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Abstract 

The thesis develops two families of numerical methods, based upon new ra

tional approximations to the matrix exponential function, for solving second

order parabolic partial differential equations. These methods are L-stable, 

third- and fourth-order accurate in space and time, and do not require the 

use of complex arithmetic. In these methods second-order spatial derivatives 

are approximated by new difference approximations. Then parallel algo

rithms are developed and tested on one-, two- and three-dimensional heat 

equations, with constant coefficients, subject to homogeneous boundary con

ditions with discontinuities between initial and boundary conditions. The 

schemes are seen to have high accuracy. 

A family of cubic polynomials, with a natural number dependent coeffi

cients, is also introduced. Each member of this family has real zeros. 

Third- and fourth-order methods are also developed for one-dimensional 

heat equation subject to time-dependent boundary conditions, approximat

ing the integral term in a new way, and tested on a variety of problems from 

the literature. 
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Chapter 1 

Preliminaries 

1.1 Introduction 

Partial differential equations and systems of such equations appear in the de

scription of physical processes. For example, in hydrodynamics, the theory of 

elasticity, the theory of electromagnetism, field of heat flow, diffusion of ma

terials and quantum mechanics Gerald and Wheatley (1994). The solutions 

of the equations describe possible physical reactions that have to be fixed 

through boundary conditions, which may be of quite a different character. 

These equations involve two or more independent variables that determine 

the behaviour of the dependent variable as described by a differential equa

tion, usually of second or higher order. 

In the last two decades much attention has been given in the literature 

to the development of La-stable and accurate methods for the numerical so

lutions of second-order parabolic partial differential equations. For example, 

Lawson and Morris (1978) developed a second-order La-stable methodas an 

extrapolation of a first-order backward difference method in one- and two-
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space dimensions. This idea was developed further for one-space variable by 

Gourlay and Morris (1980) who achieved third- and fourth-order accuracy 

in time by a novel multistage process. The second-order method of Lawson 

and Morris (1978), was adapted and used in a practical problem involving 

a non-linear parabolic equation by Twizell and Smith (1982). Lawson and 

Swayne (1976) discussed a second-order accurate La-stable method for the 

heat conduction problem with time-dependent boundary conditions. 

The general quasilinear partial differential equation of the second-order 

in two independent variables x and t has the form 

( 1. 1 ) 

where u = u(x, t) and a, b, c and e are functions of x, t, u, ~~ and ~~, but not 

of the second-order derivatives. This equation is said to be: 

(i) elliptic when b2 
- 4ac < 0, 

(ii) parabolic when b2 
- 4ac = 0, and 

(iii) hyperbolic when b2 
- 4ac > 0. 

This thesis is concerned only with second-order parabolic partial dif

ferential equations, in one-, two-, and three-space variables subject to ho

mogeneous boundary conditions and in one-space variable subject to time

dependent boundary conditions. 
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1.2 Method of Lines 

Covering the region, in which a numerical solution to be examined, by a 

rectangular grid with sides parallel to the axes and then replacing the spatial 

derivatives in the P DE by their finite-difference approximations is called a 

method of lines. Time dependent problems in Partial Differential Equations 

(PDEs) are often solved by the Method of Lines (MOL). By this method we 

can transform the initial/boundary-value problems into a system of ordinary 

differential equations which can be written in the matrix form as 

dU(t) 
dt = AU(t) + v(t), ( 1. 2 ) 

where A is a square matrix, v(t) results from the non-homogeneous boundary

conditions and U is the solution vector at time t. It is easy to show that the 

solution U(t) of (1.2) satisfies the recurrence relation 

It+l 

U(t + i) = exp(lA)U(t) + t exp((t + i- s)A)v(s)ds; t = 0, i, 2i, .... 

( 1. 3 ) 

Numerical methods are developed by approximating the exponential matrix 

function and integral term in this recurrence relation. 

When boundary conditions are homogeneous v becomes zero and the 

recurrence relation (1.3) takes the form 

U(t + i) = exp(lA)U(t); t = 0, i, 2i, . .. , ( 1. 4 ) 

Several exiting algorithms for the numerical solution are generated through 

an approximation to the matrix exponential function appearing in (1.4). The 

rational functions are frequently used for this purpose (see, for example, Fair

weather (1978), Mitchell and Griffiths (1980), Reusch et ai. (1988), Serbin 

(1985,1992)1 Twizell et ai. (1993) and Yevick et al. (1992)) Perhaps the most 
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well known are the Pade approximations; for example, Reusch et al. (1988) 

have developed algorithms corresponding to high order factorized diagonal 

Pade approximations for parabolic PDE's which are no more complicated to 

implement than that corresponding to the Crank-Nicolson method (Voss and 

Khaliq, (1995)), Zakian (1971) used a partial fraction expansion to compute 

the matrix exponential function via Pade approximations which is particu

larly useful in parallel processing. But the methods corresponding to high 

order Pade approximations involve the square and higher powers of matrix 

A which incur high cost or use complex arithmetic which cause accumulated 

rounf off error. On the other hand Norsett and Wolfbrandt (1977) consid

ered rational approximations to the exponential function with only real poles 

and showed that those with the smallest error constant occurred in the case 

of repeated poles. Lawson and Swayne (1976) developed a simple efficient 

algorithm for one dimensional parabolic PDE's using a second order ratio

nal approximation possessing one pole of multiplicity two, however,it lacks 

natural parallelism. Voss and Khaliq (1995) considered second order ratinal 

approximations which possess real and distinct poles and the resulting al

gorithms admitted parallelization through a real partial fraction expansion. 

At last but not least Twizell et al. (appearing in 1996) developed a fam

ily of second order methods which are La-stable and don't require complex 

arithmetic. 

1.3 Motivation and Aims 

The demands of both the scientific and the commercial communities for ever 

increasing computing power led to dramatic improvements in computer ar

chitecture. Initial efforts concentrated on achieving high performance on a 
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single processor, but the more recent past has been witness to attempts to 

harness multiple processors. Multiprocessor systems consist of a number of 

interconnected processors each of which is capable of performing complex 

tasks independently of the others. In a sequential algorithm all processes 

are performed by a single processor turn by turn but in a parallel algorithm 

indepedent parts of the program are performed by different processors si

multaneously which save a lot of time. So in this thesis parallel algorithms, 

which do not require complex arithmetic, will be developed and tested on 

heat equation with constant coefficients, subject to homogeneous boundary 

conditions and time-dependent boundary conditions, with discontinuities be

tween initial and boundary conditions. Higher accuracy and L-stability are 

also important aims of this thesis. 

1.4 Notations 

Usually the theoretical solution of a parabolic partial differential equation is 

denoted by u and the theoretical solution of a finite-difference equation is 

denoted by U. While the computed solution is denoted by U. The position 

at which the solution is taken is shown by appropriate indices, for example, 

u~ denotes the theoretical solution of a certain parabolic partial differential 

equation in one space dimension at mesh point (x, t) = (mh, nl) and U: 

denotes the theoretical solution of a finite difference scheme at the same 

mesh point. 
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1.5 Analysis of Difference Schemes 

1.5.1 Local Truncation Error 

Suppose that a parabolic equation is written in the form 

L(u) = 0 

with exact solution u, and let F(U) = 0 represent the approximating finite

difference equation with exact solution U. Replacing U by u at each mesh 

point occurring in the finite-difference scheme, and carrying out the Taylor 

expansions about (mh, nl), the value of I-I Fm,n(u)-L(u":,.J is the local trun

cation error at the mesh point (mh, nl) i.e; the local truncation error is the 

difference between the finite-difference scheme and the differential equation 

it is replacing. 

1.5.2 Local Discretization error 

The local discretization error is the difference between the theoretical solution 

of the differential and difference equations and is represented at the mesh 

point (mh, nl) by 

1.5.3 Consistency 

A difference approximation to a parabolic equation is consistent if 

local truncation error --+ 0 

as space and time steps are refined. 
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1.5.4 Stability 

A finite difference scheme used to solve a P DE is said to be stable if the 

difference between the theoretical and computed solutions of the difference 

equation remains bounded as n increases, 1 remaining fixed for all m. 

There are two methods which are commonly used for examining this 

notion of stability of a finite difference scheme. 

(a) The von Neumann Method 

Consider the local discretization error 

zn = un _ un 
m m m 

and introduce the error function at a given time level t 

where (3 is real and a is, in general, complex, such that 

z~ = G(x) =I O. 

To investigate the error propagation as t increases, it is necessary to find a 

solution of the finite difference equation which reduces to eif3x when t = o. 
Let such a solution be 

cxnleif3mh e . 

The original error component e if3mh will not grow with time if 

for all a. This is von Neumann's condition for stability. Here the quantity 
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is called the amplification factor. 

(b) The Matrix Method 

The totality of difference equations connecting values of U at two neighbouring 

time levels can be written in the matrix form 

where Uk(k = n, n + 1) denotes the column vector 

and An, En are square matrices of order N. The above equation can be 

written in the form 

where en = A~lEn' provided I An 1# o. The error vector 

-zn = un _ un 

satisfies 

from which it follows that 

II zn+l 11<11 en 1111 zn II, 

wherell . II denotes a suitable norm. The necessary and sufficient condition 

for the stability of a scheme based on a constant time step and proceeding 

indefini tely in time is 

II en 11< 1, 

for all n, and so the stability condition for the difference scheme, used in 

this way, depends on obtaining a suitable estimate for II en II. When en is 

symmetric, 
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where As(s = 1,2, ... , N) are the eigenvalues of en and" . 1/2 denotes the 

L2 norm. Here maxs I As I is the spectral radius of en, and en is called the 

amplification matrix. 

1.5.5 Alternative Definition of Stability 

In general, numerical methods are of the form 

u n +1 = R(lA)Un
, n = 0,1,2, ... ( 1. 5 ) 

where R(lA) is some approximation to exp(lA) in (1.4). So the matrix 

method requires 

" R(lA) Ils< 1. 

This is equivalent to requiring 

where As is an eigenvalue of A. If the eigenvalues are negative and real then 

lAs < ° and so z = -lAs> O. Hence stability requires 

1 R( -z) 1< 1. 

Here the term R( -z) is called the amplification symbol or symbol of the 

resulting numerical method. 

Definition-l 

If 

un +1 = R(lA)Un
, n = 0,1,2, ... 

where A is a matrix of order N with negative real eigenvalues AI, A2, ... , AN, 

the resulting finite-difference method is said to be Ao-stable if 

" R(lA) IIs< 1 
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or 

1 R( -z) 1< 1 

where z = -lAs. Ao-stability corresponds to unconditional stability in the 

von Neumann sense. 

Definition-2 

An Ao-stable method for which, additionally, 

lim R( -z) = 0 
z---+oo 

give rise to a finite-difference method which is Lo-stable. 

N ote:- If eigenvalues are complex with negative real parts then method is 

said to be L-acceptable. 

1.5.6 Convergence 

A finite-difference method for parabolic partial differential equations is said 

to be convergent if the local discretization error 

at the fixed mesh point (xm' in), tends to zero as the mesh is refined by letting 

h, I ---+ 0 simultaneously. 

1.6 Solving a cubic equation 

Consider the cubic equation 

1 - ax + bX2 - CX3 = 0 ( 1. 6 ) 

which can be written as 

3 b 2 a 1 
x - -x + -x - - = o. ( 1. 7 ) 

C C C 
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Repacing x by y + :c in (1. 7) gives 

3 (a b
2 

) ( ab 2 b
3 

1 ) 
y + c - 3c2 Y + 3c2 - 272 - c = O. 

Now substituting y = r cos( B) in (1.8) yields 

r3cos3(B) + - - - rcos(B) = -- + - +-. (
a b2 ) ab 2b3 1 
c 3c2 3c2 272 c 

Comparing (1.9) with 

4cos3( B) - 3cos( B) = cos(3B) 

gIves 
r3 (3ac - b2)r 2b3 - 9abc + 27 c2 

4 -9c2 27 c3cos(3B) 

When r i= 0 the left hand equality gives 

2 
r = ±-Vb2 - 3ac. 

3c 

So r has positive real values if 

b2 - 3ac > 0 

Now from right hand equality 

2b3 - 9abc + 27 c2 

cos(3B) = 3c(b2 _ 3ac)r . 

Using (1.12) in (1.14) gives 

2b3 - 9abc + 27 c2 

cos(3B) = ) 3 • 

2c(b2 - 3ac 2 

So real values of B are possible if 

1 2b
3 

- 9abc + 2~c2 1< 1. 
2c(b2 - 3ac)2 

11 
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( 1. 11 ) 

( 1. 12 ) 

( 1. 13 ) 
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( 1. 15 ) 

( 1. 16 ) 



Then 

() = 2k7r ± ~COS-l (2b
3 

- 9abc + 2~C2); k = 0,1,2. 
3 3 2c(b2 - 3ac)2 

Consequently roots of (1.6) are given by 

b 
x = - + r cos ( ()) 

3c 

in which rand () are defined by (1.12) and (1.17) respectively. 

12 
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Chapter 2 

Third-Order N ulllerical 
Methods 

2.1 The Method 

A typical problem in applied mathematics is the one-dimensional heat equa

tion. This initial/boundary-value problem (IBVP) is given by 

au a2u 
at ax2 ' 0 < x < X, t > 0 ( 2. 1 ) 

with the boundary conditions 

u(O, t) = u(X, t) = 0, t > 0 ( 2. 2 ) 

and the initial condition 

u(x,O)=g(x), O<x<X ( 2. 3 ) 

where g(x) is a given continuous function of x. 

There will exist discontinuities between the initial-condition and the boundary-

conditions if 

g(O) -# 0 or g(X) -# o. 
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The solution of the problem {(2.1)-(2.3)} gives the temperature u at a 

distance x units of length from one end of a thermally insulated thin bar 

after t units of time of heat conduction. 

2.1.1 Discretization 

Dividing the interval [0, X] into N + 1 subintervals each of width h, so that 

(N + l)h = X, and the time variable t into time steps each of length l gives 

a rectangular mesh of points with co-ordinates 

(m = 0,1,2, ... , N, N + 1 and n = 0,1,2, ... ) covering the region R = [0 < 

x < X] x [t > 0] and its boundary 8R consisting of the lines x = 0, x = X 

and t = 0. 

2.1.2 Transformation of {(2.1)-(2.3)} into a System of 
ODE's 

To approximate the space derivative in (2.1) to third-order accuracy at some 

general point (x, t) of the mesh, assume that it may be replaced by the five

point formula 

82u(x, t) 
8x2 

1 
h

2 
{a u( x - h, t) + b u( x, t) + c u( x + h, t) 

+ du(x+2h,t)+eu(x+3h,t)}. 

As this approximation is not symmetric, five points are needed. 

( 2. 4 ) 

Expanding the terms u(x - h, t), u(x + h, t), u(x + 2h, t) and u(x + 3h, t) 

about (x, t) in (2.4) gives 

h282U(x,t) (a+b+c+d+e)u(x,t) 
8x2 
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+ (-a+c+2d+3e)h 8u(x,t) 
8x 

+ ~ (a + c + 4d + 9 e ) h 2 8
2
u ( x, t) 

2! 8x2 

1 83u(x t) 
+ -(-a+c+8d+27e)h3 

, 
3! 8x3 

+ ~(a + c + 16d + 81e) h484U(x, t) 
4! 8x4 

+ ~(-a + c + 32d + 243e) h5 8
5
u(x, t) 

5! 8x5 

+ 

Equating powers of hi(i = 0,1,2,3,4) in (2.5) gives 

a+b+c+d+e 0, 

-a + c+ 2d + 3e 0, 

a + c + 4d + ge 2, 

-a + c + 8d + 27 e 0, 

a + c + 16d + 81e 0. 

The solution of the linear system (2.6) is 

11 -5 1 1 
a = 12' b = -3' c - d--2' -3' 

-1 
e=-

12 

so that 

1 
12h2 {II u(x - h, t) - 20 u(x, t) + 6 u(x + h, t) 

h3 85u( X t) 
+ 4u(x+2h,t) - u(x+3h,t)}+ 12 8

X
5' 

( 2. 5 ) 

( 2. 6 ) 

( 2. 7 ) 

+ O(h4) as h -+ ° ( 2. 8 ) 

is a third-order approximation to the second-order space derivative at (x, t). 

Equation (2.8) is valid only for (x, t) = (xm' tn) with m = 1,2, ... ,N - 2. 

To attain the same accuracy at the end points (XN-l, tn) and (XN' tn), special 

15 



formulae must be developed which approximate 82u(x, t)/8x2 not only to 

third order but also with dominant error term 112h38 Su(x, t)/8xs for x = 

XN-l, XN and t = tn. To achieve both of these, six-point formulae will be 

needed in each case. It will also be useful (for example, for extrapolation) to 

retain the factor (12h2)-1 as in (2.8), as may be seen in (2.13) below. 

