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ABSTRACT 25 

Chemical risk assessment procedures assign a major role to standardised toxicity tests, 26 

in which the response of a particular organism to a single test substance is determined 27 

under otherwise constant and favourable conditions in the laboratory.  This approach 28 

fails to consider the potential for chemical interactions, as well as failing to consider 29 

how the toxicological response varies, depending on the conditions of exposure.  As 30 

yet, the issue of confounding factors on chemically-mediated effects in wildlife has 31 

received little attention, despite the fact that a range of physicochemical parameters, 32 

including temperature, water quality and pH, are known to modify chemical toxicity.  33 

Here, we consider how the estrogenic response of fish varies with regard to hypoxia.  34 

Fathead minnows (Pimephales promelas) were exposed to a mixture of estrogenic 35 

chemicals under hypoxic or normoxic conditions. Their estrogenic response was 36 

characterised using an in vivo assay, involving the analysis of the egg yolk protein, 37 

vitellogenin (VTG). The results revealed that there was no effect of hypoxia on the 38 

VTG response in either treatment group at the end of the exposure period.  This 39 

suggests that this endpoint is robust and relatively insensitive to the effects of any 40 

physiological changes that arise as a result of hypoxia.  The implications of these 41 

negative findings are discussed in terms of their relevance with regard to the 42 

development of risk assessment policy. 43 

KEY WORDS:  44 
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1.  INTRODUCTION 47 

Hypoxia is a phenomenon that occurs in both marine and freshwater environments, 48 

affecting many thousands of km
2
, worldwide.  In this context, it is defined as 49 

dissolved oxygen (DO) levels of less than 2.8 mg/l (1).  These conditions are 50 

generally of detriment to the survival of aquatic organisms, having been associated 51 

with mass mortalities, benthic defaunation and declining fisheries production (2).  52 

Although hypoxia can occur as a result of natural stratification in some systems, 53 

through the formation of haloclines and thermoclines, the incidence and extent of this 54 

phenomenon has increased in recent decades as a result of excessive inputs of 55 

nutrients and organic matter into water bodies with poor circulation.  An example is 56 

provided by the situation in the northern Gulf of Mexico, where the hypoxic region 57 

has averaged over 15,600 km
2 

in size since 1993, as a result of the increased use of 58 

nitrate fertilisers (3).  Situations such as this are likely to be exacerbated in the future 59 

due to the increase in the intensity of agricultural practices and the rate of human 60 

population growth in coastal areas, combined with the impacts of global climate 61 

change (4). 62 

Fish have developed two main strategies for coping with hypoxia.  The first is to 63 

invoke various behavioural and physiological responses that increase oxygen delivery.  64 

For example, ventilation rates are increased and glycolysis, with lactic acid as an end 65 

product, is induced to resist the effects of hypoxia in the short term (5).  A second 66 

strategy, which may be invoked following prolonged exposure, is to conserve energy 67 

by metabolic suppression (2).  This is apparent from the analysis of gene expression 68 

patterns in the mudsucker, Gillichthys mirabili, which revealed that cellular growth is 69 

suppressed under hypoxic conditions in order to allow energy to be channelled into 70 
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essential metabolic processes (6).  However, in contrast with their capacity to protect 71 

against hypoxia, it would appear that these responses are associated with a reduction 72 

in the tolerance of fish to simultaneous chemical challenge.  Increased toxicity under 73 

low oxygen conditions has been demonstrated for a range of micro-pollutants (e.g. 74 

cyanide, ammonia) and for some metals (e.g. copper, cadmium), leading to reduced 75 

survival of fish in multiple stress exposure situations  (7-11).  This phenomenon may 76 

be linked to the enhanced uptake of toxicants under hypoxic conditions; there is an 77 

apparent link between DO, ventilation rate and toxicity (9).  However, the evidence 78 

surrounding this issue remains equivocal (8).   79 

Currently, little is known about the potential influence of hypoxia on the response of 80 

fish to endocrine disrupting chemicals (EDCs), such as the environmental estrogens.  81 

However, this issue is pertinent for two reasons.  Firstly, the input of nutrients into the 82 

environment from anthropogenic sources often coincides with the presence of EDCs 83 

