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SUMMARY.

Elementary properties of continued fractions are derived
from sets of three—term recurrence relations and approximation
methods are developed from this simple approach.

First, a well-known method for numerical inversion of
Laplace transforms 1s modified in two different ways to obtain.
exponential approximations. Differential-difference equations
arising from certain Markov processes are solved by direct
application of continued fractions and practical error estimates
are obtained. Approximations of a slightly different form are
then derived for certain generalised hypergecmetric functilons
using those hypergeometric functions that satisfy three-term
recurrence relations and have simple continued fraction expansions.
Error estimates are also given in this case.

The class of corresponding sequence algorithms is then
described for the transformation of power series into continued
fraction form. These algorithms ére shown to have very general
application and only break down if the required continued fraction
does not exist. A continued fraction in two variables is then
shown to exist and its correspondence with suitable double power
series made feasible by the generalisation of the corresponding
sequence methodf A convergence theorem, due to Van Vleck, is
adapted for use with this type of continued fraction and a
comparison is made with Chisholm rational approximants in two

variables. Some of these ideas are further generalised to the

multivariate case.



(ii)
Such corresponding fractions are closely related to otaer
fractions that may be used for point-wise bivariate or multivariate
interpolation to function values known on a mesh of points.
Intei'polation algorithms are described and advantages and

limitations discussed.

The work presented forms a basis for a wide range of further
research and some possible applications in numerical mathematics

are indicated.
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(vii)

NOTATION,

In this thesis I have used various notation conventions
which I will now clarify. Within each chapter equations are
numbered sequentially, prefixed by the number of the chapter.
For example, equation (3.54) is the 5kth equation in Chapter 3.
The same system applies to theorems, tables, figures, etc.
References are generally given by the author's name, followed
by the year of publication. Exceptionally, conference proceedings
are given by the editor's name, followed by the year of the
conference.

The notations 0(z") and 0(z ©) are used extensively.
Without exception, the positive index denotes an error term of
order z" with additional terms in ascending powers, and the
negative index denotes an error of order 2 % with additional
terms in descending powers of z. Various generalisations of the
O-notation are also used but are explained in the text.

Also, when asymptotic expansions are quoted they are
generally used as formal expansions only, so that the symbol "="

is used instead of ".".



INTRODUCTION.

Although rarely in the forefront of mathematical research,
the theory of continued fractions has a long history and contains
contributions by many renowned mathematicians. The origin of the
subject 1s uncertain but Euclid's H.C.F. algorithm is an early
- eXxample of what is essentially a continued fraction method.

Omar Khayam, the 12th Century Persian poet and mathematician,

1s reputed to have expanded irrational square roots in continued
fraction form but the earliest published reference in existence
is probably Bombelli's "L'Algebra', printed in Bologna in 1572;
In the 1Tth Century important work was done by Wallis and also
Brounker, who obtained a continued fraction for .

The function theory of continued fractions is more recent
in origin and Euler, from 1737 onwards, made the first systematic
investigation in a series of papers. Lagrange's method of 1776,
for obtalning continued fraction solutions of differential
equations, was a major landmark and led to many developments in
the next century.

In 1821 Cauchy proposed the use of rational functions as
a means of pointwise interpolation to functions of a single
varisble. This aspect has received little attention, the most
notable work being that of Thiele who developed reciprocal
differences as a means for forming interpolatory continued
fractions and demonstrated the connection between these fractions

and analytic expansions.

Towards the end of the 19th Century there was renewed
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interest in the field. Laguerre investigated the summation

of divergent series in 1879, and published an important paper
on differential equations in 1885. Padé's thesis of 1892
formalised the concept of rational approximation and emphasised
the connection with continued fraction theory; the idea of

Padé approximants is, however, much older. InA1895 Stielt jes
began’to formulate an analytic theory and valuable work was

also contributed by Markov, Pringsheim and others. Van Vleck's
papers on the J-fraction and related topics appeared at the turn
of the century and most of the classical theory had been developed
by 1910.

In 1913 the first modern text book appeared. This was
Perron's "Die Lehre von den Kettenbrlichen" which was last edited
in 1957 but is still not available in the English language.

This is the only major work to include both the arithmetic and
the analytic theories of continued fractions. The only comparable
work on the analytic theory is by Wall (1948) which includes tﬁe
matrix theory of continued fractions, developed in the 1920's,
and considerable contributions by Wall and his associates over
two decades prior to the publication of the book. This is widely
regarded as the standard work in the field although its lack of
clarity is a frequent criticism. At a more elementary level
Wynn's translation of Khovanskii (1963) is a readable account of
some of the basic theory, including some generalisations of
continued fractions first suggested by Euler in 1T7T1.

The post-war development of electronic computation has led

to a revival of interest in continued fractions as a means of
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numerical approximation. Accordingly, there have been many
advances in the area of numerical analysis over the last twenty
years. The well-known guotient-difference algorithm, introduced
by RutishBuser in 1954, is a powerful method that may be used to
find the roots of a polynomial or the eigenvalues of a matrix,
but was first developed for converting a power series to a
continued fraction. There are/ﬁany interesting papers in the
numerical field by Wynn, who introduced the e—-algorithm, and
Gragg, who produced a paper in 1972 surveying the whole fieldf
The work of Baker, Gammel and others since 1961 has led
to a resurgence of interest in Padé approximants, in theoretical
physics in particular. Baker and Gammel (1970) have themselves
edited a survey book of applications in physics and, in the same
field, Graves—Morris has edited the proceedings of a Summer
School and Conference at the University of Kent in 1972.
Forseeing the desirability of approximations to functions
of more than one variable, Chisholm (1973) has shown how Padé
approximants may be generalised to two variables, and it is
expected that this is the direction which much future research
will fake. The generalisation to two variables is not trivial
and, as Chisholm points ou., can be accomplished in various ways.
Bearing in mind the variety of possible applications of such
techniques, it is reasonable to suppose that different methods
of generalisation will be useful in different situations. In
this thesis rational approximants in two variables are obtained

by means of continued fractions. These approximants are shown to
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be different from Chisholm approximants and advantages and
disadvantages of the two methods are discussed. The generalisation
to many variables is also described, and analogous techniques are
developed for rational interpolation in two or more variables.

In the first part of this thesis exponential approximations
are obtained by numericel inversion of Laplace transforms. The
process, in which Laplace transforms are expressed as J-fractions
and the invefsion is performed by a matrix method, was described
by Luke (1962) but the idea is probably much older. In this work
the technique 1s modified in two different ways.

The one-to-one correspondence between a continued fraction
and a set of three-term recurrence relations is of primary
importance throughout this thesis and it is appropriate to begin
by using this correspondence to develop some fundémental results

for a general continued fraction.



PART I

APPLICATIONS IN ONE VARIABLE



CHAPTER 1.
SOME PROPERTIES OF CONTINUED FRACTIONS.
1.1 Continued Fractions and Recurrence Relations.

By "the continued fraction fo” we understand an infinite

expression of the type

. al
£ B b, + a
© 2
b, + a
(1.1)
b, +
3
+ a
n
+
n
which we may write in the more convenient form
a a a
fo - Sl-+ €§_+ E;'+ + €£'+ cee (1.2)
1 2 3 n

where the elements {an} and {bn} are numbers, real or complex.

The nth convergent of £ is

A
e

B

3

a
b+ .u..
n 1 * 2 * b3 ¥ n

(1.3)

ow o)
}._l
OWNF
owﬁm

where An and Bn are respectively called the nth numérator and
nth denominator of the continued fraction. The numbers a and
bn are called the nth partial numerator and nth partial
denominator, and the expression an/bn is called the nth partial

quotient.

The concept of an infinite continued fraction may be
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formalised in various ways. In his standard work on *-e analytic
theory, Wall (1948) introduces a continued fraction in terms of

‘the linear fractional transformations

_ n
t (v) = (1.4)
n
forn =1,2,3, .... . Taking the product of the first n of

these't;ansformations and setting w=0, we get

A
n —
5 =ttt ... tn(O) (1.5)
n
so that
fo = lim tlt2 tn<o) . (1.6)
n-roc

It may be shown by induction that

t_t ‘....t(w) = “np-1" n (1.7)

forn=1,2,3, «... . From (1.7) we can easily obtain the

recurrence relations

A = g A + b A
n n n-2 n n-1 (1.8)
Bn - aan-—2 ¥ ann—l
with initial values AO=O, Al=al and Bo=l, Bl= 1 Using

(1.8) we can verify the determinantal forms for the numerators

2



and denominators,

b2 1 '
Tty P34

-a b
n n
for n = 2,3,4, .... , and
bl 1
-a2 b2 1
B = - b
N a3 3 1 ' (1.10)
L 3 l
-a b
n n
r
for n=1,2,3, .... . Also, writing a, =T a; and using (1.8),
1=1
we can obtain the so—called determinant formula
_ _o\T
Ar+lBr - ArBr+l (-1) Opg1l (1.11)

As an alternative to the fractional transformation
approach we may consider the continued fraction (1.2) to be

the solution fo of the infinite set of recurrence relations

fl = al - blfo )

f, = &I, = byfy

f3 = a3fl - b3f2 . (1.12)
f = alf - b T .

r  “rr-2 r r-1



Dividing the first relation by fo and rearranging, we have

&1
S > (1.13)
o} bl + fl
f
o
and dividing the rth relation by f__q> We have
T a
r-1 _ r
f T b+ f (1.14)
r-2 r r
fr-l
for r = 2,3,4, .... . The results (1.13) and (1.14) lead to
the continued fraction (1.2) for which we now establish an
elementary convergence result. From the first n relations
of (1.12) we obtain, using (1.8),
_ (_+\D
Bf -4A = (-1)f . (1.15)
It Bn 1s non-zero we also have
n
I ~ ﬁg_ - (1) fg . (1.16)
B B
n n

If we now choose the sequences {an} and {bn} in such a way
that there exists a suffix N such that Bn 1s non-zero for
all n >N then, from result (1.16), & sufficient condition
for the continued fraction (1.2) to converge to a solution

of the recurrence relations (1.12) is

Jin fn - 0 (1.17)
n--e Bn - ) -7



More particularly, a sufficient condition for convergence is

11 =
im fn 0 (1.18)
-

provided there exists N, such that ianBnl >0 for n > N.
In this case, if we let aﬁ and bn be functions of a complex
'variable z and if F is the region of the z-plane for which
condition (1.18) holds then we can easily prove the following

theorem:

Theorem 1.1: The continued fraction (1.2) is convergent
in that part of the region F which excludes the zeros

of Bn(z) for n > N, where N is arbitrarily large.

Similar theorems and some of the results in this section
appear in Wall(1948), Perron(1957) and Khovanskii(1963) in
which théy are usually presented 1in a different way. The
convergence of continued fractions formed from recurrence
relations is given an alternative treatment in N8rlund(1924), -
but Theorem 1.1 is more appropriate fof our purposes. In

the remainder of this section we assume that condition (1.18)
holds so that the continued fraction (1.2) converges.

So far we have shown how continued fractions may be
formed from either fractional transformations (1.4) or from
recurrence relations (1.12) and some basic properties have
been derived using both techniques. It is the main theme
of this thesis to show the usefulness of recurrence relations
in continued fraction methods, both as a practical means for
solving problems in Part I, and as a tool for research in

Part II. The simplicity of this approach promotes a deeper



understanding of continued fractions and makes possible their
generalisation to two or more variables. Throughout this
work the sequence {fr} assumes great importance and it shall
be referred to as the corresponding sequence of the continued
fraction (1.2). In Chapter 2. we shall relate {fr} to sequences
of probability functions and hypergeometric functions, and in
Chapter 3. the corresponding sequence will be used as the basis
of a class of aigorithms which will be generalised in Part II.
We now note that the corresponding sequence {fr} is
altered if we perform a similarity transformation on a continued
fraction. The values of the continued fraction (1.2) and all

its convergents remain unchanged under the transformation

) clal C1C2a2 c203a3 cr_lcrar
o) Clbl + 02b2 + c3b3 + ... + crbr e

This i1s equivalent to multiplying the rth equation of the set

r
(1.12) by Y,.» Where Y = Il c., and forming a new corresponding
1=1
‘sequence'{f;} , Where
£r = 1 )
o o '
(1.20)
fr IR fy
for r = 1,2,3, .
Now, from (1.1l4) we have the continued fraction
fn - an+l al’l+2 an+3 (l 21)
fn-l bn+l M bn+2 * bn+3 T

for n = 1,2,3, +-... for which we have the following expression,

(1.19)



using (1.8),

fn
An N fn—l An—l
fo = fn (1.22)
+
Bn f Bn—l
n—1
forn =1,2,3, .... . Subtracting the nth convergent of fo and
using (1.11) and (1.14) we obtain
A (-1)%
ro- 22 = n;l , (1.23)
n B (B + n+l B )
n' n+l T n
n

Hence we have obtained a continued fraction for the truncation
error, Tn(fo), of fo’

n 2
A _ (-1) “n+l an+2Bn ez Znal (1.2L)

T (f)=zf -=2-=
n o o) Bn Ban+l + bn+2 + bn+3 + bn_H+ &

which we shall call the truncation fraction. This result was
essentially obtained by Wall(1948) in connection with matrix
theory. Also, by comparison with (1.16) we have another important

continued fraction,

o . a B a a
= r+l r+2 r r+3 r+i4 (1.25)

r Br+l + br+2 + br+3 + br+h S

The nth denominator of this fraction is Br+n' We denote the

(r) . (o) _ (r) _
| nth numerator by An , where An = An, Al = ar+l and
(r) _ (r) (r)
An = ar+nAn_2 + br+nAn_l (1.26)

for n = 2,3,4, .... . The truncation fraction for fr



1s then
(r) n 2
A -
- n _ (-1) 0L:r+n+lBr ar+n+2Br+n ar+n+3
Tn<fr) =" 3 " B B b
r+n r+n r+n+l * r+n+2 * br+n+3 +
: n fr+n
i.e. Tn(fr) = (=1) Br 3 . (1.27)
r+n

If we now set T = 0 then
- r+n

A alr)
s = _rin s - In
o B ? r B i
r+n r+n
and (1.16) gives
r (r)
r+n _ fg _ (-1) An
B B B B ?
r+n r r r+n

so we can generalise the determinant formula (1.11) to

_ T, (r)
renlr T ArPran T (-1) Ay ' (1.28)

We now introduce a generallsation that has a direct application
in Chapter 2. Still assuming that condition (1.18) is satisfied

we- examine a new set of recurrence relations

fim) - - by fém) )
fém) = % fém) " bp fim)
fém) = ag flm) - by fém)
o (1.29)
PR
0 =ttt T e *
f;f; B am+2fmm) T Pme2 ;ii




in which the term km+l occurs in the (m+l)th relation and a;

is absent unless m = 0. Apart from the term km+l the

coefficients are the coefficients of (1.12) and we have, in

~(0)

particular, k., = a. and f = £ . We will now derive
1 1 r r

results for {fim)} analogous to those we have developed

for {fr}

It is easily proved by induction that

B
(m) _ r-1 _(m)
fr-l = 3 fr (1.30)
T
for r =1,2,3, .... m. In particular, when r =m we
substitute for féfi in the (m+l)th relation of (1.29) and
obtain
plm) oy “mtl plm) (1.31)
m+l  Tm+l B m ’

m

Now, the relation (1.31l) together with the (m+2)th, (m+3)th,
(m+4)th, .... relations of the set (1.29) form a set

analogous to (1.12) so that we obtaln the continued fraction

(m) km+l G2 Zmt3

4 = 7B \+ D + b + (1.32)

n ( m+l> m+2 m+3 Tt
B
m

or, using (1.19),
f(m) B km+le am+2Bm ®n+3 (1.33)
m Bm+l + bm+2 + bm+3 + v
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In fact we have

k
+1

fl(nm) = am B.f - (1.34)
m+1

By repeated application of (1.30) to (1.3L4) we‘get

(m) ner Fmil _
£ = (1) " ——=Bf (1.35)
m+1
for r <m . Although the continued fraction (1.33) is of a more

convenient form, we must be careful to use (1.32) when considering

(m)

{fr }, for r >m , as the corresponding sequence of f&m)
Applying result (1.25) we get
: k
pml o mHl g, (1.36)
r a mr

m+1

for r>m.

For results (1.35) and (1.36) we have the truncation

fractions
k
- +
? (¢®)) = (-T2l p g (r)
nr o rn " m
m+1
= (-)mRTT il BB_ g (1.37)
m+1 m+n
for r<m , and
+
r () = By (r)
n m+1
k £ ,
= (-yt Bpp IO (1.38)
+1 r+n

for r>m.



Finally, analogous to (1.19), we can transform the set
of relations (1.29) to a more convenient form, constructing

a new corresponding sequence {f<m) } where

r
- -
f(Om) _ ff)m)
(a) (a) (1.39)
m)” m
f., R S
nd .
and a new term km+l where
o+l - TYmrlfmel (1.%0)

In this section we have discussed continued fractions
in a general way, without reference to particular types of
fraction. in the remainder of this chapter we shall examine
continued fractions that represent or approximate to functions

of a single variable.
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1.2 Corresponding Fractions.

In this section we shall describe various well-studied
continued fractions which represent a function fo(z) formally

defined by the power series expansion

- 2
fo(z) = ag tagz taz o+, (1.L41)
convergent for lz[ < Rl » Or by the expansion
b b b
= 0, L, 2 ’
fo(z) = S itk PR (1.42)
z z z

convergent for lzl > R2 . We shall assume that the coefficients
'{an} and.{bn} are complex, although in most applications they
will be real numbers. We also note that it is not always
necessary that the series (1.41) and (1.42) converge for a
valid continued fraction expansion to exist, as may be seen

in  examples given by Wall(1948). The continued fractions

studied in this section are all of the form

(2)  uy(z)  u(a)
Plz) = 2o 2 u3(z (1.43)

0 vl(z) * v,

where u and v, are polynomials in the complex variable z,
so that the nth convergent Uh(z)/Vh(z) is a rational approximation
to f (z)
o
For convenience we now define corresponding fractions
in a slightiy more general way than most definitions given

in the literature.

‘The continued fraction (1.43) is said to correspond to



the power series (1.41) if

fo(z) - Vh(z) -

for n = 1,2,3, . where {o(n)} is a non-decreasing sequence

of positive integers such that o(n) o as n +« . For the
continued fraction (1.43) to correspdnd to the series (1.42)
we use the definition (1.44), except that {o(n)} must be a
non-increasing sequence of negative integers such that

o(n) > ~» as n -+ » . We now proceed to list various types
of corresponding fraction.

The continued fraction

, (1.44)

e = CyZ  C,Z c z
Fo(z) ST 4+ 1 o+ 1 o+ oeeee 1+ o (lfMS)
corresponds to the series (1.41) if the coefficients {cn}
are chosen such that
Uh(z) a
- = (1.46
fO(Z) Vn(z) O(Z ) \ )

ao. al an al a2 an+1
a8 8 . n+l &y 83 &n+0
H2n = | iieeees and, H2n+l S i
R ! @on Ghel Zneo Son+l
(1.47)

are non-zero Ic. -

0,1,2,3,

Now, adapting a theorem




1k
given by Khovanskii (1963), if the fraction (1.L5) converges
uwniformly over a domain D including |z| < Rl then 1t
converges to the function fo(z) inside |z| < R. so that

1

Fo(z) may be considered as an analytic continuation of fo(z)
into D. Consequently in many applications, particularly in
Chapter 3., it is convenient and not ambiguous to use the
notation fo(z) to refer to a power series or to one of its
corresponding fractions.

Now, replacing z by 1/z in (1.45) and using the

transformation (1.19) we obtain a continued fraction of

the form

which corresponds to the series (1.42) if the coefficients

{ch} are chosen such that

o(z % | (1.149)

The fraction (1.48) was studied by Stieltjes (1894) and is
consequently called an S—fraction. Because of the similarity
in structure we shall élso refer to the fractica (1.45) as
an S—-fraction.

As stated above, the S—fraction (1.45) does not exist
if any of the Hankel determinants (1.47) is zero. A more

general fraction which always exists and corresponds to the
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series (1.41) is

0{.1 0L2
c

lz CQZ cnZ
+ 1 + 1 F oee.e. + 1 e

c:O
folz) = 1

(1.50)

if a, # 0, where the exponents {an} are positive integers.
If the series represents a rational function then the fraction
terminates, and vice versa. Wall (1948) called (1.50) a

C-fraction. An example of a C-fraction is

5 2 e 2
12. 4 j00Z
1 + 1 P

- L z
cos z = T 5 (1.51)
in which @ = 2 forn=1,2,3, ... . Alternatively, we
" could consider (1.51) to be an S-fraction in the variable z2.

We now consider the continued fraction

Py Py b

fo(z) - q *z + 4 +Z 4+ ... Q. T2+ oL, (1.52)

which corresponds to the series (1.42) if {pn} and'{qn} are

chosen such that

(1.53)

The fraction (1.52) is called a J-fraction because of its
connection with J-forms. It 1s said to be the even part

of the S—-fraction (i.h8) because the nth convergent of (1.52)
is identical to the (2n)th convergent of (1.48). The
J-fraction has many interesting properties, some of which
will be exploited in Chaapter 2. In particular, if {pn}

and'{qn} are real and PysP3sP)s +--- &TE all negative,
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then the numerators and denominators are each sequences of
orthogonal polynomials so that the zeros and poles of the

convergents are all real.

The even part of (1.45) is also called a J-fraction and

has the form

2 2 2
£ (z)‘ = Py Py P4z Pp®
+
o 1 9,2 + l+q22 + l+q3z + ...t l+qnz + ...,

(1.54)

A corresponding fraction that always exists and is
always non-terminating was first suggested by Thron (19k48).

| This has the form

f(z)=ao+dz+ Z Z Z

© 1+d.z + 143 2 + e, +14d 2 + ....
1 2 n .

(1.55)

and i1s called a T-fraction. The convergents satisfy (1.46) if
. .
we take Ul/Vl & doz
Finally, Murphy(1971) constructed a continued fraction
that corresponds simultaneously to power series of the form
(1.41) and (1.42). This was further studied by McCabe and

Murphy (197ﬁ) and will be referred to as an M-fraction. This

has the form

D P, 2 P,z P2

fo(z) = 1rqz + 1+q.2 + 14q 2 + cooo + 14q 2 + ...,

(1.56)

where the coefficients {pn} and {qn} are chosen such that



conditions (1.46) and (1.49) are both satisfied. We write

- O(zn,z—n—l)

In Chapter 3. we will derive a class of algorithms
applicable to S-, C-,'J—, T- and M-fractions and to any
other corresponding fractions of similar type. Therefore,
it is to our advantage to establish a general expression
for a corresponding fraction that satisfies (1.44), having
_ all the fractions described above as particular cases. In
order to do this.we make the following observations about

corresponding fractions:

(i)  The two forms of the S-fraction and the
J-fraction are equivalent so that, without
loss of generality, we need only consider
fractions that correspond to series of the

form (1.41).
(ii) All the partial numerators are monomials.

(iii) The T-fraction has "redundant" terms, i.e.
terms that do not directly match up with

terms of the series (1.41).

(iv) If we only consider correspondence with
the series (1.41), then the M-fraction

also has "redundant" teius.

Observation (ii) requires further explanation as it is a

major limitation on the form that a corresponding fraction

(1.57)



can take. We consider the formal expansion

2 7 po h
&% = l+z 3z (1- %2) %zg(1+ 52) %$z2(1—1$§z)
1 - 1 - 1 - 1 -
(1.58)
which is valid at least near z =0 . DNow, e® is a transcendental

function and has no zeros in the finite z-plane, whereas the

continued fraction (1.58) is zero at z = - and terminates at
the zeros of the partial numerators. Therefore, at z = +:7f- ,—% ’
+1365

D6 e the fraction represents a rational function and does
not converge to e®. As e” has no singularities in the finite
z-plane the expansion (1.58) is unsatisfactory and, inAgeneral,
any formél corresponding fraction whose partial numerators are
not monomials will be unsatisfactory for the same reason.

Bearing in mind (i) - (iv), above, we shall now examine
the properties of the continued fraction

pl p2Z p3Z P 2
ql(Z) + qg(z) + q3(2) ...+ qn(z)

fO(Z) =

(1.59)

where {v(n)} is a sequence of positive integers and qn(z) is a
polynomial of degree u(n). [In all the fractions listed above
u(n) =0 or 1.] Without loss of generality, we normalise (1.59)
by setting qn(O) =1 and we choose p_ # 0 for all n. Now,
there are u(n) % 1 coefficients in the nth partial quotient
which must be matched up to v(n) terms of the power series (1.41),

so that the number A(n) of "redundant" terms in the nth partial

quotient is given by

A(n) = u(n) - vin) +1 . (1.60)
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If Pn(z)/Qn(z) is the nth convergent of (1.59) then we must

prove that
P (z)
_.n _ a(n) N
fO(Z) Q (Z) O(Z ) (1.61)
n
where
n
oln) = ¥ v(i) (1.62)
i=1
Now (1.61) may be written
Ly _ _o(n)
q (z)f (z) P (z) z s (z) (1.63)
where Sn(z) has & power series representation of the form
_ (n) (n) (n) 2 )
Sn(z) = o(,o +oz,l z+oz2 zZ + (.L 6}4)
The identity (1.63) may be proved by induction. 'We first
assume that (1.63) holds for both n-1 and n, and using (1.8)
we have
Q - =z\’(n)p (Q .£f-P ) +q -(Qf-P)
n+l"o n+l n+l' n-l1"o n-1 n+l' no n
(1.65)
By our assumption we have
v(n) o(n-1) o(n)
Qn+lfo Pn+l z pn+lZ Sn—l qn+1Z Sn
Using (1.62) we get
Q .f -P = zc(n)(p S . o+ s ) . (1.66)
n+l o n+l n+l n-1 qn+l n
Cleariy, we can choose p and the first v(n+l)-1 coefficients

n+l
of qn+l(z) so that the first v{n+l) terms of (pn+lsn—l + qn+lsn)

'vanish. We can then write (1.66) in the form

QO £ -7 _ zo(n+l)S (1.67)

n+l o n+l n+l
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so (1.63) holds for n+l provided that it holds for n-1 and n.
If we choose ¢(0) = O then the result holds trivially for
n =0 so that to complete the proofvwe need only verify (1.63)

for n =1 . In this case we have

Qf, - Py = qf -p . (1.68)

O

Once again we can choose the coefficients so that the first
v(1l) terms vanish. Thus we have proved that the successive
convergents of the continued fraction (1.59) correspond to
o(1),0(2),0(3), .... terms of the power series (1.h41).

