
pr
ep
ri
nt

Preprint Version 2

The Process Checklist – Simple Enactment of
Human-driven Processes

Transforming Business Processes to Process Checklists

Michaela Baumann · Stefan Schönig ·
Michael Heinrich Baumann · Stefan
Jablonski

2015

Abstract In traditional approaches business processes are executed on top
of IT-based Workflow-Management Systems (WfMSs). However, when dealing
with human-driven workflows, conventional WfMSs may turn out to be too re-
strictive. Especially, the only way to handle exceptions is to bypass the system.
If users are forced to bypass WfMSs frequently, the system is more an obstacle
than an asset. In order to diminish the dependency from IT-based process
management systems, we propose a cheap and fast installable alternative way
of supporting workflow execution that is especially suitable for human-driven
processes. We introduce the so-called Process Checklist representation where

M. Baumann
Databases and Information Systems
University of Bayreuth
Tel.: +49-921-55-7625
Fax: +49-921-55-7622
E-mail: michaela.baumann@uni-bayreuth.de

S. Schönig
Databases and Information Systems
University of Bayreuth
Tel.: +49-921-55-7627
Fax: +49-921-55-7622
E-mail: stefan.schoenig@uni-bayreuth.de

M. H. Baumann
Applied Mathematics
University of Bayreuth
Tel.: +49-921-55-3280
Fax: +49-921-55-5361
E-mail: michael.baumann@uni-bayreuth.de

S. Jablonski
Databases and Information Systems
University of Bayreuth
Tel.: +49-921-55-7620
Fax: +49-921-55-7622
E-mail: stefan.jablonski@uni-bayreuth.de

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by EPub Bayreuth

https://core.ac.uk/display/33807524?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


pr
ep
ri
nt

2 Michaela Baumann et al.

processes are described as a paper-based step-by-step instruction handbook.
Process Checklists can either be set up directly for the desired process or be
derived from an already existing process model. A transformation from BPMN
models to Process Checklists is given as well as implementation instructions
with an underlying meta-model. Furthermore, evaluations in the academic as
well as in the business domain have been performed to evaluate the approach.

Keywords process modelling · Process Checklists · paper-based process
execution

1 Introduction

For approximately 20 years process management is regarded as an innovative
technology both for the description of complex applications and for support-
ing their execution [14]. In traditional approaches business processes are exe-
cuted on top of IT-based Workflow-Management Systems (WfMSs) [31]. The
key benefits of the application of a WfMS are task coordination, step-by-step
guidance through process execution and traceability supporting compliance
issues [25].

However, when dealing with human-driven workflows that heavily depend
on dynamic human decisions, conventional WfMSs turn out to be too restric-
tive [1]. Especially, the only way to handle exceptions – which regularly occur
in human-driven workflows – is to bypass the system. If users are forced to
bypass WfMSs frequently, the system is more an obstacle than an asset [1]. In
total, users start to complain that “the computer won’t let them” to do the
things they like to accomplish [5]. So users like to get more independent from
“electronic systems” in order to become more flexible. If original documents
are needed for executing a process, in many cases a paper-based execution
model is preferred [19]. Furthermore, the introduction of a WfMS is regarded
as a huge and cost-intensive project [21] that many small and medium-sized
companies dread to establish as they cannot afford to introduce such a sys-
tem. However, they desire to manage their processes since they regard them
as valuable and effective.

In order to diminish the dependency from IT-based process management
systems, we propose an alternative way of supporting workflow execution that
is especially suitable for human-driven processes, like it is the case for example
in public administration, authorities and service companies. We introduce the
so-called Process Checklist representation of process models which is a fast
way of setting up process execution support almost on the fly. Installation
time is virtually nonexistent and needs for structural changes both in the
introduction phase and in the operating phase can be applied immediately
and rapidly. Furthermore, the Process Checklist is independent from specific
hardware and operating systems.



pr
ep
ri
nt

The Process Checklist 3

1
determine

exam subject

student

(name)

(date, signature)

2
XOR

exam type?

� written: 3

� oral: 9

student

(name)

(date, signature)

3
system

notification
(written exam)

room written exam,
date written exam

student

(name)

(date, signature)

4 room written exam,
date written exam

perform
written exam

student

(name)

(date, signature)

5 exam unmarked
perform

exam correction
exam marked

auditor

(name)

(date, signature)

6 exam marked

register
exam marks

in system

sec of chair

(name)

(date, signature)

7 exam marked
send exam to
examination

office

sec of chair

(name)

(date, signature)

8 XOR end go to 15

student

(name)

(date, signature)

Fig. 1: First part of the graphical checklist for the process “subscribing for an exam”.



pr
ep
ri
nt

4 Michaela Baumann et al.

In the presented Process Checklist approach, processes are described as
a paper-based step-by-step instruction handbook. The Process Checklist is
handed over during process execution from process participant to process par-
ticipant. Successful task accomplishments are recorded through signatures of
corresponding human agents. In principle the most important outcome is that
at the end of the process all required signatures are on the checklist. So it
is completely output oriented. Nevertheless, the checklist method describes a
valuable form of process usage and widens its spectrum towards non-computer
based and flexible and cheap process execution. If needed, certain parts of the
checklist can even be deleted, changed or added during the execution by sim-
ply using a pen. However, traceability is still maintained. Nevertheless, there
is a prerequisite to achieve traceability: proper processing. Human agents have
to be honest and conscientious to support this principle. That means among
other things that each modification of a process template is signed by the cor-
responding agent. In our three sample scenarios presented in Section 7 it was
no issue to enforce this regulation.

Besides, a Process Checklist also supports the key benefits of traditional
WfMSs. The checklist is handed over to responsible agents (task coordination),
process tasks are serialized and marked by a unique identifier (step-by-step
guidance) and the checklist itself as well as the corresponding signatures en-
sure traceable process execution.

The work at hand provides the general structure of Process Checklists
as well as an elaborate transformation algorithm of basic Business Process
Model and Notation (BPMN) process model elements [23] to Process Check-
lists. Note, that this article is an extended paper of a conference proceeding [2].
In addition to various improvements and further concepts the work at hand
extends our previous article by a description of the actual implementation
(Section 6) as well as by a detailed evaluation and case study section (Section
7).

2 Structure of the Process Checklist

According to [15], there are five perspectives a process model should cover and
that a Process Checklist should therefore support, too, to serve as a sophisti-
cated support tool for process execution: There are the functional perspective
(i.e., the task description), the organizational perspective (i.e., the assignment
of agents to tasks), the data perspective that describes data flow, including
data generation and consumption, the operational perspective (i.e., the as-
signment of systems and services to tasks) and the control flow aspect. The
Process Checklist presented in this work is designed in compliance with these
perspectives. All of them are present in the Process Checklist in Fig. 1.

In principle there are two kinds of checklist steps, also called checklist points
in the further course: operating points that describe the activities of a process
and control points that decide about the execution order of the activities. The



pr
ep
ri
nt

The Process Checklist 5

different points are indicated through different colours in the example of Fig.
1. Operating points are coloured light and control points are coloured dark
(in Fig. 1, step no. 2 and 8). The two different kinds of checklist points are
explained in the following.

i IDi ACi ODi
AGi

date, signature

Fig. 2: Schematical representation of an operating point.

A schematical representation of an operating point is given in Fig. 2. An
operating point has five fields that need to be filled in with information about
a certain activity. Field i on the left-hand side assigns a unique number to the
point that is needed to address this point from within other checklist points.
Field ACi in the middle contains the description of the activity (AC) that
has to be fulfilled, possibly also containing information about the system or
service that has to be used when fulfilling the task. Field IDi on the left of
the activity description contains a list of incoming data (ID), i.e., consumed
data and documents that are needed to perform the activity and field ODi on
the right of the activity description contains a list of outgoing data (OD), i.e.,
data and documents that are produced during the activity. It is also allowed to
list documents in IDi and ODi that are only passed through and not needed
for fulfilling task ACi. Field AGi assigns a human agent (AG), or in general a
role, to the activity. Apparently, an operating point contains information about
the functional (field ACi), organizational (field AGi), operational (potentially
mentioned in field ACi) and data-flow perspective (fields IDi and ODi). The
numbers on the left of each point serve as identifiers but do not basically
impose an execution order of the points. This is mainly done by the second
kind of checklist points, the control points. A schematical representation of a
control point is given in Fig. 3.

j ANj COj GTj
AGj

date, signature

Fig. 3: Schematical representation of a control point.

A control point consists of five fields, too. Again, on the left-hand side,
there is a unique number j assigned to the point. The uniqueness of the point
numbers applies jointly for operating and control points, so if there is an
operating point with number k there is no control point with number k and



pr
ep
ri
nt

6 Michaela Baumann et al.

vice versa. Field COj in the middle contains advices for splitting and joining
the control flow and, when splitting with respect to several alternatives, also
contains the condition (CO) or question under which one or more alternatives
has or have to be chosen. Field ANj is reserved for annotations (AN) that
can contain instructions for documents when needed to check the condition in
COj or a recommended execution order of independent alternatives.

� aj,1 gj,1 date, sign.

� aj,2 gj,2 date, sign.

: : :

� aj,k−1 gj,k−1 date, sign.

aj,k gj,k

Fig. 4: Schematical representation of field GTj of control point No. j.

In field GTj the “go to”-instructions for the different alternatives are listed.
A refinement of field GTj is shown in Fig. 4. Variables aj,· represent the an-
swers (a) to the question in field COj or concrete forms of the condition that
has to be checked. If field COj indicates subprocesses that may be executed
indepedently then variables aj,· are simply replaced by the phrase “go to”.
Also, the names of subchecklists may be listed there. Variables gj,· refer to the
numbers of other checklist points, whereto the checklist has to be passed in the
correpsonding cases. These points can either be operating or control points.
In the sample checklist in Fig. 1, an exam type has to be chosen exclusively
in control point No. 2. In control point No. 8, one subprocess of an exclusive
split is finished. The variable assignment in control point No. 2 for field GT2

is as follows: a2,1 = written, g2,1 = 3, a2,2 = oral, g2,2 = 9. The confirmation
lines (date, sign.) behind every (a, g)-pair as shown in Fig. 4 are not visible
here because the exclusive control point is performed only once. Whether the
confirmation line is shown or not is apparent through a boolean variable c
which is c2 = 0 in the case of Fig. 1. Variable c also determines whether the
last (a, g)-pair (in Fig. 1 pair (aj,k, gj,k)) where a is usually replaced by “finally
go to” and the box � is not visible, is present. It is present in case c = 1. Why
this confirmation line, the last (a, g)-pair and all other components are needed
will be further explained in Section 4.

To conclude this section, a fully formalized representation of the Process
Checklist, making use of the field names introduced above, is available in
Definition 1. Every checklist is depicted by a vector of operating points po and
control points pc.

Definition 1 (Checklist Vector) A checklist is a vector C = (pt1, p
t
2, . . . , p

t
n),

n ∈ N, t ∈ {o, c} with two different kinds of components:

poi = (IDi, ACi, ODi, AGi) (operating point)



pr
ep
ri
nt

The Process Checklist 7

with IDi, ACi, ODi, AGi being strings and

pcj = (ANj , COj , GTj , AGj) (control point)

with ANj , COj , AGj being strings and GTj being a vector of the form

GTj = (cj , aj,1, gj,1, aj,2, gj,2, . . . , aj,k, gj,k)

with k ∈ N, strings aj,l, integers gj,l ∈ {1, . . . , n}, l = 1, . . . , k, and cj ∈ {0, 1}.

