
IMPROVED UPPER BOUNDS FOR PARTIAL SPREADS

SASCHA KURZ?

ABSTRACT. A partial (k−1)-spread in PG(n−1, q) is a collection of (k−1)-dimensional subspaces with trivial
intersection such that each point is covered exactly once. So far the maximum size of a partial (k − 1)-spread in
PG(n− 1, q) was know for the cases n ≡ 0 (mod k), n ≡ 1 (mod k) and n ≡ 2 (mod k) with the additional
requirements q = 2 and k = 3. We completely resolve the case n ≡ 2 (mod k) for the binary case q = 2.
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1. INTRODUCTION

For a prime power q > 1 let Fq be the finite field with q elements and Fn
q the standard vector space of dimen-

sion n ≥ 1 over Fq . The set of all subspaces of Fn
q , ordered by the incidence relation ⊆, is called (n − 1)-

dimensional projective geometry over Fq and commonly denoted by PG(n− 1, q). By Gq(n, k) we denote the
set of all k-dimensional subspaces in PG(n − 1, q)1. The so-called Gaussian binomial coefficient

[
n
k

]
q
, where[

n
k

]
q

=
∏n

i=n−k+1(1 − qi) /
∏k

i=1(1 − qi) for 0 ≤ k ≤ n and
[
n
k

]
q

= 0 otherwise, gives the respective car-
dinality |Gq(n, k)|. A partial k-spread in PG(n− 1, q) is a collection of k-dimensional subspaces with trivial
intersection such that each point2, i.e., each element of Gq(n, 1), is covered exactly once. A point that is not
covered by any of the k-dimensional subspaces of the partial k-spread is called a hole. We call the number of
k-dimensional subspaces of a given partial k-spread its size and we call it maximum if it has the largest possible
size. Bounds for the sizes of maximum partial k-spreads were heavily studied in the past. Here we are able to
determine the exact value for an infinite series of cases of parameters n and k.

Besides the geometric interest in maximum partial k-spreads, they also can be seen as a special case of q sub-
space codes in (network) coding theory. Here the codewords are elements of PG(n−1, q). Two widely used dis-
tance measures for subspace codes (motivated by an information-theoretic analysis of the Koetter-Kschischang-
Silva model, see e.g. [15]) are the so-called subspace distance dS(U, V ) := dim(U + V ) − dim(U ∩ V ) =
2·dim(U+V )−dim(U)−dim(V ) and the so-called injection distance dI(U, V ) := max {dim(U),dim(V )}−
dim(U ∩ V ). For D ⊆ {0, . . . , n} we denote by Aq(n, d;D) the maximum cardinality of a subspace code over
Fn
q with minimum subspace distance at least d, where we additionally assume that the dimensions of the code-

words are contained inD. The most unrestricted case is given byD = {0, . . . , n}. The other extreme,D = {k}
is called constant dimension case and the corresponding codes are called constant dimension codes. As an ab-
breviation we use the notation Aq(n, d; k) := Aq(n, d; {k}). Note that dS(U, V ) = 2 · dI(U, V ) ∈ 2 · N in the
constant dimension case. Bounds on Aq(n, d;D) have been intensively studied in the last years, see e.g. [7].
With this notation, the size of a maximum partial k-spread in Fn

q is given by Aq(n, 2k; k).
The remaining part of the paper is structured as follows. We will briefly review some known results on

Aq(n, 2k; k) and discuss their relation with our main result in Section 2. In Section 3 we will provide the
technical tools that are then used to prove the main result in Section 4. We close with a conclusion listing some
further implications and future lines of research in Section 5.

? The work of the author was supported by the ICT COST Action IC1104 and grant KU 2430/3-1 – Integer Linear Programming Models
for Subspace Codes and Finite Geometry from the German Research Foundation.

1Instead of PG(n− 1, q) we will mainly use the notation Fn
q in the following.

2In the projective space the dimensions are commonly one less compared to the consideration of subspaces in Fn
q .
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2. KNOWN BOUNDS FOR PARTIAL SPREADS

Counting the points in Fn
q and Fk

q gives the obvious upper bound Aq(n, 2k; k) ≤ [n1]2
[k1]2

= qn−1
qk−1 . If equality is

attained one speaks of a k-spread.