Clearly, the S- énd J-fractions are particulaf cases
of (1.59) and the C—fraction is the case when all the
coefficients of qn(z) are zero. In Chapter 3. we will show
that the M-fraction can be treated as a special case. Also,
the T-fraction can be adjusted to look like (1.59) but,
because of its essentially different structure, it will be
treated separately.

In Chapter 3. we will derive algorithms for converting
power series to their corresponding fractions. By this means
we could, for example, obtain a continued fraction solution
to a differential eéuation by first solving the equation in

series and then applying the appropriate algorithm.

Corresponding fractions usually converge more quickly than
power series and often provide an analytic continuation
outside the domain of convergence of the series. Consequently,
continued fraction solutions of differential equations are
often useful when obtained in this way. However, it is worth

noting that, for a certain class of differential equationms,



continued fraction solutions may be obtained directly by a
method due to Lagrange. We consider the general Riceati

equation

o w? = R w2 + w o+ §
o 0 o O Yo o) o)

in which wo(z) 1s the dependent variable and G>B Y26, ave

polynomials in z. It may be shown that, for suitable

elements‘{un} and'{vh} , the suwstitutions

u
n+l

n v + W
L+l n+l

lead to_é sequence of Riccati equations

- 2
oW = Bw_ +yw + 8
nn nn nn n

for n=0,1,2,3, .... . Recursions may be set up between
the coefficients of the nth and (n-1)th equations (1.71)

and a continued fraction

22
..l‘+
v, +

=

|
5 P
o |

can be Tound, often with the coefficients known in closed
form. Khovanskii (1963) has expanded many elementary
functions by this method and Wynn (196k4) hints, with some

justification, that a function has a simple continued

~fraction expansion only if it satisfies a Riccati equation.

Althoﬁgh Wynn does not define his meaning of "simple", we
can treat this as a useful qualitative remark. However,

Lagrange's method is still applicable to the more general

21

(1.69)

(1.70)

(1.71)

(1.72)
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differential equation

+o 'w_ +oa W+ + o ‘W) w’
o o o o o o
_ o) (1) (2) 2 (n+2) n+2
= Bo + 50 v + Bo LN + ... + BO W , (1.73)

(r)-

where o ,Bér) are polynomials iIn z, except that the recursions

are more complicated than in the case of (1.69).
In the next section we discuss continued fractions that
are also functions of a single variable, but which are defined

in an entirely different way.
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1.3 Interpolatory Fractions.

We now consider continued fractions as a means of pointwise

"interpolation of a function F(x), given at the (n+l) abscissae

X 3XyaXps cees X Such a fraction is finite and has the form
X-X X—X X-X
_ 0 1 _ n-1
£(x) = s * c + c + ... + cC > (1.74)
1 2 - n

f(x ) = Flx ) . (1.75)

We define a sequence of functions {Vf(x)} by

vO(X) = f(x) , h
% (1.76)
v (x) = v.(x) +
T r Vr+l( )
so that
c = v.(x) (1.77)
r r oy
for r=0,1,2, .... n . From (1.76) we obtain the inverse
difference scheme
x =X,
' = (1.78)
vr+l(x) v (x) - Vr(x&)
from which, using (1.75) and (1.77), we may compute the
coefficients'{cr} by forming the table below.
X, F(xo) = vo(xo) =c_
X, F(xl) = vo(xl) vi(xl) = ¢
X, F(x2) = v _(x,) vl(xz) v2(x2) = ¢,
x  Flx ) =v(x) v, (x ) v.(x) . . .. v(x)

e

(1.79)
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Although the formyla (1.7hk) is not a "best" approximation
in any mathematical sense 1t often provides a much more
accurate means of interpolation than the (n+l)-point Lagrange
formula. Bearing in mind that we would normelly interpolate
to values of a transcendental function, we offer two possible
explanations of the superiority of rational over polynomial
interpolation. Firstly, all the derivatives of a rational
function exist, are piecewise continuous and are not identically
zero. Therefore, between their poles, rational functions are
"smooth" and appear to more nearly imitate the behaviour of
transcendental functions than do polynomials, whose derivatives
eventually vanish. Secondly, polynomials have no finite
singularities and cannot be used to represent such phenomena.
In practice, rational interpolation can be used effectively
near a singularity when polynomial interpolation is inapplicable.

Although continued fraction interpolation has been shown
to be useful empirically, much research has still to be done to
 establish conditions under which such‘inﬁerpolation is valid.
~ Mayers (1965) gives an account of various computational
difficulties that mey arise and which complicate the problem.
In Part II we shall generalise interpolatory fractionsito two
or more variables and, as we expect similar difficulties in
“the more general case, we now glve some examples of the
breakdown of the single variable method.

],[xl,F(x )1, o.n. ‘[xn,F(xn)]

A set of points [xo,F(x 1

o
is said to be wnattainable by the continued fraction (1.7Th4)
ir f(x ) # F(xs) for at least one s ¢ {0,1,2, .... n}

s

when the coefficients {cr} nave been calculated using the
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inverse differences (1.78). As an example we considcr a

- function F(x) given at 3 points

A
b
!

a H

| 3\
4% 4 (1.80)
F(x2) = b .

Using inverse differences we obtain the interpolatory fraction

A
"
I

X = X X = X
f(x) = a + —O —L (1.81)

’ Xy X + b - a
: b - a
Evaluating this as a rational function and cancelling we get
f(x) = b (1.82)

which clearly does not satisfy (1.80).

Another difficulty is that of unwanted poles in the
domain of interpolation. This can arise in various ways, most
notably if x is real and the function values have a large
number of changes of sign. If the continued fraction (1.74) is
written as a rational function An(x)/Bn(x) then Ah(x) has at
most k changes of sign, where k = 3n for n even and k = 3(n+l)
for n odd. Consequently, if the function values {F(Xr)} have
.‘more than k changes of sign then the continued fraction can
only account for this by changing sign at zeros of Bn(x) inside
the domain of interpolation. However, unwanted poles may also
occur when the function has k or less changes of sign. Inaccurcte
or insufficient data points is usually the cause and most
well-behaved functions can be interpolated if enough accurate
values are known.

The example (1.80) of unattainable points may be dealt

with by increasing the number of data points. A similar example,



however, indicates a possible failure of inverse differences

that is easily overcome. We consider a function F(x) given

at n points such that

We see that the first inverse difference

X.— X

(X ) = S - = ¢
11 F(xl)—F(XO)

26

(1.83)

(1.8L)

does not exist. However, if we rearrange the points to start

with [xk,F(xk)] such that

F(xk) # F(xr)

for all r ¥ k then the first column of inverse differences

will all exist, although the scheme r.y again fail in a

subsequent colum.

Clearly, the inverse difference is not a symmetric
function of its arguments. A symmetric scheme for computing
the coefficients {cr} of the interpolatory fraction (1.T4)
may be obtained Dby using Thiele's reciprocal differences

[see Mayers (1965)] and is unaffected by the order of the

points 1in the difference table.

In Chapter 6. we will show how inverse differences may
be generalised to two or more variables in order to forn

continued fractions that interpolate on a mesh of points.

(1.85)
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CHAPTER 2.

THE LAPLACE TRANSFORM METHOD.

In this chapter we investigate some applications of the
results of Section 1.1 which were derived from sets of recurrence
relations. In each case Laplace transforms are expressed as
J-fractions whose convergents are 1inverted to form
exponential approximations. First we examine a problem arising
in Markov processes in which three-term recurrence relations
occur naturally, and then we adapt the technique to deal with

hypergeometric functions which also satisfy three-term relations.

2.1 Application to General Linear Birth-Death Processes.

A birth—death process is a Markov process in which a
population, initially of size m, changes to size r after time t
by births and deaths. We assume that in an interval (t,t+6t)
eaéh individual in the population has a probability A6t + O{(St)Q}
of giving birth to a new individual and a probability urét + O{(at)g}
of dying. The parameters Ar and M. are respectively called
the birth-rate and death-rate when the population has size r,
and we denote by pr(t) the probability that the population has
size r at time t. By considering pr(t+6t) in terms of pr_l(t),

p (t) and p +l(t) the following set of differential-difference
r r

equations may be obtained:

po(t) = - p (£) + w p (1) 1
o) o "o 1-°1 (2.1)
p (t) = ApoqPreg(8) = O+ )p (8) + u o . (¢) J

for r=1,2,3, .... where O g_pr(t) < 1 and z p”(t) = 1,

r=o



subject to the initial conditions

p.(0) = & (2.2)

for some m ¢ {0,1,2, .... } . We note that A, >0 for
r =0,1,2, .... and uo = 0, M. >0 for r=1,2,3,

and we define

r

i v = .H “i H (2-3)
o 1=1

o
i

I K
>
=

and L_l = Mo = 1 . For details of the derivation of
equations (2.1) and a discussion of birth-death processes
- see Saaty (1961) or Cox and Miller (1965).

The set of equations (2.1) has been solved analytically,
for a few particular choices of'{xr} and{pr}, by a generating
function method. [See Cox and Miller (1965).] However, we
shall solve theAequations numerically using a method that is
well-known in matrix form in the case r =m = 0 . The
continued fraction approach enables us to find the solutions
for other vaiués of’r and m, and fqr any sets of parameters

AL} and {u ]

We denote the Laplace transform of pr(t) by P_(s) where

_a

P (s) = fm e*Stp (t) at . (2.4)
.20

r r

Laplace transforming (2.1) and rearranging we have

§ A _+s
‘0 ,m O

P, = - -\ - P,

1 ul ul o}

(2.5)

A A 4y +s $

> = _-r=lp _ (._.;a_;z__ p - LaM \

r+l Hppy T4 Hrsl T Mpyy )



The set (2.5) is now of the form (1.29). However, to convert
the resultant continued fraction to a convenient form we apply
the transformations (1.39) and (1.L40) using Yy = (—l)er

The set (2.5) then becomes

(m) - \_D(m) ‘\
fl - ao,m (AO+S}*O
(m) ( (2.6)
m _ m) _ (m)
fr+l >‘r-l”rfr—l (Ar+ur+s)fr + l)mMﬁar,m
where P = f(m) and
7o o -
_ (0T (w)
Pr T M fr (2.7)
r
for r =1,2,3, .... . This leads to the continued fraction
. . Aok A up Apm1 M (2.8)
o Ao+s - Al+ul+s - A2+p2+s = eea. - Ar+ur+s ~ e
If we now let c = —l/pr and use the transformation (1.19)
then, from (1.20) and (2.7), the sequence {Pr} Lecomes the
corresponding sequence of a continued fraction equal to fo.
oo : o0
Since gy p (t) =1 , we get from (2.4) that % Pr(s) = 1/s
r=0 T . Tr=0
which implies that
lim Pr(s) = 0 / (2.9)

I

except when s=0. Hence the region F of theorem 1.1 is tle
s-plane, excluding the poilnt s=0, and we may apply the theorem

if we can find the positions of the zeros of the denominators



of the continued fraction (2.8). From (:.10) we have

A_ts 1
o
XO]..ll : )\l+pl+s 1
B = MM Aptugts L (2.10)
~n
1
zn—EUn—l Xn—l+“n—l+s
which is clearly zero when —s 1s an eigenvalue of the matrix
A 1
o
Aok Aty 1
c, = Ay Aptu, L (2.11)
1
An—2un—l >‘n-—.’i.-i.un—l
This matrix is quasi-symmetric and may be transformed into a
real symmetric matrix by a similarity transformation
-1
E = DC D A (2.12)
n n n'n
vhere the matrix D = dlag{l,%LoMl,/LlMg, e %Ln—2Mh—l}
The matrix so formed is
- -
— ,
Ao -Aoul
YAHL A THp YA,
Yapu. Atu. Y
E = Ako Apty YAgHs . (2.13)
YA p-oMn-1
T L

4

The matrix E 1s a real symmeiric positive definite tridiec-cnal
n
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matrix with non-zero subdiagonal elements. Because of these
properties the eigenvalues are real, positive and‘distinct.

[See Wilkinson (1965).] gence Bn(s) has only simple zeros
which all lie on the negative real axis in the s-plane and,
from theorem 1.1, we can state that the continued fraction (2.8)
converges in the s-plane cut from O to « along the negative real
axis. The theory of positive definite continued fractioms,

as given by Wall (19h8), is sufficient to prove that the zeros
of Bn(s) are real and distinct, but we have used matrix theory
in order to show that the zeros are also negative. We are now
justified in using the results (1.35) and (1.36) to give the
following expressions for Pr(s):

_ (= |
P = N Brf (2.14)

T
p o= s g (2.15)
b L M m™>r

m—-1r

for r >m . Writing P for the nth convergent of Pr(s)

-]

and using (1.25) we have

m A
p = i-(—::%——B = (2.16)
L1 m-1"r T Srin
for r <m , and
r
R C <Dl Aﬁ | (2.17)
r,n LmrlMi w3

for r >m . We are aiso justified in inverting the g-trensform
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expressions (2.16) and (2.17) since all the singularities of P_ 0
! “ 2

lie to the left of the imaginary axis in the s-plane. In general

we consider a convergent K(s) such that

K(s) = -lgi%)— (2.18)

n

where Bh(s) is a denominator polynomial of order n in s and = .3)
is the numerator polynomial which is of lower order. I we
choose TZys7Egs seee TZ to be the real, negative and distinct
roots of Bn(s) then we can write

n

Bn(s) = i£1(5+zi) . (2.19)

Since the roots are distinct we may write K(s) in the partial

fraction form

now.
K(s) = T (2.20)
. '1=l 1
where w505, ceee w ~are constants given Dby
N(-2z.)
g w., = — (2.21)
1 B (—Z.)
n' i
and where B;(-Zi) is computed from
n
B (-z.) = 1T (z.-z.) . (2.22)
n' “i s=1 0 i
i#J
Inverting the Laplace transform, we get
n
- - .'t
L7x(s) = rwe ™ (2.23)
1=1

which is the form in which the probabilities, pr(t), are computed.



To greatly reduce the required computation, since we only

require the values of Air) at the roots of Br+n’ we appeal to
the generalised determinant formula (1.28). From this we get

that, at a root of Br

Hence we need only compute the roots of the numerators and

denominators of the continued fraction (2.8) in order to compute

the probabilities, pr(t), for any value of m. The roots of the

numerators are also computed as eigenvalues using (1.9).

From (1.37) and (1.38) we have the truncation results

) m+in

A B . (2.24)

(-1 m+n :
Tn(Pr) T L M r Bm B (2.25)

m-1r m+n

for r <m , and
+n
(—l)r r+n
= A —_ .2

Tn(Pr) L M Br Bm B (2.26)

m-lr r+n

for r >m.
" We will now derive estimates of the truncation errors
in the probabilities, pr(t), computed from results (2.16) end

(2.17). We observe from (2.8) that for ls| large,

Bn( s) = ()\O+s) ( >‘1+“1+S)-( >\2+U2+S) e (An_l'*'un_l"'s)
+ 0(s™7%) (2.27)
for n = 2,3,4, .... and also, Irom (1.25),
(-1)"L__.»
;= n—l n (2.26)

n ' -
(Ao+s)(kl+ul+s) cee (An+un+b) + 0(s

for lSl la‘rge and n = 13293, I We set GO =0 and



define

n-1
o, = At I (Ar + ur) (2.29)
r=1

for n >1 so that, for |s| large, (2.25) may be written

1

P - p - m+n—le+n { 1 - cm+n+cm+n+l—cm—cr <
r r,n LM 2n+m-r+1 + 0(S2)}
m-1"r S s
' (2.30)
for r <m . Inverting, we obtain, for t small,
o (t) - il_l{P } = Lm+n--le+n t2n+m—r
T r,n M (2n+m-r)!
m~-1'r
o, _+*o -0_-0
{ 1 - m+tn “min+l m Tr £ + O(tg)}
) 2n+m—r+1
(2.31)
for  r <m . In (2.31) the dominant term provides an upper bound
which 1s only a useful estimate if n is large. However, we
require a useful error estimate for moderate n, not necessarily
an error bound. Accordingly, we choose a function which
formally agrees with the first two terms of (2.31), is unbounded
and 1s easy to compute. The chosen estimate is
+m-
(t) _ {,—l{P } = Lm+n"le+n t2n n-r
P r,n LM_er (2n+m-r) !
$ { 1 2
1 ( + )2n+m"'r"l O(t ) }
Py min
(2.32)
for r < m where
o_. _+0 -0_-0
+n min+l m r
P = == : (2.33)

r,mn (2n+m-r+l) (2n+m-r-1)



w
\n

From (2.26) we also have

L -
b (%) - ;ifl{P y = r+n—er+n t2n+r m
r M - !
r,n melir (2n+r-m) !
1
o .
a (1+ gzl " o
P, r+n

(2.3k4)

for r >m.

Given a value of n and a sufficiently small error e ae
results (2.32) and (2.34) may be used to estimate a range of t
for which this error 1s not exceeded. A larger value of ¢
could give a very pessimistic estimate for the range of t.

We now consider four examples of birth—death models.

The interpretation of the first three will be found in Cox and
Miller (1965), who solve the equations (2.1) for models (i)

and (ii) analytically by a generating function method.

(i) An immigration-death process with A, = 0.2 and
W, = O.4r for r=20,1,2,3, .... . For this
model the probabilities tend to stcady state
values. The results are eveluated in the two

cases when the initial population size m is O

and 1.

(ii) An immigration-emigration process (Erlang's model)

with Ar =0.3 for r=0,1,2,3, ... , u, = v
and M = 0.1 for r=1,2,3, .... . In this
_case there are no steady state values. e

choose m =0 .



(1ii) A three-server queueing model with A
_ r

for r =20,1,2,3,
My = W, = 0.4 and . = 0.6 for
This represents a queueing system
number of servers is dependent on

The results are evaluated when n

when m = 2.

in whicn the
gueue size.

= 0 and

(iv) An arbitrary process with A, = 0.3 and y = 0.1vx

for r=0,1,2,3, .... . We choose m =0 .

For - zscribed errors and selected values of n estimates

N

have been obtained for the range of t from formulae (2.32) and

" (2.34). These appear in Table 2.1 overleaf, in which the

notation (-k) 1is used to denote lO_k.



TABLE 2.1

Estimated

Estimated

max{t)

Error

max(t)

Error

m

r

n

Model

M~ o M~ N g N0 N0 T O AN
e (@] N O — O O W ™M .

. . . = (qV]
M NN F g O M~ N0 ™M g

N TN TN TN N N TN TS TN N

N e ~— N N ~— — N’ S—

— 3 \O O I M O \O (@)
- O WOw M~ M >~ = A .

. . ™M
A M N NN M o g e

P S S e N N . T Tt T T o T e ]

L.80
6.55
8.37
10

12.3
17.0
19.6
22.0

30.2

31.2

P S . |

~—r p— ~— " ~—t ~—t ~— S~

O O N M~ 4 O v
O ™M M~ M~ N\ . .

. AN F N0
M F NN \O O v -

L . L ~— S

3
3
3
L
L
>
>
>

(ii)

S~

10
10

2k .0

OO M N MmO O O
= O W A M~ o M
M 4+ O O O O O

P e T T T e e e N

PN N L N i e .

2.09
2.91
L.25
L.07

55
6.20
6.81

—

9.50

P I T Y

(1i1)

10
10




(W)
QW)

TABLE 2.1 (continued)

Estimated Estimated

Model n r m Error nax(t) Error max(t)
(iv) 3 0 o0 (-5) 2.54 (-4) L.okL
3 0 (-5) 3.33 (-L) 5.01

L 0 0 (~5) 5.38 (-4) 7.88

L o1 0 (-5) 6.27 (L) 8.86

5 0 0 (-5) 8.99 (-4) 12.5

5 1 0 (-5) 9.87 (=k) 13.L

5> 5 0 (-8) 8.23 (-6) 12.k

10 0 o (-8) 19.3 (-6) 27.7

10 1 O (-8) 19.9 (-6) 28.1

0 5 0 (-8) 24 .8 (-5) 33.6

By recbmputation with larger n, the range estimates
in Table 2.1 were all found to be reasonable, though not
always lower bounds on the actual range for the chosen accuracy.
As it is impractical to list a complete set of results
for any model, a selection of computed values is given in

Tables 2.2 - 2.7 for various choices of n, r and m.



TABLE 2.2

(@8
)

Model (i), m = O.
t n po(t) p1(t) p2(t) p5(t)
0 3 1.0 -0.2(=-10) -0.2(-11) -0.3(-12) -0.5(=14)
1 3 0.8L48027 0.13978896 0.11521411(-1) 0.8600868 (-6)
L 0.84802939 0.13978915 0.11521420(-1) 0.86008701(-6)
5  0.84802940 0.13978915 0.11521420(-1) 0.86008701(-6)
2 3 0.75924 0.209057 0.287811 1) 0.1001268 (-4)
L 0.7593162 0.20906688 0.28781779(-1) 0.10012746(~L)
> 0.75931730 0.20906702 0.28781789(-1) 0.10012747(-L4)
6 0.75931732 0.20906703 0.28781789(-1) 0.10012747(-L)
5 3 0.6k456 0.2800 0.60596 1) 0.81672  (=k)
5  0.648985 0.2805796 0.6065200 (-1) 0.81686034(-4)
7T  0.64899363 0.28058095 0.60652112(-1) 0.81686052(-L)
8  0.6489936L 0.28058095 0.60652112(=1) 0.81686052(-k)
10 3 0.587 0.2969 0.73k3 1) 0.14525  (-3)
6 0.61209k 0.300L4480 0.7373859 (=1) 0.1k4533093(~3)
8 0.61211062 0.300L4L973 0.73736701(-1) 0.14533094(-3)
9 0.61211067 0.300L4974 0.73736702(=1) 0.1453309L(-3)
200 5  0.6050 0.30310 0.757732 1) 0.15771204(=-3)
8 0.6066316 0.30321k4k41 0.75778182(-1) 0.15771239(-3)
9  0.60663236 0.303214L5 0.75778183(-1) 0.15771239(-3)
10 0.60663240 0.303214k5 0.75778183(=1) 0.15771239(-3)




TABLE 2.3

%0

t n py(t) p,(t) P, (t) 93(t)
0 3 =0.3(-11) 1.0 =0.2(=10) =0.1(-11) -0.2(-12) .
1 3  0.2795779 0.61453:10 0.975015 (-1) 0.7931735 (-2)
L 0.27957829 0.61453675 0.97501846(-1) 0.79317470(-2)
5 0.27957829 0.61453678 0.97501848(-1) 0.79317470(-2)
2 3 0.41811 0.45617 0.109778 0.143864 (-1)
L 0.4181338 0.4563078 0.10978897 0.14387105(-1)
5  0.41813L405 0.45631038 0.10978917 0.14387116(-1)
6 0.41813L405 0.456310k2 0.10978917 0.14387116(=1)
5 3 0.5600 0.328 0.9017 (-1) 0.15747  (=1)
6 0.56116181 0.3304398 0.90416215(=1) 0.15766078(-1)
7 0.56116190 0.330L44018 0.90L416243(-1) 0.15766080(-1)
8 0.56116190 0.330L44019 0.904162L4(=1) 0.315766080(-1)
10 5 0.600845 0.306090 0.778850 {-1) 0.1319372 (=1)
8 0.60089946 0.306157S9 0.77889095(-1) 0.13193929(-1)
9  0.6008994T 0.30615800 0.77889096(-1) 0.13193929(-1)
20- 6  0.606410 0.303303 0.7585L05 (=1) 0.12646632(-1)
8 0.60642882 0.30331618 0.7585L478(-1) 0.126L66L6(-1)
9 .o.6o6h289o 0.30331623 0.75854L480(~-1) ©.12646646(=1)




TARLE 2.k

Model (ii), m = O.

t n po(t) p1(t) p2(t) P5(t)
0O 3 1.0 -0.7(-11)  =0.9(-11) ~0.1(-10) -0.2(-10)
1 3 0.75162213 0.2135907h 0.31428619(=1) 0.13862618(-L)
L 0.75162216 0.21359074 0.31428619(-1) 0.13862618(-x)
2 3 0.5802518 o.3i025888 0.89143932 0.3063344k2(-3)
L 0.58025298 0.31025898 0.89143939 0.30633438(-3)
5  0.58025298 0.31025898 0.89143939 0.30633440(-3)
5 3 ‘0.303ou 0.330882 0.2164312 0.1036846L(~1)
L 0.3031410 0.33090176 0.21643475 0.10368476(-1)
5 -0.3031k223 0.33090195 0.21643478 0.10368476(-1)
6 0.3031k4224 0.33090195 0.21643478 0.10368476(-1)
10 3 0.1327. 0.2109 0.22840 0.66638 (-1)
5 0.1339851 0.2113689 0.22856145 0.666L41725(-1)
6 0.13398693 0.21136930 0.22856156 0.66641726(-1)
T  0.13398697 0.21136931 0.22856156 C.666L1726(-1)
20 5  0.ko07 1) 0.78029 (-1) 0.1177¢53 0.1L25965
T 0.401489 1) 0.7806572 (-1) 0.11787223 0. 14259765
8 0.40149257(-1) 0.780658%3(-1) 0.11781227 0.14259765
9  0.40149273(-1) 0.780658L8(-1) 0.11781227 0.1L259765




