comparison the same 100
different random seeds were used to generate initial
populations for the 100 runs of each experiment. For
each run, the initial population was randomly created
using a technique that generates exactly equal
number of 0s and 1s for each locus, that is,

5.0),(1 =tif for each locus i (Li �1=) in the initial
population. In this way the random sampling bias in
the initial population (e.g., for some locus j,

9.0)0,(1 =jf or 0.1 and hence 9.0)0,(=jd c) that
may misleads the AGM is cancelled. For each run,
the best-so-far fitness was recorded every 100
evaluation1 and the maximum allowable number of
evaluations was set to 20000. Each experiment result
was averaged over 100 independent runs.

4.2 Experiment Results and Discussions
The experiment results on different deceptive
functions are shown in Fig. 2 through Fig. 4 (where
BM means traditional bit mutation) respectively.
From these figures, it can be seen that in general GAs
with the AGM perform better than GAs without the
AGM on the three deceptive functions. GAs with the
AGM perform greatly better than GAs without the
AGM on the deceptive functions when the mutation
probability mp for traditional bit mutation is set to

)/(75.1 LN ∗ or 0.001. For example, on 1DF and

with 2-point crossover, when)/(75.1 LNpm ∗=
the GA with the AGM found the global optimal
solution 86 times out of 100 runs while the GA
without the AGM only succeeded 31 times and when

001.0=mp the GA with the AGM found the global
optimal solution 81 times out of 100 runs while the
GA without the AGM only succeeded 5 times. When

1 Here, only those chromosomes changed by crossover and
mutation operations were evaluated and counted into the
number of evaluations.

0 50 100 150 200
265

270

275

280

285

290

295

300

Evaluations (x 100)

Av
er

ag
e

Be
st

 F
it

ne
ss

1/L BM+AGM
1/L BM
1.75/(N*L1/2) BM+AGM
1.75/(N*L1/2) BM
0.001 BM+AGM
0.001 BM

0 50 100 150 200
265

270

275

280

285

290

295

300

Evaluations (x 100)

Av
er

ag
e

Be
st

 F
it

ne
ss

1/L BM+AGM
1/L BM
1.75/(N*L1/2) BM+AGM
1.75/(N*L1/2) BM
0.001 BM+AGM
0.001 BM

Fig.2 Average best-so-far fitness against evaluations

of GAs with 2-Point Crossover (Top) and Uniform
Crossover (Bottom) on Deceptive Function 1DF .

0 50 100 150 200
250

260

270

280

290

300

Evaluations (x 100)

Av
er

ag
e

Be
st

 F
it

ne
ss

1/L BM+AGM
1/L BM
1.75/(N*L1/2) BM+AGM
1.75/(N*L1/2) BM
0.001 BM+AGM
0.001 BM

0 50 100 150 200
250

260

270

280

290

300

Evaluations (x 100)

Av
er

ag
e

Be
st

 F
it

ne
ss

1/L BM+AGM
1/L BM
1.75/(N*L1/2) BM+AGM
1.75/(N*L1/2) BM
0.001 BM+AGM
0.001 BM

Fig.3 Average best-so-far fitness against evaluations
of GAs with 2-Point Crossover (Top) and Uniform
Crossover (Bottom) on Deceptive Function 2DF .

0 50 100 150 200
0

5

10

15

20

25

30

35

40

45

50

Evaluations (x 100)

Av
er

ag
e

Be
st

 F
it

ne
ss

1/L BM+AGM
1/L BM
1.75/(N*L1/2) BM+AGM
1.75/(N*L1/2) BM
0.001 BM+AGM
0.001 BM

0 50 100 150 200
6

7

8

9

10

Evaluations (x 100)

Av
er

ag
e

Be
st

 F
it

ne
ss

1/L BM+AGM
1/L BM
1.75/(N*L1/2) BM+AGM
1.75/(N*L1/2) BM
0.001 BM+AGM
0.001 BM

Fig.4 Average best-so-far fitness against evaluations
of GAs with 2-Point Crossover (Top) and Uniform
Crossover (Bottom) on Trap Function.