Theorem 2.1. ([1]; see also [3, p. 29], Result 2.1 in [2]) Fn
q contains a k-spread if and only if k divides n,

where we assume 1 ≤ k ≤ n and k, n ∈ N.

If k does not divide n, then we can improve the previous upper bound by rounding down to Aq(n, 2k; k) ≤⌊
qn−1
qk−1

⌋
. Here a specific parameterization is useful: If one writes the size of a partial k-spread in Fn

q , where

n = k(t+ 1) + r, 1 ≤ r ≤ k− 1, as qr · q
k(t+1)−1
qk−1 − s, then s ≥ q− 1 and s > qr−1

2 − q2r−k

5 is known, see e.g.
[5]. Furthermore, there exists an example with s = qr − 1 in each case, see e.g. Observation 3.4, so that there is
the conjecture that the sharp bound is s ≥ qr − 1. Assuming q = 2 and k ≥ 4, our main result in Theorem 4.3
verifies this conjecture for r = 2, i.e., s ≥ 3. Note that n ≡ r (mod k), so that the residue class r seems to
play a major role. Besides the case of r = 0, see Theorem 2.1, the next case r = 1 is solved in full generality:

Theorem 2.2. ([2]; see also [14] for the special case q = 2) For positive integers 1 ≤ k ≤ n be positive
integers with n ≡ 1 (mod k) we have Aq(n, 2k; k) = qn−q

qk−1 − q + 1 = q · q
n−1−1
qk−1 − q + 1 = qn−qk+1+qk−1

qk−1 .

The so far best upper bound on Aq(n, 2k; k), i.e., the best known lower bound on s is based on:

Theorem 2.3. (Corollary 8 in [4]) If n = k(t+ 1) + r with 0 < r < k, then

Aq(n, 2k; k) ≤
t∑

i=0

qik+r − bθc − 1 = qr · q
k(t+1) − 1

qk − 1
− bθc − 1,

where 2θ =
√

1 + 4qk(qk − qr)− (2qk − 2qr + 1).

We remark that this theorem is also restated as Theorem 13 in [7] and as Theorem 44 in [9] with the small
typo of not rounding down θ (Ω in their notation). And indeed, the resulting lower bound s ≥ bθ(q, k, r)c + 1
is independent of n. Specializing to the binary case, i.e., q = 2, we can use the previous results to state exact
formulas for A2(n, 2k; 2k) for small values of k ≥ 2.3

From Theorem 2.1 and Theorem 2.2 we conclude:

Corollary 2.4. For each integer m ≥ 2 we have

(a) A2(2m, 4; 2) = 22m−1
3 ;

(b) A2(2m+ 1, 4; 2) = 22m+1−5
3 .

Using the results of Theorem 2.1 and Theorem 2.2 the case k = 3 was completely settled in [6]:

Theorem 2.5. For each integer m ≥ 2 we have

(a) A2(3m, 6; 3) = 23m−1
7 ;

(b) A2(3m+ 1, 6; 3) = 23m+1−9
7 ;

(c) A2(3m+ 2, 6; 3) = 23m+2−18
7 .

In our Theorem 4.3 we completely settle the case n ≡ 2 (mod k) for q = 2, k ≥ 4, and n ≥ 2k+ 2.4 Using
the results of Theorem 2.1, Theorem 2.2, Observation 3.4, and Theorem 4.3 we can state:

Corollary 2.6. For each integer m ≥ 2 we have

(a) A2(4m, 8; 4) = 24m−1
15 ;

(b) A2(4m+ 1, 8; 4) = 24m+1−17
15 ;

(c) A2(4m+ 2, 8; 4) = 24m+2−49
15 ;

3Obviously, we have Aq(n, 2; 1) =
[n
1

]
q

.
4AsAq(k+2, 2k; k) = 1 for k ≥ 2, the assumption n ≥ 2k+2 is no restriction. The case k = 3 is covered by [6], see Theorem 2.5.

For k = 1, 2 the remainder of n is strictly smaller than 2. So, in other words, the binary case n ≡ 2 (mod k) is completely resolved.
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(d) 24m+3−113
15 ≤ A2(4m+ 3, 8; 4) ≤ 24m+3−53

15 .