TABLE 2.5 Lo
Model (iii), m = O.
.t n py(t) p,(t). p,(t) 95(t)
0 3 1.0 =0.7(=11) -0.5(-11) -0.1(-10) -6.9(=1%)
1 3 0.5802518 0.3102908 0.8994949 (-1) 0.27308603(-2)
4 0.58025407 0.31029118 0.89949567(-1) 0.27305506(-3)
5 0.58025L08 0.31029118 0.89949567(-1) 0.27308607(-3)
2 3 0.36964 0.346330 0.193443 0.3940806 (-2)
L 0.369707L 0.3463505 0.19345128 0.39408309(-2)
5 0.369708L48 0.3L4635089 0.19345140 0.39406311(-2)
. 6 - 0.36970849 0.34635089 0.193451L0 0.39408311(-2)
5 3 0.1327 0.2167 0.2659 0.4989 (-1)
5 0.135121 0.2182407 0.2672703 0.4992800 (-1)
7 0.1351361% 0.21824977 0.26727570 0.49928072(~1)
8 0.13513617 0.21824978 0.26727571 0.49928072(-1)
10 7 0.45426 (-1) 0.97643 (-1) 0.1892308 0.12459100
10 0.L45438498(-1) 0.97653500(-1) 0.18923896 0.12459135
11 0.45438507(-1) 0.97653505(-1) 0.18923896 0.12459135
12 0.45438507(-1) 0.97653505(-1) 0.18923896 0.12459135
50 10 0.149398 (-1) 0.39698  (=1) 0.102491 0. 14b2L25
13 0.14948354(-1) 0.3970612 (-1) 0.10250008 0.1LL2L37h
14 0.149L8388(~1) 0.39706229(~1) 0.10250011 0. 1kh2h37y
15 0.14948393(-1) 0.39706233(=1) 0.10250011 0.14L2L37L




TABLE 2.6

L3
Model (iii), m = 2
t n Py (t) p,(t) p,(t) p3(t)
0 3 =-0.5(-12) ~0.2(~-11) 1.0 =0.2(-10)  -0.1(-10)
13 0.9994388 (-2) 0.971657 (-1) 0.530393 0.269L4086
b 0.99943963(-2)  0.9716605T(~1) 0.53040kT0 0.26940995
5 0.999L43963(-2) 0.97166059(=1) 0.530L04TT 0.26940996
2 3 0.214937 (-1) 0.108857 0.36133 0.289623
L 0.21494587(-1) 0.10887L27 0.3616308 0.2896887
-5 0.21494600(-1) 0.1088Tk458 0.36163757 0.28968992
6 0.21494601(-1) 0.10887L459 0.36163767 0.28968993
5 3  0.2955 (-1) 0.835 (-1) 0.1999 0.2227
6 0.29697276{(-1) 0.8L5638 (-1) 0.2078358 0.22622438
T 0.29697301(-1) 0.84564108(-1) 0.20783960 0.22622547
8 0.29697301(-1) 0.84564119(-1) 0.20783976 0.22622551
10 6 0.21018, (-1) 0.5478 (=1) 0.13543 0.16756
9  0.21026545(-1) 0.5483809 (-1) 0.1357842k 0.16773158
10 0.21026551(-1) 0.54838142(-1) 0.13578471 0.16773175
11 0.21026551(-1) 0.548381L46(-1) 0.135784TL 0.16773177
20 10 0.113879 (-1) 0.31638 (-1) 0.86161 (-1) 0.':7797
13 0.11388898(-1) 0.316u316u(—1)_‘0.8618939 (-=1) 0.11781223
1k 0.11388901(-1) 0.31643183(-1) 0.86189513(-1) 0.11781229
15 0.11388901(-1) 0.31643186(-1) 0.86189530(=1) 0.11781257




TABLE 2.7

LL

t

Model (iv), m = O.
)

n P, (t p,(t) pe(t) ps(t)
0 3 1.0 -0.7(-11) -0.1(-10) -0.7(=11) -0.7(=11)
1 3  0.75163272 0.2140078% 0.31088306(-1) 0.13151107(-k)
' L 0.75163278 0.21400785 0.31088306(-1) 0.13151101(-4)
2 3 0.5803683 0.312551TL 0.8769737 (-1) 0.27766232(-3)
L 0.58037098 0.31255218 0.8769T416(-1) 0.27766234(-3)
5  0.58037099 0.31255218 0.8769T7416(-1) 0.27766234(~-3)
5 3 ‘o.3ou61 0. 34409 0.215083 0.852036 (-2)
L 0.304825 0.34L1707 0.2151049 0.85204967(-2)
5  0.30483024 0.34417241 0.21510533 0.85204985(-2)
6 0.30483033 0.34417243 0.2151053% 0.85204985(-2)
10 4  0.14030 0.24032 0.245715 0.516900 (-1)
6 0.14053Lk 0.240L45918 0.24577259 0.51691720(-1)
7 0.14053508 0.240L59L9 0.24577271 0.51691722(~-1)
8 0.14053510 0.240L5951 0.2457T7271 0.51691722(~1)
20 6 0.5227 1) 0.1168b 0.16821k 0.1268917
9  0.5235771 (-1) 0.116909L3 0. 16825762 0. 12689585
10 0.52357796(-1) 0.11690949 0.16825765 0.12689585
11. 0.52357803(-1) 0.11690950 0.16825766 0. 12689585
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For small n, r and m the eigenvalues'were computed using
an algorithm based on that given by Bowdler, et. al. (1968).
However, this‘was found to be impractical for larger values
of n, r and m because some of the calculations become ill-
conditioned.
We consider the set {zi} of eigenvalues of the matrix En.
It was found that the first n eigenvalues of En+l could be
expressed as {zi+€i} where leil was small for the smaller
elgenvalues. Some of the calculations depend critically on
the values {ei} and it was found that for, roughly, n + max(r;m) > 20
some of the wvalues {ei} were negligible compared to z. in
computations using 20 significant figures. This drawback

can be overcome at the expense of computing time by the

following means. For the eigeavector X, ve have

B % = (7 +ve)x (2.35)

so that

(2.36)

. X. . X. .
n+1l 1 =1 1 = .

If le.l is small then € is the eigenvalue of smallest modulus
i

of the matrix (E -ZiI) . Unfortunately, each of the small

n+l
values {e.} must be computed separately. The efficiency of
i

the method would be greatly improved if it were possible to

find all the values'{ei} simultaneously.



Finally, we

of the form
p (t)
p (1)
for r = 1,2,3,
\) -_—
o)
\) —_—
r
for r=1,2,3,
real for r = 0,1

have shown how to solve sets of equations

Ape1Pro1

vopo(t> +

(t) + vrpr(t) +

in the case where

- A
@

-(Ar + )

It should be stated that, if v,

32,3, .een

, the method will still work in

uypq (%

pr+lpr+l

)

(t)

is

L6

(2.37)

(2.38)

the more general case when condition (2.38) is relaxed, except

that the eigenvalues of En will be real but not necessarily

all positive.
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2.2  Approximations for Hypergeometric Functions.

We shall now derive approximations for the hypergeometric

function 2Fl(a,b;c;z) for suitable real values of the parameters

a, b and ¢ using a special case of the continued fraction of
Gauss, given by Wall (1948). We shall then extend the method to

the confluent hypergeometric functions _F (a;c;i) and

11 2

and show how approximations may be constructed for some

Fo(a,b;Z),

generalised hypergeometric functions. We shall use the Laplace
transform as an algebrailc operation instead of a method for
solution of differential equations.

Ho&ever, before we consider the more general case, we
examine a degenerate form of the hypergeometric function. The

hypergeometric differential equation is
z(1-z) y" + [c—(atb+l)z] y' ~aby = O (2.39)

and the hypergeometric function 2Fl(a,b;c;z) is defined,
subject to normalisation, as the soluﬁion of (2.39) that is
- regular at fhe origin. For a discussion of hypergeometric
functions see Erdelyi, et. al. (1953). Bearing in mind that

the parameters a and b are interchangeable, we consider the

case b =1 , for which the equation (2.39) may be integrated

directly to give

z(1-z) y' + (c-l-az) y = c-1. (2.40)

This is a Riccatl equation, i.e. it is an equation of the

form (1.69), and we expect the solution 2Fl(a,l;c;z) to have



a simple continued fraction expansion. Now, hypergeometric

functions satisfy the three-term recurrence relation

2Fl(a,b;c;z) = 2Fl(a,b+l;c+l;z)

a(ec—b) - _ . .
o(es1) 2 2*l(a+l,b+1,c+2,z) (2.42)

from which we may obtain a continued fraction for the ratio

2Fl(a,b+l;c+l;z)/2Fl(a,b;c;z) , known as the continued fraction

of Gauss. Noting that 2Fl(a,0;c;z) =1 , we have the
particular case

P (alicia) = E. h, z (l—hl)hzz (1—h2)h3z (2.42)

21 ’ 2 ’. 1— l - l - l - )
where

a+ r-1 r
. ar r-i = ————— . 2.4
h2r-l cH2r-2 ? h2r c+2r-1 ( 3)

If we let {f (z)} be the corresponding sequence of the S-fraction
r

(2.42), and if o is defined as in Chapter 1., then we can show that

- » (a+n-1,n;c+2n-2;%
»f2n—2(z) 0‘21’1“1 2Pl(a n sy CTal—c, ) )
| (2.4k)
f2n—l(z) = o, F (a#n,njc+2n-1;z)
for n=1,2,3, .... . So we can use the expression (1.25) to
obtain two expansions for 2Fl(a,n;c;z). These are
P ( ) * Pop 1%  Pop®  Ponu?
a,n3c;z; = + + 1 + 1+ ...,
2f1 P 1
(2.45)
and ]
o928 Lpa® Yo

F. (a,n;c3z) = 1 + 1 S
o\ & Q2 + 1 +

n
(2.L46)



where {pr} are the coefficients and {Pr} the denominators of

the S~fraction

1 P12 D,2
2Fl(a—n+l,l;c—2n+2;z) = I + T + T + . (2.)47)

and {qr} are the coefficilients and {Qr} the denominators of the

S—-fraction

1 q, z 9,2
2Fl(a—n,l;c—2n+l;z) = 7 P . (2.48)

The coefficients {pr} and {qr} are determined by comparison
with (2.42). It may be shown that 2Fl(a,b;c;z) satisfies a
Riccati equation only if a or b is a positive integer. However,
this equation is not particularly simple as the degree of the
polynomial coefficients increases with n.

We have shown that when b is a positive integer a
continued fraction expression of the form (2.45) or (2.L46)
may be found for 2Fl(a,b;c;z). If b 1is a negative integer
then the hypergeometric function reduces to a polynomial so
that approximations are not usually required. We are left
to deal with the case when neither a nor b is an integer and
the coeffigients of the corresponding S-fraction are not known
in closed form.

We start from the Taylor series expansion

_ r(e) ® rla+r)r(b+r) Ef
2Fl(a,b;C;Z) = I,'('a')'l.,'(b') rio T(o4r) Y (2.49)

convergent for [zl < 1 , and compare this with the Taylor

series for the confluent hypergeometric function lFl(a;c;z).
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This 1is

F.(ajc3z) =

)
11 (otr) ! (2.50)

convergent for all finite z. Here we are only concerned
with (2.49) and (2.50) as formal expansions so that domains
of convergence are unimportant. We define the Laplace transform

of a function f(z) by

£ Af(z)} = J ™5 £(t) at (2.51)
o

and note that for k > 0 ,

£y - KBl (2.52)
S

Multiplying (2.50) by 2L and taking the Laplace transform

we get

b-1 _ rle) o Irf{atr) 1 b+r-1
£ 1z lF_‘L(a;C;Z)} = mrioﬁrl LAz } .

(2.53)
Using (2.52) and comparing with (2.49) we have
b-1 _ I(v) ek
L1z lFl(a;c;z)} = sb 2Fl(a,b,c,.s) , (2.54)
and in particular
{.F. (ajc3z)} = L (a l'C'LJ . (2.55)
L1F1ases s 2f1 '@ iCiyg
We mey write (2.42) in the form
. ‘i Aoz W2 Alz pgz Agz
JFila,lzesz) = T —T" "7 -1 -T1 -1 - ..



o1

- Now, taking the even part and replacing z by 1/s we obtain

L Aot AHo

Ao-s - Al+ul-s - A2+u2—s T eee o

1 1y _
E-eFl(a,l;c;gﬁ = -
(2.57)

using (1.19). Now we have a J-fraction for jl{lFl(a;c;z)}
of similar form to (2.8) that we derived for the birth-death

process. Thus we can obtain an approximation of the form

NN (2.58)

1 11

n
1Fl(a;c;z) = i w.e

where'{ai} are the roots of the nth denominator of (2.57) and

(n)

€11 (z) is the error committed by the nth approximation.

Naturally, we only expect this approximation to be useful

when Re(aiz) <0 for each i. Again, multiplying (2.58)
b-1
z

by and taking the Laplace transform we get
oL p (ages)) = e 2022+ 20 ()
;ﬁ{z lFl a;C32 = '—1Qif'z I z- ey (2 .
(2.59)
'Using (2.54) we have
n
T ' -1
z%)- 2Fl(a,b;c;'sj:)' = I ws —-(;b—)-—g + ;ﬁ{zb E:i;)(z)} .
s 1=l (S"‘ai)
(2.60)
Finally, replacing s by 1l/z we obtain
F.(a,bjc3z) = g —-——w-i-*g + egi)(Z) (2.61)
21l i=1 (1-0.2) -
(n)( ) . .
where the new error term ey (2z) 1s given by
(n) = -__l;_. b-1 (n)
521 (z) = r(b)zb ;ﬁ{z Ell (Z)}s=l/z . (2.62)
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Thus, we have obtained a form of exponential approximation (2.61)

for 2Fl(a,b;c;z) and we can use (2.62) to derive an estimate of

the truncation error eéi)(z). Some of the results of Section 2.1

can be applied in this case. In particular, we adapt result (2.31)

to the error eii)(z) of the approximation (2.58). We have

2n o_+0
(n) _ Z n n+l 2
ey (20 = TogMy ey O e ol
(2.63)
where L _.,M are defined by (2.3) and

n-1

o, = A, + T (A +u) . (2.6L)
r=1

Using (2.62) and (2.63) we get a similar expression for eéi)(z).

We haﬁe
€1 V2 = 4p1th TT(e) (@)t 2n+l

(2.65)

Adapting (2.32) we have the error estimate

)y - L M TZEI;' 12_l+0(z2)} (2.66)
11 n-1n,(2n). (1—enz) n

where

g + 0
n

n +1
°0 T TZa+1)(2n-1) y (2.67)
The analogoﬁs estimate for eég)(z) is
2n
(n) _ r(o+2n) =z 1 2
21 (z) = L% TR () (1-¢_2)207L +0(z7) (2.68)

where

6 = (v +2n) Gn . (2.69)

i
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Unfortunately, these estimates are no easier to compute than
those in Section 2.1 although they depend only on the parameters
a, b and c¢. However, they do give useful estimates for the
range of z, on the negative real axis, over which a given error
1s not exceeded.

Although the approximations (2.58) and (2.61) are valid
more genérally, we are particularly interested in determining
conditions under which the computations are easily performed.

It may be verified that the nth denominator Bn(s) of the

J=-fraction (2.57) can be expressed in the form

F (—n,l-a—n;2—c—2n;§) (2.70)

where the right-hénd side 1s a hypergeometric polynomial. If
the dénominators have complex roots they may still be computed
by.a QR algorithm, although the faster, more stable method
given in Section 2.1 may be applied when the roots are real.
We have shown that a sufficient condition for the roots of
én(s) to be real is that all the partial numerators, except
the first, of the fraction (2.57) are negative. That is, we

require

x > 0 (2.71)

r-1 Yr
for r =1,2,3, +ees , O

(2.72)

(l—hzr—2)(l_h2r—l)h2r—lh2r > 0

for r = 2,3,4; .... . Using (2.43) this condition reduces to

c>a>0 . (2.73)




This is not too restrictive as many well-known hypergeometric
functions satisfy (2.73), bearing in mind that the parameters
a and b are interchangeable.. Also, under condition (2.73)
all singularities of the approximations (2.61) lie on the
interval (1,~) of the real axis in the z-plane.

We now formally define the generalised hypergeometric

function by the Taylor series expansion

n m

I r(c.) o I T(a.+r) r

A =1 i=1  * -
F ({a.};{c.};z) = S z — s

mn 1 J m n P!

Ir(a.) 1r=o I I'(c.+r) )

i=1  * j=1 9

(2.74)

where there are m parameters'{ai} and n parameters'{cj}. It
is easily verified that result (2.54) may be written more

generally as

_ . 1
L0257 F (aghsteghsa)) = PS;) w1l (23 15031053550

(2.75)
where b becomes the (m+1)th parameter on the right-hand side.

In particular, for the confluent hypergeometric functions

we have
- : 1
jl{zb 1OFl(c;z)} = zégl lFl(b;c;Eﬁ , (2.76)
and
» (2L F (a32)) = Z2LF (a,555) (2.77)
L1{z lFo a3z b 20 s *

To form approximations for lFl(b;c;z) and 2Fo(a,b;z) we must

find the roots of the denominators of the J-fractions for
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1 .
QFO(a,¢;;J respectively. Each of these

J-fractions can be expressed in the form (2.57) where, for

L ok
s lFl(l’C’s) ?
A= L s )
o) c
X - c+r—1
r (c+2r-1) (c+2r) ’ (2.76)
H = - a
r (c+2r-2) (c+2r-1) °>
for r=1,2,3, .... and, for L F (a l';?
_ 5 s 2 o - :S -
AO = a ,
AI‘ = (a, + r) ) (2-79)
My = o

for r=1,2,3, .... . These J-fractions may be obtained from
the S—fraction (2.42). We observe that the coefficients (2.79)
satisfy condition (2;71) if a> 0, which is a sufficient
condition for the robts of the denominators of the J-fraction
for %:gFo(a,l;%O to be real. Unfortunately, the coefficients
(2.78) do not satisfy condition (2.71) for any values of c¢, but
we do have the alternative approximation (2.58) in this case. ’
However, the approximations to be derived from (2.78) may be of
use in cases when (2.58) is inapplicable. As the J;fractions
for L F (l;c;%? and %-2F (a,l;%) can both be expressed in

s 171 %
the form (2.57), theverror estimation formula (2.68) is valid

in each case.



Now, suppose we wish to find approximations for

3Fl(a,b,d;c;z). We start with the pth approximation

'p A.
F. (a,ojc;z) = & —=—— + ° (P)(Z) (2.80)

2 l . E L]
1=1 (l—aiz)b el

. . d-1 .
Multiplying by 2z and taking the Laplace transform we have

_ jo) d-1
£42° lel(a,b;c;z)} = iAiif/{?“gm;ﬁ + f,{zd-le(ﬁ)_(zn .

(2.81)
By comparing series ‘expansions, we observe that

Flbsaz) = (-a2)™ (2.82)

so we may epply result (2.7T7) to (2.8l) to obtain

d-1 L _ o °® % &1 (p)
£{z‘ 2Fl(a,b,c,z)} = sd iil Ai .2Fo(b,d;-§—) + ;f‘{z 325 (z)} .
(2.83)
But, from (2.75), we also have
d-1 r(d 1
L1z 2Fl(a,b;c;z)} = sd) 3Fl(a,b,d;c;§0 . (2.84)
Comparing (2.83) and (2.84) we have
D O d
ad) = 2y, sy, ()
3Fl(a,b,d,c,s) = ii A, OF (0,4;57) + r(d);ﬁ{z ey (2)}
| (2.85)
We now use the gth approximation
d 55 (a)
2F (b,d;z) = p) ——--‘]-—b- + 820* (z) . (2.86)
© j=1 (l—sz)

Replacing s by 1/z in (2.85) and using (2.86) we get
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the (p,q)th approximation

sFplasb,d5e52) = A, 1 + el (z)
1=1 * J=1 (l—a.B.z)b 31
13
(2.87)
where
(p,q) P (q) 1 a-1 (p)
e 2 (z) = £ A € (a.z) + ——— f g eP/(2)
31 i=l 1 20 1 Zdr(d) i{ 21 }S=1/Z
(2.88)

Clearly the computation of error estimates, like those we have
derived earlier, will be too time-consuming to be of value here.
We note that if ¢ > a >0 and d > 0 then all the values {ai}
and {Bj} Wiil be real.

We have constructed single series approximations for the
lFl . 2FO and 2Fl functionsAand a double series approximation

for the 3Fl function. Similarly, we can form double series

approximations for the FO function, and triple series

3
approximations could then be derived for the hFo and hFl
functions, and so on. Approximations of different forms can
also bé obtained for other generalised hypergeometric functions,
although not all such functions can be treated in this way.

In Tables 2.8 - 2.1k, below, numerical results are given

for the following examples:

(1) F. (2,33 %;Z) , using the approximation (2.61).
(1i1) lFi(%; %;z) , using (2.58).

(iii) ,F,(3;%;2z) , using (2.78).

(iv) 3w 2Fl(%,%;l;m) , using (2.61).

(v) 2T 2Fl(%,“%;l;m) , using (2.61).



(vi) F (3;1;2) , using (2.58).
(vii) oF (2,332) , using (2.79).

(viii) 3Fl(%,%,l;2;2) » using (2.87).

Each of the hypergeometric functions above may be expressed

in terms of special functions as follows:

Nl
NI

(1) z F(

2) -1
2" 1

N
225 2 372

;
.. ... 3 3
(1i) & (iii) 222 Fl(%; z3-2) = y(3,2) , where

(iv) I 2Fl(%,%;l;m) = K(m) , the complete
elliptic integral of the first kind.
(v) st F.(3,-3;1;m) = E(n) , the complete

elliptic integral of the second kind.

(vi) e 2 (F1(3:1322) = I (2) , the modified

Bessel function of the first kind.

1 -1 _
(vii) w2(2z) 2% 2 _F (},1;- -%-Z-> = K_(2) , the

modified Bessel function of the second kind.