(e.g. in sewage treatment works effluent), creating multiple stress exposure situations.  84 

Secondly, there is growing evidence that hypoxia can, on its own, cause endocrine-85 

mediated disturbances in fish.  Whilst the mechanism(s) responsible are still under 86 

investigation, it would appear that changes in the hormonal balance of the common 87 

carp, Cyprinus carpio, that occur in response to hypoxia are associated with retarded 88 

gonadal development, reduced spawning success, sperm motility, fertilisation success, 89 

hatching rate and larval survival (12).  Subsequent research has revealed effects on 90 

sex differentiation and development in the zebrafish, Danio rerio, leading to male-91 

dominated populations (13).  In view of this evidence, it seems likely that hypoxia 92 

may act as a confounding factor in determining the way in which fish respond to 93 

chemical challenges mediated via the endocrine system.   94 
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The environmental literature rarely considers the influence of physicochemical factors 95 

on endocrine mediated effects, which is probably due, at least in part, to the difficulty 96 

in designing appropriate experiments for detecting these highly complex interactions.  97 

However, some insight into influence of hypoxia on the estrogenic response can be 98 

garnered from the biomedical field.  For example, cancer research, using microarray 99 

technology, has revealed that hypoxia and estrogen interact to modulate gene 100 

expression in an in vitro study, involving human breast cancer cells (14).   101 

In the present study, we compare the response of fathead minnows (FHM; Pimephales 102 

promelas) exposed to a mixture of estrogenic chemicals under hypoxic vs. normoxic 103 

conditions, using an in vivo assay that is based on the induction of egg yolk protein 104 

(vitellogenin; VTG) synthesis in male fish (15).  There is already evidence to suggest 105 

that hypoxia is associated with altered VTG levels in wild estuarine fish, as well as 106 

those maintained under laboratory conditions (16).  However, here, we will consider 107 

the influence of hypoxia on the VTG response of male fish stimulated by exposure to 108 

a defined mixture of estrogenic chemicals.  The data generated will contribute to our 109 

understanding of the risks that exist in multiple stress exposure situations, which is of 110 

relevance with regard to the development of risk assessment methodology.     111 

2.  MATERIALS AND METHODS 112 

2.1 Experimental Design 113 

The design of this investigation is based on that of a previous study by Brian et al. 114 

(17), in which the response of male FHM to a defined mixture of estrogenic chemicals 115 

was characterised, using the induction of plasma VTG as an endpoint, following an 116 

exposure period of two weeks.  The mixture consisted of the endogenous steroidal 117 
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estrogen, 17-estradiol (E2) and the synthetic steroidal estrogen, 17ethinylestradiol 118 

(EE2), as well as three other environmentally relevant chemicals that have the 119 

capacity to mimic the actions of estrogen; namely 4-tert-nonylphenol (NP), 4-tert-120 

octylphenol (OP) and bisphenol-A (BPA).  Stocks of E2 (98% purity), EE2 (98% 121 

purity), OP (97% purity) and BPA (99% purity) were purchased from Sigma Aldrich, 122 

Dorset, UK.  NP (99% purity) was obtained from ACROS Organics, Leicestershire, 123 

UK.  Each of the chemicals was combined at a fixed ratio, based on their potency with 124 

regard to the induction of VTG.  The joint action of these chemicals is known to be 125 

consistent with predictions based on concentration additivity (CA; 17).   126 

A master stock, containing each component of the mixture at a concentration that was 127 

known to elicit a 50% response with regard to the induction of VTG (i.e. its EC50), 128 

was prepared in dimethylformamide (DMF; VWR International, Leicestershire, UK).  129 