In [7] Etzion collects 100 open problems on q-analogs in coding theory. Our main theorem resolves several
of them:

• In other words, Research problem 45 asks for a characterization of parameter cases for which the
construction in Observation 3.4 matches the exact value of Aq(n, 2k; k). Assuming q = 2 and k ≥ 4,
this is, e.g., the case for n ≡ 2 (mod k).

• Research problem 46 asks for improvements of the upper bound from Theorem 2.3, which are achieved
for the same parameters as specified above. The same is true for Research problem 47 asking for exact
values.

• The special case of the determination of A2(n, 8; 4) in Research problem 49 is completely resolved for
n ≡ 2 (mod 4), see Corollary 2.6.

3. CONSTRUCTIONS AND VECTOR SPACE PARTITIONS

For matrices A,B ∈ Fm×n
q the rank distance is defined via dR(A,B) := rk(A − B). It is indeed a metric, as

observed in [10].

Theorem 3.1. (see [10]) Let m,n ≥ d be positive integers, q a prime power, and C ⊆ Fm×n
q be a rank-metric

code with minimum rank distance d. Then, |C| ≤ qmax(n,m)·(min(n,m)−d+1). Codes attaining this upper bound
are called maximum rank distance (MRD) codes. They exist for all (suitable) choices of parameters.

If m < d or n < d, then only |C| = 1 is possible, which may be summarized to the single upper bound
|C| ≤

⌈
qmax(n,m)·(min(n,m)−d+1)

⌉
. Using an m×m identity matrix as a prefix one obtains the so-called lifted

MRD codes.

Theorem 3.2. (see [15]) For positive integers k, d, n with k ≤ n, d ≤ 2 min(k, n − k), and d ≡ 0 (mod 2),
the size of a lifted MRD code in Gq(n, k) with subspace distance d is given by

M(q, k, n, d) := qmax(k,n−k)·(min(k,n−k)−d/2+1).

If d > 2 min(k, n− k), then we have M(q, k, n, d) = 1.

In [8] a generalization, the so-called multi-level construction, was presented. To this end let 1 ≤ k ≤ n be
integers and v ∈ Fn

2 a binary vector of weight k. By EF(v) we denote the set of all k × n matrices over F2 that
are in row-reduced echelon form, i.e., the Gaussian algorithm had been applied, and the pivot columns coincide
with the positions where v has a 1-entry.

Theorem 3.3. (see [8]) For integers k, n, d with 1 ≤ k ≤ n and 1 ≤ d ≤ min(k, n − k), let B be a binary
constant weight code of length n, weight k, and minimum Hamming distance 2d. For each b ∈ B let Cb be a
code in EF(b) with minimum rank distance at least d. Then, ∪b∈B Cb is a constant dimension code of dimension
k having a subspace distance of at least 2d.

The authors also came up with a conjecture for the size of an MRD code over EF(v), which is still unrebutted.
Taking binary vectors with k consecutive ones we are in the classical MRD case. So, taking binary vectors vi,
where the ones are located in positions (i− 1)k+ 1 to ik, for all 1 ≤ i ≤ bn/kc, clearly gives a binary constant
weight code of length n, weight k, and minimum Hamming distance 2k.

Observation 3.4. For positive integers k, n with n > 2k and n 6≡ 0 (mod k), there exists a constant dimension
code in Gq(n, k) with subspace distance 2k having cardinality

1 +

bn/kc−1∑
i=1

qn−ik = 1 + qk+(n mod k) · q
n−k−(n mod k) − 1

qk − 1
=
qn − qk+(n mod k) + qk − 1

qk − 1
.5

5Using our general notation, we may rewrite the stated formula with n = k(t+ 1) + r and n mod k = r.
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We remark that a more general construction, among similar lines and including explicit formulas for the
respective cardinalities, has been presented in [16].

A vector space partition P of Fn
q is a collection of subspaces with the property that every nonzero vector,

i.e., a point, of Fn
q is contained in a unique member of P . If for d ∈ {1, 2, . . . , k} the vector space partition

P contains md subspaces of dimension d and mk > 0, then (mk,mk−1, . . . ,m1) is called the type of P . We
will also use the notation kmk . . . 1mi , where we leave out the cases with md = 0. The tail of P is the set of
subspaces, in P , having the smallest dimension. If the dimension of the corresponding subspaces is given by d,
then the length of the tail is the number md, i.e., the cardinality of the tail.