1 Z 1 L
.o 3 -3 It 1
(viii) w2 3Fl(%,%,l;2;—z) = fo t %e” KO(EEQ at .

For further detalls of the above functions see Abramowitz and
Stegun (1964).
In Table 2.8, below, are listed estimates of suitable ranges

of =, on the real axis, for prescribed errors and various values of n.

e cstimates arce velild Tfor z < 0 and, as before, the notation (-k)

Y.
N
. - y=- £ 9
gdoenotes an avsclute error of 10



TABLE 2.8

Estimated Estimated

Example n Error min(z) Error min(z)
(i) 3 0 (-b) -1.98 (-3) -L.51
4 (-5) ~2.30 (-k) —4 LY

> (=5) -4,37 (=4) -9.43

8 (~-8) =L, 17 (-6) -12.7

10 (-8) -9. 41 (-7) -18.4

(ii) 3 (-L) -2.94 (-3) -4.80
g (-5) -k, 21 (-4) -6.10

5 (-7) -4, 1k (-5) ~7.39

8 (-10) 7Tk (-8) -11.2

10 (-10) -13.7 (-8) -18.8

(1ii) 3 (-k) -2.,06 (-3) -3.5k4
i (-5) -2.78 (-4) =417

5 (-7) -2.59 (-5) -1.80

g (-10)  -b.55 (-8)  -6.69

10 (-10) -7.94 (-8) -11.1

(wvi) 3 (-k) -2.83 (-3) -4.63
L (-5) -4.10 (-k) ~5.95

P (-8) -3.09 (-5) -7.25

8 . (-8) -11.1 (-4) -26.5

10 (-10) -13.6 (-6) -26.6

(vii) 3 (-3) -1.11 (-2) -5.09
4 (-3) ~3.k41 (-2) -2L.1

5 (=4) -2.h7 (-3) -15.0

8 (-6) -4.90 (-5) -36.4

10 (-8) -2.82 (=7) -16.9
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The estimates in Table 2.8, above, were found to be
reasonable and a selection of computed results for Examples (i) -
(viii) ds given in Tables 2.9 - 2.1k4, below. In these tables
the last convergent listed, for each value of z, is generally
accurate to the number of figures shown, and these values may
often be verified by reference to Abramowitz and Stegun (1964).
Without loss of generality, the imaginary part of z is chosen
to be non-negative as the moduli of the real and imaginary parts

of all the approximations are symmetric about the real axis.
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TABLE 2.9
Example (1). oF- (2,23 $;2)
Rez Imz n Re F(z) ImTF(z) BRe Imz n Re F(z) 1Im F(z)
-0.5 0 3 0.9312295 0 0 5 0.70746  0.2L4223
L 0.9312298 0 0.707525 0.2k21520
5 0.9312298 0 9 0.7075187 0.2421516
10 0.7075181 0.2421530
-1 0 3 0.881365 0 0 10 10 0.582693 0.2L2611
L 0.8813733 0 13 0.5826797 0.2425952
5 0.8813736 0 17  0.5826799 0.2L2596L
| 18 0.5826799 0.2L25963
-2 0 4 o0.810489 0 ~2 1 3 0.801124 0.05651
5 0.8104965 0 5 0.8011345 0.05631k42
6 0.8104969 0 6 0.8011337 0.0563135
7 0.8104970 0 T 0.8011336 0.0563135
-5 0 5 0.69067 0 -1 1 3 0.86228 0.081307
6 0.690708 0 L 0.862233 0.0812989
7 0.6907135 0 5 0.8622313 0.0813006
8 0.69071L45 0 & 0.8622313 0.0813007
-10 0 5 0.590k4 0 N 17 5 1.02205 0.2723083
8 0.590879 0 7 1.022007 0.2723083
10 0.590887T1 0 8 1.022006 0.2723083
11 0.5908876 0 9 1.022006 0.2723083
0 1 3 0.94L4766 0.136085 2 1 11 0.976318 0.L445834
L 0.94L47981 0.1360665 14  0.9763356 0.L4L58673
5 0.9447967 0.1360661 19 0.9763372 0.L4L4586L8
20 0.9763371 0.L4586L7
0 2 L 0.863718 0.197569 1 0.1 8 2.13189 0.2L498
5 0.8637632 0.1975208 11 2.13216  0.250043
6 0.8637574 0.1975178 18 2.132091 0.250033k
7 0.8637572 0.1975178 19 2.132090 0.250033k




TABLE 2.10
Comparison of examples (ii) and (iii). lFl(%-%;z)
(a) z real, F(z) real.
Ex.(11i) Ex.(1ii) Ex.(ii) Ex.(1ii)
z n F(z) Flz) 2z n F(z) F(z)
-1 3  0.7468238 0.7468270 1 3 1.4626509 1.462673
L 0.7468241 0.7468241 L 1.4626517 1.L4626517
-2 3  0.598131 0.59822 2 3 2.36L37 2.3686
L 0.5981439 0.5981429 L 2.36L4539 2,36LLs5kLs
5 0.5981440 0.5981Lko 6 2.3644539 2.36L4539
-5 3 0.39h47 0.3977 5 4 17,169 14,5
4 0.39569 0.39555 > 17.172109  17.37
> 0.3957119 0.395721 T 17.172158 17.17238
7 0.3957123 0.3957123 9 17.172158 17.172158
(b) z imaginary, F(z) complex.
Example(ii) Example(iii)
Re Imz n Re F(z) Im F(z) Re F(z) Im F(z)
3 0.90L452L47 0.3102685 0.9045204 0.3102623
L 0.9045242 0.3102683 0.90L45242 0.3102683
0 3 0.66762 0.498837 0.66776 0.498L45
L  0.6675968 0.4988117 0.6675996 0..498806
5  0.6675968 0.4988119 0.6675969 0.4988118
6 0.6675968 0.4988119 0.6675968 0.4988119
0 4 0.18423 0.25102 0.1828 0.2658
5 0.18L09T72 0.261162 0.18399 0.26152
& 0.18L0997 0.2611598 0.18409LL 0.261177
8 0.18L40996 0.2611598 0.1840997 0.2611598

62
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TABLE 2.11
Examples (iv) and (v). 3T 2Fl(%,j%,1,m)
K{(m) E(m) m n K(m) E(m)
.61244135 1.53075764 0.7 L .075319 2416722
6 .0753629 1.2L167057
.65962358 1.48903506 7 2.07536311 1.24167057
.65962360 1.48903506 9 .07536314 1.24167057
0.8 5 .25T715 .178L91
. 71388906 1.L44536309 T .2572043  1.178L899k
.71388945 1,L4536306 8 .25720519 1.178k8993
| 10 2.25720532 1.17848992
.TT75160 .39939238 0.9 7 .578006 .1047758
LTT751932  1.3993921k 11 5780918  1.10L7ThTh
5 1.77751937 1.3993921h 12 2.57809202 1.10LTTLT3
14 .57809211 1.104TTLT3
3 .854053 . 3506453 0.95 10 .90824 L0604 Th3
L 85407413 1.3506h388 13 .9083319 1.060LT375
5 .85L0TL66  1.3500'1388 17 .90833713 1.06047373
6 .85407L68  1.3506L388 21 .90833725 1.060L7373
3 .9LoLs5 .298L 35 1.0% 11 .6 .00085
Y .9495626 .298L2825 14 8 .00052
6 9L9s6TTL  1.2984280L 17 .0 .00036
T .9L956775 1.298k280L 20 2 .00026
*K(1.0) , E(1.0) .0
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TABLE 2.12
Example (vi). lFl(%;1;z)
Re z Imz n Re F(z) Im F(z) Rez Imz n Re F(z) Im F(z)
-10 0 L 0.182542 0 0 1 3  0.8235853 0.4499267
6 0.182538 0 4 0.8235847 0.LL9g926L
T 0.1825407 0 0 2 3 0.413461  0.6L4393
8 0.1825408 0 L 0.4134380 0.6L438915
-5 0 3 0.2690 0 5  0.4134381 0.6438917
L 0.270018 O 0 5 L 0.038961 =0.02910
5 0.2700460 - O 5 0.038759 -0.0289537
| 6 0.2700464 0 6 0.0387624 -0.0289564
-1 0 3 0.6L4503L9 0 7 0.038762L4 -0.0289563
L 0.6450353 0 0 10 6 -0.050L2 0.17045
1 0 3 1.7533865 0 T -0.0503759 0.170297
Y 1.7533877 O 8 -0.0503775 0.1703020
3 0 L 7.380078 0 9 =-0.0503775 0.1703019
5 7.3801012 0 -2 1 3 0.k42921 0.1197k45
6 T7.3801013 0 L 0.4291879 0.1197210
5 0 L Lho.oTk2 0 5 0.4291877. 0.1197210
5  L40.078373 0 -1 1 3 0.5665358 0.223141L
&  L40.078LL5 0 L 0.5665342 0.2231443
10 0 5 Lok1.L 0 1 1 3 1.342L4713 0.9681422
6  Lok2,696 0 L 1.3424757 0.968134k
7  Lok2.7535 0 2 1 3 2.4581 2.19063
8  Lok2.755L 0 L 2.4578438 2.190586L
5 2.4578432 2,1905852

o e AR T T 5



TABLE 2.13

6

p)

Example (wvii).

Rez Imz n Re F(z) Im F(z) Rez Im n Re F(z) Im F(z)
~0.1 3 0.9773562 o 0 0.2 3 0.990519 0.046570
L 0.9773567 0 5 0.9905619 0.0L465577
5 0.9773567 0 T 0.9905604% 0.0465577
8 0.9905605 0.0465578
-0.2 3 0.958209 0 0 0.5 5 0.960L46 0.09623
4L 0.9582198 0 9 0.9605958 0.0961556
6 0.9582210 0 15 0.9605901 0.0961579
| | 18 0.9605902 0.0961578
-0.5 L 0.91308 0 0 0.7 7 0.9391k 0.011908
6 0.9131440 - 0 | 12 0.9392172 0.0118978
9 0.9131Lk92 0 14 0.9392118 0.0118979
11 0.9131L9k 0 22 0.9392116 0.01138982
-0.8 5 0.87883 0 0.1 0.5 5 0.97355 0.1082 .
7 0.878932 0 8 0.973668 0.10738
12 0.8789500 0 14 0.9736431 0.107901k
15 0.8789504 0 21 0.9736L32 0.1079004
~1.0 6 0.85977 0 -0.1 0.5 L4 0.94748  0.0860kL
9 0.859875 0 5 0.947502  0.08627
14 0.8598861 0 8 0.9475949 0.0863096
18 0.8598866 0 17 0.9475939 0.0863030
0 0.1 3 0.9973397 0.0244733 -0.3 0.5 5 0.9228k4  0.07105
n o.9973hb1 0.0254T717 7 0.9228018 0.07111k
5 0.9973400 0.02LL4T17 11 0.9228081 0.0711248
15  0.9228086 0.07112L5




TABLE 2.1k

O~
ON

Example (viii). F;(252,132;2)
(a) Rez =-0.5, Imz = 0. (b) Rez = 0, Imz = 0.3
P q Re F(z) Tm F(z) P q Re F(z) Im F(z)
.951807 .993123 .034817
.9518452 .9931483 0.034827hL
T .9518L6T .9931476 0.0348263
8 .9518L68 .9931476 0.0348264
L 0.9518470 9931488 0.0348309
6 .95185k41 .9931520 0.0348277
T .9518541 .9931516 (.0348268
.9518541 .9931513 0.0348268
.9518531 5 .9931520 0.03L8275
.95185L6 6 .9931517 0.0348265
0.95185LT 9 9931513  0.0348266
.9518543 .9931516 0.0348265
.9518546 .9931514  0.0348265
.9518547 .9931513 0.0348265
.9518547 .9931513 0.0348266




TABLE 2.14 (continued)

(c) Rez = 0.1, Imz = 0.3 (&) Re z =-0.5, Imz = 0.3.
P q Re F(z) Im F(z) P q Re F(z) Im F(z)
3 3 1.003702 0.039303 3 3 0.9495728 0.02295

3 4 1.003760 0.03927k 3 5 0.9495693 0.0228742
3 7 1.0037490 0.0392607 3 T 0.9495669 0.022871k
3 9 1.0037498 0.0392609 3 9 0.9495666 0.0228T713
L L 1.003764  0.0392639 L 4 0.9495705 0.0228T16
L 5 1.0037573 0.039251k L 5 0.9495665 0.0228603
L 6 1.0037535 0.0392521 L 7  0.9495641 0.0228576
L .9  1.0037537 0.0392536 L 9  0.9495638 0.02285Tk
5 '5 1.0037569 0.0392510 5 5 0.9495658 0.0228594
5 6 1.0037528 0.0392518 5 6 0.9495641 0.0228571
5 8 1.0037529 0.0392535 5 9 0.9495631 0.0228565
6 6 1.0037528 0.0392519 & 6 0.94956L0 0.0228570
7 7  1.0037526 0.0392532 . T T 0.9495633 0.0228566
8 8 1.0037529 0.0392535 8 8 0.9495631 0.0228565
9 9 1.003753%7 0.0392535 9 9 0.9495630 0.0228565

10 10 1.0037531 0.0392534 10 10 0.9495630 0.0228565




CHAPTER 3.

THE CORRESPONDING SEQUENCE ALGORITHMS.

In this chapter we examine the problem of converting
a given power series to an appropriate continued fraction.
We shall define a class of algorithms based on the corresponding
sequence of a continued fraction, giving examples and making
comparisons with algorithms of the quotient-difference type.
The idea of corresponding sequence algorithms is not new,
although a short paper by Watson (1972) may well be the only
published work on the subject. Notably, these algorithms are
not included in the monumental survey ﬁaper of Wynn (1960).
In Part II we will show that the use of corresponding sequence
algorithms makes possible the generalisation of corresponding
fractions to two and more variables. We begin with a general

approach to the problem in one variable.

3.1 The General Algorithm.
We consider a function fo(z) formally defined by the
power series

2
= * e O .l
fo(z) a, * 8,z * 82" + a2 + (3.1)

and we assume that a corresponding fraction of the form

v(1) v(2) v(n-1)

P, PyZ P42 P_z
fo(z) - ql(Z) + q;(z) + q3(z) +oiee. qn(Z) + e
(3.2)

exists, i.e. a fraction of the form (1.59) that we described
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in Section 1.2 . The recurrence relations that give rise to

the fraction (3.2) are

_ v(n-1)
£ (z) = = P, T_o(2) - q (2)f . (2) (3.3)
for n=1,2,3, .... where we set v(0) = 0 and f l(z) =1,

We shall consider the function fn(z) as a formal power series

in z and we write

ﬁn(z) = Zc(n){aén) + agn)z + aén)z2 F oeee. + a(n)zr + eeu. }
(3.4)
where
n
o(n) = 1 v(i) (3.5)
1=l
and, in particular, we have aio) =a, for all r. Now, equating
powers of z in (3.3) we obtain
(n) _ _v(n) (n-2) -1, (n-1)
a = E {p a. - q (B Ja } (3.6)
' where the shift operator E 1s defined by
m (n) _ (n)
E &y T B (3.7)

for all integer values of m. We require that the relation (3.6) holds
for n=1,2,3, .... and r = -v(n),-v(n)+l, .... -2,-1,0,1,2,3, ....
so we choose a(n) =0 for r<O0, a =1 and a

r o r
r # 0., Now the relation (3.6) summarises an algorithm for obtaining
the coefficients of the continued fraction (3.2) from the sequence {ar}.
We call this algorithm the corresponding sequence algorithm, or CS

algoritim, for the continued fraction (3.2). The equations summarised

by (3.6) form a "triangular" system so there is no problem of solution

as we shall see in the next two sections.
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3.2 ’Algorithms for S-Fractions and Padé Approximants

We consider an S~fraction of the form

o B
o 1+ 1 + 1 + .00+ 1 +.... (3.8)

and, to simplify the calculations, we adjust the series

¢ = 1. Comparing (3.8) with (3.2)

coefficients so that a
o) o)

we can write the summarised CS algorithm (3.6) as

(n) _ (n-2) (n-1)
or T Sh-1%rel T fpn (3.9)
for all r and n or, written in full,
¢, = 1,
(1)
ar = - r-l-_'l_ Py r = O,l.,2,3, e o o
(n)
& (3.10)
R € S
%
(n) _ (n-2) (n-1) _
a. = Cp 1%l T 8 » r=20,1,2,3, .... ,

n=2,3,4, ,... . Y,

In the case of the S—fraction 1t 1s also useful to define a
modified CS algorithm, First we perform a similarity

transformation on the S-fraction (3.8), with c, =1, to

obtain
£ (z) = I L G e 5 0% +1%n”
O kl+ k2 + k3 +oc.o+ kn'l'l +o-o- 3 .

5Ty

forming a new corresponding sequence {Fn(z)} satisfying
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the recurrence relations :
F (z) = k (& e _,2F _,(z) - F _,(2)} (3.12)
for n=1,2,3, .... where Fo(z) = fo(z) and we set F _(z) = 1/z.
For convenience we choose
-1
k = c (3.13)
for n=1,2,3, «.... and writing
_ .0, (n) (n) (n) 2 (n) r
Fn(z) z (bo ML L M R PN )
(3.1k)
we obtain the modified CS algorithm, summarised by
(n) _ 1 (n-2) (n-1)
br B c { br+l br+l } (3.15)
for all r and n. We note that b(n) =1 , for all n, and need

o

not be stored. Written in full, this algorithm is

CO = l [ Cl = - al ]

a
pid) rtl oy =1,2,3, ...,
r c

1

-2 n-1
c = bgn ) _ b§ ) , n = 2,3,k .
(n) _ L ,,(@0-2)_, (0-1) _
br - c, { br+l br+l boor

As an example we perform each algorithm on

series expansion

= 1,2,3, beee s

2,34, veee

the power

(3.16)
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e

) 8 TABLE 3.1
& T 7120 | (2) i '
o Ordinary CS algorithm (3.10)
S N B
ah oh 120 . i (3) for the S-fraction.
a
. N I A .
3 6 oL 30 } ()
. il » _1 _1r *
2 2 6 8 ~ 80
| ais)
_ _ 1 1 L __1
&y 1 ) 3 2L 120 l
1 1 1 1
1 - = - = = —
%o L 2 12 72 720
1 il 1 1
) 1 1 _1 1
1 2 6 6 10
Co €y c2 c3' ch c5
(1) TABLE 3.2
. 1 T
& T 7120 | . (2) Modified CS algorithm (3.16)
1 1 o
B S R he S- Lon.
au oL 150 & b(3) for the fraction
I A I S
3 6 2L 15 } (4
1 1 1 3 ”
a, 5 6 N 20 v
P R S B R |
& 2 3 2 5
1 1 1 L
a, 1 1 -5 6 6 10
(]
s ‘1 €2 °3 “y >

M

Z 10 2 (3.18)
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The modified algorithm (3.16) commends itself for hand

calculation as it is simple to use and easy to remermber. Also,

(n)

r

the coefficients {b "’} in the modified algorithm are usually

easier to work with than the coefficients {a(n)} in the ordinary
r

algorithm, as may be seen in the example sbove in which the

(n)

coefficients {ar } become small more gquickly.

We will now consider the lmportance of the S-fraction and
its CS algorithm in relation to the more general field of Pade
approximants. This was the subject of the paper by Watson (1972),
mentioned above, who suggested the use of the algorithm for
performing operations, such as differentiation and integration,
on Padé approximants expressed i1n terms of S-fractions. In such
applications the CS algorithm is also used in its equally
convenient reverse form, i.e. to convert the continued fraction
coefficients {cn} to the series coefficients {an}.

Wé define the [M/N] Padé approximant to the function fo(z),
formally defined by (3.1), to be AM(Z)/BN(Z) where AM(Z) and

BN(Z) are polynomials of degree M and N, respectively, such that

M+N+1
z )

B (z) £ (z) - AM(Az) = 0 (3.19)

For a given series (3.1) the [M/N] Padé approximant is unique, if

it exists, and the "staircase" sequence of approximants

(L-1/0] [L/0]

(L/1] [L+1/1]
/ (3.20)

[L+1/2] [L+2/2]
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1s given by the successive convergents of the corresponding

fraction
2 -
£ - L-1
O(z) a + az + a2 * ...+ a .z
1 CiL) L)
+az - 2
1+ 1 + 1 +
(3.21)
Also, the "staircase" sequence of Padé approximants
[0/L-1]
[0/L] [1/L]
(1/1+1] [2/1+1] (3.22)
[2/L+2]
is given by the successive convergents of the corresponding
fraction
1
f (z) =
o) L—l_ L (L) (L)
do+dlZ+ e +dL~lz 4@Lz 'i. g 'z g, 2
1+ 1 + 1 +
(3.23)

By suitable choice of L, we can express any Pad€é approximant as

" a convergent of one of the fractions (3.21) and (3.23). 1In (3.21)
the first (L+l) coefficients are identical to those of the series
(3.1) and the coefficients ciL),céL),céL), .... may be obtained
by applying the modified CS algorithm to the sequence aL+l/aL’
aL+2/aL’aL+3/aL’ ee.. « In (3.23) the series do+dlz+d222+ cee

is the power series of the reciprocal of fo(z) and its coefficients

may be computed from the relation

d = -4 . d _a (3.2L)



for n = - 1 . .
1,2,3, .... and where do = a . The coefficients

ggL),g(L) g(L) «ee. are then obtain dob ir i1fi

> 83 > e Yy applying the modified
CS algorithm to the sequence dL+l/dL’dL+2/dL’dL+3/dL’ cee
‘Pad€ approximants may, of course, be obtained without reference
to continued fractions. [See, for example, Baker and Gammel (1970),
Graves-Morris (1972a,1972b).] However, iniprOblems which give
rise to power series the continued fraction approach is far
simpler. |

As an example, setting L =2 in (3.23), we have in

particular the [2/3] Padé€ approximant

A 1
B \ * .
3225 do+dlz + 1 + 1 + 1 + 1
If we write
A(z) = p +p.z+0p 22
2 o 1 2 ’
| 5 3 (3.26)
B3(z) = 1 + qlz + q2z + q3z ,

and equate coefficients of powers of z in (3.19) we must solve
six equations in the six unknowns P >P1sPp587585545 to find
the Pad€ approximant in rational function form. However, the
application of the modified CS algorithm to find the
approximant in the form (3.25) is comparatively trivial.

Again taking fo(z) =e 2 , we already know the reciprocal

series
z 1,2 1,3 L b L5, (3.27)
e - l +Z + QZ QZ '2..4’2 l,LOZ [ Y .
so that we have
d a d
ds 2 2
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and we apply the modified CS algorithm to these values.

1
35/, T TABLE 3.3
SN Modified CS ;
d),/d =i o= odirie algorithm (3.16)
4/ 121 %0 g
a./d 1 1 2 for Pad€ approximants.
3’72 3 L 5
1 1 3.
1 3 12 20

g52) géz) gée)

Thus, the [2/3] Padé approximant to e 2 is

1 2 i A 32
1 27 3 Z 2z 10 Z
l+z + 1 - 1 + 1 - 1

6

-2
e =

+ 0(z") . (3.29)

This 1is one of the simplest methods for obtaining a Padé
approximant and is easily accom@lished by a minimum of
'computation.

It is interesting to compare this algorithm with that
of Longman (1971). Longman's algorithm computes the coefficients
of Padé appro#imants in rational function form. An advantage
of the continued fraction approach is that, by computing just
one more coefficient, we can progress from one approximant to
another. Whilst Longman's'algorithm is useful for computing
the whole Padé table, we can use the CS algorithm to calculate
high ofder approximants without computing the whole of the
preceding table. As fewer computational steps are necessary

we may suppose that there is less build-up of rounding error

with the CS algorithm.
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3.3 Algorithms for Other Corresponding Fractions.

We now consider a power series

~

| _ 2
fo(z) = 1 + a2 + a,2" + a3z3 T ovees (3.30)

that does not have an S-fraction expansion. However, as stated

in Section 1.2, this series always has a C-fraction expansion

of the form
1 c Z\)(l) e Z\)(2) e Z\)(n)
T (Z) = - 1 2 —E—-——_—_
O l + l + l + * e 0 0 + l + s ® 00
(3.31)
in which the exponents {v(n)} are positive integers. In
particular, if & = a8, = .... =a =0 then v(l) = k+1 ,
and in general many of the coefficients {ar} may be zero.
Proceeding as in Section. 3.2 we can obtain a modified CS
algorithm, summarised by
(n) _ 1 (n-2) _ . (n-1) |
b B { br+v(n) br+\)(n) oo (3.32)

r c
n

which is similar to the relation (3.15) that we derivéd for
the S-fraction. In practice the algorithm is the same as that
for the S-fraction except that the indices {v(n)} must also be
computed. In order to do this all the zero coefficients are
stbred and the number of zeros at the bottom of the nth column
gives v(n)-1 . The only other difference is that the nth

column must be displaced by v(n-1) places compared with the

‘(n-1)th column, as indicated in Table 3.4 below. The example

below is for a suitable arbitrary function fo(z) whose power



series expansion begins

= 3 > 7
fo(z) 1l +227 + 27 +z2' + ,... . (3.33)
a 1l
T
ag 0 3 places ,
TABLE 3.4
a 1 . e
5 Modified CS algorithm (3.16)

1 .

a), 0 > | adapted for the C-fraction.
2 places

a3 2 0]

1
a, o) > 1

'(
a| (0 0 -4 —-%
\
- L _ 3L
1 2 3 L 5 +~— c_
3 '\Ae 1 1

v(1) v(2) v(3) v(k)

Table 3.4 indicates a C-fraction expansion which begins

~

2z 3z bz  Hg (3.34)

. 1 2z :
£(2) = T eI+l

o

We now consider the J-fraction

22 z2 22
£ (z) = Py Po p3 Py
o) l+qlz + l+q2z + l+q3z + L., T l+qnz + eeee
(3.35)
which is the even part of the S-fraction (3.8). Adapting
result (3.6) for the fraction (3.35) we get
(n) _ (n‘2) _ a(n"‘l) _ a(n“l) (3.36)

&r = Ppfreo r+2 r+l
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which leads to the computational scheme

\
= A 5
Py % Y T a_°’
o
(1) _ : -
& T { Grap * 9 8pp } » T =0,1,2,3,....
Lm0
pn = —G':é')‘ ,» NI = 2’3’)4'9'°" ’ (3-37)
%5
- 1 (n-2) (n-1)
o oy (™ - ) e
o)
(n) _ _ (n-2) (n—l) (n-1) '
ar - Pnar+2 q‘n r+l 'y - 0’132’350000 ’
n=2,3,4,.... . )
The algorithm (3.37) may also be applied to convert a power
series of the forﬁ
a
fo(z) = —~9- ilé-+—~§-+.... (3.38)
Z
to a J-fraction of the form
b b P
1 2 n
f (z) = . (3.39)
o) ql+z + q2+z + veee + qn+z + oeeee .

The fact that corresponding fractions have two interchangeable
forms provides the simplest method for obtaining the CS algorithm

for the M-fraction.
The M-fraction, described in Section'l.2, 1s of the form

P P42 P,z P, 2

o
£ (z) =
o l+qoz + l+qlz + l+q22 + ose.. l+qnz + teee

(3.L0)
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and corresponds simultaneously to the two power series

expansions
f(z) = a +a.z +a z2 + (3.4
o o l 2 oo ew 3' l)
for ]z| small and
Db b b
_ 0 1 2
fo(z) = TSt (3.k2)
bA zZ z

- for ]z[ large., Adapting the general algorithm (3.6) we

obtain an algorithm

S(n) (n-2) _ (n-1) _ (n-1)

by pn—lar+l ar+l "-lar

(3.43)

for converting the series (3.41) to the M-fraction (3.L40).

However, (3.43) summarises only half of the CS algorithm as we
have not yet cohsidered correspondence with the series (3.L42).
Now, by a similarity transformation, we can write the fraction

(3.40) in the form

L L 1 L
£ (z) = po Z pl Z p2 Z pn Z
o PR S
W2 UrZ LT 7 °* WG 2
(3.L4)
and replacing 1/z by z we obtain
e P2 P2 Py Pn®
f-—— =
0 2z qo+z + ql+z + q2+z F eeee T qn+z B
(3.45)
AMso, replacing 1/z by z in (3.L2) we get
& = 2+ .23 46
fo(z) = boz + blz t 0,27 + ..., (3.46)
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so we can again apply the general algorithm (3.6) to the

fraction (3.45) to obtain

(n) _ .. (n-2) (n-1)
br B pn—l r+l qn—lbr+l - br

(n-1)

(3.47)

Now, the relations (3.43) and (3.47) together lead to the

computational scheme

a
- - 0
po B ao > 9 b °?
o)
l —
ai.) = =-{a 4+ qoar.} , r=20,1,2,3,..

br = -1 qobr+l N br b, v =0,1,2,3,..

O
pn = (n—l) » 0 F 1,2,3,0000

a

‘0

bén—l)
= = l 2 [ ] LN ]
qn Pn b(n) » 11 5 :35 2
o)

(n) (n-2) _ _(n-1) _ (n-1)
ar n~1ar+l r+l n-1r ¢
(n) _ (n-2) _ (n-1) _ . (n=1)
br - pn—ibr+l qn—ibr+l br ?