No. type ID/AN AC/CO OD/GT AG

1 o determine exam
subject

student

2 c XOR
exam type?

c2 = 0
a2,1 =written g2,1 = 3
a2,2 = oral g2,2 = 9
a2,3 =“” g2,3 =“”

student

3 o system notifi-
cation (written
exam)

{room written exam, date
written exam}

student

4 o {room written
exam, date
written exam}

perform written
exam

student

5 o {exam
unmarked}

perform exam cor-
rection

{exam marked} auditor

6 o {exam marked} register exam
marks in system

secretariat
of chair

7 o {exam marked} send exam to ex-
amination office

secretariat
of chair

8 c XOR end c8 = 0
a8,1 = go to g8,1 = 15

student

9 o system notifica-
tion (oral exam)

student

10 o determine and as-
sign examination
date

{examination date} secretariat
of chair

11 o {examination
date}

perform oral exam {minutes of examination
(unsigned)}

auditor

12 o {minutes of
examination
(unsigned)}

sign minutes of ex-
amination

{minutes of examination
(signed)}

assessor

13 o {minutes of
examination
(unsigned)}

sign minutes of ex-
amination

{minutes of examination
(signed)}

auditor

14 o {minutes of
examination
(signed)}

Send exam mark
and protocol to
examination office

secretariat
of chair

15 o exam notification
and performance
finished

secretariat
of chair

Fig. 5: Checklist vector for the process “Subscribing for an exam” containing all elements
according to Definition 1 needed for the graphical checklist.



pr
ep
ri
nt

8 Michaela Baumann et al.

The checklist vector representation of the sample process “subscribing for
an exam” of Fig. 1 is given in Fig. 5. The first eight rows (No. 1 to No. 8)
correspond to the graphical checklist of Fig. 1. In the following section, the
Process Checklist design and structure shall be compared to already estab-
lished checklist types.

3 Background and Related Work

Despite an extensive literature search we were not able to find an accurate and
universal definition of checklists but in a common understanding a checklist is
a list of required items, things to be done, or points to be considered, usually
used as a reminder [30]. Checklists are generally seen both as a helpful tool
in daily life, e.g., when talking about shopping lists or packing slips, and as a
suitable means for error management and performance improvement in highly
complex scenarios like clinical workflows [11], aircraft preparation [6] [12], or
project management [3], to mention only a few examples. Usually, in all of
these fiels checklists are rather an unsorted list of application specific items
that have to be checked for validity. In the following a short introduction to
the use of checklists in the above listed application fields shall be given to get
a better idea of this topic.

3.1 Clinical (Symptom) Checklists

In the field of clinical healthcare, checklists, mostly paper checklists fixed
on clipboards, are used for detecting or determining diseases (e.g., [7] [4]).
Roughly summarized, symptoms are manually recorded according to a list of
possible symptoms and then, analyzing the checkmarks, a possible illness is
ascertained. In this case, the checklist is a means that helps physicians to de-
tect a patient’s disease but it does not provide information about the process
of analyzing the patient’s health condition itself. Research in this application
field of checklists is mainly done in the medical area like answering the question
of what are the right questions to ask to detect specific illnesses or to exclude
them. Furthermore, in the clinical area, [9] proposes the use of checklists to
compactly map small process steps that can be executed in arbitrary order
within a process model. That means, this is a very simplified application of
our approach as there is no ordering given for the process steps, no support of
data flow and of organizational issues.

3.2 Aircraft Crew Checklists

Checklists in the field of air traffic mainly serve as a remainder to obtain a
proper configuration of the plane and full quality and security in every flight [6]
[12]. They are important especially for enhancing the coordination during high
workload and stressful conditions but also to reduce variability between pilots.



pr
ep
ri
nt

The Process Checklist 9

Throughout the years, they have transformed from a simple memory-aid to a
task by themselves and the most common type of checklist is a paper checklist
as it is a very simple device that may be held by the pilot, clipped to the yoke
or glued to instruments. As [6] mentions, there are also several disadvantages of
paper checklists. This holds even if they would have to be used as enactment
means for processes. The main one is the lack of a pointer to distinguish
between accomplished and non-accomplished items, but also the lack of a
distinction between unaccomplished items that are not yet done and that will
not be done, the need to hold checklists in one hand, meaning one hand is
occupied by the checklist, or the difficulty to read them at night. This is why
several other types of checklists are common in the field of air traffic, like scroll
checklists, mechanical or electromechanical checklists or even vocal checklists.
Of course, computer-aided checklists are also used mainly for normal cockpit
tasks like takeoff and landing where the pilot needs both hands to fulfill the
single process steps. However, all types of checklists that are mentioned in this
context lack some of the process perspectives listed at the beginning of Section
2. Apart from the functional perspective, no other perspectives are fully visible
on aircraft paper checklists. The control-flow perspective is induced for some
tasks that have to be executed in a determined order by the ordering of the
tasks on the checklist stringently top-to-bottom. Systems and services are
usually prescribed in an airplane, e.g., for checking hydraulic pressure the
corresponding measuring instrument and display have to be used. Responsible
agents are usually appointed vocally by the pilot during the execution. The
data perspective is not mentioned. In [6] also some guidelines for designing
and using flight-deck checklists are listed, like the ordering of checklist items
either according to certain dependencies or arbitrarily and the consideration
of the workload of human agents when assigning the different tasks. As far
as possible we set up our checklist approach with a view to these guidelines.
However, the psychological aspect and mental factors that are mostly related
to the strong responsibility a pilot has, were not of that great importance to
us as in [6].

3.3 Project Management Checklists

Checklists in the field of project management can either help organizing the
project team members or serve as identifiers, e.g., risk identifiers [3]. These
identifier checklists are similar to medical checklists which means that they
do not provide information about a procedure itself but operate more like a
decision support [16]. Checklists helping organizing the team are task lists that
allow to assign team members to the task and to distiguish between manda-
tory and optional items [16]. These task lists are however customized to each
project, rarely cover whole processes and do not follow any standardization.
They also do not contain information about the five process perspectives ex-
pect for the functional one. But they serve as a good starting point, together
with the other presented types of checklists, for the Process Checklist repre-



pr
ep
ri
nt

10 Michaela Baumann et al.

name of checklist

name of
process owner

1-1

1-2

1-3

1-6

1-7

2-2

2-3

2-6

2-7

2-10

2

Fig. 6: Cover sheet (left-hand side) with name of the checklist/process, name of process owner
and a list of already executed steps and one point to be executed next; checklist (right-hand
side) with current number in the upper right corner and several operating/control points.
Note, that in this fictional checklist with serial No. 1 a gateway caused a jump into the past
(from point No. 7 to point No. 2).

sentation formulated in the work at hand.

In this paper, we try to bring the widely used unstructured checklists that
usual do not provide any information about execution order and other execu-
tion modalities like parallelism or exclusiveness into a more structured format
to receive a structured process execution tool but also to maintain the uncom-
plicated usage of paper-based checklists. In [14] and [27] this kind of checklist
is suggested but not elaborated. The disadvantages listed in Section 3.2 are
either not essential when it comes to business Process Checklists (like the oc-
cupancy of one hand) or are dissolved by special checklist features (e.g., the
problem of a missing pointer is resolved by the signing field AG). The structure
of a Process Checklist as proposed in the work at hand still reveals similarities
to the traditional checklists briefly presented above but also gives room to the
process part of the desired process execution tool. The traditional task lists
(e.g., the pilots’ aircraft configuration checklists) are somehow represented by
the operating points where their execution can be confirmed by signing them.
Of course, every agent has its unique identifier to guarantee traceability of ev-
ery process execution. Simple checkmarks are not enough to achieve this issue.
In the following, the execution of a Process Checklist consisting of the elements
presented in Section 2 is explained. Linked to the execution of a checklist is the
generation of a checklist. Of course, a checklist has to be generated first before
it can be executed, but generating a Process Checklist also requires knowledge
about its execution so that the elements can be arranged in a suitable way.

4 Enactment of the Graphical Checklist

Before turning towards the execution of the single Process Checklist elements
an additional component besides the graphical checklist itself is required: a
so-called cover sheet. A cover sheet identifies a process instance. The cover



pr
ep
ri
nt

The Process Checklist 11

sheet contains a timestamp, a text field for important information about the
process, the name of the process owner, i.e., usually the person that started the
process instance and that serves as contact person for this process instance,
and a table showing the current state of the process. Depeding on the process,
other information may be provided, too. The state indicator is just a list of
already accomplished checklist points addressed by their numbers and one
point that is being processed at the moment. This list of points serving as
state indicator induces a pointer which is listed as one of the missing checklist
elements in [6]. The cover sheet and the graphical checklist together form the
basis of the executable Process Checklist bundle. In fact, there may be also
more than one checklists attached to the checklist bundle as it is possible
that some points need to be proceeded more than once. If this is the case,
i.e., a so-called backward jump is necessary, the checklist is printed again and
attached to the bundle. To distinguish between the several checklists each of
them gets a consecutive number starting with No. 1. This checklist number
is not necessary if there is no backward jump possible during the process. An
example for a checklist with backward jump is given in Fig. 6.

As one can see on the cover sheet on the left-hand side of the figure, the
enactment of the checklist started with point No. 1 (actually point No. 1 of
checklist no. 1, indicated through 1–1) then 2, 3, 6, and 7 followed (1–2, 1–3,
1–6 and 1–7 as it is still the first checklist). After point No. 7 a backward jump
was performed and the checklist number increased from 1 to 2. That means,
the checklist was printed a second time. Then, point No. 2 was executed a
second time (2–2), also points 3, 6, and 7 (2–3, 2–6 and 2–7). The point to be
performed next is 2–10, i.e., point No. 10 of the second checklist at the back
of the Process Checklist bundle.

Actually, the cover sheet does not contain additional information except for
the process owner, but it helps to quickly reproduce the course so far and find
the current point (the last one in the list of all points). What may be part of
the checklist bundle, too, are the data objects handed over with the checklist.
Also, the bundle can be extended by a list of data objects so that they can be
checked for completeness and a receipt book so that the transmission of the
checklist can be validated. The receipts filled out remain at the corresponding
agents.

When starting a process with checklists, the process owner, i.e., the person
starting the execution of the process, has to print the checklist with cover
sheet and data object list. Then he assigns the checklist its current No. 1.
Input data, that means input documents, have to be added and scheduled in
the respective list. On the cover sheet “1–1” is noted, that means, the current
status of execution is “checklist No. 1” and “point No. 1”. In addition, he has
to write his name on the cover sheet so that the checklist can be handed over
to him after finishing the process. Additional information, like starting time of
the instance, can be noted, too. The Process Checklist bundle has to be passed
to the agent named in point No. 1, who has to check for completeness, that
means especially if all listed documents are handed over, and quit the delivery.



pr
ep
ri
nt

12 Michaela Baumann et al.

The process owner has to archive the signed receipt for later reconstruction if
necessary.