Consider, then, the approximation to 82u( x, t) /8x2 at the point (x, t) = 

(XN-l, tn): let 

h2 8
2u(x, t) 

12 8x2 

Then 

au(x - 3h, t) + bu(x - 2h, t) + cu(x - h + h, t) 

+ du(x,t)+eu(x+h,t)+fu(x+2h,t) 

hs 8Su(x, t) 
+ 8xs ' 

(a + b + c + d + e + f) u ( x, t) 

8u(x, t) + ( -3a - 2b - c + e + 2f) h 8x 

1 2 82u(x, t) 
+ -(9a+4b+c+e+4f)h 8 2 2! x 

1 3 83u(x, t) + - ( - 27 a - 8b - c + e + 8 f) h 8 3 
3! x 
1 84u(x t) 

+ -(81a + 16b + c + e + 16f) h4 8 4' 
4! x 
1 s 8Su( x, t) 

+ -(-243a-32b-c+e+32f)h 8 S 
5! x 

( 2. 9 ) 

+ h S 8
s 
u ( x, t) + . . . ( 2. 10 ) 
8xs 

Equating powers of hi(i = 0,1,2,3,4,5) in (2.10) gives 

a + b + c + d + e + f 0, 

-3a - 2b - c + e + 2f 0, 

9a + 4b + c + e + 4f 24, 
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-27a - 8b - e + e + 8f 0, ( 2. 11 ) 

81a + 16b + e + e + 16f 0, 

-243a - 32b - e + e + 32f -120. 

The solution of the linear system (2.11) is 

a = 1, b = -6, e = 26, d = -40, e = 21, f = -2 ( 2. 12 ) 

so that, at the mesh point (XN-l, tn), the desired approximation to 82~~~,t) is 

1 
12h2 {u(x - 3h, t) - 6 u(x - 2h, t) + 26 u(x - h, t) - 40 u(x, t) 

h3 85u(x t) + 21 u(x + h, t) - 2u(x + 2h, t)} + 12 8
X

5' 

( 2. 13 ) 

Suppose, now, that at the point (x, t) = (XN' tn) the approximation to 

the second-order space derivative 8 2u(x,t)/8x2 is given by 

Then 

a u(x - 4h, t) + bu(x - 3h, t) + eu(x - 2h, t) 

+ du(x - h + h, t) + eu(x, t) + f u(x + h, t) 

h5 85U(X, t) 
+ 8x5 ' 

(a + b + e + d + e + f) u(x, t) 

8u(x, t) + (-4a - 3b - 2e - d + f) h 8x 

1 82u(x t) 
+ -(16a+9b+4e+d+f)h2 8 2' 

2! x 
1 3 83u( x, t) 

+ 3! (-64a - 27b - 8e - d + f) h 8x3 

1 84 u(x t) + -, (256a + 81b + 16e + d + f) h4 8 4' 
4. x 
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+ ~(-1024a - 243b - 32e - d + f) h5 8
5
u(x, t) 

5! 8x5 

+ h5a5~~,t) +... (2. 15 ) 

and equating powers of hi(i = 0,1,2,3,4,5) in (2.15) gives 

a+b+e+d+e+f 0, 

-4a - 3b - 2e - d + f 0, 

16a + 9b + 4e + d + f 24, ( 2. 16 ) 

-64a - 27b - 8e - d + f 0, 

256a + 81b + 16e + d + f 0, 

-1024a - 243b - 32e - d + f -120. 

The solution of the linear system (2.16) is 

a = 2 b = -11 e = 24 d = -14 e = -10, f = - 9. , , , , ( 2. 17 ) 

Hence, at the mesh point (XN, in), the approximation to 8 2u(x, t)/8x2 is 

1 
12h2 {2 u(x - 4h, i) - 11 u(x - 3h, t) + 24 u(x - 2h, i) 

h3 85u(x t) 
14u(x - h, i) -10u(x, i) - 9u(x + h, i)} + 12 8

X
5' 

+ O(h4)as h -+0 (2.18) 

Applying (2.1) with (2.8), (2.13) and (2.18) to the mesh points of the grid 

at time level t = tn produces a system of ODE's of the form 

~;t) = AU(t), t > 0 ( 2. 19 ) 

with initial distribution 

V(O) = g ( 2. 20 ) 
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in which U(t) = [U1(t), U2(t), ... , UN(t)]T, g = [g(Xt),g(X2), ... ,g(XN)]T, T 

denoting transpose and 

-20 6 4 -1 0 
11 -20 6 4 -1 

11 -20 6 4 -1 

A=_I_ 
( 2. 21 ) 12h2 11 -20 6 4 -1 

11 -20 6 4 
1 -6 26 -40 21 

0 2 -11 24 -14 -10 NxN 

It is observed that the matrix h2 A has distinct eigenvalues with negative real 

parts for N=7, 9, 19 and 39 given in Appendix A. Solving (2.19) subject to 

(2.20) gives the solution 

U(t) = exp(lA)U(O) ( 2. 22 ) 

which satisfies the recurrence relation 

U(t + l) = exp(lA)U(t), t = 0, l, 2l, .... ( 2. 23 ) 

2.2 A New Rational Approximant for exp(lA) 

To approximate the matrix exponential function in (2.23), a new rational 

approximant, for a real scalar B, given by 

( 2. 24 ) 

is introduced, where M is a positive integer and ao = 1, aM, bM - 1 I- 0 and 

ak > 0 for all k = 1,2,3, ... , M. A particular case is EI(B) which is the (1,0) 

Pade approximant and E2 ( B) is discussed in Twizell et al. (1996). Matching 

EM( B) with the first M + 1 terms of the Maclaurin expansion of exp( B) leads 
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to the following relations in the parameters 

M-I 
aM = (_l)M-l L (_l)k ak 

k=O (M - k)! 

and 
k 

b - ~(_l)i ai k 0 12M k-~ (k-i)!' =" , ... , -l. 

The magnitude of the coefficient of the error term is 

_ M-l (M - k)( -l)k+Iak 
JLM - E (M - k + I)! 

The present chapter is only concerned with E3(B). So for M = 3 

E3(B) = bo + bIB + b2B2 
ao - a1B+a2B2 - a3B3 

and 

In this case 

2.3 L-Stability 

( 2. 25 ) 

( 2. 26 ) 

( 2. 27 ) 

( 2. 28 ) 

( 2. 29 ) 

( 2. 30 ) 

( 2. 31 ) 

Let A be an eigenvalue of the matrix A given by (2.21). Then the amplifica

tion symbol of the numerical method arising from (2.24) is (Twizell, 1984) 

R( -z) = Lr=JI bk( -z)k 
Lk=O ak(z)k 

It can be written as 

""M-I k ""M-I[ (l)kb ] k 
( ) 

_ '--'k=O akz - '--'k=1 ak - - k Z 
R -z - M 

Lk=O akzk 
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or 

R(-z) = E~Ol akzk - Er-~l[ak - (-l)kbk]zk 
M 1 ( 2. 32 ) 

Ek=o akzk + aMzM 

where z -lRe(>..) > o. Thus L-stability is guaranteed (Twizell, 1984) 

provided 

( 2. 33 ) 

and 

a k - ( -1 ) k b k > 0 , for' all k = 1, 2, ... ,M - 1. ( 2. 34 ) 

Using (2.26) in (2.34) gives 

k 

ak - (_l)k~(_l)i (k ~ i)1 > 0, k = 1,2, ... ,M-1. 

or 

k-l 
(-l)k-l~(_1)i(k~i)1 >0, far all k=1,2, ... ,M. ( 2. 35 ) 

Particularly for M = 3, L-stability follows if 

1 
( 2. 36 ) al >-

2 

and 
al 1 

( 2. 37 ) a2 > - --. 
2 6 

2.4 Avoiding Complex Arithmetic 

Complex arithmetic can be avoided in a numerical method if the denominator 

of the rational approximation has only real zeros. Unfortunately there is no 

formula to find the zeros of a polynomial of degree greater than 4 in closed 

form. So numerical methods must be used to find the zeros of higher-degree 

polynomials. This chapter is concerned only with the polynomials defined 
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by (2.29) and (2.30). The denominator of E3 (()), q(()), has distinct real zeros 

(MacDuffee, (1954)) provided 

and 

2.4.1 Availability of Real Zeros for q(e) 

Taking 
n + 15 

al = -1-0-' 

, where n is a natural number, gives 

1 
a --

3 - 10' 

3n +41 
a2 = 60 

n+4 
J-l3 = 120 

( 2. 38 ) 

( 2. 39 ) 

and {(2.36)-(2.39)} hold for all n. Unfortunately J-l3 -+ 00 as n -+ 00, so only 

small values of n are useful. Since the discriminant of p(()), defined by (2.29), 

is also positive for all n so it can be factorized and a sequential algorithm 

involving no square or higher powers of A can be constructed. In addition 

to this combination a long list of values of aI, a2 and a3 which satisfy the 

conditions {(2.36)-(2.39)} and produce real zeros for q(()), defined by (2.30), 

is obtained. A few of these are given in Appendix B. 

2.5 Algorithm 1 

Suppose that aI, a2 and a3 satisfy the conditions {(2.36)-(2.39)} and ri(i = 

1,2,3) are distinct real zeros of q(()) defined by (2.30) then 

3 ( 1)-1 
exp(lA) = ~ Ci I - ri A ( 2. 40 ) 
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where Ci (i = 1,2,3), the partial-fraction coefficients of E3 (()), are defined by 

c. = p(ri) . _ 
t 3 . (1 _ !i.)' 'l - 1,2,3 

IT J = 1 Tj 

( 2. 41 ) 

j i- i 

So, using (2.40) in (2.23) gives 

U (t + I) = (t, Ci (I - :i A ) -1) U ( t). (.2. 42 ) 

Let 

( 1)-1 
Ci I - ri A U(t) = Wi(t), i = 1,2,3, ( 2. 43 ) 

Then the systems of linear equations 

( 2. 44 ) 

can be solved for wi(t)(i = 1,2,3) on three different processors simultane

ously. Consequently 
3 

U(t + 1) = L Wi(t). ( 2. 45 ) 
i=l 

This algorithm is given in tabular form in Table 2.2. 

2.6 Extension to two-space dimensions 

Consider the two-dimensional heat equation with constant coefficients 

8u(x, y, t) _ 82u(x, y, t) 82u(x, y, t) 0 X t > 0 
8t - 8x2 + 8y2 ' < x, y < , ( 2. 46 ) 

subject to the initial conditions 

u(x,y,O)=g(x,y),O<x,y<X ( 2. 47 ) 

where g(x, y) is a continuous function of x and y and the boundary conditions 

u(O,y,t) = u(X,y,t) = 0, t> 0 ( 2. 48 ) 
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u(x,O,t)=u(x,X,t)=O, t>O. ( 2. 49 ) 

Discretizing 0 < x, y < X as in the one-dimensional case using equal space 

steps and replacing the space derivatives in the PDE (2.46) by the appropri

ate third-order difference approximations{(2.8),(2.13),(2.18)} and applying 

to the all N 2-interior mesh points at time level t = nl (n = 1,2,3, ... ) gives a 

system of N 2 first-order ordinary differential equations which may be written 

in matrix form as 

with 

dU(t) = AU(t), t > 0 
dt 

U(O) = g, 

( 2. 50 ) 

( 2. 51 ) 

where U(t) = [U1,l(t), U2,l(t), ... , UN,l(t), ... , U1,N(t), U2,N(t), ... , UN,N(t)]T 

and g = [gl,l,g2,1, ... ,gN,l, ... ,gl,N,g2,N, .. · ,gN,N]T, T denoting transpose. 

The matrix A is the sum of two square matrices Band C of order N 2
, given 

by 
B1 

1 B1 
( 2. 52 ) B = 12h2 

B1 

where 

-20 6 4 -1 0 
11 -20 6 4 -1 

11 -20 6 4 -1 

B1 = 
-20 6 4 -1 

( 2. 53 ) 
11 

11 -20 6 4 
1 -6 26 -40 21 

0 2 -11 24 -14 -10 
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and 

-201 61 41 -I 0 
III -201 61 41 -I 

III -201 61 41 -I 
1 

C = 12h2 III -201 61 41 -I 
III -201 61 41 

I -61 261 -401 211 
0 21 -III 241 -141 -101 

( 2. 54 ) 

where I is the identity matrix of order N. Clearly Band C commute. Solving 

(2.50) subject to the initial condition (2.51) gives (2.23). 

2.6.1 Algorithm 2 

Since A = B + C and A and B commute, (2.23) becomes 

U(t + I) = exp(lB)exp(lC)U(t), t = 0, 1,21, ... , ( 2. 55 ) 

to third order. Using (2.40) gives 

3 ( 1)-1 
exp( IB) = ~ Ci I - ri B ( 2. 56 ) 

and 
3 ( 1)-1 

exp( IC) = ~ Ci I - ri C ( 2. 57 ) 

So (2.55) becomes 

Let 

Zi(t) = Ci (1 - :, c) -1 U(t), i = 1,2,3, ( 2. 59 ) 
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then the systems 

(1 - :; c) z;(t) = CiU(t), i = 1,2,3, ( 2. 60 ) 

can be solved on three different processors simultaneously. Let 

3 

Z(t) = L Zi(t), ( 2. 61 ) 
i=l 

then (2.58) has the form 

U(t + I) = (te; (1 -:, B) -1) Z(t) ( 2. 62 ) 

or 
3 

U(t + I) = LWi(t) ( 2. 63 ) 
i=l 

where Wi (i = 1, 2, 3), the solutions of the linear systems 

(1 - :; B) Wi(t) = e;Z(t), i = 1,2,3, ( 2. 64 ) 

can be computed on three differet processors simultaneously. Here Zi and 

wi(i = 1,2,3) are intermediate vectors of order N 2 • This algorithm is given 

in tabular form in Table 2.3. 

2.7 Extension to three-space dimensions 

Consider the partial differential equation 

au(x, y, z, t) = a2u(x, y, z, t) + 82u(x, y, z, t) + 82u(x, y, z, t), (2. 65 ) 
at 8x2 8y2 8z2 

in the region 0 < x, y, z < X, t > 0, subject to the initial condition 

u(x,y,z,O) = g(x,y,z), 0 <x,y,z< X ( 2. 66 ) 

26 



where 9( x, y, z) is a continuous function of the space variables and the bound

ary conditions 

u(O,y,z,t) = u(X,y,z,t) = 0, ° <y,z< X t > ° 
u(x, 0, z, t) = u(x, X, z, t) = 0, ° < x, z < X t > ° 
u(x,y,O,t)=u(x,y,X,t)=O, O<x,y<X t>O. 

( 2. 67 ) 

( 2. 68 ) 

( 2. 69 ) 

Discretizing ° < x, y, z < X as in the one-dimensional case, using equal 

space steps in all directions, and replacing the space derivatives in the P D E 

(2.65) by the appropriate third-order difference approximations {(2.8), (2.13), 

(2.18)} and applying to all the N 3 interior mesh points at the time levels tn = 

nl (n = 1,2,3, ... ), leads to a system of N 3 first-order ordinary differential 

equations written in matrix form as 

~?) = AU(t), t > 0 ( 2. 70 ) 

with 

U(O) = g, ( 2. 71 ) 

where 

U(t) = [Ul ,I,I(t), U2,1,I(t), ... , UN,I,I(t), Ul ,2,I(t), U2,2,I(t), ... , UN,N,N(t)]T 

and g = [91,1,1,92,1,1,"" 9N,I,I, 91,2,1, 92,2,1, ... ,9N,N,N]T , T denoting trans

pose. The square matrix A of order N 3 may be written as 

( 2. 72 ) 

where AI, A2 and A3 result from the replacements of the space derivatives 

in (2.65) by the third-order difference approximations {(2.8), (2.13), (2.18)}. 

They are commutable and are given by 

1 
Al = 12h2 

Bl 
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( 2. 74 ) 

( 2. 75 ) 

-201 61 41 -I 0 
111 -201 61 41 -I 

111 -201 61 41 -I 

B2 = 
111 -201 61 41 -I 

111 -201 61 41 
I -61 261 -401 211 

0 21 -111 241 -141 -101 N 2xN2 
( 2. 76 ) 

in which I is the identity matrix of order N, and 

-201* 61* 41* -1* 0 
111* -201* 61* 41* -1* 

111* -201* 61* 41* -1* 

1 
A3 = 12h2 111* -201* 61* 41* -1* 

111* -201* 61* 41* 
1* -61* 261* -401* 211* 

0 21* -111* 241* -141* -101* N 3 xN3 

( 2. 77 ) 

where 1* is the identity matrix of order N 2
• Solving (2.70) subject to the 

initial condition (2.71) gives (2.23). 
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2.7.1 Algorithm 3 

Replacing A by Al + A2 + A3 in (2.23) gives, since AI, A2 and A3 commute, 

U(t + 1) = exp(lAl)exp(lA2)exp(lA3)U(t), t = 0,1,21,.... ( 2. 78 ) 

Using (2.40) gives 

3 ( 1 )-1 
exp(lAl) = L Ci I - ~Al , 

i=1 T t 

( 2. 79 ) 

( 2. 80 ) 

and 

( 2. 81 ) 

Let 

( 
I ) -1 . 

