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SUMMARY. 

Elementary properties of continued fractions are derived 

from sets of three-term recurrence relations and approximation 

methods are developed from this simple approach. 

( i ) 

First, a well-known method for numerical inversion of 

Laplace transforms is modified in two different ways to obtain 

exponential approximations. Differential-difference equations 

arising from certain Markov processes are solved by direct 

appl.ication of continued fractions and practical error estimates 

are obtained. Approximations of a slightly different form are 

then derived for certain generalised hypergeometric functions 

using those hypergeometric functions that satisfY three-term 

recurrence relations and have simple continued fraction expansions. 

Error estimates are also given in this case. 

The class of corresponding sequence algorithms 1S then 

described for the transformation of power ser1es into continued 

fraction form. These algorithms are shown to have very general 

application and only break down if the required continued fraction 

does not exist. A continued fraction in two variables is then 

shown to exist and its correspondence with suitable double power 

series made feasible by the generalisation of the corresponding 

sequence method. A conve.rgence theorem, due to Van Vleck, 1S 

adapted for use with this type of continued fraction and a 

compar1son is made with Chisholm rational approximants in two 

variables. Some of these ideas are further generalised to the 

multivariate case. 



(ii) 

Such corresponding fractions are closely related to otner 

fractions that may be used for point-wise bivariate or multivariate 

interpolation to function values known on a mesh of points. 

Interpolation algorithms are described and advantages and 

limitations discussed. 

The work presented forms a basis for a wide range of further 

research and some possible applications 1n numerical mathematics 

are indicated. 
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(vii) 

NOTATION. 

In this thesis I have used var~ous notation conventions 

which I will now clarify. \{ithin each chapter equations are 

numbered sequentially, prefixed by the number of the chapter. 

For example, equation (3.54) is the 54th equation in Chapter 3. 

The same system applies to theorems, tables, figures, etc. 

References are generally given by the author's name, followed 

by the year of pUblication. Exceptionally, conference proceedings 

are given by the editor's name, followed by the year of the 

conference. 

The notations O(zn) and O(z-n) are used extensively. 

Without exception, the positive index denotes an error term of 

n order z with addit ional terms in as cending powers, and the 

negati ve index denotes an error of order z-n with additional 

terms in descending powers of z. Various generalisations of the 

O-notation are also used but are explained in the text. 

Also, when asymptotic expansions are quoted they are 

generally used as formal expansions only, so that the symbol "_" 

is used instead of " " - . 



(v::'ii) 

INTRODUCTION. 

Although rarely in the forefront of mathematical research, 

the theory of continued fractions has a long history and contains 

contributions by many renowned mathematicians. The origin of the 

subject is uncertain but Euclid's H.C.F. algorithm is an early 

example of what is essentially a continued fraction method. 

Omar Khayam, the 12th Century Persian poet and mathematician, 

is reputed to have expanded irrational s~uare roots in continued 

fraction form but the earliest published reference in existence 

~s probably Bombelli's "L'A1gebra", printed in Bologna in 1572. 

In the 17th Century important work was done by Wallis and also 

Brounker, who obtained a continued fraction for TI. 

The function theory of continued fractions ~s more recent 

~n origin and Euler, from 1737 onwards, made the first systematic 

investigation in a series of papers. Lagrange's method of 1776, 

for obtaining continued fraction solutions of differential 

e~uat ions, was a major landmark and led to many developments ~n 

the next century. 

In 1821 Cauchy proposed the use of rational functions as 

a means of pointwise interpolation to functions of a single 

variable. This aspect has received little attention, the most 

notable work being that of Thiele who developed reciprocal 

differences as a means for forming interpolatory continued 

fractions and demonstrated the connection between these fractions 

and analytic expansions. 

Towards the end of the 19th Century there was renewed 



(ix) 

interest in the field. Laguerre investigated the summation 

of divergent series in 1879, and published an important paper 

on differential equations ln 1885. Pad~'s thesis of 1892 

formalised the concept of rational approximation and emphasised 

the connection with continued fraction theory; the idea of 

Pade approximants is, however, much older. In 1895 Stieltjes 

began to formulate an analytic theory and valuable work was 

also contributed by Markov, Pringsheim and others. Van Vleck's 

papers on the J-fraction and related topics appeared at the turn 

of the century and most of the classical theory had been developed 

by 1910. 

In 1913 the first modern text book appeared. This was 

Perron's "Die Lehre von den Kettenbrlichen tt which was last edited 

in 1957 but is still not available in the English language. 

This is the only major work to include both the arithmetic and 

the analytic theories of continued fractions. The only comparable 

work on the analytic theory is by VIall (1948) which includes the 

matrix theory of continued fractions, developed in the 1920's, 

and considerable contributions by VIall and his associates over 

two decades prior to the pUblication of the book. This is widely 

regarded as the standard work in the field although its lack of 

clarity is a frequent criticism. At a more elementary level 

Wynn's translation of Khovanskii (1963) is a readable account of 

some of the basic theory, including some generalisations of 

continued fractions first suggested by Euler in 1771. 

The post-war development of electronic computation has led 

to a revival of interest in continued fractions as a means of 
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numerical approximation. Accordingly, there have been many 

advances in the area of numerical analysis over the last twenty 

years. The well-known quotient-difference algorithm, introa~c2d 

by Rutish~user 1.n 1954, is a powerful method that may be used to 

find the roots of a polynomial or the eigenValues of a matrix, 

but was first developed for converting a power series to a 

continued fraction. There are many interesting papers in the . 

numerical field by Wynn, who introduced the E:-algorithm, and 

Gragg, who produced a paper in 1972 surveying the whole field. 

The work of Bak,er, Gammel and others since 1961 has led 

to a resurgence of interest in Fade approximants, in theoretical 

physics in particular. Baker and Gammel (1970) have themselves 

edited a survey book of applications in physics and, in the same 

field, Graves-Morris has edited the proceedings of a Summer 

School and Conference at the University of Kent 1.n 1972 •. 

Forseeing the desirability of approximations to functions 

of more than one variable, Chisholm (1913) has shown how Fade 

approximants may be generalised to two variables: and it 1.S 

expected that this is the direction which much future research 

will take. The generalisation to two variables is not trivial 

and, as Chisholm points O~G, can be accomplished in various ways. 

Bearing in mind the variety of possible applications of such 

techniques, it is reasonable to suppose that different methods 

of generalisation will be useful in different situations. In 

this thesis rational approximants in two variables are obtained 

by means of continued fractions. These approximants are snown to 
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be different from Chisholm approximants and advantages a~d 

disadvantages of the two methods are discussed. The generalisation 

to many variables is also described, and analogous techniques are 

developed for ~ational interpolation in two or more variables. 

In the first part of this thesis exponential approximations 

are obtained by numeric,sJ. inversion of Laplace transforms. The 

process, in which Laplace transforms are expressed as J-fractions 

and the inversion is performed by a matrix method, was described 

by Luke (1962) but the idea is probably much older. In this work 

the technique is modified in two different ways. 

The one-to-one correspondence between a continued fraction 

and a set of three-term recurrence relations is of primary 

importance throughout this thesis and it is appropriate to begin 

by uSlng this correspondence to develop some fundamental results 

for a general continued fraction. 



PART I 

APPLICATIONS IN ONE VARIABLE 



CHAPrER 1. 

SOME PROPERTIES OF CONTINUED FRACTIONS. 

1.1 Continued Fractions and Recurrence Relations. 

By "the continued fraction f" we understand an infinite 
o 

expression of the type 

f 
o 

+ a 
n 

b + 
n 

which we may write In the more convenient form 

f 
o 

= 
~ a 2 a 3 
b l + b2 + b'3 + 

a 
n 

+ b + 
n 

(1.1) 

(1.2) 

where the elements {a } and {b } are numbers, real or complex. 
n n 

The nth convergent of fo lS 

A n 
B 

n 
= 

a 
n 

+b 
n 

where A and Bare respectively called the nth numerator and 
n n 

nth denominator of the continued fraction. The numbers a and 
n 

b are called the nth partial numerator and nth partial 
n 

denominator, and the expression a /b is called the nth partial 
n n 

quotient. 

The concept of an infinite continued fraction may be 

1 



formalised in varlOUS ways. In his standard work on -:·:.e analytic 

theory, Wall (1948) introduces a continued fraction in terms of 

the linear fractional transformations 

t (w) 
n = 

a 
n 

b + W 
n 

for n = l,2,3, .... . Taking the product of the first n of 

these transformations and setting w=O, we get 

so that 

A 
n 

B 
n 

= 

f 0 = 1 im t 1 t 2 .... t n ( 0) 
n-+oo 

It may be shown by induction that 

A w+A 
= n-l n 

Bn_lw + Bn 

for n = l,2,3, ....• From (1.7) we can easily obtain the 

recurrence relations 

A = aA +bA 1 n n n-2 n n- } 
with initial values Ao=O, Al=al and Bo=l, Bl=bl . Using 

(1.4) 

(1.6) 

(1.8) 

(1.8) we can verif'y the determinantal forms for the numerators 

2 



3 

. . . 1 

for n = 1,2, 3, .... . Also, writing a 
r 

= IT a. 
. 1 ~ 
~= 

and us~ng (1.8), 
( 

we can obtain the so-called determinant formula 

A B - A B = (l)rN 

r+l r r r+l - ""r+l (l.ll) 

As an alternative to the fractional transformation 

approach we may consider the continued fraction (1.2) to be 

the solution f of the infinite set of recurrence relations 
0 

fl = al 
- bl fo I 

f2 a2
f o b 2fl = -

f3 -- a 3fl b 3f2 ( 1.12) 

f = af - b f r r r-2 r r-l , 

. . . . 



Dividing the first relation by f and rearranging, we have 
o 

f 
a

l = 
0 b

l 
+ fl 

, 
..J... 

f 
0 

and dividing the rth relation by f l' we have 
r-

f r - l ar = 
f b + f 
r-2 r r --

f r - l 

for r = 2,3,4, ..... The results (1.13) and (1.14) lead to 

the continued fraction (1.2) for which we now establish an 

elementary convergence result. From the first n relations 

of (1.12) we obtain, using (1.8), 

B f 
n 0 

If B lS non-zero we also have 
n 

f - A (-l)n f o n = n 
B B 

n n 

If we now choose the sequences {a } and {b } In such a way 
n n 

that there exists a suffix N such that B lS non-zero for n 

all n > N then, from result (1.16), a. sufficient condition 

for the continued fraction (1.2) to converge to a solution 

of the recurrence relations (1.12) is 

li::n 
n~ 

f 
n 

B 
n 

= 0 

4 

( 1.13) 

(1.14) 

(1.16) 

(1.17) 
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More particularly, a sufficient condition for convergence ~s 

lim 
n-)o<lo 

f 
n 

;:: o (1.18) 

provided there exists N, such that inflB I > 0 for n > N. 
n 

In this case, if we let a and b be functions of a complex 
n n 

variable z and if F lS the reglon of the z-plane for which 

condition (1.18) holds then we can easily prove the following 

theorem: 

Theorem 1.1: The continued fraction (1.2) is convergent 

In that part of the region F which excludes the zeros 

of B (z) for n > N, where N is arbitrarily large. 
n 

Similar theorems and some of the results in this section 

appear in Wall(1948), Perron(1957) and Khovanskii(1963) in 

which they are usually presented in a different way. The 

convergence of continued fractions formed from recurrence 

relations is given an alternative treatment ~n N8rlund(1924), 

but Theorem 1.1 is more appropriate for our purposes. In 

the remainder of this section we assume that condition (1.18) 

holds so that the continued fraction (1.2) converges. 

So far we have shown how continued fractions may be 

. formed from either fractional transformations (1.4) or from 

recurrence relations (1.12) and some basic properties have 

been derived using both teChniques. It is the main theme 

of this thesis to show the usefulness of recurrence relations 

In continued fraction methods, both as a practical means for 

solving problems in Part I, and as a tool for research in 

Part II. The simplicity of this approach promotes a deeper 



understanding of continued fractions and makes possible their 

generalisation to two or more variables. Throughout this 

work the sequence {f } assumes great importance and it shall 
r 

be referred to as the corresponding sequence of the continued 

fraction (1.2). In Chapter 2. we shall relate {f } to sequences 
r 

of probability functions and hypergeometric functions, and in 

Chapter 3. the corresponding sequence will be used as the basis 

of a class of algorithms which will be generalised ~n Part II. 

We now note that the corresponding sequence {f } ~s 
r 

altered if we perform a similarity transformation on a continued 

fraction. The values of the continued fraction (1.2) and all 

its convergents remain unchanged under the transformation 

= 
c c a r-l r r 

6 

f 
o + + .... + c b + .... . 

r r 

This is equivalent to multiplying the rth equation of the set 
r 

(1.12) by yr,where Yr = IT 
i=l 

c. , 
~ 

and forming a new corresponding 

{f "} where sequence. r ' 

f" = f 
0 0 

f" = Yr r 

for r = 1,2,3, 

1 

J f 
r 

Now, from (1.14) we have the continued fraction 

f 
n 

f n-l 
= 

a a a 
n+l n+2 n+3 

bn+l + bn+2 + bn+3 
+ .... 

(1.20) 

(1.21) 

for n = 1,2,3, ....• for which we have the following express~on, 

(1.19) 
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using (1.8) , 

f 
A n A + 

f n-l n 
n-l f = (1.22) 

0 f 
B + n 

B 
n f 

n-l n-l 

for n = 1,2,3, ..... Subtracting the nth convergent of f and 
o 

uSlng (1.11) and (1.14) we obtain 

f 
o 

A 
n - - = 

B 
n B (B 1 + fn+l B ) 

n n+ f n 
n 

(1.23) 

Hence we have obtained a continued fraction for the truncation 

error, T (f ), of f , 
n 0 0 

A 
_ --B. = 

a B 2 
n+2 n a a n+3 n+4 T (f ) _ f 

n 0 0 B 
n b n+2 + b 3 + b 4 n+ n+ + .... , + 

which we shall call the truncation fraction. This result was 

essentially obtained by Wall(1948) in connection with matrix 

theory. Also, by comparison with (1.16) we have another important 

continued fraction, 

f 
r 

= 
a. r+l 
B 1 + r+ 

a B 
r+2 r 
b r+2 

a r +3 a r +4 
+ b 3 + b 4 r+ r+ 

The nth 'denominator of this fraction is 

(r) (0) 
nth numerator by A , where A = A , n n n 

= a A(r) + b A(r) 
r+n n-2 r+n n-l 

B r+n 
A(r) = 

1 

+ •... . 

We denote the 

a. and r+l 

for n = 2,3,4, . . .. . The truncation fraction for f 
r 

(1.25) 

(1.26) 

(1.24) 



~s then 

T (f ) _ f 
n r r 

~.e. T (f ) 
n r 

If we now set f r+n 

f = 
0 

and (1.16) g~ves 

A r+n 

A(r) 

= 

n 
B r+n 

= (_l)n 

o then 

A r+n 
B 

r+n 

B B r+n r+n+l 

f 
B 

r+n 
r B r+n 

f , 
r 

A (_l)rA(r) 
r n -- = 

B 13 B B r+n r r r+n 

a B 2 
r+n+2 r+n 

+ b r+n+2 

A(r) 

= n 
B 

, 
r+n 

, 

so we can generalise the determinant formula (1.11) to 

A B - A B = (_l)rA(r) 
r+n r r r+n n 

a 
r+n+3 

+ b r+n+3 

8 

+ .... , 

(1.27) 

(1.28) 

We now introduce a generalisation that has a direct application 

~n Chapter 2. Still assuming that condition (1.18) is satisfied 

we· exaIDlne a new set of recurrence relations 

= - b 
1 

f(m) - b 
o 2 

f(m) - b 
1 3 

. . . . . . 
a 

m 
f(m) - b 
m-2 m 

= a f(m) 
m+l m-l 

b (m) k 
- m+lfm + m+l 

= a r(m) 
m+2 m 

- b r(m) 
m+2 m+l 

(1.29) 



In which the term k 1 occurs In the (m+l)th relation and a m+ 1 

lS absent unless m = O. Apart from the term k 1 the m+ 

coefficients are the coefficients of (1.12) and we have, In 

t · ul k d .".( 0) n W· . par lC ar, 1 = al an ~r = Ir e wlll now derlve 

results for {f(m)} analogous to those we have developed 
r 

for {f } . 
r 

It lS easily proved by induction that 

B 
r-l f(m) 

B r = 
r 

for r = 1,2,3, m. In particular, when r == m we 

sUbstitute for f(m) In the (m+l)th relation of (1.29) and 
m ..... l 

obtain 

B 
m+l f(m) 

km+l - B m = 
m 

Now, the relation (1.31) together with the (m+2)th, (m+3)th, 

(m+4)th, relations of the set (1.29) form a set 

9 

(1.30) 

(1.31) 

analogous to (1.12) so that we obtain the continued fraction 

or, uSlng (1.19), 

= 
k B m+l m 

Bm+l 

a m+3 
+ b 3 m+ + .... 

a B m+2 m 
+ b 2 m+ 

a m+3 
+ b 3 m+ + ••.• 

(1.32) 

(1.33) 



In fact we have 

= 
k 

m+l B f 
a. 1 m m m+ 

By repeated application of (1.30) to (1.34) we get 

= 
k 

(_l)m-r m+l B f 
a. 1 r m m+ 

10 

(1.34 ) 

for r < m. Although the continued fraction (1.33) is of a more 

convenient form, we must be careful to use (1.32) when considering 

{f(m)} for 
r ' 

r 2:. m , as th d o f f(m) . e correspon lng sequence 0 

Applying result (1.25) we get 

= 

for r > m . 

k 
m+l B f 

a. 1 m r m+ 

m 

For results (1.35) and (1.36) we have the truncation 

fractions 

= 

= 

for r ~ m , and 

= 

= 

for r ~ m • 

k f 
( .... l)m+n-r m+l B B m+n 

a. r m B m+l m+n 

k 
m+l B T (f ) 

a."1 mn r m+ 

k f. 
(_l)n m+l B B r+n 

a. 1 r m B m+ r+n 

(1.36) 



Finally, analogous to (1.19), we can transform the set 

of relations (1.29) to a more convenient form, cQnstructing 

a new corresponding sequence 

f(m)'" = f(m) 
0 0 

(m) '" f(m) f = Yr r r 

and a new term k'" 1 where 
m+ 

k'" 
m+l 

= 

{f(m)"'} where r 

'"' 

J 

In this section we have discussed continued fractions 

1.n a general way, without reference to particular types of 

fraction. In the remainder of this chapter we shall exam1.ne 

11 

(1.39 ) 

(1.40) 

continued fractions that represent or approximate to functions 

of a single variable. 



1.2 Corresponding Fractions. 

In this section we shall describe var10US well-studied 

continued fractions which represent a function f (z) formally 
o 

defined by the power series expansion 

12 

f (z) 
o 

::: (1.41) 

convergent for lz I < Rl , or by the expans10n 

b b
l 

b
2 f (z) 0 

::: +- +- + 
2 3 

.... , 0 (1.42) 
z z z 

convergent for Izl > R
2

. We shall assume that the coefficients 

, {a } and' {b ,} are complex, although in most applications they 
n n 

will be real numbers. We also note that it is not always 

necessary that the series (1.41) and (1.42) converge for a 

valid continued fraction expansion to exist, as may be seen 

1n examples given by Wall(1948). The continued fractions 

studied in this section are all of the form 

F (z) 
o 

::: 

~(z) u2(z) u
3
(z) 

vl(z) + v2 (z) + v
3

(z) + 

where u and v are polynomials in the complex variable z, 
n n 

(1.43) 

so that the nth convergent U (z)/V (z) is a rational approximation n n 

to f (z) . 
o 

For convenience we now define corresponding fractions 

1n a slightly more general way than most definitions given 

ln the literature. 

The continued fraction (1.43) 1S said to correspond to 
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the power series (1.41) if 

= , (1.44) . 

for n = 1,2,3, .... where {a(n)} is a non-decreasing sequence 

of positive integers such that a(n) + 00 as n + 00. For the 

continued fraction (1.43) to correspond to the series (1.42) 

we use the definition (1.44), except that {a(n)} must be a 

non-increasing sequence of negative integers such that 

a(n) + -00 as n + 00. We now proceed to list various types 

of corresponding fraction. 

The continued ~raction 

F (z) 
o 

= 
c 

o 
1 + 

c z 
n 

+ 1 + 

corresponds to the serles (1.41) if the coefficients {c } n 

are chosen such that 

(1.46) 

Such a fraction exists provided that the Hankel determinants 

H2n = 

a 
0 

a1 

a 
n 

are non-zero :(.. 

a1 
.... a a1 

a2 n 

a2 .... a n+l 
a2 a

3 
.... 

and, H = . . . . . . . . . . . . . . 2n+l . . . . . . . ....... 

--" 0,1,2,3, .•.. . Now, adapti:-.g a theorem 

a n+l 

a n+2 

a 2n+l 



glven by Khovanskii (1963), if the fraction (1.45) converges 

uniformly over a domain D including I z I < R then ·it 
1 

converges to the function fo(z) inside lzl < Rl so that 

F (z) may be considered as an analytic continuation of f (z) o 0 

into D. Consequently in many applications, particularly in 

Chapter 3., it lS convenient and not ambiguous to use the 

notation f (z) to refer to a power series or to one of its 
o 

corresponding fractions. 

Now, replacing z by liz in (1.45) and uSlng the 

transformation (1.19) we obtain a continued fraction of 

the form 

f (z) 
o 

= 
c 

o 
z 

c
3 

+ 1 + 
c2n+l 

+ 1 + 

14 

(1.48) 

which corresponds to the serles (1.42) if the coefficients 

{c } are chosen such that 
n 

f (z) 
o 

u (z) 
n 

v (z) 
n 

= 

The fraction (1.48) was studied by Stieltjes (1894) and is 

consequently called an S-fraction. Because of the similarity 

In structure we shall also refer to the fract~',:;:;, (1.45) as 

an S-fraction. 

As stated above, the S-fraction (1.45) does not exist 

if any of the Hankel determinants (1.47) lS zero. A more 

general fraction which always exists and corresponds to the 



serles (1.41) is 

f (z) = 
o 

c 
o 

1 + 1 + 1 + .•.. + 

Cit 
C Z /l 

n 
1 

15 

+ 

(1.50 ) 

if a ~ 0, where the exponents {a } are positive integers. 
o n 

If the series represents a rational function then the fraction 

terminates, and Vlce versa. Wall (1948) called (1.50) a 

C-fraction. An example of a C-fraction lS 

cos z = 
1 2 

1 ~ 
1 + 1 

~ 2 
-;-:i:"z 

l + 

, 2 
TO"OZ 

1 , 

In which a = 2 for n = 1,2,3, ..... Alternatively, we 
n 

could consider (1.5l) to be an S-fraction in the variable z2. 

We now consider the continued fraction 

f (z) 
o 

= 
Pn 

z + .... + q 7Z 
n 

+ .... 

which corresponds to the series (1.42) if {Pn} and {~} are 

chosen such that 

The fraction (1.52) is called a J-fraction because of its 

connection with J-forms. It is said to be the even part 

of the S-fraction (1.48) because the nth convergent 0: (1.52) 

is identical to the (2n)th con~/e:::-gent of (l. 48). The 

J-fraction has many interesting properties, some of which 

will be exploited in ~~apter 2. In particular, if {p } 
n 



then the numerators and deno~~nators are each sequences of 

orthogonal polynomials so that the zeros and poles of the 

convergents are all real. 

The even part of (1.45) lS also called a J-fraction and 

has the form 

= 

2 
Pnz 

16 

f (z) 
o + .... + l+q z + .... 

n 

A corresponding fraction that always exists and is 

always non-terminating was first suggested by Thron (1948). 

This has the form 

f (z) 
o 

= a 
o 

+ d z + z o ---
l+dlz 

z z 
+ .... + 1 +d z + .... 

n 

and is called a T-fraction. The convergents satisfy (1.46) if 

we take Ul/Vl = a 
o 

+ d z . 
o 

Finally, Murphy(1971) constructed a continued fraction 

that corresponds simultaneously to power series of the form 

(1.41) and (1.42). This was further studied by McCabe and 

Murphy (1974) and will be referred to as an M-fraction. This 

has the. form 

f (z) 
o 

= 
Pnz 

+ .... + 1 +~ z + .... , 

where the coefficients {p } and {q } are chosen such that 
n n 
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conditions (1.46) and (1.49) are both satisfied. We write 

= 

In Chapter 3. we will derive a class of algorithms 

applicable to S-, C-, J-, T- and M-fractions and to any 

other corresponding fractions of similar type. Therefore, 

it is to our advantage to establish a general expression 

for a corresponding fraction that satisfies (1.44), having 

all the fractions described above as particular cases. In 

order to do this we make the following observations about 

corresponding fractions: 

(i) The two forms of the S-fraction and the 

J-fraction are equivalent so that, without 

loss of generality, we need only consider 

fractions that correspond to series of the 

form (1.41) . 

. (ii) All the partial numerators are monomials. 

(iii) The T-fraction has "redundant" terms, i.e. 

terms that do not directly match up with 

terms of the serles (1.41). 

(iv) If we only consider correspondence with 

the series (1.41), then the M-fraction 

also has "redundant" te~:......:.s. 

Observation (ii) requires further explanation as it is a 

major limitation on the form that a corresponding fraction 



can take. We consider the formal expansion 

z 
e = 

l+z 
1 

1 2( 1.) 2 zl- '3 z 
1 

1 2( 1.) 4z1+ 5Z 

1 

18 

which is valid at least near z = O. N z.. , t 1 ow, e 1S a ~ranscenQen a 

function and has no zeros 1n the finite z-plane, whereas the 

continued fraction (1.58) 1S zero at z = -1 and terminates at 

the zeros of the partial numerators. Therefore, at "\ S 
z=+z.'-2:' 

. . . . the fraction represents a rational function and does 

not converge to z 
e . As e Z has no singularities in the finite 

z-plane the expansion (1.58) is unsatisfactory and, in general, 

any formal corresponding fraction whose partial numerators are 

not monomials will be unsatisfactory for the same reason. 

Bearing in mind (i) - (iv), above, we shall now eXaID1ne 

the properties of the continued fraction 

f (z) 
o + .•.• + 

v(n-l) p z 
n 
~(z) 

where {v(n)} is a sequence of positive integers and ~(z) is a 

polynomial of degree ~(n). [In all the fractions listed above 

~(n) = 0 or 1.J Without loss of generality, we normalise (1.59) 

by setting qn(O) = 1 and we choose Pn 1 0 for all n. Now, 

there are ~(n) + 1 coefficients in the nth partial quotient 

which must be matched up to v(n) terms of the power series (1.41), 

so that the number A(n) of "redundant" terms in the nth partial 

quotient is given by 

A(n) = ~(n) - v(n) + 1 (1.60) 

+ 
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If Pn(z)/Qn(z) 1S the nth convergent of (1.59) then we must 

prove that 

where 
n 

a(n) = L v(i) 
i=l 

= 

Now (1.61) may be written 

Q (z) f (z) - P (z) non 

where S (z) has a power ser1es representation of the form 
n 

S (z) 
n 

The identity (1.63) may be proved by induction .. We first 

assume that (1.63) holds for both n-l and n, and using (1.8) 

we have 

(:.61) 

(1.62) 

(1.64) 

v(n) ( ) z P 1 Q If -P 1 + q l(Q f -P ) . n+ n- 0 n- n+ non 

By our assumption we have 

Q f P zv(n) a(n-l)s + ~+lzcr(n)sn 
n+l 0 - n+1 = p +lz 1 n n-

Using (1.62) we get 

Q f - P n+l 0 n+1 
= a(n) (S s ) 

z Pn+1 n-1 + ~+l n (1.66) 

Clearly, we can choose p 1 and the first v(n+l)-l coefficients n+ 

of a (z) so that the first v(n+l) 
-n+l 

terms of (p S + q S) n+l n-l -n+l n 

vanish. We can then write (1.66) in the form 

Q f - P = n+l 0 n+1 
(1.67) 
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so (1.63) holds for n+l provided that it holds for n-l and n. 

If we choose a(O) = 0 then the result holds trivially for 

n = 0 so that to complete the proof we need only verifY (1.63) 

for n = 1. In this case we have 

= ( 1.68) 

Once agaln we can choose the coefficients so that the first 

v(l) terms vanish. Thus we have proved that the successive 

convergents of the continued fraction (1.59) correspond to 

0(1) ,a(2) ,a(3), .... terms of the power series (1.41). 

Clearly, the S- and J-fractions are particular cases 

of (l. 59) and the C-fraction is the case when all the 

coefficients of q (z) are zero. In Chapter 3. we will show n 

that the M-fraction can be treated as a special case. Also, 

the T-fraction can be adjusted to look like (l.59) but, 

because of its essentially different structure, it will be 

treated separately. 

In Chapter 3. we will derive algorithms for converting 

power series to their corresponding fractions. By this means 

we could, for example, obtain a continued fraction sol~~~on 

to a differential equation by first solving the equation ln 

series and then applying the appropriate algorithm. 

