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Abstract: We consider supplier development within a supply chain consisting of a single
manufacturer and a single supplier. Because supplier development usually requires relationship-
specific investments, firms need to protect themselves against partner opportunism. Even
though contracts are viewed as the primary formal means of safeguarding transactions, they
also entail certain risks, e.g., a lack of flexibility, particular in a dynamic and uncertain
business environment. Thus, we propose a receding horizon control scheme to mitigate possible
contractual hazards while significantly increasing the overall supply chain profit. Our findings
are illustrated by a numerical example.
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1. INTRODUCTION

Since manufacturing firms increasingly focus on their core
competencies, an efficient supply chain plays a paramount
role in generating competitive advantage. In response,
manufacturers across a wide range of industries are imple-
menting supplier development programs to improve supply
chain performance, see Wagner (2010). Supplier develop-
ment is broadly defined as any effort by a buying firm
to improve a supplier’s performance and/or capabilities
to meet the manufacturing firm’s short- and/or long-term
supply needs, cf. Krause (1999, p. 206), and has been
applied in various fields of application with a particular
focus on automotive supply chains, see, e.g., Talluri et al.
(2010); Krause and Scannell (2002).

Because resources committed to supplier development ac-
tivities are difficult or even impossible to redeploy and
thus have little or no value in an alternative use, firms
need to safeguard the respective investments against the
hazards of partner opportunism, see Wang et al. (2013).
Previous research has shown that contracts are viewed
as the primary formal means of protecting transactions,
see, inter alia, Lui et al. (2009); Artz (1999). The draw-
back of formal contracts is, as the degree of uncertainty
increases, both specifying ex ante all possible contingen-
cies and verifying ex post the performance of the supply
chain partner become increasingly difficult, cf. Williamson
(1979). Therefore, supply chain partners may be reluctant
to sign long-term contracts, which potentially diminishes
the firms’ propensity to invest in supplier development ac-

tivities and thus impedes the manufacturer’s initial strat-
egy to enhance supply chain performance, see Rokkan et al.
(2003).

Even though empirical studies support the notion that
relationship-specific investments are critical to the suc-
cess of supplier development, see, among others, Wagner
(2011); Krause et al. (2007), the application of formal
decision-making models proposed for assisting firms in
contract negotiations in order to adequately safeguard
such investments have received limited attention in the
supplier development literature. Without understanding
the impact of the contract period on the firms’ willingness
to commit relationship-specific resources to supplier devel-
opment, its return will be negligible, perhaps even leading
to the premature discontinuation of such collaborative cost
reduction efforts.

Given this background, the purpose of our research is to
mitigate possible contractual hazards while significantly
enhancing the supplier development process, and thus
increasing the overall supply chain profit. Thus, the con-
tribution of this paper is twofold: First, we investigate the
impact of the contract period, i.e., the planning horizon,
on the firms’ propensity to commit relationship-specific
resources to supplier development and show that the
firms’ willingness to participate in supplier development
critically depends on the length of the planning horizon.
Secondly, given the fact that long-term contracts entail
certain risks, e.g., a lack of flexibility, we propose a re-
ceding horizon control scheme and show that the supplier
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development process can be enhanced by dynamically ex-
tending the contract, i.e., the firms are not contractually
tied for unnecessarily long periods of time, see Sethi and
Sorger (1991) for the basic idea of prediction based control.
Here, we present a strategy that optimally balances costs
and benefits of supplier development.

The paper is structured as follows. In Section 2 the math-
ematical model is described. This allows to study the de-
pendence of the control policy on the contract period in the
subsequent section. In Section 4, a receding horizon control
scheme is proposed and analysed before the effectiveness of
the developed methodology is demonstrated by means of
numerical investigations in Section 5. Finally, conclusions
are drawn in Section 6.

2. MODEL DESCRIPTION

We consider a supply chain consisting of a single manu-
facturer and a single supplier. In doing so, the decision-
making process is structured such that the manufac-
turerM determines the quantity supplied to the (oligopolis-
tic or monopolistic) market solely based on the leitmotif
of profit maximization — without taking the outcome for
the supplier S into account. Herein, we restrict ourselves
to the linear price-distribution curve p(d) = a−bd in order
to streamline the upcoming analysis.