Zi(t) = Ci I - Ti A3 U(t), 'l = 1,2,3, ( 2. 83 ) 

then 

(I - :/3) Zi(t) == c;U(t), i == 1,2,3. ( 2. 84 ) 

Taking 
3 

Z(t) = L Zi(t), ( 2. 85 ) 
i=1 

leads to 

3 ( I ) -1 3 ( I ) -1 
U(t + 1) = ~ Ci I - Ti Al ~ Ci I - Ti A2 Z(t). ( 2. 86 ) 

Let 

( 
1 )-1 

Yi(t) = Ci I - Ti A2 Z(t), i = 1,2,3, ( 2. 87 ) 
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then 

( 2. 88 ) 

Let 
3 

Y(t) = LYi(t), ( 2. 89 ) 
i=1 

then (2.86) becomes 
3 

U(t + 1) = L Wi(t), ( 2. 90 ) 
i=1 

where Wi( i = 1,2,3) are the solutions of the linear systems 

(I - :i Al) Wi(t) = c;Y(t), i = 1,2,3. ( 2. 91 ) 

Here {(2.84 ),(2.85),(2.88)-(2.91)} constitute the algorithm. Using this al-

gorithm three different processors can be used simultaneously thrice. This 

algorithm is given in tabular form in Table 2.4. 

2.8 Numerical Examples 

In this section a representative of many other methods based on (2.28) will 

only be used. So taking 

and 

65431 
al = 50000 

171151 
a2 = 300000 

4143 15431 14287 
a3 = 50000' bl = - 50000 ' b2 = - 60000 

and then it is found that 

rl = 2.1883713223893, r2 = 2.3398749224808, r3 = 2.3569013937170 
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are the real zeros of (2.30). Using these values in (2.41) gives 

Cl = -176.18490160503, C2 = 2051.1048759736, C3 = -1873.9199743685 

According to these values of parameters the amplification symbol of the 

method is depicted in Fig. 2.1. 

2.8.1 One-dimensional Problem 

Example 1 

Considering the one space dimensional heat equation with constant coeffi-

cients (2.1) and taking X = 2 and g(x) = 1 in {(2.1)-(2.3)} the model 

problem becomes 
au 82u 
at = 8x2 ' 0 < x < 2, t > 0 ( 2. 92 ) 

subject to the initial condition 

u(x,O) = 1, 0 < x < 2 ( 2. 93 ) 

and the boundary conditions 

u(O, t) = u(2, t) = 0, t > O. ( 2. 94 ) 

This problem, which has theoretical solution 

00 2 k'Jrx k2'Jr2t 
u(x, t) = {;[1 - (_l)k] k'Jr sin(-2-)exp( - 4 ), ( 2. 95 ) 

(Lawson and Morris, 1978) has discontinuities between the initial conditions 

and the boundary conditrions at x = 0 and x = 2. The theoretical solution 

at time t = 1.0 is depicted in Figure 2.2. 

Using Algorithm 1 the model problem {(2.92)-(2.94)} is solved for [=0.125, 

0.1, 0.05, 0.025, 0.0125, 0.01, 0.005 and 0.001, and h=0.25, 0.2, 0.1, 0.05, 
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0.025, 0.02, 0.01 and 0.001. and compared with the O( h2 + 12) method of 

Twizell et al. (1996) taking 1 = 0.1 and h=O.l, 0.05, 0.025, 0.01, 0.001 as 

shown in Table 2.1. For these values of h, it may be verified using the NAG 

subroutine F02AJF that the matrix A, given by (2.21), has distinct eigenval

ues with negative real parts so that the numerical method is L-acceptable. 

In these experiments the method behaves smoothly over the whole interval 

o < x < 2. The numerical solution for h = 0.1 and 1 = 0.1 is depicted in 

Figure 2.3. All other numerical solutions produce similar graphs. Maximum 

errors with positions at the time t = 1.0 are given in Table 2.5. 

Table 2.1: Comparison 

Methods h=O.l h=0.05 h=0.025 h=O.Ol h=O.OOl 
O(h2 + 12) 0.6823D-3 0.9286D-3 0.9902D-3 0.1008D-2 0.1011D-2 
O(h3 + 13 ) 0.9116D-4 0.9088D-4 0.9097D-4 0.9098D-4 0.9100D-4 

2.8.2 Two-dimensional Problem 

Example 2 

Considering the two space dimensional heat equation with constant coeffi

cients {(2.46)-(2.49)} with X = 2 and g(x, y) = sin(~y) the model problem 

becomes 
au a2u a2u 
at = at 2 + at 2' 0 < x, y < 2, t > 0 ( 2. 96 ) 

subject to the initial condition 

. 'Try 
u(x,y,O) = szn(T)' 0 <x,y< 2 ( 2. 97 ) 

and the boundary conditions 

u(x, y, t) = 0, t > 0 ( 2. 98 ) 
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on the lines x = 0, y = 0, x = 2 and y = 2. 

The initial distribution is shown in Figure 2.4 and the theoretical solution 

of the above problem 

( . 7r ~ 2 k7rx (k 2 + 1)7r2t 
U x, y, t) = szn( -y) L.Jl - (-I)k]-sin(-)exp( - ) (2. 99 ) 

2 k=l k7r 2 4 

given by Lawson and Morris (1978) is depicted at time t = 1.0 in Figure 2.5. 

The maximum value of u at time t = 1.0 occurs for (x, y) = (1,1) and is 

approximately 0.00915699. 

Since the initial function does not necessarily have the value zero on the 

square, for example, u(O, 1,0) = 1 discontinuities between initial condition 

and boundary conditions do exist. 

Using Algorithm 2 the model problem {(2.96)-(2.98)} is solved for [=0.125, 

0.1,0.05,0.025, 0.2,0.0125,0.01,0.005,0.001 and h=0.25, 0.2, 0.1, 0.05,0.04, 

0.025, 0.02, 0.01. The numerical solution for h = 0.1 and [ = 0.1 is depicted 

in Figure 2.6. All other choices give similar graphs. In these experiments 

the method behaves smoothly over the whole interval 0 < x < 2. Maximum 

errors, with positions, at the time t = 1.0 are given in Table 2.7. 

2.8.3 Three-dimensional Problem 

Example 3 

Considering the three space dimensional heat equation with constant coef

ficients {(2.65)-(2.69)} with X = 2 and g(x,y,z) = sin(ix)sin(iy)sin(iz) 

the model problem becomes 

au 82u 82u 82u 
at = at2 + 8t2 + 8t2' 0 < x, y, z < 2, t > 0 ( 2. 100 ) 
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subject to the initial condition 

u( x, y, z, 0) = sin(~ 1I"X )sin( ~ 1fy )sin(~ 1fz), 0 < x, y, z < 2 ( 2. 101 ) 

and the boundary conditions 

u(x,y,z,t) = 0, t> 0 ( 2. 102 ) 

on the planes x = 0, y = 0, z = 0, x = 2, y = 2 and z = 2. 

The theoretical solution of the above problem is 

u( x, y, z, t) = sin( 7f" x )sin( 7f" y )sin( 7f" z )exp( _ 3 7f"
2t). 

222 4 
( 2. 103 ) 

The maximum value of u at time t = 0.1 occurs for (x,y,z) = (1,1,1) and 

is approximately 0.37616 . 

Using Algorithm 3 the model problem {(2.100)-(2.102)} is solved for 1 = 

0.0125,0.01,0.005,0.0025,0.001 and h=0.25, 0.2, 0.1, 0.05. In these experi

ments the method behaves smoothly over the whole interval 0 < x, y, z < 2. 

Maximum errors with positions at the time t = 0.1 are given in Table 2.9. 
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Table 2.2: Algorithm 1 

Steps \I Processor 1 I Processor 2 I Processor 3 I 

1 1, rl, Cl, 1, r2, C2, 1, r3, C3, 
Input Uo,A Uo,A Uo,A 

2 
Compute I --LA I --LA I -...LA 

Tl T2 T3 

3 I --LA I -...LA I -...LA 
Tl T2 T3 

Decompose = L1U1 = L2U2 = L3U3 

4 L1U1Wl(t) L2U2W2(t) L3U3W3(t) 
Solve = Cl U(t) = C2 U(t) = C3U (t) 

5 U(t + 1) = Wl(t) + W2(t) + W3(t) 

6 GO TO Step 4 for next time step 
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Table 2.3: Algorithm 2 

Steps II Processor 1 I Processor 2 I Processor 3 I 

1 1, rl, Cl 1, r2, C2 1, r3, C3 
Input Uo,B, C Uo,B, C Uo, B, C 

2 J-~B J-.i.B J - .i.B 

Compute 7 ? ? J--C J--C J--C 
Tl T2 T3 

3 J-~B J - .i.B J - .i.B 
Tl T2 T3 

= L1U1 = L2U2 = L3U3 
Decompose J-~C J - .i.C J - .i.e 

Tl T2 T3 

=P1Ql =P2Q2 =P3Q3 

4 P1QIZl(t) P2Q2Z2(t) P3Q3Z3(t) 
Solve = Cl U(t) = C2U (t) = C3U (t) 

5 Z ( t) = Zl ( t) + Z2 ( t) + Z3 ( t ) 

6 Ll U1Wl (t) L2U2W2(t) L3U3W3(t) 
Solve = CIZ(t) = C2Z(t) = C3 Z(t) 

7 U(t + 1) = Wl(t) + W2(t) + W3(t) 

8 GO TO Step 4 for next time step 
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Table 2.4: Algorithm 3 

Steps I Processor 1 Processor 2 I Processor 3 I 

1 1, TI, CI, UO, 1, T2, C2, UO, 1, T3, C3, UO, 
Input AI, A2, A3 AI, A2, A3 AI, A2, A3 

2 I - J.-AI I - J.-AI I - J.-AI rr ? ? I --A2 1- -A2 1- -A2 
Compute 7 ? ? I --A3 1- -A3 1- -A3 T1 T? T? 

3 I - J.-A3 I - J.-A3 I - J.-A3 
Tl T2 T3 

=PIQI =P2Q2 =P3Q3 
I - J.-A2 I - J...A2 I - J.-A3 

Tl T2 T2 

= FIGI =F2G2 =F3G3 
Decompose I - J.-AI Tl 

I-J.-AI 
T2 

I - J.-AI T3 

= LIUI = L2U2 = L3U3 

4 PIQIZI(t) P2Q2Z2(t) P3Q3Z3(t) 
Solve = CI U(t) = C2 U(t) = C3U (t) 

5 Z ( t) = ZI ( t) + Z2 ( t) + Z3 ( t ) 

6 FI GIYI(t) F2G2Y2(t) F3G3Y3(t) 
Solve = CIZ(t) = C2Z(t) = C3 Z(t) 

7 Y(t) = YI(t) + Y2(t) + Y3(t) 

8 LIUIWI(t) L2U2W2(t) L3U3W3(t) 
Solve = CI Y(t) = C2 Y(t) = C3 Y(t) 

9 U(t + 1) = WI(t) + W2(t) + W3(t) 

10 GO TO Step 4 for next time step 
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Table 2.5: Maximum errors for Example 1 at t = 1.0 

Maximum analytical solution=0.10798D+00 (at the centre of the region). 

I ~ II O.~5 I O~2 I ~.~ I O~~5 I 

1=0.125 0.22851D-3 0.19216D-3 0.17176D-3 0.17249D-3 
Positions 2 3 9 20 

1=0.1 0.17076D-3 0.12612D-3 0.91158D-4 0.90882D-4 
Positions 2 3 9 20 

1=0.05 0.11493D-3 0.69143D-4 0.17341D-4 0.12198D-4 
Positions 2 2 6 18 

1=0.025 -0.10762D-3 -0.68129D-4 0.95942D-5 0.22787D-5 
Positions 6 7 5 12 

1=0.0125 -0.10858D-3 -0.69231D-4 -0.10169D-4 0.12707D-5 

Positions 6 7 15 9 

1=0.01 -0.10865D-3 -0.69309D-4 -0.10238D-5 0.12078D-5 

Positions 6 7 15 9 

1=0.005 -0.10871D-3 -0.69381D-4 -0.10301D-5 -0.12570D-5 

Positions 6 7 15 31 

1=0.001 -0.10872D-3 -0.69390D-4 -0.10309 D-5 -0.11422D-5 

Positions 6 7 15 9 

continued 
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Table 2.6: Continuation of Table 2.5 

I~ II 79 99 199 1999 
0.025 0.02 0.01 0.001 

[=0.125 0.17258D-3 0.17258D-3 0.17258D-3 0.17259D-3 
Positions 40 50 100 999-1001 

[=0.1 0.90972D-4 0.90976D-4 0.90978D-4 0.90995D-4 
Positions 40 50 100 999-1001 

[=0.05 0.12105D-4 0.12107D-4 0.12109D-4 0.12125D-4 
Positions 39 50 100 995-1005 

[=0.025 0.15822D-5 0.15694D-5 0.15658D-5 0.15813D-5 

Positions 36 47 99 995-1005 

[=0.0125 0.29266D-6 0.23299D-6 0.19977D-6 0.21439D-6 

Positions 24 35 95 996-1004 

[=0.01 0.21781D-6 0.15071D-6 0.10372D-6 0.10989D-6 

Positions 21 30 90 999-1005 

[=0.005 0.15522D-6 0.84170D-7 0.19206D-7 0.26640D-7 

Positions 18 23 60 1012-1019 

[=0.001 0.14761D-6 0.76423D-7 0.10387D-7 -0.96754D-8 

Positions 18 22 47 997,999 

Positions a.re shown by spa.ce steps. 
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Table 2.7: Maximum errors for Example 2 at the time t=l.O 

Maximum analytical solution=0.91570D-02 (at the centre of the region). 

I ~ II O.~5 I O~2 I ~.~ I O~~5 I 

1=0.125 0.23709D-4 0.23909D-4 0.28442D-4 0.29197D-4 
Positions* (3,3) (4,4) (10,10) (20,20) 

1=0.1 0.14754D-4 0.12703D-4 0.14702D-4 0.15371D-4 
Positions (2,2) (3,3) (9,9) (20,20) 

1=0.05 -0.22885D-4 -0.12926D-4 0.20732D-5 0.20168D-5 
Positions (5,5) (7,7) (7,7) (19,19) 

1=0.025 -0.24381D-4 -0.14285D-4 -0.15407D-5 0.30554D-6 

Positions (5,5) (6,7) (14,14) (14,14) 

1=0.02 -0.24490D-4 -0.14384D-4 -0.16279D-5 0.20717D-6 

Positions (5,5) (6,7) (13,14) (13,13) 

1=0.0125 -0.24578D-4 -0.14463D-4 -0.17023D-5 -0.16320D-6 

Positions (5,5) (6,7) (13,14) (28,28) 

1=0.01 -0.24592D-4 -0.14476D-4 -0.17141D-5 -0.17395D-6 

Positions (5,5) (6,7) (13,14) (28,28) 

1=0.005 -0.24605D-4 -0.14488D-4 -0.17250D-5 -0.18392D-6 

Positions (5,5) (6,7) (13,14) (27,28) 

1=0.001 -0.24607D-4 -0.14489D-4 -0.17265D-5 -0.18528D-6 

Positions (5,5) (6,7) (13,14) (27,28) 

continued 
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Table 2.8: Continuation of Table 2.7 

I~ II 49 79 99 199 
0.04 0.025 0.02 0.01 

1==0.125 0.29228D-4 0.29247D-4 0.29249D-4 0.29250D-4 
Positions (25,25) ( 40,40) (50,50) (100,100) 

1==0.1 0.15402D-4 0.15421D-4 0.15423D-4 0.15424D-4 
Positions (25,25) (40,40) (50,50) (100,100) 

1==0.05 0.20356D-5 0.20504D-5 0.20524D-5 0.20537D-5 
Positions (24,24) (38,38) (49,49) (100,100) 

1==0.025 0.27371D-6 0.26421D-6 0.26470D-6 0.26550D-6 

Positions (20,20) (38,38) ( 49,49) (100,100) 

1==0.02 0.16172D-6 0.13734D-6 0.13657D-6 0.13687D-6 

Positions (18,18) (36,36) (47,47) (99,99) 
(99,100) 
(100,99) 

1==0.0125 0.84932D-7 0.41439D-7 0.36021D-7 0.33663D-7 

Positions (15,15) (29,29) (41,41) (97,97) 

1==0.01 -0.80102D-7 0.28516D-7 0.21555D-7 0.17417D-7 

Positions (35,35) (26,26) (36,36) (95,95) 

1==0.005 -0.90020D-7 -0.19593D-7 0.10213D-7 0.28084D-8 

Positions (35,35) (56,57) (30,30) (74,73) 
(74,74) 

1=0.001 -0.91308D-7 -0.20892D-7 -0.10397D-7 -0.12919D-8 

Positions (35,35) (56,56) (70,70) (60,59) 

Positions are shown by space steps. 
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Table 2.9: Maximum errors for Example 3 at the time t=O.l 

Maximum analytical solution=0.44701D+00 (at the centre of the region). 