When an agent gets the graphical checklist he has to run through this
acknowledgement process (checking the documents for completeness, sign a
receipt) and then check for the current point of the checklist on the cover sheet.
When the last entry is 2–10 (like in Fig. 6) he has to look at point 10 of the
current checklist, that has number 2, and execute this point, if all necessary
documents are available and possible conditions are fulfilled. Of course, the
agent named in this point should be correct (otherwise the checklist has not
been handed over properly). The corresponding agents can be found on the
right-hand side of every point. A concrete name can be filled in by hand. After
execution of the current point the agent has look which agent is next. If it
is himself he executes the next point and writes it down on the cover sheet,
else he updates the document list, writes the next point on the cover sheet,
hands the checklist over and archives the received receipt. If one agent sends
a document directly to another person, this document has to be deleted from
the data object list and maybe listed again later on by the other agent.

4.1 Execution of Operating Points

Operating points are executed straightaway as described above, performing the
task as given in AC. If documents are produced, they should correspond to
that ones listed in the outgoing documents OD. After performing the task, he
signs the operating point for making clear, he has finished this point. Operating
points usually do not have go-to-numbers, so the next higher point in the
checklist is executed.

4.2 Execution of Control Points

Control points can have different characteristics as they represent, for exam-
ple, exclusive, inclusive or parallel splits. These three terms that are presented
in the following describe the three ways that cover the common possible pro-
cedures appearing in business processes besides sequence flows: alternatives,
loops and pure independent execution of several subprocesses. Apart from the
control flow steering function, control points also serve as redirection advises
that are necessary when certain points have to be skipped or for joining the
distribution of multiple subchecklists.

4.2.1 Execution of Exclusive Splits

If a control point marked, e.g., with the word XOR which indicates a choice
to be made where exactly one answer/condition is true has to be processed,
the agent has to check for the condition or question in field CO. He marks
his answer in GT in the box � in front of the corresponding answer, e.g., the



pr
ep
ri
nt

The Process Checklist 13

9 AND

� go to 10
(date, sign.)

� go to 12
(date, sign.)

finally go to 18

applicant

(name)

(date, signature)

Fig. 7: A control point suitable for dynamic sequential execution

l-th answer a·,l. If there are any documents helping him to decide, they are
listed in AN . After marking he gets the number of the next point, g·,l. Two
possible scenarios may occur: g·,l is greater than the current point number,
then everything can go on as before. If g·,l is smaller than the current point
number, then there is a problem, as that point with number g·,l or other
points may have been processed already in the past and therefore are signed
already. If such a backward jump occurs, than the agent of the control point
has to print a new checklist (just the checklist itself) and assign it the number
i + 1 if the number of the current checklist was i. On the cover sheet, he
writes for the next point to be executed (i + 1)–(g·,l). After doing this, he
signs in field AG and passes the new checklist (together with the old one
for reconstruction opportunity) to the agent of point g·,l. This agent has to
recognize that the consecutive number of the checklist has changed which is
obvious on the cover sheet. Note, only with exclusive splits backward jumps are
reasonable. Concerning other types of control points presented in the following
backward jumps would cause inconsistencies. When there are no backward
jumps over the whole checklist the consecutive checklist number is not needed.

4.2.2 Execution of Parallel Splits

If a control point marked with the word AND which indicates a potentially
parallel execution of at least two subprocesses has to be executed, there are
several possibilities to do so. One method where only one checklist is needed is
the dynamic sequential execution which allows for choosing a suitable order of
the subprocesses. Parallelism is dropped, however. The postbox method retains
parallelism but relaxes the typical checklist properties. Parallel execution also
keeps parallelism but requires separate checklists for all subprocesses. The
three methods are explained more detailed in the following.

Dynamic Sequential Execution When coming to a control point that has listed
the numbers of the starting points of several subprocesses in field GT the agent
of that point can decide about the execution order of the different branches
during the processing of the checklist. He can take into account the current
circumstances like availability of the agents in the different branches, or any-
thing else. An example for such a control points is shown in Fig. 7. Note the
additional go-to-number in field GT that refers to the checklist point that
has to be executed after all the subprocesses have been executed successfully.
When he chooses one branch, he marks his decision in the corresponding box
�, notes it on the cover sheet and passes the graphical checklist over to the



pr
ep
ri
nt

14 Michaela Baumann et al.

agent of the respective point. The branch is processed and at the end of this
branch there is a control point that refers back to the control point where the
decision of the branch was made. So, the order deciding agent gets the checklist
back (with checking for all documents and quitting again) and confirms the
chosen and now successfully executed branch in GT (that one with the marked
box, that has not been confirmed yet). Then he chooses the next branch to
be processed the same way as before. If all branches have been marked and
conformed in field GT , then he signs the whole control point in field AG and
passes the checklist over to the agent of that point listed after “finally go to”
in GT . The whole procedure can be reconstructed with the notes on the cover
sheet.

Regarding the control point in Fig. 7 the following statements about the
subbranches can be made: The first subprocess only consists of one point, point
No. 10, as point No. 11 needs to be a control point referring back to the order
decision point No. 9. The second subprocess starts at point No. 12 and ends
at point No. 16. Point No. 17 is again a control point referring back to point
No. 9. After both subprocesses have been successfully executed the branches
are joined in point No. 18 that has to be executed no matter which order was
chosen in point No. 9. Note that the control points referring back to the order
decision control point do not induce backward jumps like such ones mentioned
in the previous section about exclusive splits (Section 4.2.1). No operating
point has to be executed more than once and the order decision control point
is designed for being able to be executed more than once through the additional
confirmation lines. Here, variable c of the checklist vector definition is set to
1, i.e., the additional confirmation lines and a finally-go-to-number without
marking box � are visible.

Postbox Method Execution The postbox method execution requires parallel
splits designed in the same way as for the dynamic sequential execution. The
difference is in the processing of the checklist, as the postbox method allows for
parallel execution of the different branches. When the processing of a checklist
reaches a parallel split control node the checklist is posted like an announce-
ment in one place together with all documents (that can be stored in a postbox)
and all agents can look for the next points that have to be executed on the
cover sheet, where all first points of the different branches have to be noted in
a parallel way which could lead to a confusing cover sheet. With this method,
the documents do not have to be handed over from one point to another but
communication between the different agents, particularly of that ones involved
in the same subprocess, is necessary to not waste time if two consecutive tasks
have to be performed by different agents. After finishing all branches, the agent
of the control node that started the postbox method collects the checklist and
all documents now being in the postbox, checks for completeness, signs in AG
if everything is okay and goes on as before. This method may become confusing
if too many agents are involved in the subprocesses and needs coordination,
initiative and especially individual responsibility of all agents. But it provides
a possibility of considering the parallelism aspect of the several subbranches.



pr
ep
ri
nt

The Process Checklist 15

Parallel Execution With this method named parallel execution it is also pos-
sible to consider simultaneity of the different branches like it is the case for
the postbox method but the execution itself takes place in a more structured
and checklist-like way. The parallel execution of parallel splits also requires
a control node similar to that one of the dynamic sequential execution. But
instead of referring to the initial points of the subprocesses in field GT in
the same checklist it is referred to the first points of separate subchecklists,
one for every subprocess. The agent of the control point prints all required
subchecklists, marks the boxes � in GT if handed over together with needed
documents to the respective agents of the first points in the subchecklists, and
confirms every returning subchecklist in GT . So again, variable c = 1. If all
subchecklists have returned, he signs in AG and the execution of the control
node is finished. A finally-go-to-number passes on to the next point of the
main checklist.1 For this execution method of parallel splits only one control
point is needed in the main checklist so the main checklist is probably less
confusing than for the dynamic sequential execution. But as one can imagine,
this method is more expensive, as multiple checklists have to be generated.
Nevertheless, it provides parallelism, i.e., a potentially faster execution of the
checklist, and a good overview over the process in contrast to the postbox
method. We recommend this method if the subbranches are relatively long, so
that the effort of generating more than one checklist is somehow justified.

The mentioned execution methods and the corresponding checklist designs
are somehow suggestions, clearly many other versions are imaginable and of
course different versions can be mixed as we would probably suggest in the
situation of Fig. 8, visualized with BPMN modelling tools. Here, the two long
subprocesses l1 and l2 can be executed with two separate checklists whereas
the short subprocess can be included into the checklist in a (dynamic) sequen-
tial way, i.e., it would be performed before or after the two long subprocesses.

4.2.3 Execution of Inclusive Splits

It is also possible that several subprocesses can be executed in parallel but
at modelling time it is not clear how many of them need to be executed.
Like for exclusive splits, certain conditions may be fulfilled, but there may be
more than one subprocess executed. If this is the case a control point marked
with the word OR and the condition/question in field CO is inlcuded into
the checklist. Possible anwers and a finally-go-to-number are listed in field
GT . So, the resulting control point has elements of control points resulting
from both exclusive and parallel splits. The inclusive split, sometimes also
called multi-choice split, may be included into the checklist like the dynamic
sequential execution of parallel splits, i.e., the go-to-numbers after each answer
in field GT refer to other checklist points (without backward jumps!) or it may

1 Through setting variable c to c = 1 in the control point distributing the subchecklists,
the finally-go-to instruction is visible in field GT . However, this instruction is not needed as
the next point in the main checklist is executed either way if no separate jump instruction
was given.



pr
ep
ri
nt

16 Michaela Baumann et al.

short

long
sub-
pro-
cess
l1

long
sub-
pro-
cess
l2

Fig. 8: Schematic part of a process model with one short and two comparatively long parallel
subprocesses (i.e., consisting of a lot of tasks) that can be executed as a composition of
presented methods.

be included into the ckecklist like the parallel execution method, i.e., the go-
to-numbers in GT refer to subchecklists. Depending on the modelling method
additional control nodes referring back to the inclusive decision control node, as
it is the case for the sequential dynamic method, are needed. All subprocesses
that shall be executed have to be marked in the box � in field GT, at least one
box up to all boxes. For the marked boxes and the corresponding subprocesses
it is proceeded like for parallel splits. Again, variable c is set to c = 1 as the
inclusive decision control point may be processed more than once. Of course,
inclusive splits may also be executed with the postbox method, taking over the
checklist design of the dynamic sequential method, but in contrast to parallel
splits the number of executed subprocesses may vary from process instance
to process instance and the involved agents have to pay even more attention
which activities need to be executed and which not.

Note, that for parallel and inclusive operating points no backward jumps
are possible. Also, when using parallel or inclusive operating points with the
postbox or the multiple-checklist method special attention has to be paid to
the documents so that one document is not needed in two subprocesses at the
same time (if there is no copy available). For the postbox method this does not
necessarily lead to deadlocks, but it increases processing time if agents want
to proceed a task but not all needed documents are available at this point of
time. The postbox method lacks when a receipt system is established as the
checklist and particularly the documents are not handed over but are deposited
more or less anonymously in a box. The checklist designer has to weigh which
execution method is best for each parallel or inclusive split situation.



pr
ep
ri
nt

The Process Checklist 17

IT-based

paper-based

model

BPMN

checklist vector

execution

WfMS

graphical
Process Checklist

Fig. 9: Schematic approach to differentiate paper-based from IT-based process management
systems.

5 Transformation of Process Model Elements through Serialization

This section focuses on generating a checklist out of an existing BPMN pro-
cess model. This means in general, that a multi-path structure is translated
into a sequential structure, which is induced by the Process Checklist through
the checklist point numbers. In many organizations process models for nearly
all organizational activities exist but they are often not supported by execu-
tion tools. In this section we want to show that an execution support tool,
namely the paper-based Process Checklist, can fast and easily be generated
out of existing process models, where BPMN should just be seen as an illustra-
tive example for process model languages the existing process models may be
available in. In the following it is explained, in which way the single elements
of the (BPMN) process model are transferred into either operating points or
control points, i.e., are serialized. Instead of transforming a BPMN process
model directly into a form suitable for a WfMS the model is converted to a
checklist vector which is the basis for the Process Checklist. This transforma-
tion process is indicated in Fig. 9 with the double-lined arrow. The problem of
transforming a model drawn in one business process modelling notation into
another notation has been examined in different papers, e.g., [13] and [17].
However, to the best of the authors’ knowledge, the transformation of process
models to a checklist representation has not been discussed so far, except for
the previously mentioned paper [2] which is the basis for the work at hand.