This master stock, which comprised 13.5 g/l EE2, 375 g/l E2, 105 mg/l NP, 675 130 

mg/l OP and 2.25 g/l BPA, was then diluted in DMF to produce five further stocks 131 

that were 0.5, 0.3, 0.2, 0.1 and 0.05 of the original mixture concentration.  The stock 132 

solutions were diluted by 1:15000 with de-chlorinated tap water (pre-heated to 25 ºC) 133 

prior to delivery to the experimental tanks.  This flow-through exposure system is 134 

described in more detail in an earlier publication (17).   135 

The resulting mixture concentrations in the fish tanks were sufficient to cover the full 136 

extent of the concentration response curve in fish maintained under normal oxygen 137 

conditions (7 mg/l DO ± 1 mg/l; 17).  A solvent control tank was run alongside those 138 

containing each of the various dilutions of the mixture.  This was dosed with a stock 139 

of pure DMF, which was delivered at the same rate as the mixture-treated tanks.   140 
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The chemical dosing commenced one week before the start of each exposure study.  141 

This conditioning process ensured that the chemical concentrations in the tanks were 142 

accurate.  Analytical chemistry was used to verify the water concentrations in samples 143 

collected immediately prior to the addition of the fish and after one week of exposure.  144 

A third and final set of samples was collected on the day that the exposure study was 145 

terminated.  The phenolic compounds (NP, OP and BPA) were measured by direct 146 

injection onto a reverse phase HPLC column, according to the methods described by 147 

Pojana et al. (18).  The steroids (E2 and EE2) were analysed by RIA, using the 148 

technique outlined by Länge et al. (19).   149 

2.2 Protocol 150 

Two exposure studies were set up, in parallel, according to the design outlined above.  151 

One set of tanks was maintained under hypoxic conditions (<2 mgO2/l).  This was 152 

achieved by bubbling nitrogen gas through the tanks, which displaced the oxygen in 153 

the water.  Each tank was supplied with a close fitting glass lid with a hole at either 154 

end to allow the delivery of water and pressurised nitrogen to the tanks, via silicone 155 

tubing.  The nitrogen, which was fed by a series of nitrogen cylinders with individual 156 

flow controls to each tank, was then diffused into the water using a 15 cm ceramic air 157 

stone (PlanetRena, Charlotte, NC, USA).  The second set of tanks was set up in an 158 

identical manner, except that they were supplied with pressurised air, as opposed to 159 

nitrogen.  It was expected that the oxygen conditions in these tanks would be close to 160 

100% saturation (7-8 mg/l in our system), thereby representing normoxic conditions. 161 

One week prior to exposure, whilst the experimental tanks were being conditioned, 162 

male fathead minnows were selected from our laboratory-reared stocks.  These fish 163 

were split into two groups before being transferred to two sets of holding tanks.  In 164 
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one set of holding tanks, the fish were equilibrated to hypoxic conditions.  This was 165 

achieved by increasing the flow of nitrogen into the tanks such that the oxygen levels 166 

were reduced by approximately 1mg/l each day.  In the other set of tanks, the flow 167 

rate of air was increased in a similar manner.  At the end of the week the fish in each 168 

group were randomly allocated to the treated tanks (8 per tank). 169 

During the equilibration period and the experiment itself, the fish in each treatment 170 

group were fed twice daily: once with frozen brine shrimp and once with flaked fish 171 

food.  The photoperiod was maintained on a 16 hr light/8 hr dark cycle with 20 minute 172 

dawn and dusk transition periods.  The DO concentrations in each tank were recorded 173 

several times daily using an Oxi 340i digital meter and CellOx® 325 probe (WTW; 174 

Weilheim, Germany).  Water temperature was also measured daily.  Various other 175 

water quality parameters (i.e. ammonia, nitrite and nitrate) were analysed at routine 176 

intervals to ensure that there were no differences between the two sets of fish tanks, 177 

aside from the oxygen availability. 178 

2.3 Sampling and Analysis 179 

At the end of the experiment, the fish were sacrificed by overdose with anaesthetic 180 

(MS222; Sigma Aldrich).  Their lengths and weights were recorded.  Blood samples 181 

were then collected from the caudal peduncle using heparinised capillary tubes.  The 182 

blood samples were centrifuged at 4000 g for 5 minutes and the plasma drawn off and 183 

snap frozen on dry ice.  The plasma samples were then stored at –20 ºC until required 184 

for the determination of VTG protein levels.  This was carried out using a FHM VTG 185 

ELISA kit, which was supplied by Biosense Laboratories AS (Bergen, Norway).   186 