I ~ II O.~5 I O~2 I ~.; I O~~5 I 

[=0.0125 -0.66171D-3 -0.35416D-3 -0.44384D-4 -0.50757D-5 
Positions (5,5,5) (6,6,7) (13,13,13) (27,27,27) 

(6,7,6) 
(7,6,6) 

[=0.01 -0.66180D-3 -0.35425D-3 -0.44474D-4 -0.51553D-5 

Positions (5,5,5) (6,6,7) (13,13,13) (27,27,27) 
(6,7,6) 
(7,6,6) 

[=0.005 -0.66189D-3 -0.35433D-3 -0.44557D-4 -0.52285D-5 

Positions (5,5,5) (6,6,7) (13,13,13) (27,27,27) 
(6,7,6) 
(7,6,6) 

[=0.001 -0.66190D-3 -0.35434D-3 -0.44568D-4 -0.52374D-5 

Positions (5,5,5) (6,6,7) (13,13,13) (27,27,27) 

(6,7,6) 
(7,6,6) 

[=0.0001 -O.66190D-3 -0.35434D-3 -0.44567D-4 -0.52373D-5 

Positions (5,5,5) (6,6,7) (13,13,13) (27,27,27) 

(6,7,6) 
(7,6,6) 

• Positions a.re shown by spa.ce steps. 
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Figure 2.1: Graph of amplification symbol for third-order method. 
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Figure 2.2: Theoretical solution of one dimensional heat equation at time 

t=l. 
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Figure 2.3: Numerical solution of one dimensional heat equation when h=O.l 

and 1=0.1 at time t=l. 
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Figure 2.4: Initial distribution for two dimensional heat equation. 
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Figure 2.5: Theoretical solution of two dimensional heat equation at time 
t=l. 
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Figure 2.6: Numerical solution of two dimensional heat equation when h=O.l 
and 1=0.1 at t=l. 
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Chapter 3 

Fourth-Order N ulllerical 
Methods 

3.1 Derivation of the methods 

For simplicity, consider the constant coefficient heat equation in one space 

variable{ (2.1 )-(2.3)} again: 

au a2u 
at ax2 ' 0 < x < X, t > 0 ( 3. 1 ) 

subject to the initial condition 

u(x,O)=g(x),O<x<X ( 3. 2 ) 

where g(x) is a given continuous function of x, and the boundary conditions 

u(O,t) =0, t>O ( 3. 3 ) 

u(X, t) = 0, t > O. ( 3. 4 ) 

There may exist discontinuities between initial and boundary conditions. 

Divide the interval [0, X] into N + 1 subintervals and then superimpose 

the region [0 < x < X] x [t > 0] by the rectangular mesh of points, with 
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coordinates (xm' tn) = (mh, nl) where m = 0,1,2, ... , N + 1, n = 0,1,2, ... , 

h( = N~l) and 1 being step sizes in the x- and t-directions respectively. To 

approximate the space derivative in (3.1) to fourth-order accuracy at some 

general point (x, t) of the mesh, assume that it may be replaced by the five

point formula 

1 
h2 {au(x - 2h, t) + bu(x - h, t) + cu(x, t) 

+ du(x+h,t)+eu(x+2h,t)}. ( 3. 5 ) 

Expanding the terms u(x - 2h, t), u(x - h, t), u(x + h, t) and u(x + 2h, t) 

in (3.5) about (x, t) gives 

h282U(x, t) 
8x2 (a + b + c + d + e) u( x, t) 

+ 
8u( x, t) 

( - 2a - b + d + 2e) h 8x 

1 282u(x,t) 
+ - (4a + b + d + 4e) h 8 2 

2! x 
1 3 83u(x, t) 

+ - ( -Sa - b + d + Se) h 
3! 8x3 

1 84u(x t) 
+ -(16a + b + d + 16e) h4 8 4' 

4! x 

+ 
1 5 85u( x, t) 
- ( -32a - b + d + 32e) h 8 5 
5! x 

+ 
1 686u(x,t) 
- (64a + b + d + 64e) h 8 6 
6! x 

+ ( 3. 6 ) 

Equating powers of hi(i = 0,1,2,3,4,5) in (3.6) gives 

a+b+c+d+e 0, 

-2a - b + d + 2e 0, 

4a + b + d + 4e 2, ( 3. 7 ) 

-Sa - b + d + Se 0, 
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16a + b + d + 16e 0, 

-32a - b + d + 32e o. 

A solution of the linear system (3.7) is 

a = -1 b = 4 c = -5 d = 4 
12 ' 3' 2 ' 3 ' 

-1 
e=-

12 
( 3. 8 ) 

so that 

1 
12h2 {-u(x - 2h, t) + 16 u(x - h, t) - 30 u(x, t) 

+ 16 u(x + h, t) - u(x + 2h, t)} + ~h4 8
6

u(x, t) 
90 8x6 

+ O(h6) as h -* 0 ( 3. 9 ) 

is a fourth-order approximation to the second-order space derivative at (x, t). 

Equation (3.9) is valid only for (x, t) = (xm, tn) with m = 2,3, ... , N - l. 

To attain the same accuracy at the end points(xl, tn) and (XN' tn), special 

formulae must be developed which approximate 82u (x, t) /8x2 not only to 

fourth order but also with dominant error term ioh486u(x, t)/8x6 for x = 

Xl, xN and t = tn. To achieve both of these, seven-point formulae will be 

needed in each case. It will also be useful to have the factor (12h2)-1 as in 

(3.9), as may be seen in (3.14) below. 

Consider, then, the approximation to 82u(x, t)/8x2 at the point (x, t) = 

(XI,tn). Let 

Then 

12 h2 82u(x, t) 
8x2 

12h2 82
u(x, t) 
8x2 

au(x - h, t) + bu(x, t) + cu(x + h, t) 

+ d u(x + 2h, t) + e u(x + 3h, t) + f u(x + 4h, t) 

2 6 86 
U ( x, t) (0 ) + gu(x + 5h,t) + 15 h 8x6 • 3. 1 

(a + b + c + d + e + f + g) u(x, t) 
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+ (-a+c+2d+3e+4f+5g)h 8u(x,t) 
8x 

+ 2\ (a + c + 4d + ge + 16f + 25g) h2 8
2
u(x, t) 

· 8x2 

+ 3\ (-a + c + 8d + 27e + 64f + 125g) h3 8
3
u(x, t) 

· 8x3 

+ 4\ (a + c + 16d + 81e + 256f + 625g) h484u(x, t) 
· 8x4 

+ 51, (-a + c + 32d + 243e + 1024f + 3125g) hS 8
S
u(x, t) 

· 8xs 

+ 6\ (a + c + 64d + 72ge + 4096f + 15625g) h6
86u

(x, t) 
· 8x6 

+ 2 h686U(x, t) + ( 3. 11 ) 
15 8x6 ••• 

Equating powers of hi(i = 0,1,2,3,4,5,6) in (3.11) gives 

a+b+c+d+e+f+g --

-a + c + 2d + 3e + 4f + 5g --

a + c + 4d + ge + 16f + 25g -

-a + c + 8d + 27 e + 64f + 125g -

a + c + 16d + 81e + 256f + 625g -

-a + c + 32d + 243e + 1024f + 3125g -

a + c + 64d + 72ge + 4096 f + 15625g -

The solution of the linear system (3.12) is 

1 

a = 9 b = - 9 c = -19 d = 34 1 

. e = -21 f = 7 9 = -1 . 

0, 

0, 

24, 

0, ( 3. 12 ) 

0, 

0, 

-96. 

( 3. 13 ) 

so that, at the mesh point (Xl, tn ), the desired approximation to 82~~~tt) is 

1 
- 12h2 {9 u(x - h, t) - 9 u(x, t) - 19 u(x + h, t) 

+ 34u(x + 2h, t) - 21 u(x + 3h, t) + 7 u(x + 4h, t) 

_ ( 5 h )} ~ h 4 8
6 

U ( x, t) 
u X + , t + 90 8x6 

( 3. 14 ) 
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Suppose, now, that at the point (x, t) = (XN, tn) the approximation to 

the second-order space derivative 82u( X, t) /8x2 is given by 

12 h2 8
2
u(x, t) 
8x2 a u(x - 5h, t) + bu(x - 4h, t) + cu(x - 3h, t) 

+ du(x-2h,t)+eu(x-h+h,t)+fu(x,t) 

( h) 2 h686u(x,t) () + 9 u x + ,t + 15 8x6 ' 3. 15 

Then from (3.14) the values of the parameters, because of symmetry, are 

1 a = -1 b = 7 c = -21 d = 34 1 

e = -19 f = -9 9 = 9 
( 3. 16 ) 

Hence, at the mesh point (XN, tn), the approximation to 82u(x, t)/8x2 is 

1 
12h2 {-u(x - 5h, t) + 7 u(x - 4h, t) - 21 u(x - 3h, t) 

+ 34 u (x - 2 h, t) - 19 u (x - h, t) - 9 u ( x, t) + 9 u (x + h, t) } 

~h486~(X,t) +O(h5)as h --+ O. (3.17) 
+ 90 x 6 

Applying (3.1) with (3.9), (3.14) and (3.17) to the mesh points of the grid 

at time level t = tn produces a system of ODE's of the form 

dU(t) = AU(t) t > 0 
dt ' 

( 3. 18 ) 

with initial distribution 

U(O) = g ( 3. 19 ) 

in which U(t) = [U1(t), U2(t), ... , UN(t)]T, g = [g(Xl),g(X2),'" ,g(XN)]T, T 

denoting transpose and 

-9 -19 34 -21 7 -1 0 
16 -30 16 -1 
-1 16 -30 16 -1 

1 -1 16 -30 16 -1 
( 3. 20 ) 

A = 12h2 
-1 16 -30 16 -1 

-1 16 -30 16 

0 -1 
,... 

-21 34 -19 -9 , 
NxN 
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The matrix h2 A has distinct eigenvalues with negative real parts for N=7,9,19 

and 39 which are given in Appendix D. Solving (3.18) subject to (3.19) gives 

the solution 

U(t) = exp(lA)U(O) ( 3. 21 ) 

which satisfies the recurrence relation 

U(t + I) = exp(IA)U(t), t = 0, 1,21, .... ( 3. 22 ) 

3.2 Fourth-Order Rational Approximant to 
exp(lA) 

For M = 4 (2.24) gives 

bo + bt () + b2()2 + b3()3 
( 3. 23 ) E (()) -

4 - ao - at () + a2()2 - a3()3 + a4()4 

Let 

p( ()) = bo + bt () + b2()2 + b3()3 ( 3. 24 ) 

in which 
bo = 1, 
bt = 1 - at, 

b2 = ~ - at + a2, 

b3 = i - T + a2 - a3, 

and 

q( ()) = ao - at () + a2()2 - a3()3 + a4()4 ( 3. 25 ) 

where 
1 at a2 

a = -- + - - - + a3· 
4 24 6 2 

By (2.27) 
1 at a2 a3 

/14 = - 30 + 8 - 3 + 2' ( 3. 26 ) 
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3.3 L-Stability 

Let A be an eigenvalue of the matrix A given by (3.20). Then the amplifica

tion symbol of the numerical method arising from (3.23) is (Twizell (1984)) 

R( -z) = L%=o akzk - ~%=l[ak:- (-l)kbk]zk 
Lk=O akz 

( 3. 27 ) 

where z = -lRe(A) > O. Thus L-stability is guaranteed (Twizell (1984)) 

provided 

( 3. 28 ) 

and 

( 3. 29 ) 

or 
k-1 a· 

( -1 ) k -1 L: ( -1 ) i (k ~ .)' > 0, f or all k = 2, 3, 4 . 
. 0 ~ • 
l= 

( 3. 30 ) 

So, for M = 4, L-stability is guaranteed provided together with (3.28) 

( 3. 31 ) 

( 3. 32 ) 

and then 

( 3. 33 ) 

3.4 Algorithm 1 

Suppose that ri(i = 1,2,3,4) are distinct real zeros of q(B) defined by (3.25) 

then 4 ( )-1 
exp(IA) = {; Ci I - :i A 

( 3. 34 ) 
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where the Ci (i 

defined by 

1,2,3,4), the partial-fraction coefficients of E
4

((}), are 

Ci = p(Ti) 

rr4 
j = 1 (1 - ~) , 
j =I i 

i = 1,2,3,4 

So, using (3.34) in (3.22) gives 

U(t + I) = (tCi (1 -~A)-l) U(t). 
t=l T t 

Let 

( 1)-1 
Ci 1 - Ti A U(t) = Wi(t), i = 1,2,3,4, 

then 

(1 - :,A) Wi(t) = ciD(t), i = 1,2,3,4 

( 3. 35 ) 

( 3. 36 ) 

( 3. 37 ) 

( 3. 38 ) 

and vector Wi(t) can be computed on processor i (i = 1,2,3,4). Consequently 

4 

U(t + I) = I: Wi(t) ( 3. 39 ) 
i=l 

An algorithm, Algorithm 1, using four processors is detailed in Table 3.1. 

3.5 Extension to two-space dimensions 

Consider the two-dimensional heat equation with constant coefficients given 

by 

8u(x, y, t) 82u(x, y, t) 82u(x, y, t) X 0 
8t = 8x2 + 8y2 ' 0 < x, y < ,t > ( 3. 40 ) 

subject to the initial conditions 

u(x,y,O) = g(x,y), 0 <x,y< X, ( 3. 41 ) 

where g(x, y) is a continuous function of x and y, and boundary conditions 

u(O,y, t) = u(X,y,t) = 0, t > 0 (3. I ~ ) 
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u(x,O,t)=u(x,X,t)=o, t>o ( 3. 43 ) 

Discretizing ° < x, y < X as in the one-dimensional case and replacing the 

space derivatives in the PDE (3.40) by appropriate fourth-order difference 

approximations {(3.9), (3.14), (3.17)} and applying to all N 2-interior mesh 

points at time level tn = nl; n = 1,2,3, ... , gives a system of N 2 first-order 

ordinary differential equations which may be written in matrix form as 

~;t) = AU(t), t> 0 ( 3. 44 ) 

with 

U(O) = g, ( 3. 45 ) 

where U(t) = [U1,1(t), U2,1(t), ... , UN,1(t), U1,2(t), U2,2(t), ... , UN,2(t), ... , 

U1,N(t), U2,N(t), ... , UN,N(t)]T and g = [91,1,92,1, ... ,9N,N]T, T denoting trans

pose. The matrix A is the sum of two square matrices Band C of order N 2
, 

given by 
B1 

1 B1 ( 3. 46 ) 
B = 12h2 

Bl 

where 

-9 -19 34 -21 7 -1 0 
16 -30 16 -1 
-1 16 -30 16 -1 

B1 = ( 3. 47 ) 
-1 16 -30 16 -1 

-1 16 -30 16 -1 
-1 16 -30 16 

0 -1 7 -21 34 -19 -9 
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and 

-91 -191 341 -211 71 -1 0 
161 -301 161 -1 
-1 161 -301 161 -1 

1 
C = 12h2 -1 161 -301 161 -1 

-1 161 -301 161 -1 
-1 161 -301 161 

0 -1 71 -211 341 -191 -91 
( 3. 48 ) 

where 1 is the identity matrix of order N. Clearly Band C commute. Solving 

(3.44) subject to the initial condition (3.45) gives (3.22). 

3.5.1 Algorithm 2 

Since A = B + C, and Band C commute (3.22) becomes 

U(t + l) = exp(lB)exp(lC)U(t), t = 0, l, 2/, ... , ( 3. 49 ) 

to fourth order. Using (3.34) gives 

4 ( 1)-1 
exp(IB) = t; Ci 1 - Ti B ( 3. 50 ) 

and 
4 ( l)-l 

exp( lC) = 2: Ci 1 - -.C 
. 1 T, ,= 

( 3. 51 ) 

So, (3.51) becomes 

Let 

Zi(t) = Ci (1 - :i c r' U(t), i = 1,2,3,1 ( 3. 53 ) 
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then the systems 

(I - :i C) Zi(t) = CiU(t), i = 1,2,3,4 ( 3. 54 ) 

can be solved on four different processors simultaneously. Let 

4 

Z(t) = L Zi(t), 
i=l 

( 3. 55 ) 

then (3.54) has the form 

( 3. 56 ) 

or 
4 

U(t + l) = LWi(t) ( 3. 57 ) 
i=l 

where Wi (i = 1, 2, 3, 4), the solutions of the linear systems 

(I - :i B) witt) = C;Z(t), i = 1,2,3,4 ( 3. 58 ) 

can be computed on four differet processors simultaneously. Here Zi, Wi (i = 

1,2,3,4) are intermediate vectors of order N 2
• This algorithm is given in 

Table 3.2. 

3.6 Extension to three-space dimensions 

Consider the partial differential equation 

8u(x, y, z, t) _ fJ2u(x, y, z, t) + 82u(x, y, z, t) + 82u(x, y, z, t) ( 3. 59 ) 
8t - 8x2 8y2 8z2 ~ 

in the region 0 < x, y, z < X, t > 0 subject to the initial conditions 

u(x,y,z,O) = g(x~y,z), 0 <x,y,z< X, ( 3. 60 ) 
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where g(x, y, z) is a continuous function of the space variables, and boundary 

conditions 

u(O,y,z,t) 

u(x, 0, z, t) 

u(x,y,O,t) 

u(X,y,z,t) = 0, ° <y,z< X t> ° 
u(x, X, z, t) = 0, ° < x, z < X t > 0 (3. 61 ) 

u(x,y,X,t)=O, O<x,y<X t>O 

Discretizing ° < x, y, z < X as in the one-dimensional case and replacing the 

space derivatives in the PDE (3.59) by appropriate fourth-order difference 

approximations {(3.9), (3.14), (3.17)} and applying to all the N 3 interior 

mesh points at time level tn = nl (n = 1,2,3, ... ) leads to a system of N 3 

first-order ordinary differential equations written in matrix form as 

with 

where 

and 

dU(t) = AU(t), t > 0 
dt 

U(O) = g, 

( 3. 62 ) 

( 3. 63 ) 

, T denoting transpose. The square matrix A of order N 3 may be written as 

( 3. 64 ) 

where At, A2 and A3 result from the replacements of the space derivatives 

in (3.59) by fourth-order difference approximations {(3.9), (3.14), (3.17)}. 