Corresponding fractions usually converge more quickly than 

power series and often provide an analytic continuation 

outside the domain of convergence of the series. Consequently, 

continued fraction solutions of differential equations ~re 

often useful when obtained in this way. However, it is worth 

noting that, for a certain class of differentia: equations, 



continued fraction solutions may be obtained directly by a 

method due to Lagrange. We consider the general Riccati 

equation 

(1, w'" = 
o 0 

In which w (z) lS the dependent variable and Q C a~e 
o ao'~o'Yo' 0 

polynomials In z. It may be shown that, for suitable 

elements· {u } and {v } , the sUbstitutions 
n n 

w 
n 

= 
v + w r.;.+l n+l 

lead to a sequence of Riccati equations 

(1, w'" = S w2 + Y w + C n n n n n n n 

for n=O,1,2,3, ..... Recursions may be set up between 

the coefficients of the nth and (n-l)th equations (1.71) 

and a continued fraction 

w 
o = 

u 
n 

+ •••• + v 
n 

+ 

can be found, often with the coefficients known in closed 

form. Khovanskii (1963) has expanded many elementary 

functions by this method and Wynn (1964Y hints, with some 

justification, that a function has a simple continued 

fraction expanslon only if it satisfies a Riccati equation. 

Although Wynn does not define his meaning of IIs imple", we 

can treat this as a useful qualitative remark. However, 

Lagrange's method is still applicable to the more general 

21 

(1.72) 



differential equation 

( ",(0) (1) (2) 2 (n) n 
"" + a w + a w + .... + a w) w' o 00 00 00 0 

. . .. + 

where a~r) ~S~r) are polynomials ~~ Z, except that the recurs10ns 

are more complicated than in the case of (1.69). 

In the next section we discuss continued fractions that 

are also functions of a single variable, but which are defined 

1n an entirely different way. 

22 
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1.3 Interpolatory Fractions. 

We now consider continued fractions as a means of pointwise 

. interpolation of a function F(x), given at the (n+~) abscissae 

xo ,xl ,x2 ' .... xn Such a fraction is finite and has the form 

f(x) = c 
o 

+ 
x-x 

o 
+ 

. x-x 
1 

c
2 

+ + 

where the coefficients {c } are chosen such that 
r 

f(x ) 
r = 

We define a sequence oi functions {v (x)} by 
r 

so that 

v (x) = f(x) 
o 

, 

v (x) 
r 

c 
r = 

x-x 
= v (x ) + r 

r r vr+l(x) 

v (x ) 
r r 

, 

x-x n-l 
c 

n 
, 

for r = 0,1,2, n. From (1.76) we obtain the lnverse 

difference scheme 

= 

from which, using (l.75) 

x - x 
r 

v (x) - v ex ) 
r r r 

and (1.77), we may compute the 

coefficients {c } by forming the table below. 
r 

F(x ) v (x ) = = C X 
0 0 o 0 0 

Xl F(xl ) = vo(xl ) vl(xl ) = cl 

F(X2) = v
o

(x2) v
l

(x
2

) v
2

(x
2

) = x
2 

c2 

'\ 
\ , 
I , 

~ 
I 

i , 
\ 
\ , 

x F(x ) = v (x ) v
l 

(x ) v
2

(x
n

) . . . . v (x )=c i 
o n ...... n n n n. n n 

./ 

(1.79 ) 
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Although the formu.la (1.74) lS not a "best" approximation 

In any mathematical sense it often provides a much more 

accurate means of interpolation than the (n+l) -point Lat .... ·a.11ge 

formula. Bearing in mind that we would normally interpolate 

to values of a transcendental function, we offer two possible 

explanations of the superiority of rational over polynomial 

interpolation. Firstly, all the derivatives of a rational 

function exist, are piecewise continuous and are not identic~:y 

zero. Therefore, between their poles, rational functions are 

"smooth lI. and appear to more nearly imitate the behaviour of 

transcendental functions than do polynomials, whose derivatives 

eventually vanish. Secondly, polynomials have no finite 

singularities and cannot be used to represent such phenomena. 

In practice, rational interpolation can be used effectively 

near a singUlarity when polynomial interpolation is inapplicable. 

Although continued fraction interpolation has been shown 

to be useful empirically, much research has still to be done to 

establish conditions under which such interpolation is valid. 

Mayers (1965) gives an account of var~ous computational 

difficul ties that may arise and which complicate the problem. 

In Part II we shall generalise interpolatory fractions to two 

or more variables and, as we expect similar difficulties In 

the more general case, we now glve some examples of the 

breakdown of the single variable method. 

A set of points [x , F (x ) ] , [ Xl ,F ( xl) J, .... [ x , F (x ) ] 
o 0 n n 

lS said to be unattainable by the continued fraction (1.74) 

if f(x ) ~ F( x ) 
s s 

for at least one s ~ {O,1,2, .... n} 

when the coefficients {c } ~ave been calculated using 
r 
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lnverse differences (1.78). As an example we conSlG.e:Y' a 

function F(x) given at 3 points 

= a , } (1.80) 
= F(x ) 

2 
= b 

Using lnverse differences we obtain the interpolatory fraction 

f(x) = a + 
x - x 

o 
x - x 

1 
+ b - a 

Evaluating this as a rational function and cancelling we get 

f(x) = b 

which clearly does not satisfY (1.80). 

Another difficulty is that of unwanted poles in the 

(1.81) 

(1.82) 

domain of interpolation. This can arise in various ways', most 

notably if x is real and the function values have a large 

number of changes of slgn. If the continued fraction (1.74) lS 

written as a rational function A (x)/B (x) then A (x) has at n n n 

most k changes of sign, where k = ~n for n even and k = ~(n+l) 

for n odd. Consequently, if the function values {F(x )} have 
r 

, more than k changes of sign then the continued fraction can 

only account for this by changing sign at zeros of B (x) inside 
n 

the domain of interpolation. However, unwanted poles may also 

occur when the function has k or less changes of slgn. Inaccur~te 

or insufficient data points is usually the cause and most 

well-behaved functions can be interpolated if enough accurate 

values are known. 

The example (1.80) of unattainable points may be dealt 

with by increasing the number o~ data points. A similar eX~hple, 



however, indicates a possible failure of inver3e differences 

that is easily overcome. We consider a function F(x) given 

at n points such that 

F(x ) = 
o 

We see that the first inverse difference 

:: 

x - x 
1 0 

26 

( 1. 84) 

does not exist. However) if we rearrange the points to start 

F(x ) 
r 

for all r ~ k then the first column of inverse differences 

will all exist, although the scheme rr.0-J again fail in a 

subsequent column. 

Clearly, the lnverse difference is not a symmetric 

function of its arguments. A sy~~etric scheme for computing 

the coefficients {c } of the interpolatory fraction (1.74) 
r 

may be obtained by using Thiele I s reciprocal differences 

[see Mayers (1965)J and is unaffected by the order of the 

points in the difference table. 

In ~napter 6. we will show how inverse differences may 

be generalised to· two or more variables in order to forn 

continued fractions that interpolate on a mesh of points. 
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CHAPTER 2. 

THE LAPLACE TRANSFORN METHOD. 

In this chapter we investigate some applications of the 

results of Section 1.1 which were derived from sets of recurrence 

relations. In each case Laplace transforms are expressed as 

J-fractions whose convergents are inverted to form 

exponential approximations. First we examine a problem arlslng 

in Narkov processes in which three-term recurrence relations 

occur naturally, and then we adapt the teChnique to deal "rith 

hypergeometric functions which also satisfy three-term relations. 

2.1 ~pplication to General Linear Birth-Death Processes. 

A birth-death process is a Markov process in '\{hich a 

population, initially of size m, changes to Slze r after time t 

by births and deaths. We assume that In an interval (t,t+8t) 

each individual In the population has a probability A at + 0 { ( 0 -:. ) 2 } 
r 

of giving birth to a ne,\{ individual and a probability fl at + O{(at)2} 
r 

of dying. The parameters A and fl are respectively called 
r r 

the birth-rate and death-rate when the population has size r, 

and we denote by p (t) the probability that the population has 
r 

slze r at time t. By considering Pr(t+at) in terms of Pr-l(t), 

Pr(t) and Pr+l(t) the following set of differential-difference 

equations may be obtained: 

= 

p --( t) 
r 

= 

for r = 1,2,3, .... 

- Ao po(t) + . ~l Pl(t) 1 
Ar-lPr-l(t) - (Ar + flr)Pr(t) + flr+1Py+l(t) j 

00 

and j p (-:.) = ~, 
Y' 

r=o ... 

(2.1) 
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subject to the initial conditions 

p (0) = 0 
r r,m (2.2) 

for some m E: {0,1,2, 

r = 0,1,2, and 1-10 = .... 
and we define 

r 
L = II A. 

r l l=O 
, 

}. We note that A > 0 for 
r 

0, 1-1r > 0 for r = 1,2,3, 

r 
M = II 1-1. r . 1 l 

, 
l= 

and L = M = 1 -1 0 • For details of the derivation of 

equations (2.1) and a discussion of birth-death processes 

see Saaty (1961) or Cox and Miller (l965). 

The set of equations (2.1) has been solved analytically, 

fox a few particular choices of {Ar } and{1-1
r

}, by a generating 

i'unction method. [See Cox and Miller (1965). ] However, we 

shall solve the equations numerically using a method that lS 

well-known in mat.rix for.m in the case r = .m = O. The 

continued fraction approach enables us to find the solutions 

for other values of rand -ID, and for &"ly sets of parameters 

. {A } and {1-1 }. 
x r 

We denote the Laplace transform of Pr(t) by py(s) where 

(2.4) 

Laplace transforming (2.1) and rearranglng we have 

0 (- A +8) 
PI 

·O,m o P = , 
1-11 1-11 0 

(2.5) 
A _ ( _ Ar +)lr +8) 0 
r-l p r,m 

-::> = P . 
\ ... r+l lJ r +l 

r-l 1-1r+l r 1-1r+l j 



The set (2.5) 1S now of the form (1.29). However, to convert 

the resultant continued fraction to a convenient form we apply 

the transformations (1.39) and (1.40) uS1ng 

The set (2.5) then becomes 

= o o,m 
(2.6) 

where p 
o 

= (m) ( (m) Ill.. 
-).. III f 1- ).. +11 +s)f + (-1) M 0 r- r r- r r r m r,m 

p = 
r 

and 

for r = 1,2,3, .... This leads to the continued fraction 

f o 
= . . .. . 

If we now let cr = -lj~r and use the transformation (1.19) 

then, from (1.20) and (2.7), the seCiuenc2 {P } cecomes the 
r 

corresponding sequence of a continued fraction equal to f . 
o 

00 

Since L: P (t) = 1 , we get from (2.4) that 
r .r=o 

which implies that 

lim· P (S1 = 0 
r-KlQ r 

I 

00 

L P (s) = lIs 
r r=o 

except when s=O. Hen ce the ~eg1on F of theorem 1.1 is ti~e 

s-plane, excluding the point s=O, and we may apply the theorem 

if we can ·find the positions of the zeros of the denominators 

(2.8) 
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of the continued fraction (2.8). From (~.10) we have 

A +s 1 0 

A 0111 ' 1..1+111 +s 1 

B ::: 1..1112 
n 

1..2 +112 +s 1 
( 2.10) 

which clearly zero when • 1S -s 1S 

". 

A 1 
0 

1..0 111 A1 +111 

C ::: Al112 
n 

, . . . . . . 
. . . . . . 1 

A n-2 11n-l A +11 +s 
n-l n-l I 

an eigenvalue of the matrix 

1 l 
I 

A2+112 1 . I . 
. . . . . . 

. . . . . . 1 

. -

(2.11) 

This matrix' is quasi-symmetric and may be transformed into a 

real symmetric matrix by a similarity transformation 

E 
n 

::: D-1 C D 
n n n 

The matrix so formed 1S 

A lAolll 0 

1Aolll 1..1 +111 

E ::: 11..1112 
n 

l 

IA1112 

1.. 2+11 2 11..2113 

. . . . . . 

II.. II 
n-2 n-l 

(2.12) 

-., 
I 

.11.. 211 1 n- n-

A +'1 n-l t-'n-l. 
.J. 

• (2.13) 

The matrix E 1S a real symmetric positive definite tridi&~0r.al 
n 



matrix with non-zero subdiagonal elements. Because of these 

properties the eigenValues are real, positive and distinct. 

[See Wilkinson (1965).J Hence B (s) has only simple zeros 
n 

which all lie on the negative real axis in the s-plane and, 

from theorem 1.1, we can state that the continued fraction (2.8) 

converges in the s-plane cut from 0 to ~ along the negative real 

aXls. The theory of positive definite continued fractions, 

as glven by Wall (1948), is sufficient to prove that the zeros 

of B (s) are real and distinct, but we have used matrix theory 
n 

in order to show that the zeros are also negative. We are now 

justified in using the results (1.35) ~~d (1.36) to give the 

following expressions fox P (s): 
.r 

P 
(_.l)m B 

f -x L M .r m 
.. m::-l :r 

for .r < m , and 

(_l)r 
f P - B 

x L lM -m r 
lD.- x 

for x > m • Writing P for the nth convergent of P (s) . x,n r 

and using (l.25) we have 

P = 
.r,n 

for r < m , and 

P r,n 

(r) 
(_l)r An 

L M B m -B=-=---
m-l r r+n 

= 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

f > We are also JO ustified In inverting the f -trE..:-.sform or r m. oAJ 
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express10ns (2.16) and (2.17) Slnce all the singularities of ?~,n 

lie to the left of the imaginary axis in the s-plane. In Lcneral 

we consider a convergent K(s) such that 

K(s) = 
N( s) _ 
B (s) 

n 
(2.18) 

where B (s) is a denominator polynomial of orde~ n in sand. :: ~.;;.) 
n 

is the numerator polynomial which is of lower order. I: we 

choose . . .. -z 
n 

to be the real, negative and distinct 

roots of B (s) then we can write 
n 

n 
B (s) = IT (s +z . ) 

n i=l 1 

(2.19) 

Since the roots are distinct we may write K(s) in the partial 

fraction form 

n w. 
K( s) = 1: 1 

where 

w. = 
1 

. s+z. 
1=1 1 

ware constants gi yen by 
n 

N ( -z . ) 
1 

B""(-z.) 
n 1 

and where B~(-z.) is computed from 
n 1 

B"" ( -z . ) 
n 1 

= 
n 
IT 

j=l 
i;ej 

(z. - z.) 
J 1 

Inverting the Laplace transform, we get 

n -z.t 
= 1: w.e .. 

.1 1 
1= 

( 2.20) 

(2.21) 

(2.22) 

(2.23) 

which 13 the form ln which the probabilities, p (t), are computed. r 



To greatly reduce the reQuired computation, Slnce we only 

reQuire the values of A(r) at the roots of B , we appeal to 
n r+n 

the generalised determinant formula (1.28). From this we get 

that, at a root of B , 
r+n 

jj 

A(r) = (_l)r A B 
n r+n r (2.24) 

Hence we need only compute the roots of the numerators and 

denominators of the continued fraction (2.8) in order to compute 

the probabilities, p (t), for any value of m. The roots of the 
r 

numerators are also computed as eigenValues using (1.9) . 

From (1.37) and (1.38) we have the truncation results 

f ( _l)m+n 
T (p ) B m+n 

= B 
L 1M r roB ( 2.25) 

n r m- r ro+n 

for r < m , and 

(-1) r+n f 
T (p ) Bm B 

r+n - B 
n r L lM r m- r r+n 

(2.26) 

for r > .m. • 

We will now derive estimates of the truncation errors 

in the probabilities, p (t), computed from results (2.16) and 
r 

(2.17). We observe from (2.8) that for lsI large, 

for n = 2,3,4, and also, from (1.25) , 

(-1)~ ~.~ 
n-l n 

(An-l+l1n-l+s) 

+ O(sn-2) 

f = 
n (A +s) ( A

l
+11

1
+s ) .... (A +11 +s) + 0 (s n -1) 

o n n 

for I s I large and n = 1,2,3, •... . We set a = 0 and 
o 

(2.27) 

(2.25) 



define 

cr = n A 
o 

(A + II ) 
r r (2.29 ) 

for n..:: 1 so that, for Is I large, (2.25) may be written 

p - p = r r,n 

L M 
m+n-l m+n 
L M m-l r 

, 

1 

2n+m-r+l 
s 

{ 1 -
cr +cr -cr -cr 

m+n m+n+l m r + 0(12)} 
s s 

(2.30) 

for r < m. Inverting, we obtain, for t small, 

L M 2n+m.-r m+n-l m+n t 
L M ~(------~)-2n+m-r ! m-l r 

. { 1 -
cr +cr -cr - cr 

m+n m+n+l m r t + 0(t 2)} 
2n+m-r+l 

for· r < m. In (2.31) the dominant term provides an upper bound 

which is only a useful estimate if n is large. However, we 

require a useful error estimate for mode:::6.~ce n, not necessarily 

an error bound. Accordingly, we choose a function which 

formally agrees with the first two terms of (2.31), is unbounded 

and is easy to compute. The chosen estimate is 

p (t) - l-l{p } 
r r,n 

= 
L M m+n-l m+n 

L M 
::;.-1 r 

t 2n+m- r 

(2n+m-r) ! 

1 .{ 
(1+ t) 2n+m-r-l 

Pr,m+n 

for r < ill where 

p 
r,m+n 

= 

( 2. 32) 

cr +cr -cr -cr m+n m+n+l :n r 
(2n+m-r+l) (2n+rr.-r-l) ( 2 .33) 



From (2.26) we also have 

p (t) _ ~-l{p } 
r r,n = 

L M 
r+n-l r+n 
L M 

m-l r 

t 2n+r - m 

(2n+r-m)! . 

1 
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. { 
( 

2n+r-m-l 
l+p t) 

m,r+n 

( 2.34) 

for r > m . 

Given a value of n and a sufficiently small error ~ ~~e 

res ul ts (2.32) and (2.34) may be used to estimate a range of t 

for which this error is not exceeded. A larger value of ~ 

could give a very pessimistic estimate for the range of t. 

We now consider four examples of birth-death models. 

The interpretation of the first three will be fOillld in Cox and 

Miller (1965), who solve the e~uations (2.1) for models (i) 

and (ii) analytically by a generating function ::1ethod. 

(i) An immigration-death process with A~ = 0.2 and ... 

1l,~ = 0.4r for r = 0,1,2,3, ..... For this 
.L 

model the probabilities tend to s"",.;2..c.y state 

values. The results are evaluated in the two 

cases when the initial population size m is 0 

and 1. 

(ii) An immigration-emigration process (Erlang's model) 

with 

and 

A = 0.3 
r 

II = 0.1 
r 

for 

for 

r = 0,1,2,3, .... 

r = 1,2,3, 

,ll = v o 

In this 

. case there are no steady state values. He 

choose m = 0 . 



(iii) A three-server queuelng model wi~h A = 0.6 
r 

(i v) 

for r = 0 ~ 1 ~ 2 ~ 3 , .... , ].10 = 0, fJl = fJ
2 

= O. 2 , 

'13 = 114 =.0.4 ana.' 0 6 I-' I-' fJ
r 

= . for r = 5,6,7, .... 

This represents a queueing system ln which the 

number of servers is dependent on queue Slze. 

The results are evaluated when m = 0 and 

when m = 2. 

An arbitrary process with 

for r = 0,1,2,3, .... 

A = 0.3 and 
r 

We choose m = 0 . 

For ;,~·2scribed errors and selected values of n estimates 

have been obtained for the range of t from formulae (2.32) and 

(2.34). These appear in Table 2.l overleaf~ in which the 

notation (-k) is used to denote 10 -k. 



TABLE 2.1 

Estimated Estimated 
Model n r m Error max(t) Error max(t) 

( i) 3 0 0 (-4) 2. 11 ( -3) 3.41 
3 1 0 (-4) 3.04 ( -3) 5.00 

3 0 1 (-4) 2.66 ( -3) 4.21 
4 0 0 (-5) 2.18 (-4) 4. 12 

4 0 1 (-5) 3.30 (-4 ) 4.84 

5 0 0 (-5) 4.15 (-4 ) 6.86 

5 0 1 (-5) 5.43 (-4 ) 1.86 

·5 1 1 (-5) 4.26 ( -4) 6.34 
10 0 0 (-8) 12.6 (-5) 34.9 

10 0 1 (-8) 13.9 (-5) 42.2 

( ii) 3 0 0 ( -5) 3.00 (-4) 4.80 

3 1 0 (-) ) 4.30 (-4) 6.55 

3 2 0 (-5 ) 5.12 (-4) 8.31 
4 0 0 (-5) 6.11 ( -4) 10.0 

4 ~ 0 (-5) 8.54 (-4) 12.3 , . 

5 0 0 (-5) 12.0 (-4) 11.0 

5 1 .- (-5) . 14. 1 (-4) 19.6 v 

5 2 0 ( -5) 16.2 (-4 ) 22.0 

10 0 0 (-10) 21.4 ( -8) 30.2 

10 5 0 (-12) 24.0 (-10) 3:1.2 

(iii) 3 0 0 (-4 ) 2.09 ( -3) 3.49 

3 2 0 (-4) 2.91 (-3) 4.33 

3 0 2 (-4) 4.25 (-3) 6.65 

4 0 0 (-4) 4.01 ( -3) 6.23 

4 0 2 (-4) 6.55 ( -3) 9.10 

5 0 0 (-4). 6.20 ( -3) 8.98 

5 2 0 (-4) 6.81 ( -3) 9.30 

5 2 2 (-4) 4.90 ( -3) 1.06 

10 0 0 ( -8) 9.50 (-5) 16.1 

10 2 2 (-8) 8.43 (-5) 14.7 



TABLE 2.1 (continued) 

Estimated Est i:::;.al.ed 
Model n r m Error max(t) Error max( t) 

(iv) 3 0 0 (-5) 2.54 (-4 ) 4.04 

3 1 0 (-5 ) 3.33 (-4 ) 5.01 

4 0 0 (-5) 5.38 (-4) 7.88 

4 1 0 (-5) 6.27 (-4 ) .8.86 

5 0 0 (-5) 8.99 (-4) 12.5 

5 1 0 (-5) 9.87 ( -4) 13.4 

5 5 0 ( -8) 8.23 ( -6) 12.4 

10 0 0 ( -8) 19.3 ( -6) 27.7 

10 1 0 ( -8) 19.9 (-6 ) 28. 1 

10 5 J ( -8) 24.8 (-5) 33.6 

By recomputation with larger n, the range estimates 

In Table 2.1 were all found·to be reasonable, though not 

always lower bounds on the actual range for the chosen accuracy. 

As it is impractical to list a complete set of results 

for any model, a selection of computed values is given In 

Tables 2.2 - 2.7 for various choices of n, r and m. 



TABLE 2.2 3] 

Model (i), m = o. 
t n Po (t) 

0 3 1.0 -0.2(-10) -0. 2( -11) -0.3(-12) -0.5(-;4) 
1 3 0.848027 0.13978896 0.11521411(-1) 0.8600868 ( -6) 

4 0.84802939 0.13978915 O. 11 521420 ( -1) 0.86008701(-6) 
5 0.84802940 0.13978915 o. 11521420 ( -1) 0.8600870i(-6) 

.2 3 0.75924 0.209057 0.287811 ( -1 ) 0.1001268 (-4) 
, 

4 0.7593162 0.20906688 0.28781779(-1) 0.10012746(-4) 
5 0.75931730 0.20906702 0.28781789(-1) 0.10012147(-4) 
6 0.75931732 0.20906703 0.28781789(-1) 0.10012747(-4) 

5 3 0.6456 0.2800 0.60596 ( -1) 0.81672 (-4) 
5 0.648985 0.2805796 0.6065200 (-1) 0.81686034(-4) 
7 0.64899363 0.28058095 0.60652112 ( -1 ) 0.81686052(-4) 
8 0.64899364 0.28058095 0.60652112(:-1) 0.81686052(-4) 

10 3 0.587 0.2969 0.7343 ( -1) 0.14525 (-3) 
6 0.612094 0.3004480 0.7313G59 (-1), 0.14533093(-3) 
8 0.612.11062 0.30044913 o. 13136101 ( -1 ) 0.14533094(-3) 

9 0.61211061 0.30044914 0.13136102(-1) 0.14533094(-3) 
20 5 0.6050 0.30310 0.751132 ( -1) 0.15111204(-3) 

8 0.6066316 0.30321441 0.15118182(-1) 0.15111239(-3) 

9 0.60663236 0.30321445 0.15118183(-1) 0.15111239(-3) 

10 0.60663240 0.30321445 0.15118183(-1) 0.15111239(-3) 



Model (i), m = 1. 

t n 

0 3 -0. 3( -11) 

1 3 0.2795779 

4 0.27957829 

5 0.27957829 

2 3 0.41811 

4 0.4181338 

5 0.41813405 

6 0.41813405 

5 3 0.5600 

6 0.56116181 

7 0.56116190 

8 0.56116190 

10 5 0.600845 

8 0.60089946 

9 0.60089947 

20· 6 0.606410 

8 0.60642882 

9 0.60642890 

TABLE 2.3 

1. 0 -0. 2 ( -1 0 ) -0. 1 ( -1 i) 

0.61453 110 0.975015 ( -1) 

0.61453675 0.97501846(-1) 

0.61453678 0.97501848(-1) 

0.45617 0.109778 

0.4563078 0.10978897 

0.45631038 0.10978917 

0.45631042 0.10978917 

0.328 0.9017 ( -1) 

0.3304398 0.90416215(-1) 

0.33044018 0.90416243(-1) 

0.33044019 0.90416244(-1) 

0.306090 0.778850 ( -1) 

0.30615799 0.77889095(-1) 

0.30615800 0.77889096(-1) 

0.303303 0.7585405 (-1) 

0.30331618 0.75854478(-1) 

0.30331623 0.75854480(-1) 

.,.., ( ..... \ '::;3 v / 

-0.2 (-12) . 

40 

0.7931735 (-2) 

0.79311470(-2) 

0.79317470(-2) 

0.143864 ( -1) 

0.14387105(-1) 

0.14381116(-1 ) 

0.14387116(-1) 

0.15747 ( -1) 

0.15766078(-1) 

0.15766080(-1) 

0.15766080(-1) 

o ., 1 31 9372 (-1) 

0.13193929(-1) 

o. 13193929 (-1) 

0.12646632(-1) 

o. 12646646( -1) 

o. 12646646 (--1) 



TABLE 2.4 
1 _ 

41.. 