The conversion steps are virtually performed in a simply algorithmic way,
except for parallel and inclusive gateways. There, the modeller has to decide
which of the execution methods presented in Section 4.2.2 is best in each sit-
uation. But first of all, before specifying the transformation of process models
into checklists, we have to determine how suitable process models should look
like. These specifications are necessary to give concrete mapping rules. For
process models, only basic elements of the Business Process Modeling Nota-
tion are allowed, as [22] shows this is enough in most cases and as the paper
at hand has to be seen as first expanded approach to this topic.

Definition 2 (BPMN Process Model) A process model is defined accord-
ing to the Business Process Model and Notation (BPMN) 2.0 (see e.g. in [23])
allowing for the following basic elements:

– flow objects: activities, events (start, end), gateways (AND, XOR, OR)



pr
ep
ri
nt

18 Michaela Baumann et al.

– sequence flows
– data (input/output) objects
– participants: one pool, possibly separated into different lanes

Further on, it needs to be block-structured (see, e.g., [18]) to guarantee sound-
ness of the model and a correct checklist representation.

As we consider the application of checklists appropriate only within one com-
pany, there should not occur processes with more than one pool. Therefore,
we do not have to take message flows into account. Although it is possible to
map message flows to a Process Checklist like done in one case study shown in
Section 7.2 and Fig. 27, we simply have not specified a standardized represen-
tation of message flows yet. At the moment, message flows can only be mapped
in a generic way through operating points containing instructions like “Wait
for an answer”. Besides, message flows are not part of all process modelling
languages and also not one of the basic elements of BPMN [22].

Non-block-structured process models can be transformed to Process Check-
lists, too, but the specification of a universal algorithm for this is difficult and
case-dependent to get a valid and sound checklist representation which is why
we state this restrictive requirement in Definition 2. Further on, this section
has to be seen as an example of how to transform graphical model elements.
Extensions surpassing the presented mapping instructions can easily be in-
cluded at any time. Which specific forms of activities, events and gateways
can be covered with the transformation rules for these kinds of models ac-
cording to Definition 2 will become apparent when it comes to the concrete
transformation of process models into checklists.

5.1 Transformation of Activities

Activities are transformed straight into operating points po. Their description
are mapped on the field AC whereas all directly incoming data and directly
outgoing data is mapped on the field ID and OD respectively. The participant
of the corresponding lane or hierarchy of lanes, that may be a single person
or a role specification is mapped onto the field AG. Concrete agent names are
filled in during the execution of the checklist. An example of an activity with
documents and participant is given in Fig. 10 and the corresponding checklist
point, an operating point, in Fig. 11.

Figures 10 and 11 show an excerpt from an abstract process model with
labels according to an operating point poi . It is set IDi = (IDO1, IDO2, IDO3)
and ODi = (ODO1, ODO2) where IDOk and ODOl, k = 1, 2, 3, l = 1, 2 are
identifiers for single data objects.

5.2 Transformation of Subprocesses

Occurring subprocesses, marked with a symbol as seen in Fig. 12, may be
taken into a checklist in different ways:



pr
ep
ri
nt

The Process Checklist 19

IDO1
IDO2

IDO3

ACi

i

ODO1
ODO2

A
G

i

Fig. 10: Abstract BPMN representation of an activity with ingoing and outcoming docu-
ments.

i
IDO1

IDO2

IDO3

ACi
ODO1

ODO2

AGi

(name)

(date, signature)

Fig. 11: Representation of the activity of Fig. 10 as an operating point of a checklist.

1. Include the complete subprocess. This leads to a comparatively long but
correct checklist.

2. Generate a new checklist for each subprocess. One control point j has to be
inserted into the original checklist with work instructions for printing and
passing on the new checklist (aj,1 =“print and pass new checklist named
SCL to agent Y , go to:”, gj,1 = 1) which has to be confirmed due to
cj = 1 and with instructions for waiting for this checklist to come back
completely processed. Agent Y is one agent of the role description of the
first point in the subchecklist. Parameter aj,2 is set to “finally go to” and
gj,2 = j + 1.2 Agent y is the agent of the first task of the subprocess. This
is according to the multiple checklist method for parallel splits presented
in Section 4.2.2, Paragraph Parallel Execution. An example for a control
point resulting from this method of transforming subprocesses is shown in
Fig. 13.

A selection between those two methods could be done considering the
length of the subprocess behind the BPMN subprocess task. Short subpro-
cesses may be directly included into the main checklist whereas long subpro-
cesses should be put into a subchecklist to maintain better clarity.

5.3 Transformation of Gateways

As already the designing and execution of splits and joins of a directly gener-
ated checklist imposes several possiblities, also the transformation of BPMN

2 Not needed here when simply regarding the sequence flow, but due to cj = 1 the final-
go-to-instruction is visible.



pr
ep
ri
nt

20 Michaela Baumann et al.

subprocess
�

j

Fig. 12: Symbol for a subprocess in BPMN 2.0.

j
print

subchecklist
SCL;

wait for return

� pass SCL to agent Y ,
go to: 1

(date, sign.)

finally go to: j + 1

AGj

(name)

(date, signature)

Fig. 13: Representation of the subprocess task of Fig. 12 according to the second method
(distributing a subchecklist) as a control point of a checklist.

gateways to checklist elements does so. Most of the methods described in the
following correspond to one execution method presented in Section 4.

5.3.1 Transformation of Exclusive Gateways

An exclusive split gateway (see Fig. 14) has to be transformed into a control
point in which the decision question and the possible answers (aj,1, aj,2 and aj,3
in Fig. 14) with the respective go-to-numbers (gj,1 = j1, gj,2 = j2 and gj,3 = j3
in Fig. 14) are mentioned. Parameter c is set to cj = 0 as the decision has not
to be confirmed in field GTj . The control point is proceeded only once.

For the further transformation, two cases have to be considered: Does the
split gateway induce a backward jump (loop) or are all alternative subbranches
pointing into the future? If there is an exclusive join gateway (Fig. 15) after
the split gateway (the join exists because of the demanded block-structure),
that means two or more branches point into the future, a jump instruction to
the next point in the checklist after the join gateway (j4 in Fig. 15) must be
inserted at the end of each branch in the checklist, see Section 4.2.1. Only the
branch listed last in the checklist does not need this jump instruction as the
point after the exclusive join is performed next, anyway. When arrows coming
out from exclusive split gateways point back into the past, then consecutive
checklist numbers need to be introduced and the checklist point numbers on
the cover sheet have to consider the checklist numbers, too (see Fig. 6). Because
of the block-structure, a backward-jump split gateway has only two outgoing
edges, one pointing forward and one backward. In this case, the join gateway
before the split gateway does not need to be considered. An exemplary control
point for an exclusive split without a backward jump and one jump instruction
(performed by agent AGj+n which is usually the same as agent AGj+n−1, i.e.,
the agent of the last task in the subbranch) is given in Fig. 16.



pr
ep
ri
nt

The Process Checklist 21

j COj

aj,1
j1

aj,2
j2

aj,3
j3

A
G

j

Fig. 14: Exclusive split gateway without a backward jump.

j4

A
G

j
4
−
1

Fig. 15: Exclusive join gateway (without backward jump) that does not have to exist if the
outgoing branches of the exclusive split gateway end with terminal events.

j XOR
COj

� aj,1 : j1

� aj,2 : j2

� aj,3 : j3

AGj

(name)

(date, signature)

(first subprocess with length n− 1)

j
+
n

XOR end � go to: j4

AGj+n

(name)

(date, signature)

Fig. 16: Representation of the exclusive gateway of Fig. 14 and a jump instruction after the
first subprocess transferring the performer to the task with checklist number j4 after the
join gateway of Fig. 15.

5.3.2 Transformation of Parallel Gateways

The transformation methods of parallel gateways correspond to that ones al-
ready listed in Section 4.2.2 about the execution of parallel splits except for the
one named static sequential transformation which is explained in the follow-
ing. Advantages and disadvantages of the different possibilities were already
mentioned in the previous section. Of course, a mixture of several transforma-
tion methods is possible, too (see, e.g., Fig. 8 and its explanation). Due to the
demanded block-structure there are always pairs of split and join gateways.



pr
ep
ri
nt

22 Michaela Baumann et al.

j

j1

j2

j3

A
G

j

j4

A
G

j
4
−
1

Fig. 17: Parallel split gateway pcj and parallel join gateway pcj4−1.

j AND

� aj,1 : j1
(date, sign.)� aj,2 : j2
(date, sign.)� aj,3 : j3
(date, sign.)

finally go to: j4

AGj

(name)

(date, signature)

Fig. 18: Checklist representation of the parallel split in the dynamic sequential way without
the corresponding jump instructions that refer to agent AGj of point No. j after every
subbranch.

Static Sequential Transformation This type of transforming a parallel gateway
takes the several branches of the process model that are between the split
and join gateway and brings them into an arbitrary order or an order that
seems to be reasonable at transformation time. The resulting checklist part
is purely sequential. The gateway itself is not mapped to the checklist. This
transformation method keeps the checklist very simple, but execution time
may increase as flexibility imposed by parallelism is completely ignored.

Dynamic Sequential and Postbox Transformation This transformation results
in a checklist as described in Section 4.2.2, Paragraphs Dynamic Sequential
Execution and Postbox Method Execution. The parallel split gateway will be
transformed into a control point pcj . An exemplary transformation of a parallel
split as shown in Fig. 17 into a control point is demonstrated in Fig. 18.
The parallel subbranches of the process model have to be written down in a
sequential way in the checklist. At the end of each branch a jump to pcj , realized
with a simple control point like in Fig. 16 except that the go-to-instruction
points back to point j instead of j4, is necessary and in pcj the number of
the point following the respective parallel join, in Fig. 17 that one that gets
number j4 in the checklist, has to be noted (the finally-go-to part in Fig. 18).
The parameter specifications are in detail: ANj =“”, COj = “AND”, cj = 1,
aj,1, . . . , aj,3 =“go to”, gj,1 = j1, gj,2 = j2, gj,3 = j3, aj,4 =“Finally go to”,
gj,4 = j4. For the jump instructions (three are needed in the example of Fig.
17 as there are three branches) the parameters are set as follows: ANjk−1 =“”,
COjk−1 =“AND end”, cjk−1 = 0, ajk−1,1 =“go to”, gjk−1,1 = j, k = 2, 3, 4.

Parallel Transformation For each parallel subbranch a checklist is generated
and distributed by the agent of the split gateway (AGj in Fig. 17) to the agents



pr
ep
ri
nt

The Process Checklist 23

of the first process elements of the subbranches. As introduced in Section 4.2.2,
Paragraph Parallel Execution, it is modelled as one control node pcj . If the
gateway splits into k branches, then aj,k+1 =“Finally go to” and gj,k+1 =
j + 1. If the name of the current checklist is “Checklist”, then COj =“AND –
print checklists “Checklist sub1”,. . . ,“Checklist subk”, if the names of the sub-
checklists are “Checklist sub1”,. . . ,“Checklist subk”. Of course aj,1, . . . , aj,k
have to reference these sub-checklists, gj,1, . . . , gj,k = 1 (i.e., the first points
of the subchecklists) and cj = 1 which means that signatures for all returning
subchecklists are needed (see Section 4.2.2 and Section 5.2).