These three matrices commute and are given by 

1 
Al = 12h2 

BI 
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-91* -191* 341* -211* 71* -1* 0 
161* -301* 161* -1* 
-1* 161* -301* 161* -1* 

1 
A3 = 12h2 -1* 161* -301* 161* -1* 

-1* 161* -301* 161* -1* 
-1* 161* -301* 161* 

0 -1* 71* -211* 341* -191* -91* N 3 xN3 

( 3. 69 ) 

where 1* is the identity matrix of order N 2. Solving (3.62) subject to the 

initial condition (3.63) gives (3.22). 
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3.6.1 Algorithm 3 

Replacing A by Al + A2 + A3 in (3.22) gives, since AI, A2 and A3 commute, 

U(t + l) = exp(lAl)exp(lA2)exp(lA3)U(t), t = 0, l, 2l,.. .. ( 3. 70 ) 

Using (3.34) gives 

( 3. 71 ) 

( 3. 72 ) 

and 

( 3. 73 ) 

So (3.70) becomes 

4 ( l ) -1 4 ( l ) -1 4 ( l )-1 
U(t+ l) = LCi 1- -.Al LCi 1- -.A2 ?=Ci 1- ;:.A3 U(t). 

i=1 r, i=1 r t ,=1 '( 3. 74 ) 

Let 

( 
l ) -1 . 

Zi ( t) = Ci I - r i A3 U ( t ) , z = 1, 2, 3, 4 

then 

(1 -:; A3) Zi(t) = c; U(t), i = 1,2,3,4. 

Taking 
4 

Z(t) = L Zi(t), 
i=1 

leads to 

4 ( l ) -1 4 ( l ) -1 
U(t + I) = t; Ci 1 - ri A1 t; c; 1 - Ti A2 Z(t). 

Let 

Yi(t) = c; (1 -:. A2) -1 Z(t), i = 1,2,3,4 
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( 3. 77 ) 

( 3. 78 ) 
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then 

(1 - :, A2) Yi(t) = CiZ(t), i = 1,2,3,4. ( 3. 80 ) 

Let 
4 

Y(t) = LYi(t), ( 3. 81 ) 
i=1 

then (3.78) becomes 
4 

U(t + 1) = L Wi(t), ( 3. 82 ) 
i=1 

where Wi; i = 1,2,3,4, are the solutions of the linear systems 

(1 - :i AI) Wi(t) = C;Y(t), i = 1,2,3,4. ( 3. 83 ) 

Here {(3.76),(3.77),(3.80)-(3.83)} constitute the algorithm. Using this algo-

rithm four different processors can be used simultaneously thrice. Details of 

this algorithm, Algorithm 3, are given in Table 3.3. 

3. 7 Numerical Examples 

In this section only a representative of the methods based on (3.23) will be 

used. Using 

in (3.23) through (3.25) gives 

and 

__ 39 = 41 b = 37 
bl - 25' b2 150' 3 120' 

13 
a4 = 100' 

and then it is found that 

rl = 0.93758090808524, r2 = l.8147198580060, 
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T3 = 2.0000000000000, T4 = 2.2605197467293 

are the real zeros of q(()), given by (3.25). Using these values in (3.35) 

produces 

Cl = 0.21145556670851, C2 = -53.350306744604 

C3 = 108.00000000002, C4 = -53.861148822124. 

Here values are only given to 14 significant figures. According to these values 

of the parameters amplification symbol is depicted in Figure 3.1. Some other 

values of the parameters are given in Appendix E. 

3.7.1 One-dimensional Problem 

Example 1 

Considering the one space dimensional heat equation with constant coeffi

cients (3.1) and taking X = 2 and g(x) = 1 in {(3.1)-(3.3)} the model 

problem {(2.92)-(2.94)} of Chapter 2 is used again: it is repeated here for 

convenIence 
au a2u o < x < 2, t > 0 at - ax2 ' 

subject to the initial condition 

u(x,0)=1,0<x<2 

and boundary conditions 

u(O, t) = u(2, t) = 0, t > O. 

This problem, which has theoretical solution 

00 2 kJrx k2Jr 2t 
u(x, t) = 2:[1 - (-llJ kJr sin(-2-)exp(- 4 ), 

k=l 
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( 3. 85 ) 
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(Lawson and Morris, 1978) has discontinuities between initial conditions and 

boundary conditions at x = 0 and x = 2. The theoretical solution at time 

t = 1.0 is depicted in Figure 2.2 of chapter 2. 

Using Algorithm 1 the model problem {(3.84)-(3.86)} is solved for 

h = 0.25,0.2,0.1,0.05,0.04,0.025,0.02,0.01 

uSIng 

l = 0.125,0.1,0.05,0.025,0.0125,0.01,0.005,0.002,0.001. 

In these experiments the method behaves smoothly over the whole interval 

o < x < 2 and gives maximum errors at the centre of the region except the 

cases which are starred in Table 3.4 which gives the maximum errors at the 

time t = 1.0. 

It may be deduced from Table 3.4 that the optimal value of r (= *) for 

this problem lies in the interval [0.3, 0.32J. SO selecting carefully the values 

of hand l the accuracy can be remarkably increased. For example, using 

l = .1.. and h = 1. the maximum error obtained is 0.34052D - 07 while for 
20 6 

l = .l.. and h = 1. the maximum error is -0.20738D - 05. Similarly for I = 9
1
4 

20 5 

and h = 10 the maximum error is 0.48468D -10, and for l = l!S and h = 6~ 
the maximum error is 0.34070D - 11. The numerical solution for h = 0.1 

with l = 0.1 is depicted in Figure 3.2. All other numerical solutions give 

similar graphs. 
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3.7.2 Two-dimensional Problem 

Example 2 

Considering the two space dimensional heat equation with constant coeffi

cients {(2.46)-(2.49)} with X = 2 and g(x, y) = sin(~y) the model problem 

becomes 
au a2u 82u 
at = 8x2 + 8y2' 0 < x, y < 2, t > 0 ( 3. 88 ) 

subject to the initial condition 

u(x,y,O) = sin(7r;), 0 <x,y< 2 ( 3. 89 ) 

and the boundary conditions 

u(x,y,t) = 0, t > 0 ( 3. 90 ) 

on the lines x = 0, y = 0, x = 2 and y = 2. 

The initial distribution is shown in Figure 2.5 of Chapter 2 and the the

oretical solution of this problem, 

7r (X) 2 k7rx (k2 + 1 )7r2t 
u(x, y, t) = sin( -2 y) 2:[1- (-l)kJ-

k 
sin(-)exp( - ), ( 3. 91 ) 

k=l 7r 2 4 

(given by Lawson and Morris, 1978) is depicted at time t = 1.0 in Figure 

2.5 of Chapter 2. The maximum value of u at time t = 1.0 occurs for 

(x, y) = (1,1) and is approximately 0.00915699. 

Since the initial function does not necessarily have the value zero on the 

square, for example, u(O, 1,0) = 1, discontinuities between initial conditions 

and boundary conditions do exist. 

Using Algorithm 2 the model problem {(3.88)-(3.90)} is solved for 

I = 0.125,0.1,0.05,0.025,0.02,0.0125 1 0.01,0.005,0.001 
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uSIng 

h = 0.25,0.2,0.1,0.05,0.04,0.025,0.02,0.01. 

The numerical solution for h = 0.1 with I = 0.1 is depicted in Figure 3.3. 

All other numerical solutions produce similar graphs. In these experiments 

the method behaves smoothly over the whole interval 0 < x < 2 and gives 

maximum error modulus at the centre of the region. Maximum errors at 

time t = 1.0 are given in Table 3.6. 

It is calculated from Table 3.6 that the optimistic value of r (= *) for this 

problem lies in the interval [0.41, 0.43]. So, selecting carefully the values of h 

and I the accuracy can be remarkably increased. For example, using I = 0.05 

and h = i the maximum error obtained is 0.12824D - 07 while for 1=0.05 

and h = 110 the maximum error is 0.11240D - 06. Similarly for I = 0.0125 

and h = 314 the maximum error is 0.31464D - 11, and for I = 0.005 and 

h = 8
1
5 the maximum error is 0.17011D - 11. 

3.7.3 Three-dimensional Problem 

Example 3 

Considering the three space dimensional heat equation with constant coef

ficients {(3.59)-(3.61)} with X = 2 and g(x,y,z) = sin(~x)sin(~y)sin(~z), 

the model problem becomes 

au 82u 82u 82u _ = _ + _ + -, 0 < x,y,z < 2, t> 0 
8t 8x2 8y2 8z2 

( 3. 92 ) 

subject to the initial condition 

( 3. 93 ) 
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and the boundary conditions 

u(x,y,z,t) = 0, t> 0 ( 3. 94 ) 

on the planes x = 0, y = 0, z = 0, x = 2, y = 2 and z = 2. 

The theoretical solution of this problem is 

u(x, y, z, t) = sin(7r x)sin(7r y)sin(7r z)exp( _~7r2t). 
2 2 2 4 

( 3. 95 ) 

The maximum value of u at time t = 0.1 occurs for (x, y, z) = (1,1,1) and 

is approximately 0.44701 . 

U sing Algorithm 3 the model problem {(3.92)-(3.94)} is solved for I = 

0.0125,0.01,0.005,0.001,0.0001 using h=0.25, 0.2, 0.1, 0.05. In these exper

iments the method behaves smoothly over the whole interval 0 < x, y, z < 2 

and gives maximum error modulus at the centre of the region. Maximum 

errors at the time t = 0.1 are given in Table 3.8. 
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Table 3.1: Algorithm 1 

Steps II Processor 1 I Processor 2 I Processor 3 I Processor 4 I 

1 I, II, Cl, 1,/2, C2, 1,/3, C3, 1,/4, C4, 
Input Uo,A Uo,A Uo,A Uo,A 

2 
Compute I --LA I --LA I -...LA I -...LA 

Tl T2 T3 T4 

3 I --LA I -...LA I -...LA I -...LA 
Tl T2 T3 T4 

Decompose = L1U1 = L2U2 = L3U3 = L4U4 

4 L1U1Wl(t) L2U2W2(t) L3U3W3(t) L4U4W4(t) 

Solve = Cl U(t) = C2U (t) = C3U (t) = c4U(t) 

5 U(t + I) = Wl(t) + W2(t) + W3(t) + W4(t) 

6 GO TO Step 4 for next time step 
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Table 3.2: Algorithm 2 

Steps Processor 1 Processor 2 Processor 3 Processor 4 

1 1, TI, CI 1, T2, C2 1, T3, C3 I, T4, C4 
Input Uo,B,C Uo,B,C V o, B, C Uo, B, C 

2 1 --LB 1 --LB 1 --LB 1 --LB 
Compute ? ? ? rt 1 --C 1--C 1--C 1--C rl r2 r3 r4 

3 1 --LB 1 --LB 1 --LB 1 --LB 
Tl T2 r3 r4 

= LIUI = L2U2 = L3U3 = L4U4 
Decompose 1 --LC 

Tl 
1 --LC 

T2 
1 --LC 

T3 
1 --LC 

T4 

=PIQI =P2Q2 =P3Q3 =P4Q4 

4 PI QIZI (t) P2Q2Z2(t) P3Q3Z3(t) P4Q4Z4(t) 
Solve = CI U(t) = c2U(t) = C3U (t) = C4U (t) 

5 Z(t) = ZI(t) + Z2(t) + Z3(t) + Z4(t) 

6 LIUI WI (t) L2U2W 2(t) L3U3W 3(t) L4U4W 4(t) 
Solve = cIZ(t) = C2Z(t) = C3 Z(t) = C4 Z(t) 

7 U(t + 1) = WI (t) + W2(t) + W3( t) + W4(t) 

8 GO TO Step 4 for next time step 
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Table 3.3: Algorithm 3 

Steps II Processor 1 I Processor 2 I Processor 3 I Processor 4 I 

1 1,1"1, Cl, Uo, 1,1"2, C2, UO, 1,1"3, C3, UO, 1, 1"4, C4, U 0, 

Input AI, A2, A3 AI, A2, A3 AI, A2, A3 Al,A2,A3 

2 I - .LAI I - .LAI I - .LAI I - .LAI 
? ? ? Tt 

1- -A2 1- -A2 1- -A2 I --A2 
Compute 7 ? ? ? 1- -A3 1- -A3 1- -A3 I --A3 

T1 T? T .. T4 

3 I - .LA3 1- .LA3 1- .LA3 I - .LA3 
Tl T2 T3 T4 

= PlQl =P2Q2 =P3Q3 =P4Q4 
1- .LA2 I - .LA2 I - .LA3 I - .LA2 

Tl T2 T2 T4 

= FIGI =F2G2 =F3G3 =F4G4 
Decompose I - .LAI I - .LAI I - .LAI I - .LAI 

Tl T2 T3 T4 

= LIUI = L2U2 = L3U3 = L4U4 

4 PI QIZI(t) P2Q2Z2(t) P3Q3Z3(t) P4Q4Z4(t) 
Solve = CI U(t) = c2U(t) = C3U (t) = c4U(t) 

5 Z(t) = ZI(t) + Z2(t) + Z3(t) + Z4(t) 

6 FIGIYl(t) F2G2Y2(t) F3G3Y3(t) F4G4Y4(t) 

Solve = CIZ(t) = C2Z(t) = C3 Z(t) = C4Z(t) 

7 Y(t) = Yl(t) + Y2(t) + Y3(t) + Y4(t) 

8 LlUlWI(t) L2U2W2(t) L3U3W3(t) L4U4W4(t) 

Solve = Cl Y(t) = c2Y(t) = C3 Y(t) = C4 Y(t) 

9 U(t + 1) = WI(t) + W2(t) + W3(t) + W4(t) 

10 GO TO Step 4 for next time step 
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Table 3.4: Maximum errors for Example 1 at t = 1.0 

Maximum analytical solution=0.10798D+00 (at the centre of the region). 

I ~ II 0.2~ I 0.; I o~i I o.~; I 
[=0.125 0.49826D-4 0.49496D-4 0.51699D-4 0.51994D-4 

1=0.1 0.21120D-4 0.20762D-4 0.22949D-4 0.23243D-4 

1=0.05 -0.62417D-5* -0.20738D-5* 0.14443D-5 0.17379D-5 

1=0.025 -0.68672D-5* -0.26782D-5* -0.19279D-6 0.10078D-6 

1=0.0125 -0.69107D-5* -0.27451D-5* -0.30667D-6 -0.13107D-7 

1=0.01 -0.69125D-5* -0.27479D-5* -0.31138D-6 -0.17820D-7 

1=0.005 -0.69137D-5* -0.27497D-5* -0.31450D-6 -0.20938D-7 

[=0.002 -0.69138D-5* -0.27498D-5* -0.31471D-6 -0.21147D-7 

1=0.001 -0.69138D-5* -0.27498D-5* -0.31472D-6 -0.21153D-7 

* indica.tes positions 1 a.nd 7 a.nd .. positions 2 a.nd 8 

contined 
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Table 3.5: Continuation of Table 3.4 

I~ II o.~~ I o.o~; I 199

1 

001 . 

1=0.125 0.52007D-4 0.52014D-4 0.52015D-4 0.52015D-4 

1=0.1 0.23256D-4 0.23263D-4 0.23264D-4 0.23264D-4 

1=0.05 0.17503D-5 0.17577D-5 0.175S5D-5 0.17590D-5 

1=0.025 0.11323D-6 0.12060D-6 0.12139D-6 0.12191D-6 

1=0.0125 -0.65S16D-9 0.67127D-S 0.75003D-S 0.S0192D-S 

1=0.01 -0.53710D-S 0.199S5D-S 0.27S65D-S 0.33035D-S 

1=0.005 -0.S4S94D-S -0.11196D-8 -0.33055D-9 0.18801D-9 

1=0.002 -0.86970D-8 -0.13318D-S -0.53S6SD-9 -0.10S47D-10 

1=0.001 -0.87055D-8 -0.13403D-8 -0.54262D-9 -0.37895D-10 
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Table 3.6: Maximum errors for Example 2 at the time t=1.0 

Maximum analytical solution=0.91570D-02 (at the centre of the region). 

I ~ II 0.2~ I 0.; I o~i I o.~; I 
[=0.125 0.37425D-6 0.55378D-5 0.86345D-5 0.88091D-5 

[=0.1 -0.44973D-5 0.66405D-6 0.37595D-5 0.39341D-5 

[=0.05 -0.81415D-5 -0.29820D-5 0.11240D-6 0.28696D-6 

[=0.025 -0.84189D-5 -0.32596D-5 -0.16527D-6 0.92834D-8 

[=0.02 -0.84309D-5 -0.32716D-5 -0.17730D-6 -0.27429D-8 

[=0.0125 -0.84382D-5 -0.32789D-5 -0.18459D-6 -0.10033D-7 

[=0.01 -0.84390D-5 -0.32797D-5 -0.18538D-6 -0.10832D-7 

[=0.005 -0.84395D-5 -0.32803D-5 -0.18591D-6 -0.11361D-7 

[=0.001 -0.84396D-5 -0.32803D-5 -0.18595D-6 -0.11397D-7 

continued 
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Table 3.7: Continuation of Table 3.6 

I~ II o.~~ I o.o~; I 

199

1 
001 

[=0.125 0.88159D-5 0.88198D-5 0.88203D-5 0.88205D-5 

[=0.1 0.39408D-5 0.39448D-5 0.39452D-5 0.39455D-5 

[=0.05 0.29669D-6 0.29764D-6 0.29806D-6 0.29833D-6 

[=0.025 0.16019D-7 0.19970D-7 0.20389D-7 0.20660D-7 

[=0.02 0.39932D-8 0.79439D-8 0.83637D-8 0.86374D-8 

[=0.0125 -0.32970D-8 0.65423D-9 0.10730D-8 0.13450D-8 

[=0.01 -0.40961D-8 -0.14549D-9 0.27407D-9 0.54852D-9 

[=0.005 -0.46252D-8 -0.67374D-9 -0.25487D-9 0.20241D-10 

[=0.001 -0.46612D-8 -0.71152D-9 -0.29076D-9 -0.14262D-I0 
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Table 3.8: Maximum errors for Example 3 at the time t=O.l 

Maximum analytical solution=OA4701D+00 (at the centre of the region). 

