
Bevanda et al. Movement Ecology  (2014) 2:26 
DOI 10.1186/s40462-014-0026-1

RESEARCH Open Access

Adding structure to land cover – using
fractional cover to study animal habitat use
Mirjana Bevanda1*, Ned Horning2, Bjoern Reineking1,3, Marco Heurich5, Martin Wegmann4

and Joerg Mueller5

Abstract

Background: Linking animal movements to landscape features is critical to identify factors that shape the spatial
behaviour of animals. Habitat selection is led by behavioural decisions and is shaped by the environment, therefore
the landscape is crucial for the analysis. Land cover classification based on ground survey and remote sensing data
sets are an established approach to define landscapes for habitat selection analysis.
We investigate an approach for analysing habitat use using continuous land cover information and spatial metrics.
This approach uses a continuous representation of the landscape using percentage cover of a chosen land cover type
instead of discrete classes. This approach, fractional cover, captures spatial heterogeneity within classes and is
therefore capable to provide a more distinct representation of the landscape. The variation in home range sizes is
analysed using fractional cover and spatial metrics in conjunction with mixed effect models on red deer position data
in the Bohemian Forest, compared over multiple spatio–temporal scales.

Results: We analysed forest fractional cover and a texture metric within each home range showing that variance of
fractional cover values and texture explain much of variation in home range sizes. The results show a hump–shaped
relationship, leading to smaller home ranges when forest fractional cover is very homogeneous or highly
heterogeneous, while intermediate stages lead to larger home ranges.

Conclusion: The application of continuous land cover information in conjunction with spatial metrics proved to be
valuable for the explanation of home-range sizes of red deer.

Keywords: Fractional cover, Remote sensing, Land cover classification, Animal movement, Habitat selection,
Mixed model

Background
Habitat use of animals is assumed to be mainly driven
by forage availability and is a complex hierarchical pro-
cess of behavioural responses and choices [1]. Individuals
choose habitat that maximizes resources (e.g. food or
shelter) and conditions necessary for survival and repro-
duction [2], whereas these resources are influenced by
temporal and spatial variations of the landscape [3]. Habi-
tat selection is led by behavioural decisions and is shaped
by the environment, leading to the observed habitat
use [4].
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A large majority of animals use certain areas without
showing a territorial behaviour, referred to as home range.
In contrast to territories, a home range has no defended
borders [5]. Home ranges are generally defined as the spa-
tial expression of all behaviours an animal performs in
order to survive and reproduce [5]. Since home ranges
link individual movement paths to dispersal and popula-
tion dynamics, understanding why and how home range
sizes vary between and among species is a fundamental
issue in ecology. The current and prospective availability
of large movement data sets and remotely sensed envi-
ronmental information will allow further detailed analysis
[6]. Progress in GPS–sensor receiver technology and satel-
lite telemetry makes it possible to track animals over
long time spans with high temporal and spatial resolution
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and to analyse their habitat requirements and movement
paths [7].
By studying variation in home range size and identifying

the factors involved in such variation, we can identify how
habitat influence individual’s habitat use [2] and therefore
the variation in home ranges. A number of factors have
been adressed for shaping variation in home range sizes,
these include the environmental productivity and the het-
erogeneity of the landscape [8-10]. Especially the availabil-
ity of forage is amain driver shaping home range sizes [11].
A common trade–off often faced by many large mammals
takes places when open habitats provide the best forage,
while closed habitats provide shelter against predators and
this may vary with different spatio–temporal scales [12].
Typically in habitat use studies the landscape is repre-

sented with a categorical habitat map usually derived from
a classification [13,14], while in other studies the land-
scape is represented only by the dominant habitat type
[15,16]. A variety of land cover classifications are routinely
produced using remotely sensed data such as MODIS and
AVHRR [17].
However, the way the landscape is defined is crucial for

the analysis of habitat use. In many studies the landscape
is defined in land cover categories, containing classes such
as “meadows”, “forest” and “agriculture” [13,15] and it is
common sense that different needs of an animal corre-
sponds to different land cover types, for example “forest”
as areas for shelter and therefore resting or hiding sites,
and “meadows” as areas for forage sites [12].
However, landscapes rarely contain sharp borders

between cover types although that is how they are por-
trayed using a classical land cover classification approach.
Moreover information about spatial variation within an
a–priori defined land cover class is not provided when
using a classification. A forest might vary spatially due to
different age classes of the trees or small tree fall gaps
which increase spatial heterogeneity. This within land
cover variation is not captured by categorical maps.
Therefore we use a continuous land cover approach