Theorem 3.5. (Theorem 1 in [11]) Let P be a vector space partition of Fn
q , let n1 denote the length of the tail

of P , let d1 denote the dimension of the vector spaces in the tail of P , and let d2 denote the dimension of the
vector spaces of the second lowest dimension.

(i) if qd2−d1 does not divide n1 and if d2 < 2d1, then n1 ≥ qd1 + 1;
(ii) if qd2−d1 does not divide n1 and if d2 ≥ 2d1, then either d1 divides d2 and n1 =

(
qd2 − 1

)
/
(
qd1 − 1

)
or n1 > 2qd2−d1 ;

(iii) if qd2−d1 divides n1 and d2 < 2d1, then n1 ≥ qd2 − qd1 + qd2−d1 ;
(iv) if qd2−d1 divides n1 and d2 ≥ 2d1, then n1 ≥ qd2 .

So, in any (nontrivial) case6, we have n1 ≥ q + 1 ≥ 3, which will be sufficient in many situations.

4. MAIN THEOREM

Lemma 4.1. For two integers t ≥ 1 and k ≥ 4 no vector space partition of type knk(k − 1)nk−111+2k−1

exists
in Fk(t+1)+1

2 , where nk = 2kt+2+2k−5
2k−1 and nk−1 = 2kt+2 − 3.7

PROOF. Assume the existence of a vector space partitionP of the specified type. Now we consider the projection
into hyperplanes. Since the non-holes are projected to m = 2k(t+1)+2−2k+1−2

2k−1 subspaces with dimensions in

{k, k− 1, k− 2} and the total number of points is given by
[
k(t+1)

1

]
2

= 2k(t+1) − 1, the number of holes L has
to satisfy L ≡ 1 (mod 2k−2). Using L ≤ 1 + 2k−1, we conclude L ∈ {1, 1 + 2k−2, 1 + 2k−1}. Due to the tail
condition in Theorem 3.5, the case L = 1 is impossible. Now let x be the number of hyperplanes with 1 + 2k−1

holes and
[
k(t+1)+1
k(t+1)

]
2
− x = 2k(t+1)+1 − 1 − x the number of hyperplanes with 1 + 2k−2 holes. Since each

hole is contained in
[

k(t+1)
k(t+1)−1

]
2

= 2k(t+1) − 1 hyperplanes, we have(
1 + 2k−1

)
x+

(
1 + 2k−2

)
· (2k(t+1)+1 − 1− x)

2k(t+1) − 1
=

(
1 + 2k−2

)
· 2k(t+1)+1 −

(
1 + 2k−2

)
+ 2k−2 · x

2k(t+1) − 1

≥
(
1 + 2k−2

)
· 2k(t+1)+1 −

(
1 + 2k−2

)
2k(t+1) − 1

> 2 ·
(
1 + 2k−2

)
= 2k−1 + 2

holes in total, a contradiction. �

Lemma 4.2. Using the notation from Theorem 2.3, we have bθc =
⌊
qr−2

2

⌋
for r ≥ 1 and k ≥ 2r.8

PROOF. We have

2θ =
√

1 + 4qk(qk − qr)− (2qk − 2qr + 1) =

√
(2qk − qr)

2 − q2r + 1− (2qk − 2qr + 1) < qr − 1.

Since 1 + 4qk(qk − qr) = 1 + 4q2k − 4qk+r >
(
2qk − (qr + 1)

)2
= 4q2k − 4qk+r − 4qk + q2r + 2qr + 1 for

k ≥ 2r and q ≥ 2, we have 2θ > qr − 2. Thus, we have bθc = (qr − 2)/2 for q even and bθc = (qr − 3)/2 for
q odd. �

6We have to exclude the trivial subspace partition P =
{
Fn
q

}
, where d1 = n and d2 does not exist.

7Theorem 3.5.(ii,iv) yields n1 ≥ 2k−1 − 1, setting d2 = k − 1 and d1 = 1. Also the improvement [12, Theorem 2] of Theorem 3.5
is not sufficient to exclude the specific parameters from Lemma 4.1.

8The result is also valid for k = 2r − 1, r ≥ 2, and q ∈ {2, 3}.
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We remark that the formula for bθc in Lemma 4.2 does not depended on k (supposed that k is sufficiently
large).

