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Abstract

Every simple game can be written as the intersection of a finite number of weighted
games. The smallest possible such number is the dimension of a simple game.
Taylor and Zwicker have constructed simple games with n players and dimension
at least 2

n
2
−1. By using theory on error correcting codes, we construct simple

games with dimension 2n−o(n). Moreover, we show that there are no simple games
with dimension n times higher than our games. Our results hold for all n.
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1 Introduction
Simple games [12] are models of voting systems without abstention where voters vote
either ”yes” or ”no” when they are presented to a proposal. For a simple game we
simply specify the coalitions of voters for which a proposal passes if the voters in the
coalition are the ”yes”-voters.

Some real world voting systems are constructed using several sets of weights with
a weight assigned to every voter for each set. A coalition of voters can make a proposal
pass if the sum of the weights of the voters in every set of weights meets or exceeds a
quota defined for that set. Actually, any voting system can be implemented in this way
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no matter how it is defined [12] and the dimension is defined as the minimum number
of weight sets needed to implement a voting system in this way. Unicameral systems
have dimension 1, bicameral systems have dimension 2 and there are also real world
voting systems with dimension 3 or higher [2, 4, 8].

1.1 Contribution
Taylor and Zwicker [12] have constructed simple games with dimension at least 2

n
2−1

where n is the number of voters. Using theory on error correcting codes, we construct
voting systems with a dimension provably much closer to a theoretical upper bound.
To be a little more specific, we significantly improve the 2

n
2−1 lower bound to 2n−o(n)

for any n. The dimensions of our games are within a factor n away from the theoretical
upper bound

(
n
bn/2c

)
for any n. Our construction can also be used to produce simple

games with high dimension involving only a few players.

1.2 Related Work
In [3] the construction of a simple game with n players and a dimension of at least(

n
n/2

)
/2 was claimed for all n ≡ 2 (mod 4). We will see later that this result is

flawed. Essentially, Elkind et al. [3] consider the same game as Taylor and Zwicker
but they analyze the dimension from another point of view. We will perform a more
detailed comparison with the work of Taylor and Zwicker and Elkind et al. in Section 3
where we introduce the simple games forming the basis of our results.

Freixas and Puente [5] show how to construct games with high dimension for other
values of n using the composition of unanimity games without improving the 2

n
2−1

bound given by Taylor and Zwicker [12]. The dimensions of real world voting systems
are also analyzed in several papers [2, 4, 7, 8, 11].

1.3 Outline
In Section 2 we introduce some notation and formally define the considered concepts
in the paper. We also state a well known theoretical upper bound for the dimension for
later use in this section. The games that form the basis for our results are introduced in
Section 3. Finally, Section 4 contains the proofs of high dimension and a theorem that
forms the main contribution of the paper.

2 Preliminaries
A simple game Γ(N,W ) is a pair where N = {1, . . . , n} for some positive integer
n and W is a collection of subsets of N such that the following conditions are met:
N ∈ W , ∅ /∈ W , and S ∈ W ∧ S ⊆ R ⊆ N ⇒ R ∈ W . A coalition is a subset
of N and the members of N are referred to as players. A coalition is winning if it
is a member of W and it is said to be losing otherwise. A simple game Γ(N,W ) is
weighted if there exists a quota q ∈ R and weights w1, w2, . . . , wn ∈ R such that
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S ∈W if and only if
∑

i∈S wi ≥ q. The intersection Γ1(N,W1) ∩ Γ2(N,W2) of two
simple games Γ1(N,W1) and Γ2(N,W2) is the simple game Γ(N,W1 ∩W2).

A losing coalition is a maximal losing coalition if any proper superset of the coali-
tion is winning. The family consisting of all maximal losing coalitions is denoted by
LM . Taylor and Zwicker [12] have shown that any simple game can be written as the
intersection of |LM | weighted games ΓT , T ∈ LM , where a coalition S wins in ΓT if
S ∩ (N \ T ) 6= ∅. A player in N \ T has weight 1 and all other players have weight 0
in the game ΓT that has quota 1.