2.4 Statistical Analysis 187 
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A series of statistical tests were performed on the physicochemical and biological data 188 

sets.  Whilst there was a clear difference between the DO levels in each of the parallel 189 

exposures, the levels measured within each set of tanks were compared statistically to 190 

determine their variability.  This was achieved using the ANOVA procedure, followed 191 

by Tukey’s pairwise comparisons.  The chemical concentrations measured in each set 192 

of tanks at the start of the experiment were also compared statistically to ensure that 193 

there were no differences between the exposure levels.  The measurements were first 194 

converted into proportions by dividing by the nominal values and comparisons were 195 

made between tanks with the same nominal exposure levels using paired t-tests.  The 196 

VTG levels were also analysed, using t-tests, to compare the mean response of fish in 197 

each treatment group across the parallel exposures.  Where necessary, these data were 198 

log transformed prior to analysis in order to achieve normality. The statistical testing 199 

was carried out using Minitab version 13.1 (Minitab Inc. State College, PA, USA).   200 

3. RESULTS 201 

3.1. Oxygen Conditions 202 

There was a clear difference between the oxygen conditions in the parallel exposure 203 

studies (Figure 1).  The mean daily DO concentration in the normoxic tanks ranged 204 

between 6.58 and 7.18 mg/l.  Some of these values were slightly lower than the target 205 

of 100% oxygen saturation.  This can be attributed to the fact that these tanks suffered 206 

from a slight bacterial build up towards the end of the exposure period.  The bacterial 207 

levels tended to be higher in the tanks that contained more of the mixture, which is 208 

reflected by the trend of reducing DO with increasing level of exposure.  However, 209 

despite of this, there were no significant differences between the DO levels in this set 210 
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of tanks and the DO concentrations were well within the range of encountered under 211 

normoxic conditions.    212 

In contrast, the mean daily DO levels in the hypoxic tanks during the exposure were 213 

between 1.44 and 1.75 mg/l.  These levels were less variable than those recorded in 214 

the normoxic tanks, probably due to the lower levels of bacteria in the hypoxia tanks 215 

(these factors may have been related).  However, there was a statistically significant 216 

difference (p<0.01) between the levels measured in the tanks containing the mixture 217 

at a 0.05 and 1.0 dilution, which had the lowest and highest mean DO concentrations, 218 

respectively.  Nevertheless, the oxygen conditions within this set of tanks fell below 219 

the hypoxic threshold of 2 mg/l throughout the period of exposure, thereby satisfying 220 

the experimental criteria. 221 

The differential growth of bacteria in each of the parallel exposures, which became 222 

apparent at the beginning of the second week of exposure, raised concerns regarding 223 

the chemical concentrations in each set of tanks.  This was based on prior experience 224 

indicating that bacterial blooms may be associated with increased rates of chemical 225 

biodegradation, potentially lead to a reduction in the exposure levels in the affected 226 

tanks (20).  Hence, as a precaution, the decision was taken to terminate the experiment 227 

early and, as a result, the duration of the exposure was reduced from 14 to 10 days.      228 

3.2. Chemical Concentrations 229 

The analysis of the chemical concentrations in each fish tank revealed that, in general, 230 

there was good agreement between the nominal and actual exposure concentrations 231 

measured at the start of the experiment (Table 1).  There was also good agreement 232 

between the concentrations measured across each of the parallel exposures.  However, 233 
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BPA was an exception to this rule.  Whilst the actual concentrations of this chemical 234 

were close to nominal in the hypoxic tanks, these measurements were considerably 235 

lower in the tanks maintained under normoxic conditions and, hence, a significant 236 

difference (p<0.05) between the levels measured in the parallel studies was detected.  237 

However, the agreement between the nominal and actual exposure concentrations in 238 

the normoxic tanks improved at the second and third time points (see the supporting 239 

information, S1 and S2, respectively), suggesting that the inconsistency between the 240 

levels measured at the start of the experiment may have been an analytical anomaly, 241 

although the values were consistently lower than those measured in the hypoxic tanks.  242 