Model (ii), m = O. 

t n 

0 3 1 . 0 -0. rT( -11 ) . -0.9(-11) -0.1(--;0) -0.2(-10) 

1 3 0.75162213 0.21359074 0.31428619(-1) 0.138626i8(-4) 

4 0.75162216 0.21359074 0.31428619(-1) 0.13862618(-4) 

2 3 0.5802518 0.31025888 0.89143932(-1) 0.30633442(-3) 

4 0.58025298 0.31025898 0.89143939(-1) 0.30633438(-3) 

5 0.58025298 0.31025898 0.89143939(-1) 0.30633440(-3) 

5 3 0.30304 0.330882 0.2164312 o. 10368464(-1) 

4 0.3031410 0.33090176 0.21643475 0.10368476(-1) 

5 ·0.30314223 0.33090195 0.21643478 0.10368476(-1 ) 

6 0.30314224 0.33090195 0.21643478 o. 10368476(-1) 

10 3 0.1327 0.2109 0.22840 0.66638 ( -1) 

5 0.1339851 0.2113689 0.22856145 0.66641725(-1) 

6 0.13398693 0.21136930 0.22856156 0.66641726 ( -1) 

7 0.13398697 0.21136931 0.22856156 0.66641726(-1) 

20 5 0.4007 ( -1 ) 0.78029 ( -1) o 117'7\~ . . ... ./ 0.1425965 

7 0.401489 ( -1) 0.7806572 (-1) o. 1178 -; 223 o. i4259765 

8 0.40149257(-1) 0.780658:'3(-1) 0.11781227 0.14259765 

9 0.40149273(-1) 0.78065848(-1) 0.11781227 0.14259765 



TABLE 2.5 42 

Model (iii):I m = O. 

t n PO(t) P1 (t). P2(t) ::?5(t) 

0 3 1 . 0 -0. 7 ( -11 ) -0. 5( -11) -0. 1 ( -I G) -0.9(-1 n 
1 3 0.5802518 0.3102908 0.8994949 ( -1) 0.27308603(-3) 

4 0.58025407 0.31029118 0.89949567(-1) 0.2730SGQ6(-3) 

5 0.58025408 0.31029118 0.89949567(-1) 0.27308607(-3) 

2 3 0.36964 0.346330 O. 193443 0.3940806 (-2) 

4 0.3697074 0.3463505 0.19345128 0.39408309(-2) 

5 0.36970848 0.34635089 0.19345140 0.39406311(-2) 

6 '0.36970849 0.34635089 0.19345140 0.39408311(-2) 

5 3 0.1327 0.2167 0.2659 0.4989 ( -1) 

5 0.135121 0.2182407 0.2672703 0.4992800 (-1) 

7 0.13513614 0.21824977 0.26727570 0.49928072 (-1) 

8 0.13513617 0.21824978 0.26727571 0.49928072(-1) 

10 7 0.45426 ( -1) 0.97643 ( -1) 0.1892308 0.12459100 

10 0.45438498(-1) 0.97653500(-1) 0.18923896 0.12459135 

11 0.45438507(-1) 0.97653505(-1) 0.18923896 0.12459135 

12 0.45438507(-1) o. 97653505( -1) 0.18923896 0.12459135 

20 10 0.149398 ( -1) 0.39698 ( -1) 0.102491 0.1442420 

13 o. 14948354(-1) 0.3970612 (-1) 0.10250008 0.;442~374 

14 '0. 14948388(-1) 0.39706229(-1) 0.10250011 0.14424374' 

15 0.14948393(-1) 0.39706233(~1) 0.10250011 0.14424374 



Model (iii), m = 2. 

t n 

0 3 -0.5(-12) -0.2 (-11) 1. 0 -0. 2 ( -1 0 ) -0. 1 (-10) 
1 3 0.9994388 (-2) 0.971657 ( -1) 0.530393 0.2694086 

4 0.99943963(-2) 0.97166057(-1) 0.53040470 0.26940995 
5 0.99943963(-2) 0.97166059(-1) 0.53040477 0.26940996 

2 3 0.214937 ( -1) 0.108857 0.36133 0.289623 
4 0.21494587(-1) 0.10887427 0.3616308 0.2896887 
5 0.21494600(-1-) 0.10887458 0.36163757 0.28968992 
6 0.21494601(-1) 0.10887459 0.36163767 0.28968993 

5 3 0.2955 ( -1) 0.835 ( -1) o. 1999 0.2227 
6 0.29697276(-1) 0.845638 ( -1 ) 0.2078358 0.22622438 
7 0.29697301(-1) 0.84564108(-1) 0.20783960 0.22622547 
8 0.29697301 (-1) o. 84564119( -1) 0.20783976 0.22622551 

10 6 0.21018, ( -1 ) 0.5478 ( -1) 0.13543 o. 16756 
9 0.21026545(-1) o. 5483809 (-1) 0.13578424 0.16773158 

10 0.21026551(-1) 0.54838142(-1) 0.13578471 0.16773175 
1 1 0.21026551(-1) 0.54838146(-1) 0.13578474 0.16773177 

20 10 0.113879 ( -1) 0.31638 ( -1 ) 0.86161 ( -1 ) O. '! ;7797 
13 o. 1 1388898 ( -1 ) 0.31643164(-1) 0.8618939 (-1) 0.11781223 
14 o. 11388901 (-1) 0.31643183(-1) 0.86189513(-1) 0.11781229 

15 O. 1 1388901 ( -1 ) 0.31643186(-1) 0.,86189530( -1) O. 1178~2~.; 



TABLE 2.7 44 

Model (iv), m = O. 

t n 

0 3 1 . 0 -0. 7 ( -11) -0. 1 ( -10) -0.7 (-11) -0.7(-11) 

1 3 0.75163272 0.21400784 0.3 r088306 (-1) o. 13151107 ( -4) 

4 0.75163278 0.21400785 0.31088306(-1) O. 13151101 ( -4) 

2 3 0.5803683 0.31255174 0.8769737 (-1) 0.27766232(-3) 

4 0.58037098 0.31255218 0.87697416(-1) 0.21766234(-3) 

5 0.58031099 0.31255218 0.81691416(-1) 0.21766234(-3) 

5 3 0.30461 0.34409 0.215083 0.852036 (-2) 

4 0.304825 0.3441'{01 0.2151049 0.85204967(-2) 

5 0.30483024 0.34411241 0.21510533 0.852a4985(-2) 

6 0.30483033 0.34411243 0.21510534 0.85204985(-2) 

10 4 0.14030 0.24032 0.245115 0.516900 ( -1) 

6 0.1405344 0.24045918 0.24517259 0.51691120 (-1) 

7 0.14053508 0.24045949 0.24577211 0.51691122(-1) 

8 0.14053510 0.24045951 0.24511271 o. 51691122 ( -1 ) 

20 6 0.5227 ( -1) o. 11684 0.168214 0.1268917 

9 0.5235771 (-1) 0.11690943 0.16825762 0.12689585 . 

10 0.52357796(-1) 0.11690949 0.16825165 .0.12689585 

11 ' 0.52357803(-1) 0.11690950 0.16825766 0.12689585 



For small n, rand m the eigenvalues were computed uSlng 

an algorithm based on that given by Bowdler, et. ale (1968). 

However, this was found to be impractical for larger values 

of n, r and m because some of the calculations become ill-

conditioned. 

We consider the set {z.} of eigenvalues of the matrix E • 
l n 

It was found that the first n eigenvalues of E 1 could be n+ 

expressed as {Z.+E.} where IE. I was small for the smaller l l l 

eigenvalues. Some of the calculations depend critically on 

45 

the values {E.} and it was found that for, roughly, n + max( r ,m) > 20 
l 

some of the values {s.} were negligible compared to z. In 
l l 

computations using 20 significant figures. This drawback 

can be overcome at the expense of computing time by the 

following means. For the eige~vector x. we have 
-:l. 

E 1 x. = (z. + E.) x. ri+ -:L l l-:L 

so that 

(E - z. I) x. = E· x. n+l l -l . l -:L 
(2.36 ) 

If IE. I is small then E. lS the eigenvalue of smallest modulus 
l l 

of the matrix (E l-z. I) . Unfortunately, each of the small 
n+ l 

values' {E.} must be computed separately. The efficiency of 
l 

the method would be greatly improved if it were possible to 

find all the values {E.} simultaneously. 
l 



Finally, we have shown how to solve sets of eQuations 

of the form 

for It should be stated that, if \) is 
r 

real for r = 0,1,2,3, .... , the method will still work in 

the more general case when condition (2.38) is relaxed) except 

that the eigenValues of E will be real but not necessarily 
n 

all posi ti ve. 
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2.2 Approximations for Hypergeometric Functions. 

We shall now derive approximations for the hypergeometric 

function 2F 1 ( a:> b; c ; z) for suit able real values of the parameters 

a, band c using a special case of the continued fraction of 

Gauss, given by Wall (1948). We shall then extend the method to 

the confluent hypergeometric functions IF (a;c;z) and F (a,b;z), 
120 

and show how approximations may be constructed for some 

generalised hypergeometric functions. We shall use the Laplace 

transform as an algebraic operation instead of a method for 

solution of differential equations. 

However, before we consider the more general case, we 

examine a degenerate form of the hypergeometric function. The 

hypergeometric differential equation is 

z(l-z) y" + [c-(a+b+l)z] yf - ab y = 0 

and the hypergeometric function 2Fl(a,b;c;z) lS defined, 

subject to normalisation, as the solution of (2.39) that lS 

regular at the origin. For a discussion of hypergeometric 

functions see Erdelyi, et. ale (1953). Bearing in mind that 

the parameters a and b are interchangeable, we consider the 

(2.39 ) 

case b = 1 , for which the equation (2.39) may be integrated 

directly to glve 

z(l-z) yf + (c-l-az) y = c-l. (2.40) 

This lS a Riccati equation, i.e. it is an equation of the 

form (1.69), and we expect the solution 2Fl(a,1;c;z) to have 



a simple continued fraction expans1on. Now, hypergeometric 

functions satisfY the three-term recurrence relation 

= 2Fl (a,b+l ;c+l ;z) 

a(c-b) 
c(c+l) z 2Fl(a+l,b+l;c+2;z) 

from which we may obtain "a continued fraction for the ratio 

2Fl(a,b+l;c+l;z)/2Fl(a,b;c;z) ) known as the continued fraction 

of Gauss. Noting that 2Fl(a,O;c;z) = 1 , we have the 

particular case 

where 

a+ r-l 
c+2r-2 

= , 

.... 

r 
c+2r-l 
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(2. 4l.) 

(2.42) 

If we let {f (z)} be the corresponding sequence of the S-fraction 
r 

(2.42), and if a 1S defined as in Chapter 1. , then we can show that 
n 

f 2n- 2 (z) = a F (a+n-:,n;c+2n-2;z) '} 2n-l 2 1 
( 2.44) 

f
2n

_
l

(z) = a2n 
2Fl(a+n,n;c+2n-l;z) , 

for n = 1,2,3, •.... So we can use the express10n (1.25) to 

obtain two expansions for 2Fl(a,n;c;z). These are 

1 
= p + 

2n-l 

and 

= 

p zp 
2n-l 2n-2 

1 + 

q2n+lz 

+ 1 

+ 
P2n+l z 

1 

q2n+2 z 

+ 1 + 

+ ••.• 

(2.46) 



where {p } are the coefficients and {p } the denominators of 
r r 

the S-fraction 

1 
= 

1 + + •••• 

and {q } are the coefficients and {Q } the denominators of the 
r r 

S-fraction 

1 
= 

ql z q2 z 
- -1+ 1 + 1 + •••.. (2.48) 

The coefficients {p } and {q } are determined by comparlson 
r r 

with (2.42). It may be shown that 2Fl(a,b;c;z) satisfies a 

Riccati equation only if a or b is a positive integer. However, 

this equation is not particularly simple as the degree of the 

polynomial coefficients increases with n. 

We have shown that when b is a positive integer a 

continued fraction expression of the form (2.45) or (2.46) 

may be found for 2Fl (a,b ;c;z). If b is a negative integer 

'then the hypergeometric function reduces to a polynomial so 

that approximations are not usually required. We are left 

to deal with the case when neither a nor b is an integer and 

the coefficients of the corresponding S-fraction are not known 

ln closed form. 

We start from the Taylor serles expanslon 

= 
r( c) 

OQ 

r(a+r)r(b+r) zr 
r(c+r) 

, (2.49) 
r! r(a)r(b) L: 

r=o 

convergent for Izl < l , and compare this with the Taylor 

serles for the confluent hypergeometric function IF1(a;c;z). 



This ~s 

= 
r( c) 
r( a) 

00 

l: 
r=o 

r(a+r) zr 
r( c+r) r! , 

convergent for all finite z. Here we are only concerned 

50 

(2.50 ) 

with (2.49) and (2.50) as formal expansions so that domains 

of convergence are unimportant. We define the Laplace transform 

of a function f(z) by 

and note that for k > 0 , 

= 
r(k) 

k 
s 

(2.51) 

(2.52 ) 

Multiplying (2.50) by zb-l and taking the Laplace transform 

we get 

b-l ( ) ~{z lFl a;c;z } = 
r( c) 
r( a) 

00 r( a+r ~ L l {zb+r-l} • 
l: r(c+r r! 

r=o 

Using (2.52) and comparing with (2.49) we have 

b-l ( ) J..Jz lFl a;c;z } = 

and ~n part icular 

We may write (2.42) in the 

2Fl(a,1;c;z) = 

1 1 = - F (a l·c·-) 
s 2 1 "'s 

form 

1 A z ~l z 0 -
1 - 1 - 1 -

A1z 
-

1 

, (2.54) 

~2z A2Z 
- -- 1 - 1 . . .. . 



Now, taking the even part and replacing z by lIs we obtain 

= 
1 

A -s - A +~ -s - A ~ -s -01122 

uslng (1.19). Now we have a J-fraction for ~{lFl(a;c;z)} 

of similar form to (2.8) that we derived for the birth-death 

process. Thus we can obtain an approximation of the form 

n 

51 

. . . , 

l~l(a;c;z) L: 
i=l 

a.. z w. e 1 

1 
(2.58) 

where {a..} are the roots of the nth denominator of (2.57) and 
1 

Ei~)(z) is the .error committed by the nth approximation. 

Naturally, we only expect this approximation to be useful 

when Re(a..z) < 0 for each i. Again, multiplying (2.58) 
. 1 ' 

b-l by z and takinG the Laplace transform we get 

b-l ( ) £)z IFl a;c;z } = ~ w. O{ zb-lea.i z} t7{ b-l (n) ( )} 
L, J...., + d.J z Ell Z 

. 1,1 1::;: 

. Using (2.54) we have 

r(t) F ( b c· l ). ::;: 
b 2 1 a, ; ,~ 

s 

Finally, replacing s by lIz we obtain 

::;: 

W. 
1 

where the new error term E~)(Z) 1S given by 

= 1 £ b-l (n) ( )} 
---b- {z Ell z s=l/z 
r(b) z 

• 

(2.60) 

(2.61) 

(2.62) 
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Thus, we have obtained a form of exponential approximation (2.61) 

for 2Fl(a,b;c;z) and we can use (2.62) to derive an estimate of 

the truncation error E~~)(Z). Some of the results of Section 2.1 

can be applied in this case. In particular, we adapt result (2.31) 

(n) ( ) to the error Ell Z of the approximation (2.58). We have 

2n a +a 
= L M Z {I + n n+l z + O(z2)} 

n-l n (2n)! 2n+l 

(2.63) 

where L I,M n- n 
are defined by (2.3) and 

n-l 
a = A + l:: (A + II ) (2.64) 

n 0 r=l r r 

Using (2.62) and (2.63) we get a similar expresslon for E~~)(Z). 

We have 

(n) ( ) 
E21 Z 

2n a +a 
= r(b+2n) z n n+l (b+2n) Z + O( z2) } 

Ln_1Mn reb) (2n)! {I + 2n+l 

Adapting (2.32) we have the error estimate 

where 

(n) ( ) 
Ell Z 

a + a n n+l 
(2n+l) (2n-l) • 

(n) ( ) 
The analogous estimate for E21 Z 1S 

where 

(n) ( ) 
£21 Z 

~n = (b + 2n) 6 
n 

Z • _ + O( Z ) 2n {l 2 } 
(2n) ! (l-~n z) 2n-l 

• 

(2.66) 

(2.68) 



Unfortunately, these estimates are no easier to compute than 

those in Section 2.1 although they depend only on the parameters 

a, band c. However, they do give useful estimates for the 

range of z, on the negative real axis, over which a glven error 

lS not exceeded. 

Although the approxima.tions (2.58) and (2.61) are valid 

more generally, we are particularly interested in determining 

conditions under which the computations are easily performed. 

It may be verified that the nth denominator B (s) of the 
n 

J-fraction (2.57) can be expressed in the form 
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B (s) 
n (2.70) 

where the right-hand side is a hypergeometric polynomial. If 

the denominators have complex roots they may still be computed 

by a QR algorithm, although the faster, more stable method 

given in Section 2.1 may be a.pplied when the roots are real. 

We have shown that a sufficient condition for the roots of 

B (s) to be real is that all the partial numerators, except 
n 

the first, of the fraction (2.57) are negative. That is, we 

> 0 

for r = 1,2,3, •••• , or 

, 

(2.71) 

2 3 4 . Using (2.43) this condition reduces to for r = , , , •••• • 

• ( 2. 73) 



This is not too restrictive as many well-known hypergeometric 

functions satisfY (2.73), bearing in mind that the parameters 

a andb are interchangeable. Also, under condition (2.73) 

all singularities of the approximations (2.61) lie on the 

interval (1,00) of the real axis in the z-plane. 

We now formally define the generalised hypergeometric 

function by the Taylor series expanS10n 

n m 
II r( c. ) 00 II r( a. +r) r 

j=l J .1 1 Z 

F ({ a. }; {c . } ; z ) I 1= 
= , 

m n 1 J m n r! 
II r(a.) r=o II r( c . +r) 

. 1 1 j=l J 1= 

(2.74) 

where there are m parameters {a.} and n parameters' {c.}. It 
1 J 

is easily verified that result (2.54) may be written more 

generally as 

b-l .' ~{z F ({a.};{c.};z)} 
m n 1 J 

= 
r(b) 

b 
s 

1 
I

F ({ a. } ,b ; { c . } ;-) , 
m+ n 1 J S 

where b becomes the (m+l)th parameter on the right-hand side. 

In particular, for the confluent hypergeometric functions 

we have 

JJ b-l ) J...-{z oFl(C;Z} = , 

and 

= • 

To form approximations for IF1(b;C;z) and 2FO(a,b;z) we must 

find the roots of the denominators of the J-fract ions for 

(2. 77) 



and 1 1 
- F (a 1 0

-) 

s 2 0 "s respect i ve1y. Each of these 

J-fractions can be expressed ~n the form (2.57) where, for 

1 1 
;- 1Fl(1;c;;) , 

A o = 1 
c 

, 
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(c+2r-l) (c+2r) , A :::: 
r 

c+r-1 
( 2.78) 

:::: r 
- (c+2r-2)(c+2r-l)" , 

for r :::: 1,2,3, •••• and, for l F (a 1 0 1.) 
s 2 0 ' 's ' 

A = a 
0 

, 

A = (a + r) r , 

l1r = r , 

for r = 1,2,3, ••••• These J-fractions may be obtained from 

the S-fraction (2.42). We observe that the coefficients (2.79) 

satis~ condition (2.71) if a > 0 , which is a sufficient 

condition for the roots of the denominators of the J-fraction 

for 
l' 1 
- F (a 1 0

-) 

s 2 0 "s 
to be real. Unfortunately, the coefficients 

(2.78) do not satis~ condition (2.71) for any values of c, but 

we do have -the alternative approximation (2.58) in this case. 

However, the approximations to be derived from (2.78) may be of 

use ~n cases when (2.58) is inapplicable. As the J-fractions 

for 
1 1 
s IF 1 (1; c ;;) 

the form (2.57), 

in each case. 

1 1 and - F (a 1 0
-) can both be expressed in 

s 2 0 ' 's 

the error estimation formula (2.68) is valid 



Now, suppose we wish to find approximations for 

3Fl(a,b,d;c;z). We start with the pth approximation 

= 
P A. 
L: 1-

i=l (l-a.z)b 
J. 

+ ·)p)(zl 
"'21 I 

Multiplying by zd-l and taking the Laplace transform we have 

L: A. L z b p { d-l} 

i=l J. (l-aiz) 

By comparing series 'expansions, we observe that 

I
F (b ;a. z) o J. 

-b (I-a. z) 
J. 

so we may apply result (2.77)· to (2.81) to obtain 
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(2.80) 

(2.81) 

(2.82) 

r( d) 
d 

s 

p a· ( ) 
L: A. 2F (b,d;-h) + ~{zd-l£21P (z)} = 

. 1 J.. 0 S J.= 

But, from (2.75), we also have 

= 

Comparing (2.83) and (2.84) we have 

= 

We now use the qth approximation 

= 
q 
L: 

j=l 

B. 
,] 

b 
(l-S.z) 

J 

+ 

Replacing s by liz J.n (2.85) and uSJ.ng (2.86) we get 

( 2.83) 

(2.84 ) 

• (2.86) 



the (p,q)th approximation 

= 

where 

B . 
.J 

b (l-a..S.z) 
~ J 
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+ , 

(2.88) 

Clearly the computation of error estimates, like those we have 

deri ved earlier, will be too time-consuming to be of value here. 

We note that if c > a > 0 and d > 0 then all the values {a..} 
~ 

and {S . } will be real. 
J 

We have Gonstructed single ser~es approximations for the 

IF I ' 2F 0 and 2FI functions and a double series approximation 

for the 3FI function. Similarly, we can form double series. 

approximations for the 3Fo function, and triple series 

approximat ions could then be derived for the 4F 0 and 4F 1 

functions, and so on. Approximations of different forms can 

also be obtained for other generalised hypergeometric functions, 

although not all such functions can be treated in this way. 

In Tables 2.8 - 2.14, below, numerical results' are given 

for the following examples: 

( i) 

( ii) 

(iii) 

(i v) 

( v) 

2FI (~,~; ~ ;z) , us~ng the approximation (2.61). 

1 F 1 ( ~; f- ; z ) , us ~ng (2. 58) • 
, 3 . 

1 F 1 ( 2; i:" ; z ) , us ~ng (2. 78) • 

~~ 2F1(~,~;I;m) , using (2.61). 

~~ 2F1(~,-~;1;m) , using (2.61). 



( vi) 

( vii) 

IF1(~;1;z) , uS1ng (2.58). 

2Fo(~'~;z) , uS1ng (2.79). 

Each of the hypergeometric functions above may be expressed 

in terllis of special functions as follows: 

( 1" ) (' , ~ 2) -l z 2F 1 2,2; i' ; - z :: sinh z. 
, 

58 

( i i) & (i ii ) 2 ('] 2z lFl 2; 'i: ;-z) :: y(~,z) ,where 

,Y 1S the incomplete gamma function. 

elliptic integral of the first kind. 

(v) ~1T 2Fl (~,-~;l ;m) :: E(m) , the complete 

( vi) 

elliptic integral of the second kind. 

:: I (z) , the modified 
o 

Bessel function of the first kind. 

( ) ~( )-~ -z (1 1 1) ( ) vii 1T 2z e 2Fo 2,2;- 2z :: Ko Z ,the 

modified Bessel function of the second kind. 

, 
(viii) 1T

2
Z 3Fl(~,~,1;2;-z) 

For further details of the above functions see Abramowitz and 

Stegun (1964). 

In Table 2.8, below, are listed estimates of suitable ranges 

of ~, on the real axis, for prescribed errors and various values of n. 

'i':!~ ~;.; L.i;;j~J.t.~.:; c..rc vali.:l fOl' ~ < 0 a..'1d, as before, the notation (-k) 
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TABLE 2.8 

Estimated Estimated 
Example n Error min(z) Error min(z) 

(i) 3 ( -4) -1 .98 (-3) -4.51 

4 (-5) -2.30 (-4 ) -4.44 

5 (-5) -It .37 ( -4) -9.43 

8 ( -8) -4. J 7 (-6) -12.7 

10 ( -8) -9.41 (-7) -18.4 

(ii) 3 ( -4) -2.94 ( -3) -4.80 

4 (-5) -4.21 (-4) -6.10 

5 (-7) -4.14 ( -5) -7.39 

8 (-10) -7.74 ( -8) -11.2 

10 (-10) -13.7 ( -8) -18.8 

(iii) 3 (-4) -2.06 (-3) -3.54 

4 (-5) -2.78 ( -4) -4.17 

5 ( -7) -2.59 ( -5) -4.80 

8 (-10) -4.55 (-8) -6.69 

10 (-10) -7.94 ( -8) -11. 1 

( vi) 3 (-4) -2.83 ( -3) -4.63 

4 (-5) -4.10 (-4) -5.95 

5 (-8) -3.09 ( -5) -7.25 

8. ( -8) -11. 1 (-4 ) -26.5 

10 (-10) -13.6 (-6) -26.6 

( vii) 3 (-3) -1. 11 (-2) - 5.09 

4 ( -3) - 3. 41 (-2) - 24. 1 

5 (-4) -2.47 ( -3) -15.0 

8 (-6) -4.90 (-5 ) - 36. 4 

10 ( -8) -2.82 ( -7) - 16.9 
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The estimates in Table 2.8, above, were found to be 

reasonable and a selection of computed results for Examples (i) -

(viii) is given in Tables 2.9 - 2.14, below. In these tables 

the last convergent listed, for each value of z, is generally 

accurate to the number of figures shown, and these values may 

often be verified by reference to Abramowitz and Stegun (1964). 

Without loss of generality, the imaginary part of z is chosen 

to be non-negative as the moduli of the real and imaginary parts 

of all the approximations are symmetric about the real axis. 



61 
TABLE 2.9 

Example (i). 

Re z 1m z n Re F(z) rm F(z) Re z rm z n Re F(z) rm F(z) 

-0.5 0 3 0.9312295 0 0 5 6 0.70746 0.24223 

4 0.9312298 0 8 0.707525 0.2421520 

5 0.9312298 0 9 0.7075187 0.2421516 

10 0.7075181 0.2421530 

-1 0 3 0.881365 0 0 10 10 0.582693 0.242611 

4 0.8813733 0 13 0.5826797 0.2425952 

5 0.8813736 0 17 0.5826799 0.2425964 

18 0.5826799 0.2425963 

-2 0 4 0.810489 0 ..,.2 1 3 0.801124 0.05651 

5 0.8104965 0 5 0.8011345 0.0563142 

6 0.8104969 0 6 0.8011337 0.0563135 

7 0.8104970 0 7 0.8011336 0.0563135 

-5 0 5 0.69067 0 -1 1 3 0.86228 0.081307 

6 0.690708 0 4 0.862233 0.0812989 

7 0.6907135 0 5 0.8622313 0.0813006 

8 0.6907145 0 r' 0.8622313 0.0813007 0 

-10 0 5 0.5904 0 1 1 5 1 .02205 0.2723083 

8 0.590879 0 7 1 .022007 0.2723083 

10 0.5908871 0 8 1 .022006 0.2723083 

11 0.5908876 0 9 1 .022006 0.2723083 

0 1 3 0.944766 0.136085 2 1 1 1 0.976318 0.445834 

4 0.9447981 0.1360665 14 0.9763356 0.4458673 

5 0.9447967 0.1360661 19 0.9763372 0.4458648 

20 0.9763371 0.4458647 

0 2 4 0.863718 o. 197569 1 O. 1 8 2. 13189 0.2498 

5 0.8637632 0.19752D8 1 1 2.13216 0.250043 

6 0.8637574 0.1975178 18 2.132091 0.2500334 

7 0.8637572 0.1975178 19 2. 132090 0.2500334 



TABLE 2.10 

Comparison of examples (ii) and (iii). 

(a) z real, F(z) real. 

z n 

-1 3 

4 
-2 3 

4 

5 

-5 3 

4 

5 

7 

Ex.(ii) 
F(z) 

0.7468238 

O. 7468241 

0.598131 

0.5981439 

0.5981440 

0.3947 

0.39569 

0.3957119 

,0.3957123 

Ex.(iii) 
F(z) z n 

0.7468270 1 3 

0.7468241 4 

0.59822 2 3 

0.5981429 4 

0.5981440 6 

0.3977 5 4 

0.39555 5 

0.395721 7 

0.3957123 9 

(b) z imaginary, F(z) complex. 

Example ( i i) 
Re z 1m z n Re F(z) 1m F(z) 

0 1 3 0.9045247 0.3102685 

4 0.9045242 0.3102683 

0 2 3 0.66762 0.498837 

4 0.6675968 0.4988117 

5 0.6675968 0.4988119 

6 0.6675968 0.4988119 

0 5 4 0.18423 0.26102 

5 O. 1840972 0.261162 

6 o. 1840997 0.2611598 

8 o. 1840996 0.2611598 

Ex.(ii) 
F(z) 

1.4626509 

1.4626517 

2.36437 

2.3644539 

2.3644539 

17. 169 

17. 172109 

17.172158 

17.172158 

Ex.(iii) 
F(z) 

1 .462673 

1. 4626517 

2.3686 

2.3644545 

2.3644539 

14.5 

17.37 

17. 17238 

17.172158 

Example(iii) 
Re F(z) 1m F(z) 

0.9045204 0.3102623 

0.9045242 0.3102683 

0.66776 0.49845 

0.6675996 0.498806 

0.6675969 0.4988118 

0.6675968 0.4988119 

o. 1828 0.2658 

o. 18399 0.26152 

o. 1840944 0.261177 

o. 1840997 0.2611598 

62 
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TABLE 2.11 

Examples (iv) and Cv). 

m n K(m) m n 

O. 1 3 1.61244135 1.53075764 0.7 4 2.075319 1.2416722 

6 2.0753629 1.24167057 

0.2 3 1.65962358 1.48903506 7 2.0753631 1 1.24167057 

4 1.65962360 1 .48903506 9 2.07536314 1.24167057 

0.8 5 2.25715 1 . 178491 

0.3 3 1.71388906 1 .44536309 7 2.2572043 1.17848994 

4 1. 71388945 1. 44536306 8 2.25720519 1 . 17848993 

10 2.25720532 1. 17848992 

0.4 3 1. 7775160 1.39939238 0.9 7 2.578006 1.1047758 

4 1.77751932 1.39939214 1 1 2.5780918 1. 10477474 

5 1.77751937 1 .39939214 12 . 2.57809202 1 . 10477473 
, 

14 2.57809211 1. 10477473 

0.5 3 1.854053 1. 35061~53 0.95 10 2.90824 1.0604743 

4 1 .85407413 1. 3506)~388 13 2.9083319 1.06047375 

5 1 .85407466 1.3506)i388 17 2.90833713 1.06047373 

6 1 .85407468 1 .35064388 21 2.90833725 1.06047373 

0.6 3 1 .94945 1 .298435 :].0* 11 4.6 1.00085 

4 1.9495626 1.29842825 14 4.8 1.00052 

6 J .94956774 1. 29842804 17 5.0 1.00036 

7 1 .94956775 1.29842804 20 5.2 1.00026 

*K( 1 .0) = 00 :> E ( 1 .0) = 1.0 
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TABLE 2.12 

Example (vi). 

i<e z 1m z n Re F(z) 1m F(z) Re z 1m z n Re F(z) 1m F(z) 

, 
-10 0 4 O. 182542 0 0 1 3 0.8235853 0.4499267 

,I 
" 

~. 