Theorem 4.3. For each pair of integers t ≥ 1 and k ≥ 4 we have A2(k(t+ 1) + 2, 2k; k) = 2k(t+1)+2−3·2k−1
2k−1 .

PROOF. Applying Lemma 4.2 and Theorem 2.3 yields A2(k(t+ 1) + 2, 2k; k) ≤ 2k(t+1)+2−2k+1−2
2k−1 . Assuming

that the upper bound m := 2k(t+1)+2−2k+1−2
2k−1 is attained by a code C, we obtain a vector space partition of

type km12
k+1+1, i.e., the m k-dimensional codewords leave over

[
k(t+1)+2

1

]
2
−m ·

[
k
1

]
2

= 2k(t+1)+2 − 1 −
2k(t+1)+2−2k+1−2

2k−1 ·
(
2k − 1

)
= 2k+1 + 1 holes. Now we consider the projection of C into hyperplanes. Since

the codewords end up as k- or (k−1)-dimensional subspaces summing up to m , the number of holes is at most
2k+1 + 1, and the total number of points is given by

[
k(t+1)+1

1

]
2

= 2k(t+1)+1 − 1, we obtain the following list
of possible types:

(1) knk+1(k − 1)nk−1−111

(2) knk(k − 1)nk−111+2k−1

(3) knk−1(k − 1)nk−1+111+2k

(4) knk−2(k − 1)nk−1+211+3·2k−1

(5) knk−3(k − 1)nk−1+311+2k+1

,

where nk = 2kt+2+2k−5
2k−1 and nk−1 = 2kt+2 − 3.

Due to Theorem 3.5, case (1) is impossible. The case (2) is ruled out by Lemma 4.1. Thus, each of the[
k(t+1)+2
k(t+1)+1

]
2

= 2k(t+1)+2 − 1 hyperplanes contains at most nk − 1 subspaces of dimension k. Since each

k-dimensional subspace is contained in
[
kt+2
kt+1

]
2

= 2kt+2 − 1 hyperplanes, the total number of k-dimensional
subspaces in C can be at most(

2k(t+1)+2 − 1
)
· (nk − 1)

2kt+2 − 1
=

2k(t+1)+2 − 1

2k − 1
− 3 · 2k(t+1)+2 − 1

(2k − 1) · (2kt+2 − 1)

k>0
<

2k(t+1)+2 − 3 · 2k − 1

2k − 1
,

a contradiction. Thus we have A2(k(t+ 1) + 2, 2k; k) ≤ 2k(t+1)+2−3·2k−1
2k−1 . A construction for A2(k(t+ 1) +

2, 2k; k) ≥ 2k(t+1)+2−3·2k−1
2k−1 is given by Observation 3.4. �

Corollary 4.4. For each integer k ≥ 4 we have A2(2k + 2, 2k; k) = 2k+2 + 1.

We remark that Corollary 4.4 would be wrong for k = 3, since A2(8, 6; 3) = 34 > 33, see [6]. And indeed,
each extremal code has to contain a hyperplane which is a subspace partition of type 3522915. Next we try to
get a bit more information about these extremal codes. To this end let ai denote the number of hyperplanes
containing exactly 2 ≤ i ≤ 5 three-dimensional codewords. The standard equations for our parameters are
given by

a2 + a3 + a4 + a5 =

[
8

7

]
2

= 255

2a2 + 3a3 + 4a4 + 5a5 =

[
5

1

]
2

·A2(8, 6; 3) = 1054

a2 + 3a3 + 6a4 + 10a5 =

(
A2(8, 6; 3)

2

)
= 561.

Solving the equation system for a5 yields a4 = 7a5− 782, a3 = 2108− 17a5, and a2 = 9a5− 1071. Since the
ai have to be non-negative we obtain 119 ≤ a5 ≤ 124, i.e., the list of theoretically possible spectra is given by
(0, 0, 0, 85, 51, 119), (0, 0, 9, 68, 58, 120), (0, 0, 18, 51, 65, 121), (0, 0, 27, 34, 72, 122), (0, 0, 36, 17, 79, 123),
and (0, 0, 45, 0, 86, 124).