This may reflect the ease with which BPA is biodegraded in the presence of bacteria, 243 

which was more prevalent in the normoxic tanks.  In contrast, the other components 244 

of the mixture (E2, EE2, NP and OP) appeared to be unaffected by the presence of the 245 

bacteria, with their concentrations remaining consistent throughout the experimental 246 

period. 247 

3.2. VTG Protein Induction 248 

The analysis of VTG induction levels at the end of the experiment (Figure 2) revealed 249 

that there was a clear and consistent concentration-response to the mixture in each of 250 

the parallel exposures.  The potency was similar to that reported in previous work by 251 

the same authors (17, 20) in that a 50% VTG response was induced by the 0.2 mixture 252 

dilution, which contained each chemical at a fifth of its individual EC50.  There was 253 

no evidence that the VTG response of fish differed between the normoxic and hypoxic 254 

conditions, as reflected by the fact that there were no significant differences detected 255 

between the mean VTG levels within each treatment group. 256 

4. DISCUSSION 257 
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The results of this study clearly demonstrate that the VTG response of FHM exposed 258 

to a mixture of estrogenic chemicals is similar under hypoxic vs. normoxic conditions.  259 

Hence, the data refute the hypothesis that the estrogenic response may be elevated at 260 

low oxygen levels, either as a result of increased chemical uptake or due to changes in 261 

the rate of physiological processing under varying physicochemical conditions.  These 262 

findings contrast with evidence from similar studies involving the exposure of fish to 263 

micro-pollutants and metals.  For example, recent research by Hattink et al. (8) 264 

revealed that common carp (Cyprinus carpio) are around three times more sensitive to 265 

the effects of cadmium under hypoxia (at 25% oxygen saturation) in relation to those 266 

maintained under normal oxygen conditions, although it was not possible to identify 267 

the mechanism responsible.  The lack of response to hypoxia in the present study 268 

indicates that EDCs may not behave in the same way as other toxicants under hypoxic 269 

conditions and that the rate at which they are taken up and metabolised remains 270 

constant, regardless of oxygen availability.  However, this theory is not consistent 271 

with in vitro data, which shows that hypoxia and estrogen treatment act together to 272 

affect molecular-level responses, leading to significant effects on gene expression 273 

profiles (14). 274 

Whilst we would normally expect molecular responses, such as those reported by 275 

Seifeddine et al. (14), to be reflected at higher levels of biological organisation, it is 276 

possible that effects on VTG induction were not observed in vivo due to the influence 277 

of negative feedback processes.  As a result, we cannot exclude the possibility that 278 

hypoxia was associated with effects on rates of chemical uptake and metabolism: 279 

these alterations may have acted against one another, thereby countering any overall 280 

effect.  The potential for physiological interactions of this nature is highlighted by 281 

recent evidence that the expression of the estrogen receptor, ERα, is three-fold lower 282 
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in wild fish inhabiting hypoxic sites, compared to those at normoxic locations (16).  283 

Presumably, differences in receptor activity have the capacity to affect the rate and 284 

efficiency with which molecular responses are transcribed and subsequently translated 285 

at the proteomic level, thereby altering the magnitude of the response to estrogenic 286 

stimuli.  It is therefore possible that changes in the expression of ERα could, 287 

potentially, have masked any effects arising as a result of changes in the rate of 288 

chemical uptake, although this hypothesis requires further investigation. 289 

In addition, whilst there was no effect of hypoxia on the VTG response measured after 290 

10 days of exposure, it is possible that differences may have been detected at earlier 291 

time points (e.g. after 24 hours or 7 days).   This response pattern has previously been 292 

reported for FHM exposed to the same estrogenic mixture at different temperatures 293 

(21).  The transient nature of this response was attributed to an increase in the rate of 294 

induction of the VTG response at higher temperatures, which was mediated via both 295 

transcriptional and translational effects.  After two weeks, however, these differences 296 

were no longer apparent and the VTG response was identical for fish maintained at 20 297 

and 30 °C.  The same temporal pattern may have been apparent in the present study, 298 

with fish maintained under hypoxic conditions exhibiting an elevated response to the 299 

mixture at earlier time points due to an increased rate of chemical uptake under these 300 

conditions.  However, the potential for short-term effects on the estrogenic response 301 

were not considered because the relevance of such transient alterations with regard to 302 