6 o. 182538 0 4 0.8235847 0.4499264 ~ 
7 0.1825407 0 0 2 3 0.413461 0.64393 

8 0.1825408 0 4 0.4134380 0.64389.15 

-5 0 3 0.2690 0 5 0.4134381 0.6438917 

4 0.270018 0 0 5 4 0.038961 -0.02910 

5 0.2700460 0 5 0.038759 -0.0289537 

6 0.2700464 0 6 0.0387624 -0.0289564 

-1 0 3 0.6450349 0 7 0.0387624 -0.0289563 

4 0.6450353 0 0 10 6 -0.05042 o. 17045 

1 0 3 1.7533865 0 7 -0.0503759 0.170297 

4 1 .7533877 0 8 -0.0503775 0.1703020 

3 0 4 7.380078 0 9 -0.0503775 0.1703019 

5 7.3801012 0 -2 1 3 0.42921 0.11974'5 

6 7.3801013 0 4 0.4291879 O. 1197210 

5 0 4 40.0742 0 5 0.4291877. O. 1197210 I 
5 40.078373 0 -1 1 3 0.5665358 0.2231414 

6 40.078445 0 4 0.5665342 0.2231443 

10 0 5 404J .4 0 1 1 3 1.3424713 0.9681422 

6 4042.696 0 4 1. 3424757 0.9681344 

7 4042.7535 0 2 J 3 2.4581 2.19063 

8 4042.7554 0 4 2.457.8438 2. 1905864 

5 2.4578432 2.1905852 
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TABLE 2.13 

Example (vii). 2Fo(~)~;z) 

Re z 1m z n Re F(z) 1m F(z) Re z Imz n Re F(z) Im F(z) 

-

-0. 1 0 3 0.9173562 '" 0 0.2 3 0.990519 0.046510 u 

4 0.9113567 0 5 0.9905619 0.0465511 

5 0.9113567 0 1 0.9905604 0.0465511 

8 0.9905605 0.0465518 

-0.2 0 3 0.958209 0 0 0.5 5 0.96046 0.09623 

4 0.9582198 0 9 0.9605958 0.0961556 

6 0.9582210 0 15 0.9605901 0.0961519 

18 0.9605902 0.0961578 

-0.5 0 4 0.91308 0 0 0.1 1 0.93914 0.011908 

6 0.9131440 . 0 12 0.9392172 0.0118978 

9 0.9131492 0 14 0.9392118 0.0118979 

11 0.9131494 0 22 0.9392116 0.0118982 

-0.8 0 5 0.81883 0 0.1 0.5 5 0.91355 0.1082 . 

7 . 0.878932 0 8 0.913668 0.10188 

12 0.8789500 0 14 0.9136431 0.1019014 

15 0.8789504 0 21 0.9136432 0.1079004 

-1.0 0 6 0.85917 0 -0.1 0.5 4 0.94148 0.08604 

9 0.859875 0 5 0.947502 0.08627 

14 0.8598861 0 8 0.9475949 0.0863096 

18 0.8598866 0 17 0.9475939 0.0863030 

0 o . 1 3 0.9973397 0.0244133 -0.3 0.5 5 0.922844 0.01105 

4 0.9973401 0.0244111 7 0.9228018 0.071114 

5 0.9973400 0.0244711 1 1 0.9228081 0.0711248 

15 0.9228086 0.0111245 



TABLE 2.14 

Example (viii). 

(a) Re z = -0.5 , 1m z = 0 . (b) Re z = 0, 1m z = 0.3 

p q Re F(z) 1m F(z) p q Re F(z) 1m F(z) 

3 3 0.951807 0 3 3 0.993123 0.034817 

3 5 0.9518452 0 3 5 0.9931483 0.0348274 

3 7 0.9518467 0 3 7 0.9931476 0.0348263 

3 8 0.9518468 0 3 8 0.9931476 0.0348264 

4 4 0.9518470 0 4 4 0.9931488 0.0348309 

4 6 0.9518541 0 4 5 0.9931520 0.0348277 

4 7 0.9518541 0 4 6 0.9931516 0.0348268 

4 8 0.9518541 0 4 8 0.9931513 o. 03~L8268 

5 5 0.9518531 0 5 5 0.9931520 0.0348275 

5 8 0.9518546 0 5 6 0.9931517 0.0348265 

5 9 9.9518547 0 5 9 0.9931513 0.0348266 

6 6 0.9518543 0 6 6 0.9931516 0.0348265 

7 7 0.9518546 0 7 7 0.9931514 0.0348265 

8 8 0.9518547 0 8 8 0.9931513 0.0348265 

9 9 0.9518547 0 9 9 0.9931513 0.0348266 
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TABLE 2.14 (continued) 

(c) Re z = 0.1 , 1m z = 0.3 (d) Re z = -0.5 , 1m z = 0.3 

p q Re F(z) 1m F(z) p q Re F( z) 1m F(z) 

3 3 1 .003702 0.039303 3 3 0.9495728 0.02295 

3 4 1 .003760 0.039274 3 5 0.9495693 0.0228742 

3 7 1 .0037490 0.0392607 3 7 0.9495669 0.0228714 

3 9 1.0037498 0.0392609 3 9 0.9495666 0.0228713 

4 4 1. 003764 0.0392639 4 4 0.9495705 0.0228716 

4 5 1.0037573 0.0392514 4 5 0.9495665 0.0228603 

4 6 1.0037535 0.0392521 4 7 0.9495641 0.0228576 

4 9 1.0037537 0.0392536 4 9 0.9495638 0.0228574 

5 5 1. 0037569 0.0392510 5 5 0.9495658 0.0228594 

5 6 1.0037528 0.0392518 5 6 0.9495641 0.0228571 

5 8 1.0037529 0.0392535 5 9 0.9495631 0.0228565 

6 6 1.0037528 0.0392519 6 6 0.9495640 0.0228570 

7 7 1 .0037526 0.0392532 7 7 0.9495633 0.0228566 

8 8 1 .0037529 0.0392535 8 8 0.9495631 0.0228565 

9 9 1.0037531 0.0392535 9 9 0.9495630 0.0228565 

10 10 1.0037531 0.0392534 10 10 0.9495630 0.0228565 
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CHAPTER 3. 

THE CORRESPONDING SEQUENCE ALGORITH~S. 

In this chapter we exarrane the problem of converting 

a glven power series to an appropriate continued fraction. 

We shall define a class of algorithms based on the corresponding 

sequence of a continued fraction, giving examples and making 

comparisons with algorithms of the quotient-difference type. 

The idea of corresponding sequence algorithms is not new, 

although a short paper by Watson (1972) may well be the only 

published work on the subject. Notably, these algorithms are 

not included in the monumental survey paper of Wynn (1960). 

In Part II we will show that the use of corresponding sequence 

algorithms makes possible the generalisation of corresponding 

fractions to two and more variables. We begin with a general 

approach to the problem in one variable. 

3.1 The General Algorithm. 

We consider a f~~ction f (z) formally defined by the 
o 

power serles 

f (z) 
o 

= + •••• 

and we assume that a corresponding fraction of the form 

f (z) = 
o 

v(n-l) 
p z 

n 
+ •••• + ~ ( z) 

a fraction of the form (1.59) that we described exists, l.e. 

(3.1) 

+ •••• 

(3.2) 



In Section 1.2. The recurrence relations that glve rlse to 

the fraction (3.2) are 

f (z) 
n = v(n-l) ( ) 

z P f z n n-2 ( 3.3) 

for n = 1,2,3, •••• where we set v(O) = 0 and f_l(z) = 1 • 

We shall consider the function fn (z) as a formal power series 

In z and we write 

f (z) 
n. 

= + •••• + 
(n) r 

a z +.. •. } r 

where 

a(n) = 
n 
E v(i) 

i=l 

and, in particular, we have ( 0) 
a = a for all r. r r 

powers of z in (3.3) we obtain 

( n) 
a 

r = 

where the shift operator E is defined by 

= 
(n) 

a r+m 

(3.4) 

Now, equating 

( 3.6) 

for all integer values of m. We reqUlre that the relation (3.6) holds 

for n = 1,2,3, and r = -v(n),-v(n)+l, .... -2,-1,0,1,2,3, . . . . 
so we choose for r < 0 a(-l) = 1 

, 0 and 
( -1) 

a = 0 
r 

for 

r ~ O. Now the relation (3.6) summarises an algorithm for obtaining 

the coefficients of the continued fraction (3.2) from the sequence {a }. 
r 

We call this algorithm the corresponding sequence algorithm, or CS 

algorithm, for the continued fraction (3.2). The equations swr.marised 

by (3.6) form a "triangular" system so there is no problem of solutio:1 

as we shall see in the next two sections. 



3.2 Algorithms for S-Fractions and Pade Approximants. 

We consider an S-fraction of the form 

c 
o 

70 

f (z) 
o = 1 + •••• 

c z 
n -+ 1 + •••• ( 3.8) 

and, to simplify the calculations, we adjust the serles 

coefficients so that a = c = 1. Comparing (3.8) with (3.2) o 0 

we can write the. summarised CS algorithm (3.6) as 

for allr 

( n) 
a 

r 

andn 

c 
0 

a (1) 
r 

c n 

= (n-2) c a 
n-l r+l 

or, written In 

= 1 , 

= a -
r+l , 

a ( n) 
0 

(n-l) 
a r+l 

full, 

r = 0,1,2,3, •••• , 

1,2,3, = (n-1) n = . . . . , , 
a 

0 

(n-2) 
c a n-l r+1 = r = 0,1,2,3, , . . .. , 

n = 2,3,4, ••.•• 

In the case of the S-fraction it lS also useful to define a 

modified CS algorithm. First we perform a similarity 

transformation on the S-fraction (3.8), with 

obtain 

= 

c = 1 to 
o ' 

k k lC z n n+ n 
f (z) 

o + + •••• + kn+l + •••• , 

(3.11) 

forming a new corresponding sequence {Fn(z)} satisf,ying 

(3.10) 



11 
the recurrence relations 

F (z) 
n 

= k {k l c lzF 2(z) - F (z)} n n- n- n- n-l (3.12) 

for n = 1,2,3, . . . . where F (z) = f (z) 
o 0 

and we set F ,(z) = l/z. 

For conven1ence we choose 

for 

k = 
n 

-1 
c 

n 

n = 1,2,3, •••• 

F (z) 
n = 

and writing 

we obtain the modified CS algorithm, summarised by 

= 
1 
c 
n 

{ b(n-2) _ b(n-l) } 
r+l r+l 

( 3.13) 

( 3.14) 

for all r and.n. We note that b(n) = 1 for all n, and need 
o ' 

not be stored. Written 1n full, this algorithm is 

c 
o 

c 
n 

= 1 , = 

= 

= 
ar +1 

c
1 

r = 1,2,3, .•.. , 

= 

, 

b(n-2) _ b(n-l) 
11' 

n = 2,3,4, •.•• , 

1 {b(n-2) 
c r+l 

b(n-l) } 
r+l ' 

r = 1,2,3, 
n 

n = 2,3,4, 

As an example we perform each algorithm on the power 

series expansion 

. I 

· · . .. , 

• • •• • 

-z 
e 

,2 13 14 15 
_. 1 - z + 2 Z - G z +;; z - 12.0 Z + ..•. 

(3.16) 
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( 1) a TA}r:;, 3 ~ 

1 r 4J......J • ...l 

a
5 

-- i 120 (2) Ordinary CS a1gorithr.: (3.10) a 
1 1 r 

a4 2)+ 120 ~ a(3) 
for the S-fraction. 

1 1 1 
r 

a
3 -6 - 24 - t 30 ( 4) a 

1 1 1 l r 
-'-a

2 
- -

2 6 8 - 80 ~ a (5) 
·1 1 1 1 r 

a
1 - 1 - - 24 --

2 3 120 ~ 

1 1 
1 1 1 1 

a --
0 2 12 12 120 

1 1 
1 1 1 1 - - -6 2 6 10 

c c1 
c2 c3 · c4 c

5 0 

b (1) TABLE 3.2 
1 

r 
a

5 
-- t 120 b (2) Modified CS algorithm (3.16) 

1 1 
r 

a4 24 
- t for the S-fraction. 
120 b (3) 

1 1 1 
r 

a
3 

- - - 24 -- t 6 15 b (4) 

1 1 1 .L 
r 

a2 
- 4 t 2 6 ,20 

- 1 
1 2 1 _1 

a
1 

- - - - - -
2 3 2 5 

1 1 
1 1 1 1 

a - -
0 2 6 6 10 

c c
1 

c
2 

c
3 c4 c

5 0 

Each algorithm indicates the S-fraction expans~on 

-z e :;: 

1 I I , 
1 !. 2Z b Z ~ Z ~ 
1 + 1 - 1 + 1 - 1 + 1 -

( 3.18) 
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The modified algorithm (3.16) commends itself for hand 

calculation as it is simple to use and easy to remember. Also, 

the coefficients {b~n)} in the modified algorithm are usually 

easier to work with than the coefficients {a(n)} in the ordinary 
r 

algorithm, as may be seen in the example above in which the 

coefficients {a(n)} become small more ~uickly. 
r 

We will now consider the import~~ce of the S-fraction and 

its CS algorithm in relation to the more general field of Pad~ 

approximants. This was the subject of the paper by Watson (1972), 

mentioned above, who suggested the use of the algorithm for 

performing operations, such as differentiation and integration, 

on Pade approximants expressed in terms of S-fractions. In such 

applications the CS algorithm lS also used in its e~ually 

convenient reverse form, l.e. to convert the continued fraction 

coefficients {c } to the series coefficients {a }. 
n n 

We define the [M/NJ Pade approximant to the function f (z), o 

formally defined by (3.1), to be ~(z) /BN( z) where ~(z) and 

BN(z) are polynomials of degree M and N, respectively, such that 

~(z) = 

For a glven serles (3.l) the [M/NJ Pade approximant is unl~ue, if 

it exists, and the II· " stalrcase se~uence of approximants 

[1-l/0J [1/0J 

[1jlJ [L+l/lJ 
(3.20 ) 

[1+1/2J [1+2/2J 

. . . . . . 
. . . . . . 
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lS glven by the successive con t vergen s of the corresponding 

fraction 

f (z) 
o = 

Also, the ". " stalrcase 

[0/L-1J 

[O/LJ 

L 
+ ~z 

L-1 
+ aL- 1 z 

{~+ 
sequence of Pade approximants 

[l/LJ 

[1/L+1J [2/L+1 ] 

[2/L+2 ] . . . . 

+ 

lS glven by the successive convergents of the corresponding 

fraction 

f (z) 
o 

= 1 

L-1 L{ +~_lz +,\z:. 

.1 + + 

+ ..•. } 

(3.21) 

(3.22 ) 

+ •... } 

By suitable choice of L, we can express any Pade approximant as 

a convergent of one of the fractions (3.21) and (3.23). In (3.21) 

the first (L+1) coeffi.cients are identical to those of the serles 

.. (L) (L) (L) 
(3.1) and the coefflclents c1 ,c2 ,c

3 
' .... may be obtained 

by applying the modified CS algorithm to the sequence ~+1/~' 

aL+2/aL'~+3/~' ....• In (3.23) the series do+~Z+d2z2+ .... 

is the power series of the reciprocal of f (z) and its coefficients 
o 

may be computed from the relation 

d = 
n 

n 
- d E d a 

o n-.r r 
r=.l 

( 3.24) 



for n = 1,2,3, .... and where d 
o 

-1 = a 
o • 
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The coefficients 
(L) (L) (L) 

gl ,g2 ,g3 , •••• are then obtained by applying the modified 

CS algorithm to the sequence d /~ d /d ~ /d 
1+1 L' L+2 L' -L+3 L' ••••• 

'Pad~ approximants may, of course, be obtained without reference 

to continued fractions. [See, for example, Baker and Gammel (1910), 

Graves-Morris (1912a,1912b).J However, in'problems which give 

rise to power series the continued fraction approach is far 

simpler. 

As an example, setting L = 2 ~n (3.23), we have in 

particular the [2/3J Pad~ approximant 

A
2
(z) 1 d Z 

2 ( 2) g(2)z ( 2) 
2 gl Z 2 g3 Z 

B}z) 
= • d

o
+d

1
z + 1 + 1 + 1 + 1 

If we write 

A2(z) 2 = Po + PI z + P2z , 

B
3

(z) 2 3 = 1 + 'lIZ + q2z + 'l3Z , 
( 3.26) 

and equate coefficients of powers of z in (3.19) we must solve 

s~x equations in the six unknowns to find 

the Pad~ approximant in rational function form. However, the 

applic at ion of the modified CS algorithm to find the 

approximant in the form (3.25) ~s comparat i vely trivial. 

f (z) 
-z already know the reciprocal Again taking = e , we 

0 

ser~es 

z 
e = , 2 I 3 I 4 z5 

1 + z + :2 Z + '" z + '2..4 z + /1..0 + •••• 

so that we have 

~ 1 
d 

1 ~ 1 = = = 60 d2 3 
, d

2 
12 , d

2 

( 3.21) 

( 3.28) 



and we apply the modified CS algori thm to these values. 

d
5
/d

2 
1 
60 TABLE 3.3 

d4/d
2 

1 1 Modified CS algorithm (3.16) - -12 20 

d
3
/d

2 
1 1 2 for Pad~ approximants. 

Thus, the 

-z 
e 

"4 -3 5 

1 1-
1 1 3 - - --3 12 20 

( 2) ( 2) ( 2) 
gl g2 g3 

[2/3J Pad~ approximant to 

= 
1 2 

1 ~ 
l+z + 1 

I I 
~ z I1:z 
1 + 1 

e -z 
lS 

3 
1..0 Z 

1 + 

This is one of the simplest methods for obtaining a Pad~ 

approximant and lS easily accomplished by a minimum of 

computation. 

It is interesting to compare this algorithm with that 

76 

of Longman (1971). Longman's algorithm computes the coefficients 

of Pad~ approximants in rational function form. An advantage 

of the continued fraction approach is that, by computing just 

one more coefficient, we can progress from one approximant to 

another. Whilst Longman's,algorithm lS usefUl for computing 

the whole Pade table, we can use the CS algorithm to calculate 

high order approximants without computing the whole of the 

preceding table. As fewer cOl:1putational steps are necessary 

we may suppose that there is less build-up of rounding error 

with the CS algorithm. 



3.3 Algorithms for Other Corresponding Fractions. 

We now consider a power series 

f (z) 
o = 

77 

(3.30) 

that does not have an S-fraction expansion. However, as stated 

in Section 1.2, this series always has a C-fraction expansion 

of the form 

f (z) 
o = 

1 

1 + 1 + 1 + •••• + 

v(n) c z 
n 

1 

in which the exponents {v(n)} are positive integers. In 

particular, if al = a2 = .... = ~ = 0 then v(l) = k+1 , 

and in general many of the coefficients {a } may be zero. 
r 

Proceeding as in Section 3.2 we can obtain a modified CS 

algorithm, summarised by 

= 1 
c 

n 
{ 

b (n-2) 
r+v(n) 

b(n-l) } 
r+v(n) , 

which is similar to the relation (3.15) that we derived for 

+ •••• 

(3.31) 

(3.32) 

the S-fraction. In practice the algorithm is the same as that 

for the S-fraction except that the indices {v(n)} must also be 

computed. In order to do this all the zero coefficients are 

stored and the number of zeros at the bottom of the nth column 

glves v(n)-l. The only other difference is that the nth 

column must be displaced by v(n-l) places compared with the 

. (n-l)th column, as indicated in Table 3.4 below. The example 

below is for a suitable arbitrary function f (z) whose power o 



series expansion begins 

( 3.33) 

a
7 

1 

a6 0 3 places 
TABLE 3.4 

a
5 

1 
Modified CS algorithm (3.16) 

0 1 
a4 - adapted for the C-fraction. 2 

2 places 
a

3 
2 0 

G 
1 

1 a2 -
2 

0 - 4 1 
~ -8 

1 - 2 4 31 
~ -8 c n 

3 2 1 1. 

v (1) v (2) v(3) v ( 4) 

Table 3.4 indicates a C-fraction expansion which begins 

f (z) 
o = 

l 2z3 ~z2 4z ~~ z 
1 - 1 - 1 + 1 - 1 + •••.• 

We now consider the J-fraction 

2 2 
Pl P2 z P3z P z n 

= 

2 

f (z) 
0 l+Qlz + 1+q2z + 1+Q3z + .... + l+~z 

which is the even part of the S-fraction (3.8). Adapting 

result (3.6) for the fraction (3.35) we get 

(n) 
a 

r 

(3.34) 

+ •••• 

(3.35 ) 



which leads to the computational scheme 

= 

( 1) 
a = r 

= 

= 

a , 
o = 

a 
o 

{ ar +2 + ql a r +l } , r = 0,1,2,3, ••.. , 

(n-l) 
a 

o 
(n-2) 

a 
o 

, n = 2,3,4, •••• , 

1 { (n-2) (n-l)} 
(n-l) Pn~ - ~ , n = 

a 
o 

2,3,4, .... , 
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( n) 
a 

r 
= 

(n-2) (n-l) (n-l) 
pa -a -qa 

n r+2 r+2 -n r+l , r = 0,1,2,3, ••.• , 

The algorithm (3.37) may also be applied to convert a power 

.. 
series of the form 

f (z) 
o 

ao ~ a2 
=-+2"+"3+ •.•. ( 3.38) 

Z Z Z 

to a J-fract ion of the form 

f (z) 
o = 

Pn 

+ ••.• + ~ +z + •••• • 

The fact that corresponding fractions have two interchangeable 

forms provides the simplest method for obtaining the CS algorithm 

for the M-fraction. 

The M-fraction, described 1n Section 1.2, 1S of the form 

f (z) 
o 

= 
Po P1z P2 z 

l+qoz + l+qlz + 1+q2z + ••.• 

(3.40) 



and corresponds simultaneously to the two power serles 

expansions 

f (z) + alz + 
2 = a a2z + 

0 0 
.... 

for I z I small and 

b b l b2 f (z) 0 = +- +- + 
0 2 3 .... 

z z z 

. for Izl large. Adapting the general algorithm (3.6) we 

obtain an algorithm 

( n) 
a 

r 
= 

for ·converting the serles (3.41) to the M-fraction (3.40). 

80 

(3.41) 

( 3.42) 

(3.43) 

However, (3.43). summarises only half of the CS algorithm as we 

have not yet considered correspondence with the series (3.42). 

Now, by a similarity transformation, we can write the fraction 

(3.40) in the form 

1 1 

f (z) 
Po z Pl -; 

= 
0 1 1 q+-+ q + - + 

o z 1 z 

and replacing liz by z we obtain 

= 
p z 

o 

1 
P2 z 

1 q+-+ 2 z . . . . 
1 

Pn ;-

1 + ~+ ~ + 

u z 
"'n 

. . . . 

(3.44 ) 

+ •••• + ~+z + . . .. . 

Also, replacing liz by z In (3.42) we get 

= ( 3.46) 

, 



so we can agaln apply the general algorithm (3.6) to the 

fraction (3.45) to obtain 

= 

Now, the relations' (3.43) and (3.47) together lead to the 

comput at ional scheme 

a 
0 

Po = a qo = 
0 

, b , 
0 

( 1) { + } 0,l,2,3, •.•. a , = - a qoar r = r r+l 
, , 

b(l) = - { qob r +1 
+ b } r = 0,1,2,3, •••. 

r r 
, , 

a 
( n) 
0 1,2,3, .... Pn = n = (n-l) , , 

a 
,0 

b (n-l) 
0 1,2,3, •.•• 

~ = ,Pn b(n) 
n = , , 

0 
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(n) 
a 

r = 
(n-2) 

Pn-lar+l - a 
(n-l) (n-l) 0,1,2,3, .... - qn-lar r = 
r+l , 

, 

n = 2,3,4, ..•. , 

, 

I 

b(n-2) b (n-l) _ b (n-l) I 
= - r = O,l,2,3, ••• 'J Pn- 1 r+l qn-l r+l r 

, 

n = ,2,3,4, ••••• 

As a numerical example we consider Dawson's integral 

-Z2 JZ t 2 
u(z) = e e dt 

o 

and choose the function f (z) = 12/z u( Iz/2) 
o 

which has the 

( 3.48) 



two ser~es expans~ons 

f (z) 
o 

for Iz I small, and 

f (z) 
o 

82 

( 3.50) 

.... 

for Iz I large. Table 3.5, below, is the layout for computing 

the coefficients {p } and Table 3.6 is the layout for computing n . 

{~ }, although the two sets of calculations are interrelated. 

1 
a4 945 TABLE 3.5 

1 8 
a

3 
--

105 945 cs algorithm ( 3.48) for the M- fract ion: 

a 1 2 16 a (n) -array. -~ 

945' 2 15 35 r 

1 4 8 64 
a

1 
- - --

4725 3 15 105 

2 8 16 128 
a 1 -. - ." 

45 --
0 3 525 33075 

1 
2 4 6 8 - - - - -- -b"3 3 15 35 

Po PI P2 P3 P4 

b
4 

105 TABLE 3.6 

b
3 

15 - 120 CS al gori thm ( 3.48) for the M-fraction: 

b (n) -array. 
- 18 48 b

2 
3 r 

4 8 
64 

b
l 

1 -~ 

5 

8 16 128 
b l. - 2 -~ -

0 3 5 35 

1 1 " 1 ..L 

1 - -
3 5 7 9 

qo ql q2 q3 q4 



The resulting M-fraction ~s thus 

f (z) 
o = 

L 4 6 
1 :;'-z TSz TIz 

s 
61z 

83 

1 +Z - 1+ t z - 1+ k z - 1+ ~ z l+.L z 'i . . . . 

or, using a similarity transformation, 

1 2z 
= 4z 6z 8z f (z) 

o l+z - 3+z - 5+z - 7+z - 9+z - • • •• • 

This expansion may be verified by applying Lagrange's method to 

the Riccati equation 

2z f~ = - (1 + z) f + 1 
o 0 

Finally, we consider the T-fraction 

f(z) = 

• 

z 
+ •••• + l+d z + •••• 

n 

which; as stated in Sect ion 1.2, is not a particular case of 

the general corresponding fraction (3.2) so we must derive its 

CS algorithm by considering the special form of its corresponding 

sequence. We first set 

f (z) = f( z) - (1 + d z) 
o 0 

so that 

f (z) 
o 

= 
z z 

l+d
l 

z + 1+d
2

z + •••• 
z 

+ l+d z + •••• , 
n 

which is the fractional part of (3.55). We formally define f(z) 

by the series expansion 

r(z) = 



so that 

d = 
o 

r \ 

04 

The recurrence relations that g1ve r1se to the fraction (3.57) are 

f (z) 
n ( 3.60) 

for n = 1,2,3, •••• and where we set f_
1

(z) = 1. Each 

member of the corresponding sequence {f } may be expressed as 
n 

a series of the form 

f (z) 
n + •••• + = .... } , 

(3.61) 

where the first coefficient 1S always 1IDity, and we can equate 

coefficients of powers of z 1n (3.60) to obtain 

This leads 

d 
0 

a 
( 0) 

r 

a 
( 1) 
r 

d n 

( n) 
a 

r 

= 

= 

( n) 
a 

r 
= 

(n-2) 
ar +1 

(n-l) 
a r+l 

d a(n-l) 
n r 

to the computational scheme 

= 

= 

= 

a -1 1 , 

ar +1 , 

- ar +2 

(n-2) a
1 

-

(n-2) 
a r +1 

'\ = - a - 1 2 , 

r = 1,2,3, •• •• , 

- d1 ar +1 

(n-l) a1 
-

(n-l) 
a r+l 

, 

1 

r = 1,2,3, • ••• , 

, n = 2,3,4, •••• , 

d a(n-l) , r = 1,2,3, •••• , 
n r 

n = 2,3,4, ..... 

We note, in pa~icular, that a~o) 1- ar 1n this algorithm. 

-z 
For an example we return to the series (3.17) for e • The 

( 3.62) 
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working ~s shown in Table 3.7 below. 

a
5 

a4 

a
3 

a
2 

This· 

1 --120 

1 
24 

1 - -6 

1 
2 

- 1 

1 

example 

-Z 
e = 

a 
(0) 
r 

+ - (1) TABLE 3.7 

1 a r 
algorithm (3.63) -- .I, CS 120 

~ ( 2) 
1 17 

a 
for the T-fraction. r 

24 240 t a(3) 
1 7 637 r 

-6' - 24 - 1440 t 
1 11 205 238049 - -2 12 144 103680 

- 2 _1 _ 17 217 194129 
2 12 - 144 103680 

d '\ d
2 

d
3 

d4 0 

indicates the continued fraction expans~on 

1 - 2z + _z_ 
~ 7 '2..17 1'lct-i'Vi z 1- 2:z + 1- -' z + 1- jLUl-Z + 1- ";"";"";'-'---

, 12.. .i 1036&0 

Z Z Z 

+ •••• • 

(3.64) 
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3.4 Comparison with the Quotient-Difference Algorithm. 