I ~ II 002~ I 00; I o~i I oo~: I 
1=0.0125 -0.10186D-3 -OA0366D-4 -0.23963D-5 -0.13873D-6 

1=0.01 -0.10186D-3 -OA0373D-4 -0.24025D-5 -0.14498D-6 

1=0.005 -0.10187D-3 -OA0377D-4 -0.24067D-5 -0.14911D-6 

1=0.001 -0.10187D-3 -OA0377D-4 -0.24070D-5 -0.14939D-6 

1=0.0001 -0.10187D-3 -OA0377D-4 -0.24070D-5 -0.14943D-6 
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Figure 3.1: Graph of amplification symbol of fourth-order method. 
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Figure 3.2: Numerical solution of one dimensional heat equation when h=O.l 

and 1=0.1 at time t=l. 
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Chapter 4 

Third-Order N ulllerical 
Methods for Tirne-Dependent 
Boundary-value Problems 

4.1 Derivation of the methods 

Suppose that (2.2) is non-homogeneous and 

u(O,t) = !l(t), t> 0 

and 

u(X, t) = !2(t), t > O. 

Then using the method developed in section 2.1 gives 

dU(t) = A U(t) + v(t), t > 0 
dt 

with initial distribution 

U(O) = g 

( 4. 1 ) 

( 4. 2 ) 

( 4. 3 ) 

in which U(t) = [U1(t), U2(t), ... , UN(t)]T, g = [g(h),g(2h), ... ,g(/Vh)]T and 

v(t) = \~2[11!1(t),0,0"",0,-f2(t),-2f2(t),9f~(t)f, T denoting trans-
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pose, A is given by (2.21) and recurrence relation (2.23) takes the form 

1
t+[ 

U(t+l) = exp(IA)U(t)+ t exp[(t+l-s)A]v(s)ds, t = 0,1,2/, ... (4. :]) 

To develop the method the matrix exponential function exp( IA) will be ap

proximated by (2.40) and following Twizell et al. (1996) the quadrature term 

will be approximated by 

( 4. 6 ) 

where SI =I- S2 =I- S3 and WI, W2 and W3 are matrices. Then it can easily be 

shown that 

(i) when v(s) = [1,1,1, ... , l]T 

( 4. 7 ) 

where 

Ml = A-l(exp(IA) - I), ( 4. 8 ) 

(ii) when v(s) = [s, s, s, . .. , s]T 

( 4. 9 ) 

where 

M2 = A-I {texp(lA) - (t + I) I + A-l(exp(lA) - I)} ( 4. 10 ) 

and 

(iii) when v(s) = [S2,S2, ... ,S2]T 

(-1.11) 

where 

~l 



Taking Sl = t, S2 = t + 4, S3 = t + 1 and then solving (4.7), (4.9) and (4.11) 

simultaneously gives 

W1 - ~ { (t2 + ~ It + ~ )M1 - (2t + ~ I)Md M3 } , 

W2 - [24 {(t2 + It)Ml - (2t + I)M2 + M3} 

2 {2 [ 1 } W3 - [2 (t + 2t )M1-(2t+2)M2 +M3 . 

( 4. 13 ) 

( 4. 14 ) 

( 4. 15 ) 

Using (4.8), (4.10) and (4.12) in (4.13), (4.14) and (4.15) gives 

and 

or 

2 [ 3 [2 WI - [2 (t2 + 2[t+"2)A-1(exp(IA)-J) 

- (2H ~1)A-1 {t exp(lA) - (H I) I + A-1(exp(IA) - 1)} 
+ A-I {t2exp(lA) - (t + [)2 J + 2 A-I{t exp(IA) - (t + I) J 

+ A-1(exp(IA)-J)}}] , (4.16) 

-4 [ W2 - [2 (t2 + It)A-I(exp(IA) - J) 

(2t + I)A- I {t exp(IA) - (t + I) J + A-I (exp(lA) - J)} 

+ A-I {t2exp(lA) - (t + I? J + 2 A-1{t exp(IA) - (t + I) J 

+ A-I(exp(IA) - J)}}] ( 4. 17 ) 

2 [ 1 12 W3 - 12 (t2 + 2t +"2 )A-l(exp(lA) - J) 

_ (2t + ~ )A-1 {t exp(lA) - (t + I) I + A-1(exp(lA) - 1)} 
+ A-I {t2exp(IA) - (t + 1)2 J + 2 A-1{t exp(lA) - (t + I) J 

+ A-I( exp(IA) - J)}}] ( 4. 18 ) 
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and 

3 
- (2t + 2"/)A2 {t exp(IA) - (t + I) 1 + A-l(exp(lA) - 1)} 

+ A2 {t2exp(lA) - (t + 1)21+ 2 A -1{t exp(lA) - (t + I) 1 

+ A-l(exp(IA) - 1)}}] , ( 4. 19 ) 

-4 [ W2 - 12(A-1 )3 (t2+lt)A2(exp(IA)-I) 

- (2t + I)A2 {t exp(lA) - (t + I) I + A -1( exp(lA) - I)} 

+ A2 {t2exp(IA) - (t + 1)21 + 2 A-1{t exp(IA) - (t + I) 1 

+ A-I (exp(lA) - 1)}}] ( 4. 20 ) 

2 [ 1 12 W3 - i2(A-1)3 (t2+2"t+
2

)A2(exp(IA)-1) 

- (2t + ~ )A' {t exp(IA) - (t + I) I + A-l(exp(lA) - 1)} 
+ A2 {t2exp(lA) - (t + 1)21 + 2 A-1{t exp(IA) - (t + I) 1 

+ A-I (exp(lA) - I)}}] . ( 4. 21 ) 

Then it is easy to show that 

WI - 2(A-l)3{(t2 A2 - 31 A + 21) exp(lA) - (iA + 21)}( 4.22 ) 
12 2 2 2 

W2 - - ~ (A -1)3 {(2I - IA) exp(lA) - (21 + IA)}, ( 4. 23 ) 

2 1 31 [2 
W3 - 12(A-1)3{(21 - 2"A)exp(lA) - (21 + 2A + 2A2)).( 4.24 ) 

Using (2.28) 

exp( IA) = C-1 N ( 4. 25 ) 

where 

and 
1 ) 2 2 N = J + (1 - al)IA + (- - al + a2 I A 
2 
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in (4.22)-(4.24) gives 

I 
WI = 6 {(I + (4 - 9a1 + 12a2)IA} G-r, ( 4. 26 ) 

21 
W2 = 3{(1 - (1 - 3a1 + 6a2)IA} G-r, ( 4. 27 ) 

and 

Hence (4.5) can be written as 

I 
U(t + I) = exp(IA)U(t) + WI V(t) + W2V(t + 2") + W3V(t + l). (4. 29 ) 

4.2 Algorithm 

Let r1, r2 and r3 be the real zeros of the denominator of E3 ( ()); then 

I I I 
G = (1 - -A)(1 - -A)(1 - -A) 

r1 r2 r3 
( 4. 30 ) 

and 

{
II I -1 ( I )-1} U( ) exp(IA)U(t) = P1(1 - -A)- + P2(1 - -A) + P3 1 - -A t 

r1 r2 r3 
( 4. 31 ) 

where 
l+(l-a)rj+(~ -a+b)r; 

PJ' = , j = 1,2,3, 
IT3. (1 - ~) 

z = 1 r, 

i#j 

I { I 1 I 1 ( I A)-I} () WI V ( t) = - P4 (1 - - A) - + ps (1 - - A) - + P6 1 - - v t , 
6 rl r2 r3 

( 4. 32 ) 

where 
1 + (4 - 9a + 12b)rj 

P3+ j = IT 3 . (1 - ~ ) , 
z = 1 T, 

j = L 2, 3, 

i#j 



where 

. _1-(1-3a+6b)rj 
P6+ J - TI3. (1 _ :i.) , j = 1, 2, 3 

'/, = 1 Tj 

iij 

and 

l{ I _ I I} W3v (t+l) = 6 PlO(I - -A) I + Pll(I - _A)-I + P12(I - -A)-I v(t+l) 
rl r2 r3 

( 4. 34 ) 

where 

1 + (3 - 9a + 12b)rj + (1 - 3a + 6b)r~ 
P9+i = TI3. (1 _ :c.i.) J, j = 1,2,3. 

'/, = 1 Ti 

iij 

So 

() I{ I 1 
U t + I Al PI U(t) + 6 (P4V(t) + 4P7V(t + "2) + PlOV(t + l))} 

where 

Hence 

1 I 
+ A;-I{p2U(t) + 6(P5V(t) + 4P8V(t + 2) + PllV(t + l))} 

I I 
+ A31 {P3 U(t) + 6 (P6V(t) + 4P9V(t + 2") + P12V(t + l))}, 

I 
Ai = I - - A, i = 1, 2, 3. 

ri 

U(t + l) = YI + Y2 + Y3 

( 4. 35 ) 

( 4. 36 ) 

( 4. 37 ) 

in which YI, Y2 and Y3 are the solutions of the systems 

( ~l. 38 ) 
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( ~. 39 ) 

and 

( 4. 40 ) 

respectively. Some details of this algorithm are given in Table 4.1. 

4.3 Numerical Examples 

4.3.1 Example 1 

Consider the one space variable partial differential equation (2.1) 

[)u [)2u 
[)t [)t2' 0 < x < 1, t > O. ( 4. 41 ) 

su b j ect to the boundary conditions 

u(O, t) = 0, t > 0, ( 4. 42 ) 

( 4. 43 ) 

and the initial condition 

u(x, 0) = sin(;x), ° < x < 1. ( 4. 44 ) 

This problem, which has theoretical solution 

( 4. 45 ) 

has no discontinuities between the initial conditions and the boundary con

ditions at x = ° and x = 1. The theoretical solution at time t = 1.0 is 

shown in Figure ~1.1. Using the algorithm developed in sectionL ~ wit h the 
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informations given in section 2.8 of Chapter 2 the problem {( 4.41 )-( 4.44)} 

is solved for 

h = 0.125,0.1,0.05,0.025,0.0125,0.01,0.005,0.001 

uSIng 

I = 0.125,0.01,0.05,0.025,0.0125,0.01,0.005,0.001. 

The numerical solution for h = 0.1 and I = 0.005 at the time t = 1. is 

depicted in Figure 4.2. In these experiments the method behaves smoothly 

over the whole interval 0 < x < 1 and no oscillations are observed. Maximum 

errors, at time t = 1.0, are given with positions in Table 4.2. 

4.3.2 Example 2 

Consider again the one space variable partial differential equation (2.1) 

au a2u 
- = -, 0 < x < 1, t > O. 
at at2 

( 4. 46 ) 

subject to the boundary conditions 

u(O, t) = t, t > 0, ( 4. 47 ) 

u(l,t) = 0, t > 0, ( 4. 48 ) 

and the initial condition 

u(x,O) = 1, 0 < x < 1. ( 4. 49 ) 

This problem, which has theoretical solution 

1 
u(x, t) (1 - x)t - 6(x3 

- 3x2 + 2x) 

(X) { 1 } ( 22 t )sin(n7l'1') + ~2 l-(-lt+- e-n:r 
~ n 27l'2 nr. 
n=l 

( .1. .50 ) 

0"" 01 



(Lawson and Swayne, (1976)) has discontinuities between the initial condi

tions and the boundary conditions at x = 0 and x = 1. The theoretical 

solution at time t = 1.0 is shown in Figure 4.3. 

U sing once again the algorithm developed in Section 4.2, together with the 

informations given in section 2.8 of Chapter 2, the problem {(4.46)-(4.49)} 

is solved for 

h = 0.125,0.1,0.05,0.025,0.0125,0.01,0.005,0.001 

uSlng 

I = 0.125,0.01,0.05,0.025,0.0125,0.01,0.005,0.001. 

The numerical solution for h = 0.1 and I = 0.005 at the time t = 1. is 

depicted in Figure 4.4. In these experiments, when bigger values of h and I 

are used the method behaves smoothly over the whole interval 0 < x < 1 but 

oscillations are observed for smaller values. The accuracy is also affected by 

smaller values of h and I because the error grows rapidly near the end where 

growing time-dependent boundary condition is given. Maximum errors, with 

positions, at time t = 1.0 are giveg in Table 4.4. 
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Table 4.1: Algorithm 1 

Steps II Processor 1 I Processor 2 I Processor 3 

1 I, rI, U o, A I, r2, Uo, A I, r3, Uo, A 
Input PI, P4, P7, PlO P2 , Ps , P8, Pll P3, P6, Pg, P12 

2 
Compute I -..LA I -..LA I -..LA 

Tl T2 TJ 

3 I -..LA I -..LA I -..LA 
Tl T2 TJ 

Decompose = LIUI = L2U2 = L3U3 

4 v(t), v(t + 4) v(t), v(t + 4) v(t),v(t+4) 

Evaluate v( t + I) v( t + I) v(t + I) 

5 WI(t) = i(p4V(t) W2(t) = i(Psv(t) W3(t) = i(p6V(t) 

+4P7V(t + 4) +4P8V(t + 4) +4pgv(t+4) 

Using +PlOV(t + I)) + Pll V (t + l)) +P12v( t + I)) 

6 LIUIYI(t) L2U2Y2(t) L3U3Y3(t) 

Solve = PI U ( t) + WI ( t ) = P2 U(t) + W2(t) = P3 U(t) + W3(t) 

7 U(t + I) = Yl(t) + Y2(t) + Y3(t) 

8 GO TO Step 4 for next time step 
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Table 4.2: Maximum errors for Example 1 at t = 1.0 

7 9 19 39 I~ II 0.125 0.1 0.05 0.025 

1=0.125 0.58272D-4 0.51949D-4 0.46097D-4 0.45367D-4 
5 6 12 24 

1=0.1 0.38016D-4 0.31546D-4 0.25715D-4 0.25009D-4 
4 6 12 25 

1=0.05 0.17834D-4 0.10664D-4 0.45220D-5 0.38144D-5 
4 5 12 25 

1=0.025 0.14849D-4 0.67815D-5 0.13833D-5 0.62244D-6 
4 5 10 25 

1=0.0125 0.14441D-4 0.72748D-5 0.98359D-6 0.18544D-6 
4 5 9 21 

1=0.01 0.14414D-4 0.72469D-5 0.95764D-6 0.15737D-6 
4 5 9 20 

1=0.005 0.14395D-4 0.72287D-5 0.94103D-6 0.13982D-6 
4 5 9 19 

1=0.001 0.14468D-4 0.73010D-5 0.10112D-5 0.21163D-6 
4 5 9 20 

continued 

90 



Table 4.3: Continuation of Table 4.2 

I~ 79 99 199 
0.0125 0.01 0.005 

[=0.125 0.45299D-4 0.45292D-4 0.45286D-4 
49 61 122 

[=0.1 0.24923D-4 0.24918D-4 0.24913D-4 
49 62 123-124 

[=0.05 0.37282D-5 0.37221D-5 0.37165D-5 
51 64 128 

[=0.025 0.53597D-6 0.53010D-6 0.52479D-6 
53 66 133 

[=0.0125 0.89028D-7 0.82983D-7 0.77651D-7 
51 66 135 

[=0.01 0.58022D-7 0.51627D-7 0.45989D-7 

48 63 132 

[=0.005 0.38097D-7 0.31095D-7 0.24733D-7 

42 54 113 

[=0.001 0.11104D-6 0.10410D-6 0.97680D-7 

43 54 109 

Positions are shown by the space steps 
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999 
o 001 

0.45286D-4 
614-614 

0.24914D-4 
616-618 

0.37170D-5 
639-641 

0.52520D-6 
665-667 

0.78020D-7 
675-677 

0.44489D-7 
665-666 

0.22840D-7 
569-571 

0.96164D-7 
548-549 

I • • 
i 
I 
I • • 
~ 
! ; 

I 
I 



Table 4.4: Maximum errors for Example 2 at the time t=1.0 

I~ II 
7 9 19 39 

0.125 0.1 0.05 0.025 

1=0.125 0.18614D-4 0.18712D-4 0.18863D-4 0.18876D-4 
4 5 10 20 

1=0.1 0.10491D-4 0.10598D-4 0.10762D-4 0.10776D-4 
4 5 10 20 

1=0.05 0.13915D-5 0.15079D-5 0.16853D-5 0.17013D-5 
4 5 10 20 

1=0.025 -0.13522D-6 0.25672D-6 -0.34734D-6 -0.34694D-6 
5 1 1 2 

1=0.0125 -0.30550D-6 0.20389D-6 -0.37375D-6 -0.37376D-6 

5 1 1 2 

1=0.01 -0.31094D-6 0.20407D-6 -0.37349D-6 -0.37310D-6 

5 1 1 2 

1=0.005 -0.28193D-6 0.22383D-6 -0.36259D-6 -0.36220D-6 

5 1 1 2 

1=0.001 0.30400D-6 0.43278D-6 0.54700D-6 0.55961D-6 

3 3 8 16 

continued 
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Table 4.5: Continuation of Table 4.4 