The dimension d of a simple game Γ is the smallest positive integer such that Γ =
∩di=1Γd where the games Γi, i ∈ {1, 2, . . . , d}, are weighted. It is not possible to find a
maximal losing coalition that is contained in another maximal losing coalition so using
Sperners Lemma [9] we conclude that |LM | ≤

(
n
bn2 c
)
. From the construction of Taylor

and Zwicker we obtain the following theoretical upper bound:

d ≤ |LM | ≤ min

(
2n − |W |,

(
n

bn2 c

))
. (1)

To give an impression of how this upper bound relates to 2n we can use the the follow-
ing double inequality that holds for all even positive integers n [10]:√

2

πn

(
1− 1

4n

)
2n ≤

(
n
n
2

)
≤
√

2

πn

(
1− 2

9n

)
2n. (2)

For odd n, we can use
(

n
bn2 c
)

=
(n−1

n−1
2

)
2n
n+1 and obtain the following inequalities:

(
n

bn2 c

)
≥ n

n+ 1

√
2

π(n− 1)

(
1− 1

4(n− 1)

)
2n , (3)

(
n

bn2 c

)
≤ n

n+ 1

√
2

π(n− 1)

(
1− 2

9(n− 1)

)
2n . (4)

For a bit vector x = x1x2 . . . xn ∈ {0, 1}n with n bits we let Sx be the coalition
where i ∈ S if and only xi = 1. For a coalition S ⊆ N we define the bit vector
xS accordingly. We use the notation x̄ and S̄ for complements for bit vectors and
sets respectively. The Hamming weight hw(x) of a bit vector x is the number of 1-
bits in x: hw(x) = |{i : xi = 1}|. The Hamming distance d(x, y) between two bit
vectors x and y is the number of bit positions where the bits in x and y are different:
d(x, y) = |{i : xi 6= yi}|.

3 The Construction
In this section, we present a generic recipe for constructing the simple games forming
the basis for our results. Throughout the paper, we let C ⊆ {0, 1}n denote a set of bit
vectors of length n having positive Hamming weight satisfying this condition:

∀x 6= y ∈ C : |hw(x)− hw(y)| < d(x, y)− 2 (5)
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For x ∈ C we define the simple game Γx with playersN as follows: S wins in Γx if
and only if S∩Sx 6= ∅. The simple game ΓC is now defined by ΓC = ∩x∈CΓx. In other
words, a set S is winning if and only if S is a so-called hitting set for the collection of
sets {Sx}x∈C .

Example 1. Let C be defined as follows for n = 8:

C = {0000 1111, 1100 0000, 0011 1100}

The Hamming weights of the vectors 0000 1111 and 1100 0000 differ by 2 but their
Hamming distance is 6. So (5) holds for these vectors. Coalition {1, 5} is winning
in ΓC since it intersects the sets {5, 6, 7, 8}, {1, 2} and {3, 4, 5, 6}. The bit vector
1000 1000 that corresponds to the set {1, 5} shares at least one 1-bit with all members
of C.

3.1 Comparison with Other Games
As promised in the introduction, we will relate the games ΓC to the game used by
Taylor and Zwicker [12, Theorem 1.7.5]. For an odd integer k, Taylor and Zwicker let
N = N1 ∪N2 for two disjoint sets N1 and N2 with |N1| = |N2| = k and a coalition S
wins if 1) |S| > k, or 2) |S| = k with |S ∩N1| even. The complements of the maximal
losing coalitions are the sets satisfying 2). Thus, using the terms of this paper, Taylor
and Zwicker use a game ΓC where C contains bit vectors with Hamming weight n

2 and
Hamming distance at least 2. Taylor and Zwicker use a subset of C with cardinality
2

n
2−1 satisfying (5) as an ingredient in the proof of their 2

n
2−1 lower bound.

It should be stressed that it requires careful analysis to see this implicit connection
to the work by Taylor and Zwicker. We use a more generic approach allowing an
improvement of the lower bound to 2n−o(n) where we explicitly define a coalition to
be winning if it intersects any member in a family of sets with a structure inspired by
the structure of error correcting codes. Another thing to note is that coalitions with
fewer than n

2 members can win in games defined by our approach as illustrated by
Example 1.

Elkind et al. [3, Theorem 8] claim to have produced an example of a simple game
on n = 2k players with a dimension of at least

(
2k
k

)
/2, where k is an arbitrary odd

integer but – as we will see below – the proof is flawed. The losing coalitions are those
where the corresponding bit vector either has a Hamming weight of at most k − 1 or a
Hamming weight of exactly k and a Hamming distance to 1k0k that is divisible by 4.
Swapping the first k and the last k players gives a simple game that coincides with that
of [12]. It means that the example given by Elkind et al. [3, Theorem 8] has dimension
at least 2k−1.