5.3.3 Transformation of Inclusive Gateways

The transformation of inclusive gateways can be done similar to the trans-
formation of parallel gateways. More precisely, there are the possibilities to
use the dynamic sequential or postbox transformation or the parallel transfor-
mation (see also the several execution possibilities in Section 4.2.3). The only
difference is, that in pcj we have COj and aj,1, . . . , aj,k like in the exclusive
gateway transformation, i.e., the condition/question and the answers have to
be taken over from the process model.

5.4 Transformation of Events

The transformation of BPMN events is dealt with very briefly in this paper
as we suggest ad-hoc transformations of events involving good capabilities of
the checklist designer. Like the multitude of activity types, there are a lot
of different event types. Providing transformation rules for all of these types
would not be expedient in our opinion as the work at hand is supposed to give
a basic overview of Process Checklists, their structure, usage, advantages and
disadvantages.

5.4.1 Direct Transformation of Events

Some events, like signal, escalation, or compensation events, or milestones
(untyped catching intermediate events) can be transformed like activities, that
means to operating points poi , where ACi is used for transmitting some message
(e.g., an escalation instruction) or ACi = “” (e.g., for letting a supervisor know
that the process has reached a certain stage).

5.4.2 Indirect Transformation of Events

Certain events, like time, condition, and message events, represent some re-
quirements for the next point in the checklist and can be modelled this way.
An example for a transformed catching timer event is given in Fig. 19. The
requirement is written down in AC or AN of the following operating or control
point.



pr
ep
ri
nt

24 Michaela Baumann et al.

i IDOi

Wait until the
15th of the

month, then:
ACi

ODOi

AGi

(name)

(date, signature)

Fig. 19: Indirect representation of an intermediate catching timer event in the event-following
activity number i.

5.4.3 Ignored Events

Other events, like the start event, can be ignored, that means they have no
respresentation in the checklist, because they won’t influence the execution.
Usually, the processing of the checklist is started by the process owner and
ended by returning the checklist to the process owner. So, start and end event
are executed automatically through printing the checklist and returning it
when finished.

5.5 Transformation and Execution of Infrequent, Mutually Exclusive
Activities or Branches

As a paper-based checklist needs direct human treating during its execution
(see Section 4), it can be handled very flexible by the agents. This does not
mean, that the agents can do what they want during the execution, but they
have a certain freedom which is not unrestrictedly given when processing with
the aid of a WfMS. Consider a clinical workflow where a diagnosis (outgoing
data) has to be made in one step and, according to this diagnosis, the treatment
has to be executed in the following step (diagnosis as incoming data). Imple-
menting all different kinds of diagnosis-depending treatments would cause an
exclusive gateway with nearly innumerable branches or subprocesses, not to
mention that all these eventualities have to be considered at modelling time
(cf. [8]). What if a certain treatment has been forgotten because of its rareness,
for example?

When facing this problem in the context of checklists, the following solution
is conceivable: List only the most frequently made diagnoses in the correspond-
ing XOR-control point ((aj,1, gj,1), . . . , (aj,l, gj,l)) and add one (aj,l+1, gj,l+1)
with aj,l+1 = other and gj,l+1 referring to an empty operating point where
the concrete diagnosis and all incoming and outgoing data can be entered at
running time by the doctor in charge. These empty operating points offer a
way to reduce complexity of the process model and to prevent the process to
get stuck during its execution. But as they require good knowledge about the
process they can only be filled in by agents with the corresponding expertise
and should therefore not be overused.

It should be mentioned as indicated above that also in traditional WfMSs
flexibility can be achieved. In literature, when talking about flexibility it is
distiguished between different types of flexibility, like flexibility by underspec-



pr
ep
ri
nt

The Process Checklist 25

ification, flexibility by change, or flexibility by deviation (see [20]). However,
as stated in [24], WfMSs usually do not support all of the different types of
flexibility. When considering checklists the required flexibility can be achieved
in a fast and easy way. A more detailed flexibility discussion of checklists is
given in Section 7.1.

6 Implementation

In the following section we describe the implementation of the Process Check-
list approach. Therefore, we give insights in the underlying meta-model as well
as the model transformation procedures. Furthermore, we describe a XML-
based serialization method of checklists.

6.1 The Checklist Meta-Model

The checklist meta-model as a UML class diagram is shown in Fig. 20 where
all elements introduced in Definition 1 can be found again. The meta-model
describes the general representation structure of checklists and serves as an
implementation template. When a new checklist is created manually or a
BPMN model is transformed to a checklist, a new instance of the meta-model
is created. A checklist consists of several ChecklistElements that can either
be OperatingPoints or ControlPoints. An OperatingPoint can have several
ingoing as well as outgoing DataObjects and is performed by exactly one
ResponsibleRole. A ControlPoint has several GoTo-instructions and has also
exactly one ResponsibleRole. A GoTo-instruction refers to a ChecklistElement
again. The confirmation attribute of ControlPoint corresponds to variable c in
the definition of checklist vectors (Definition 1) that specifies if a confirmation
line for signing is added in field GT behind the go-to-numbers of control points
(e.g., for parallel and inclusive splits confirmation lines are added).

6.2 Model Transformation and Checklist Generation

In order to provide a simple transformation possibility the described trans-
formation procedures from BPMN to a Process Checklist representation have
been implemented in a C-Sharp application using the Microsoft .NET frame-
work. In this way, Process Checklists can be generated from existing BPMN
models in a few seconds.

In a first step, the user selects the BPMN-XML file which should be trans-
formed from a file dialog. Subsequently, the selected file is parsed by the ap-
plication. As a result, an instantiation of the (simplyfied) BPMN meta-model
is generated. Note, that for this approach we are only considering the basic
BPMN elements as described in Section 5, especially in Definition 2. After-
wards, the user has to choose the transformation method of possibly occur-
ring parallel gateways, i.e., whether a static sequential, a dynamic sequential



pr
ep
ri
nt

26 Michaela Baumann et al.

-number : int

ChecklistElement

-activity : string

OperatingPoint

-annotation : string
-condition : string
-confirmation : boolean

ControlPoint

-name : string

DataObject

-name : string

ResponsibleRole

-answer : string

GoTo

0..*

1 1

*0..*

0..1

goto
outgoing ingoing

Fig. 20: Meta-model of the Process Checklist.

or a parallel transformation method is preferred. The provided information
is finally used to transform the BPMN model instance to an instance of the
checklist meta-model as shown in Fig. 20.

The different checklist model elements can finally be read and visualized.
Of course, there is no fixed checklist visualization. However, the visualization
method presented in the work at hand is the result of thorough discussions
with process participants and modelling experts.

In our implementation, we are generating graphical checklists by means of
LaTeX files using the tikz -package to draw diagrams. Therefore, the checklist
model needs to be transformed to LaTeX-code. We defined two new LaTeX
commands CP for control points and OP for operating points that are called
with different parameters. Shapes, fonts, and colors are defined within these
command definitions and can therefore be adjusted to the users’ needs. A
operating point perform exam correction with the running number 5 that con-
sumes a data object exam unmarked, produces a data object examed marked
and should be performed by the person (role) auditor is presented by the
following LaTeX-code:

\OP{5}{exam unmarked}{perform exam correction}{exam marked}{auditor}{1}

The last entry “1” is for adjusting the graphical representation. Based
on LaTeX the graphical checklist generation is independent from the system
environment. Furthermore, representational details can be adjusted directly
by users and independent from a specific implementation.



pr
ep
ri
nt

The Process Checklist 27

6.3 Checklist Serialization

In order to be able to adequatly save and share generated checklists, addition-
ally, a possibility to serialize checklists to XML3 is provided. The following
listing shows an excerpt of the generated XML code of the example checklist
vector of Fig. 5.

<checklist process=’Subscribing for an exam’>

...

<controlpoint no=’2’ annotation=’’ condition=’Exam type?’

confirmation=’0’>

<gotolist>

<goto answer=’written’ gotoNo=’3’ />

<goto answer=’oral’ gotoNo=’9’ />

</gotolist>

<role name=’Student’ />

</controlpoint>

...

<operatingpoint no=’5’ activity=’Perform exam correction’>

<ingoing>

<DataObject name=’Exam unmarked’ />

</ingoing>

<outgoing>

<DataObject name=’Exam marked’ />

</outgoing>

<role name=’Auditor’ />

</operatingpoint>

...

</checklist>

Out of this data stream a checklist based on the meta-model of Fig. 20 can
be reconstructed independently of the underlying architecture.

7 Evaluation and Analysis

In this section, two case studies, one in the academic field and one within a
bank, are presented. In these case studies, Process Checklists are examined
with regard to several criteria. One of them is flexibility. As there exist sev-
eral interpretations of flexibility, we provide a short discussion about different
flexibility types in Section 7.1. The other criteria, namely parallelism, length,
comprehensibility, orientation, and reliability, are self-descriptive. Sections 7.2
and 7.3 represent the case studies.

For evaluating the desired advantages of paper-based checklists as well as
showing potentials for improvement, the two case studies were carried out
in different areas of application. The first evaluation was performed in the
academic domain, the second one in the financial business area. In the first
case study we primarily want to verify the power, i.e., the practicability of
the model requirements, as well as the comprehensibility by the user. The

3 Complete example checklist XML-files as well as a XML Schema definition can be found
at the project website. See checklists.kppq.de for more information.



pr
ep
ri
nt

28 Michaela Baumann et al.

second case study again addresses the user’s comprehensibility and addition-
ally the acceptance of the user which is an important factor when introducing
new procedures in companies. Also in the second evaluation, we want to get
information whether Process Checklists are needed at all.

The first evaluation is primarily a comparison of process execution through
checklists and through BPMN models and a comparison of the different trans-
formation methods shown in Section 5. Basically, there are differnt forms of
deploying graphical BPMN models. A very simple form is to publish BPMN
models – for example on the intranet of a company. Process participants now
are obliged to take these models into account when working on processes. Al-
though this enactment is very cheap, it lacks liability. Another form of process
execution is to deploy a Process Management System (or WfMS). Although,
the execution of processes now becomes obligatory, the implementation of a
Process Management is very costly. Small and medium companies cannot and
will not afford this form of enactment. Nevertheless, a Process Checklist is a
good compromise between these two ways of enactment. A Process Checklist
is cheap and it ensures a good degree of liability. In the university where we
carried out the first case study, a WfMS ws not available but only BPMN
models. And also for the second case study, the basis for the evaluation check-
list is a graphical process model (modelled in an internal process language)
which was the only process guidance until then.

The former discussion of pros and cons for process enactment alternatives
is the reason why our two project partners chose to use Process Checklists for
process enactment.

7.1 Flexibility of Checklists

In [26], four types of flexibility are proposed: flexibility by design, flexibility
by underspecification, flexibility by change, and flexibility by deviation. Since
flexibility is a very important aspect of the deployment of Process Checklists,
the latter are evaluated according to this aspect.