As a numerical example we consider Dawson's integral

and choose the function fo(z)

]

&(3.&8)

0,1,2,3,000+
2’3’h’.... ,

0,1’2’3’.... 3

.27,3,l+,.... ‘j

(3.49)

2/z u(vz/2) which has the



82

two series expansions

3 L
= - Z 42z .2 _
for lzl small, and
_ 1,1 .3 .15 105
Z Z Z Z

z
for ]z] large. Table 3.5, below, is the layout for computing

" the coefficients {pn}‘and Table 3.6 is the layout for computing

{qn}, although the two sets of calculations are interrelated.

1
a Sty
" 945 TABLE 3.5
2 8
&3 105 | 9L CS algorithm (3.48) for the M-fraction:
L 2. 16 (n)_
& 15 | T35 9L5 8y TETTA-
2 N 6!
1 3 |, 15 T 105 725
1 2 . 8. _16 128
o 3 L5 525 33075
1 2 s _6  _8
3 15 35 63
b, 105 TABLE 3.6
bs 15 | - 120 CS algorithm (3.&8) for the M-fraction:
b(n)-array.
b2 3 - 18 L8 r
6L
b, 1 -4 8 :
8 _16 128
o, 1 -2 3 5 35
1 1 L 1
L 3 5 T 9
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The resulting M-fraction is thus

Z . 6 8
£ (z) = 1 % Z 15 Z 3% 2 62 2
o 1+z —1+§z-1+§z-1+%z-1+¢z—
(3.52)
or, using a similarity transformation,
1 2z Lz, 6z 8z
fo(z) T 14z = 342 - 54z = T4z = 942 = ..., . (3.53)

This expension may be verified by applying Lagrange's method to

the Riccati equation

2z £7 = - (1+2z) 1 +1 . . (3.54)

r

Finally, we consider the T-fraction

pA Z : zZ

l+dlz + l+d2z + s t l+dnz + teen

f(z) = 1 +4d 3z +
o

(3.55)
which,; as stated in Section 1.2, is not a particular case of
the general corresponding fréction (372) so we must derive 1its
CS algorithm by considering the special form of its corresponding

sequence. We first set

£ (z) = £(z) - (1 +az) (3.56)
(o] o
SO that
_ Z Z Z
fo(Z) - 14z + 14d,2 + eees + 144 2 + ceee (3.5T)

which is the fractional part of (3.55). We formally define f(z)

by the series expansion

flz) = 1+ a, 2 + a222 + a.3z3 R (3.58)



so that
The recurrence relations that give rise to the fraction (3.57) are

£(z) = z1f ,(2) - (1+ dz) £ _,(z) (3;60)

for n =1,2,3, .... and where we set f (z) =1 . Each

1

member of the corresponding sequence {fn} may be expressed as

a series of the form

=S
o
N

_ n+l ‘ (
fn(z)-z {l+alz+a I -V T IR

(3.61)
where the first coefficient is always unity, and we can equate

coefficients of powers of z in (3.60) to obtain

SR L R K X0

This leads to the computational scheme

do = a; - 1, dl = - ay - 1,

(o) _ -
a., = 8, s T F 1,2,3,0000

(1) o . a - d a r=1,2,3 (3.63)
oy N r+2 1l r+l 2 3Wamar ittt .
dn - aJ(.n—2) - ain—l) -1 » % 2,3,1#,.... s

(n) _ _(n=2) _ (n-1) _ ; (n-1) _
ar = ar.*.l ar-]-l dnar s r 1,2’3,0000 Y

n = 2’3,)."..0. L]
y

) i (o) . . .
We note, in particular, that a 7 a, 1in this algorithm.

: -z
For an example we return to the series (3.17) for e ~. The
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working is shown in Table 3.7 below.

P
o
—

P N
5 1120 v (1) TABLE 3.7
1 1 a
8, 55| - o5 1,' 2) CS algorithm (3.63)
o _1 117, Cr for the T-fraction.
3 6 2k 2ko ¢ (3)
N 10 1 _1_ _é&1. Cr
e 2 6 2k 1440 ¢
_ 1 11 205 2380k9
ol . 2 12 1Lk 103680
1 _ o, -3 _ir _ai7  _ 19h29
2 12 1Lk 103680
4% 4 a2 d3 dy

This example indicates the continued fraction expansion

-z ] z z z z
© ez 3 7 217 19429
2, ¢ ]=AL o, 1= EL L, AL
I-zz +1l-jpz+1l-9zz +1 03080 2 .o
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3.4 Comparison with the Quotient-Difference Algorithm.

The powerful quotient-difference algorithm, or QD algorithm,
of Rutishluser (1954) has many applications in numerical
mathematics which have been investigated by Henrici (1958) and
others. However, the algorithm was originally designed as a
means for converting the coefficients of a power series to those
of the corresponding S—fraction. In this application the QD

algorithm has two disadvantages when compared to the CS algorithm:

(i) The QD algorithm breaks down in some cases
when the required S-fraction exists. The
CS algorithm breaks down if and only if

the required S—fraction does not exist.

(ii) The QD algorithm is more difficult to
generalise to other corresponding fractions,
whereas the CS algérithm works equally
well with all types of corresponding

fraction.

We will now derive the QD algorithm to illustrate these
disadvantages more clearly. We consider a function go(z)

formally defined by the power series

L 2 3
gokZ) = a_ +ajz*ayz tag t.... (3.65)

end we wish to find the corresponding S-fraction expansion
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which we write in the form

1 - 1 - (3.66)

* o 0 0

(O)} and'{e(o)

where the coefficients‘{qr .

} are to be determined.
Now, to form the CS algorithm we considered the corresponding
sequence of functions-{fn(z)} connected by a set of recurrence
relations. To form the QD algorithm we use the sequence of

functions'{gn(z)} where we formally define

_ 2
gn(Z) = a_ *ta .z+a 20 ..., (3.67)

so that we have the simple recurrence relations

g (z) = a +2z¢g - (2z) (3.68)

n n n+1

for n =0,1,2,3, «... & Whereas for the CS algorithm we
manipulated the power series expressions for the sequence
‘{fn(z)}, we suppose for the QD algorithm that S-fractions
exist for each member of the'sequenqe'{gn(z)} and manipulate

the coefficients of these fractions. We write

&y
iy
N
(0]
|_J
N
Q
AV
N
o
AV]
N

g (z) = fi

n - l - l - l - l T e e s e

(3.69]

...._ l -;- s e 0 0
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Now, the odd part of the fraction (3.69) is

anqgn)z egn)qén)zg
&al2) =ty R
l-{ql +ey tz - l—{q2 e, tz -
Lt
--l-{qgn)+egn)}z ~ eee. - l?{qin)+ein)}z - SRR
(3.70)
il.e. the J-fraction whose convergents are the odd numbered
convergents of (3.69). Using (3.68) we obtain
g . (z) =
n+l l—{qgn)+ein)}z - l—{qéﬁ)+eén>}z -
2
ooy e
- l—{qén)+eén)}z T oeees T l—{qin>¥e§n)}z -
(3.71)

Also, replacing n by (n+l) in (3.69) and taking the even part

we get
(n+1) (n+1) 2
(2) = - Snel °1 9 z
S+l l_q§n+l)z _ l_{qén+1)+e§n+1)}z _
1) 2
eSHDqSHDZQ %ff)éﬁi)z
- 1A qén+l)+eén+l)}‘z ~ eeee = l-’{qin+l)+e§f_lzl) z - oL

(3.72)
Now, (3.71) and (3.72) both repfesent the unique J-fraction

expansion of gn+l(z) so we can equate coefficients between the
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two expressions. By this means we obtain the QD algorithm

a

oV = 2L n-o12,3,..

v n

(n +1
e ) = qgn ) - qim , 0 =0,1,2,3,.0.. ,

o (n+1) (3.73)
(n) _  (n+l) “r-1 -5 3l 3
qI‘ ql’""l e<n) s T = 2,344,000, ,
T on=0,1,2,3,....

(n) (n+1) (n+1) . (n)

. = e q + . -q, s T = 2,3,4,....

s
|

- 03132’3,00¢. . j

The algorithm breaks down if, at any stage, we need to divide by
a zero quantity. Clearly, this will occur in the algorithm (3.73)
(n)

if any of the coefficients {an} or {er } is zero. This means

that if any of the S—fraction expansions of the sequence {gn(z)}
does not exist then the QD algorithm will fail.
As an example we consider a function go(z) having a power

series expansion that begins

g (z) = l+-§—z+%z + iz +%zh+.... . (3.74)

The modified CS algorithm below yields the S-fraction coefficients.

1
a = .
o8 TABLE 3.8
1 3
3 L 16 Modified CS algorithm (3.16)
3 : |
&, %- %: -1 for the S—-fraction.
2 3 _3 1
& 3 4 2 2
2 _ i 9
LT3 "1 4 2
¢y e, ¢ c)
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Thus the S-fraction expansion exists and begins

2 x g
_ 1 Z A = Z 2z
g, 2) 1- 1 - 1 + 1 = "1+4..... (3.75)
However, we find that the series
= 1 ] 1.2

has no S-fraction expansion because its Hankel determinant H2
is zero. [See Section 1.2 .] Consequently,.the QD algorithm
fails for the series (3.T4) when the CS algorithm works.

Further, we note from (3.16) that the modified CS algorithm

for the S-fraction fails if and only if any of the coefficients
{cn} is zero, in which case the S—fraction does not exust.

Howgyer, considering the effect of rounding errors in the
series coefficients {ah} on the continued fraction coefficients
{cn}, we have no simple criterion for preferring one algorithm
over the other. The CS and QD algorithms involve roughly the
same number of similar arithmetic operations which prompts us
to chjecture that the two algorithms are approximately equivalent
in respect of rounding error.

Iﬂ Sections 3.1 - 3.3 we have developed CS algorithms in
quite a general way and we have illustrated the simplicity of
their application. Algorithms of the quotient-difference type
may also be constructed for other corresponding fractions although

the same drawback is present as for the S-fraction. ILotably,

McCebe and Murphy (1974) have constructed a QD-type algorithm
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for the M~fraction

(o) (o) (o)

%o P1 Pp 2 Pn 2
Gl = T T, T (o)
+qo Z q, 'z + l+q2 Z ¥ eee. | l+qn Ztoee.

(3.77)

using two arrays of coefficients {pin)}‘and {qin)} . The fraction

(3.77) corresponds to the two series expansions

_ 2
fo(z) = ao + alz + azz S (3.78)
for lzl small and
b b b
£ (z) = -2 4k4-24 . (3.79)
o) . 2 3
Z Z Z

for |z| large. The QD algorithm for the M-fraction is

(o)=i9_ W
q =

o
pf)n) = pé—n) = O s n =_O’l,2,3’oooo 9
a b
. -n n—-1 _
q(()n) — _ = n . qé ) = -— b ’ n = 1’2’3,0.00 3
n-1 n F (3.80)
n (n+1) (n+l) (n) _
Pi ) - Pyt Ty s T T L2350,
) p(n)
n (n-1 r _
Py
) n = Oail’i2’i3”"’ . J

This algorithm fails if any of the coefficients {ar},fbr} or

{p(n)} is zero so that, for the M-fraction at least, the problem
r

is magnified. McCabe and Murphy (19T74) have devised an ingenious

method for overcoming the difficulty of zero coefficients but at
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the expense of much additional computation and a resulting
loss of accuracy. We now show that the CS algorithm for the
M-fraction breaks down only 1f the M-fraction does not exist.

It is clear from (3.48) that the algorithm fails only if one

(n) (n)

of the coefficients {ao } or {bo } is zero. From (3.48)
we have the recursions
L) (n-1) ’
o n “o
5 (3.81)
L) - In(n-l)

: : o) _ ' (o) _
with the starting values a ' = Py and bO = po/qO so that
(n) _
o = PPy vt PoPiPg o A
’ (3.82)
b(n) - PpPpog v PoP1P,
© -1 o0 %%
rearte. 1™ and o0 _ .
early, {ao } and {bo } are non-—zero only if all the

coefficilents {pn} are non-zero, which is a necessary condition
for the existence of the M-fraction.
For completeness, we now show that the general CS algorithm

(3.6) breasks down only if the fraction

v(1) Zv(2) Z\)(n—l)
£ (z) = Py PoZ P3 Py
o ql(z) + qz(Z) + q3(z) + eee. F q_n(z) + iene

does not exist. We write

2
q (2) = 1+ a2 * Q2 Foeeee Ty y(n)-1"
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and put r = -v(n),-v(n)+1, .... -2,-1 in (3.6) to cbtain
a(()n—l)
Pp 7 a(n—2) 2
o
1 - -
W = ey LR HEE
o
oL (n-2) _ a1 -
Yo ~ _(n-1) { Pnazn -y ) nlain & b
o)
1 (n-2) (n-1) V=2 ()
qn,\)(n)-l ain—l} { Ppey(n)-1 ~ avr(ln)-l - rfl anav?n)—r-l

so the algorithm fails if one of the coefficients {aén)} is zero.

We have, for |z| small,

fn(z) = ain) Zo(n) + O{zc(n)+l} (3.86)
* and comparing (3.86) with the result (1.25) we get
aén) = PyPyeeer P (3.87)

so that aén)

is zero only if one of the coefficients {pn} is zero,
in which case the fraction (3.83) does not exist.

Essentially, the difference between the two types of algorithm
" is that, in the CS algorithm, we manipulate a sequence of power
series whereas, in the QD algorithm, we manipulate a sequence of
In the next chapter we shall devise a more

continued fractions.

general structure for continued fractions to facilitate the

b

7(3.85)?

J
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representation of functions of two variables. In this context
the QD approach becomes excessively complicated whereas, to
form a CS algorithm, we need only consider a sequence of
double series which may be manipulated as easily as single
serles. Without this corresponding sequence approach the

concepts in Chapter 4. would be largely impractical.



PART II

APPLICATIONS IN TWO AND MORE VARIABLES



95
CHAPTER k4.

A CORRESPONDING FRACTION IN TWO VARIABLES.

Chisholm (1973) has defined a class of rational approximants
in two variables. Such approximants correspond to double power
series and are chosen so that they have five properties which are
natural géneralisations of properties of Padé approximants. The
possible applications of this technique in theoretical physics
and numerical analysis may be very far-reaching and it would be
convenient if rational approximants in two variables could be
directly related to continued fraction theory, as is the case in
one variable. Although there are many feasible ways of defining
rational approximants in two variables, it appears there is no
clear link with continued fractions of simple form. However, in
this chapter we permit a more general siructure for continued
fractions and define a class of rational approximants which,
although more complicated than Chisholm approximants, provide a
means for analytic continuation ok double power series. Further,
these approximants have certain advantages over Chisholm

approximants in suitable problems and can be related to well-

studied aspects of continued fraction theory.
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4.1 The Structure of the S2—Fraction.

We shall examine the possibility of constructing a
continued fraction which corresponds, in some sense, to the

formal double power series
f (x,y) = I I a..xyd (4,1)

where x and y are independent complex variables. In Section 1.2
we showed that the partial numerator of a corresponding fraction
must be a monomial so the usual structure of a continued fraction
is too restrictive to cope with functions of two variables. One
approach to the problem is to regard (4.l) as a single series in

the variable x and to form a corresponding fraction of the type

Bo le ng an

fo(x’y) I T T T T (L.2)

where each coefficient Bn is an S-fraction in the variable y.

Similarly, we could form a fraction

Y .Y  Y.Y Yy
fo(x,y) Tl o+ 1 o+ 1l ot ..+ 1 o+ ..., (.3)

where each vy is an S-fraction in x. However, even if the
fractions (L4.2) and (4.3) both converged to the same function,
their convefgents would be unsatisfactory approximations because
they are not symmetrical in powers of x and y. Clearly, it is
desirable that the function is constructed symmetrically.
Accordingly, we shall consider a corresponding fraction in the

variable xy, having partial denominators that contain S-fractions
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in x and in y. This fraction may be conveniently written in the form

c c b,
£ (x,y) = (OO i 22
, + 3
o Lrg (x)+h (y) + 1tg (x)+h (y) + 1*g, (x)+h, (¥) + ..
C__Xy
nn
(L.4)
.+
1+gn(k)+hn(y) + ...
where
: c X ¢ x c X :
_ _n+l,n n+2,n n+r,n
g, () 1+ 1 4 oeee. o+ T+ .., (4.5)
and
c y c y o - c y
_ _n,n+l n,n+2 n,n+r
hn<y) = 1 + 1 + ee. + 1 + ... (4.6)

We shall call (L4.4) the main-fraction and we call (4.5) and (4.6) the
sub~fractions of (L4.L). Because the sub-fractions are S-fractions we

shall refer to the main-fraction as an S_—fraction, i.e. a Stieltjes-

2

type fraction in two variables. The coefficients of the Sz—fraction

are labelled so that cij corresponds to the coefficient aij in the

series (L4.1). 1In other words, the coefficients of the sub-fraction

n ] |
gn(X) "match up" to the terms (xy) I a .. nxl of the double series

and the (n+l)th partial quotient "matches up" to the terms

[o+] . [od] .

. \n i .

(xy') (ann + .E ah+i,nx + .E an,n+ij) We also note that if we set
1=1 J =] .

a.. =0 for all i# j then (4.4t) reduces to an S-fraction in

1d
the "single'" varieble xy.

So far we have merely explained our choice of the structure (4.h)
‘ané we must now prove its existence. We discuss existence in the
general sense without reference to Hankel determinants, which are very
complicated in the case of the S -fraction. However, in Section L.2

2

we will show that existence in particular cases may be established by
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means of a CS algorithm, as we have shown for corresponding

fractions in one variable.

A necessary condition for the existence of an expansion (4.L)

of the function fo(x,y), formally defined by (4.1), is the existence

of a sequence {Tn(x,y)} of functions, each having an expansion of

the form
T (x,y) = . % pg?)xlya R (4.7)
n T TP ¥
i=o j=o
and satisfying the system of formal identities
n(x3) = TR v, T Goy) 0 Y
n & n /41 na ¥ net Y

for n = 0,1,2,3, .... and where fo(x,y) =c

00

To(x,y) . We now

assume that Tn(x,y), gn(x) and hn(y) exist and we express gn(x)

and hn(y) in series form, writing

(X) = I u. 'Xx s
g(x) = P ou
® . s
n) 5
() =z ovtylo,
J=1 i

for n = 0,1,2,3,

reciprocal series expansion

e ] (e ]

1 (n)_iJ
= @ oz a¥xy
B
Rearranging (L.8) we get
1 1
T (xy) = {
n+l ' Sl 1Y Tn(x,y)

We also note that Tn(x,y) possesses a

(4.10)

1 - gn(x) = hn(y) } ’

(L.11)
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or, using (4.9) end (4.10),

©o [+¢]

_ 1 ¢ (n) 1 3
T .-(xy) = { = 1 a¥xtyd -
.. Y 1
n+l cn+:1.-,n+],xy i=o j=o 1Y
- I u(n)xl -z v(n)yJ } . (L.12)
i=o j=o
Now, choosing
(n) _ (n) _ _(n) (n)
= 1, 4 o= u Gy = VS (4.13)

for 1=1,2,3, .... and j = 1,2,3, .... the identity (k4.12)
can be simplified to

1 0 () (n) i j .
T (x,y) = e———— ¥ T oa . Xy ()4.1)4)
n+l cn+l,n+l i=o j=o 11,9+

so that Tn+l(x,y) can be expressed in the form (L.T7).

We now let An(x,y)/Bn(x,y) denote the nth convergent of

the S ~—fraction (4.4) and we write

2
£ (X y) — COO Cllw Cnnxy
, L ]
° l+go+ho * l+gl+hl Toeeee ¥ l+gn+hn+cn+l,n+lxyTn+l(x’y)
(k.15)

Using the result (1.23) we have

n . n .
A (-1) € oC11C00 ot cnn(xy)

o™ B % TB(B__+c xyT__.B_) ’ (h.16)

° n n' n+l n+l,n+l"Y n+ln

so that
Ah n
-2 = L.1

£ B_ of(xy)™} (4.17)

where O{(xy)n} denotes error terms of order x'yY for i >n and j >n.

This is the correspondence property of the fraction (L.4).
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Having established existence and correspondence, it is also
useful to show that the Sg-fraction expansion is unique for a

given function fo(x,y). We consider two 82-fractions

(o} Xy
£ = 00 Cll Cnnxy ()-I» 18)
+ *
o) 1 go+ho + l+gl+hl t oeeee + l+gn+hn + e
and
£° = cOO Cll cl”lnxy ()-& 19)

such that fo(x,y) = f;(x,y) . By setting y = 0 in (4.18) and

(4.19) we see that Coo = G5y B0E g = gl . Similarly, h, =hZ

I -~ = B’ - - .
and so A1 Al and Bl 1 > where A.n/Bn is the nth convergent

of (4.19). We also have Ao = A; = 0 and BO = B; =1 and, for

.proof by induction, we need to show that if

r r r+l  Trdl

for r=0,1,2, .... n=1 , then

c._=¢° , g =g° , h =h" . (4.21)

We consider the difference between the (n+l)th convergents

S T AnaPnar T AnaBha (4.22)
Bn+l Bn+l Bn+an+l

Using the recurrence relations (1.8) and the hypothesis (L.20)

we get
An+lBr;+l - ArI+an+l - {(l+gn+hn)cnn - (l+gn+nn)cnn}
- 4.2
y(AB . - A _.B ), (k.23)



or, using the determinant formula (1,11),

- -~

L —1 e - - - n
An+an+l An+_'LBn+l {(l+gn+hn)cnn - (l+gn+hn)cnnj'0{(xy) .

(L.2k)

But, from (4.17) and (L.22), we have
e - - — - n+l
An+an+l An+-_'LBn+l = 0{(xy) } ' (k.25)
so it follows from (4.24) that

(l+gn+hn)cnn - (l+gn+hn)cnn = 0 . (k.26)

This implies that result (L4.21) holds and that fo(x,y) and

fé(x,y) both have the same coefficients. Hence, 82—fraction

expansions are unique.

In the above proofs we have used the convergents of the

fraction (4.4) in the normal way. However, for practical
purposes the use of convergents is not very meaningful as each
partial denominator of (L4.k4) is itself an infinite expression.
Therefore we must truncate each sub-fraction after an appropriate
number of terms Tto obtain a sequence of finite approximations.

We adopt the notation O(x,y)n to denote error terms of order

Xryn—r for rl = 031529'00011 and define the sequence. {Kn(x’y)}

of 82-approximants by

fo(X,y) -Kn(X,y) = o(x,y)" . (4.27)



Using this

Kl(X,y)

K3(x,y)

K)_‘_(xaﬁﬁ

Now, if we let gin)(x) and h

of gr(x) and hr(y), respectively, then we can summarise (4.28) vy

definition we find

= ¢ s K (x,y) = o0
2 + >
00 1 clox+coly
_ €00 €11
]
l+clox + C 1Y + 1
+ +
1 cgox 1 ¢ oY
_ o0 ‘N
H
l+cl X + ¢y + l+c21x+c12y
1+c20x l+c02y
l+c3ox l+c03y
_ €00 ‘1% -
l+clox + C 1Y + 1+c2lx + cl2y + 1
+ L)
l+020x 1 cozy l+c3lx l*cljy
+
l+c3ox 1 co3y
l+clL b'd l+cohy

(x)
rn(

y) denote the nth convergents
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(L.28)

K (x.3) 00 €1 %
- > - — - —_
on-1 l+g(2n 2)+h(2n 2) . l+g(2n u)+h(2n L) ..
o) o) 1 1
€n-1,n-1Y
cees T 1 ?
(4,29)
K ( ) 00 CZLlXy
X,y - - _ -
ont e (en-1) . (2n-1) (2n-3) _, (2n-3)
1+gO +no + l+gl +hl F oeeee
n—l,n—lxy
(1) . (1)
eees T 1+ n-l+nn—l
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for n=1,2,3, .... . Unfortunately, the recurrence relations
(1.8) cannot easlly be generalised for use with the Sg—approximants
in the form (4.29) and each successive approximant must be
completely recalculated. We observe from our definition (4.27)

that the Sg—approximant Kn(X,Y) 1s computed from the triangular

array of coefficients

o0 o1 2 v v - co;n—l

o f11 - C1an-2

). . o (4.30)
E °n—2,1°

cn-l,o

so we can compute the value of the nth approximant by a suitable

traversal of the tree-structure of the S -fraction, beginning at

2
'the bottom of each sub—-fraction. There ere many possible ways
of calculating the approximants but the algorithm (k4.31) below
requires a minimum of storage space, the value of the approximant
.K2nfl or K2n being held by the variable Fl on exit from the
algorithmn.
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1:= n-1 , A
k:= 1 ; for K2n—l ,
= 2 ; for K2n R
Fl:= o,
F2:= 0 ; for K2n—l )
.= ci,i+ly ; for K2n )
F_o:= 0 :
3 for Kppe1
T Cqan,i* s Tor Ky
( , F:= ciixy/(l+Fl+F2+F3) ,
J:= 1+k
, (4.31)
1:= 1-1 ,
Fyi= Ci5¥ »
(n~1) times F3:= cjix ,
j:=3J-1,

Il

k times F2: Cin/(l+F2) s

F3:= cjix/(l+F3) R
\ k:= k+2‘ 5
F = coo/(l+Fl+F2+F3) . ,/

In a computer implementation of this algorithm it is necessary
to test for division by zero as some approximents may not exist.
Clearly, the notation (L4.28) is unwieldy but this presents

no problems if we consider the S _-fraction as an infinite triangular

2

array of coefficients, to be interpreted in the manner prescribed

above.
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We shall now consider the degree of the rational Ffunction

representation of Kn(x,y). We denote by [M/N](x,y) a rational

function of the form

M M .
I A axyY

M )(x,y) = IEO'JEO' ' (4.32)
P._a
L I u Xy
p=o g=o %

and we assume that ) are all non-zero. Now,

00Hoo > 284y

if IM/NI(x,y) is some kind of approximant to the function fo(x,y),

defined by the series (k4.1), then we may write

£ (x,y) = IM/NI(x,y) = o(x,y) " (L4.33)
where r depends on M and NT For example, the [M/N] Chisholm
approximant satisfies (4.33) with

r = M#*N+1 . | (L.34)
We also consider a rational function [M/N]o(x,y) such that

[MJN]O = [M/AN]  with Mg = 0 iEM>0, (L4.35)

and pNN=OifN>O.