such as fractional cover for the inclusion of spatial varia-
tion within classes for our analyses. Fractional cover is a
multiscale analysis combined with spatial prediction. This
method is related to spectral unmixing methods [18]. The
fractional cover image are typically created using a higher
resolution land cover classification image to calculate frac-
tional cover training data for lower resolution imagery. For
each pixel of the coarse resolution image the percentage
coverage for each land cover class within the high reso-
lution is calculated and used for a spatial prediction of
the land cover percentages. The percentage cover for the
chosen land cover types per pixel of the coarse resolution
image is provided as result.
With this approach a continuous land cover classifica-

tion can be derived which captures the spatial structure

in a fine scale manner and this provides a more realistic
and more ecologically meaningful representation of the
landscape. Global maps with similar approaches of per-
centage coverage already exist such as MODIS or AVHRR
[19,20] however only at a coarse spatial resolution and not
validated in the study area.
Furthermore in many habitat use studies forests have

structural attributes like “dense forest” or “light forest”
with corresponding functional effects, such as light for-
est with plentiful food resources due to an established
understory as enough sunlight can reach the forest floor.
However, these structural attributes are often not vali-
dated and instead they are implicitly assumed [21]. With
the fractional cover approach these structural attributes
can be addressed clearly.
In this study, we investigate the potential of continu-

ous land cover information for habitat use of red deer
in the Bohemian Forest. As habitat use leads to differing
home range sizes, we investigate the potential of continu-
ous land cover information and its spatial representation
for the explanation of their variation in size. We hypoth-
esize larger home ranges with increasing forest cover due
to lower density of food resources. We test our hypothesis
on different spatial (90%, 70% and 50% isopleths) and tem-
poral scales (monthly, biweekly and weekly) to account for
temporal and spatial differences.

Methods
Study area
The study area is located in Central Europe in the
Bohemian Forest, an area belonging to two national parks:
the Bavarian Forest National Park on the German side of
the border (240 km2) and the Šumava National Park on
the Czech Republic side of the border (640 km2). These
protected areas are embedded within the Bavarian For-
est Nature Park (3070 km2) and the Šumava Landscape
Protection Area (1000 km2). In its entirety, the area is
known as the Bohemian Forest Ecosystem. The area is
mountainous, with a variation in elevation between 600
and 1450 m.a.s.l.. The mean annual temperature varies
between 3°C and 6.5°C along higher elevation and ridges.
The mean annual precipitation is between 830 and 2230
mm. Within the park, three major forest types exists:
above 1100 m: sub–alpine spruce forests with Norway
Spruce (Picea abies L.) and some Mountain Ash (Sor-
bus aucuparia L.), on the slopes, between 600 and 1100
m elevation, are mixed montane forests with Norway
Spruce, White Fir (Abies alba MILL.), European Beech
(Fagus sylvatica L.), and Sycamore Maple (Acer pseudo-
platanus L.). In the valley bottoms, spruce forests with
Norway Spruce, Mountain Ash, and birches (Betula pen-
dula ROTH. and Betula pubescens EHRH.) [22]. Since the
mid–1990s, the forests of the national park have been
affected by massive proliferation of the spruce bark beetle
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(Ips typographus). By 2007, this had resulted in the death
of mature spruce stands over an area amounting to 5,600
ha [23,24].

Red deer data
From 2002–2011 red deer were caught during winter,
using a procedure approved by the Government of Upper
Bavaria, Germany. Red deer were captured and fitted with
GPS collars (Vectronic Aerospace, Berlin, Germany) in
box traps with side windows after they were lured in
with food. Here no immobilization was necessary. A sec-
ond approach was to tranquillize deer by dart gun where
they were attracted by food [25]. We collared 80 deer (39
male, 41 female). Ten individuals were collared two or
more times. As animals spend the winter in enclosures, we
restricted the analysis temporally from May to the end of
September. The most common protocol was to mark red
deer in late winter and retrieve the collars after a year by
collar drop–off or recapturing, allowing the collars to be
used on new individuals. We removed spatial and tempo-
ral false fixes (i.e. locations taken only a few seconds apart)
beforehand. We defined the samples from the multiple
collared animals over the single year as independent. As
the schedule of the collars are adjusted to take a location
every 15 min for one day of the week we took a random
sample of animals with sequences of short time intervals
to ensure that all locations have a minimum interval of
one hour. The median accuracy of the GPS locations was
16.5 m [26].