“Flexibility by design is the ability to incorporate alternative execution
paths within a process model at design time allowing the selection of the most
appropriate execution path to be made at runtime for each process instance
[26].” This type of flexibility is achieved by Process Checklists through control
points and the different possibilities for designing them as exclusive, inclusive
and parallel splits. As Process Checklists can be generated from existing pro-
cess models, e.g., from BPMN models as described in Section 5, they inherit
more or less the same degree of flexibility by design as the original process
models have.

“Flexibility by deviation is the ability for a process instance to deviate at
runtime from the execution path prescribed by the original process without
altering its process model. The deviation can only encompass changes to the



pr
ep
ri
nt

The Process Checklist 29

execution sequence of tasks in the process for a specific process instance, it
does not allow for changes in the process model or the tasks that it comprises
[26].” This type of flexibility is fast and easily achieved simply by changing
the checklist, e.g., inserting an additional task or deleting an existing one, or
changing the order of two tasks by swapping the point numbers, by hand.
These changes only apply for one instance, i.e., for one printed checklist.

“Flexibility by underspecification is the ability to execute an incomplete
process model at run-time, i.e., one which does not contain sufficient informa-
tion to allow it to be executed to completion. Note that this type of flexibility
does not require the model to be changed at run-time, instead the model
needs to be completed by providing a concrete realisation for the undefined
parts [26].” In Process Checklists, empty control points can be inserted as
standard at the desired places in the model. The concrete realisation is then
done by the corresponding agent who fills in all the necessary information like
task description and utilized data at run-time. See Section 5.5 for an example
of empty checklist points.

“Flexibility by change is the ability to modify a process model at runtime
such that one or all of the currently executing process instances are migrated
to a new process model. Unlike the previously mentioned flexibility types the
model constructed at design time is modified and one or more instances need to
be transferred from the old to the new model [26].” This type of flexibility is the
most challenging for Process Checklists. Changing a checklist itself is about
as expensive as changing any other process model when requirements like
validity, correctness and soundness are considered. Adjusting point numbers
and especially go-to-numbers is, however, more complex than shifting arrows
in graphical process models. But transferring the model changes to running
process instances is difficult in that way that it could take some time to locate
the checklist at all, even if a (paper-based) receipt system is applied. This is
a natural consequence of the paper-based approach that can hardly be fixed
without slowing down the processing time of each checklist pass or introducing
electronical receipts. Within one institution, the change of a Process Checklist
could also be communicated to each employee so that all employees working on
a changed checklist can print the new version and continue with the new one
as described in Section 4.2.1 concerning backward jumps, keeping the old one
for reconstruction purposes. This approach, however, needs concrete mapping
instructions like “point number 15 of the old version refers to point number
17 of the new checklist version” for all checklist points so that every employee
knows where to proceed with the updated checklist.

In summary, we come to the conclusion that checklists meet three of the
four flexbility types proposed in [26]. Flexibility by design is a type that is
available in virtually all process modelling languages. Admittedly, this flexi-
bility type is easier to realize for graphical process modelling languages than for
checklists. Flexibility by deviation and flexibility by underspecification are fea-
sible quite simply as changing single process instances just means to “rewrite”



pr
ep
ri
nt

30 Michaela Baumann et al.

the checklist with a pen. Flexibility by change, however, is a problem and diffi-
cult to achieve. This is, regarding only the flexibility criterion, why we suggest
to use Process Checklists primarily in those fields where modifications of par-
ticular process executions are often necessary without permanently changing
the underlying standard process, i.e., the checklist template. They are also
suitable for situations where the explicit modelling of all alternatives at one de-
cision point is virtually infeasible. They are not recommended in fields where,
for example, the processes strongly depend on normative or legal regulations
and these regulations are changed quite often so that the underlying process
has to be changed, too. In these cases, a good flexibility by change would be
necessary. An example for such processes would be management standards for
quality management or environmental standards. To get feedback about com-
prehensibility, acceptance and necessity, the two case studies were carried out
and are presented in the remainder of this section.

7.2 Academic Domain Case Study

For evaluating the differences between checklists and BPMN models, we dis-
tinguish between objective and subjective criteria. The objective criteria are
flexibility, parallelism, and length. Which characteristics of the checklists and
the BPMN models are used to determine these criteria is stated in Section
7.2.1. The subjective criteria, comprehensibility, orientation, and reliability,
had to be derived from interviews and surveys and an ensuing statistical eval-
uation. Two different processes were modeled to get more reliable results.

We modeled the example “subscribing for an exam” as a graphical BPMN
process (see Fig. 26) and as a Process Checklist. Parts of the checklist are rep-
resented in Fig. 1. The corresponding checklist vector as basis for the graphical
checklist is presented in Fig. 5. The first process of the academic domain case
study included the student, the chair’s secretariat, the auditor and the assessor
as involved agents.

For the second process, applying for a business trip, again a graphical
BPMN process was modelled (see Fig. 27). Additionally, two different check-
lists to examine the differences presented in Section 5.3.2 concerning the trans-
formation of parallel gateways were generated. Involved actors are the head of
chair, the chair’s secretariat and the applicant. The two different transforma-
tions of the parallel gateway appearing in the process model were the static
and the dynamic sequential transformation. To do a parallel transformation
was not suitable in this context, as the parallel subprocesses were too short to
get any substantial advantages of this form. To get results for the subjective
criteria every execution support tool (two BPMN models and three checklists)
was evaluated by 21 test persons which means a total of 105 evaluations. Every
test person applied the two or three support tools for both processes.



pr
ep
ri
nt

The Process Checklist 31

Subscribe for exam Apply for business trip

BPMN Checklist BPMN ShortChecklist LongChecklist

Flexibility low high low high high

Parallelism NA NA high low medium

Length 16 15 20 15 18

Table 1: Values for the objective evaluation criteria for the different support tools; NA =
not available.

7.2.1 Objective Criteria

First of all, the conditions for the three objective criteria had to be set up.
For the criterion of flexibility three possible values are available: A low flexi-
bility value means that during the execution of a process the tasks (including
the functional, data, operational, and organizational perspective) and their
order (the control-flow perspective) as prescribed by the support tool can’t
be changed. A medium value means that the order of activities can be cus-
tomized or that certain elements (e.g., a document or a process step) can be
deleted. This refers to a certain degree of flexibility by deviation (see Section
7.1). A high flexibility value is assigned, if nearly everything can be adjusted
during execution (particularly full flexibility by deviation and flexibility by
underspecification, see Section 7.1). For example, if the chair’s secretary is not
accessible this agent can be changed to another person in all activities where
necessary for this single process instance. Flexibility by design is available both
in the checklist approach and the BPMN process model, whereas flexibility by
change is problematic in both cases.

The values for the parallelism criterion are distributed in the following
manner: A low value is allocated if the execution order is fully determined
before process initialization and is therefore only sequential. A medium value
means that the execution order is sequential but determinable at run time to
make use of agent availability as stated in [6]. Parallelism is high if real par-
allelism is possible, i.e., a fully independent execution of several subprocesses.
For the “Subscribing for an exam” process model no parallelism values could
be distributed as the are no parallel gateways in the BPMN process model.

Length of the process execution support tools is just the number of all flow
objects in the BPMN model (activities, events, gateways) or the number of
operating and control points in the checklists. This value depends strongly on
the underlying process and shall only give an impression of the compactness or
complexity of the different tools and the several transformation methods. Only
tools with the same underlying process are comparable with each other. Table
1 shows the results of the objective evaluation criteria for the two processes
“Subscribing for an exam” and “Applying for a business trip”.



pr
ep
ri
nt

32 Michaela Baumann et al.

7.2.2 Subjective Criteria

As mentioned in the introduction of Section 7.2, the subjective evaluation
criteria are comprehensibility, orientation and reliability. The test persons –
students, PhD students, employees, and professors from different chairs and
faculties – had to go through the two processes with the help of the different
process execution tools: one BPMN model and one checklist for the first process
and one BPMN model and two checklists for the second process. About the
half of them was not familiar with process models. Afterwards, they rated
their impressions of the three subjective criteria by classifying with a Likert
scale of five classes. The generated boxplots4 allow a good interpretation of
the results for the three criteria.

BPMN Checklist

Subscribe for exam

lo
w

hi
gh

BPMN ShortChecklist LongChecklist

Apply for business trip

lo
w

hi
gh

Comprehensibility

Fig. 21: Boxplot evaluation of the comprehensibility for the two processes “Subscribe for
exam” (BPMN model and checklist) and “Apply for business trip” (BPMN model, a short
checklist, and a long checklist).

In Fig. 21 the boxplots for comprehensibility of the different process exe-
cution tools for both processes are shown. A high value reflects the opinion of
the test person that he completely understands the process and the handling
of the execution tool, in contrast to a low value where the person neither un-
derstands the process nor the tool’s handling. As it can be seen in Fig. 21,
the scattering for both BPMN models is greater than that of the checklists.
This could occur from the fact, that some persons – probably those familiar
with process models – easily understand the BPMN notation, but others do
not, and that the checklists are understood quite well among all test persons.
Furthermore, the answers’ median for the checklists is higher than that of
the corresponding BPMN-models. Nevertheless, the shorter but less flexible
checklist for the business trip process seems easier to be understood than the
longer but more flexible one.

4 For more information about boxplots see [10], Section 2.2, and [29].



pr
ep
ri
nt

The Process Checklist 33

BPMN Checklist

Subscribe for exam

lo
w

hi
gh

BPMN ShortChecklist LongChecklist

Apply for business trip

lo
w

hi
gh

Orientation

Fig. 22: Boxplot evaluation of the orientation for the two processes “Subscribe for exam”
(BPMN model and checklist) and “Apply for business trip” (BPMN model, a short checklist
and a long checklist).

The second subjective evaluation criterion is orientation, which asks for
knowing the own position during the process execution and the steps that have
to be performed next. The possible answers reached from “When I receive the
support tool I know where I am in the process and what I have to do next”
to “When I receive the support tool I neither know where I am in the process
nor what I have to do next”. Again, a set of boxplots for the two processes
and the two, respectively three, execution support tools was generated and is
shown in Fig. 22.

The results for the orientation aspect are similar to that of comprehensi-
bility: Scattering for the BPMN support tools is higher than for the checklists
and values for the median are higher, which means better, for the checklists
than for the BPMN model. As it can be seen, the short checklist for the busi-
ness trip process has a better orientation value than the long checklist. This
could be caused by the fact, that the short checklist provides a slightly bet-
ter overview over the process and clearer instructions for the tasks. There are
fewer control points and thus more sequential task chains which allow for eas-
ier orientation. Moreover, one conspicuity is that the difference of the BPMN
support tools and the checklists is greater for the orientation aspect than for
the first aspect, comprehensibility.

In Fig. 23, boxplots for the third subjective evaluation criterion, reliability,
are presented. A high level of reliability means that the course of the process
execution so far is traceable and it is clear, who has carried out which tasks.
A low level simply means the opposite, i.e., the execution is not traceable
and it is not clear, who has carried out which tasks. It sticks out that the
median values for the BPMN support tool are quite low and for the checklists
have even increased compared to the other evaluation criteria. There is hardly
any spread in the responses concerning the checklists which means that they
provide a high reliability for nearly all test persons. Responses concerning the



pr
ep
ri
nt

34 Michaela Baumann et al.

BPMN Checklist

Subscribe for exam

lo
w

hi
gh

●●●●

BPMN ShortChecklist LongChecklist

Apply for business trip

lo
w

hi
gh

Reliability

Fig. 23: Boxplot evaluation of the reliability for the two processes “Subscribe for exam”
(BPMN model and checklist) and “Apply for business trip” (BPMN model, a short checklist,
and a long checklist).