chemical risk assessment remains unclear (21). 303 

To conclude, the results of this study reiterate that mixtures of estrogenic chemicals, 304 

or indeed any chemicals that act via a common mechanism, have the capacity to act 305 

together to exert combined effects in vivo, as previously reported by Brian et al. (17, 306 
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20), thereby highlighting the need to take account of their joint effects.  However, 307 

there was no evidence to suggest that the estrogenic response was confounded by the 308 

effects of an additional physicochemical variable, which was, in this case, represented 309 

by hypoxia, contrary to expectations based on previous studies.  The lack of response 310 

indicates that the VTG response is robust and relatively insensitive to the effects of 311 

additional challenges that arise in multiple stress exposure situations.  Hence, it would 312 

appear that existing safety factors are sufficient to protect against the effects of inter-313 

actions with confounding factors, such as low oxygen conditions.  Nevertheless, this 314 

conclusion should be interpreted with caution, as the response may vary, depending 315 

both on the nature of the physicochemical challenge and the characteristics of the 316 

toxicant in question.  It is also possible that the response becomes more plastic at 317 

higher levels of biological organisation, which means that confounding factors may 318 

have a greater impact on endpoints that relate to survival and reproduction.  Hence, 319 

despite the negative conclusion of the present study, there may be a need for greater 320 

stringency when assessing the risk posed by chemicals in the “real world”, in which 321 

multiple stress exposure situations are the norm. 322 
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Table 1: Nominal and actual chemical concentrations in each tank at the beginning of the parallel exposure studies.  The water samples were 391 

collected immediately prior to the addition of the fish. 392 

 393 

    Nominal     Hypoxic     Normoxic 394 

Treatment   EE2 E2 NP OP BPA   EE2 E2 NP OP BPA   EE2 E2 NP OP BPA 395 

    ng/l ng/l g/l g/l g/l  ng/l ng/l g/l g/l g/l  ng/l ng/l g/l g/l g/l 396 

Tank 1: Control  0 0 0 0 0  0.0 0.3 0.3 0.0 0.0  0.0 0.1 0.3 0.0 0.2 397 

Tank 2: 0.05 dilution 0.05 1.25 0.35 2.25 7.5  0.07 1.19 0.46 5.22 0.5  0.06 0.93 0.50 1.34 1.0 398 

Tank 3: 0.1 dilution  0.09 2.5 0.7 4.5 15  0.14 2.39 0.65 2.38 16.6  0.13 1.82 0.69 2.55 9.8 399 

Tank 4: 0.2 dilution  0.18 5 1.4 9 30  0.24 3.94 1.12 14.2 36.1  0.24 4.17 1.51 8.80 0.0 400 

Tank 5: 0.3 dilution  0.27 7.5 2.7 13.5 45  0.39 6.36 1.59 13.6 52.3  0.38 6.86 1.86 15.0 0.3 401 

Tank 6: 0.5 dilution  0.45 12.5 3.7 22.5 75  0.63 9.34 3.36 32.9 87.7  0.69 10.3 3.38 27.8 0.0 402 

Tank 7: 1:0 dilution  0.9 25 7 45 150  1.68 19.2 5.15 57.6 169  1.26 21.5 6.12 59.4 12 403 
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LEGENDS 404 

Figure 1: Mean of the daily dissolved oxygen (DO) concentrations in each tank 405 

throughout each of the parallel exposure studies.  Daily DO concentrations were taken 406 

to be the average value recorded based on 6-10 measurements that were made on each 407 

day.  Error bars represent one standard error of the mean.  The letters (a and b) denote 408 

that there was a significant difference between the mean DO level in tanks containing 409 

the 0.05 and 1.0 mixture dilution under hypoxia.  No differences were detected within 410 

the remaining tanks maintained under each set of oxygen conditions.  411 

Figure 2: Mean of the plasma VTG concentrations in each tank following each of the 412 

parallel exposure studies.  Error bars represent one standard error of the mean, which 413 

was calculated on the basis of measurements made from eight fish in each tank.414 
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Figure 1:  415 
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Figure 2:  418 
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Brief: 421 

The response of fish to a mixture of estrogenic chemicals is not affected by 422 

concomitant exposure to hypoxia. 423 