Using this notation we find, from (4.28), that

K3 = [2n(n-1) /2n(n-1)] ,

- 2_q /on® 4,36
K,__, = [@°-1/aa"] , (k.36)
K = [3n(n+1)-1/3n(n+1) ] s

2n o}

for n =1,2,3, «es. » DNow, if [M/N] represents Kr then



we have

r = 2 Vi;i+N+_'_L - 1 (4.37)
for r odd, and

r = 2 /ﬁ +N+5 - 1 (4. 38)
L

for r even. Comparing (4.37) and (L.38) with the analogous
relation (4.3L) we see that Chisholm approximents have greater -
economy in the sense that.they match-up more terms of the power
series than do S2—approximants of similar degree. However,
Sg—approximants are intended for use in continued fraction form
and we shall see in the next section that their coefficients

are more easlly computed than those of the Chisholm approximants.
We will further compare the two methods of approximation in
Section L.4 .

To complete this section we now show how Se—fraction
expansions may be obtained, with coefficients known in closed
form, for a certain class of functions. These functions of two
variuoles are somewhat trivial, however, as each 1s the product
of two functions of a single variable. Nevertheless, the formal
expansions obtained can be used to measure the usefulness of
S,.-approximants and to test any analytic results that may be

2
developed. We consider two functions X(x) and Y(y) having the

S—-fraction expansions

A AX AX A X
x(x) - .° 1 2 0
l + l + l +l.l. + l -r.... ’
(4.39)
Y(y) = Yo MY XY el |
Y T + 1 + 1 4+ eeee t 1 + uuen ,J



LOT

where the coefficilents {An} and {pn} are known irn closed form,

and we will obtain the S, -fraction expansion of the function

2
fo(x,y) where -

£ (xy) = X0¥) .

(L.ko)

We let the sequence of functions'{Tn(x,y)} te defined by (4.8)

so that, in particular, Coo Ao“o and

1
T (x,y) =
0 l+go(x)+ho(y)+cllxyTl(k’y)

Setting y = 0 we obtain

A
— O -
go(x) Sasar 1
and, similarly,
U
o)
= -1

Tn S—fraction form (L4.42) and (4.L43) may be written

E\¥) T T 4TI 41+ .,
AR AR
n(y) = T LTI 4. J

Now, rearranging (L4.4l) and using

fo(X,y) = Aouo TO(Xay)

together with (4.4%0), (4.42) end (L.43) we find

ey 3 Ty (%) = so(xn (¥) .
From (4.46) it folliows that ¢y, = Ajuy and we now show,

(4.L41)

(L.42)

(L.L43)

(k. 4k)

(L.4s5)
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in general, that

c v T (x,y) = g,_1(x)n__.(y) (L.L7)
where
c (x) = A ™ Apeo®
n—1 1l + 1 + 1 F oreee
(L.48)
N TR R S e L
. n-l l + l + l + e s e 3
so that c = Anun . We assume that (L4.47) and (4.48) hold and
substitute for Tn(x,y) from (4.8) to obtain
AW XY
n'n
g _(x)h _(y) = = : . (L.49)
n-l n-1 l+gn(x) Thn(y)+Cn+l,n+leTn+l(X’y)
- Differentiating with respect to y and setting y = 0 we get
Anx
g _,(x) = I:é;(_.x)- (4.50)
and, similarly,
Nny ) )
- - - . l
a4 (y) W (k.5

Using (4.8), (4.50) and (L4.51) it follows that results (L.47) and
(L.48) hold with n replaced by (n+l). Hence, by induction, the
results hold for n = 1,2,3, .... . Consequently, the S2-fraction

expansion of the function fo(x,y), defined by (4.40), may



be written

ks Ay 5
fo(x,y) T U .y + 1+A X+
] 1 > HoY
1+A2x 1+u2y l+k3x “+H3y
1+ . 1+ . 1+ . 1+
AUy A

- o~ -

..'_vj

+ l+x3x + u3y + seee + L+An+lx
l+AhX l+puy 1+)\n+2
1+ . 1+ . 1+

We now consider two examples:

~(x+y)

S

1+ . 1+ . .
|
L Xy 36 XV
H ‘ i _L
+ 1+ X + ¥ + 1-7x - .y
1- Tx 1- Ty 1+ . 1+
l+ . + . .‘

(4.53)



and
1 1 EXY
V(14x) (14y) .~ 1+3x v o+ 1l+ix + iy o+
141X 1+3y 1+ix 1+iy
l+g 1+iy l+;x 14ty
1+gx 1+5y 1+ . 1+
1+ . 1+ . .
L i
16 6 X
+ 1+ix Ty + 1+ix + Ly +
1+t x 141y 1+ . 1+
1+ 1+ . T. .,
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(k. 54)

In Tables 4.1 and 4.2, below, we compare the convergence of the

sequence {Kn(x,y)} with that of {Xh(x)Yn(y)}, where Xh(x) and

E ‘,Yn(y)

Y(y). We note that Kn(x,y) matches 2n(n+l) terms of the

double series for fo(x,y), whereas the product Xh(x)Yn(y)

mat ches

are the nth convergents of the S-fractions for X(x) and

2
n

terms.



TABLE 4,1
o~ (x4y) n K (x,7) X ()Y (y)
x=0.1, y=0.1 3 08193 0. 81859
L 0.81870 0. 818729
5 0.8187312 0. 818730776
6  0.818730772 0.81873075330
T 081873075317  0.81873075308
8  0.81873075308  0.81873075308
9 0.81873075308  0.81873075308
x=0.1,y=0.2 3 0.7bk21 0.74026
L 0.TLO6T 0.740802
5 0.7ho820 0.74081856
6  0.740818k0 0.7408182272
T o.7ho818221i+ 0.7%081822059
8 0.74081822058 0.74081822068
9 0.74081822068  0.74081822068
10 0.74081822068  0.74081822068

11

In the example in Table 4.2 it may be seen that the sequence
| {Kn(x,y) } actually converges slightly faster than {Xn(x)Yn(y) } ‘for
However, the reverse is true for the

the chosen values of x and y.

example in Table 4.1 .
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1/v(1+x) (1+y) n K (x,7) X (x)Y (¥)
x=0.1,y=0.5 3 0.7791 0.7801
L 0.778k05 0.77833
0.778509 0.77852
6 0.7784979 0.T7784973
T 0.7784990k 0. 7784991
8 0.77849893L 0.778Lk9892T7
9  0.778k989452 0..7784989L59
10 0.7784989LLO6 0.77849894399
11 0.7784989Lk1T 0.77849894418
12' 0.77849894L16 0.778L989LL16
13 0.7784989L4416  0.7784989LL16
x=1.0 ,y =2.0 L 0.4078 0.4034
5  0.Lko9k 0.4095
6  0.408200 0.4079
7 0.k408215 0.40833
8 0.4082452 0.L408226
9  0.4082513 0.40825L
10  0.L082480k 0.40824k67
11 0.408248258 0.4082L8T1
12 0.408248274 0.4082L818
13 0.4082L48300 0.L408248321
14 0.408248290 0.L0824 8282
15  0.4082148291 0.408248293
16 0.L08248290 0.4082%8290

i‘::‘;’rr:;:uw__;_,”’—n;w—»__._,,.r —
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L.2  The Corresponding Sequence Algorithm for the S.-Fraction.

2

In order to obtain Sz—fraction expansions from double
power series we now develop a CS algorithm in a similar way
to those described in Chapter 3.

The recurrence relations that give rise to the S, ~fraction

2
(L.L4) are

Loalxey) = e xy £ (xy) - £ (xy) {l+g (x)+n_(y)} (k.55)

for n=0,1,2,3, .... Where {fh(x,y)} is the corresponding
sequence and we set f_l(x,y) = 1/xy . Now,.each member of the

corresponding sequence has a double series expansion of the form
n > n) 3 J
£ (xy) = ()" 1 I o {0 yi s (4.56)

i=0 j=o0 +J

and the sub-fractions correspond to single series expansions

of the form
o N
gh(x) = x I uén)xk R
| k=o > (L.57)
hn(y) = y I vl({n)yk . y

k=0

Using the series expansions (4.56) and (L.57) we equate



.. 1] .
coefficients of x™yY in (L4.55) to obtain the CS algorithn

a(n) \l
Co 00 ’ cnn - (n-l) s n = 1,2,3,.0.., {
00
) (1) _ ) P ) ()
R o ORI
(o]0] -

i=0,1,2,3,.00., 0 =0,1,2,3,0...,

3—-1
{n) L {c a<n—l) - a(n) JZ a(n) (n)} , &-(h.SB)

v = . . - .
J &(n> nn o,J+l 0,J+1L k=0 O,J-kvk
00
i =0,1,2,3,00.., n=0,1,2,3,....,
S(ntl) (n-1) (n) = (a) (n)
.. = C . . - a. . - I a. .
1) nn 1+l,J+1 1+1,7+1 K=o 1-k,J+1
_ g (n) (n)
rmo iHl, -k 'k ’
i=0,1,2,3,0000, 3 = 0,1,2,3,00..,
n = 0,1,2,3,000., _/
where we set aﬁgl) = 0 for all i and j. The coefficients {cij}

for 1 # j are computed by using the CS algorithm (3.10) for
the one-variable S—fraction to convert the series (4.57) to the
sub-fractions of the S2—fraction.

Clearly, the formation of & QD algorithm in this case
presents enormous problems as it would be necessary to find
relationships between coefficients of a whole sequence of
82-fractions. No attempt is made here to establish such an
algorithm as the CS algorithm (4.58) is adequate both as a

means for converting a double series to an S_-fraction and
<
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for establishing the existenre of the fraction. Tre clgoritnm
(4.58) breaks down only if cne of the coefficients {aég)} is
zero, in which case one of fhe coefficients {cnn} is zero and
the 82-fraction does not exist. Also, the S2—fractioh does not
exist if any of its sub-fractions does not exist, but this may
be determined by the CS algorithm (3.10) for the S-fraction.

The computation of the coefficients of the Chisholm
approximants by the ''prong' method of Jones and Makinson (1973)
requires the solution of sets of simultaneous linear equations.
This takes more computing time and requires a much larger
program than the algorithm (4.58). However, this disadvantage
of Chisholm approximants is compensated by the comparative
simplicity of their evaluation, once the coefficients have been
| _cdmputed.

An example of the algorithm (4.58) is given in Table 4.3,
below, in which the double series expansion of the function
1/V1+x+y is converted to an S2—fraction. This function is

(n) _ _(n)

lc 1 . = v. . = . for
symmetric in x and y so that u. 4 and C: g i

all values of 1 and n.



TABLE 4.3
CS algorithm (4.58) for the Sg—fraction.
1 1 3 _ 2 35 63
2 8 16 128 256
-1 3 _ 15 35 335
2 In 16 32 256
3 .15 105 _ 315
( 8 16 6L 128
91 -
- _5. 3% 315
16 32 128
35 315
128 256
_ 63
256
c = 1
00
o)y _ r2 _1 1 __5_ 7
e g8 16 128 256 1
1 1 1 1 ) .
{clo} = [ > T T T " 1], using algorithm
(3.10).
] 1 2_ _11r 93
L 16 32 256
2. -39 J.%
16 6L 12
{a{!)} =
* 1t
T 32 128
93
256
_ _ 1
€11 T L

, using (3.10).

-~
()
-—
[S—s
]
m
£fw
=i
N
-——
N
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=3 1
6L 128
(2)
{a'ij } o=
T
128
_ 3 (2) _ 1
€22 T 78 0 % % Cy T T
This algorithm indicates the expansion
1 1 LKy
V1 +x+y 1+3x + gy = 1+ix + By +
141X 1+?;X 1+ x 'I'HLZY_
T+lx 1+ly 1+ 8 x 1+3
1+ix 1+iy 1+ 1+
T+Lx T+iy
1+ 1+
3
6 XY
| R
+ 1-T2X - 1y -
1+ 1+ .
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4.3 Convergence of S,~Fractions.

In this section we will show that the convergence of
S2—fraction expansions may be established, in many cases, by
the application of one of the exlisting convergence theorems

for continued fractions. We first consider a fraction

a

(4.59)

o’lg:
|._l

ey
+ .... +Db + ....
n

-+

n IS’

1

where {an} and {bn} may be finite expressions in one or more
variables. We denote the nth convergent of (4.59) by A.n/Bn

and we say that fo converges if lim An/Bn exists. If we
-3

permit each partial denominator bn to be an infinite expression
then we must be more precise, and we define the convergence

of an Sz—fraction (L.4) as follows:

Definition 4.1: If at all points (x,y) in some region R

all the sub~fractions of an S. -fraction converge to

2
finite limits, and the main-fraction [ with sub-fracticns
replaced by their limits ] converges to a finite limit,
then the Sz—fraction converges everywhere in R. The

limit of the main-fraction i1s the value of the

Sz—fraction at each point (x,y) € R .

This definition provides a hasis for studying the convergence

of Sz—fractions in relation to well-known theorems. However,

as we explained in Section L.l we are interested in <.e sequence

of Sz—approximants (L.29) for all practical applications, and

not the sequence of convergents. Therefore, we rust first prove
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that, for a convergent Sz-fraction, the sequernzz of Se—approximants
converges to the value of the Sz—fraction.
Lemma’h.l: In terms of the transformations (1.4), the value

of a convergent continued fraction of the form (L4.59) may

" be expressed as

£= lim Tty e tn(w) R (L.60)

n->o :

and is independent of the value of w.

Proof: It may be shown by induction that

- An-—lW * An
bty aees tn(w) = T —TE (L.61)
n—-1 n
for n=1,2,3, .... and, by definition,
An
£ = lim — . (4.62)
o) B
n->o n _
Clearly, from (4.61) we have
£ = lim t.t. .... £ (0) = 1lim t.t, .... t (o) « (4.63)
o) o0 12 n oo 12 n
If w is finite and non—zero we write
A = B (f +¢€) (L.6L)
n n o) n
so that
lim ¢ = 0. (4.65)
n-»o n

Substituting for A.n in (4.61) and rearranging we get

e s U SV

A n-1
t.t. ...t (w) = £ +
1°2 n o w o+ (Bn/Bn_l)
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and as n + = we obtain the result (4.60) even if B /B 1 is
n'"n-1 "

unbounded.

Consequently, if we can prove a result for the first n terms
of a convergent continued fraction then the result will still

hold as n -+ o.

Theorem L4.1: If an Sg—fraction converges to a finite limit

at each point (x,y) of a set E, then the sequence of its

S2-approximants converges to the same limit at each point

of E.
“Proof: We let (4.59) represent the main-fraction of an
Se—fraction fo. We consider the first n terms of the mth

Sz—approximant and write

al a2 an
4 = —_— (L.67)
mn bl+nml +‘b2+nm2 + ... + bn+nmn

where N represents the truncation error in the rth partial

denominator. If all the sub-fractions converge then

lim N = 0 | (L4.68)

o0

for r= 1,2, .... n and we have

a a, a
. 1 2 n )46)
lim ¢ = == LT + 3 (4.69
msoo mn bl b2 ceee 1

To complete the proof we let n + o and epply Lemma 4.1 .

The convergence problem for continued fractions in one

variable is given a thorough treatment in Well (1948), and
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we can often use existing convergence criteria to establisn the

convergence of the sub-fractions of an Se—fraction expansion.

We must now consider to what extent we can apply existing théorems

to the convergence of the main-fraction.

We use a similarity transformation on the fraction (4.4) to

obtain
_ coo cll}-{y
= + 4
fo(x,y) (l+go ho) (1+go H;)(l+gl+hl)
1 4 1 +
Cop™V XY
(l+gl+hl)(l+g2+h2) (l+gn_l+hn_l)(l+gn+hn)
+ 1 + cees T 1 + teee

(4.70)

when none of the partial denominators of (4.4) is zero. We suppose

there is a set El of points (x,y) for which there exists N such

that l+gn_l(x)+hn_l(y) # 0 for alln >N . Now, for convergence

purposes, we consider the function

c_ Xy

nn
) = Ay e 0 (7 T

for n >N and (x,y) ¢ By
One of the most useful theorems is one due to Van Vleck (190L4)

which we now quote.

Theorem 4.2:  Let kl,k2,k3, ceee

a finite limit x. If k # O , let L denote the rectilinear

be a sequence of numbers having

cut from -(hk)—l to @ in the direction of the vector from O
to —(hk)_l . Let G denote an arbitrary ciosed region whose

distance from L is positive or, if k = O , an entirely



b
o
X9

arbitrary finite closed region.

( FIG. h.1
There exists N, depending only on G, such that the S-fraction

k z k Z k pA
n+1 n+2
(4.72)

n
+ 1 + 1 + 1 + e

H] -

converges uniformly over G for n > N .

The proof is rather long and is not reproduced here but will be
found iﬁ Wall (1948). It is worth noting that, by a theorem of
Pringsheim (1910), wniform convergence of an S—fraction 1s a
sufficient condition for the convergence of the fraction to the -
function of which it is the S-fraction expansion. Arising from

Theorem 4.2 we have the following two theorems for 82-fraétions:

Theorem 4.3: ILet R be a finite closed region in which all the’

sub-fractions of an S, -fraction (U4.4) converge uniformly

2
and for which there exists N such that l+gn_l(x)+h (y) # 0

n-1

for all n >N and (x,y) e R. A sufficient condition
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for the Sg—fraction to converge uniformly over X is trct

lim ¢ = 0 . 7
hoe BN (4.73)

Proof: = If condition (L4.73) holds then, from (L4.71),

lim y (x,y) = 0 (k. 7h)

n-re

and we can apply Theorem 4.2 .

Theorem 4.L:  Let there exist c, g(x) and n(y) such that, in an

S -fraction (4.L4),

2
lim ¢ = ¢ , h
Jow DD
lim gn(x) = g(x) , (4.75)
n-rx
lim h (y) = h(y)
. N

Let the region R be defined as in Theorem 4.3 . The

S2—fraction will converge uniformly in R except when

oxy
= -F- s (4.76)

: 2
{1+g(x)+n(y)}
where T 1s any real positive number.
Proof: Under the conditions (4.75), lim Yn(x,y) exists and
n—»c

the restriction (4.76) follows from Theorem 4.2 .

We can apply Theorems 4.3 and L.4 to the expansions (4.53),

for e—(x+y), and (L4.54), for 1/v(1+x)(1+y) . In the case of e-(x+y),
all the sub-fractions converge uniformly everywhere in the finite

complex plane and condition (4.73) is satisfied so that, by Theorem L.3,
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the expansion (L.53) converges uniformly throughows the finite

Xy-domain. In the case of 1/V(1+x)(1+y), we nave ¢ = 1/16 =and

(=}

IS
ol

+

.
= 4X
glx) T .

T . (4.77)

LR 2N BN 1 +

which, by Theorem hf2, converges uniformly except when x=-1- ¢ ,

where § 1s any real positive number. From (4.77) we can write

glx) = —ﬂfg(iﬂ (L.78)

3(V1+x - 1) . Similarly,

1l

from which we find that g(x)
h(y) = 2(V/14y - 1) except vhen y =-1 - ¢ . Now, applying
Theorem 4.4 we find that the expansion (4.5k4) converges uniformly

except when any of the following conditions hold:

x = 'f.l" %_ ,

y = 175 (4.79)
X = =-1- g 5 |

(V1ax + /l+y)2 3 ,J

where ;l 5 £2 and £. are any real positive numbers, and the

3
expression V1+x indicates that branch of the function (1+x)

-

whose real part is positive.
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L.b4

Comparison of S2-Approximants with Chisholm Approximants.

Before comparing the two methods of approximation w~ define
the sequence of diagonal Chisholm approximants to the function
fo(st)s defined by the doulle series (L4.1). We write an(x,y)

to denote the [n/n] approximant which is of the form

n n
I I b qxpyq
_ D=0 _g=o
an(x,y) —— . (L4.80)
I I a4 xy®
— rs
r=0 S8=0

Chisholm (1973) normalises the series (L.1l) by taking a_, = 1
so that
b = d = 1 (4.81)
00 00 | |
and defines the [n/n] approximant by the relation
n n ' r s N co © : ] n n
D I % oa.xyl| - £ I b xFyd
Z  Trs S W .- q
r=0 S=0 i=o j=o pP=0 Q=0
2n+l
= 0(x,y) , (4.82)
which leads to (2n2+3n) linear equations, together with
n "symmetrisation" conditions formed by equating to zero the
sums of coefficients of the pairs of terms
+1- 2n+l-k k :
xky2n 1-k . x n ¥ (L.83)

’

for k=1,2, .... n . The (2n2+hn) coefficients {bpq} and

{d& } may then be determined. The definition is chosen so that
rs
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the approximants have the following five properties:

(1)  Symmetry between x and y.
(11) Uniqueness.
(iii) If x =0 or y =0 , they reduce to Padé approximants.

(iv) Invariance under the group of transformations

A
x = Toh- , y = oo (4.84)

for constants A,B and C such that A # 0 .
(v) The reciprocal of an approximant is an approximant

of the reciprocal series.

Now,.S2—approximants satisfy property (i), by definition, and
property (i1i), in the sensec that Sg—fraction expansions are
unique. If x=0 or y =20 Sg—fractions reduce to S-fractions,

whose convergents are Padé approximants, so that property (iii) is
also satisfied. However, the invariance properties (iv) and (v)

are not satisfied by any subsequence of S_ —approximants, although

2
all Sz—approximants are invariant under the elementary
transformations
x = Au , y = Bv (4.85)

for constants A and B. This property is not shared by Chisholm
approximants.

We now attempt to numerically compare the rates of
convergence of the two methods of approximation for a few simple
functions of two variables. In Tables k.4-4.7, below, values of
the [n/n] Chisholm approximant are listed alongside values of ;he

the Sz-approximant K2n+l' Strictly, a direct comparison 1s



slightly biased because the "symmetrisation" of the Chisholm
approximants means that the error terms (L4.83) become zero

when x =y . As only a fev examples are given the results are
inconclusive, but it appears that the rates of convergence of the
two methods are generally different and the method to be preferred
depends on the function chosen and the values of x and y. The

following examples are given in the tables:

(1)  flx,y) = 1//i+xty ,
(1) £ley) = & W)
(iii) f(x,y) = e //l+y ,
(iv) f(xy) = /(1) (1)

The Chisholm approximants were computed using an algorithm

given by Graves-Morris, Jones and Makinson (1973).
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f(x,y) = 0.37796L

TABRLE L.k
Example (1) £(x,y) = 1//T+x+y
(a) x=2,y=2 (b) x=1,y=2
2n+1 (n/n] ‘K2n+1 2n+1 {n/n] K2n+1
5 0.4hs5 0.4k49 5 0.L4986 0.5020
7 0.4482 0.452 7 0.5000088 0.5016
9 0.44718 0.44706 9 0.5000055 0.499966
11 0.447200 0.L44k7293 11 0.49999966 0.5001k4
13 0.447214 0.4LkT72156 13 0.499999980  0.500000088
15 0.4472131  0.u4Lk72157 15 0.5000000019 0.5000021
17 0.4Lh72128  0.44T72153 17 0.5000046 0.5000015
f(x,y) = 0.4472136 2(x,y) = 0.5
(¢) x=3,y=23 (a) x=5,y=5.
on+1 [(n/n] K2n+1 2n+1 [n/n] K2n+1
5 0.392 0.383 5 0.041 0.312
7 0.391 0.388 T 0.17 0.326
9 0.3740 0.3775 9 -0.27 0.3001
11 0.3778 0.3784 11 9.14 0.3035
13 0.3783 0.37797k 13 0.313 0.301518
15 - 0.377T 0.377978 15 0.373 0.301639
17 0.3783  0.37T7969 17 0.532 0.301695

f(x,y) = 0.301511




TABLE L.5
Example (ii). (x,y) e—(x+y)
(a) x=0.3, y=0.3. (b) x=1,y=1
2n+1 [n/n] K2n+1 on+ 1 [n/n)] 'K2n+1
5 0.548815k 0.548889 5 0.13573 0.143
7 0.5488116337 0.54881175 T 0.1353325 0.13543
9 0.5488116361 0.5L48811636L 9 0.135335294  0.1353387
11 0.5488116361 0.5488116361 11 0.1353352832 0.13533530
f(x,y) = 0.5488116361 13 0.1353352832 0.1353352835
15 0.1353352832 0.1353352832
f(x,y) = 0.1353352832
(¢) x=1,y=2 (d) x=5,y=5.
2n+1 [n/n] K2n+1 on+1 [n/n] K2n+1
5 0.053 - 0.067 5 0.011 0.0L2
7 0.049713 0.0L498L 7 $.000035 -0.0022
9 0.0L97882 0.0Lk982 9 0.000060 0.0029
11 0.049787057 o.oh978718' 11 '0.0000L446  0.00032
13 0.04978706847 0.049787078 13 0.000045LL 0.00037
15 0.049T78706838 0.04978706839 15 0.0000Lk541 0.000056
17 0.04978706839 0.049 78706837 f(x,y) = 0.00004540

f(x,y) = 0.04978706837




TABLE 4.6

Example (iii).