2.1 Basic model

It is supposed that the supplier wants to earn a constant
revenue r per unit. Thus, the manufacturer’s supply costs
are cSC = r + x(t)mc0, ẋ(t) = u(t) with x0 = 1, where
the supplier’s production costs per unit are modelled by
x(t)mc0 depending on the learning rate m < 0. This
means that the overall production costs may be reduced
by using the control function u ∈ L∞(R≥0, [0, ω]) and,
possibly, to increase the supply chain profit. Here, the
measurable and bounded function u describes the effort
invested in supplier development, e.g., by realizing inter-
organizational projects. This component mimics a learning
curve, cf. Yelle (1979).

The fact that increases in productivity do not typically
come for free is reflected by a penalization term cSDu(t)
that allows for integrating the costs of supplier develop-
ment efforts into the proposed model. Overall, this yields
the supply chain’s profit function JSC

T : u 7→ R

JSC
T (u;x0) :=

∫ T

0

(a− cM − c0x(t)m)2 − r2

4b
− cSDu(t) dt

(1)

during the contract period [0, T ) neglecting fixed costs,
see Table 1 for an explanation of the individual parame-
ters. We emphasize that investments into the cost struc-
ture of the supply chain are economically reasonable as
long as these amortize during the runtime of the contract.
For a detailed derivation of the model in consideration the
interested reader is refered to Kim (2000).

2.2 Solution of the Optimal Control Problem

Analogously to Kim (2000), using Pontryagin’s maximum
principle, see, e.g. Lee and Marcus (1967), yields that

Symbol Description Value

T Contract period 60
a Prohibitive price 200
b Price elasticity 0.01
cM Variable cost per unit (M) 70
c0 Variable cost per unit (S) 100
r Revenue per unit (S) 15
cSD Supplier development cost per unit 100000
ω Maximal investment rate 1
m learning rate -0.1

Table 1. List of Parameter

the control function u? : [0, T ) → [0, ω] maximizing (1)
exhibits the structural property

u?(t) :=

{
ω if t < t?

0 if t ≥ t? (2)

depending on the (optimal) switching time t? ∈ [0, T ]. The
switching time t? is characterized by the equation

mc0(x0 + ωt?)m−1(a− cM − c0(x0 + ωt?)m)

2b
=

cSD

(t? − T )
.

(3)

In the following, (3) is called switching condition. Indeed,
it can be easily shown that this condition is necessary and
sufficient for the considered problem since the cost function
is (strictly) convex and the system dynamics are governed
by a linear ordinary differential equation.

Summarizing, the optimal value VT (x0) of the problem in
consideration is attained by

VT (x0) := sup
u∈L∞([0,T ),[0,ω])

JSC
T (u;x0)

where the expression on the right hand side is maximized
subject to ẋ(t) = u(t), x(0) = x0. Since VT : R≥1 → R
maps the initial state x0 to the optimal value, VT is called
optimal value function. The index T indicates the length of
the contract period and can be considered as a parameter
— an interpretation, which is crucial for the upcoming
analysis.

Evidently, investments (in the cost structure) pay off in
the long run, i.e., all the effort is spent directly at the
beginning of the collaboration. Then, the resulting cost
decreasing effect is exploited during the remainder of the
contract period [0, T ].

Remark 1. At the switching time t? the marginal revenue
(given by the adjoint variable λ) equals the marginal costs
(given by cSD) as indicated in Figure 1. This reasoning
explains the meaning of the switching condition (3).

3. DEPENDENCE OF THE OPTIMAL SWITCHING
TIME ON THE CONTRACT PERIOD

The contract between the manufacturer M and the sup-
plier S ranges over the interval [0, T ]. Realistically, two
cases can be distinguished: on the one hand, a relationship-
specific investment reducing the supply costs does not
pay off during the contract period — resulting in the
(optimal) switching time t? = 0, i.e., supplier development
is economically not recommendable. On the other hand,
t? > 0 stands for the scenario where investing into supplier
development amortizes until T .

From the specific structure (2) of the optimal control
function it can be concluded that this claim holds for all
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Fig. 1. The adjoint λ : [0, T ] → R≥0 computed based on
the parameters given in Table 1.

investments up to time t?. Then, taking into account the
already reduced supply costs given by r + x(t?)mc0 with
optimal control u? and

x(t?)m · c0 =

(
x0 +

∫ t?