Moreover, the flaw1 of the corresponding proof happens where it is saying that if x
is the bit vector of a losing coalition and xi 6= xj , then switching xi and xj results in
a bit vector of a winning coalition. An explicit counter example for n = 6 is given by
the characteristic vectors 100110 and 010110 which both represent losing coalitions.

1We would like to thank Edith Elkind for directly pointing to the position where the proof breaks down
in a private communication.
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3.2 A Dimension Lemma
We now prove a lemma explicitly stating the dimension of our games.

Lemma 1. The dimension of ΓC is |C|.

Proof. The game Γx, x ∈ C, is clearly weighted so the dimension of ΓC is not higher
than |C|.

We now assume that the dimension of ΓC is less than |C|. Let Lx = N \ Sx for
x ∈ C. The coalition Lx is clearly a losing coalition in ΓC because Lx∩Sx = ∅. Using
the pigeonhole principle, we conclude that there are x, y ∈ C with x 6= y such that Lx

and Ly lose in the same weighted game Γ′ where Γ′ is one of the less than |C| weighted
games whose intersection is ΓC .

By considering basic properties for the Hamming distance and the Hamming weight
we observe that (5) also holds if we replace x and y with their complements x̄ and ȳ.
If one of the vectors x̄ or ȳ had all 1-bits in the d(x̄, ȳ) positions where the two vectors
differ then the left hand side of (5) would be d(x̄, ȳ) and (5) would not hold. We there-
fore conclude that there are players px ∈ Lx \ Ly and py ∈ Ly \ Lx. We let A and B
be the coalitions obtained if Lx and Ly swap these players: A = (Lx \ {px}) ∪ {py}
and B = (Ly \ {py}) ∪ {px}.

We now show thatA andB are winning coalitions in ΓC . Without loss of generality,
we consider the coalition A. It is clear that xA and x share a 1-bit so A wins in Γx.
Now let us assume that there is a member z of C \ {x} such that A loses in Γz . In other
words, xA and z do not share a 1-bit. The vector xA is obtained by flipping a 0-bit and
a 1-bit in the vector x̄:

d(xA, z̄) ≥ d(x̄, z̄)− 2 . (6)

The d(xA, z̄) bits shared by xA and z are all 0 in which case we have the following:

d(xA, z̄) + hw(xA) + hw(z) = n . (7)

We now use hw(xA) = n− hw(x) together with (7):

d(xA, z̄) = hw(x)− hw(z) . (8)

By using d(x, z) = d(x̄, z̄) and (6) and (8) we obtain the following inequality:

hw(x)− hw(z) ≥ d(x, z)− 2 . (9)

Since (9) contradicts (5), we conclude that A wins in Γz for any z ∈ C. Consequently,
A also wins in ΓC .

Summing up, we now have two coalitions Lx and Ly that lose in Γ′ and we can
obtain two winning coalitions in ΓC if Lx and Ly swap two players. These coalitions
also win in Γ′ and we obtain a contradiction since this would mean that the total weight
in Γ′ of the players in Lx and Ly has increased.

It is worth noting that the dimension of the game ΓC is |LM | since LM = {Lx}x∈C .
If we can construct games with dimension m using our approach we can also con-

struct games with dimension m′ for every m′ ≤ m as expressed by the following
corollary:
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Corollary 1. Let ΓC be a simple game with n players and dimension m, then there are
simple games with n players and dimension m′, 1 ≤ m′ ≤ m.

Proof. Just delete some elements from C.

4 Proof of High Dimension
The key question we will deal with in this section is the following: Can we find families
C of bit vectors with high cardinality satisfying (5)? According to Lemma 1, this would
automatically give us games with high dimension. From the theory on error correcting
codes we know how to construct relatively large families of bit vectors where no two
bit vectors have a Hamming distance less than 4. These families are the so called single
error correcting and double error detecting codes – SECDED codes. If we pick such a
code where all vectors have the same Hamming weight – a constant weight code – we
clearly have a family C satisfying (5). This observation is the basis for the proofs in
this section.