BPMN model again vary very much, but at a rather low level. So, even for
the people who understood the BPMN evaluation tool quite well, it does not
seem to provide an accordingly good value of reliability during the execution.

Concerning the expectations for the first case study it can be said that
practicability is attained simply by the fact that we were able to generate
checklists out of BPMN models and that the processes were correctly per-
formed. Also, comprehensibility was rated good or very good by the majority
of the test persons and the correct performances of the processes support these
statements.

Additionally, we want to remark that even if graphical process models
are sometimes the only available process support tools in (mostly small and
middle-sized) companies, they are not intended for that purpose. But as Pro-
cess Checklists address the same target group, the BPMN models in the first
case study were used as a reference. And especially for that companies that
already have graphically modelled processes the enactment of Process Check-
lists is inexpensive and could lead to evaluation improvements like they are
shown above.

7.3 Bank Case Study

The second case study was performed together with Sparkasse Bamberg, a
German savings bank with 864 employees and a balance sheet total of EUR
3.5189 billion (both in 2014) [28]. One process about how to handle overdraft
facility was chosen for the evaluation. This process is a very common one, i.e.,
we achieve a statistically sufficient number of process passes in a relatively
short period of time. In a first step, the process model was transferred from an
internally used modelling language to a BPMN model to provide comprehen-



pr
ep
ri
nt

The Process Checklist 35

Determine
credit

request
Require-

ments
satisfied?

Process abort

no

Register
credit

yes

Free
active line
available?

Sign
documentsyes

Sign
special

documents

no

Documents
complete?

yes
Record

documents

Complete
documents

no

Documents
complete and
deadline met?

Process
abort

no yes

Fig. 24: BPMN model of an overdraft facility process in a shortened version without data
and human resources.

sion of the process without having to introduce another modelling language
and to make use of the transformation rules stated in Section 5 for generat-
ing the checklist. The BPMN model has been validated by several employees
including the future CEO of the bank. A shortened, translated version of the
overdraft facility process is shown in Fig. 24.

Afterwards, the BPMN process model was transformed to a Process Check-
list according to the rules from Section 5. This serialization was done in merely
about one hour. The checklist bundle, i.e., the Process Checklist and the cover
sheet, was then handed over to the employees of the savings bank to run
the process with help of the Process Checklist instead of processing the over-
draft facility with the instructions provided by the internally available process
model. A written manual with 2.5 pages about how to use the checklist was
the only instruction the 31 employees that took part in the case study re-
ceived. Like in the case study in the academic domain, the employees filled in
an evaluation sheet afterwards. Again, a Likert-scale with five classes was used
to get their opinion about comprehensibility, orientation, and reliability of the
checklist. Furthermore, a fourth criterion we asked was their comprehensibility
of the process so that participants not understanding the process itself could
be taken out from the case study to prevent a bias of the results. Actually, this
was not the case in our evaluation. The results of the evaluation are shown in
Fig. 25 and summarized in the following.

At least 75% of the test persons claimed that they understand both the
process and the checklist, i.e., its structure and its handling, quite well (the two
higher classes of the Likert-scale). Note that the checklist was explained to the
test persons only via a written instruction manual. Also, only a few hours after
receiving the checklist and the manual the employees went through the process
for the first time. No employee did not understand the process or the checklist
(no responses in the two lowest classes). The results for the orientation criterion
are slightly better, as at least 50% of the test persons even specified a very good



pr
ep
ri
nt

36 Michaela Baumann et al.

ProcessComprehensibility ChecklistComprehensibility Orientation Reliability

Overcraft Facility Process

lo
w

hi
gh

Business Domain Case Study Results

Fig. 25: Results of the financial domain case study.

(high) value for orientation and 75% a good or very good value. However, the
assessment also shows some outliers for this criterion. The reliability criterion
was rated quite well with a few exceptions. At leat 50% assigned the highest
value for reliability and at least 75% assigned at least the second highest value.

These results of the subjective evaluation criteria basically seem to affirm
our approach but the most valuable outcomes are the (positive and negative)
critics and the proposals for improvement of the Process Checklist approach.
Basically, the critics and proposals could be divided into two categories: state-
ments concerning the checklist and statements concerning the overcraft facil-
ity process. We show no further interest in the latter mentioned statements as
they are process specific and do not relate to the checklist in the first place.
The comments concerning the checklist can be divided into positive critics,
negative critics and improvement proposals and are classified into several cri-
teria. Issues declared as frequently are mentioned three or more times in the
evaluation.

Positive Critics A frequent positive review is that everybody understands the
Process Checklist or that it is easy to understand the checklist. Another pos-
itive review mentioned is that traceability and transparency is rather high.
Further more, no process step may be forgotten. Apparently, this last point
also holds for any other WfMS. Also, traceability is an issue supported by
WfMSs but Process Checklists provide easy access to this issue, particularly
for the involved agents at every point in the checklist. The understanding of
the checklist also strongly depends on the checklist design, especially on a
clear arrangement of the checklist elements. Even if frequently mentioned as
a positive feature, the checklist design could be improved to provide better
comprehensibility to all employees.



pr
ep
ri
nt

The Process Checklist 37

Negative Critics Two frequently mentioned negative reviews are the following:
the processing of a Process Checklist is work and time intensive and the cover
sheet is redundant. For the first comment, some proposals for improvement
are given in the following paragraph. Concerning the redundancy of the cover
sheet a brief discussion can be made. First of all, the cover sheet is redundant
in that way, that a checklist point has to be signed in field AG and that its
number has to be written on the cover sheet, so the completion of the task is
indicated twice. The note on the cover sheet is, however, needed in that cases,
when the checklist points are not proceeded sequentially, i.e., if jumps (forward
or backward) are performed and so the point to be performed next is either not
recognizable or only recognizable with a certain amount of reproducing efforts.
In the following improvements section a proposal for optimizing the usage of
the cover sheet is listed. Other characteristics negatively mentioned are that
the checklist is too complicated, especially the control points (gateways) are too
confusing, and that the checklist is too long. We want to mention here that the
length of the checklist strongly depends on the length of the underlying process.
But also for this criticism a possible remedy is presented in the improvements
section.

Improvement proposals The most frequent proposal was to use the Process
Checklist only for long (complex) or infrequently executed processes. For simple
and/or often executed processes the checklist use offers no additional value but
extends the processing time. We would add another requirement for situations
where Process Checklist are not necessarily needed: The need for traceability
is either not essential or can be achieved through other ways, like the archiv-
ing of documents produced through the process anyway. Another improvement
proposal relates to the extention of the processing time. The time requirement
could be reduced by not demanding complete signings with name, personnel
number and so on, but to request only a short handwritten mark like initial
letters (plus the personnel number). Adding the current date could be achieved
by using a stamp. Concerning the usage of the cover sheet it would be helpful
to list only the next point number on the cover sheet if the checklist is handed
over to another agent. If two or more points are consecutively executed by the
same agent then the entry on the cover sheet is not needed. For reducing the
length and therefore the time required for signing the points it could be useful,
if possible, to summarize several small tasks that would have resulted in sev-
eral checklist points, into one checklist point if the assigned agent or role is the
same and if the contents fit. When doing so, the change of checklist elements
could become a little costlier because the composed elements have to be sep-
arated first before applying the changes (and summarized afterwards again).
For generating the Process Checklist for the financial domain evaluation we
simply used the same task allocation as given through the underlying (internal)
graphical process model that showed a relatively fine granularity. Concerning
the design of the Process Checklist it was proposed to highlight the middle
field of each checklist point (the activity field AC of operatin points and the
condition field CO of control points) and to clearly identify operating and



pr
ep
ri
nt

38 Michaela Baumann et al.

control points through signal words like “task” and “decision”. Also, another
remark given by the test persons was to process the checklist electronically.
This proposal is justified in times of mobile devices but we explicitely wanted
to examine and test paper-based Process Checklists. However, the structure
of Process Checklists as introduced in Section 2 may likely be transferred to
electronic process execution support tools. This would be an issue for future
work.

To sum up, we can say that comprehensibility was rated well by over 3/4
of the test persons which is a very high percentage after one test run. Further-
more, the comments show a basic acceptance and a certain necessity for check-
lists by most of the employees. However, the improvement proposals should
be considered in any case and incorporated as far as possible to further in-
crease the acceptance. As the improvement proposals show the necessity for
checklists strongly depends on the types of processes. Complex or infrequently
performed processes require execution support.

At the end of this paper, a short conclusion shall be given, highlighting
also the restrictions of the proposed Process Checklist approach, as well as
further issues for future work that could be spent on this topic.

8 Conclusion, Limitations, and Future Work

In order to diminish the dependency from IT-based process management sys-
tems, the work at hand proposed an alternative way of supporting workflow
execution that is suitable for human-driven processes. We introduced the Pro-
cess Checklist representation of process models where processes are described
as a paper-based step-by-step instruction handbook. The Process Checklist
is handed over during process execution from process participant to process
participant. Successful task accomplishments are recorded through signatures
of corresponding process participants.

In this way, the Process Checklist also supports the key benefits of tra-
ditional WfMSs. The checklist is handed over to responsible agents (task co-
ordination), process tasks are serialized and marked by a unique identifier
(step-by-step guidance), and the checklist itself as well as the corresponding
signatures ensure traceable process execution. The work at hand provides the
general structure of Process Checklists as well as a transformation algorithm
of basic BPMN process model elements to Process Checklists. Furthermore,
we described implementation details by giving a concrete checklist meta-model
as well as a XML-based serialization possibility. The checklist approach has
been evaluated in two real-life case studies, one in the academic domain and
one in the financial business domain. The results showed that Process Check-
lists serve as a feasible process execution support and are highly accepted by
process participants.

In contrast to the advantages over IT-based process management systems
as mentioned before, paper-based checklists can also have disadvantages com-



pr
ep
ri
nt

The Process Checklist 39

pared to traditional systems. Checklists represent a single point of access, so
support for distributed agents may be difficult. If this is the case, one has
to ask if using a paper-based checklist is the right thing for this specific ap-
plication, as we recommend using checklists for example in administrational
environments. Moreover, one disadvantage may occur due to human failure
as the Process Checklist, i.e, one process instance, simply may get lost. Re-
covering from such an incident can be accomplished with the help of receipts
but this task may be laborious. However, the problem of losing documents
is not only a topic concerning paper-based checklists but is relevant for all
institutions dealing with documents and files, e.g., in accounting.

In general, it is possible to transform a procedural process model to a
Process Checklist based on the proposed algorithm. However, due to the se-
rialization of the process, the checklist representation has of course problems
when dealing with parallelism. Here, process modelers have to choose a suitable
transformation method as described in Section 5. The presented case studies
focused on a first evaluation in the fields of university processes and banking
processes. Here, we got useful experiences regarding the acceptance and coop-
eration of participating agents as well as valuable suggestions for improving
methodology, design and representation.

A further extension of the checklist approach, as it was also proposed by
test persons in the case studies, would be to investigate if it is possible to use
the transformation rules from BPMN process models to checklists as base for a
digital ToDo application, e.g., for mobile devices to achieve better navigation
through the process instance than the paper-based checklist provides. In doing
so, the problem of documents and files that need to be passed – now detached
from the checklist – will have to be addressed again. Furthermore, we will
focus the transformation of loosely-specified process models like declarative
process models defined in languages like, e.g., Declare [24] or DPIL [32], that
already contain a high degree of flexible process execution but need, due to
this extreme flexibility, appropriate navigation and support tools.