I~ II 
79 99 199 999 

0.0125 0.01 0.005 0.001 

l=0.125 0.18877D-4 0.18877D-4 0.18877D-4 0.18893D-4 
40 50 100 498 

l=O.l 0.10777D-4 0.10778D-4 0.10778D-4 0.10798D-4 
40 50 100 497-498 

l=0.05 0.17023D-5 0.17025D-5 0.16314D-5 0.24599D-5 
40 50 1 3 

[=0.025 -0.12074D-5 -0.11707D-5 0.16093D-5 0.24467D-5 
1 1 1 3 

[=0.0125 -0.12139D-5 -0.11760D-5 0.16068D-5 0.24452D-5 
1 1 1 3 

[=0.01 -0.12138D-5 -0.11759D-5 0.16068D-5 0.24450D-5 

1 1 1 3 

[=0.005 -0.12109D-5 -0.11736D-5 0.16080D-5 0.24457D-5 

1 1 1 3 

[=0.001 -0.11830D-5 -0.11512D-5 0.16192D-5 0.24525D-5 

1 1 1 3 

Positions are shown by the space step. 
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Figure 4.1: Theoretical solution of numerical example 1 at time t=l. 
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Figure 4.2: Numerical solution of numerical example 1 when h=O.l and 
1=0.005 at time t=l. 
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Figure 4.3: Theoretical solution of numerical example 2 at time t=l. 
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Figure 4.4: Numerical solution of numerical example 2 when h=O.l and 

[=0.005 at time t=l. 
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Chapter 5 

Fourth-order N urnerical 
Methods for Tirne-Dependent 
Boundary-value ProblelllS 

5.1 Derivation of the methods 

In this chapter exp(lA) is denoted by E for convenience. Consider the prob-

lem {(3.1)-(3.4)} with 

u(O, t) = !l(t), t > 0 

and 

u(X, t) = !2(t), t > 0 

Then using the method developed in section 3.1 gives 

dU(t) = A U(t) + v(t), t > 0 
dt 

with initial distribution 

U(O) = g 

in which 
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g = [g(h),g(2h), ... ,g(Nh)]T 

and 

T denoting transpose, A is given by (3.20) and recurrence relation (3.22) 

takes the form 

I
t+l 

U(t+l) = exp(lA)U(t)+ t exp[(t+l-s)A]v(s)ds, t = 0, l, 2l, ... ( 5. 5 ) 

To develop the method the matrix exponential function exp(IA) will be ap

proximated by (3.34) and the quadrature term will be approximated (as in 

Chapter 4) by 

where Sl =1= S2 =1= S3 =1= S4 and W 1 , W 2 , W3 and W 4 are matrices. Then it can 

easily be shown that 

(i) when v(s) = [1,1,1, ... , l]T 

( 5. 7 ) 

where 

( 5. 8 ) 

(ii) when v(s) = [s, s, s, ... , sJT 

( 5. 9 ) 

where 

( 5. 10 ) 

( .l. 11 ) 
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where 

M3 A-I {t2 E - (t + 1)2 1+ 2A-I{t E - (t + I) I 

+ A-I(E-I)}} (5.12) 

and 

( 5. 13 ) 

where 

M4 - A-I {t3E-(t+I)3I+3A- 1 {t2E-(t+I)21 

+ 2A-I{tE-(t+I)I+A-I(E-I)}}}. (5.14) 

Taking 81 = t, 82 = t+~, 83 = t+~l, 84 = t+l and then solving (5.7), (5.9), 

(5.11) and (5.13) simultaneously gives 

9 [ 11 2 _ (t3 + 2/e + -12t + -l3)M 
2[3 9 9 1 

2 11 2) - (3t +4lt+ g l M2 

+ (3t + 2l)M3 - M4] , ( 5. 15 ) 

W - _E- {(t3 + ~lt2 + ~l2t)M1 
2 2[3 3 3 

2 10 2 2 
- (3t + 3 lt + "Sl )M2 

+ (3t + ~l)M3 - M4} , ( 5. 16 ) 

( 5. 17 ) 
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and 

W 9 [( 3 2 2 2 
4 - -2[3 t +It +glt)Ml 

- (3t2 + 2lt + ~l2)M2 
9 

+ (3t + l)M3 - M4 ] . ( 5. 18 ) 

Using (5.8), (5,10), (5.12) and (5.14) in (5.15)-(5.18) gives 

9 [ 11 2 WI - - (t3 + 2lt2 + -12t + -13)A-1(E - I) 
2[3 9 9 

11 
- (3t2 + 41t + g12)A-l{t E - (t + l) I + A-1(E - In 

+ (3t + 21)A-1 {t2 E - (t + 1)2 I + 2 A -l{ t E - (t + I) I 
+ A-1(E - I)}} 

- A-I {eE - (t + 1)3I + 3A-1{e E - (t + 1)2 I 

+ 2A-1{tE-(t+1)I+A-1(E-I)}}}], ( 5. 19 ) 

W2 - -~ [(t3 + ~lt2 + ~12t)A-l(E - I) 
213 3 3 

10 2 
- (3e + 3lt + 3l2)A-1{t E - (t + 1) I + A-1(E - In 

+ (3t + ~I)A-' {t'E - (t + I)'l + 2A-'{t E - (t + I)l 
+ A-1(E - I)}} 

- A-I {t3E - (t + 1)3I + 3A-1{t2 E - (t + 1)2 I 

+ 2A-1{tE-(t+l)I+A-1(E-I)}}}], 

W3 - ~ [(t3 + i lt2 + ~l2t)A-l(E - I) 
2[3 3 3 

- (3t2 + ~lt + ~l2)A-l{t E - (t + l) I + A-1(E - In 
3 3 

( 5. 20 ) 

+ (3t + ~l)A -1 {t2 E - (t + 1)2 I + 2 A- 1
{ t E - (t + I) I 

+ A- 1(E- I n} 

101 



and 

Using 

- A-I {t3E - (t + 1)3J + 3A-I {t2 E - (t + 1)21 

+ 2A-I {tE - (t + I)J + A-I(E - J)}}}] 

W4 - - 2~3 [(t3 + Ii' + ~12t)A-l(E - 1) 

2 
- (3t2 + 2lt + gI2)A-I{t E - (t + I) J + A-1 (E - J)} 

+ (3t + I)A-I {eE - (t + 1)2J + 2A-I {tE - (t + l) 1 

+ A-I(E - J)}} 

- A-I {t3E - (t + 1)31 + 3A-I {t2 E - (t + 1)21 

+ 2A-I {tE-(t+I)J+A-I (E-J))}}]. 

E = exp(lA) = PQ 
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and 

Q = (1 + (1- a,)IA + (~- a, + a2)12A2 + (~ _ ~' + a2 _ a3)l3A3) 

in (5.23)-(5.26) it is easy to obtain 

1 
WI - 24 {3I - (19 - 78al + 216a2 - 324a3)IA 

+ (3 - 8al + 12a2)/2 A2} P, 

31 
16 {2I + (16 - 56al + 144a2 - 216a3)IA 

+ (1- 4al + 12a2 - 24a3)/2A2} P, 
31 
8 {I - (7 - 26al + 72a2 - l08a3)IA 

- (1 - 4al + 12a2 - 24a3)12 A2} P, 

1 
W4 - 48 {6I + (44 - 168al + 432a2 - 648a3)IA 

+ (11 - 44al + 132a2 - 216a3)/2 A2 

+ (2 - 8al + 24a2 - 48a3)13 A3} p. 

Hence (5.5) becomes 

5.2 Algorithm 

( 5. 27 ) 

( 5. 28 ) 

( 5. 29 ) 

( 5. 30 ) 

Let rl, r2, r3 and r4 be the real zeros of the denominator of E4(8) then 

I I 1 I 
p-l = (I - -A)(I - -A)(I - -A)(I - -A) 

rl r2 r3 r4 
( 5. 32 ) 

and 

EU(t) 
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where 

j=1,2,3,4 

where 

3 + (-19 + 78a - 216b + 324c)rj + (3 - 8a + 12b)r~ 
P4+j = n4. (1 _ :i) J , 

'/, = 1 r, 

i=l=j 

j=1,2,3,4 

3l {( l) I ( l) 1 l 1 - P9 I - - A - + PIG I - - A - + PII (I - - A)-
16 rl r2 r3 

+ P12(I - ~A)-I} v(t + ~), ( 5. 35 ) 
r4 3 

where 

2 + (16 - 56a + 144b - 216c)rj + (1 - 4a + 12b - 24c)r; 
P8+j = n4. (1 _ 2:.L) 

'/, = 1 r, 

i=l=j 

j=1,2,3,4 

where 

1 + (7 + 26a - 72b + 108c)rj - (1 - 4a + 12b - 2~c)r; 
P12+ j = n4 . (1 _ 2:.L ) 

'/, = 1 r, 

i=l=j 
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j=I,2,3,4 and 

W ( ) _I { I -1 I -1 1_ 
4 V t + I - 48 P17(I - -A) + P1s(I - -A) + P19(I - -A) 1 

rl r2 r3 

+ P2o(I - _I A)-I} v(t + I) ( 5. 37 ) 
r4 

where 

1 
P16+j - rr4. (1 _ ~) {6 + (44 - 168a + 432b - 648c)rj 

'l = 1 r, 

j=I,2,3,4. 

So 

U(t + I) 

where 

Hence 

i#j 

+ (11 - 44a + 132b - 216c)rJ + (2 - 8a + 24b - 48c)r]}, 

-

+ 

+ 

+ 

+ 

+ 

+ 

+ 

1 [1 I 21 Al PI U(t) + 48 {2psv(t) + 9p9V(t + "3) + 18p13V(t + :3) 

PI7V(t + I)}] 
1 [1 1 21 

A; P2 U(t) + 48 {2P6V(t) + 9plOV(t + "3) + 18p14V(t + :3) 

PISV(t + I)}] 

[ 
I I 21 

A3I P3 U(t) + 48 {2P7V(t) + 9pl1V(t + "3) + 18plSV(t + :3) 

PI9 V (t + I)}] 

[ 
I 1 21 

Ail P4 U(t) + 48 {2psv(t) + 9p12V(t + "3) + 18p16V(t + :3) 

p2ov(t+l)}], (5.38) 

I 
Ai = I - - A, i = 1, 2, 3, 4. 

ri 
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in which Yl, Y2, Y3 and Y 4 are the solutions of the systems 

A1Yl l { I 21 
PIU(t) + 48 2P5V(t)+9p9V(t+ 3) + 18PI3V(t+ 3 ) 

+ P17V (t + I)}, ( 5. 41 ) 

A2Y2 l { I 21 
P2 U(t) + 48 2P6V(t) + 9plOV(t + 3) + 18p14v (t + 3) 

+ P18V (t + I)}, ( 5. 42 ) 

A3Y3 I { I 21 
P3 U ( t) + 48 2 P7 v ( t) + 9 Pn v (t + 3) + 18 PI5 v (t + 3 ) 

+ P19V( t + I)} ( 5. 43 ) 

A4Y4 I { I 21 
P4U (t) + 48 2P8V(t) + 9p12V(t + 3) + 18p16v (t + 3) 

+ P20V(t + I)}, ( 5. 44 ) 

respectively. For the purpose of implementation this algorithm is given in 

Table 5.1. 

5.3 Numerical Examples 

5.3.1 Example 1 

Consider the problem {( 4.41 )-( 4.44)} which is repeated here for convenience 

au 
at 

subject to the boundary conditions 

and the initial condition 

u(O,t) 

u(l, t) 

0, t> 0, 

u(x,O) = sin(~x), 0 <1:< 1. 

106 

( 5. 45 ) 

( 5. 46 ) 

( 5. <17 ) 

(5. I~) 



Using the algorithm developed in Section 5.2 the problem {(5.45)-(5AS)} is 

solved for 

h = 0.125,0.1,0.05,0.025,0.0125,0.01,0.005,0.001 

uSlng 

1 = 0.125,0.01,0.05,0.025,0.0125,0.01,0.005,0.001. 

Only a representative numerical solution is depicted in Figure 5.1. In these 

experiments the method behaves smoothly over the whole interval 0 < x < 1 

and no oscillations are observed. Maximum errors, at time t = 1.0, are given 

with positions in Table 5.2. 

In these experiments it is found that when both hand 1 are too small 

marvellous accuracy with very very small oscillations are obtained. For ex

ample, when h = 0.002 and 1 = 0.0001 the maximum error, at time t = 1.0, is 

0.23302D-12 at the position of n = 271. Moreover, accuracy can remarkably 

be increased for optimal values of hand l. For example, selecting h = 2~2 

and 1 = 0.0002 the maximum error obtained is 0.60174D - 13 although the 

spatial and time steps are bigger. For this experiment maximum percentage 

relative error is 0.37104D - 09. 

5.3.2 Example 2 

Consider the problem {( 4.46)-( 4.49)}, which is repeated here for convenience. 

au a2u 
- = -, 0 < x < 1, t > O. at at2 

subject to the boundary conditions 

u(O, t) 

u(l,t) 

t, t > 0, 

0, t > 0, 
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and the initial condition 

u(x,O) = 1, 0 < x < 1. ( 5. 52 ) 

Using once again the algorithm developed in Section 5.2 the problem {(5.49)

(5.52)} is solved for 

h = 0.125,0.1,0.05,0.025,0.01 

with 

I = 0.125,0.1,0.05,0.025,0.0125,0.01. 

Here also a representative numerical solution is depicted in Figure 5.2. 

When these experiments are performed the similar observations to those 

In Chapter 4 were made, that is, when bigger values of h and I are used 

the method behaves smoothly over the whole interval 0 < x < 1 but os

cillations are observed for smaller values. The accuracy is also affected by 

smaller values of h and I because error grows rapidly near the end where the 

growing time-dependent boundary condition is given. Maximum errors, with 

positions, at time t = 1.0 are given in Table 5.4. 
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Table 5.1: Algorithm 

Steps Processor 1 Processor 2 Processor 3 Processor 4 

1 1, rl, PI 1, r2, P2, I, r3, P3, I, r4,P4, 
ps, Pg, P13, P6, PlO, P14, P7, Pll , PI5 , Ps, P12, P16, 

Input P17, U o, A PIS, U o, A PIg, U o, A P20, U o, A 

2 
Compute I - ..LA I - ..LA I - ..LA I - ..LA 

Tl T2 T3 T4 

3 I - ..LA I - ..LA I - ..LA I - ..LA 
Tl T2 T3 T4 

Decomp = LIUI = L2U2 = L3U3 = L4U4 

4 VI, V2, VI, V2, VI, V2, VI, V2, 
Evaluate V3, V4, V3, V4, V3, V 4, V3, V4, 

5 WI(t) W2(t) W3(t) W4(t) 
= 2PSVI = 2P6VI = 2P7Vl = 2PSVl 

Using +9p9V2 +9PlOV2 +9pnV2 +9P12V2 

+18p13V3 +18p14V3 +18pISV3 + 18p16V3 

+P17V4 +PISV4 +P19V4 +P20V4 

6 LIUIYI(t) L2U2Y2(t) L3U3Y3(t) L4U4Y4(t) 
Solve = PI U(t) = P2 U(t) = P3U (t) = P4 U(t) 

+ ~S WI(t) + 41S W2(t) + 41S W3(t) + 41S W4(t) 

7 U(t + I) = YI(t) + Y2(t) + Y3(t) + Y4(i) 

8 GO TO Step 4 for next time step 
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Table 5.2: Maximum errors for Example 1 at t = 1.0 

I~ II 7 9 19 39 
0.125 0.1 005 0025 

[=0.125 0.63647D-5 0.67172D-5 0.67753D-5 0.68054D-5 
4 5 10 21 

[=0.1 0.30403D-5 0.32927D-5 0.34603D-5 0.34756D-5 

4 5 11 21 

[=0.05 -0.90961D-7 0.20328D-6 0.36112D-6 0.37064D-6 

1 6 11 22 

[=0.025 -0.38877D-6 -0.13646D-6 0.22575D-7 0.31962D-7 

4 5 12 23 

[=0.0125 -0.41799D-6 -0.16568D-6 -0.77154D-8 0.18873D-8 

4 5 10 26 

[=0.01 -0.41934D-6 -0.16703D-6 -0.91071D-8 0.49143D-9 

4 5 11 29 

[=0.005 -0.42026D-6 -0.16795D-6 -O.10070D-7 -0.56061D-9 

4 5 11 21 

[=0.001 -0.42032D-6 -0.16801D-6 -0.10139D-7 -0.62958D-9 

4 5 11 22 

continued 
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Table 5.3: Continuation of Table 5.2 

I~ II 79 99 199 999 
0.0125 o 01 o 005 o 001 

[=0.125 0.68060D-5 0.68052D-5 0.68061D-5 0.68061D-4 
42 52-53 105 524-526 

[=0.1 0.34761D-5 0.34767D-5 0.34767D-5 0.34767D-5 

42 53 106 529-532 

[=0.05 0.37123D-6 0.37125D-6 0.37129D-6 0.37126D-6 

44 55 111 552-555 

[=0.025 0.32567D-7 0.32588D-7 0.32610D-7 0.32587D-7 

47 59 117 585-586 

[=0.0125 0.24547D-8 0.24775D-8 0.24961D-8 0.24706D-8 

50 63 125 627 

[=0.01 0.10290D-8 0.10519D-8 0.10685D-8 0.10234D-8 

51 64 128 643 

[=0.005 o .40063D-1 0 0.59368D-10 O. 73882D-1 0 0.44144D-10 

62 72 135-136 782-783 

[=0.001 -0.40507D-10 -0.16193D-10 0.13386D-11 0.16917D-9 

44 55 98 550-555 

Positions are shown by space steps 
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Table 5.4: Maximum errors for Example 2 at the time t=1.0 

I~ II 7 9 19 39 99 
0.125 0.1 0.05 0.025 0.01 

[=0.125 0.1237D-4 0.1249D-4 0.1255D-4 0.1255D-4 0.1255D-4 
4 5 10 20 50 

[=0.1 0.6295D-5 0.6412D-5 0.6479D-5 0.6482D-5 0.6482D-5 

4 5 10 20 50 

[=0.05 0.5230D-6 0.6449D-6 0.7140D-6 0.7176D-6 -0.1161D-5 

4 5 10 20 1 

[=0.025 -0.1760D-6 0.1958D-6 -0.3831D-6 -0.3826D-6 -0.1181D-5 

2 1 1 2 1 

[=0.0125 -0.2150D-6 0.1788D-6 -0.3918D-6 -0.3912D-6 -0.1183D-5 

2 1 1 2 1 

[=0.01 -0.2169D-6 0.1780D-6 -0.3922D-6 -0.3916D-6 -0.1183D-5 

2 1 1 2 1 

Positions a.re shown by spa.ce steps 
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Figure 5.1: Numerical solution of numerical example 1 when h=O.l and 

1=0.005 at time t=l. 
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Figure 5.2: Numerical solution of numerical example 2 when h=O.l and 
1=0.005 at time t=1. 
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Chapter 6 

Summary and Conclusions 

6.1 Summary 

The main theme of this thesis was to find some new numerical methods 

which are L-stable, require only real arithmetic and are third- or fourth

order accurate in space and time for heat equations and to develop parallel 

algorithms for their implementation. 