0

u?(s) dt

)m

c0 = (1 + ωt?)mc0

further effort in terms of u(t) > 0, t ∈ [t?, T ), does
not lead to an increased profit since the remaining time
interval of length T − t? is too short. However, this line
of argumentation already indicates what can be deduced
from Condition (3): If the contract period is prolonged to a
time T , T > T , also the switching time t? becomes larger,
see Appendix A for a proof.

Lemma 2. Suppose that the contract period T is chosen
(long enough) such that t? = t?(T ) > 0 holds. In addition,
let the condition

(1−m)(a− cM − c0) + c0m ≥ 0, (4)

be satisfied. Then prolonging the contract period T , T >
T , implies a strictly larger switching time t? = t?(T ),
i.e., t?(T ) > t?(T ).

Remark 3. Note that the assumptions of Lemma 2 imply
the inequality a− cM − c0−r > 0 as a by-product because
the manufacturer cannot realize a profit per unit sold
otherwise (prohibitive price is greater than the production
cost per unit at time t = 0 from the manufacturer’s point
of view). The seemingly technical condition (4) links the
surplus a− cM − c0 per unit with the production costs via
the learning rate and, thus, indicates whether investments
are economically reasonable. Furthermore, note that the
assumptions of Lemma 2 can be easily verified for a given
dataset.

Lemma 2 shows that the supplier development program is
extended if the contract period is prolonged. Hence, the
collaboration continues after the previously determined
switching time t?. As a result, the supply costs are fur-
ther decreased, the quantity offered is increased and the
supply chain profit increases. The argument, that longer
contract periods lead to larger switching times, can also
be validated numerically as visualized in Figure 2. Here,
we observe that the cost structure and thus the return on
investment can be further enhanced if both the manufac-
turer and the supplier agree on a longer contract period.
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Fig. 2. Optimal switching time t? = t?(T ) in dependence
of the length of the contract T = T + i ·∆T (T = 60,
∆T = 3 and i = 0, 1, . . . , 7).

Note that the relation between the contract period T and
the optimal switching time t?(T ) is almost linear. 1

4. SUCCESSIVE PROLONGATION OF THE
CONTRACT PERIOD

The benefits of an increased switching time come along
with the uncertainties of a long-term contract. In this
section we investigate how the benefits of long-term con-
tracts can be obtained while sticking to collaborations on
smaller time periods. To this end, it is assumed that the
manufacturer and the supplier are only content to make
contracts of length T . If the collaboration is successful for a
certain amount of time [0,∆T ), ∆T ≤ t?, they might agree
to renew the contract on the time interval [∆T, T + ∆T ].

Before we continue the discussion, let us briefly sketch
the computation of the (optimal) control function u? :
[∆T, T + ∆T ) → [0, ω]. Here, the profit function has to
be maximized based on the new (initial) state x(∆T ),
i.e., JSC

T (u;x(∆T )) is considered. Since ∆T ≤ t? holds
by assumption, the new initial state x(∆T ) is given by

x(∆T ) = x(0) +

∫ ∆T

0

u?(s) dt = x(0) + ∆T · ω (5)

in view of the structural property (2). Hence, the profit on
the new contract period [∆T, T + ∆T ] is determined by
maximizing JSC

T (u;x(∆T )), i.e.,∫ T

0

(a− cM − c0x̃(t)m)2 − r2

4b
− cSDu(t) dt,

subject to u(t) ∈ [0, ω], t ∈ [0, T ), and the differential

equation ˙̃x(t) = u(t) with initial condition x̃(0) = x(∆T ).
Here, we used the notation x̃ to distinguish the previ-
ously computed (state) trajectory x(·;x0) and its coun-
terpart x̃(·;x(∆T )) depending on the new initial condi-
tion x(∆T ). Another option is to use the time invariance
of the linear differential equation ẋ(t) = u(t), which allows
to rewrite the profit functional as∫ T+∆T

∆T

(a− cM − c0x(t)m)2 − r2

4b
− cSDu(t) dt

1 Indeed, the slope of the curve is slightly increasing.



with initial value x(∆T ) given by (5) at initial time ∆T .
We point out that the resulting trajectory deviates from
the previously computed one already before time T . In
conclusion, the implemented control strategy on [0, T +
∆T ) is given by

u(t) :=

{
u?(t) maximizing JSC

T (·;x0) t ∈ [0,∆T )

u?(t) maximizing JSC
T (·;x(∆T )) t ≥ ∆T,

(6)
i.e., the first piece of the old policy concatenated with the
newly negotiated strategy. Using this strategy yields an
optimal control policy for the complete time span [0, T +
∆T ). Hence, the same overall supply chain profit is reached
without the hazards of being committed already at the
beginning (time 0) as shown in the following corollary.