1T, y=2
on+1 [n/n] Ko on+1 [n/n] 2h+1
5 0.26059‘ 0.256 5 0.2133 0.201
T 0.2601296 0.260113 T 0.21244 ‘0.31213
9 + 0.26013013 0.2601318 9 0.2123983 0.2123952
11 0.2601300495 0.260130059 11 0.21239551 0.2123947
13 0.2601300476 0.2601300472 13 0.21239531 0.212395236
15 0.2601300475 0.2601300475 15 0.2123952955 0.2123952906
f(x,y) = 0.2601300475 17 o.21é39529h2 0.212395294 1
f(x,y) = 0.2123952944
(¢) x=1,y=5. (d) 5,y =5.
2n+1 [n/nl K2n+1 2n+1 [n/n] K2n;1
5 0.154kL 0.110 5 o.ohh\ 0.15
T 0.15088 0.148 T -0.0024 -0.0073
9 0.15031 0.1499 9 0.0032 0.0069
11 0.15021 0.15012 11 0.002728 0.00280
13 0.1501900 0.150175 13 10.002752 0.00249
15 0.1501868 0.1501842 15 0.002751 0.002748
17 0.1501861 3.1501858 17 0.002753 0.002754

f(x,y) = 0.1501862

f(x,y) = 0.002751
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f(x,y) = 0.2886751

TABLE L.7
Example (iv). £(x,y) = 1//(1+x) (1+y)
(a) x=1, y=1 (b) , VY =2 .
*
2n+1 (n/nJ] K2n+1 2n+1 (n/n] K2n+1
5 0.50030 0.50037 5 .L0o9s 0.L409k
T . 5000088 0.499989 7 .40833 0.408215
9 . 50000026 0.50000032 9 .408254 0.408251
11 .5000000076 0.4999999906 11 .Lo824871 0.4082L48258
13 0.5000000002 0.5000000003 13 .L0824832  0.4082482995
15 :0.5000000001 0.5000000000 15 4082482926 0.L082482906
f(x,y) = 0.5 17 4082482904  0.4082482905
f(x,y) = 0.4082482905
(¢) x=1,y=5 (a) LY =5.
on+1 [n/n] K2n+1 2n+1 [n/n] K2ni1
5 .296 0.294 5 176 0.183
T .290 0.28887 7 . 1682 0.1640
9 .28891 0.28876 9 . 16694 0.1672
11 .28872 0.288686 11 .16672 0.16658
13 .288682 0.28867T4 13 . 166675 0.166682
15 .288676L 0.2886755 15 . 166680 0.16666L0
17 .2886752" 0.2886752 17 . 1666657 0.1666671

f(x,y) = 0.1666667

*

7or this example the even approximants {K

n} are exact when X =Yy .
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The results in Tables h.4 - 4.7, above, show that
Sz—approximants converge more rapidly for the function l//I:;:§,
whereas Chisholm approximants converge more rapidly for e—(xfy).
There is little to choose between the methods in the other two
examples given.

It 1s also of interest to examine the singularity structure
of the two methods of approximation. In Figs. 4.2 - 4.13, below,
are sketches of the zeros and poles, near the origin in the real
xy-plane, of some approximants with quadratic and cubic numerators
and denominators. Bofh the 82-approximants and the Chisholm
approximants satisfactorily represent the singularities although,
in the examples shown, the Chisholm approximants do so more

accurately because they correspond to more terms of the power

series. The graphs shown are as follows:

FIG.

4.2 Branch points of 1/Vl+x+y [left diagram]Aand
1/V/(1+x)(1+y) [right diagram].

4.3 Zeros [left] and poles [right] of K3 for 1/V1+x+y.

A “ . of Kh . S

k.5 of [2/2] C.A. for 1/V/l+x+y.

L6 . . .- . . of [3/3] .

L. T s " of X, for & (x*y),

4.8 of Kh " - . (x4

L.9 of [3/3] C.A. for e .

L.10 " " " " " of X, for 1/V(1+x) (1+y).

11 . . . . . of Ku . .

h.12 - - . ~  of [2/2] C.A. for 1/V/(1+x)(i+y)."

h.i3 - " . . - of [3/3] .
The [2/2] Chisholm approximant (C.A.) for e_(¥+y) has no real zeros

or poles.
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We will now briefly consider functions of two variables
that have no Sg—fraction expansion. As an example, we consider
the function sinh (x+y) for which Chisholz approximants can be

obtained. This function has no single S,.—fraction expansion

2

but may be expressed in the form

sinh (x+y) =

< {51nh XXCOSh y} fy {sinh yycosh x} (4.86)

where the functions (sinh x cosh y)/x and (sinh y cosh x)/y
both have Sz—fraction expansions in the variables x2 and y2.
We may generalise this 1dea by defining an odd function of two

variables by

fl=x,-y) = - flx,y) , ~ (4.87)
and an even function by

f(=x,-y) = flx,y) . (L4.88)

Neither odd nor even functions have Sg—fraction expansions but

»

their double series expansions can often be "partitioned” in

such a way that an odd function can be expressed in the form

f(x,y) = x u(xg,y2) +y v(x2,y2) , (4.89)

and an even function may be written

flx,y) = u(xt.y?) +xy (x50, (4.90)

where u and v have Sz-fraction expansions in each case. Similar
"partitioning" may be useful with other types of function. There
is a slight risk, however, that additional singularities may be

introduced by this process. An alternative method 1s to



2

7 . . . .
where g(..,y) 1s any suitable function such that <re S —-“rac:

~ approximate to £(x,y) by forming the S, —fraction for f(z,7)+

expansion exists. The drawback o this technigue 3

choice of g(x,y) may lead tn difficulties. The Tractiion may be

slowly convergent, or if |g(x,y)| >> |f(x,y)| in some region of

the xy-domain ﬁhen the value of f(x,y) will be lost in that region.
We will now conclude this chapter with an example of the )

approximation of a "non-trivial" function of two variables,

i.e. a function that cannot be more easily represented in terms of

functions of single variables. Such a "nor~trivial" function is

Appell's hypergeometric function in two variables, defined by

LR R _ r(y)
Fplas8:875v50Y) = SrYF(R)T(7)
® % (atmtn)T(8+m)T(B7+n) Xy
r L T (y+m+n) m'n!
m=0 n=0
(4.91)

and satisfying the pair of partial differential equations

3°F | 82Fl 3F, 3F,
x(1-x) 21 + y(1l-x) + {y—(a+B+l)x} —= - By —= — aB 7
90X 9XoYy ax oY
(4.92)
and
e 82Fl oF, 7. ’
y(1-y) L+ x(1-y) + {y=(a+g+l)y}—= - Bx— - ad” F.
oy oXay oy ox
(4.93)

: . . s
This is one of four hypergeometric functions defined by Appei-.

[See Whittaker and Watson (1927).] In the example in Table L.8,

£

> ° =

=

below, we make the arbitrary choice of parameters a = R

B =3 and y =1.



TABLE 4.8
f(x,y) = F1(%;%,%;1;x,y) .
X y n K X n X
n . n
0.1 0.1 2 1.03896 1.0 1.0 L4 1.45919
3 1.038207 5 1.459691
I 1.03821503 7  1.45962834
5 1.03821506 9 1.45962205
0.1 0.2 .2 1.0526 1.0 2.0 L 1.6568
| 3 1.051257 5  1.658L6
i 1.05127653 7 1.6581276
5 1.05127661 8 1.65812512
0.3 0.3 3 1.1189 2.0 2.0 5 2.1836
I 1.1191600 8 2.180239%4
5 1.11916265 10 2.18023545
6 1.11916254 13 2.18023527
0.5 0.5 3 1.2055 1.0 5.0 6 2.5512
‘ 5  1.206689 9 2.550689
6 1.20668788 12 2.55067838
7 1.20668783 14 2.55067832
0.5 1.0 L 1.284832 3.0 3.0 9 3.5081
5  1.284900 12 3.507865k
7  1.284893L43 15 3.50786165
8 1.28489342 17  3.50786140
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CHAPTER 5.

CORRESPONDING FRACTIONS IN MANY VARIABLES.

We will now show how the ideas in Chapter 4. may be

generalised to functions of N variables. The investigation

does not extend as far as that of the S2—fraction out is

intended as a foundation for further research.

5.1 The Structure of the SN-Fraction.

The S _~fraction is of the form

2
£ (x y) = coo cllxy
. :
o .1+go(x)+ho(y) + l+gl(x)+hl(y) F oeeee
c Xy
+ 1+g (ir)lﬂ (y) + (5.1)
e o e 0 n J-n e o e

where gn(x) and hn(y) have both S-fraction and single power
series expansions. An analogous continued fraction in three

independent variables x,y and z would have the form

o000 €115

fo(x,y,z) = 1+go(x>+ho(y)+k0(2) +1+gl(x)+hl(3’)+kl(z)

+uo(x,y)+vo(y,z)+wo(x,z) +ul(x,y)+vi(y,z)+wl(x,z)

C VA
nnnxy

F oaees + l+gn(k)+hn(y)+kn(z) + oeeee

(5.2)

+un(x,y)+vh(y,z)+wn(x,z)

where gn(x), hn(y) and kn(z) aave both S—-fraction and single

power series expansions and un(x,y), vh(y,z) and wn(x,z) nave



1kl
both Se—fraction and douole power series expansions. The fraction
(5.2), which we call an S -fraction, will correspond to a triple
power series. Clearly, .the notation of (5.2) is too unwieldy and
the formation of an SN-fraction and its CS algorithm is only

feasible 1f we can use a streamlined notation.

We consider a set of N independent variablesA{xk} and write

I

= 4{Xl,x2, cees xN} | (5.3)

and we consider trne function fo(zj, formally defined by a Taylor

series in N variables. We write the S_-fraction in the form

N
N N
% 1 I G 1%
£ (x) = k=1 k=1
o= 1+g (x) + 1+g (x) + 1+g (x) + ....
o L= 2=
N
c, ,glxk
T (5.L)
cee. t l+gn(§) ..
where we abbreviate ¢ n....n to . and gn(g) denotes the sum

of all the sub-fractions in the (n+l)th partial denominator.

-

Now, the formal power series expansion of gn(z) can be written

/
g(x) = 2 Z eeo o0 Z b. . . H )Ll{
n-— > b A J J toooJ —
= = = 1¥2 N k=1
Jl o J2 o JN o
(5.5)
h ﬁ j, = 0 and b(n) =0 As this expression is
where Ik 00.¢s+40 *

k=1
complicated we introduce an abbreviated notation using vector

suffices. Writing

Jj. = {'jl)j2’ e s th} (5'6)



we can write (5.5) more succinctly as

© N
_ (n) * Ix
gn(-}g) - _z_ b_‘j_ I x (5.7)
JFo k=1
N
where I 3. =0 and b(n> =0 ] :
o1 Jk o = . The summation over the

vector J denotes N summations. The recurrence relations thes

give rise to the fraction (5.k4) are

N
fa(®) = ‘-‘n<kflxk £o1(2) - g (x))f (x) (5.8

N

(x) = 1/{ 1 .
1= k=1)ﬁ‘

Using notation similar to (5.7) we can write fh(ﬁ) in the

for n = 0,1,2,3, .... and where we set f_

series form
N o0

f(x) = 1T x I a; 1ox, 5.9)
m= i=

for n = 0;1;2;3, ceee

We will now generalise the results in Section 4.1 to prove
the existence, correspondence and‘uniqeness of SN—fraction
expansions. A necessary condition for the existence of the

fraction (5.4) is the existence of a sequencel{Tn(ﬁ)} of functions,

each having an expansion of the form
II X R (5.10)

and satisfying the system of formal identities

T (x) = =- , (5.11)

l+gn('£) +Cn+l ,_Elxk * Tn+l(£)




1a3

for n=20,1,2,3, .... and where f (x) = cOTO(_)g) . We now

o
assume the existence of Tn(i(_) and gn(z) ané note that T (x)

n

has a reciprocal series expansion

N 1

1 (n) k
= I d I . (5.12)
T, (%) i=o = ko1 ¥
Rearranging (5.11) we get
_ 1 J’ 1 )
Tn+l(35) - N Tn(5 l'gn(_lg)j , (5.13)
c I L
n+l K= *x
or, using (5.7) and (5.12),
o R 1 © N
(x) = L e
n+l = N _ . m o -
- i=o = m= Jj=o m=
a1 T *x
k=1
(5.14)
o (n) |
where I j_ =0 and bo = 0 . Now, choosing
=l
N an) ool (5.15)
o oL 4
N
for j#0 and T j_ =0, the identity (5.14) can be
. m=1
simplified to
© N 1
-1 (n) m
T (x) = — L d; I x (5.16)
n+l C 41 i=o 1+l =1 m

where the suffix i+l denotes the vector of elements {ik_-i-l}.

,1(x) can be expressed in the form (5.10).

Now, letting An(J_g)/Bn(gc_) denote the nth convergent

Thus, T
n

of the SN—fraction (5.4) and using the result (1.23)



we have
n N n
A (-1) CC1Cpreency I X
T -2 = k=1 (5.17
) Bn N > 2.27)
Bn(Bn+l+Cn+l P Xk‘Tn+iBn)
k=1
so that
An /'N n
° B \k=1Xk

Hence we have established existence and correspondence.

To establish uniqueness we consider the two S _-fractions

N
N N
¢, ¢y P X . g X
k=1 k=1
fo - l+g +  1+g o+ 1de o+ . (5.19)
o] 1 &,
and
N N
k=1 k=1
f; = l+g’ + ~l+g’ + e +——i:.é';-+ Ceee (5.20)
o] 1 n

such that fo(x) = f;(_) . By setting eacn variable to zero

-

o

P

- in turn it is easily verified that e, = ¢’ and g, = &

2

= A” = BZ -/B* is the nth
so that Al Al and Bl Bl , where An/Bn is the n
convergent of (5.20). We also have AO = A; = 0 and Bo = BO =1

and we need to show that if

e =cl » g, =8 s Ay AL o B TEa

\ (5.21)

L g e - (5.22)
n n



We consider the difference o« tween the (n+l)tn convergents

n+l  ‘n+l  _ An+1Bn+l " AP ( )
- B G . 5.23
n+l Bn +1 - Bn +1°n+1

Using the recufrrence relations (1.8) and the hypothesis (5.21)

~ we get
An+an+l B An+an+l B {(l+gn)c£ h (l+g£)cn}
N
.(A B - ) T x
n n-1 n-1ln k=1 X
(5.24)
or, using the determinant formula (1.11),
An+an+l - An+an+l = {(1+gn)cr'l - <l+gr’l)cn}
N n
.0 I x . (5.25)
=1
But, from (5.18) and (5.23), we have
N \n+l
Aafia T AMatia =0 kzlxk (5.26)
so it follows from (5.25) that
- _ - = .2
(1+g e’ - (1+gl)c 0 (5.27)

n n

~

This implies that result (5.22) holds and that 10(5) and

fg(g) both have the same coefficients. Hence we have proved

the uniqueness of SN—fraction expansions.

To define the approximants of the SN—fraction we shall

adopt the notation O(ﬁ)n to denote error terms of order

N r N ]

1 xkk such that I r, =n where r >0 for k=1,2, .... X
k=1 k=1



' o
ON

Then we define the sequence {Kn(x)} of S -approximants by
R N

r(0) -K ) = ox® . (

N
.
N
(@b

~ -

The coefficilents of Sw*fractions\may be stored on a
&

computer as an N—dimensional array and the values of the
SN-approximants evaluated by a generalisation of thne
algorithm (4.31). Ideally such an algorithm would be
recursive, using the fact that each partial denominator
of an S _—fraction has (2;—2) sub-fractions. These

N

sub-fractions are made up of

(/ N  S-fractions,

N .
(2> Sz—fractlons,

Yy ,
S —fractions,
r T




5.2 The Corresponding Sequence Algorithm for the S_-Fraction.

LY

- We can most easily obtain the CS algorithm for the S _-fraction
by substituting the series expressions (5.7) and (5.9) in the

recurrence relations (5.8). We have

"N o N i o N o1
+ —
x| agn 1) I ka = o 1 a(n 1) T xkk
m=1 i=o = k=1 i=o = k=1
© N J ) N 1
n
- [1+ 7 b{ ) n,xﬁm X aﬁn) i xkk . (5.29)
: Ji: o o m=1 -]___ =0 = k=
N ik+l
Equating coefficients of X, in (5.29) we obtain the
k=1

sumarised form of the CS algorithm

1 .
(n+l) _ (n-1) (n) £ (1) (n)
i “n %+l fiv1 7 L Py ety (5.30)
= — - J=o -
N (n) . e
where I j =0 and b " =0 . We require that relation (5.30)
=1 = ’
holds for n=0,1,2,3, .... and ik =-1,0,1,2,3, .... s0 we
(n) _ : .o, (=1) _ (-1) _
choose 'éi =0 1if any 1 = 1, a = 1 and %i =0
for i # 0. In particular, if we choose ik ==1 fork=1,2,....0
we get from (5.30) that
aln) o
= .31
“n aZ,n—.l) ?
o

for n=0,1,2,3, «... SO 1t may easily be siown that the
CS algorithm breaks down only if the SN—fraction does not exist.

Using the algorithm (5.30) the coefficients {Cijk} of tne

S3—fraction expansion of the function 1/V(1+x)(l+y)(1l+z) were



[
I
Qo

found for i+j+k < 6 . These coefficients are givern irn Tad

[} n .
I Jatie
[ ]

\J1

AN

below, and a selection of values of the SB—approximants ere

ziven
in Table 5.2 . .
TABLE 5.1
Coefficients of S3—fraction
expansion of 1/v(1+x)(1+y)(1+z).
il 1 1 1 1 1
1 2 r 5 i i 5
1 1 1 1 1 1
2 In n L In I
L e
In L 16 L i
{c.. ¥ =12 } 1 =
ijo te
1 1 1
i L I
1 1
n n
1
¢ .
— - —
1 1 il 1 2 1 Do i
2 " in In i In in L 1
i
1 ] 1 1 1 R R
E 8 & & & Boon o d6
I | |
| (S N A | Y = 1% oz
c...} =1\t & = 5 {c = |78 16 &%
{ ij1 Ie ije
1 1 i 1 1
L L L L L
1 1 1
I L re
Ao
.
L
L -
— —— (- ]
t 1 1 1
1 1 1 L z L 5
In n I G b b b
= |1 1 1 { Y= | & i {c...1 =
{c...} =& & & c.. Lk
1J3 lJ)"" 135
1 1 3
n & L * _
A c = ;
15 006 "
L w——d

£l _.—__]

FImn

i

J’»'I—’wvl

A

L.



TABLE 5.2

SB—approximants for f(x,y,z) = 1/¥(1+)(1+y)(1+z) .

X ¥y z n Kn(x,y,z) X y 2z n Kn(x’y’z)
11 1 4 0.320 1T 2 2 4 0.18
5 0.35390 5 0.2372
6 0.35372 6 0.236k4
7 0.35387 T 0.2369
8 0.353549 8 0.23566
9 0.3535530 9 0.235702
10 0.3535519 10 0.235690
11 0.3535533 11 0.235699
12 0.353553h 12 0.235701
f 0.353553L £ 0.235702
1 1 2 L 0.245 2 2 2 4 0.138
5 0.2895 5 0.1943
6 0.2890 6 0.1937
7 0.2893 7 0.19Lk
8 0.233659 8 0.19236
9 0.288675 9  0.1924k1
© 10 0.288670 10 0.192416
11 0.28867k 11 0.192LLL
12 0.288675 12 0.1924L46
£ 0.288675 £ 0.192450
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CHAPTER 6.

INTERPOLATORY FRACTIONS IN TWO AND MORE VARIARLES.

An important problem in applied mathematics is the
interpolation to a function whose values are known at the
intersection—-points of a rectangular mesh. Such an array
of function values may arise from a finite-difference
solution of a P.D.E. problem. in this chapter we will show
how the method outlined in Section 1.3 may be generalised
to form continued fractions which interpolate on rectangular,

cuboid or hypercuboid meshes.

6.1 Bivariate Interpolation on a Rectangular Mesh.

cees F

We consider first a set of function values Fo’Fl’ 0

given at (n+l) points (xo,yo),(xi,yl), cenn (xn,yn) which lie

on some monotonic curve in the real Xy-plane.

y P

FIG. 6.1

A possible approach to the problem of interpolation .u <O

-

. e N
construct a continued fraction, analogous to the Ire tion (1.74),



having the form

e + c ° (6‘1)

Provided none of the points were unattainable this fraction
would provide a means of interpolation in some region of the
xy-plane. However, we shali not discuss such continued
fractions except to/observe that the formula (6.1) does not
Cexist if ény two of the points {(Xr’yr)} lie on a-line X = a
or on a line y =b , where a and b are constants. Consequently,
we cannot interpolate on a rectangular mesh using a continued
fraction of the form (6.1) so we must consider a more general
structure as we have done for corresponding fractions.

In fact, a continued fraction similar in structure to
the Sz—fraction is useful for rectangular mesh interpolation
although special continued fractions may be constructed to cope
with more general sets of points. We consider a double array

of points'{(xi,yj)} which are the nodal points of a rectangular

mesh in a quarter-plane, as shown below.

FIG. 6.2

3]
N




We let {cij} be a double array of coefficients

wC 2 \.Luem*re“
and define the sequence of Tunctions {w (%,¥) } 2y
- n
W (xy) = o +g(x) ) ) |
n )y cnn gn X + hn(Y) + +l< )y)‘ '\6‘21
n
for n=0,1,2,3, .... where
_ (n) )
cnn +g (x) = woi(x) o, |
_ (n) (6.3)
TR = v ),
such that gn(xh) = hn(yn) = 0 and
X—X 3
(0) (0 = Wi« 2
T T n+r u(n’/x)
:c'+:l.k
(6.4)
(n) _ (n), IV
Yy (y) = Vr (“n+r) * V(n)( )
r+l
for n=20,1,2,3, .... and r = 0,1,2,3, .... . The recurrence

formulae (6.2), (6.3) and (6.4) lead to the continued fraction

(x=x ) (y-y )
flx,y) = e *e(x) +h (y) + MASENOE:
(x=x,) (y-y,) (x—xn_l)(y—is_l)v
+-c22+g2(x)+h2(y) + ool + cnn+gn(x)+hn(y) S

(6.5)

where f(x,y) = WO(X,Y) and the sub-fractions may be written

X—X X-X XX N
(x) = n n+l n+r-l ’
gxl x C + Cc + o s e 0 + C - + e s & > '
n+l)n n+2’n n+r,n \ , -
7 (6.5
- - =Y. Lo ;
h_(y) Yo TVan Y aar-d |
P=—-4 . !
n y + + o s e -+ C“ v + s s 0 0 . !
n,n+l n,.n+2 n,ntY J



From (6.2) we have
¢ -V (xn’yn) > (6.7

nn n

and comparing (6.4) and (6.6) we get

. .(n) )
cn+r,n - ur (xn+r) ?
(6.8)
c = v(n)(y )
n,n+r r n+r > J
for n =0,1,2,3, .... and r =0,1,2,3, .... . Also,
rearranging (6.2) we have
(x~x ) (y=y_)
w_ o (xy) = = = (6.9)
+ - - = > y
n+l v (y)=v (% by V=g (x)-h _(y)
which leads to a two-variable inverse difference scheme.
For the nodal values of the functions {wn(x,y)} We now use
the abbrevigted notation
(n) _
fij = wn(xi,yj) (6.10)
and we describe how to proceed systematically to calculate
the coefficients'{cij}.
Beginning with the double array of functiocn values {fgg)},

(o)

we have ¢ = f
00 00

(o) (o) (o) (o)

from the function values fﬁo ’flo ’f2o ’f3o ,++.. using the
one-variable algorithm defined by (1.78) and (1.79). Similarly,

from the values f(o) f(o) (o) (o)

we compute col’c02’co3""' 00 2ol 02 ’Tos

Discarding the first row and column of mesh polnts we use (6.9)

to form the new array'{fﬁi)} for 1 =1,2,3, .... and J = 1,2,3,

We then compute the coefficients cll’c2l’c3l’chl""'

we compute the coefficients ¢ c c ceen
and omp 1 £ 160°%0°%30°

LI



- and C155C 390 ) se e - In general we proceed to ine arrey {200
for 1 =n,n+l,n+¥2, .... and jJ = n,n+l,n+2, .... zné we

note that

gn(xi) - fin fnn >
6..1)
_ o) (n)
hn(yj) B fnj thn ?
so we may write (6.9) in the form
(n+1) _ (xi-xh)(yj—yn)
i i) gln)_gln)_.(a) - (6-%2)

1J nn  Tin “nj

when x and y have nodal values.

So far we have considered a rectangular mesh in a quarter-
plane. However, in a practical problem we erc generally concerned
with some finite region R covered by a rectangular mesh over waicha
we wish to interpolate to some function. We must now investigate
the class of finite regions R over which we can interpolate using
only one continued fraction expression of the form (6.5). Firstly,
it is implied by formuia (6.12) that if a point (xi,yj) e R waen
all points (xp,yq) e R for p=0,1,2, .... 1 and q = 0,1,2,
Clearly, this is too restrictive in practical applications .o ve

must form alternative expressions to (6.12) to cover the cases waen

the computations break down.

+ . L
If we wish to compute fﬁ? 1) and the point (xi,yn) £ R zken
we use the formula
plotl) (xizx?)(yj;y§) : (6.13)
i] REYENE.

1] nj



b
)
\.7)

X then we u

(O]
(0]

Similarly, if the point (x”,yj) ¢ =

(n+1) (xi—xn)(yj—yn)

i N Y (624

1, in

However, if both (xi,yn) ¢ R and (Xn’yj) é R then we use

(x.-» My.=y.)
(n+1) _ i n"73Yn P
fij - f§T)_ f(n) > (6.15)
1] nn

in which we require that (xn,yn) e R .