Acknowledgements The authors gratefully acknowledge the superb collaboration with
Sparkasse Bamberg. Especially, the authors wish to thank Mr. Stephan Kirchner, board
member and future CEO of Sparkasse Bamberg.
The presented work is developed and used in the project “Kompetenzzentrum für praktisches
Prozess- und Qualitätsmanagement”, which is funded by “Europäischer Fonds für regionale
Entwicklung (EFRE)”.
The work of Michael H. Baumann is supported by a scholarship of “Hanns-Seidel-Stiftung
e.V. (HSS)” which is funded by “Bundesministerium für Bildung und Forschung (BMBF)”.

References

1. van der Aalst, W.M., Weske, M., Grnbauer, D.: Case handling: a new paradigm for
business process support. Data & Knowledge Engineering 53(2), 129 – 162 (2005)

2. Baumann, M., Baumann, M.H., Schönig, S., Jablonski, S.: Enhancing feasibility of
human-driven processes by transforming process models to process checklists. In:
I. Bider, K. Gaaloul, J. Krogstie, S. Nurcan, H. Proper, R. Schmidt, P. Soffer (eds.)



pr
ep
ri
nt

40 Michaela Baumann et al.

Enterprise, Business-Process and Information Systems Modeling, LNBIP, vol. 175, pp.
124–138. Springer Berlin Heidelberg (2014)

3. Boehm, B.: Software risk management: principles and practices. Software, IEEE 8(1),
32–41 (1991)

4. Briere, J.: Trauma symptom checklist for children. Odessa, FL: Psychological Assess-
ment Resources pp. 00,253–8 (1996)

5. Condon, C.: The computer wont let me: Cooperation, conflict and the ownership of
information. In: S. Easterbrook (ed.) CSCW: Cooperation or Conflict?, CSCW, pp.
171–185. Springer London (1993)

6. Degani, A., Wiener, E.L.: Human factors of flight-deck checklists: the normal checklist.
NASA Contractor Report 177549 (1991)

7. Derogatis, L.R., Lipman, R.S., Rickels, K., Uhlenhuth, E.H., Covi, L.: The hopkins
symptom checklist (hscl): A self-report symptom inventory. Behavioral Science 19(1),
1–15 (1974)

8. Ely, J.W., Graber, M.L., Croskerry, P.: Checklists to reduce diagnostic errors. Academic
Medicine 86(3), 307–313 (2011)

9. Faerber, M., Jablonski, S., Schneider, T.: A comprehensive modeling language for clin-
ical processes. In: ECEH, pp. 77–88. Citeseer (2007)

10. Fahrmeir, L., Künstler, R., Pigeot, I., Tutz, G.: Statistik – Der Weg zur Datenanalyse.
Springer-Verlag (2007)

11. Hales, B.M., Pronovost, P.J.: The checklist – a tool for error management and perfor-
mance improvement. Journal of Critical Care 21(3), 231 – 235 (2006)

12. Hartel, M.C., Chou, S.C.: Electronic checklist system. United States Patent (Patent
Number 5 454 074) (1995)

13. Hauser, R., Friess, M., Kuster, J., Vanhatalo, J.: Combining analysis of unstructured
workflows with transformation to structured workflows. In: Enterprise Distributed Ob-
ject Computing Conference, pp. 129–140 (2006)

14. Jablonski, S.: Do we really know how to support processes? considerations and recon-
struction. In: G. Engels, C. Lewerentz, W. Schfer, A. Schrr, B. Westfechtel (eds.) Graph
Transformations and Model-Driven Engineering, LNCS, vol. 5765, pp. 393–410. Springer
Berlin Heidelberg (2010)

15. Jablonski, S., Bussler, C.: Workflow management: modeling concepts, architecture and
implementation. International Thomson Computer Press (1996)

16. Kerzner, H.R.: Project management: a systems approach to planning, scheduling, and
controlling. John Wiley & Sons (2013)

17. Koehler, J., Hauser, R., Kster, J., Ryndina, K., Vanhatalo, J., Wahler, M.: The role
of visual modeling and model transformations in business-driven development. Elec-
tronic Notes in Theoretical Computer Science 211(0), 5 – 15 (2008). Proceedings of
the Fifth International Workshop on Graph Transformation and Visual Modeling Tech-
niques (GT-VMT 2006)

18. Kopp, O., Martin, D., Wutke, D., Leymann, F.: The difference between graph-based
and block-structured business process modelling languages. Enterprise Modelling and
Information Systems Architecture 4(1), 3–13 (2009)

19. Luff, P., Heath, C., Greatbatch, D.: Tasks-in-interaction: Paper and screen based docu-
mentation in collaborative activity. In: Computer-supported Cooperative Work, CSCW,
pp. 163–170. ACM (1992)

20. Mans, R., van der Aalst, W., Russell, N., Bakker, P.: Flexibility schemes for workflow
management systems. In: D. Ardagna, M. Mecella, J. Yang (eds.) Business Process Man-
agement Workshops, LNBIP, vol. 17, pp. 361–372. Springer Berlin Heidelberg (2009)

21. Melenovsky, M.J.: Business process management’s success hinges on business-led initia-
tives. Gartner Research, Stamford, CT July, 1–6 (2005)

22. zur Muehlen, M., Recker, J.: How much language is enough? theoretical and practical
use of the business process modeling notation. In: Z. Bellahsne, M. Lonard (eds.)
Advanced Information Systems Engineering, LNCS, vol. 5074, pp. 465–479. Springer
Berlin Heidelberg (2008)

23. Object Management Group Inc.: Business process model and notation (bpmn) version
2.0 (2011). URL http://www.omg.org/spec/BPMN/2.0

24. Pešić, M.M.: Constraint-based workflow management: Shifting control to users. Ph.D.
thesis, Technische Universiteit Eindhoven (2008)



pr
ep
ri
nt

The Process Checklist 41

25. Reichert, M., Weber, B.: Enabling flexibility in process-aware information systems: chal-
lenges, methods, technologies. Springer Science & Business Media (2012)

26. Schonenberg, H., Mans, R., Russell, N., Mulyar, N., van der Aalst, W.: Process flexi-
bility: A survey of contemporary approaches. In: J. Dietz, A. Albani, J. Barjis (eds.)
Advances in Enterprise Engineering I, LNBIP, vol. 10, pp. 16–30. Springer Berlin Hei-
delberg (2008)

27. Seitz, M., Schönig, S., Jablonski, S.: A framework for reasonable support of process
compliance management. In: W. Abramowicz, A. Kokkinaki (eds.) Business Information
Systems Workshops, LNBIP, vol. 183, pp. 131–144. Springer International Publishing
(2014)

28. Sparkasse Bamberg: Report 2014 (2015-04-06). URL https://www.sparkasse-bamberg.

de/pdf/preise_leistungen/2014_report_spk_bamberg.pdf

29. The R Foundation: R: The r project for statistical computing (2015-04-06). URL http:

//www.r-project.org/

30. Wolff, A.M., Taylor, S.A., McCabe, J.F.: Using checklists and reminders in clinical
pathways to improve hospital inpatient care. Medical Journal of Australia 181, 428–
431 (2004)

31. Zairi, M.: Business process management: a boundaryless approach to modern competi-
tiveness. Business Process Management Journal 3(1), 64–80 (1997)

32. Zeising, M., Schönig, S., Jablonski, S.: Towards a Common Platform for the Support of
Routine and Agile Business Processes. In: Proceedings of the 10th IEEE International
Conference on Collaborative Computing: Networking, Applications and Worksharing
(2014)



pr
ep
ri
nt

42 Michaela Baumann et al.

University
Student Secretary of chair

D
et

er
m

in
e

ex
am

 s
ub

je
ct

Auditor Assessor
S

en
d 

ex
am

 m
ar

k 
an

d
pr

ot
oc

ol
 to

 e
xa

m
in

at
io

n
of

fic
e

R
eg

is
te

r e
xa

m
m

ar
ks

 in
 s

ys
te

m

D
et

er
m

in
e 

an
d 

as
si

gn
ex

am
in

at
io

n 
da

te

S
ys

te
m

 n
ot

ifi
ca

tio
n 

(o
ra

l e
xa

m
)

S
ys

te
m

 n
ot

ifi
ca

tio
n 

(w
rit

te
n 

ex
am

)

S
en

d 
ex

am
 to

 e
xa

m
in

at
io

n
of

fic
e

P
er

fo
rm

 w
rit

te
n 

ex
am

P
er

fo
rm

 e
xa

m
 c

or
re

ct
io

n

P
er

fo
rm

 o
ra

l e
xa

m
S

ig
n 

m
in

ut
es

 o
f

ex
am

in
at

io
n

S
ig

n 
m

in
ut

es
 o

f
ex

am
in

at
io

n

ex
am

in
at

io
n 

da
te

D
at

e 
w

rit
te

n 
ex

am

R
oo

m
 w

rit
te

n 
ex

am
E

xa
m

 ty
pe

?

E
xa

m

m
in

ut
es

 o
f

ex
am

in
at

io
nl

(s
ig

ne
d)

ex
am

 (m
ar

ke
d)

ex
am

 (u
nm

ar
ke

d)

m
in

ut
es

 o
f

ex
am

in
at

io
nl

(u
ns

ig
ne

d)

or
al

w
rit

te
n

Fig. 26: BPMN model for the process “Subscribing for an exam”.



pr
ep
ri
nt

The Process Checklist 43

Applying organizational unit

Applicant Secretary

Administration

A
pp

ly
 fo

r 
tr

ip

C
he

ck
 a

pp
lic

at
io

n

B
oo

k
ac

co
m

m
od

at
io

n

P
ro

ce
ed

 fe
ed

ba
ck

O
bt

ai
n 

bu
si

ne
ss

 tr
ip

in
fo

rm
at

io
n 

an
d 

co
st

s

A
rc

hi
ve

 tr
ip

 d
oc

um
en

ts

Chairman

B
oo

k 
tr

an
sf

er
B

oo
k 

fli
gh

t

B
oo

k 
tr

ai
n

A
pp

ro
ve

 a
pp

lic
at

io
n

in
te

rn
al

D
et

er
m

in
e 

ty
pe

 o
f

tr
ip

T
rip

 a
pp

ro
ve

d

T
yp

e 
of

 tr
ip

T
em

pl
at

e 
tr

ip
 a

pp
lic

at
io

n

B
us

in
es

s 
tr

ip
 a

pp
lic

at
io

n

A
pp

ro
ve

d 
tr

ip
 a

pp
lic

at
io

n

B
oo

ki
ng

 o
f a

cc
om

m
od

at
io

n

B
oo

ki
ng

 o
f t

ra
ns

fe
r

T
en

ta
tiv

e 
C

os
ts

B
oo

ki
ng

 o
f f

lig
ht

B
oo

ki
ng

 o
f t

ra
in

F
ee

db
ac

k

B
us

in
es

s 
tr

ip
 a

pp
lic

at
io

n

T
yp

e 
of

 tr
ip

O
w

n 
C

ar

T
ra

inF
lig

ht

F
ee

db
ac

k

T
rip

 a
pp

ro
ve

d

Fig. 27: BPMN model for the process “Applying for a business trip”.