The powerful quotient-difference algorithm, or QD algorithm, 

of Rutish~user (1954) has many applications in numerical 

mathematics which have been investigated by Henrici (1958) and 

others. However, the algorithm was originally designed as a 

means for converting the coefficients of a power series to those 

of the corresponding S-fraction. In this application the QD 

algorithm has two disadvantages when compared to the CS algorithm: 

(i) The QD algorithm breaks down in some cases 

when the required S-fraction exists. The 

CS algorithm breaks down if and only if 

the required S-fraction does not exist. 

(ii) The QD algorithm is more difficult to 

generalise to other corresponding fractions, 

whereas the CS algorithm works equally 

"Tell with all types of corresponding 

fraction. 

We will riow derive the QD algorithm to illustrate these 

disadvantages more clearly. We consider a function g (z) 
o 

formally defined by the power serles 

g (z) 
o 

::: 
3 + a z 

3 
+ •••• 

and we wish to find the corresponding S-fraction expanslon 



which we write ln the form 

a 
( 0) ( 0) ( 0) ( 0) 

g (z) 0 
Cll z e

l 
z q2 z e

2 
z 

== -0 1 1 1 1 1 .... 

q(o)z ( 0) e z r r . . . . 1 1 . . . . 
where the coefficients { (o)} 

qr and' {e (o)} are to be determined.. 
r 

Now, to form the CS algorithm we considered the corresponding 

sequence of functions' {f (z)} connected by a set of recurrence 
n 

relations. To form the QD algorithm we use the sequence of 

functions' {gn( z) } where \,;e formally define 

g (z) 
n == 

2 
a + a lZ + a 2z + •••• n n+ n+ 

so that we have the simple recurrence relations 

(3.66) 

g (z) == a + z g 1( z) n n+ 
(3.68) 

n 

for n == 0,1,2,3, •••.• Whereas for the CS algorithm we 

manipulated the power series expressions for the sequence 

, {fn(z)}, we suppose for the QD algorithm that S-fractions 

exist for each member of the' sequence' {g (z) } and manipulate 
, n 

the coefficients of these fractions. \ve write 

a q(n)z e(n)z q(n)z e(n)z 

g (z) 
n 1 1 2 2 

== 1 1 n 1 1 1 .... 
( n) ( n) 

q z e z 
r r 
1 I . . . . ...... .... (3.69) . 



Now, the odd part of the fraction (3.69) 1S 

g (z) 
n 

(n) (n) 2 
e2 q3 z 

(n) (n) 2 
e1 q2 z 

.... "1-{ q ( n) +e ( n) } z 
r r . . .. , 

(3.70) 

l~e. the J-fraction whose convergents are the odd numbered 

convergents of (3.69). Using (3.68) we obtain 

(Ii) (n) 2 
e1 q2 z 

(n) (n) 
- 1-{q +e }z-

2 2 

(n) (n) 2 
e 1 q z r- r 

. . . . 
( 3.71) 

Also, replacing n by (n+1) 1n (3.69) and taking the even part 

we get 

= 
an +1 

1
· (n+l) 
-q z 

1 
1-{ · (n+1) (n+1)} 

q2 +e1 z 

(n+l) (n+l) 2 
e2 q2 z 

-{ (n+l) (n+1)}, 
-1 q +e z-

3 2 
.... 

(n+1) (n+l) 2 
e 1 q 1 z r- r-

1 '{ (n+l) (n+l)} 
- - o· +e z -

'~ r-l 

Now, (3.71) and (3.72) both represent the unique J-fraction 

expansion of ~+l(z) so we can equate coefficients between the 

. . .. . 
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two expressions. By this means we obtain the QD algorithn 

( n) a n+l 
0,1,2,3, •••• ql = n = a , , 

n 

(n) (n+l) ( n) 
0,1,2,3, ••.• e

l = ql - ql ' n = , 

(n+l) 
(n) (n+l) e 

r-l 
2,3,4, •••• qr = qr-l ( n) , .r = , 

e 
r-l 

0,1,2,3,.0 •• n = , 

(3. 73) 

(n) (n+l) (n+l) . (n) 
2,3,4,.0.0 e = e + q - q r = r r-l r r , , 

n = 0,1,2,3, •• 0. 

The algorithm breaks down if, at any stage, we need to divide by 

a zero quantity. Clearly, this will occur in the algorithm (3.73) 

if any of the coefficients {a } or {e(n)} is zero. This means 
n r 

that if any of the S-fraction expansions of the sequence {gn (z) } 

does not exist then the QD algorithm will fail. 

As an example we consider a function g (z) having a power 
o 

serles expansion that begins 

g (z) 
o 

= (3.74) 

The modified CS algorithm below yields the S-fraction coefficients. 

1 
a4 8" TABLE 3.8 

1 3 a
3 4" 16 Modified CS algorithm (3.16) 

1 1 3 for the S-fraction. a
2 2 8 -4 

2 ..... 3 1 .) 

a
1 

- 4 - -
3 2 2 

2 1 2- - 2 1 - -- 4 3 12 

c1 
c

2 
c

3 
c

4 



Thus the S-fraction expanSlon exists and begins 

,., I '-i ... 
g (z) 1 -:;: z i2z zz 2z = - -0 1 - 1 1 + 1 1 + .... . 

However, we find that the series 

= , 1 1 2 
2 + 4 Z + aZ + ••.• 

has no S-fraction expans10n because its Hankel determinant H2 

1S zero. [See Section 1.2.J Consequently,. the QD algorithm 

fails for the series (3.74) when the CS algorithm works. 

Further, we note from (3.16) that the modified CS algorithm 
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for the S-fraction fails if and only if any of the coefficients 

{c } 1S zero, in which case the S-fraction does not exIDst. 
n 

However, considering the effect of rounding errors in the 
.. j 

series coefficients {a } on the continued fraction coefficients 
n 

{c }, we have no simple criterion for preferring one algorithm 
n 

over the other. The CS and QD algorithms involve roughly the 

same number of similar arithmetic operations which prompts us 

to conj ecture that the two algorithms are approximately equivalent 

1n respect of rounding error. 

In Sections 3.1 - 3.3 we have developed CS algorithms in 

quite a general way and we have illustrated the simplicity of 

their application. Algorithms of the quotient-difference type 

may also be constructed for other corresponding fractions although 

the same drawback is present as for the S-fraction. notably, 

McCabe and Murphy (1974) have constructed a QD-type algorithm 



, , 

for the M-fraction 

f (z) 
o = 

a 
o 

( 0) 
P2 z 

+ l+q~O)z 
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(0) 
Pn z 

+ •••• + l+~O)z + •••• , 

(3. 77) 

using two arrays of coefficients {p~n)}'and {q~n)} • The fraction 

(3.77) corresponds to the two series expansions 

f (z) = a + a
l 

z + 2 
0 0 

a
2

z + •••• 

for I zl small and 

f (z) 
b o b 1 b

2 = -+-+~+ 0 2 3 . . . . 
z z z 

for Iz I large. The QD algorithrrJ. for the M-fraction 1.S 

( 0) 
a 

0 
qo = 

b 
, 

0 

( n) 
Po = 

(-n) 
Po ' 

. (n) a n 
qo = a n-1 

0 = n = , 

(-n) 
qo , 

0,1,2,3, .... , 

= 
b n-l 

b 
n 

, n = 1,2,3, •••• , 

( n) 
Pr = (n+l) 

Pr - l 
(n+l) 

+ qr-l 
( n) 

qr-l ' r = 1,2, 3 , . . •• , 

= 
(n-1) 

qr-1 

This algorithm fails if 

{p(n)} is zero so that, 
r 

r = 1,2,3,.... , 

any of the coefficients {a }, {b } or 
r r 

for the Mrfraction at least, ~he problem 

( 3.80) 

is magnified. McCabe and Murphy (1974) have devised an ingenious 

method for overcoming the difficulty of zero coefficients but at 



the expense of much additional computation and a resulting 

loss of accuracy. We now shovT that the CS algori thm ~or the 

M-fraction bre.aks down only if the M-fraction does not exist. 

It is clear from (3.48) that the algorithm fails only if o~e 

of the coefficients {a(n)} or {b(n)} 1S zero. From (3.48) 
o 0 
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with the starting values and so that 

•••• 
= • 

~~-l .... 

Clearly, {a(n)} and {b(n)} are non-zero only if all the 
00· 

coefficients {p } are non-zero, which is a necessary condition 
n 

for the existence of the Mrfraction. 

For completeness, we now show that the general CS algorithm 

(3.6) breaks down only if the fraction 

f (z) 
o + = 

does not exist •. We write 

~ (z) :::: 

+ •••• + ~ (z) + •••• 

+ •••• + 
v(n)-l 

~,v(n)-lz 

(3.84) 



• 
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and put r = -v(n),-v(n)+l, •••• -2,-1 1n (3.6) to obtain 

a (n-l) 
0 

Pn = 
(n-2) , 

a 
0 

1 { (n-2) 
qnl = 

(n-l) Pnal 
a 

0 

1 { (n-2) 
~2 

::::; 

(n-l) Pna2 
a 

0 

. . . . . . . . . . . . 

~,v(n)-l 
::::; 

so the algorithm fails if one of the coefficients {a(n)} 1S zero. 
o 

We have, for I z I . small , 

f (z) 
n 

= 

. and comparing (3.86) with the result (1.25) we get 

so that 
(n) 

a 
o 

(n) 
a 

o = 

LS zero only if one of the coefficients 

1n which case the fraction (3.83) does not exist. 

(3.86 ) 

{p } 1S zero, 
n 

Essen~ia1ly, the difference between the two types of algorithm 

1S that, in the CS algorithm, we manipulate a sequence of power 

series whereas, 1n the QD algorithm, we mani~ulate a sequence of 

continued fractions. In the next chapter we shall devise a more 

general structure for continued fractions to facilitate the 



representation of functions of two variables. In this context 

the QD approach becomes excessively complicated whereas, to 

form a CS algorithm, we need only consider a sequence of 

double series which may be manipulated as easily as single 

ser1es. Without this corresponding sequence approach the 

concepts in Chapter 4. would be largely impractical. 



PART II 

APPLICATIONS IN TWO AND MORE VARIABLES 
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CHAPTER 4. 

A CORRESPONDING FRACTION IN TWO VARIABLES. 

Chisholm (1973) has defined a class of rational approximants 

In two variables. Such approximants correspond to double power 

serles and are chosen so that they have five properties which are 

natural generalisations of properties of Pade approximants. The 

possible applications of this technique in theoretical physics 

and numerical analysis may be very far-reaching and it would be 

convenient if rational approximants in two variables could be 

directly related to continued fraction theory, as is the case In 

one variable. Although there are many feasible ways of defining 

rational approximants in two variables, it appears there is no 

clear link with continued fractions of simple form. However) In 

this chapter we permit a more general structure for continued 

fractions and define a class of rational approximants which, 

although more complicated than Chisholm approximants, provide a 

means for analytic continuation of double power serles. Further, 

these approximants have certain advantages over Chisholm 

approximants in suitable problems and can be related to well­

studied aspects of continued fraction theory. 



4.1 The Structure of the S2-Fraction. 

We shall exam1ne the possibility of constructing a 

continued fraction which corresponds, in some sense, to the 

formal double power series 

f (x,y) 
o = 

00 00 

L: L: 

i=O j=O 

i j a .. x y 
1J 
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( 4.1) 

where x and y are independent complex variables. In Section 1.2 

we showed that the partial numerator of a corresponding fraction 

must be a monomial so the usual structure of a continued fraction 

is too restrictive to cope with functions of two variables. One 

approach to the problem is to regard (4.1) as a single series in 

the variable x and to form a corresponding fraction of the type 

f (x,y) 
o 

= 
B x 
n 

+ •••• + 1 + •••• 
(4.2) 

where each coefficient S 1S an S-fraction 1n the variable y. 
n 

Similarly, we could form a fraction 

f (x,y) 
o 

= 
+ + •••• + + •••• 

where each y. is an S-fraction 1n x. However, even if the 
n 

(4.3) 

fractions (4.2) and (4.3) both converged to the same function, 

their convergents would be unsatisfactory approximations because 

they are not symmetrical in powers of x and y. Clearly, it is 

desirable that the function 1S constructed symmetrically. 

Accordingly, we shall consider a corresponding fraction in the 

variable ~, having partial denominators that contain S-fractions 



J 

97 

In x and In y. This fraction may be conveniently written In the form 

coo cllxy c22xy 

l+go(X)+ho(y) + 1+gl(x)+h1(y) + 1+g2(x)+h
2

(Y) + ..•• 

cnnxY 
(4.4) •... + l+g (x)+h (y) + •... 

n n 

where 

~(x) = 
c x n+l,n 

1 + 

c x n+2,n 
1 + .... + 

c x n+r,n 
1 +. . .• , 

and 

h (y) 
n 

= 
cn ,n+2Y 

1 + ••.• + 
cn,n+rY 

1 +. . .• . (4.6) 

We' shall call (4.4) the main-fraction and we call (4.5) and (4.6) the 

sub-fractions of (4.4). Because the sub-fractions are S-fractions we 

shall refer to the main-fraction as an S2-fraction, i.e. a Stieltjes­

type fraction in two variables. The coefficients of the S2-fraction 

are labelled so that c .. corresponds to the coefficient a .. in the 
lJ lJ 

series (4.1). In other words, the coefficients of the sub-fraction 

00 

~(x) "match up" to the terms (xy)n Ea. xi of the double serles 
i=l n+l,n 

and the (n+l)th partial quotient "matches up" to the terms 

00 00 . 
(, )n ( '"' l ~ J) xy a + .... a . X· + L. a .y . We also note that if we set 

nn i=l n+l,n j=l n,n+J 

a.. = 0 for all i =I j 
:1J 

the "single" varia.ble xy. 

then (4.4) reduces to an S-fraction in 

So far we have merely explained our choice of the structure (4.4) 

'ana we must now prove its existence. We discuss existence in the 

general sense without reference to Hankel determinants, which are very 

complicated in the case of the S2-fraction. However, in Section 4.2 

we will show that existence in particular cases may be established by 

J 
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means of a CS algorithm) as we have shown for corresponding 

fractions in one variable. 

A necessary condition for the existence of an expanSlon (4.4) 

of the function f (x,y), formally defined by (4.1), is the existence 
o 

of ~ sequence {T (x,y)} of functions, each having an expansion of 
n 

the form 

T (x,y) 
n 

00 00 

(n) i j 
p .. x Y 

lJ 
, 

and satisfying the system of formal identities 

T (x,y) = () () 1 () , (4.8) 
n l+~ x +hn y +cn+l,n+lxyTn+l x,y 

for n = 0,1,2,3, •... and where f (x,y) = c T (x,y) • We now o 00 0 

assume that T (x,y), g (x) and h (y) exist and we express g (x) 
n -n n n 

and h (y) in series form, writing 
n 

00 

(n) i 
L: u. x = 

i=l l 

h (y) 
n 

= 
00 

(n) j 
L: v. Y 

j=l J 

, 

, 
1 

I , 
, 
J 

i..J 

for . . .. . We also note that T (x,y) possesses a 
n 

reciprocal series expanslon 

00 00 

d(n) i j 1 L: L: (4.10) 
T (x,y) 

= .. x Y 
i=o J=O lJ 

n 

Rearranging (4.8) we get 

Tn+l(x,y) 
1 { 1 - 1 - ~(x)-hn(Y) = T (x,y) cn+l,n+1XY n 

(4.11) 

} , 



or, us ing (4.9) and (4.10), 

T l(x,y) n+ 

Now, choosing 

= 1 

= 

, d~n) 
1.0 = 

00 co 
.... .... d( n) i j 
t.. t.. •• X Y - 1 

1.=0 J=O 1.J 

( n) u. 1. 

co 
.... (n) i 
t.. u. X . 1. 1.=0 . 

, d . 
oJ 

:::: 

j=o 

( n) v. 
J 
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( 4.13) 

for 1. = 1,2,3, .... and J = 1,2,3, . ... the identity (4.12) 

can be simplified t·o 

T l(x,y) n+ = 1 
c n+l,n+l 

co co 
(n) 1. J 

d. 1 . l x Y 1. + ,J + 

so that T l(x,y) can be expressed 1.n the form (4.1). n+ 

(4.14) 

We now let A (x,y)/B (x,y) denote the nth convergent of n n 

the S2-fraction (4.4) and we write 

coo c11 xy c xy 
nn 

f (x ,y) 
o 

= 
l+go+ho + 1+g1+h1 + •••• + l+g +h +c 1 lxyT l(x,y) • -n n n+ ,n+ n+ 

( 4.15) 

Using the result (1.23) we have 

.A (-1) nc
oo 

c
ll 

c
22 . . . . cnn(xy)n n (4.16) f -- = B (B +c xyT B) , 

0 B 
n n n+1 n+1,n+l n+1 n 

so that 

A 
f 

n O{(xy)n} ( 4.11) - - = 
0 B n 

n denotes error terms of order x1.yJ for and where O{ (xy) } 1. > n J > n . 

This is the correspondence property of the fraction (4.4). 
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Having established existence and correspondence, it is also 

useful to show that the S2-fraction expan~ion is unique for a 

glven function f (x,y). We consider two S2-fractions 
0 

c c xy 00 cllxy 
f nn 

( 4.18) = 
0 l+g +h + l+gl +hl 

+ + l+g +h + o 0 .... 
n n . . . . 

and 

c~ c~ xy c1lxy 
f~ 00 nn 

(4.19 ) = 
0 l+g~+h ~ + l+g~+h~ + + l+g~+h'" + •••• . . . . o 0 1 1 n n 

such that f (x,y) = f"'(x,y) . By setting y = 0 In (4.18) and 0 0 

(4.19) we see that c = c ... and go .: g'" • Similarly, h = h'" 
00 00 0 0 0 

and so ~ = A'" and Bl = B'" , where A"'jB'" lS the nth convergent 1 1 n n 

o'f (4.19). We also have A .: A'" = 0 and B = B~ = 1 and, for 
0 0 0 0 

, proof by induction, we need to show that if 

c~ gr = ... h = h'" Ar+l = A;+l c = gr , , , , rr rr r r ! 

for 

We 

r = 0,1,2, • • • • n-l , then 

c = c ... g = g'" h = h'" 
nn nn , n n , n n 

consider the difference between the (n+l)th 

A n+l, 

Bn+l 

A'" A B'" - A'" B n+l n+l n+l n+l n+l 
= B'" B B'" 

n+l n+l n+l 

• 

convergents 

• 

B = r+1 

(4.20) 

(4.21) 

(4.22) 

Using the recurrence relations (1.8) and the hypothesis (4.20) 

we get 

A B' A'" B n+l n+l - n+l n+1 = {(l+g +h )c' - (l+g'+h')c } 
""1l n nn n n nn 

.xy(A B 1 - A ~B) , n n- n- .... n (4.23) 

B'" r+l 
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or, using the determinant formula (1.11), 

A B'" - A'" B = {(l h)'" n+l n+l n+l n+l +gn+ n cnn 

(4.24) 

But, from (4.17) and (4.22), we have 

A B'" - A'" B = O{(xy)n+l} 
n+l n+l n+l n+l 

so it follows from (4.24) that 

(l+g +h )c'" - (l+g"'+h"')c 
n n nn n n nn o • 

This implies that result (4.21) holds and that f (x,y) and 
o 

f"'(x,y) both have the same coefficients. Hence, S2-fraction o . 
. . 

expans10ns are un1que. 

( 4.25) 

(4.26) 

In the above proofs we have used the convergents of the 

fraction (4.4) in the normal way. However, for practical 

purposes the use of convergents 1S not very meaningful as each 

partial denominator of (4.4) is itself an infinite expresslon. 

Therefore we must truncate each sub-fraction after an appropriate 

number of terms ~o obtain a sequence of finite approximations. 

We adopt the notation O(x,y)n to denote error terms of order 

r n-r x y for r = 0,1,2, •••• n 

of S2-approximants by 

f (x,y) - K (x,y) 
o n 

and define the sequence {K (x,y)} 
n 

• (4.27) 
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Using this definition we find 

= 

= 

c 
00 

c 

l+clox 
00 

1+c
20

x 

= 

+ c
olY + 

~ 

1+c
02Y 

C 
00 

cllxy 

1 , 

= coo cll x.y 

= 

l+cloX + colY + 1+c21x+c12y 

1+c
20

x 1+c
o2

Y 

1+c
30

x l+c Y 
03 

c 
00 

l+cloX + colY 

1+c
2o

x 1+c
02

Y 

1+c
30

x 1+c
o3Y 

1+c
40

x 1+c
04Y 

• • • • • • 

• • • • • • 

\ 
\ , \ 
I 

, 

+ 
, 

) 
Now, if we let g(n)(x) and h(n)(y) denote the nth convergents 

r r 

of g (x) and h (y), respectively, then we can summarlse (4.28) by 
r r 

K
2n

_
1

(x,y) 
coo cllxy 

= 
1 

(2n-2) h(2n-2) 1 (2n-4) h(2n-4) 
+go + 0 + +gl + 1 + •••• 

) 
I 

c xy n-l,n-l 
•••• + 1 

, 

K2n(x,y) 
+ •••• 

c ),.'Y 
n-l n-l , 

• • •• + 

(4.28) 

(4.29 ) 
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for n = 1,2,3, •.••. Unfortunately, the recurrence relations 

(1.8) cannot easily be generalised for use with the S0-approximants 
c.... 

in the form (4.29) and each successive approximant must be 

completely recalculated. We observe from our definition (4.27) 

that the S2-approximant Kn(x,y) is computed from the tri~~gular 

array of coefficients 

c col c 02 • • • c 
o n-l 00 , 

clo cll ... • c 1 n-2 , 
• (4.30) • c20 • 

• 
• 

• 
• c n-2 1 , 
• 

c n-l 0 , 

so we can compute the value of the nth approximant by a suitable 

traversal of the tree-structure of the S2-fr&ction, beginning at 

the bottom of each sub-fraction. There c.:.~e many possible ways 

of calculating the approximants but the algorithm (4.31) below. 

reqmres a In1.n~mum of storage space, the value of the approximant 

K
2n

-:-
1 

or K
2n 

being held by the variable Fl on exit from the 

algorithm. 
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~:= n-l , 

k:= 1 , for K2 n-l , 
:= 2 . for K

2n 
, , 

Fl := 0 , 

F2 := 0 · for K2 . , 
n-l , 

:= c .. lY . for K
2n ~,~+ 

, , 

F3:= 0 · for K2n- l · , 
:= c. 1 .x , for K

2n 1.+ ,1. 
, 

Fl := c .. xy/(l+F +F +F) , 
1.1. 1 2 3 

j:= i+k , 

(4.31) 

(n-l) times 

k times 

~:= i-I , 

F
2

:= c .. y , 
~J 

c .. x , 
J1. 

j:= j-l , 

F2:= CijY/(1+F2) , 

F3:= CjiX/(1+F
3

) , 

k: = k+2 , I 

J 
In a computer implementation of this algorithm it ~s necessary 

to test for division by zero as some approximants may not exist. 

Clearly, tne notation (4.28) is unwieldy but this presents 

no problems if we consider the S2-fraction as an infinite triangular 

array of coefficients, to be interpreted in the manner prescribed 

above. 
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We shall now consider the degree of the rational function 

representation of K (x~y). We denote by [MjNJ(x,y) a rational 
n 

function of the form 

[M}NJCx,y} = 

M M 
l: l: 

i=o . 10 =0 
I 

N N 
l: l: 

p=o q=o 

o • 

l J 
". oX Y l J . 

(4.32) 

and we assume that "00,11
00

,A.MM and l1NN are all non-zero. Now, 

if [MjNJ(.x~y) lS some kind of approximant to the function f (x,y), 
o 

defined by the series (4.l), then we may write 

f (x,y) - [M/NJ(x,y) = O(x,y)r 
o 

where r depends on M and N. For example, the [MjNJ Chisholm 

approximant satisfies (4.33) with 

r = M+N+.1 • 

We also consider a rational function [MjNJ (x,y) such that 
o 

[MjNJ
o 

= CMjNJ; with ".MM = 0 if M > 0 , 

and l1NN = 0 if N > 0 • 

Using this notation we find, fram (4.28), that 

K 
4n-3 

::= 

K 4n-l 
= 

K2n 
= 

for n = 1,2,3, •••• • 

[2n(n-l)j2n(n-l) J , 
2 2 [2n -l/2n J , 

[~n(n+l)-lj~nCn+l) Jo , 

Now, if [MjNJ represents K then 
r 

(4.33) 

(4.34) 

(4.35) 

(4.36) 
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we have 

r = 2lM+N+:). 1 ( 4.37) 

:for r odd, and 

r = 2vM+N+5 
"4 

1 ( 4. 38) 

:for r even. Comparing (4.37) and (4.38) with the analogous 

relat ion (4.34) we see that Chisholm approximants have greater' 

economy in the sense that they match-Up more ter~~ of the power 

series than do S2 -approximants o:f similar degree. However, 

S2-approximants are intended :for use in continued :fraction :form 

and we shall see in the next section that their coef:ficients 

are more easily computed than those o:f the Chishblm approximants. 

We will :further compare the two methods o:f approximation in 

Section 4~ 4 • 

To complete this section we now show how S2-fraction 

expansions may be obtained, with coe:fficients known in closed 

:form, :for a certa.in class o:f :functions. These functions of two 

varici'-~les are somewhat trivial, however, as each is the product 

o:f two :functions o:f a single variable. Nevertheless, the :formal 

expansions obtained can be used to measure the use:fulness of 

S2 -approximants and to test any analytic results that may be 

developed. We consider two :functions X(x) and Y(y) having the 

S-:fraction expanslons 

A . Alx . A2X A x 
X(x) 0 n = -l + 1 + 1 + ... ,. + 1 + • • • • , 

(4.39 ) 

y(y) 
J.l o }.llY J.l 2y llnY 

I = -
'j l + 1 + l + • • • • + 1 + •••• 



where the coefficients {A } and {~ } are known i~ closed form, 
n n 

and we will obtain the S2-fraction expansion of the function 

f (x,y) where 
o 

f (x,y) = X(x)y(y) 
o • (4.40) 

We let the sequence of functions {T (x,y)} be defined by (4.8) 
n 

so that, in particular, c = A 11 and 
00 0 0 

T (x ,y) 
o 

Setting y = 0 we obtain 

g (x) 
o 

and, similarly, 

h (y) 
o 

A o 
= X(x) - 1 

110 
= y(y) - 1 

In S-fraction form (4.42) and (4.43) may be written 

g (x) 
Alx A2X A3x 

= -
0 1 + 1 + 1 + . . . . , 

h (y) 
111Y ~2Y ~:1 

J = -
0 1 + 1 + 1 + . . . . • 

Now, rearrang~ng (4.41) and using 

f (x,y) = A ~ T (x,y) 
0 000 

together with (4.40), (4.42) and (4.43) we find 

• 

From (4.46) it follows that cll = Al111 and we now show, 

(4.41) 

(4.42) 

(4.43) 

(4.44) 

( 4.45) 

( 4.46) 
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l.n general, that 

c xy T (x,y) nn n (4.Vn 

where 

A x A lX A 2x 
gn-l(x) 

n n+ n+ = 1 + 1 + 1 + .... , 
( 4.48) 

hn-l(y) 
llnY Iln+1Y lln+2Y 

= 1 + 1 + 1 + .... , 

so that cnn = Anlln. We assume that (4.41) and (4.48) hold and 

substitute for T (x,y) from (4.8) to obtain 
n 

= l+~ (x)+h (y)+c +1 lxyT l(x,y) • 
~ n n ,n+n+ 

Differentiating with respect to y and setting y = 0 we get 

and, similarly, 

I: l( y) n-

A x 
n 

l+g (x) 
n 

(4.49 ) 

(4.50) 

( 4.51) 

Using (4.8), (4.50) and (4.51) it follows that results (4.41) and 

(4.48) hold with n replaced by (n+l). Hence, by induction, the 

results hold for n = 1,2,3, •.••• Consequently, the S2-fraction 

expansion of the function f (x,y), defined by (4.40), may 
o 



be written 

-:: (x ,y) = 
0 

A 
0

11
0 

l+A,x 
..L 

1+A
2

x 

1+ . 

1+ 

+ 111Y 

1+112Y 

1+ 

+ 11 Y 3 

1+ 

. 