Now let L be the subspace generated by the 17 holes. Since 17 > 15 we have dim(L) ∈ {5, 6, 7, 8}. The
hyperplane containing 2 codewords contains all 17 holes so that the set of hyperplanes of this type corresponds
to the set of hyperplanes containing L as a subspace, i.e., dim(L) = 8 − i is equivalent to a2 = 2i − 1 for
1 ≤ i ≤ 3. Thus, we have dim(L) = 8 and the unique spectrum is given by (0, 0, 0, 85, 51, 119), i.e., a2 = 0,
a3 = 85, a4 = 51, and a5 = 119.
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We remark that Lemma 4.1 can be generalized to arbitrary odd9 prime powers q along the same lines:

Lemma 4.5. For integers t ≥ 1, k ≥ 4, and odd q no vector space partition of type kp−1(k−1)m−p+11
q+1
2 +qk−1

exists in Fk(t+1)+1
q , where p = qkt+2−q2

qk−1 + q+1
2 and m = qk(t+1)+2−q2

qk−1 − q2−1
2 .

PROOF. Assume the existence of a vector space partitionP of the specified type. Now we consider the projection
into hyperplanes. Since the non-holes are projected to m subspaces with dimensions in {k, k − 1, k − 2} and
the total number of points is given by

[
k(t+1)

1

]
q
, the number of holes L has to satisfy L ≡ q+1

2 (mod qk−2).

Using L ≤ q+1
2 + qk−1, we conclude L ∈ { q+1

2 , q+1
2 + qk−2, q+1

2 + qk−1}. Due to the tail condition in
Theorem 3.5, the case L = q+1

2 is impossible. Now let x be the number of hyperplanes with q+1
2 + qk−1

holes and
[
k(t+1)+1
k(t+1)

]
q
− x the number of hyperplanes with q+1

2 + qk−2 holes. Since each hole is contained in[
k(t+1)

k(t+1)−1
]
q

hyperplanes, we have

(
q+1
2 + qk−1

)
x+

(
q+1
2 + qk−2

)
· ( qk(t+1)+1−1

q−1 − x)(
qk(t+1) − 1

)
/(q − 1)

= qk−2x+

(
q + 1

2
+ qk−2

)
· q

k(t+1)+1 − 1

qk(t+1) − 1

≥
(
q + 1

2
+ qk−2

)
· q > q + 1

2
+ qk−1

holes in total, a contradiction. �

In turns out that repeating the proof of Theorem 4.3 for odd q just works for q = 3 and additionally the lower
bound by the constriction of Observation 3.4 does not match the improved upper bound. At the very least an
improvement of the upper bound of Theorem 2.3 by one is possible:

Lemma 4.6. For integers t ≥ 1 and k ≥ 4 we have A3(k(t+ 1) + 2, 2k; k) ≤ 3k(t+1)+2−32
3k−1 − 32+1

2 .

PROOF. Applying Lemma 4.2 and Theorem 2.3 for odd q yields

Aq(k(t+ 1) + 2, 2k; k) ≤ qk(t+1)+2 − q2

qk − 1
− q2 − 1

2
=: m.

Assuming that the upper bound is attained by a code C, the m k-dimensional codewords leave over[
k(t+ 1) + 2

1

]
q

−m ·
[
k

1

]
q

=
q(q + 1)

2
· qk−1 +

q + 1

2
=: h

holes. Now we consider the projection of C into hyperplanes. Since the codewords end up as k- or (k − 1)-
dimensional subspaces summing up to m , the number of holes is at most h, and the total number of points is
given by

[
k(t+1)+1

1

]
q

= qk(t+1)+1−1
q−1 , we obtain the types

kp−i(k − 1)m−p+i1
q+1
2 +iqk−1

for 0 ≤ i ≤ q(q+1)
2 , where p := qkt+2−q2

qk−1 + q+1
2 .

Due to Theorem 3.5, case i = 0 is impossible. The case i = 1 is ruled out by Lemma 4.5. Thus, each of the[
k(t+1)+2
k(t+1)+1

]
q

hyperplanes contains at most p− 2 subspaces of dimension k. Since each k-dimensional subspace

9For even q > 2 the tail condition of Theorem 3.5 cannot be applied directly in the proof of Lemma 4.5.
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is contained in
[
kt+2
kt+1