Lpm /1= it seems that the AGM has little effect on

the performance of GAs. The reason lies in that
Lpm /1= is quite large for the domain of the three

deceptive functions: 033.0/1 =L for 1DF and the

Trap Function and 025.0/1 =L for 2DF . This large

setting of mp heavily slows down the building up of
deceptive building blocks as well as non-deceptive
building blocks.

4.3 Experiments on Non-Deceptive Problems
Above experiment results showed the benefit of
combining the AGM within GAs on deceptive
functions. How about the effect of combining the
AGM within the GA on non-deceptive functions?
According to the “No Free Lunch” theorem [16], one
might expect that the introduction of the AGM may
degrade the performance of GAs on non-deceptive
functions since the AGM may invert and hence
destruct non-deceptive building blocks found so far
as well. To test this further experiments were carried
out on two typical non-deceptive functions: the
One-Max problem introduced by Ackley [1] and the
Royal Road function 1R devised by Mitchell, Forrest
and Holland [13]. The One-Max problem simply
counts the 1's in a binary string as its fitness. The aim
is to maximize ones in a string. A string length of 100

0 50 100 150 200
60

65

70

75

80

85

90

95

100

Evaluations (x 100)

Av
er

ag
e

Be
st

 F
it

ne
ss

1/L BM+AGM
1/L BM
1.75/(N*L1/2) BM+AGM
1.75/(N*L1/2) BM
0.001 BM+AGM
0.001 BM

0 50 100 150 200
0

5

10

15

20

25

30

35

40

45

50

Evaluations (x 100)

Av
er

ag
e

Be
st

 F
it

ne
ss

1/L BM+AGM
1/L BM
1.75/(N*L1/2) BM+AGM
1.75/(N*L1/2) BM
0.001 BM+AGM
0.001 BM

Fig.5 Average best-so-far fitness against evaluations
of GAs with 2-Point Crossover on One-Max (Top)
and Royal Road Function 1R (Bottom).

bits was used for this study. The Royal Road
Function 1R , based on 64-bit binary strings, contains
8 disjunctive order-8 tailor-made building blocks
(schemas). Each schema has 8 adjacent ones and
contributes 8 to the fitness of a string when it exists in
the string. The fitness of a string x is the summation
of contributions from each schema, of which x is an

instance. The optimal solution 111�=∗x for 1R
has a fitness of 64.

The experiment results of GAs with 2-point
crossover on the two non-deceptive problems are
shown in Fig. 5. The experiment results of GAs with
uniform crossover are similar and not shown here.
From Fig. 5 it can be seen that GAs with the AGM
perform as well as GAs without the AGM on these
two problems. It seems that the introduction of the
AGM doesn't affect the performance of the GA
greatly if there is any effect. This is because the group
mutation probability within the AGM can be set to a
small value, e.g., 01.0=gp in this study. This means

that a small portion of individuals in the population
(statistically 1 out of 100) will actually undergo the
group mutation. On non-deceptive functions this
small portion of individuals that undergo the group
mutation operations will usually be discarded during
the next selection since their non-deceptive building

blocks are destructed and hence their fitnesses are
decreased. However, on deceptive functions this
small portion of group mutations can be of significant
effect because they may invert deceptive building
blocks to correct building blocks or invert the
deceptive solution directly to the global optimal
solution.

5 Conclusions
In this paper, an adaptive group mutation (AGM) is
proposed with the aim to tackle the deception
problem in genetic search. The AGM is an adaptive
mutation operator that uses the statistics information
from the search process as feedback information to
adaptively group those loci that have currently
converged to certain degree and then give these
grouped loci chance to mutate together with a given
group mutation probability.

To test the performance of the AGM, experiments
were carried out to compare GAs that combine the
AGM and GAs that use only traditional bit mutation
with a number of suggested “standard” fixed
mutation rates on a set of deceptive functions as well
as non-deceptive functions. The experiment results
demonstrate that GAs with the AGM perform better
than GAs without the AGM on deceptive functions
while perform as well as GAs without the AGM on
non-deceptive functions though the AGM is aimed at
tackling the deception problem in genetic search. The
experiment results indicate that the AGM is a good
adaptive mutation operator for GAs since deceptive
functions are quite general and difficult for GAs.