A1111xy 

+ 1+1. x 
2 

1+A3x 

1+ 

• 

+ •••• + 

• 

, 112Y + 

1 +',l:'y 
_J 

. 1+ • 

1+).. _x + l1n+..L'Y n+l. ----
1+1. 2x 1+" Y n+ i-':c.+2 

1+ l + • 

+ •••. • 

( 4 ~ 52) 

VIe now consider two examples: 

1 xY 

l+x 
~-

+ ..I<.Y __ + 1-.... ~_x __ 

l-~x 

1+ ~~x 

1- 7- x 

1+ • 

1+ -:-:y 
/ 

1- '6y 

I 
1+:: x 

J 

1- 0'- x 

1+ • 

1+ • 

i 

+ 1+ eX + -;y + 1- ..!, X 

I 
1- ::-x 

1+ • 

• 

I 

1- -:y , 1+ • 

+ 

• 

I 
1+ [y 

I 

+ 

1- Z- Y 

1+ • 

I 
- Zy + •••• 

1+ • 

( 4.53) 
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and 

1 1 
= 

I ( 1 +x) ( 1 +y ) . '. l+~x + ~y + l+ax + 
. 
¢y + 

l+tx l+ay l+~a_x __ 1+1V 
4" 

1 +a x 1 +..:::r.al/-Y_ 1 +a x 1 +.;;,t YII--_ 

l+ax l+ay 1+ • 1+ • 

1+ 1+ • 
• 

• • 
• 

I i 

16 xy IG xy 

+ l+~x + h~ + l+ax + ~Y + . . . . • 

l+ax l+ay 1+ • 1+ . 
1+ • 1+ • 

• 
• • 

( 4. 54) 

In Tables 4.1 and 4.2, below, we compare the convergence of the 

sequence {K (x,y)} with that of {X (x)Y (y)}, where X (x) and n n n n 

Y (y) 
n 

y(y) • 

are the nth convergents of the S-fractions for X(x) and 

We note that K (x ,y) matches ~n( n+l) terms of the 
n 

double series for f (x,y), whereas the product X (x)Y (y) o n n 
2 matches n terms. 



-(x+y) 
e 

x == 0.1 

x == 0.1 

, y== 0.1 

, y == 0.2 

n 

3 

4 

5 

6 

7 

8 

9 

3 

4 

5 

6 

7 

8 

9 

10 

TABLE 4.1 

K (x, y) 
n 

0.8193 

0.81870 

0.8187312 

0.818730772 

0.81873075317 

0.81 873075308 

o • 81 873075308 

0.7421 

0.74067 

0.740820 

0.74081840 

0.7408182214 

0.74081822058 

0.74081822068 

0.74081822068 

111 

x (x) Y (y) 
n n 

0.81859 

0.818729 

0.818730776 

0.81873075330 

0.81873075308 

0.81873075308 

0.81873075308 

0.74026 

0.740802 

0.74081856 

0.7408182272 

0.74081822059 

0.74081822068 

0.74081822068 

0.74081822068 

In the example in Table 4.2 it may be seen that the sequence 

. {K (x,y)} actually converges s.lightly faster than {X (x)Y (y)} 'for 
n . n n 

the chosen values of x and y. However, the reverse is true for the 

example in Table 4. J • 



1 / I( 1 +x) ( 1 -ty ) n 

x = 0.1 , Y = 0.5 3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

x = 1.0 , Y = 2.0 4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

1 5 

16 

TABLE 4.2 

K (x,y) 
n 

0.7791 

0.778405 

0.778509 

0.7784979 

0.77849904 

0.778498934 

0.7784989452 

0.77849894406 

0.77849894417 

0.77849894416 

0.77849894416 

0.4078 

0.4094 

0.408200 

0.408215 

0.4082452 

0.4082513 

0.40824804 

0.408248258 

0.408248274 

0.408248300 

o. 408248290 

0.408248291 

0.408248290 

-~----- ---- ----~--- -

x (x)y (y) 
n n 

0.7801 

0.77833 

0.77852 

0.7784973 

0.7784991 

0.778498927 

0 • .7784989459 

0.77849894399 

0.77849894418 

0.77849894416 

0.77849894416 

0.4034 

0.4095 

0.4079 

0.40833 

0.408226 

0.408254 

0.4082467 

0.40824871 

0.40824818 

0.408248321 

0.408248282 

0.408248293 

0.408248290 
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4.2 The Corresponding Sequence Algorithm for the S2-Fraction. 

In order to obtain S2-fraction expans~ons from double 

power series we now develop a CS algorithm in a similar way 

to those described in Chapter 3. 

The recurrence relations that give r~se to the S2-fraction 

(4.4) are 

:fn+l (x,y) = cxy:f l(x,y) - f (x,y) {l+g (X)+hn(y)} nn n- n In 

for n = 0,1,2,3, •••• where {f (x,y)} ~s the corresponding 
n 

sequence and we set f_1(X,y) = l/xy. Now, .each member of the 

corresponding sequence has a double series expansion of the form 

f (x,y) 
n 

= (xy)n 

and the sub-fractions correspond to single ser~es expans~ons 

of the form 

~ (x) = x 

00 

" (n) k 
L. '\ x 

k=o 

'\ . 
) 

h (y) 
n = y 

00 

" (n) k 
L. v

k 
Y 

k=o 
• 

Using the ser~es expans~ons (4.56) and (4.57) we equate 

( 4.56) 

(4.57) 



· . 
coefficients of xlyJ In (4.55) to obtain the CS algorithn 

c = 
00 

(n) 
u. 

l 

(n) 
v. 

J 

(n+l) a .. 
lJ 

:;: 

= 

( 0) 
a 

00 

1 
(n) 

a 
00 

1 
(n) 

a 
00 

c = nn 

{ (n-l) c a. nn l+l,o 

(n) 
a 

00 

(n-l) 
a 

00 

(n) 
a. l+l,o 

n :;: 1,2,3, • .- •• , 

l - 0,1,2,3, .••• , n = 0,1,2,3, •••• , 

{ 
(n-l) ca. 

nn o,J+l 
(n) 

a . 1 o,J+ 
j-l (n) (n)} 

l: a . kVk o ,J-k=o 

J = 0,1,2,3, •••• , n = 0,1,2,3, •••• , 

l (n-l) (n) (n) (n) = c a. . a. . L: a. k' ~ nn l+l,J+l l+l,J+l k=o l- ,J+l 

J (n) (n) 
l: a. 1 . k vk k=o l+ ,J-

l = 0,1,2,3, •••• , j = 0,1,2,3, •••• , 

n = 0,1,2,3, •••• , 
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, 

, 

, 

where we set a~~l) = ° for all i and j. The coefficients {c .. } 
lJ lJ 

for i::f J are computed by using the CS algorithm (3.10) for 

the one-variable S-fraction to convert the series (4.57) to the 

sub-fractions of the S2-fraction. 

Clearly, the formation of a QD algorithm in this case 

presents enormous problems as it would be necessary to find 

relationships between coefficients of a whole sequence of 

S2-fractions. No attempt is made here to establish such an 

algorithm as the CS algorithm (4.58) lS adequate both as a 

means for converting a double serles to an S~ -fraction and 
c: 

( 4.58) 



for est ablishing the existen ~e of the fraction. ~[ ... e a=..gori tr.~ 

(4.58) breaks down only if ('tie of the coefficients {a (n)} 1S 
00 

zero, in which case one of Ute coefficients {c } is zero and 
nn 

the S2-fraction does not exist. Also, the S2-fraction does not 

exist if any of its sub-frartions does not exist, but this may 

be determined by the CS algorithm (3.10) for the S-fraction. 

The computation of the coefficients of the Chisholm 

approximants by the "prong" method of Jones and Makinson (1973) 

requires the solution of sets of simultaneous linear equations. 

This takes more computing time and requ1res a much larger 

program than the algorithm ()-l. 58). However, this disadvantage 

of Chisholm approximants is compensated by the comparative 

simplicity of their evaluation, once the coefficients have been 

computed. 

An example of the algorithm (4.58) 1S glven 1n Table 4.3, 

below, in which the double series expanS10n of the function 

l/Il+x+y 1S converted to an S -fraction. This function is 
2 

symmetric x and y so that (n) 
= 

( n) 
and c. = c for 1n u. v. 

1 1 10 01 

all values of i and n. 

115 
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TABLE 4.3 

CS algorithm (4.58) for the S2-fraction. 

1 1 3 5 35 63 l 
2 8" -1"6 128 - 256 

1 3 1 5 .TI.. - . -:-.) - - "4 -16" - 256 2 32 

3 15 105 _ 315 

{a ~ ~) } 
8 -16" 64 128 

= 
~J 

5 35 315 -16 32 - 128 

J.L _ 315 
128 256 

I 63 
I L- 256 
I 

-' 

c = 1 
00 

·{u~o)} [ 1. 1 1 5 7 = -a 16 - 128 2"56 J 
~ 2 

. {c. } [ 1. 1 1 1 1 J , usir.g algorithm = "4 4" "4 "4 ~o 2 

(3.10). 
1 

1 5 11 93 I 

-4" 16 --
32 256 

5 39 117 

. {a~:)} 
16 - 6L~ 128 

= 
~J 1 1 117 --

32 128 

93 
25b I 

j 
--' 

1 
c 11 = -4 

{u~1)} [ 3 1 1 
= 4" -Tb 32 J 

~ 

[ 1 1 5 , us in g (3. 1 0 ) . {ci 1} = - 1"2 J 4 12 



= 3 
1b 

3 
-6"4 

7 
L 128 

TABLE 4.3 (continued) 

, u(2 ) = 1 
12 o 

This algorithm indicates the expanslon 

1 
= 

11+x-!-y 

1 

1+~x + 1 
2Y + 

I 
1 +T2.x 

s 
J +rrx 

1 +ax 

J+ax 

j+ax 

1+~y 

1+ay 

J+ay 1 + . 

1 +a~ J +-,-~y~_ 

1+ • 1+ • 

3 
jG-XY 

I ( 

ay + , 
1+TLy 

s 
1+TIY 

1 + . 

+l-r~ -Tiy . . .. . 
1+ • 1+ • 
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4.3 Convergence of S2-Fractions. 

In this section we will show that the convergence of 

S2-fraction expansions may be established, in many cases, by 

the application of one of the existing convergence theorems 

for continued fractions. We first consider a fraction 

f 
o 

= 
a 

n 
+ b + 

n 

where {a } and {b } may be finite expreSSlons ln one or more n n 

variables. We denote the nth convergent of (4.59) by A /B 
n n 

and we say that f converges if lim A /B exists. If we 
o n n n-700 

permit each partial denominator b to be an infinite expreSSlon 
n 

then we must be more precise, and we define the convergence 

of an S 2 -fraction (4.4) as follows: 

Definition 4.1: If at all points (x,y) in some reglon R 

all the sub-tractions of an S2-fraction converge to 

finite limits, and the main-fraction [ with sub-fractions 

replaced by their limits ] converges to a finite limit, 

then the S -fraction converges everywhere in R. The 
2 

limit of the main-fraction is the value of the 

S2-fraction at each point (x,y) E R . 

This definition provides a 11asis for studying the convergence 

of S2-tractions ln relation to well-known theorems. However, 

as we explained ln Section 4.1 we are interested in ~:.e sequence 

of S -approximants (4.29) fnr all practical applications, and 
2 

not the sequence of convergents. Therefore, we ~ust first prove 
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that, for a convergent S2-frl3.ction, the seque:-.: . .>::: of S2-approximants 

converges to the value of the S2-fraction. 

Lemma 4.1: In terms of the transformations (1.4), the value 

of a convergent continued fracti~on of the form (4.59) may 

Proof: 

be expressed as 

fo = lim tlt2 .... tn(w) , 
n~ 

and ~s independent of the value of w. 

It may be shown by induction that 

A lW + A n- n .-
B lW + B n- n 

fo n - l 2 3 and, by definition, r -", .... 

f 
o 

= lim 
n~ 

A 
n 

B 
n 

Clearly, from (4.6l) we have 

(4.60) 

(4.61) 

(4.62) 

f o 
= lim tlt2 .... tn(O) 
n~ 

= lim t It 2 .... t n ( 00 ) • 
(4.63) 

n~ 

If w ~s finite and non-zero we write 

A = B (f + € ) 
n non 

so that 

= o . 

Substi tuting for An ~n (4.61) and rearranging we get 

= 
€n-lW + €n(Bn/Bn - l ) 

fo + w + (B
n

/B
n

-
1

) 

. (4.64) 

(4.66) 



and as n ~ ()Q we obtain the result (4.60) even if B /B 1S 
n n-l 

unbounded. 

Consequently, if we can prove a result for the first n terms 

of a convergent continued fraction then the result will still 

hold as n ~ (x). 

Theorem 4.1: If an 82-fraction converges to a finite limit 

at each point (x,y) of a set E, then the sequence of its 

82-approximants converges to the same limit at each point 

of E. 

Proof: We let (4.59) represent the main-fraction of an 

82 -fraction f o' We consider the first n terms of the mth 

82 -approximant an d write 

120 

a
l 

a
2 

b l +nw. + b 2 +nm2 + •••• 

a 
n ( 4.67) 

where n represents the truncation error in the rth partial 
mr 

denominator. If all the sub-fractions converge then 

lim 
m~ 

= o 

for r = 1,2, .•.. n and we have 

lim ,j., 'l'mn 

a 
n 

+b 
n 

To complete the proof we let n ~ 00 and apply Lemma 4.1 . 

The convergence problem for continued fractions in one 

variable is given a thorough treatment in Hall (1948), aLd 

(4.68) 
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we can of'ten use existing COllvergence criteria to esta::>lisG the 

convergence of the sub-frac-r,ions of an S2-fraction expansion. 

We must now consider to what extent we can apply existing theorems 

to the convergence of the main-fraction. 

We use a similarity transformation on the fraction (4.4) to 

obtain 

f (x ,y) 
o = 

c 
00 

(l+g +h ) 
o 0 

1 

(l+g +h )(1+g +h ) 
o 0 1 1 

+ 1 + 

c22x.y c xy nn 
'"7"( -1 +-g-1-+-h-lO:-) C 1-+-g-2-+-h-2"-) (1+gn_1+hn_l)(1+~+hn) 

+ 1 + •••• + 1 

(4.70) 

when none of the partial denominators of (4.4) is zero. We suppose 

there is a set E1 of points (x,y) for which there exists N such 

that l+~_l(x)+hn_l(Y) 1 0 for all n > N. Now, for convergence 

purposes, we consider the function 

y (x ,y) 
n 

for n > N and (x ,!) e: E1 • 

cnnxy 
(4.71) 

One of the most useful theorems 1S one ~ue to Van Vleck (1904) 

which we now quote. 

Theorem 4.2: Let k
l

,k
2

,k
3

, •... be a sequence of numbers having 

a finite limit~. If k ~ 0 , let L denote the rectilinear 

-1 cut from -(4k) to ro in the direction of the vector from 0 

to -c 4k) -1. Let G denote an arbitrary closed region whose 

distance from L is positive or, if k = 0 , an entirely 

+ •••• l 



arbitrary finite closed reglon. 

1m Z 

G 

\ 
Re Z 

_11_---

FIG. 4.l 

There exists N, depending only on G, such that the 8-fraction 

I k Z 
n -J. + l + 

k IZ n+ 
I + 

k 2z n+ 
l + •••• 

converges uniformly over G for n > N • 

(4.72) 

The proof is rather long and is not reproduced here but will be 

found in Wall (l948). It is wor~h noting that, by a theorem of 

Pringsheim (l9l0), uniform convergence of an 8-fraction is a 

sufficient condition for the convergence of the fraction to the 

function of'which it lS the 8-fraction expansion. Arising from 

Theorem 4.2 we have the following two theorems for 82 -fractions: 

Theorem 4.3: Let R be a finite closed reglon In which all the' 

sub-fractions of an 82-fraction (4.4) converge uniformly 

and for which there exists N such that l+~_l (x) +hn- l (y) :f 0 

for all n > N and (x ,y) E R. A sufficient condi·tion 



Proof: 

for the 82 -fraction to converge lW.iformly over R ~s 

lim 
n~ 

c 
nn = o 

If condition (4.13) holds then, from (4.71), 

lim 
n~ 

= o 

and we can apply Theorem 4.2 . 

:23 

( 4. 73) 

(4.74 ) 

'1~eorem 4.4: Let there exist c, g(x) and hey) such that, ~n an 

82-f~action (4.4), 

lim c = c 
nn , 

lim ~(x) = g(x) , (4. 15) 
n~ 

lim h (y) = hey) 
n 

,n~ 

Let the region R be defined as in Theorem 4.3. The 

82-fraction will converge uniformly in R except when 

cxy 
= , (4.16) 

, {1+g(X)+h(y)}2 

where ~ is any real positive number. 

Proof: Under the conditions (4.15), lim Y
n 

(x,y) exists and 

the restriction (4.16) follows from Theorem 4.2 . 

for 

We can apply Theorems 4.3 and 4.4 to the expans~ons (4.53), 

e-(x+y ), and (4.54), for Ijl(l+x) (l+y) . In the case of e -(x+y) , 

all the sub-fractions converge uniformly everywhere in the finite 

complex plane and condition (4.13) is satisfied so that, by Theorem 4.3, 
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the expansion (4.53) conver~e3 uniformly througho~~ t~e finite 

xy-domain. In the case of l/l(l+x)(l+y), we fiave c = 1/16 and 

g(x) = ax _a~ 
l T 1 + .... ?x 

+ l + (4.77) 

which, 'by Theorem 4.2, converges uniformly except when x = - 1 - t; , 

where ~ is any real positive number. From (4.77) we can write 

g(x) = 
IX 4 (4.78) 

from which we find that g(x) = ~ (/l+x - l) • Similarly, 

hey) = ~(/l+Y - l) except ,·rhen y =: - 1 - t;. Now, applying 

Theorem 4.4 we find that the expansion (4.54) converges uniformly 

except when any of the following conditions hold: 

.)C. = -.1 - ~ 

y = - l - ~ , 

xy = - l - ~ 
3 , J 

where [ , t;2 and t; are any real positive numbers, and the 
~ 3 1 

express~on 11+x indicates that branch of the function (l+x) 2 

'whose real part is positive. 

( 4. 79) 
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4.4 Comparison of 82 -Approximants with Chisholm hP?yoxi::.ar:ts. 

Before comparing the two methods of approximation .\';:-~ define 

the seCJ.uence of diagonal ell i sholm approximants to the function 

fO(X'Y)' defined by the dou111e series (4.1). We write F (x,y) 
nn 

to denote the [n/nJ approximant which is of the form 

n n 
L L b xPyCJ. 

1)=0 g=o pCJ. 
F (x,y) = * 
nn n n 

L L d 
r s 

rsx y 
r=o s=o 

Chisholm (1973) norma1ises the series (4.1) by taking 

s,o that 

b = d = 1 
00 00 

and defines the [n/nJ approximant by the relation 

[10 J [i~O j~O 
"""'T 

n n n 
L 

r s 
1 J J L L d x y a .. x y -

rs l.J s=o p=o CJ.=0 

= 0(x,y)2n+l , 

(4.80) 

a = 1 
00 

(4.81) 

b xPyCJ. 
pCJ. 

(4.82) 

which leads to ( 2n2+3n) linear eCJ.uations, together with 

n "symmetrisation" conditions formed by eCJ.'t;.ating to zero the 

sums of coefficients of the pairs of terms 

k 2n+1-k 
x y 

for k = 1,2, ...• n . 

, 2n+l-k k 
x y 

T.ne 
2 

(2n +4n) 

( 4.83) 

coefficients {b } and 
pq 

{d } may then be determined. The definition is chosen so that 
rs 



the approximants have the fnllowing five prope~~les: 

(i) Symmetry between x and y. 

(ii) Uniqueness. 

(iii) If x = 0 or y = 0 , they reduce to Pade approximants. 

(iv) Invariance under the group of transformations 

Au 
I-Bll 

x = ---- , y = Av 
l-Cv 

for constants A,B and C such that A ~ 0 . 

(4.84) 

(v) The reciprocal nf an approximant 1S an approximant 

of the reciprocr-l,l ser1es. 

Now, S2-approximants satisfy property (i), by definition, and 

property (ii), in the sense that S2-fraction expansions are 

un1que. If x = 0 or y = 0 S2-fractions reduce to S-fractions, 

whose convergents are Pade f-l,pproximants, so that property (iii) is 

also satisfied. However, the invariance properties (iv) and (v) 

are not satisfied by any suhsequence of S2-approximants, although 

all s2-approximants are invHriant under the elementary 

transformations 

x = Au , y = Bv (4.85) 

for constants A and B. This property 1S not shared by Chisholm 

approximants. 

We now attempt to numerically compare the rates of 

convergence of the two methods of approximation ~or a few simple 

functions of two variables. In Tables 4.4-4.7, below, values o~ 

the [n/nJ Chisholm approximAnt are listed alongside valu.es of t.ne 

t '\,.., S rox';mant I' Str';c+ly, a d';rect co:r.,-:-,::.r:.son 1S He 2-app ~ ~2n+l· ~ ~ w ~ -.~-



slightly biased because the "symmetrisation" of -che Chisholm 

approximants means that the error terms (4.83) become zero 

when x = y. As only a fe1.·; examples are given the results are 

inconclusive, but it appears that the rates of convergence of the 

two methods are generally different and the method to be preferred 

depends on the function chosen and the values of x and y. The 

following examples are given in the tables: 

(i) f(x,y) = l/Il+x+y , 

(ii) f(x,y) = -(x+y) e , 

(iii) f(x,y) = e -x/Il+y , 

(iv) f(x,y) = 1/ I ( 1 +x) ( 1 +y ) 

The Chisholm approximants were computed uSlng an algorithm 

glven by Graves-Morris, Jones and Makinson (1973). 



TABLE 4.4 

Example (i). 

(a) x = 2 , y = 2 . 

2n+1 [n/nJ K . 2n+1 

5 0.4455 0.449 

7 0.4482 0.452 

9 0.44718 0.44706 

1 1 0.447200 0.447293 

13 0.447214 0.4472156 

15 .0.4472131 0.4472157 

17 0.4472128 0.4472153 

f(x,y) = 0.4472136 

(c) x = 3 , y = 3 . 

2n+1 [n/nJ 

5 0.392 0.383 

7 0.391 0.388 

9 0.3740 0.3775 

11 0.3778 0.3784 

13 0.3783 0.377974 

15 0.3777 0.377978 

17 0.3783 0.377969 

f(x,y) = 0.377964 

f(x,y) = 1/11+x+y 

(b) x = 1 , Y = 2 • 

2n+1 [n/nJ 

5 0.4986 

7 0.5000088 

9 0.5000055 

11 0.49999966 

13 0.499999980 

15 0.5000000019 

17 0.5000046 

:::(x,y) 

(d) x = 5 , y = 5 . 

2n+1 [n/nJ 

5 0.041 

7 o. 17 

9 -0.27 

1 1 9. 14 

13 0.313 

15 0.373 

17 0.532 

="28 

K 
2n+1 

0.5020 

0.5016 

0.499966 

0.50014 

0.500000088 

0.5000021 

0.5000015 

= 0.5 

K 2n+1 

0.312 

0.326 

0.3001 

0.3035 

0.301518 

0.301639 

0.301695 

f(x,y) = 0.301511 
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TABLE 4.5 

Example (ii). f(x,y) = e-(x+y) 

(a) x = 0.3 , y = 0.3 . 
2n+1 [n/nJ K 2n+1 

5 0.5488154 0.548889 

7 0.5488116337 0.54881175 

9 0.5488116361 0.5488116364 

1 1 0.5488116361 0.5488116361 

f(x,y) = 0.5488116361 

(c) x = 1 , y = 2 • 

2n+1 

5 

7 

9 

1 1 

13 

15 

17 

[n/nJ 

.0.053 

0.049713 

0.0497882 

0.049787057 

K 2n+1 

0.067 

0.04984 

0.04982 

0.04978718 

0.04978706847 0.049787078 

0.04978706838 0.04978706839 

0.04978706839 0.049'(8706837 

f(x,y) = 0.04978706837 

(b) x = 1 , y = 1 

2n+l [n/nJ ,K 
2n+1 

5 0.13573 O. 143 

7 0.1353325 0.13543 

9 0.135335294 0.1353387 

1 1 0.1353352832 o. 13533530 

13 0.1353352832 0.1353352835 

15 0.1353352832 0.1353352832 

f(x,y) = 0.1353352832 

(d) x = 5 , y = 5 . 

2n+1 

5 

7 

9 

1 1 

13 

15 

[n/nJ 

0.011 

G.000035 

0.000060 

0.0000446 

0.00004544 

0.00004541 

K 2n+1 

0.042 

-0.0022 

0.0029 

0.00032 

0.00037 

0.000056 

f(x,y) = 0.00004540 



TABLE 4.6 

Example (iii). f(x,y) -x -
== e /11+y 

(a) x == 1 , y == 1 . 
2n+1 [n/nJ K 2n+1 

5 0.26059 0.256 

7 0.2601296 0.260113 

9 . 0.26013013 0.2601318 

1 1 0.2601300495 0.260130059 

13 0.2601300476 0.2601300472 

15 0.2601300475 0.2601300475 

f(x,y) == 0.2601300475 

(c) x == 1 , y == 5 . 

2n+1 [n/nJ 

5 o. 1544 O. 110 

7 0.15088 o. 148 

9 0.15031 o. 1499 

1 1 0.15021 0.15012 

13 0.1501900 0.150175 

15 0.1501868 0.1501842 

17 0.1501861 0.1501858 

f(x,y) == O. 1501862 

(b) x == 1 , y == 2 

2n+1 [n/nJ K 
2n+1 

5 0.2133 0.201 

7 0.21244 0.21213 . 

9 0.2123983 0.2123952 

11 0.21239551 0.2123947 

13 0.21239531 0.212395236 

15 0.2123952955 0.2123952906 

17 0.2123952942 0.2123952941 

f(x,y) == 0.2123952944 

(d) x == 5 , y == 5 . 

2n+1 [n/nJ 

5 0.044 

7 -0.0024 

9 0.0032 

11 0.002728 

13 0.002752 

15 0.002751 

17 0.002753 

f(x,y) 

K ' 
2n+1 

0.15 

-0.0073 

0.0069 

0.00280 

0.00249 

0.002748 

0.002754 

== 0.002751 
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. Example (iv). f(x,y) = 1 / I( 1 +x) ( 1 +y ) 

(a) x = 1 , y = 1 . 
* 2n+1 [n/nJ K 2n+1 

5 0.50030 0.50037 

7 0.5000088 0.499989 

9 0.50000026 0.50000032 

11 0.5000000076 0.4999999906 

13 0.5000000002 0.5000000003 

15 '0.5000000001 0.5000000000 

f(x,y) = 0.5 

(c) x = 1 , Y = 5 . 

2n+1 [n/nJ 

5 0.296 0.294 

,7 0.290 0.28887 

9 0.28891 0.28876 

11 0.28872 0.288686 

13 0.288682 0.2886774 

1,5 0.2886764 0.2886755 

17 0.2886752· 0.2886752 

f(x,y) = 0.2886751 

(b) x = 1 , Y = 2 

2n+1 [n/nJ K 2n+1 

5 0.4095 0.4094 

7 0.40833 0.408215 
c.... 

9 0.408254 0.408251 

11 0.40824871 0.408248258 

13 0.40824832 0.4082482995 

15 0.4082482926 0.4082482906 

17 0.4082482904 0.4082482905 

f(x,y) = 0.4082482905 

(d) x = 5 , y = 5 . 

2n+1 

5 

7 

9 

1 1 

13 

15 

17 

[n/nJ 

o. 176 

o. 1682 

0.16694 

0.16672 

o. 166675 

o. 166680 

0.1666657 

* K 2n+1 

o. 183 

o. 1640 

o. 1672 

0.16658 

o. 166682 

o. 1666640 

0.1666671 

f(x,y) = 0.1666667 

* ~~v~ this example ~he even approximants {K2n} are exact when x = y . 
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The results in Tables 1+.4 - 4.7, above, show that 

S2-approximants converge more rapidly for the function l/Il+x+y, 

whereas Chisholm approximants converge more rapidly for e-(x+y) . 

There is little to choose bptween the methods in the other two 

examples g~ven. 

It is also of interest to exam~ne the singularity structure 

of the two methods of approximation. In Figs. 4.2 - 4.13, below, 

are sketches of the zeros and poles, near the or~g~n ~n the real 

xy-plane, of some approximants with quadratic and cubic numerators 

and denominators. Both the 8
2
-approximants and the Chisholm 

approximants satisfactorily represent the singularities although, 

in the examples shown, the Chisholm approximants do so more 

accurately because they correspond to more terms of the power 

ser~es. The graphs shown are as follows: 

• 

FIG. 

4.2 Branch points of l/Il+x+y [left diagram] and 

l/I(l+x) (l+y) [right diagramJ • 

4.3 Zeros [leftJ and poles [rightJ of K3 for l/Il+x+y. 

4.4 of ~ 
4.5 of [2/2J C.A. for 1/11+x+y. 

4.6 of [3/3J 

4.7 

4.8 
4.9 
4.10 

4.11 

4.12 

4.13 

of K3' for 

of K4 

of [3/3J 

of K3 for 

of K4 

of [2/2J 

of [3/3J 

-(x+y) 
e . 

. 
C.A. for e-(x+y ). 

l/l(l+x)(l+y). 

C.A. for l/I(l+x) (l+y). 