Corollary 4. Let the optimal switching time t? determined
by Condition (3) be strictly greater than zero. Further-
more, let ∆T , ∆T < t?, be given. Then, the control
strategy defined in (6) and the corresponding supply chain
profit on [0, T + ∆T ] equal their counterparts obtained
by maximizing JSC

T+∆T (u;x0) with respect to u : [0, T +
∆T )→ [0, ω].

Proof. Since the profit JSC
T+∆T (u;x0) on the considered

time interval [0, T + ∆T ] with u from (6) is the sum of∫ ∆T

0

(a− cM − c0x(t)m)2 − r2

4b
− cSDω dt

and

+

∫ T+∆T

∆T

(a− cM − c0x(t)m)2 − r2

4b
− cSDu(t) dt,

the dynamic programming principle yields the equal-
ity JSC

T+∆T (u;x0) = VT+∆T (x0), which completes the
proof. 2

4.1 Receding Horizon Control

The idea of an iterative prolongation of collaboration
contracts can be algorithmically formalized as receding
horizon control (RHC) aka model predictive control.

Algorithm 1 Receding Horizon Control Scheme

Given: contract period T , time step ∆T .
Set t := 0.
(1) Measure the current state x̂ := x(t).
(2) Compute the optimal switching time t? by solving the

switching condition with x̂ instead of x0, i.e.

mc0(x̂+ ωt?)m−1(a− cM − c0(x̂+ ωt?)m) =
2bcSD

t? − T
.

(3) Set

u?(s) :=

{
ω for t ≤ s < min{t+ t?, t+ ∆T}
0 for min{t+ ∆T, t+ t?} ≤ s < t+ ∆T

(7)

(4) Apply u?(s) for s ∈ [t, t+ ∆T ). Set t = t+ ∆T and
go to Step (1).

Beforehand, the manufacturer M and the supplier S agree
on a collaboration for a given time window of length T
(contract period). Firstly, the status quo — represented by
x̂ — is analysed. Secondly, the optimal switching time t? is
computed based on the initial state x̂ and T , cf. Step (2).

This yields the optimal control strategy defined by (7),
of which the first piece u?|[0,∆T ) is applied. Then, the
manufacturer and the supplier meet again at time ∆T to
negotiate a new contract. This initiates the process again,
i.e. the previously described steps are repeated. Here, the
so called receding horizon principle works. Note that the
newly (measured) initial state x̂ captures all information
needed since the underlying system dynamics are time
invariant. In particular, no knowledge about the previously
applied control is needed to solve the adapted switching
condition of Step (2) with respect to t?.

Figure 3 illustrates the outcome of Algorithm 1 with pre-
diction horizon length T = 60 (contract period) and con-
trol horizon ∆T = 3 (time step) based on the parameters
given in Table 1.
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Fig. 3. Application of Algorithm 1 to compute the optimal
switching times for T = 60 and changing initial
conditions x̂. The length of the collaboration intervals
are getting smaller and smaller.

Firstly (t = 0), the original optimal control problem is
solved resulting in t? ≈ 9.21. Then, u? ≡ ω is applied
on the time interval [0,∆T ). Secondly (t = ∆T ), the
collaboration is prolonged to t? ≈ 9.74. Thirdly (t =
2∆T ), the switching time is shifted to t? ≈ 10.27. Still,
t = 3∆T ≤ t? holds. Hence, the (measured) initial state x̂
is given by x0 + tω = x0 + 3∆Tω. Here, Step (2) of
Algorithm (1) yields t? ≈ 10.79, i.e. the collaboration stops
within the time frame [t, t + ∆T ). If the RHC scheme
is further applied, there occur collaboration intervals of
shrinking length.