Within the AGM, besides the mutation probability

mp for traditional bit mutation, there are other two
key parameters: the threshold degree of convergence

Td and the group mutation probability gp . The

value of Td controls when gene loci should be
grouped, i.e., when the AGM should take action,
while the value of gp is used to control how deeply

the AGM should take action. In this study, both Td

and gp are set to fixed values. However, adapting

their settings with the progress of searching may
further improve GA's performance, which is one
future work about the AGM. Combining the AGM
with other adaptation techniques for GAs is another
future work about the AGM.

References:
[1] D. H. Ackley, A Connectionist Machine for

Genetic Hillclimbing, Boston, MA: Kluwer
Academic Publishers, 1987.

[2] J. E. Baker, Reducing Bias and Inefficiency in the
Selection Algorithms, Proc.of the 2nd Int. Conf.
on Genetic Algorithms, J. J. Grefenstelle Ed.,
1987, pp. 14-21, Lawrence Erlbaum Associates.

[3] T. Bäck, Self-Adaptation in Genetic Algorithms.
Proc. of the 1st European Conf. on Artificial Life,
F. J. Varela and P. Bourgine Eds., 1992, pp.
263-271, MIT Press.

[4] K. Deb, Binary and Floating-point Function
Optimization Using Messy Genetic Algorithms,
PhD Thesis, University of Alabama, USA, 1991.

[5] K. Deb and D. E. Goldberg, Sufficient Conditions
for Arbitrary Binary Functions. Ann. Math. Artif.
Intellegence, Vol. 10, 1994, pp. 385-408.

[6] K. A. De Jong, An Analysis of the Behavior of a
Class of Genetic Adaptive Systems, PhD Thesis,
University of Michigan, Ann Abor, 1975.

[7] D. E. Goldberg, Simple Genetic Algorithms and
the Minimal, Deceptive Problem, Genetic
Algorithms and Simulated Annealing, L. Davis
Ed., 1987, pp. 74-88, Morgan Kaufmann.

[8] D. E. Goldberg, Genetic Algorithms in Search,
Optimization, and Machine Learning, Reading,
MA: Addison-Wesley, 1989.

[9] D. E. Goldberg, B. Korb and K. Deb, Messy
Genetic Algorithms: Motivation, Analysis, and
First Results. Complex Systems, Vol. 4, 1989, pp.
415-444.

[10] D. E. Goldberg, Genetic Algorithms and Walsh
Functions: Part I, a Gentle Introduction. Complex
Systems, Vol. 3, 1989, pp. 129-152.

[11] J. H. Holland, Adaptation in Natural and
Artificial Systems, University of Michigan Press,
1975.

[12] G. E. Liepins and M. D. Vose, Representation
Issues in Genetic Optimization. J. Exp. Theor.
Artificial Intelligence, Vol. 2, 1990, pp. 4-30.

[13] M. Mitchell, S. Forrest and J. H. Holland, The
Royal Road for Genetic Algorithms: Fitness
Landscapes and GA Performance. Proc. of the 1st
European Conference on Artificial Life, F. J.
Varela and P. Bourgine Eds., 1992, pp. 245-254.

[14] H. Mühlenbein, How Genetic Algorithms
Really Work: I. Mutation and Hillclimbing. Proc.
of the 2nd Conf. on Parallel Problem Solving
from Nature, R. Männer and B. Manderick Eds.,
1992, pp. 15-29.

[15] L. D. Whitley, Fundamental Principles of
Deception in Genetic Search. Foundations of
Genetic Algorithms 1, G. J. E. Rawlins Ed., 1991,
pp. 221-241. Morgan Kaufmann Publishers.

[16] D. Wolpert and W. Macready, No Free Lunch
Theorems for Optimization, IEEE Trans. on
Evolutionary Computation, Vol. 1, No. 1, 1997,
pp. 67-82.