The [2/2J Chisholm approximant (C.A.) for e-(~+Y) has no real zeros 

or poles. 
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We will now briefly consider fu...'1ctions of two variables 

that have no S2-fraction exp~slon. As an example, we consider 

the fUnction sinh (x+y) for which Chis~olx appraxi~an~s can be 

obtained. This function has no single S -fraction exp&'1sion 
2 

but may be expressed in the form. 

where the functions (sinh x cosh y)/x and (sinh y cosh x)/y 

both have S2-fraction expansions in the variables x 2 and y2. 

We may generalise this idea by defining an odd function of two 

variables by 

(4.87) 

and an even fUn'ction by 

f(-x,-y) ;; fCx,Yl . (4.88) 

Neither odd nor even fUnctions have S2-fraction expanslons but 

their double series expansions can oi'ten be "partitioned" in 

such a way that an odd function can be expressed in the form 

f(x,y) 
2 2 2 2 

x u(x ,Y ) + Y vex ,Y ) (4.89 ) 

and an even function may be written 

, (4.90 ) 

where uand v have S2 -fraction expanslons ln each case. Similar 

"parti tioning" may be useful with other types of function. There 

is a slight risk, however, that additional singularities ma:;{ be 

introduced by this. process. An alternative method is to 



approximate to fex ,y) by fOl'ming the 8
2 
-fraction fGr f( Yo ,y) +cCz: ,J) 

where gC~,y) is any suitabl o function such "that ~::e 8 -f:~acl,:'o,:~ 
2 

expans10n exists. The drawback 0-': this techYlicl"Lle is t:-lat a pee: 

choice of g(x,y) may lead tn difficul"ties. ~ce :racl,ion may 8e 

slowly convergent, or if 1~(x,Y)1 »ir(x,y)1 iYl some region of 

the xy-domain then the value of f(x,y) will be lost in that region. 

We will now conclude this chapter with an example of the 

approximation of a "non-trivial" function of two variables, 

i.e. a function that cannot be more easily represented in terms of 

functions of single variables. Such a "no:.-.-~rivial" function J.S 

Appell's hypergeometric function in two variables, defined by 

= 
r(y) 

00 00 r(a+m+n)r(S+m)r(S~+n) xmyn 
r(y+m+n) m!n! L: L: 

m=o n=o 

(4.91) 

and satisfying the pa1r of partial differential equations 

(4.92) 

and 
aF 

= 

y(l-y) + x(l-y) 
a2F aFl __ 1 + {y-(a+S~+l)yr-=- -
axay ay 

1 
S~x---:;::' - aS~ F~ = 

.L ax 

(4.93) 

This 1S one of four hyper geometric functions defined by !\"',):)"", ; ............ t::....Ir....-.. • 

[See Whittaker and Watson (1927).J In the example 1n m b~ , "\ la J..e 4.0, 

, , 
we make the arbitrary choice of parameters <l = 2, S = 4, belOW, 

s~ = ~ and y = 1 . 



x y n 

o. 1 O. 1 2 

3 
4 

5 

O. 1 0.2 2 

3 
4 

5 

0.3 0.3 3 
4 

5 
6 

0.5 0.5 3 

5 
6 

7 

0.5 1.0 4 

5 

7 
8 

TABLE 4.8 

K 
n 

1 .03896 

1.038207 

1.03821503 

1.03821506 

1.0526 

1.051257 

1.05127653 

1.05127661 

1 . 1189 

1.1191600 

1.11916265 

1 . 11916254 

1 .2055 

.1.206689 

1.20668788 

1.20668783 

1 .284832 

1 .284900 

1.28489343 

1 .28489342 

x 

1.0 

1.0 

2.0 

1.0 

3.0 

y n 

1.0 4 

5 

7 
9 

2.0 4 

5 

7 
8 

2.0 5 
8 

10 

13 

5.0 6 

9 
12 

14 

3 r, .v 9 
12 

15 

17 

K 
n 

1.45919 

1.45969i 

1.45962834 

1.45962305 

1 .6568 

1 .65846 

1.6581276 

1.65812512 

2. 1836 

2.1802394 

2.18023545 

2.18023527 

2.5512 

2.550689 

2.55067838 

2.55067832 

3.5081 

3.5078654 

3.50786165 

3.50786140 

139 



CHAPTER 5. 

CORRESPONDING FRAGrIONS IN MANY VARIABLES. 

We will now show how the ideas in Chapter 4. may be 

generalised to functions of N variables. The investigation 

does not extend as far as tha.t of the S -fraction out 1.S 
2 

intended as a foundation for further research. 

5.1 The Structure of the SN-Fraction. 

The S2-fraction is of the form 

f (x,y) 
o 

= 
coo c1I-XY 

l+go(X)+ho(Y) + l+gl(x)+hl(Y) + .... 

. . . . 
c xy nn 

+ l+g (x) +h (y) 
n n 

+ •••• 

whe.re gn (x) and h
n 

(y) have both S-fraction and single power 

series expansions. An analogous continued fraction in three 

independent variables x ,y and z would have the form 

c 
000 

(5.1) 

f (x ,y ,z) 
o 

= l+g (x)+h (y)+k (z) 
000 

+u (x,y)+v (y,z)+w (x,z) 
000 

+ l+gl(x)+hl(y)+kl(Z) 

+~(x,y)+vl(y,z)+wl(X'z) 

+ •••• + 

c xyz nnn 
1 +g ( x) +h (y) +k (z) 

n n n 
+u (x,y)+v (y,z)+w (x,z) 

n n n 

+ •••• 

where g (x), h (y) and k (z) Gave both S-fraction a:.a sir.gle 
-n n n 

power series expansions and U (x,y) , v (y,z) and w (x,z) ~ave n n n 
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both S2-fraction and double power serles exp~~slons. The fraction 

(5.2), which we call an S3-fraction, will correspond to a triple 

power serles. Clearly, .the notation of (5.2) is too l.mwieldy and 

the formation of an SN-fraction and its CS algorithm is only 

feasible if we can use a streamlined notation. 

We consider a set of N independent variables' {~} and write 

and we consider ·~{.I.e function fOC!:) , formally defined by a Taylor 

serles in N variables. We write the SN-fraction in the form 
\ 

:f (x) 
0-

c 
o 

l+g (x) i-
0-

N 
c

1 
IT x

k 
k=l 

N 

c2 k~l~ 
+ l+g2(~) + •.•• 

• • •• + 1 +g (x) + •••• n-

where we abbreviate c to c and g (x) denotes the sum 
nn •••• n n n-

of all the sub-fractions in the (n+l)th partial denominator. 

Now, the :formal power series expanslon of ~ (~) can be written 

N 
. 

00 00 00 

b ~n). 
J k 

g (x) = E E •••• E II ~ n- j =0 J =0 j =0 J 1 J 2 ••• ·I N k=l 
I 2 N 

where and b (n) = 0 • 
00 •••• 0 

As this expression 1S 

complicated we introduce an a.bbreviated notation US1ng vector 

suf:fices. Writing 

.J. - • • •• j1\~} 
.l.'i 

(5.6) 



we can write (5.5) more suc~inctly as 

where 
N 
II 

k=l 

g (x) 
n-

j = 0 
k 

= 
oo( n) N jk 

.L b. II ~ 
.J.=o .sl k=l 

and b (n) = 0 • 
o The summation over t~e 

vector i denotes N summations. The recurrence relations tha~ 

give rise to the fraction (5.4) are 

~or n = 0,1,2,3, •••• and where we set ~-1(~) ~ ~(k~l~ 
Using notation similar to (5.7) we can write f (x) In the 

n-

series f'or.m 

f (x) 
n-

for n : O,l,2,3:1 . . .. . 
We will now generalise the results in Section 4.1 to prove 

the existence, coxrespondence and uniqeness of SN-fraction 

expansions. A necessary condition for the existence of the 

fraction (5.4) is the existence of a sequence {T (x)} of functions, n-

each having an expanslon of the form. 

T (x)· = 
n- l: 

l=O 

(n) 
p. 

l 

N 
II 

k=l 
, 

and satisf,ying the system of formal identities 

T (x) = 
n-

1 (5.ll) 



for n = 0,1,2,3, •••• and where f (x) = c T (x) Tile :lOW 
0- 00-· 

assume the existence of Tn (x) and ~ (x) and. note that Tn. (~J 

has a reciprocal series expansion 

1 
= 

T (x) 
n-

Rearranging (5.11) we get 

= 

T l' (x) n+ -
1 

N 
c n x 
n+l k=J. k 

• 

, 

l - ~ b~n) 
,i=o .J. 

where 
N 
n 

m=1 
j = 0 and b (n) = 0 • 

.In 0 
Now, choosing 

= :,1 

N 

= b~n) 
.J. 

, 

for ,i::j 0 and n j = 0 , 
.m=1 m 

the'identity (5.14) can be 

si;mplified to 

= 

where the suffix i+l denotes the vector of elements {ik+l}. 

Thus, Tn +1 C~) can be expressed in the form (5.l0). 

Now, letting A (x)jB (x) 
n- n-

denote the nth convergent 

of the SN-f'raction (5.4) and using the result (1.23) 

j} n x m 
m 

N 

m=l 



we have 

N 

(-1)ncOc1c2····cn 
n 

A k~l ~ 
f n -- = 

0 B .I.'j 
( 5 "17'. 

..... I ) 

n 
Bn(Bn+1+cn+l k~1~·Tn+1Bn) 

so that 

A 

o{f~ ~1 f 
n -- = 

0 B 
n \k=l 

(5.18) 

Hence we have established existence and correspondence. 

To establish uniqueness we consider the two SN - fract ions 

N N 
c c

l k~l~ c IT~ 0 n 
f 

k=l 
= 

0 l+g + l+gl + •••• + l+~ + . . . . 
0 

and 

N N .I.' 

c'" c1 IT xk 
c'" IT X, 

0 n k=l K 
f'" 

k=l 
= 

0 l+g'" + l+gl + •••• + l+g'" + . ... 
0 n 

such that f (x) = f;(x) • By setting eaCL variable to zero 
0- 0-

1n turn it 1S easily verified that Co = c; and go = g; , 

so that A = A; 
1 1 

and B = B'" where 
1 l' 

A"'jB'" 
n n 

1S the nth 

(5.19) 

(5.20) 

convergent of (5.20). We also have A = A'" - 0 and B = B'" = 1 
o 0 0 0 

and we need to show that if 

c = c'" 
r r 

, 

for r = 0,1,2, •••• n-l , then 

A = A; 
r+l r+l 

, B = B; 
r+l r+l 



We consider the difference of'tween the (n+1) th converger...ts 

A 
n+1 

A--
n+1 A B-- - J,.-- _13 .n+l n+l r. +..L n+l = (5.23) B B-- 13 n+l13~+l • n+l n;-l 

Using the recurrence relations (l.8) and the hypothesis (5.2:) 

" we get 

• (A B 1 - A IB) IT X, n n- n- n K 
k=l 

or, using the determinant formula (1.11):1 

But, from (5.18) and (5.23), we have 

A B-- - A-- B 
n+l n+l n+l n+l {( 

N \ n+l} = 0 IT~) 
, k=l ) 

s 0 it follows from (5.25) that 

(l+g )c-- '- (l+g--)c 
n n n n 

o 

This im-nlies that result (5.22) holds and that f (x) and 
~ 0-

f"'(x) both have the same coefficients. Hence we have proved 
0-

the uniqueness of SN-fraction expansions. 

To define the approximants of the SN-fraction we stal: 

adopt the notation O(2S) n to denote error terms of orde:::-

N r k N 
such that L r k where 0 for k = 1,2, k~l~ = n r > .... 

k-
k=l 

~r ... . 



Then we define the seQuence {K (x)} of 8'T-app::-oximants by 
n.- .l~ 

The coefficients of S~{ -fractions may be stored on a 

computer as an N-dimensional array and the values of "c.~e 

8
N
-approximants evaluated by a generalisation of tile 

algorithm (4.3l). Ideally sllch an algorithm would be 

recursive, using the fact that each partial denominator 

of an SN-fraction has (2-'-2) sub-fractions. These 

sub-fractions are made up of 

N 8-fractions:'l 

( N2) 

N 

8
2 
-fractions, 

· . . . · . . . 
8 - fracti ons :'I 

r 

· . . . 
• • • • 

8 l-fractions. N-

(5.28) 



5.2 The Corresponding Sequpnce AloD'orithm for the eFt' 
u,~- rac lone .I., 

We can most easily obtain the CS algorithm for the S,.-fraction 

by substituting the series expressions (5.7) and (5.9) in the 

recurrence relations (5.8). We have 

. N ) 00 

II x l: a~ n+l) (lIFl m i=o 1. 
c ~ a~n-l) 
n. 1 . 

1=0 -

Equating coeff'icients of ln (5.29) we obtain the 

summarised f'orm of' the CS algorithm 

where 
N 

(n+l) a. 
1 

II j = 0 
:m=l m 

= 
(n-l) 

c a. 1 n 1+ 

and ben) = 
o 

o . 

holds for n = 0,1,2,3, .... and 

choose (n) 
a. = 0 

1 
if any i =-1 

k 

en) i+l (n) (n) 
a. 1 - Lb. a .. 1 

1+ . 1 1-.J.+ .J..=o JJ- -

We reqUlre that relation (5.30) 

lk = -1,0,1,2,3, 

, a(-l) = 1 and 
o 

. . . . so we 

a~ -1) = 0 
1 

f'or 1 j o. In particular, if we choose i k = -1 for k = 1,2, •••• K 

we get f'ro:m (5.30) that 

(n) 
a 

o 
c = n en-I) 

a 
o 

-Por 'i = 0 1 2 3 so l·t :may easily be 5::S.-r.:. that the .J.' ... "" •••• 

CS algorithm breaks down only if the SN-fraction does not exist. 

Using the algorithm (5.30) the coefficients {cijk } of t:.e 

S3-fraction expansion of the function 1jl(1+x) (l+y) (l+z) were 



• 
• 

found for i+j+k:::" 6. These coefficients are glve:-~ ::.:-. '::.'a-CllE: ).~, 
• 

below, and a selection of values of the S_-approxima~nts are g~Ve~ 
j 

in Table 5.2 . 

TABLE 5.1 

Coef'ficients of S3-fraction 

expanslon of 1/1(1 +x) (1 +y) (l+z) . 

1 1 1 1 1 1 1 
2 i.i i.i i.i 4 4 

1 1 1 1 1 1 
2 i.i i.i 4 i.i 4 

1 1 I 1 1 
i.i 4 16 4 4 

{c.. } 1 1 1 I = i.i 4 4 (G lJO 
1 1 1 
i.i i.i i.i 

1 1 
i.i i.i 

1 
i.i I 

-1 

;-
1 I 1 1 I 1 1 1 1 1 , 

i.i 4 2 4 i.i i.i 4 i.i 16 

'; 1 
, 

1 1 1 1 1 
i.i i.i i6 i.i a i.i i.i i.i 

I -L J_ , 
{C .. 1 } 

1 1 1 {c .. 2} = ' I' iG 6~ = i.i i.i 16 i.i I \0 lJ lJ 
I 

1 1 

I 
1 1 1 
4 4 i.i 4 i.i 

I 
1 1 I 1 

L1+ 4 i.i 

J 1 
if 

- r-

al I 
i I 

1 1 1 1 I 1 
T(; 4 1+ 4 4 4 

, 1 {C .. 4} 
1 1 {c. 0

5 
J = {c. 0

3
} 1 = if i.i = if if i.i lJ lJ lJ 

La 1 1 
i.i i.i 

~~ c 
006 

= 
, .. 

r 
1 

~ I i.i 

4 

: 
I 

.J 

rl ...., 
i , 

i.i I I 4 : 

La 
-' 



TJ\BLE 5.2 

S3-approximants for f(x,y,z) = l/l(l+x)(l+Y)(l+z) • 

x y 

1 1 

1 1 

z n K (x,y,z) 
n 

1 4 0.320 

5 0.35390 

6 0.35372 

7 0.35387 

8 0.353549 

9 0.3535530 

10 0.3535519 

11 0.3535533 

12 0.3535534 

f 0.3535534 

2 4 0.245 

5 0.2895 

6 0.2890 

7 0.2893 

8 0.203659 

9 0.288675 

10 0.288670 

1 J 0.288674 

12 0.288675 

f 0.288675 

x y z n K (x,y,Z) 
n 

1 2 2 4 o. 18 

5 0.2372 

6 0.2364 

7 0.2369 

8 0.23566 

9 0.235702 

10 0.235690 

11 0.235699 

12 0.235701 

f 0.235702 

2 2 2 4 o. 138 

5 O. 1943 

6 0.1937 

7 o. 1944 

8 o. 19236 

9 O. 192441 

10 0.192416 

11 0.192444 

12 0.192446 

f o. 192450 
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CHAPIJ:ZR 6. 

INTERPOLATORY FRACTIONS IN TWO P~D MORE ~~~lP2L2S. 

An important problem in applied mathematics is the 

interpolation to a function whose values are knmm at the 

intersection-points of a rectangular mesh. Such an array 

of function values may arise from a finite-difference 

solution of a P.D.E. problem. In this chapter we will show 

how the method outlined in Section 1.3 may be. generalised 

to form continued fractions which interpolate on rectangular, 

cuboid or hypercuboid meshes. 

6.1 Bivariate Interpolation on a Rectangular Mesh. 

We consider first a set of function values F ,Fl , .... F 
o n 

glven at (n+l) points· ex ,y ),Cx. ,Yl ) , .... ex 'Yn1 which lie o 0 ~ n . 

on some 1D.onotoni c curve in the .real ..xy-plane. 

----

x 

FII}. 6.1 

A possible approach to the :r ,'ob1em of interpolation .:.;.; -~o 

construct a continued fract·inn) analoeous t.o the :~:[:.ctic:: (1.'(4), 



having the form 

f(x,y) = 
(x-x ) (y-y ) 

c + ____ ~o ____ ~o_ 
o c~ 

.L 
+ + .... 

( x-x -,) (y-y ) 
n--L n-l 

• • •• + c 
n 

Provided none of the points were unattai"'J.la-""'le ,,0 +' to .....u -Cr..lS ... r ac lon 

would provide a means of interpolation in some region of the 

xy-plane. However, we shall not discuss such continued 

I 
fractions except to observe that the formula (6.1) does not 

(6.1) 

exist if any two of the points {(x ,y )} lie on a line x = a 
r r 

or on a line y = b , where a and b are constants. Conse~uently, 

we cannot interpolate on a rectangular mesh using a continued 

fraction of the form (6.1) so we must consider a more general 

structure as we have done for corresponding fractions. 

In fact, a continued fraction similar In structure to 

the S2-fraction is useful for rectangular mesh interpolation 

although special continued fractions may be constructed to cope 

with more general sets of points. We consider a double array 

of points {(xo ,y.) } which are the nodal points of a rectangular 
l J 

mesh in a ~uarter-plane, as shown below. 

y 

/';. 

x 
o 

I 

I 

I 

I 
I 
I 
I 

I 
r , 
i 

I 
I 
I 
I 

I 

I 
j 
I 

I 
\ 

I 
FIG. 6.2 

I 
I 

i 

I ill x 



We let {cij } be a double array of coeffic:'erlc,:,s "c ":: 2.~"'ce:"L:ir.ec:.. 

~~d define the sequence of f~~ctions {w (x,y)} 8y 
n 

W (x,y) 
n 

, \ , ) 
\ :.;:-x ) ( ',--v 

::: C + g (x) + h (y) + n' v~ 
nn nnw _ (x,y) 

n +1. 
(6.2) 

for n::: 0,1,2,3, . . . . where 

c + g (x) 
nn n = u (n) (x) 

o 

v(n)(y) 
o 

, ') 

} (6.3) 
c + h (y) 
nn n 

= 
( x-x 

un) (x ) + --,-~n~+...::.r_ 
r n+r (n; I ) 

ur+l\X 
, 

(6.4) 

::: V
( n ) (_ r ) y-y n +r 

+ (n) r .; r ... +r 
vr+1(y) 

, 

for n = 0,1,2,3, .... and r = 0,1,2,3, ..... The recurrence 

formulae (6.2), (6.3) and (6.4) lead to the continued fraction 

where 

f(x,y) = 

f(x,y) 

~ (x) ::: 

h (y) 
n 

::: 

(X-Xl) (y-y 1) (x-X
n

_
1

) (Y-Y
n

-
l

) 

+ c
22

+g
2

(X)+h
2

(y) + .... + C +g (x)+h (y) + 
nn n n 

= w (x,y) 
o 

ann the sub-fractions may be written 

x-x x-x 
_--.-.;n:.:...- n + 1 
c + c n+l,n n+2,n 

y-Yn Y-Yn+1 
c + c n ,n+l n ~n+2 

x-x n+r-l 
+ ••.• + C 

n +1'-' ,1: 

+ •... + 

+ ..•• I , , 
\ 

~ 
, 

+ .... • 
J 

'6 /" \ 
" .0; 

.... , 



From (6.2) we have 

c = w (x ,y ) nn n n 11 

and comparing (6.4) and (6.6) we get 

c = (n) ( ) u x n+r,n r n+r 

c = v(n) (y ) 
n ,n+r r n+r 

, 
\ 

} , 

for n = 0,1,2,3, an d r = 0,1, 2 , 3 , .... . Als 0 , 

rearranging (6.2) we have 

(X-X) (y-y ) 
n n wn+l (x,y) wn(X,y)-w (x ,y )-g (X)-h (y) n n n n n 

which leads to a two-variable inverse difference scheme. 

For the nodal values of the fUnctions {w (x,y)} we now use 
n 

the abbreviated notation 

f (.n.) ( ) = w x. ,y. 
~J n ~ J 

and we describe how to proceed systemati2ally to calculate 

the coefficients {c .. }. 
~J 

( " 7' O. i) 

( 6.8) 

(6.10) 

( 0) 
Beginning with the double array of functio~ values {f .. }, 

lJ 
= f( 0) . . we have coo 00 and we compute the coeff~c~ents clo,c20,c30'···· 

from the function values f(o) f(o) f(o) f(o) using the 
00 ' 10 ' 20 ' 30 , .... 

one-variable algorithm defined by (1.78) and (1.79). Similar:y, 

we compute col'c02'c03' .... from the values f~~) ,f~~) ,~~~) ,:~~) , ..... 
Discarding the first row and col~~ of mesh points we use (6.9) 

to form the new array {f~:)} for 1 = 1,2,3, .... and J = :,2,3, .... . 
~J 

Ive then compute the coefficients cll'c21'c31,c41'···· 



and In general we procee~ to ~fie ~~~ay .~ I ,. ..... " .. , .. . - . , . i i .. 
u 

for i = n ,n+l ,n+2, and j = n,n+l,n+2,.... ~:1~ 'we 

note that 

g (x.) = f~n) f(n) 
n 1 In nn , 

(,... ""' 

f(r:) jn) 
o ..... J..; 

h (y.) = I n J nJ nn , 

so we may write (6.9) In the form 

= 
(x. -x ) (y . -y ) 

1 n .1 n 
(6.12) 

when x and y have nodal values. 

So far we have considered a rectangular mesh in a quarter-

plane. However, in a practj cal problem we ~:;:'C gener8.1:Ly concc1::-:.c:d 

with some finite region R covered by a rectangular mesh over "T?licn 

we wish to interpolate to some function. We must now investigate 

the class of finite regions R over which we can interpol~te using 

only one continued fraction expression o~ the form (6.5). Firstly, 

it is implied by formula (6.12) that if a point (x. ,y.) E: R 7.::' en 
1 J 

all points (x ,y ) E R 
P q 

for p = 0,1,2, .... 1 and q - ° 1 ? - )-1..,-, 

Clearly, this is too restrictive in practical applications ':"lJ "vTe 

must form alternative expressions to (6.12) to cover the cases w~e~ 

the computations break down. 

If we wish to compute f~r:+l) and the point (x.,y) ~ R 7.r.er. 
1.J 1. n 

we use the formula 

= 

J • 



Similarly, if the point 

= 

(x ,y.) ~ R then we use 
II J 

( x. - x ) (y . -Y ) 
1 n .1 n 

f~'.l) f~n) 
J .• ) 1n 

However, if both (x. ,y ) f R and (x ,y.) $ R then we use 
l n n J 

f~~+l) 
( x. - y ) (y . -y ) 

l n J n = 
lJ 

In which we reqUlre that 

(n) (n) 
f .. - f 

1,-' nn 

(x ,y ) E R • 
n n 

By considering the form of the interpolatory fraction (6.5) 

and the conditions under which the for~ulae (6.12) - (6.15) are 

valid we can describe the most general form that the reg10n R 

may take. 

y , 

--c 
y 

~----------------------------------~~ 
x 

FIG. 6.3 
( 

In Fig. 6.3 the finite closed region R 1S bOlli~ded by the 

contours C and C which form the peri:r;:eter of arect&:.~·..2ar 
x y 

mesh, possibly triangular at the boundary. ~~ese conto~rs 

meet at the points (x ,y ) and (x,,"'YNJ) and the cc.:-:our.w joins 
o 0 ... , 1 

.... h . t {( )} --. 012 .- XecessC;.:!::.' v e pOln s x,y .:;: o~~ r = ,,).. .. ~, . 
r r 



conditions for interpolation over R uS1.ng only OLe conti:-. -..;.cc.. 

fraction of the form (6.5) are: 

(i) The contour L lies entirely inside R, or on 

boundary. 

(ii) The contour Cy 1S single-valued with respect to x, 

except when its gradient is infinite. 

(iii) The contour ex is single-valued with respect to y, 

except when its gradient is zero. 

More general reg1.ons of interpolation may also be dealt with by 

modif'ying the structure of the fraction (6.5). It has been found 

empirically that the accuracy of the interpolation formula is 

largely unaffected by the choice of the point (x ,y ) although 
.00 

some choices are inadmissible, as we shall see. However, point::.; 

may be reordered as in the one-variable case and (x ,y ) may 8e 
o 0 

an internal point of the region R. If large problems are attempted 

with very many mesh points it :IU8.y be advisable to use more than 

one interpolatory fraction to save ~'olU:cing error. Also, as in 

the one-variable case, we expect that some problems will have 

unattainable points or give rise to fractions with unwanted 

singularities. 

We now g1.ve a selecti0n of examples. Except where otherwise 

stated the vaiues of the ftillction F( x,y) are specified accurate , 
to approximately 20 significant figures at the r::esc. poi:-.ts, a.."1.c.. 

square regions of interpolation are sub-divided ir.~o sr:.a.ller 

squares of side h. 

below, include some unsucces~,ful examples to illL4S:.rate t;1e 



limitations of the method. 'J:he functio~-;.s chosen 2.Ye: 

(i) F(x!)y) = cosx sinhy !) interpolated OV2Y tr-.e 

square o <x <1 ,O~y~l 
• 'l ., .. _ 

Wl v ~ :-l S uc c e.::; .3 =- V 2 ~~c 

equal to 1/4!) 1/8 and 1/16. Results are evalua:'ed. 

at points which are at vario-...;.s distances from mesf. 

points. 

(ii) Two functions interpolated over the L-shaped reglon 

shown in Fig. 6.4. The region is divided into 

squares with h = 0.1 • 

1 
Y '/ 

" 

1.5 I 

i 
1 (1,1)-----:, (1. 5,1) , FIG. 6.4 

i\ 
t-

l tpo X 

O 1.5 

The functions are: 

( a) 
-x . 

F( ) whl" ch :s- regular over t:le x ,y = e -cosy , ...-

whole region. 

2 2 .!- ( -, -1 (1 -v) ") 
(b) F(x,y) = {(l-x) +(l-y) }3 cos\..ttan ~ J ' 

which is harmonic , finite and continuous ov ~:..~ 

.. . . 
t:·,c whole region but I,ritr ... sinGli:..arlt::.es :.n ::.~..; 

derivatives at the re-entr~~t corney (:,1). 
. (~~ \ 

Results are evaluated. near vO t::e po::.r-.t. .J.., ... ' 

in both cases. 



( iii) Four functions with pOl"nt singulari~~es v~ or 

outside the boundary of a rectangular ~eg~0:-~ of 

interpolation. trhese are: 

( a) -x 
F(x,y) = e cosy/l(x-O.l)z+(y-0.045)L , 

interpolated over the square 0..:: x < 0.: , 

o ~ y ~ 0.1 with h = 0.01. Results are 

evaluated at a selection of points, including 

the singularity at (0.1,0.045). 

(b) -x 
F(x,y) = e cosY/{(x-0.l)2+(y-0.045)2}, 

interpolated over the same region as (a). 

( c) --x 
F(x,y) = e cosy/{(x-0.105)2+(y-0.045)2}, 

interpolated over the same region as (a). 

The singularity lies just outside the regicn. 

(d) The same function as (c), interpolated over tr-... e 

rectangle 0..:. x ..:. 0.1 , 0 ..:. y ..:. 0.05 '\-rhi ch is 

sub-divided into smaller rectangles with h = 0.01 

a~d k = 0.005. The singularity lies outside 

the region and near to a corner. 

(iv) Two functions with line singularities just outside the 

boundary of a square region of interpolation. 7Gese are: 

( a) 
-x 

F(x,y) = e cosy/(0.105-x) , interpolated over 

the square 0 ~ x ~ 0.: , 0 ..:. y 2 0.1 with h = 0.01. 