As already argued in Section 4, if the contract is not
renewed, u?(t) is set to zero for t ≥ t? ≈ 9.21. In contrast
to that, the RHC scheme prolonges the collaboration and,
thus, generates increased profits on arbitrary time spans,
i.e. the profit generated by Algorithm 1 on [0, T + i∆T ],
i ∈ {0, 1, 2, . . . , T/∆T},

i−1∑
k=0

∫ (k+1)∆T

k∆T

(a− cM − c0x(t)m)2 − r2

4b
− cSDu(t) dt

+VT (x(i∆T ))

is greater than its counterpart JT (u?, x0) + Vi∆T (x?(T ))
and, thus, in particular than

JT (u?, x0) +

∫ T+i∆T

T

(a− cM − c0x(t?(T ))m)2 − r2

4b
dt

consisting of the maximum of the original cost func-
tion VT (x0) = JT (u?, x0) and a second (optimally op-
erated) contract on [T, T + i∆T ] based on the reached
cost structure represented by x?(T ) = x0 + t?ω ≈ x0 +
9.21ω = 10.21.



While an increased switching time t? may already in-
crease the profitability within a supply chain during the
considered time span, the achieved cost decrease in the
unit production price sustains. Hence, if the collaboration
between the manufacturer and the supplier lasts, the pro-
posed strategy generates further (additional) profits in the
future.

4.2 Optimal Point of Collaboration

As observed in Figure 3, the collaboration stops within
the time interval [t, t + ∆T ) meaning that the prerequi-
site ∆T ≤ t? was not satisfied at time t anymore. This
leads to a sequence of collaboration times of shrinking
length. Summing up all of these intervals on the infinite
horizon yields a total collaboration time of approximately
11.18 time units. Hence, the total collaboration time is
increased by 21.3%. However, implementing this strategy
is highly impracticable since the collaboration intervals are
becoming too short. Here, we propose two remedies: If the
new collaboration period at time t = k∆T , i.e. t? − t, is
below a certain threshold value,

(1) set t? = t in order to save negotiation costs,
which would probably outweigh the achievable profit
growth. For the presented example, the supplier de-
velopment program stops at 10.79 (still an increase of
approximately 17.2%) if the threshold is 1.

(2) measure the current state x̂ = x(t) and compute the
optimal cost structure for contract periods of length T
by solving

mc0T x̄
m−1(a− cM − c0x̄m) + 2bcSD = 0

with respect to x̄. Then, set t? = (x̄ − x̂)/ω. In the
considered example at time t = 4∆T , the measured
state is x̂ = 10.79 while x̄ ≈ 11.18. Hence, a
collaboration of length 0.39 time units is fixed. At
all upcoming time instants, t? = t holds because
the optimal cost structure for contract periods of
length T = 60 is already reached.

Clearly, the threshold should be chosen such that the profit
increase outweighs the negotiation costs. In summary,
Algorithm 1 allows both the manufacturer and the supplier
to prolong their supplier development program without
binding themselves for a time span longer than T and,
thus, to provides more flexibility.

Remark 5. Algorithm 1 is a simplified version. Indeed, the
time step ∆T may vary in time, e.g. longer time steps in
the beginning (for example ∆T = t? in the considered
setting), and shorter ones later on. For details on so called
time varying control horizon we refer to Grüne et al.
(2010).

5. NUMERICAL CASE STUDY

So far, we considered the set of parameters given in
Table 1. In this section we vary some parameters in order
to demonstrate their influence.

Firstly, we consider a different learning rate m = −0.13
and supplier development costs of cSD = 70000, i.e. the
supplier development is both less costly and more effective.
Algorithm 1 prolongs the collaboration from initially 16.14
to 22.10 (an increase of 36.9 %) for ∆T = 3. Here, the

optimal cost structure x̄ requires a collaboration of 23.37
time units. Hence, the outcome of the proposed RHC
scheme is close to optimal. As a consequence, the profit
growth is approximately increased from 896.000 (t? =
16.14) to 939.000 (t? = 22.37) without committing to
contracts of length more than T = 60. Figure 4 illustrates
the profit increase gained from the first 8 iterations of the
RHC scheme. 2
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Fig. 4. Profit growth by applying Algorithm 1 (T = 60,
∆T = 3) in comparison to the switching time t? ≈
16.14 with the parameters m = −0.13 and cSD =
70000 on the interval [0, 120].

Secondly, the parameter ω is varied, i.e. the available
maximal resources committed to supplier development is
lower or higher than in the reference scenario (ω = 1,
m = −0.1, and cSD = 100.000, cf. Table 1). Here,
the resulting prolongation of the collaboration based on
RHC with strategy (2) of Subsection 4.2 is shown in the
t??-column, cf. Table 2. Furthermore, the corresponding
percentual profit increase is given in the last column. In
conclusion, the impact of Algorithm 1 seems to grow with
the starting time span of collaboration.