By considering the form of the interpolatory fraction (6.5)
and the conditions under which the formulae (6.12) - (6.15) are
valid we can describe the most general form that the region R

may take.

(XS.V) ‘ X

FIG. 6.3

z
In Fig. 6.3 the finite closed region R is bounded by the

contours C_ and Cy which form the perimeter of a rectan_u.ar
X
mesh, possibly triangular at the boundary. These contours

meet at the points (xo,yo) and (x_,y,) and the ccitour I jOins

iy N

the points {(xr’yr)} for r=0,1,2, .... & . XNecessaly



conditions for interpolation over R using only ore continucé

fraction of the form (6.5) are:

(1) The contour L lies entirely inside R, or on

boundary.

(ii) The contour Cy 1s single-valued with respect to x,
except when i1ts gradient is infinizte.

(iii) The contour C.. is single-valued with respect to y,

except when its gradient is zero.

More general regions of interpolation may also be dealt with by
modifying the structure of the fraction (6.5). It has been found
empirically that the accuracy of the interpolation formula is
largely unaffected by the choice of the point (xo,yo) although
some cholces are inadmissible, as we shall see. However, point:
may be reordered as in the one-varieble case and (xo,yo) may ve
an internal poinﬁ of the region R. If large problems are attempted
with very many mesh points it mey be advisable to use more than
one interpolatory fraction to save rounding error. Also, as in
the one-variable case, we expebt that some problems will have
unattainable points or give rise to fractions with unwanted
singularities.

-

We now give a selection of examples, Except where otherwilse
stated, the values of the finction F(x,y) are specified accurate
to approximately 20 significant figures at the mesh polnts, and

hy > N g S A “‘Y““ e 17 A
square regions of interpolation are sub—-éivicded Into smaller

- &.6

~
-~

o 5 17 3 = [P =
squares of side h. The numerical results, in .aod.es C.

o o e s o
below, include some unsuccessful examples to illustrate tae



limitations of the method.

(1)

e functions chosen are:

F(x,y) = cosx sinhy , interpolated over irne wnit

square O <x <1 , 0 <y <1 with 2 successivelr

equal to 1/4, 1/8 and 1/16. Resulis are eveluated

at points which are at varicus distances from mesh

points.

Two functions interpolated over the L-shaped region

shown in Fig. 6.4 . The region is divided into

squares with h = 0.1 .
) (1,1.5)
1.5 " —

i H
{
L s

(1,2) o FIG.
) i — X
0] 1.5

The functions are:

(a)

F(x,y) = e which is regular over the

ta.n—l <;::E";£(')} s

and continuous OV.<T

x
‘cosy

whole region.

{10 24(1m7) B aos{

Ly

(b) Flx,y) =

which is harmonic, finite

<.c whole region but with singuiarities i
3 7 v N

derivatives at the re-entrant corner (*,*).

Results are evaluated near ©O Tigé POint (1,2,

in both cases.



(iii) Four functions witk point singuiaric

IJ
N
Cy

&S on or
outside the boundary of 2z rectanguler resicn of
g r regilon of

interpolation. 'These are:

(a)  Flx,y) = e “cosy/V(x0.1)Z+(70.005) 2
interpolated over the square 0 <x<0.1,
O0<y <0.1 ﬁith h = 0.01 . Results are
evaluated at a selection of vpoints, including
the singularity at (0.1,0.045).

(0)  F(x,y) = e “cosy/{(x-0.1)2+(y-0.045)2} ,
interpolated over the same region as (a).

() F(x,y) = e “cosy/{(x~0.105)2+(y-0.0L5)2} ,
interpolated over the same region as (a).
The singularity lies Jjust outside the regicn.

(d) The same finction as (c¢), interpolated over the
rectangle O < x <0.1 , 0 <y <0,05 which is
sub~divided into smaller rectangles with 1n = 0.0l

and k = 0.005. The singularity lies outside

the region and near to a corner.

Two functions with line singularities just outside tne
boundary of a square region of interpolation. These are:
(a) PF(x,y) = e *cosy/(0.105-x) , interpolated over

the square 0 < x < 0.1 , 0 <y < 0.1 with h = 0.ClL.
(b)  F(x,y) = e Xcosy/{(0.105-x)(0.105-y)} , inverpolated

over the same region as (a).



(v)

F(x,y) = log(x+2) e 7 » interpolated over tre
square O <x < 0.5 ,0 <y <0.5 with = =
The values of F(x.y) are specified to

(a) L4 decimal places, and

(b) 6 decimal places,

as might arise from a finite-difference solution of

a boundary-value problem.

Flx,y) = e *cosy , interpolated over the unit square
0<x<1,0<y<1 with h=0.1. Results are
evaluated both inside and outside the region of

interpolation.



TARIE 6. 1 -3

Example (1i). F(x,y) = cosx sinny

X Yy h Interpolant b y h Internclant

0.1 0.1 1/h

0.09976 0.3 0.5 1/4 0.bg78245
1/8 0.099666333412 1/8 0.497821359€52
1/16  0.099666333L92li6Th 1/16  0.L978213596L57€353
F  0.099666333492L677 F 0.4978213596L978254
0.4 0.1 1/% 0.09235 0.9 0.5 1/4. 0.323931
1/8 0.09225968626 1/8 0.323918036302
1/16 0.09225068633959600 1716 0.3239180363133665073
| F  0.0922596863395960kL F  0.3239180363133665076
0.5 0.1 1/4 0.087986 0.4 0.7 1/4 0.698729
1/8 0.08790L593026 1/8 0.698701858LT1
1/16 0.0879045930980681222 1/16  0.698701858L553260k55
F  0.0879045930989681226 F  0.6987018584553260L62
0.7 0.1 1/4 0.076682 0.7 0.7 1/4 0.58021
1/8 0.076611756115 1/8 0.580196817766
1/16 0.07661175617835403 1/16  0.5801968177553705¢5
- F  0.07661175617835L01 T 0.58019681775537056%
0.9 0.1 1/4 0.06233 0.2 0.9 1/& 1.00596
1/8 0.06226465025 1/8 1.00605L73453
1/16 0.06226465030172394 1/16  1.00605L73LkL6350325
F  0.06226L465030172392 P 1.00605L473LL46350331
0.3 0.3 1/4 0.290898 0.5 0.9 1/4 0.90078 '
1/8 0.29091934799 1/8 0.9008531780%
1/16 0.2909193480119365 1/16 0.90085317797212763506
F  0.2909193480119371 P 0.900853177972127606%
0.6 0.3 1/&k 0.251309 0.6 0.9 1/% 0.8471k
1/8 0.2513314L43631 ' 1/8 0.5-722031309%
1/16 0.2513314436461836 1/16 0.84722081302377377T"
F  0.2513314436461832 F  0.8L7220813025TT37T76
0.9 0.3 1/4 0.189286 0.9 0.9 1/ 0.63808%
1/8 0.189292849931 1/8 0.63839302933
1/16 0.1892928499489957787 1/16 0.63839332929059u%3021
F 0.1892928499489957790 ? 0.658093029290551+2025




TARLE 6.2

Example (ii). (o) F(x,y) (1-x)z+(1—y)2}+‘
(a) F(x,y) = e “cosy CHET RN
cosigtan LT
VAN
X Y X N4
0.8 0.875 Int 0.288018454280064 0.8 0.875 Tnt 0.355518
| F 0.288018L454280082 F 0.355565
0.8 1.125 Int 0.1937k0097615 0.8 1.125 1Int 0.3569
F 0.1937L00976L4 F  0.3556
0.8 1.25 Int 0.14168346999 0.8 1.25 Int 0.386933
©F  0.141683470k6 F  0.38694T
0.8 1.375 Int 0.08T7415916 0.8 1.375 Int 0.4247600
F  0.087415920 F  0.4247680
0.9 0.875 Int 0.260609874517860 0.9 0.875 Int 0.2L485
F = 0.26060987L45178TT F 0.2438
0.9 ~1.125 Int 0.175303289696 0.9 1.125 Int 0.203
F  0.175303289723 F  0.2Lk
0.9 1.25 Int 0.12820050516 0.9 1.25 Int 0.29237
F  0.12820050559 F  0.2924k
0.9 1.375 Int 0.0790971921 0.9 1.375 Int 0.341664
 F  0.07909T7195 F  0.341680
0.95 0.875 Int 0.2h7899780957910 0.95°0.875 Int 0.196
| F  0.247899780957926 F  0.154
0.95 1.0. Int 0.2089570667468796 0.95 1.0 Int 0.1k2
F  0.2089570667L68795 P 0.136
0.95 1.125 ‘Int  0.1667536L73T1 0.95 1.125 Int 0.23
F  0.1667536L47397 F 0.18
0.95 1.25 Int 0.1219480927 0.95 1.25 Int 0.2493
F 0.1219480932 F o 0.245C
0.95 1.375 Int 0.0752395765 0.95 1.375 Int 0.3023
F  0.0752395797 ®? 0.3005
0.95 1.5 Int 0.027356960 0.95 1.5 =t 0.352
F  0.027356978 T 0.35%7
Int = Interpolant



TABLE 6.3

Example (iii). (a) F(x,y) = e_xcosy/'/(x—ﬂ

<b> F(X>Y) =

!
[¢)]
0
(@]
w0

<
~

X y (&) e N
0.055 0.005 Int 15.72016 0.055 0.005 267.0952
F  15.72007 ]
0.075 0.005 Int 19.6698 0.075 0.005 Iat
. T 19.6679 F
0.095 0.005 Int 22.576 0.095 0.005 Int .
F 22.558 F 559.607
0.085 0.035 Int 50.896 0.085 0.035
F 50.919
0.095 0.035 Int 89.0 : 0.095 0.035
| F 81.3
0.1 0.035 Int 85.5 0.1 0.035
F 90.4
0.075 0.045 Int 36.97 0.075 0.045
F 37.07 '
0.085 0.045 Int 59.6 0.085 0.0L45
: F  61.2 |
0.09 0.045 1Int 93.1 0.09  0.0L45
F 91.3
0.095 0.045 Int 221.5 0.095 0.045 35610.3
F 181.7 36338.1
0.1 0.04L5 Int 547.3 0.1 0.045 -1.2x108
F o '
0.085 0.055 Int 54.8 0.085 0.055
F 50.9
0.095 0.055 Int —178.4 0.095 0.055
: F o 81.2
0.1 0.055 Int L2.L 0.1 0.055
F 90.3
0.055 0.095 Int 13.90 0.055 0.095
F 1k4.01
0.075 0.095 Int 16.577 0.075 0.095 257
F16.521 : 255
5.055 0.095 Int 18.90 0.095 0.C55 gfg-
I

F 18.02




TABLE 6.3 (continucd)

Example (iii).

X N

(c)

F(X,y) = e

X

J

X i :
cosy /{{x-0.705,2+(=-0.0.5 )%

0.055 0.005 Int

F
0.075 0.005 Int
0.095 0.005 1Int
F
0.085 0.035 Int
F
0.095 0.035 Int
F
0.1 0.035 Int
F
0.075 0.045 Int
F
0.085 0.045 Int
F
0.09 0.045 1Int
F
0.095 0.045 Int
F
0.1 0.045 Int
F
0.085 0.055 Int
F

0.095 0.055 Int

0.1 0.055 Int

0.055 0.095 1Int

0.075 0.095 1Int

0.095 0.095 Int

230.853
230.847

371.10L
371.093

534.970
534.919
1835.88
1835.90

Lh5h3.78
L5kl .08

T233.9
T234.3

1029. 7859
1029.7826

2293.976
£2293.956

4057.90
4057.80

9090.9
9084.5

36166.0
36156.9

1834.199

1834.247

Lh552.3
L4540.0

7227.17
T227.75

188.39
188. Lk

280.3
271.6

540.9
348.2

-055
095
.055
.085
.09

.095

.085
.09

095

055

.08
.085
.09

.095

.1

.0025
.0025
.0275
.0375
.0375
0375
-0375
.0L2s
.0k2s5
.0L25
.0Lk25
.0L475
.OLT5
.OLT5
50&75
.0LT5

.CL4T5

b
ct

’IJ

k-1
e 13
ct

h‘d?i-

Int

Int

Int

Int

Iqj

Int

Int

Int

Int

H H
s BB
ct ct

Int

Int

g 15
5

ct

vy b3

3247,2Lg2
3247.2485

5807.7
5815.9
11128.684
11128.631

2258.991
2258.912

39L48.5651
39L48.5661

£523.3
8551.1

28928.22
28928.65
377.22L0%
377.22398

1460.7131L3
1460.713111

2258.
2258,k
39L47.
394LT.
3507.
85L49.

28923.3
28922.1

t=\n
O W

N \O Oy O
—~ O
3 O




TABLE 6

. -
PROL

Example (iv).

(a) Flx,y) = e ©

(v) T(x,y)

(a)

i
(0]

0.055

0.095

0.095

0.055

0.095

0.075

0.095

0.055

0.075

0.095

0.055

0.075

0.095

.005
.005
.005
.025
.0L5
.0L5
. 0l5
065
.065
.085
.085
.085
.085
.095
-095
. 095

-095

Int

Int

Int

Int

Int

Int

Int

Int

Int

18.929L663382756L961792
18.929L663362756L961 771

90.9361567330232116
90.93615673302321 3k

180.965221518359505
180.965221518359516

90.9088770226893k45
90.908877022689352

18.91053986892252780
18.91053986892252734

90. 81152349 73648630
90.8452349736L861L

180.78428L94794383
180.78L2849LT9L3TS

30.859L7727166297978
30.859LT7727166297995
90.T7h52560L 1872055
90. 74525604 1872065

18. 8613605698124 824
18.861360569812&806

30.81313434548L23293
30.81313h3h5u8h23288

90.608980217599392
90.608980217599383

180.314132086868577
180.314132086868539

18.84L34568983158829
18.84L3468983158805

30.7853397151024916
0. 785339715102&922

90. 50724 7438123670
90.52724 7438123 681

180. 151h81815793u
180. 151&8181779308)

Ll =D g »
189. Cg%bOJJugA;OQJQUA
“Oy /ijOO_)_,uf.,

- 909.361567330232702

909.36156733023213%
1809.65221513359455
1809.65221518255516
1136.3609627535168¢7
1136.360962 783615599

315. 1756644 820421249
315.17566LL 820421223

151L.0872495608120
151L4.0872L95608102

3013.0715415752 o,z
3013.071415795063

771 )48093 79 i )7»»/;7
7771.586931791 ”7‘4388

58,0214 owoﬂovow
e Ve \'\—f* -‘/'-
SU. 03.‘-\-\/ UL-Cuu.\,J

1SS IBAN
N N

943.068028L93625C235
943. 0538026L5062433"
1540.65671727-211652
1540.65871 72742711644
L53¢.L449010879572
4530.5460708759€9
9015. 70600»3L“‘2""
9015. VquQHJ»BHEC
1854, = :
188k . 53L6E698313¢

3078. 533‘715:02§g1;
3073.5335715182-v22

o a o~~~

9052.72k7-3870232
9052 . 72% 743012508




Example (V). Fx,y) log{xt2) & ¥
x y X g

0.025 yo.ozs (a) 0.6881 0.225 0.275 {a) 03.607%
(o) 0.6881L8 (o) 0.807h&7
F 0.688149 F o 0.607-73

0.175 0.025 (a) 0.7579 C.275 0.275 (a) 0.623k
(v) 0.757847 (v) 0.624376
F 0.75784k Foo0.62L333

0.325 0.025 (a) 0.8230 0.025 0.325 (a) 0.5097
(b) 0.822905 (b) 0.509793
F  0.822889 F  0.509793

0.475 0.025 (a) 0.8835 0.175 0.325 (a) 0.5613
(bp) 0.883903 (b) 0.561k21
F 0.883865 F  0.561L24

0.075 0.075 (a) 0.c772 0.325 0.325 (a) 0.6087
‘ (b) 0.677217 (o) 0.609621
F o 0.677217 F 0.609611

0.025 0.175 (a) 0.5922 0.475 0.325 (e) 0.6489
()  0.592295 (p)  5.654755
| | F 0.592295 | o 0.65L783

0.175 5.175 (a) 0.6523 0.425 0.425 (a) 0.5765
(v) 0.652281 (o) 0.57896"
F 0.652282 T 0.579130

0.325 0.175 (a) 0.7080 0.025 0.475 (a) 0.L385
(b) 0.708260 (b) 0..38783
'F  0.708267 ¥ 0..38783

0.475 0.175 (a) 0.757T 0.175 0.475 (a) 0.4827
(b) 0.760738 (p) 0.-83220
F  0.760750 *  0..483223

0.225 0.225 (a) 0.6385 0.325 0.475 (a) 0.5227
(b) 0.638616 (5) 0.52-33k
7 0-638619 F 0.524097

0.275 0.225 (a) 0.6556 0.475 0.475 (a) 0.555¢
(b) 0.656359 (5) 0.5¢3399
F 0.65636k Fo0.56357T

\

[QAN

N7y



TARLE 6.6

ON
(@A

Example (vi). F(x,y) = cos ¥
Points inside the regiori: Points oubside e merlos
X y " ¥
0.05 0.05 Int 0.9500406354152k -0.35 -0.35 Ir% 1.3330333350
F  0.9500L0635L15Lk o 1.3330332328
0.45 0.05 Int 0.63683128246727 1.45 -0.35 Tnt 0.2203453250
F  0.636831282467k41 T 0.2203469279
0.85 0.05 Int 0.L268807Th58039 -0.15 =0.15 Iant 1.1L375€096¢c
F  0.426880774580L9 F 1.1:4873809¢657
0.05 0.45 Int 0.85653177896k4269 1.25 =0.°5 Tnt 0.283287656553
F  0.85653177896k272 F  0.283287656825
0.45 0.45 Int 0.5TL150L21506317 1.05 0.05 Int 0.3495004180%E71¢
F  0.57hk150421506319 F  0.3:95004180L6795
0.85 0.45 Int 0.3848645369T496 -0.35 0.45 Int 1.277795262182
F  0.3848645369T7498 | FoO1.27779526217k
0.05 0.85 Int 0.62779538804031 1.45  0.45 Int 0.2112151362C¢
F - 0.6277953880403k4 F 0.211218136212
0.45 0.85 Int 0.L420823833h121L 0.05 1.05 Int 0.47330L221529
F 0.42082383341216 F 0.473304221534
0.85 0.85 Int 0.28208665138572 1.05 1.05 Int 0.17k1188925202
F  0.282086651385Tk T 0.17k1183525221
-0.15 1.25 Int 0.3663523169
F  0.3683523181
1.25 1.25 Int 0.090341355C8
> 0.09034136930
-0.35 1.k5 Int 0.1713351530
T 0.37.081570
1.45  1.45 ot 0.02820033%7
T 0.02828¢3893




In example (i) the origin [for i3
taken at the point (1,1) because the funciiorn cos x =i--

zero along the mesh line y = 0 In fact, the intcroolatom

fraction (6.5) does not exist if any of its Sub-Tractions <

of similar accuracy to those in Table 6.1 were a.so cbtained Tor
the function cos x sinh y by using (0,0) as origin and modifying
the form of the interpolatory fraction. This cdevice may be used

- for interpolation over a circular mesh in polar coordinates (r,0)
in which r = 0 is a single point.

In examples (1ii)(b) and (iii)(cj the interpolation is
unexpectedly inaccurate near the corner (0.1,0.1). This is
presumably due to an unwanted singularity inside the region.

In example (v) the method is shown to be of great value
when the data is known only to low accuracy. A single interpolatory
fraction may thus be used as a global approximation to the solution
of a partial differential equation.

| In example (vi) the function e Xcos y is successfully
extrapolated outside the region of interpolation. This illustrates
the main advantage of rational interpolation, namely, that the
fraction approximates closely to the analytic structure oI Tic

‘function and not merely to its values at a few points.

From these examples it may be seen that the method worxs well

PR N - . s

for suitable smooth functions which are regular inside &anl nLeal The

interpolation region. The method is unsatisfactory near pOiLv



singularities or singularities in derivatives of trnz inzte

P R

st - o~
Vil aweavT il LG ulw

function although, in exampile (iv), the forzulsa is
b b

ol

O

5
line singularities outside the region of interpclation.
successful examples results are generally dest near tae

but are still good at more distant points.



6.2 Interpolation on Cuboid and Zyoercubcic

~ 3 ~
LoLugre

We will rnow generalise the method descrited - =

in The previcus

section for interpolaticn in Zuclidean N-ssace on & Lyoereulell

~ 3
e a A

mesh. We adopt a similar notation to that used in Chapter 5.

consider N independent varisples {x(k)} and write

>

We let the hypercuboid mesh occupy the region in vhich x(K) xgk)
for k=1,2, .... N and be defined by the soscissae {xik)} Tor
n=0,1,2,3, .... . Again using a vector suffix notation, we

let {ci} be the array of coefficients to be determined and define

the sequence of functions {Wn<§)} by

N :
Il {x(k)-xr(l'{)}

—

ON
ya
J

Wn('}-c') =y F gn(n_}g) * Wni—l(é)

where ¢ denotes ¢ and gn( ) is the sum of &ll sub-fractions
: n nn....n =
in the nth partial denominator.

" The definition (6.17) leads to the interpolatory fraction

in N variables

I\ &\ G x)\
I {x(k)—x; /3 I ix(&)—xgh h
=] k=1

= -+ -+ ./ \
f<2£) co go(ﬁ) Cl + gl(_}i) + C2 + ogk_l +
iN . .
L {X(l\)_.‘\ A>}
n-1
k=1 - ‘;)
+ 3+ 0 T gl". X
Also from (6.17) we have
e, = W ( ) VOenYy

X
n n -



}.J

(@]

where

“

—~
O
o
&)

~

-1

~~
(@AY
AP
B

then we have

é—’;n(ﬁi) = Wn(ﬁi) - v (x) (6.22)
N
for n = 0,1,2,3,.... provided I (jk-n) = 0 . Rearranging
| k=1 °
(6.17) and using (6.19) and (6.22) we obtain the generalised
inverse difference scheme
N
I { (k) (k)}
v o (x.) = =l Tk n (6.23)
mE L N ol N-m—1 ’
w G )+ ()= 1 (0T N ()

- m=1 J

N—m—lw (x.) denotes the sum over the (D‘\ values
n' 3 m/

vhere I (-1)
Wn(z.) associated with the sub-fractions of order m, such that

(1) Je = L or 3y = n for each k,

(ii) j# i and J#n .

In Table 6.7, below, is an example of continued fraction
interpolation in three variables over a mesh of cubes. ine Iun ction

F(x,y,z) = cosx sin(1l-y) e ° is interpolated over the cide

O<x<a, O0O<y<a,0<z<a with h=0.1 and asucc
equal to 0.4 and 0.6. The fraction was evaluatec &t Ta

[ " ..
tes toe vaeue

for each value of a. The increased accuracy 1ilusira

: 1 . ; lotion o
of using a global, as opposed to a local, interpo.uvion Lo



X

J 2 G nuersdolant
0.05 0.05 0.05 0.4 0.7727774k
0.6  0.772777792
Fooo0.772777783
0.15 0.15 0.15 0.L 0.63937218
0.6  0.6393720431
F 0.6393720k53
0.25 0.25 0.25 0.4 0.51435750
0.6 0.51L435762LL
F 0.514357623k
0.35 0.35 0.35 0.4 0.40061232
0.6 0.L0061207-5
F 0.4006120754
0.05 0.05 0.15 0.4 0.6992379
0.6 0.6992-8262
F 0.69923325k
0.05 0.15 0.15 0.k 0.6k582k982
0.6 0.6458249189
7 0.6L453259143
0.05 0.35 0.35 0.h 0.42593488
| 0.6 0.425934682
F 0.425934679
0.15 0.25 0.35 L 0.57kok83T
0.6  0.4749489839
F 0.L7L9LBIBLS
0.35 0.25 0.15 0.n  0.5511223Z00
0.6 0.5511223779
F 0.551122378k




"y

CONCLUSION.

The work presented in Part II is intended e3 a siartirc——sir-

for further research into several possible applicaticns.

4oTanly,
in numerical mathematics there is room for new methods for he

solution of boundary-value partial differential equation problens

and it 1s hoped that some of the ideas in this thesis may be

useful in this field.

Within the scope of Chapter 4. we could use S.-fractions to

2
analytically continue a double seriles solution of a hyperbolic
equation with analytic Cauchy initial conditions. For example,

the one-dimensional wave eguation

2
3 ulx,t) _ 1 23 u(x,t)
3x2 c2 8t2

may be solved in double series form given single power series A(x)

and u(x) for the initial conditions

u(x,0) = Alx) ,
ou _
'gg e = u(x)

The solution obtained in this case may be expressed as a siigle
integral [d’Alembert's solution] for which univcoriate metnods can
be used, although there may be hyperbolic problems for wailch
S2—fractions are advantageous.

In harmonic problems that can be solved using Grec..'s
functions it is sometimes possible to obtain a loudle series Ior

the solution although, when the series coefficients are &&sil



-
L

obtained, simpler methods are usually avellszble.
Clearly, if any real progress is to be x
boundary-value problems then more research is reedec.
be premature‘to consider the advantages of corntinued r
solutions of P.D.E. problems but the field holds mucnh promise,
although the difficulties to be overcome are large. One plausidle
line of research would'be to develop continued fractions that are
part—-interpolating and part-corresponding to a power series. T.cre
is little doubt that such fractions could be formed, but the‘details
of their structure and their method of applicetion require Jurther
study. The method of solution in series for partial differential
equations has been largely ignored by mathematiclans because of the
practical problems involved but, now that means of analytic

continuation of such series are available, it 1s possiblie o

consider the idea more seriously.
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