(b) F(x,y) = e-Xcosy/{(0.105-x)(0.105-Y)} , i~~erpolated 

over the same region as (a). 



- --,.. 
..... );) 

(v) F(x,y) = log(x+2) e-
y 

, inter?o~ate~ over ~~e 

square 0 ~ x ~ 0.5 , 0 ..s. y ..s. 0.5 ;·rit,h :-~ = C.C5 . 

The values of F(x"y) are specified to 

(a) 4 decimal places, and 

(b) 6 decimal places, 

as might arise from a finite-difference sol1.:tion of 

a boundary-value problerr... 

( vi) -x 
F(x,y) = e cosy, interpolated over the uni~ square 

o ~ x ~ 1 , 0 ~ y ~ 1 witn h = 0.1. Results are 

evaluated both inside and outside the region of 

interpolation. 



S::'.A 1312 6. i 
- : ", 

Example (i). F(x,y) 

x Y h Int erpola..YJ.t x Y h II'. t e r:p c':' c.:.n t 

o. 1 O. 1 1/4 '0.09976 0.3 0.5 '1/4 0.4970245 
1/8 0.099666333412 1/8 o .497821359652 

1/16 0.0996663334924674 1/16 0.49782135964978353 
F 0.0996663334924677 F 0.49782135964970354 

0.4 O. 1 1/4 0.09235 0.9 0.5 1/4 0.323931 

1/8 0.09225968626 1/8 0.323918036302 

1/16 0.09225968633959600 1/16 0.3239180363 i 33665C ~'3 

F 0.09225968633959604 F 0.3239180363133665076 

0.5 0.1 1/4 0.087986 0.4 0.7 1/4 0.698729 

1/8 0.087904593026 1/8 o . 69 870 1 858471 

1/16 0.0879045930989681222 1/16 0.6987018584553260455 

F 0.0879045930989681226 H' 0.6987018584553260462 ... 

o. 7 O. 1 1/4 0.076682 o. 7 o. 7 1/4 0.58021 

1/8 0.076611756115 1/8 0.580196817766 

1/16 0.07661175617835403 1/16 0.5801968177553705~5 

'F 0.07661175617835401 F 0.580196817755370564 

0.9 0.1 1/4 0.06233 0.2 0.9 1/4 1.00596 

1/8 0.06226465025 1/8 1.00605473453 

1/16 0.06226465030172394 1/16 1.00605473446350329 

F 0.06226465030172392 
.,.., 1.00605473446350331 ~ 

0.3 0.3 1/4 0.290898 0.5 0.9 1/4 0.90073 

1/8 0.29091934799 1/8 0.90085317804 

1/16 0.2909193480119365 1/16 0.900853177972:276 0 56 

F 0.2909193480119371 F 0.9008531779721276064 

0.6 0.3 1/4 0.251309 0.6 0.9 1/4 0.84714 

1/8 0.251331443631 1/8 0.S~7220813094 

0.2513314436461836 1/16 84 2 81-~2-7~-777' 
1/16 

o . 72 J ju:; , 1:-, ii' 

F 0.2513314436461832 
...., 0~847220313J257737776 !' 

0.9 0.3 1/4 o. 189286 0.9 0.9 ;/~ o.63806~ 

1/8 o. 189292849931 1/8 o /' -Q ~ ()..., ~ 29 --, 
• O..)vu ..... .)u ..)..) 

o. 1892928499489957787 1/16 /' ....... "" ............ "'"""I ...., ,,,,", --.. !") '"' ---- ': 9" l ".., t"'I? 1 
1/16 

0.O..)O~~.)0~~~~Ou I~UV_ 

,.,- ..... __ ""'r ...... ro-",..C- .. ' -., .. ,\-.,,-.. 

0.1892928499489957790 
-. O.o..)~C~3u2~~j0u~i~vU~~ 

F ~ 



- ,,-
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Example (ii). 
(0) F(x,y) 

I 

= {( 1-):) 2 +( 1-y ) 2 :- -: 

( a) F(x,y) -x ". .... = e cosy i 2 - ~ 11 -- - '- ( I •. . co S -"tan ----"- i :s '----/j \. ~ .. 

X Y X y 

0.8 0.875 Int 0.28801845h280064 0.8 0.875 Tnt 0.355518 
F 0.288018454280082 F 0.355565 

0.8 1. 125 Int 0.193740097615 0.8 1 . 125 Int 0.3569 

F 0.193740097644 F 0.3556 

0.8 1.25 Int 0.14168346999 0.8 1.25 L'1.t 0.386933 

F O. 1 4 16834 70)+ 6 F 0.386947 

0.8 1.375 Int 0.087415916 0.8 1.375 Int 0.4247600 

F 0.087415920 F 0.4247680 

0.9 0.875 Int 0.260609874517860 0.9 0.875 Tnt 0.2485 

F 0.260609874517877 F 0.2438 

0.9 . 1. 125 Int 0.175303289696 0.9 1. 125 Int 0.203 

F o. 175303289723 F 0.244 

0.9 1. 25 Int 0.12820050516 0.9 1.25 Int 0.29237 

F 0.12820050559 F 0.29244 

0.9 1.375 Tnt o . 079097192 1 0.9 1.375 Int 0.34166:.r 

F 0.07909719)/1 F 0.341680 

0.95 0.875 Tnt 0.247899780957910 0.950.675 Int o. 196 

F 0.247899780957926 F 0.164 

0.95 1 .0 . Int 0.2089570667468796 0.95 1.0 ~ .J-

lLL.. O. 142 

F 0.2089570667468795 F o. 136 

0.95 1.125 Int o. 166753647371 0.95 1 • 125 Int 0.23 

F o. 166753647397 F o. 18 

0.95 1.25 Int 0.1219480927 0.95 1.25 Int 0.2493 

F 0.1219480932 F 0.2:.r5C 

0.95 1.375 Int 0.0752395765 0.95 1.375 Int 0.3023 

F 0.075239579 '{ ? 0.3005 

0.95 1.5 Int 0.027356960 0.95 1.5 ~:-~ "t 0.3529 

F 0.027356978 
-:;' o ~ 5 ~ ':' .. • -' I I 

Int = Interpola~v 



Example ( iii) . ( a) F(x,y) -x cosy/I(x-~ '1'2, ___ - ~ ;::'-;:: e u. ) T\J U.v"-'/I 

(b) ?(x,y) -x cosy;: (x '" 1 \ 2 ' I - ",' - \ ') , ;:: e ~ -w. I 7\y-u.V~))~; 

I 

X Y \ 3.) X 'r ('J) " 

0.055 0.005 Int 15.72016 0.055 0.005 Int 26~.0932 
F 15.7200'[ 1<' 26 i .096 i .. 

0.075 0.005 Int 19.6698 0.075 0.005 - 4:6.953 ....... .6..6. V 

F 19.6679 F 416.958 
"-

0.095 0.005 'Int 22.576 0.095 0.005 ~ , 559.599 ~rl "t, 

F 22.558 :2 559.607 

0.085 0.035 Int 50.896 0.085 0.035 Ir:t 2824.409 
F 50.919 ? 2824.461 

0.095 0.035 Int 89.0 0.095 0.035 Int 7274.4 
F 81.3 F 7270.5 

O. 1 0.035 Int 85.5 O. 1 0.035 Ir:.t 9042.18 
F 90.4 ':<' 9042.83 .. 

0.075 0.045 Int 36.97 0.075 0.045 I:;.t 1482.93 
F 37.07 F 1482.89 • 

0.085 0.045 Int 59.6 0.085 0.045 Int 4078.127 
F 61.2 F 4078. 144 

0.09 0.045 Int 93. 1 0.09 0.045 Int 9130.73 
F 91.3 F 9130.06 

0.095 0.045 ' Int 221.5 0.095 0.045 rnt 35610.3 
F 181. 7 F 36338. 1 

O. 1 0.045 Int 547.3 o . 1 0.045 Int -1.2x10 8 

F 00 

..., 
00 .c 

0.085 0.055 Int 54.8 0.085 0.055 Int 2821. 31 
F 50.9 F 2821.02 

0.095 0.055 Int -178.4 0.095 0.055 Int 7002.3 
F 81.2 F 7264.0 

O. 1 0.055 Int 42.4 o . 1 0.055 :-r+ 9033.6 .......... ~ v 
-, 90-! ~ 

F 90.3 
M ' Y-r •. .. 

0.055 0.095 Int 13.90 0.055 0.095 I~t 203.09 

14.01 
-, ~J'18 02 

F 
.: ~U • ...-

0.075 0.095 Int 16.577 0.075 0.095 T· ..... ,..i- 297.2 -. .... .i. u 

16.521 
..., 

2~J 5.5 
F 

l' 

18.90 0.095 o. C95 T.,.-- -.c"""' 

0.095 0.095 Int ..,L ...... v :JU'y.-' 

18.02 
-, 353.5 

F 



TABLE 6.3 (cor-l:'::'n-~c:G.) 
, ,/: 

-

Example ( iii) . F(x,y) -x 
cosy/{/·_~ ~"='2( -~. -,-,-= e \.1. oJ. • U .;) -:- - r - v 'v ~ - J - • J • . / I 

X Y (c) x y r, ) 
\ -, 

0.055 0.005 Int 230.853 0.055 0.0025 T-~+ ~ .. .-.. n-- r, :: "'7 "': '" ,.,~ 
........ U ~ I';J. [')':::0 ! ' I :'';J 

F 230.847 F 219. 7~2671 i 61 
0.075 0.005 Int 371.104 0.095 0.0025 - -l-. 4'7'7 01 '71 .l.JI." ; ;. Lf, 

F 371.093 F ~11.0466 

0.095 0.005 Int 534.970 0.055 0.0275 Int 331.715GO~5 
F 5311-.919 F :3 31.1150033 

0.085 0.035 Int 1835.88 0.085 0.0375 Int 20 i 1 .80 
F 1835.90 F 2011.16 

0.095 0.035 Int 4543.78 0.09 0.0375 Int 3247.2492 
F 4544.08 F 3241.2485 

O. 1 0.035 Int 7233.9 0.095 0.0375 Int 5801.1 
F 7234.3 F 5815.9 

0.075 0.045 Int 1029.7859 O. 1 0.0375 Ir-. t 11128.684 
F 1029.1826 F 11128.631 

0.085 0.045 Int 2293.976 0.085 0.0425 Int 2258.991 
F 2293.956 F 2258.912 

0.09 0.045 Int 4057.90 0.09 0.0425 Int 3948.5651 
F 4057.80 F 3948.5661 

0.095 0.045 Int 9090.9 0.095 0.0425 Int 8523.3 
F 9084.5 F 8551 . 1 

O. 1 0.045 Int 36166.0 O. 1 0.0425 Int 28928.22 
F 36156.9 F 28928.65 

0.085 0.055 Int 1834. 199 0.055 0.0475 Int 311.2240~ 

F 1834.247 
..., 311.22398 l' 

0.095 0.055 Int 4552.3 0.08 0.0475 Int 1 460 . 11 314:3 
F 4540.0 F 1460.113111 

O. 1 0.055 Int 7227. 17 0.085 0.0415 Int 2258.53 
22~'"' \,.., 

F 7227.75 
..., 

)b • ..;u ~ 

0.055 0.095 Int 188.39 0.09 0.0475 Int 3941.680 

F 188.44 :? 3941.611 

0.075 0.095 Int 280.3 0.095 0.0415 T.,..,-'- 3501.9 -.. ...... v 

F 271.6 F 8549.2 

0.095 0.095 Int 540.9 O. 1 0.G~15 TV"I+ 28923.3 -.,., u 

F 348.2 11' 28922. 1 .. 



TABLE 6.4 
~u..,. 

Example (i v) . ( a) -:0 I ) .r\X,y 
X c I'''' .~- \ = e os y \. v . I U ) - :.: ) 

(b) F(x.,y) 
-x 

cosY/{(0.~~5-~)(~.~G5-Y)~ = e 

x y ( a) C:) ) 

0.055 0.005 Int 18.92946633821564961792 189 29 \, (,/ -: -: s?...,. c:: " - : ~ ~, 

F 18.92946633021564961111 
. ~vOJ~v~,~V~JVVI 

1 ., ,- ,- ~' ,.-,.- - - - - '7 - /, -"- 8 
o'j.C:)l400jjv21)~4'jo; 

0.095 0.005 Int 90.9361561330232116 ' 909.361561330232102 
F 90.9361561330232134 909.36156133023213~ 

O. 1 0.005 Int 180.965221518359505 1809.652215i3359~9) 
F 180. 0 65221518359516, 1809.65221518359516 

0.095 0.025 Int 90.908811022689345 1136.3609627030168c7 
F 90.908811022689352 1136.360962183610690 

0.055 0.045 Int 18.91053986892252180 315. 115664482042i249 
F 18.91053986892252134 315.1156644820421223 

0.095 0.045 Int 90.8115234973648630 1514.0812495608120 
F 90.845234913648614 1514.0812495608102 

O. 1 0.045 Int 180.78428494194383 3013 0714'-7r-~~-• I ) : ~I j U , c: 

F 180.78428494194315 3013.011415799063 

0.015 0.065 Int 30.85941121166291918 111.48693179157~4907 

F 30.85941121166291995 111.4869311915744988 

0.095 0.065 Int 90.71[525604'18720 59 2252.63140104620178 
F 90.7)[5256041372065 S?<c;. I'~~' '"",~/'\LGC:'\o1<-:' 

~~vu.OJ'''''V'U' VU'~J 

0.055 0.085 Int 18.8613605698124824 943.06802349~624025 

18.8613605698124806 
" /' ,-', J I"""' -,) ,- r'\ /' r \ ""\ -, ~ 

F 
943.000 c:O~~uOC:4vJ' 

0.015 0.085 Int 30.81313434548423293 1540.65611121~21~652 

F 30.81313434548423288 15'" 6-/''''" 7"'7' ,.-. - 16' ' .:..:.u. )0: I ,~ I ~.:: 1 Li'4t 

0.095 0.085 Int 90.608980211599392 4530.449010879972 

F 90.608980211599383 4530.4~90~0370969 

O. 1 0.085 Int 180.314132086868511 90'- 1061"0 1 '"14"" ,)'7:' : ) . 0.,..).::.4,- , v 

F 180.314132086868539 9015.7G66J43~34269 

18.8443468983158829 
"-'-4 1 '6- -,.... -,.,~---

0.055 0.095 Int 
1 do • ..;. 3..;. 09 C j : ) () , ) ~.:) 
884 ' ,...' I" C 9 C '). - : C' ~ -" 

F 18.844346898315880 5 1 . ..;.jc;.ou' VJ I )uvU)\J 

30.185339115i024916 
8 53"'·-"-'0'" "~-:: 

0.015 0.095 Int 
301. .::.'j ; ,); .;:,..,.:) I ~ 

F 30.1853391151024922 30,(3. 5339'::51 C2~022 

90.527241438123610 
4 _.' ....,-.,. - -'J 

0.095 0.095 Int 
9052.12 ,..,..)O.~ .::.0_ 

90.521247438123681 
9052 '7,,)' ·':5 ~ -; ,,:,,:: 

F 
.I'-.t...r.~.-I I,,--,V-....I 

180.151481815193603 
. ~ 0 . - . I :. • ~ • c: 19 -::0 :::? 

o . 1 0.095 Int 
~\.,; :). ,~0:,J1/ ...)/~ 

.:...- "~;':--"'-':'~9 

F 180.15i481815193685 I ;)J I ). i"" V vi) i 'j -,v 



~ ... -
TARLE 6 c:: 

r ~ 

-~.,I . .) 

Example ( v) . F(x,y) == log( :.:+2) ~ -'.I 
c: 

x Y x y 

0.025 0.025 ( a) 0.6881 
. 

0.225 0.275 ( a) I). 6c;~ 

(b) 0.688148 ('0 ) o :'",.-,)::. 7 
.uuJ""v~ 

F 0.688149 F o 60'7~'7~ 
• i j....) 

o. 175 0.025 (a) 0·7579 C.275 0.275 ( 3.) o ~ r' ..... \ 

• Oc j4 

(b) 0.757847 (1:; ) 0.62~376 

F 0.757844 F o. 62,4 :"~)3 
0.325 0.025 ( a) 0.8230 0.025 0.325 (a) 0.5097 

(b) 0.822905 (b) 0.509793 
F 0.822889 F 0.509793 

0.475 0.025 ( a) 0.8835 0.175 0.325 ( a) 0.5613 
(b) 0.883903 (b) 0.561421 

F 0.883865 F 0.561424 

0.075 0.075 ( a) 0.0772 . 0·325 0.325 ( a) 0.6087 
(b) 0.677217 ('0 ) 0. 609621 

F 0.677217 F 0.609611 

0.025 o. 175 ( a) 0.5922 0.475 0.325 ( G.) o . 6439 

(b) 0.592295 (b) 8.654755 

F 0·592295 " 0.654783 r 

o. 175 o. 175 ( a) 0.6523 0. 425 0.425 ( a) 0.5765 

(b) 0.652281 ('0 ) O. 57696~ 

F 0.652282 F 0.579130 

0.325 o. 175 ( a) 0.7080 0.025 0.475 (a) 0.4385 

(b) 0.708260 (b) 0.438783 

F 0.708267 F 0.438783 

0.475 o. 175 ( a) 0.7577 o. 175 0.475 ( a) 0.4827 

(b) 0.760738 (b) 0.;"'83220 

F 0.760750 ? 0.483223 

0.225 0.225 ( a) 0.6385 0.325 0.475 ( a) 0.523i 

(b) 0.638616 (".J) -,--; ~ I , "'34 O. )L'o v 

F 0.638619 F '\ - "1 .. -- ~ 
u • ):"::':"'0:;/ [ 

0.275 0.225 ( a) 0.6556 0.475 0.475 I ~ ) \V- o 5c :::: · //-' 

(b) 0.656359 ('::l ) 0.563596 

F 0.656364 
\:, '" C.6"'C::'77 U • .,I .)/1 



" / / 

TABLE 6.6 
..... cc 

Example (vi) • F(x,y) :z: = e cos y 

Points inside the reglon: Po:'nts ' . - . -
Ol.:i..""Cs:..ae :'~-.. C ycg:.c:-.. : 

X y :z: y 

0.05 0.05 Int 0.95004063541524 -0.35 -0.35 :u: .... • v 
1 ,":. -: -:; '\ -: ~ -") -::, -" 
'.-.J..J-.JV..,J~....J-,/V 

F 0.95004063541544 ? 1 -""~ -
• j.)..)~ 33332v' 

0.45 0.05 Int 0.63683128246727 1 .45 -0.35 L'1"t o 220 ? \ ,- - r' - ~ • ...)~C'}'::"~':f 

F 0.636831282J-t6741 -::;' 
"- 0.2203469279 

0.85 0.05 Int o .426880771~58039 -0. 15 -0 . .15 I:-.'-t 1. 14375809666 

F 0.42688077458049 F 1. 1~87330?65-:' 

0.05 0.45 Int 0.856531778964269 1. 25 -0. ~ 5 Int o 28328'71"-~(,--. :O)OQ)j 

F 0.856531778964212 F 0.283287656525 

0.45 0.45 Int 0.574150421506317 1. 05 0.05 Int 0.3495004180467 i c 
F 0.574150421506319 F 0.349500418046795 

0.85 0.45 Int 0.38486453697496 -0.35 0.45 I::t 1 .277795262182 

F 0.38486453697498 
.." 1 . 277795262174 l' 

0.05 0.85 Int 0.62779538804031 1.45 0.45 Int 0.2112101362C6 

F 0.62779538804034 F o .21 12181 36212 

0.45 0.85 Int o. 420 823833)~ 1214 0.05 1 .05 Int 0.473304221529 

F O. 420823833 Jt 1216 F o .4 733042215 3~ 

0.85 0.85 Int 0.28208665138572 1. 05 1.05 Int 0.1741188925202 

F 0.28208665138574 F 0.1741133925221 

-0. 15 1. 25 Int 0.3663523169 

F o 3//--1"31"1 • oo.::)~ u 

1 .25 1 .25 L'1t 0.090341369 C8 

-, 0.09834 136933 ... 

-0.35 1.45 I""'-+-... v 0.17:081536 

? o . ~ r,''', 0 C .. ; 5;0 

1 .45 1. 45 :Lr~t 
8 //_1"'"--,.., I" ~ - ..:- • 

U • 02 2uv --,v oJ ; 

--~r""-/'--

? C . 02v~CJc.:,C:;J.) 



taken at the point (1,1) because the func~io~ co.:; 

zero along the mesh line y == 0 • I:r,. fact, 

fraction (6.5) does not exist if any of its 

required to interpolate to a sequence of identical values. 

of similar accuracy to those in Table 6 1 W ~ b·' .~ ere a~so c ~al~eQ fer 

the function cos x sinh y by using (0,0) as orlgln and ~QdifYinb 

the form of the interpolatory fraction. This device may be used 

'for interpolation over a circular mesh In polar coordinates (r,e) 

J..n which r:;;: 0 is a single pO::"~"lt. 

In examples (iii)(b) and (iii)(c) the interpolation is 

unexpectedly inaccurate near the corner (0.1,0.1). This is 

presumably due to an unwanted singularity inside the region. 

In example (v) the method is shown to be of great value 

when the data is known only to low accuracy. A single interpolatory 

fraction may thus be used as a global approximation to the solution 

of a partial differential equation. 

In example (vi) the function -x e cos y lS successfully 

extrapolated outside the region of interpolation. T.~is illustrates 

the main advantage of ration~l interpolation, namely, that the 

fraction approximates closely to the analytic structure of ~;.-..; 

'function and not merely to'its values at a few points. 

From these examples it may be seen that the method worle:; well. 

for suitable smooth functions which are regular ir ... side 2..:-.c. :-... <2&:;" ~t.e 

interpolation reglon. The method is unsatisfactory nea:: pOlr ... "'C. 



singularities or singularities in derivatives 0: - r, --
lI ....... :;:: 

- -- .,. - ::.... -.... -..-. - ' .- - - -., 
__ ...... \.1'- ... .:...--'V_c..'-Jc.. ........ 

function although, In exam~le (iv), the for~ul& ~s 6CO~ ~e&~ 

line singularities outside the reglon 

successful exaLl}les results are generally oest :lea~ t~e orl2;:"':. 

but are still good at more distant points. 



6.2 Interpol'ation on Cuboi d and Sy)ercubcic. 

We will r"ow generalisp. the method descr:.,-ced - v, 

mesh. We adopt a similar notation to l,hal. ~ec:. i~ Chapter 5. -...:;~c. 

consider N independent varia-oles {x(k)} and \·rri te 

x = 

We let the hypercuboid mesh occupy the reglon l~ uhich xCd 

for k = 1,2, .... N a.'1d be defined by the a~sciss2.e {x(k)} 
n 

(k) 
> y 

- 0 

n = 0,1,2,3, ..... Again using a vector suffix notation, we 

let {c.} be the array of coefficients to be determined and define 
l 

the senuence of functions {w (x)} by 
':1. n-

l'J 
IT x -x 

w (x) n- = . c + g ex) + 

{ (k) (k)} 

k=l n 

n n - wn+l(x) 
(

( "1'7\ v ...... I ) 

whexe c denotes c and g (x) lS the sum of all sub-fractions 
n nn •... n --n 

in the nth parlial denominato? 

The definition (6.17) leads to the interpolatory fractior. 

In N vari able 5 

7,J () " .. {k ;. ~~) } 
II ,x -x 

k=l 0 
c + go(x) + ( ) o cl + gl x + = + 

( ." ... ;.,.) 0 • ..;....., 
+ •••• + c + g." ( x) +. . .. . 

:l J.. 

Also from (6.17) we have 

c = i{ (x ) 
n n-n 



, ~,-.. 

_.0 

where 

= x {X(l) ,X(2), x(X)l 
-n n n .... 

-r J 
d 

, ( :: ,-, ~ ) 
,-,.':::'u 

and if we adopt the notation 

x. = {x~l) ,x~2) , U;;) } 
-.J.. . . . . x. 

J l J 2 Jx .. : 

then we have 

g (x.) 
!l-.J.. 

= w (x.) - w (x ) 
n -1. n -n (6.22) 

for n = 0,1,2,3, .... provided 
N 
IT (j. -n) = O. Rearr811glr:g 

k=l i{ 

(6.17) and using (6.19) and (6.22) we obtain the generalised 

inverse difference scheme 

w l(x.) n+ -l 

N 
II 

k=l 
N-l 

w (x.)+(-l)Nw (x )- L L (_l)~-m-lw (x.) 
n -l n -n m=l..J.. n -1. 

, 

where 1 (-l)N-m-lwn (Xi) denotes the sum over the (!) vah'2s 

w (x.) associated with the sub-fractions of order m, such tna"t 
n-.J. 

(i) or for each k, 

(ii) i =f i and i =f n • 

In Table 6.7, below, is an example of continued fraction 

(6.23) 

interpolation in three variables over a mesh of cubeS. 7~o2 ~~.ctio~ 

-z F(x,y,z) = cosx sin(l-y) e lS interpolated over t:.e Ci.lJ02 

o ~ x ~ a. , 0 ~ y ~ a. , 0 ~ z < a. with h = 0.1 2...'10.. ex Si.lcc02ssiv02ly 

equal to 0.4 and 0.6. Tne fraction was eval uatec. 

for each value of a.. The increased accuracy iil 'J.3 -'c.ra:'es t~-.e va: 1.;.02 

of using a global, as opposed to a locc.l, interpol:....tio~:. ::'\::-':';: . .2~~. 



" . ~-.~ :: '7 
...... -~......J~ v. I 

( ' . -z F x,y,Z) ; COSX sln(l-y) e . 

x y z c:. 

0.05 0.05 0.05 0.4 
0.6 

F 

0.15 0.15 0.15 0.4 
0.6 

F 

0.25 0.25 0.25 0.4 
0.6 

F 

0.35 0.35 0.35 0.4 
0.6 

F 

0.05 0.05 0.15 0.4 
0.6 

F 

0.05 0.15 0.15 0.4 
0.6 

0.05 0.35 0.35 0.4 
0.6 

F 

0.15 0.25 0.35 0.4 
0.6 

F 

o .1'7271'!792 

0.772771'783 

0.63937210 
0.6393720431 

0.6393720453 

0.5:435750 

0.5143576244 

0.5143576234 

0.40061232 

0.40061207~5 

0.4006120754 

0.6992379 
0.6992 :.3262 

0.699238254 

0.645824982 

0.6458249189 

0.64532~9143 

0.42593488 

0.425934682 

0.425934679 

0.47494887 

0.4749489839 

0.1,. 749489343 
, r 55112'J-~-0.35 0.25 0.15 o.~ v. ~~VV 

0.6 0.5511223779 

F 0.5511223784 



CONCLUSION. 

The work presented in Part II is intended 2..3 a s-'c8.:::-'ci:-.;-)::;:':-_--.; 

for further research into several possible applicat:::'c~3. 

in numerical mathematics there l" s room" r"or new "rv'e-'-no' f ...... ..... vd a.s or v:~e 

solution of boundary-value partial differential equation probler::.s 

and it lS hoped that some of the ideas in this thesis may be 

useful In this field. 

Within the scope of Chapter 4. we could use S2-fractions to 

analytically continue a double series solution of a hyperbolic 

equation with analytic Cauchy initial conditions. For example, 

the one-dimensional wave equation 

1 
2 

c 

2 
d u(x,t) 

::::; 

at2 

may be solved In double serles form glven single power serles A(X) 

and ~(x) for the initial conditions 

u(x,O) ::::; A(X) , 

au 
at 

::::; ~ (x) . 

The solution obtained in this case may be expressed as a s:'~-.;::"e 

integral [d'Alembert's solution] for which univ~riate met~oQs can 

be used, although there may be hyperbolic problems for "Vl:1.ic::' 

S2-fractions are advantageous. 

In harmonic problems that can be solved us:.ng c;.~1e(..·.' s 

functions it is sometimes nossible to obta:'::. a '::"ouole 3e~ .. :.es ... 

the solution although, when the series coefficie~~s a~e ea3i~y 



obtained, simpley methods a.re usually avail.a8].e. 

Clearly, if any real. progress is to be ~ace ,. ... ~ - ........ 
0/,..1... \.I ...... 

boundary-value problems then more researc[-~ 1S r.eecec. -~ - .......... -..; 
~l" I'JU~""", 

be premature to consider the advantages of cOutinued frac~ic~ 

solutions of P.D.E. problemn but the field holds :;'lU .. CI: prG;"ise, 

although the difficulties tl1 be overcome are large. One p18:c:siole 

line bf research would be to develop continued frac~ions that are 

part-interpolating and part-corresponding to a power ser~es. 

1S little doubt that such fractions could be formed, but "the deta':"ls 

of their structure and thei r method of application require .;..·~ytn.er 

study. The method of solution in series for partial differential 

equations has been largely isnored by mathematicians because of the 

practical problems involved but, now that means of analytic 

continuation of such series are available, it is possible to 

consider the idea more seriouslY· 
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