]
q

hyperplanes, the total number of k-dimensional subspaces in C can be at most

(p− 2) ·
[
k(t+1)+2
k(t+1)+1

]
q[

kt+2
kt+1

]
q

=

(
qkt+2−q2

qk−1 + q−3
2

)
·
(
qk(qkt+2 − 1) + qk − 1

)
qkt+2 − 1

=
qk(t+1)+2 − q2 − qk+2 + q2

qk − 1
+
q − 3

2
· qk +

qkt+2 − q2 + q−3
2 ·

(
qk − 1

)
qkt+2 − 1

q=3
=

qk(t+1)+2 − q2

qk − 1
− q2 +

qkt+2 − q2

qkt+2 − 1

<
qk(t+1)+2 − q2

qk − 1
− q2 + 1

q>1
<

qk(t+1)+2 − q2

qk − 1
− q2 − 1

2
= m

a contradiction. Thus we have A3(k(t+ 1) + 2, 2k; k) ≤ 3k(t+1)+2−32
3k−1 − 32+1

2 . �

5. CONCLUSION

For the size of a maximum partial k-spread in Fn
q the exact formulaAq(k(t+1)+r, 2k; k) = qr· q

k(t+1)−1
qk−1 −qr+1

was conjectured for some time, where n = k(t+ 1) + r and 1 ≤ r ≤ k − 1. Codes with these parameters can
easily be obtained via combining some MRD codes, see Observation 3.4. However, the conjecture is false for
q = 2, k = 3, n ≡ 2 (mod 3), and n ≥ 8, as we know since [6]. In this paper we have shown that the conjecture
is true for q = 2, k ≥ 4, n ≡ 2 (mod k), and n ≥ 2k + 2. With respect to upper bounds, Theorem 2.3 is
one of the most general and sweeping theoretical tools. For the spread case, i.e., n ≡ 0 (mod k), it was
sufficient to consider the (empty) set of holes. The main idea of Beutelspacher for the case n ≡ 1 (mod k),
may roughly be described as the consideration of holes in the projections of partial k-spreads in hyperplanes.
In this sense, our work is just the continuation of projecting two times.10 If k ≥ 4 the projected codewords
can be distinguished from the holes by the attained dimensions. So, we naturally ask whether our result can be
generalized to arbitrary q. In Lemma 4.6 we were able to reduce the previously best known upper bound by 1
for the special field size q = 3. Looking closer at our arguments shows that for further progress additional ideas
are needed.

In general, one may project k− 2 times without being confronted with an interference between the projected
codewords and the set of holes contained in the (n−k+2)-dimensional subspaces. Can this rough idea be used
to obtain improved upper bounds for r ≥ 3 and k ≥ r + 2?

Our main result suggest that the code attaining A2(8, 6; 3) = 34 is somehow specific. As mentioned before,
it cannot be obtained by the construction from Observation 3.4. Even more, it cannot be obtained by the more
general, so-called, Echelon-Ferrers (or multi-level) construction from [8]. So, a better understanding of the
corresponding codes might be the key for possibly better constructions beating the currently best known lower
bounds for e.g. A2(11, 8; 4) or A2(14, 10; 5).

We would like to mention a new on-line table for upper and lower bounds for subspace codes at

http://subspacecodes.uni-bayreuth.de,

see also [13] for a brief manual and description of the methods implemented so far. Actually, our research was
initiated by looking for the smallest set of parameters, in the binary partial spread case, where the currently
known lower and the upper bounds differ by exactly 1: 65 ≤ A2(10, 8; 4) ≤ 66. The other cases with a
difference of one are exactly those that we finally covered by Theorem 4.3. Now, the smallest unknown maximal
cardinality of a partial k-spread over Fn

2 is given by 129 ≤ A2(11, 8; 4) ≤ 133 and also the other cases, where
the upper and the lower bound are exactly 4 apart, show an obvious pattern. At least for use, the mentioned
database was very valuable. As it commonly happens that formerly known results were rediscovered by different
authors, we would appreciate any comments on existing results, that are not yet included in the database, very
much.

10The specific use of Theorem 3.5 is just a shortcut, resting on the same rough idea. However, it points to an area where even more
theoretic results are available, that possibly can be used in more involved cases.

http://subspacecodes.uni-bayreuth.de
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Partial k-spreads have applications in the construction of orthogonal arrays and (s, r, µ)-nets11, see [4]. Thus,
Theorem 4.3 also implies restrictions for these objects. The derivation of the explicit corollaries goes along the
same lines as presented in [6].
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