Chapter 1 was written for introductory purposes and covers some gen

eral topics, for example, basic introduction, motivation and aims of the the

sis which are briefed in Sections 1.1 and 1.2 and some preliminaries which 

are needed in later chapters. For example, introduction of the method of 

lines, very important in solving parabolic partial differential equations, is 

given in Section 1.3, important notations are mentioned in Section lA, and 

some mathematical properties of finite-difference methods, for example, error 

analysis, consistency and stability, are outlined in Section 1.5. 

In Chapter :2 a family of third-order numerical methods for one-dimensional 

heat equation, with constant coefficients, subject tot he homogeneous bound-
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ary conditions, was introduced. Third-order accuracy in the space component 

is derived in Section 2.1 and a new governing matrix was obtained. In Section 

2.2 the third-order acuuracy in the complementary component is obtained 

using a new rational approximation to the matrix exponential function, en

countered in Section 2.1. Other relevant constraints for these methods are 

discussed in Sections 2.3 and 2.4. Since efficiency is also an important object 

of this thesis, a parallel algorithm which is implement able on architecture 

consisting of three processors is developed in Section 2.5. To make these 

methods more useful, extensions to two and three space dimensions with rel

evant algorithms are given in Sections 2.6 and 2.7 respectively. This chapter 

is concluded by numerical examples which show that the methods are very 

much effective. Pictorial evidence is also appended for support. 

The matrix obtained in Chapter 2 is not symmetric so the maximum er

ror, in some cases, is not at the centre of the region. To remove this rumple 

in error a family of fourth-order numerical methods for the one-dimensional 

heat equation, with constant coefficients, subject to homogeneous boundary 

conditions, is introduced in Chapter 3. Fourth-order accuracy in the space 

component is derived in Section 3.1 and a new quasi-symmetric matrix is 

obtained. In Section 3.2 a special case of the new rational approximation, 

given in Section 2.2, is suggested to achieve fourth-order accuracy in the time 

variable. Conditions for the L-stability of these methods are formulated in 

Sections 3.3. A parallel algorithm which is implementable on an architecture 

consisting of four processors is developed in Section 2.5. Like third-order 

methods these are also extended to two and three space dinlensions in Sec

tions 3.5 and 3.6 respectively. At the end of this chapter the same llumerical 

examples, which are given in Chapter 2, are considered and it is found thaI 

numerical results are very accurate and the maxinlunl errors are at the C(,llt rc 
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of the region except in a few cases. Two numerical results are depicted for 

pictorial evidence. 

There are many engineering problems in which the linear, homogeneous 

partial differential equation is given with time-dependent boundary condi

tions (Myers, 1971 ) ,for example, simple wall problem. So the Chapters 4 

and 5 are intended to develop third- and fourth-order numerical methods for 

problems with time-dependent boundary conditions. 

Considering a typical problem with time-dependent boundary conditions, 

a family of third-order numerical methods is developed in Chapter 4. Deriva

tion of the methods is outlined in section 4.1 in which the matrix exponential 

function is approximated by the rational approximation introduced in sec

tion 2.2 of Chapter 2 and the quadrature term is approximated in a new way. 

Since most of the mathematics needed in this section is concerned in solving 

a system of linear equations so it was not presented in detail. In section 4.2, a 

parallel algorithm was developed and presented in tabular form in Table 4.1. 

This algorithm is suitable for an architecture consisting of three processors. 

In section 4.3 a representative of these methods is used to find numerical solu

tions of two different problems. The analytical and some numerical solutions 

are depicted at the end of the chapter. 

Considering again the model problem, discussed in section 4.1, a family of 

fourth-order numerical methods is developed in Chapter 5. Derivation of the 

methods is outlined in section 5.1 in which the matrix exponential function 

is approximated by the rational approximation introduced in section 3.2 and 

the quadrature term is approximated by a method which is an ext ended 

form of the method used in section 4.1. Once again only essential steps are 

presented in this section. In section 5.:2 a parallel algorithrl1 was developed 
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and presented in tabular form in Table 5.1. This algorithm is suitable for an 

architecture consisting of four processors. In section 5.3 a representative of 

these methods is used to find numerical solutions of the problems given in 

Chapter 4. Using the aforesaid method extraordinary accuracy is achieved for 

one numerical example. Two numerical solutions are graphed and appended 

at the end of the chapter. 

6.2 Applications 

The ideas developed in this thesis can play an important role in modifying 

the methods for non-linear, first-order systems of ordinary differential equa

tions which appear in the description of measels epidemiology, the dynamics 

of diabetology and population dynamics, linear parabolic partial differential 

equations with time-dependent source terms arising in the study of polymers 

and ceramics, linear or nonlinear parabolic partial differential equations with 

no source term arising in the study of percutaneous drug absorption, par

tial differential equations appearing in the diffusion in composite media (for 

example, heat in walls) and linear or nonlinear parabolic partial differential 

equations arising in the study of heat flow in the human body. In addition 

to parabolic partial differential equations these methods can be applied to 

second-order hyperbolic partial differential equations. 

6.3 Conclusions 

Up-to-now there was no direct method to achieve higher-order accuracy in 

the space variable. So the work considered in this thesis may be regardc( 1 as a 

first attempt in this direction and has revealed a lot of exciting obscn'al iOlls. 
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Appendix A 

Eigenvalues of h2 A given by 
(2.21) 

Table A.I: Eigenvalues of h2 A for N=7 
No. Real Eigenvalues No. Complex Eigenvalues 

1 -0.0987 5 -2.6893+0.5I44i 
2 -0.3944 6 -2.6893-0.5I44i 
3 -0.8933 7 -2.4685+0.2II8i 
4 -2.5359 

Table A.2: Eigenvalues of h2 A for N =9 

No. Real Eigenvalues No. Complex Eigenvalues 

1 -0.0987 6 -2.6893+0 .5I44i 

2 -0.3944 7 -2.6893-0.5I44i 

3 -0.8933 8 -2.4685+0.2II8i 

4 -1.5955 9 -2.4685-0.2I18i 

5 -2.5359 
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Table A.3: Eigenvalues of h2 A for N =19 

No. Real Eigenvalues No. Complex Eigenvalues 
1 -0.0247 10 -2.7066+0.6443i 
2 -0.2217 11 -2.7066-0.6443i 
3 -0.0987 12 -2.6607 +0.5369i 
4 -0.3932 13 -2.6607-0.5369i 
5 -0.6124 14 -2.5925+0.3760i 
6 -0.8775 15 -2.5925-0.3760i 
7 -1.1842 16 -204975+0.2113i 
8 -1.5259 17 -204975-0.2113i 
9 -1.8977 18 -2.3747 +0.0248i 

19 -2.3747 -0.0248i 

Table Ao4: Eigenvalues of h2 A for N =39 

No. Real Eigenvalues No. Complex Eigenvalues 
1 -0.0062 22 -2.7182 + 0.6729i 
2 -0.0247 23 -2.7182 - 0.6729i 
3 -0.0555 24 -2.7043 + 0.6480i 
4 -0.0987 25 -2.7043 - 0.6480i 

5 -0.1541 26 -2.6816 + 0.6066i 

6 -0.2216 27 -2.6816 - 0.6066i 

7 -0.3012 28 -2.6510 + 0.5495i 

8 -0.3927 29 -2.6510 - 0.5495i 

9 -004957 30 -2.6135 + Oo4776i 

10 -0.6099 31 -2.6135 - 004 776i 

11 -0.7349 32 -2.5709 + 0.3935i 

12 -0.8701 33 -2.5709 - 0.3935i 

13 -1.0147 34 -2.5231 + 0.3031i 

14 -1.1677 35 -2.5231 - 0.3031i 

15 -1.3284 36 -204669 + 0.:2137i 

16 -1.4957 37 -204669 - 0.2137i 

17 -1.6689 38 -2.4150 + 0.1201i 

18 -1.8478 39 -2.4150 - 0.1201i I 
19 -2.0335 
20 -2.2324 
21 -2.3898 
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Appendix B 

Coefficients of q( 8), defined by 
(2.30) 

Table B.1: Coefficients of q(()), defined by (2.30) 
al a2 a3 

3/2 193/300 3/50 
7/5 46/75 2j'Y ~.) 

139/100 185092/300000 277/3125 
67/50 176476/300000 2123/25000 
131/100 171379/300000 8293/100000 
6544/5000 171181/300000 8287/100000 
65431/50000 171151/300000 8286/100000 
65430883/50000000 171150649/300000000 8286/100000 
1.308617651 0.570502158833 0.082859999999692 
1.308617650549908 0.57050215860798 0.082859999999692 



Appendix C 

Octadiagonal solver 

Consider the linear system 

Aw=b ( 3. 1 ) 

where A is an octadiagonal constant coefficient matrix 

a5 1 a6 1 a71 a81 0 
a42 a52 a62 a72 a82 
a33 a43 a53 a63 a73 a83 

a24 a34 a44 a54 a64 a74 a84 
A= als a2s a3s a4s a5s a6s a7s a8s 

alN-2 a2N-2 a3N-2 a4N-2 a5N-2 a6N-2 a7N-2 
alN-l a2N-l a3N-l a4N-l a5N-l a6N- 1 

0 alN a2N a3N a4N a5N 
( 3. 2 ) 

w= [WI, W2, . .. ,WN]T, T denoting the transpose, to be determined and 

b = [b1 , b2, . .. , bN]T is a given vector. The LU-decomposition of A may be 

carried out by factorizing it into two matrices Land U such that A = LV 
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where 
1 0 
142 1 
133 143 1 

L= 124 134 144 1 
115 125 13 5 145 1 

0 lIN 12N 13N 14N 1 NxN 
and 

uI 1 u21 u31 u41 0 
uI2 u22 u32 u42 

u= uIN-3 U2N-3 U3N-3 U4N-3 
uIN-2 U2N-2 u3N- 2 

U1N-l u2N- 1 

0 u1N NxN 

To find the non zero entries of Land U we have the algorithm 

U4i a8i i = 1,2, ... ,N 
uh a51 

u21 a61 

u31 a71 

142 a42/u1 1 

u12 a52 - 142u21 

u22 a62 - 142u31 

u32 a72 - 142u41 

133 a33/uh 
143 (a43 - 133u21 )/uh 
ub a53 - 133u31 - 143u22 
U23 a63 - 133u41 - 143u32 
u33 a73 - 143u42 
124 a24/uh 
134 (a34 -124u2d/uh 
144 (a44 -124u31 -134u22)/uh 

u14 a54 - 124u41 - 134u32 - 144u23 

U24 a64 - 134u42 - 144u33 

u34 a74 - 144u43 

u34 a74 - 144u43 continued 
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FORi 
IIi 
12i 
13i 
14i 

Uli 

U2i 
u3i 

5,6, ... , N 
aIi/uIi_4 
(a2i - Iliu2i_4) / uI i-3 

(a3 i -lliu3i_4 -12iu2i-3)/uli_2 
(a4i -lliu4i_ 4 -12iu3 i _3 -13iU2i-2)/uli_l 
a5i - 12i u4i_ 3 - 13iu3i_2 - 14iu2i _

1 

a6i - 13iu4i_2 - l4iu3i_1 
a7i - l4iu4i_1 

Introducing an intermediate vector x we can write the given system as 

Uw = x, Lx= b. ( 3. 3 ) 

We can solve these systems by forward and backward substitutions using the 

algorithms 

and 

WN 
WN-l 
WN-2 

FOR i 

b1 

b2 - l42 X l 

b3 - 133Xl - l43 X2 
b4 - 124x l - l34X2 - 144x3 
5,6, ... ,N 
bi - lli Xi-4 - 12ix i-3 - l3 i Xi-2 - 14i Xi-l 

XN /uIN 
(XN-l - U2N-IWN)/ulN-l 
(XN-2 - U2N-2WN-l - u3N-2 wN)/ulN-2 
N - 3, N - 4, ... , 1 
(Xi - u2 i W i+l - u3iWi+2 - u4iwi+3)/uli 

respectively. This algorithm has a considerable advantage in cpu-time 0\"('1' 

the full Gauss elimination method. 
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Appendix D 

Eigenvalues of h2 A given by 
(3.20) 

T bl DIE' 1 h N 7 a e .. !lien va ues w en -
No. Real Eigenvalues No. Complex Eigenvalues 

1 -4.0212 6 -2.5248+0.8053i 
2 -0.1542 7 -2.5248-0.8053i 
3 -0.6170 
4 -1.5412 
5 -2.6167 

Table D.2: Eigenvalues when N =9 

No. Eigenvalues No. Eigen val ues 

1 -4.7966 6 -2.7934 

2 -0.0987 7 -0.8963 

3 -0.3941 8 -2.5209+0.6980'i 

4 -3.1892 9 -2.5209-0.6980i 

5 -1.7899 
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Table D.3: Eigenvalues when N=19 

No. Eigenvalues No. Eigenvalues 
1 -5.2646 11 -1.6309 
2 -5.0628 12 -1.2210 
3 -4.7401 13 -0.8884 
4 -4.3144 14 -2.1933 
5 -3.8024 15 -0.6154 
6 -3.1892 16 -2.5441 +0.5221i 
7 -0.0247 17 -2.5441-0.5221 i 
8 -0.0987 18 -2.6249+0.5006i 
9 -0.2219 19 -2.6249+0.5006i 
10 -0.3941 

Table D.4: Eigenvalues when N=39 

No. Eigenvalues No. Eigen val ues 
1 -5.3202 21 -1.3862 
2 -5.2811 22 -1.2055 
3 -5.2165 23 -1.0385 

4 -5.1271 24 -0.0062 

5 -5.0140 25 -0.8847 

6 -4.8787 26 -0.0247 

7 -4.7225 27 -0.0555 

8 -4.5474 28 -0.7436 

9 -4.3551 29 -0.0987 

10 -4.1475 30 -0.1542 

11 -3.9264 31 -0.6149 

12 -3.6931 32 -0.3941 

13 -3.4480 33 -0.3019 

14 -3.1892 34 -0.4984 

15 -2.9087 35 -0.2219 

16 -2.5937 36 -2.5794 + 0.5049·i 

17 -2.2859 37 -2.5794 - 0.5049i 

18 -2.0242 38 -2.5794 + 0.50:2Ti 

19 -1. 7928 39 -2.5794 -O .. SO:2Ti ! 

20 -1.5814 i 

• 
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Appendix E 

Coefficients of q( B), defined by 
(3.25) 

Table E.1: Values of parameters for q(()), defined by (3.25). 
al a2 a3 

2.550 2.3383 0.91583 
2.558 2.3423 0.9165 
2.559 2.33283 0.911583 
2.560 2.333 0.9116 
2.570 2.3583 0.9225 
2.580 2.383 0.93 
2.590 2.3983 0.93916 
2.600 2.423 0.95 
2.700 2.583 1.023 
3.000 3.093 1.2583 
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