ω t? t?? Profit growth

0.3 21.79 37.25 (70.96%) 7.6268%
0.4 18.23 27.94 (53.25%) 6.4865%
0.5 15.67 22.35 (42.62%) 5.5883%
0.6 13.75 18.62 (35.52%) 4.8912%
0.7 12.23 15.96 (40.46%) 4.3417%
0.8 11.03 13.97 (26.66%) 3.9000%
0.9 10.03 12.41 (23.70%) 3.5381%
1.0 09.21 11.18 (21.32%) 3.2368%
1.1 08.51 10.16 (19.39%) 2.9821%
1.2 07.91 09.31 (17.78%) 2.7643%
1.3 07.38 08.60 (16.41%) 2.5759%

Table 2. Optimal switching times t? for x0

and such that the optimal cost structure x̄ is
achieved (t??) in dependence of ω (T = 60)
and the resulting percentual profit increase.

6. CONCLUSIONS AND OUTLOOK

This paper addressed the impact of the contract period on
the performance of supplier development. In particular, we
showed that the supply chain partners’ propensity to com-
mit relationship-specific resources to supplier development
critically depends on the length of the contract period.
Given the fact that long-term contracts entail certain
risks, we proposed a receding horizon control scheme to
2 In the 8th iteration, the collaboration time is below ∆T = 3.



mitigate possible contractual hazards. Herein, we showed
that the supplier development process can be enhanced by
dynamically extending the contract. Thus, both the man-
ufacturer and the supplier are not contractually tied for
unnecessarily long periods of time, while simultaneously
facilitating value generation within supplier development.
Furthermore, we introduced two strategies in order to
make the proposed receding horizon control scheme, cf.
Algorithm 1, compatible with industrial needs. Finally,
we verified the reliability of the application by performing
Algorithm 1 for varying parameters.

Future research will contain an extensive robustness anal-
ysis of the presented approach. We conjecture that the in-
herent robustness of receding horizon control may already
mitigate consequences of badly assessed parameters. Here,
the idea of dynamically renewing the contract seems to
be the essential tool to generate the needed flexibility to
counteract undesired effects.
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Appendix A. PROOF OF LEMMA 2

In this section a proof of Lemma 2 about the interplay of
the contract period T and the optimal switching time t?

is given.

Proof. Let the monotonic function z : t? 7→ 1 + ωt?

be defined, which maps the switching time t? to the
state x(t?) at the switching time t?. Furthermore, note
that z′(t?) = ω holds. Then, the switching condition (3)
can be rewritten as

(T − t?)z(t?)m−1(a− cM − c0z(t?)m) =
−2bcSD

mc0
. (A.1)

Clearly, the left and the right hand side are positive
(m < 0). While the right hand side is independent of
both T and t?, the left hand side can be interpreted as
a function of the switching time t? for a given contract
period T . Let f : [0, T ]→ R≥0 be defined by

f(t?) := (T − t?)z(t?)m−1(a− cM − c0z(t?)m).

Then, the term −f ′(t?) · z(t?)m−2 is a sum consisting of
the positive summand z(t?)(a− cM − c0z(t?)m) and

(T − t?)ω · ((1−m)(a− cM − c0z(t?)m) + c0mz(t
?)m) .

Here, it was used that a − cM − c0 − r > 0 holds. Hence,
we investigate the term

(1−m)(a− cM − c0z(t?)m) + c0mz(t
?)m (A.2)

in order to determine the sign of the second summand
using that (T − t?)ω > 0 holds. To this end, the supply
chain profit p := a − cM − c0 > r > 0 per unit plays a
major role: (A.2) equals

c0 · ((1−m)p/c0 +mz(t?)m) + (1−m)(c0 − c0z(t?)m)︸ ︷︷ ︸
≥0

because m < 0 and t? ≥ 0 hold. Positivity of the first
summand is ensued from (4). Hence, (A.2) is positive and,
thus, f ′ is (strictly) decreasing.

In conclusion, the left hand side of (A.1) is strictly decreas-
ing in t? and strictly increasing in T . As a consequence,
using T , T > T , instead of T , i.e., considering the opti-
mal control problem on a longer time horizon (contract
period), leads a larger switching time t? in order to ensure
validity of the switching condition (3). 2