It is important to stress that constant weight SECDED codes are not the only fam-
ilies satisfying the generic recipe (5). There are many other families that satisfy (5)
but we will use constant weight SECDED codes to construct our games with high di-
mension. In other words, there might be families with larger cardinalities compared to
constant weight SECDED codes satisfying (5).

Agrell et al. [1] present lower bounds for cardinalities of constant weight SECDED
codes. These lower bounds can be directly translated to lower bounds for dimensions
for simple games if we use Lemma 1. This allows us to set up Table 1 that compares the
dimensions of the games produced using composition of unanimity games [5] with the
dimensions of the games based on our approach and the lower bounds from [1]. The
first column displays n. The second column presents the dimensions of the games from
[5] and [12]. The third column contains the dimensions of the games produced using
our approach and constant weight SECDED codes. Finally, the last column shows the
upper bound

(
n
bn/2c

)
.

We are now ready to look all other values of n. Initially, we consider the case where
n is a power of 2.

Lemma 2. Let n = 2m where m is an integer, m ≥ 3. There is a set of bit vectors
C ⊆ {0, 1}n satisfying (5) with

|C| = 2

n

(
1

2

(
n
n
2

)
+ (n− 1)

(n
2 − 1

n
4

))
. (10)

Proof. Let t = 2m − 1. The enumerator polynomial for an error correcting code
is a polynomial where the i’th coefficient, ai, is the number of bit vectors of Ham-
ming weight i. According to [13], the enumerator polynomial for the well known
Hamming[t,t−m] code that contains bit vectors of length t is:

A(x) =
(1 + x)t + t(1− x)(1− x2)(t−1)/2

t+ 1
.
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Table 1: A comparison of the dimensions of the games produced using composition of
unanimity games and the dimensions of the games based on our approach.

n Unanimity games Our approach
(

n
bn/2c

)
6 4 4 20
7 4 7 35
8 8 14 70
9 9 18 126

10 16 36 252
11 18 66 462
12 32 132 924
13 36 166 1716
14 64 325 3432
15 81 585 6435
16 128 1170 12870
17 162 1770 24310
18 256 3540 48620
19 324 6726 92378
20 512 13452 184756

Let i = t−1
2 (i = 2m−1 − 1 is odd and i+ 1 is even) :

ai =
1

t+ 1

((
t

i

)
+ t(−1)

i+1
2

(
i

i−1
2

))

ai+1 =
1

t+ 1

((
t

i+ 1

)
+ t(−1)

i+1
2

(
i

i+1
2

))
= ai

The extended code Hamming[t+1,t−m] is a SECDED code. We can now let C be the
subset of the extended code containing the bit vectors with Hamming weight n

2 . This
is a constant weight SECDED code satisfying (5).

Set n = t + 1 = 2i + 2. The number of bit vectors in the extended code with
Hamming weight n

2 = i+ 1 is ai + ai+1 = 2ai+1:

2ai+1 =
2

n

((
n− 1

n
2

)
+ (n− 1)(−1)

n
4

(n
2 − 1

n
4

))
For n ≥ 8 we have:

2ai+1 =
2

n

((
n− 1

n
2

)
+ (n− 1)

(n
2 − 1

n
4

))
We now use (

n
n
2

)
=

(
n− 1

n
2

)
+

(
n− 1
n
2 − 1

)
= 2

(
n− 1

n
2

)
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to obtain

2ai+1 =
2

n

(
1

2

(
n
n
2

)
+ (n− 1)

(n
2 − 1

n
4

))
.

We now state our main theorem where we also consider values of n that are not
powers of 2.

Theorem 1. For any positive integer n there is a simple game with n players and
dimension d satisfying:

d ≥ 1

n

(
n

bn2 c

)
. (11)

If n = 2m for an integer m ≥ 3 then there is a simple game with n players and
dimension d such that

d =
1

n

(
n
n
2

)
+

2(n− 1)

n

(n
2 − 1

n
4

)
. (12)

Proof. Graham and Sloane [6] have shown that there is constant weight SECDED code
with Hamming weight w with cardinality at least 1

n

(
n
w

)
for any w. For w = bn2 c we

get (11) by using Lemma 1. Lemma 1 and Lemma 2 give us (12).

It follows from (2) and (3) that the lower bound presented in Theorem 1 is 2n−o(n).
Our games are easily seen to be within a factor n from the upper bound from (1).
Finally, we point out that the proof of the lower bound in [6] is constructive.
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