Home range estimation
Home ranges were estimated with a commonly used
approach, the fixed kernel method [27,28] using the ref-
erence method for the smoothing factor h [29]. We used
three different home range definitions to include a spa-
tial scale and to investigate the effect on the core area
(50% kernel) and a wider range (70% kernel, 90% kernel).
In addition, all home range definitions were estimated on
three temporal scales: monthly, biweekly and weekly. We
only estimated home ranges for individuals with at least
ten locations for a given temporal scale, after removing
spatial and temporal outliers [30].

Representation of the landscape
For the calculation of fractional cover a high resolution
classified image was derived from aerial images and was
used for training. The classified image contained 26 cate-
gories (different forest types such as coniferous, deciduous
andmixed forest, and age classes such asmature, medium,
young). Due to used spatial and spectral resolution we
grouped those classes to three major categories in order
to be able to discriminate them appropriately: forest (con-
taining all forest types and age classes), open areas (e.g.
meadows, regeneration areas, clear cut areas) and others

(e.g. water, rocks, roads). To create our training data the
fractional cover of each class within 30 m Landsat pixels
was calculated. The resulting percent cover values for a
particular class were used as response variables to train a
random forest (RF) regression model [31]. Random forest
uses an ensemble of decision trees (in our case regression
trees) to model non-linear relations among response vari-
ables [32-34]. The resulting RF model was then used to
predict percent cover for the cover type being modelled
on a Landsat image using pixel spectral values as predic-
tor variables. The number of regression trees used in the
random forest model was 1000, the number of predictors
tried on each split was set to the algorithm’s default value
(number of Landsat image bands/3). An unbiased accu-
racy assessment is provided by RF using “Out Of Bag”
statistics calculated from a random selection of 1/3 of
the training data [31]. Three cloud free Landsat 5 scenes
(path 192, row 26) with bands 1–5 from 2006 (July 15th,
October 19th) and 2009 (September 9th) were used for the
fractional cover analysis. The three predicted vegetation
layers complement each other and sum up to 100%. The
class “others” contains only small values in our study area,
therefore the major part of the values are split between
“forest” and “grassland”. Since both layers complement
each other we included only the class “forest” in our
analysis. Figure 1 shows the categorical map and the frac-
tional cover layers “forest” and “grassland” for the whole
study area (upper panels). An enlarged display of a section
shows how the formerly categorical representation of the
landscape is now split up in continuous values (middle
panels). The lower panels show the representation of the
categorical values within the fractional cover values in a
histogram. The discrete classes are represented by very
high cover values within the study area (see Additional
file 1: Figure S3 for a figure of the observed vs. predicted
values of the regression model).
We extracted all fractional cover values of the forest

class within the home ranges and calculated mean, stan-
dard deviation and variance. In addition to fractional
cover we chose to also calculate texture measures for each
home range. Texture metrics were developed by Haralick
et al. (1973) [35] and capture habitat structure which can
be quantified using the variability of pixel values in a
given area. Second–order texture measures are calculated
from the gray–level co–occurrence matrix (GLCM) and
account for spatial arrangement of pixel values. Haralick
et al. (1973) [35] presented a variety of different texture
metrics, however he states that these metrics are highly
correlated and can be difficult to interpret. To ensure
that the chosen texture metric is not size dependent we
calculated buffers from 500 to 7000 m in 500 m steps
around the home range centres of the 90% kernel iso-
pleths and analysed all texture metrics with regard to their
size dependency.We calculated texture measures using all
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Figure 1 Overview of the landcover and fractional cover values within the study area. The upper panels show the distribution of the
categorical (left hand side) and continuous fractional cover values (middel and right hand panel). The second row shows a zoom–in for better
representation and the last row shows the distribution of the values for the whole study area.

pixel values within the home range. Amoving windowwas
used to calculate the texture metric for every pixel rela-
tive to its direct neighbours (eight pixels around a centre
pixel). We then averaged the resulting texture values to
obtain one value for the home range to fit into the mixed
model design. We chose to use the texture metric “con-
trast”, as it shows the least size dependency (see Additional
file 1: Figure S1 and is easy to interpret as a measure of
local variation in the image and therefore an indicator of

landscape heterogeneity. Throughout the remaining text
we will refer to the contrast metric as a texture metric or
simply as texture.
We choose to use standard deviation of the forest

fractional cover calculated within a home range as a
measure for variability and the mean forest fractional
cover as an estimate of overall forest fractional cover
within each home range. Since variables standard devia-
tion and variance show high collinearity [36], variance is
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not considered in the analysis. For simplicity we will refer
to the standard deviation as variation of fractional cover
values.
Furthermore we estimated the mean elevation of the

home ranges using the 30m ASTER Global Digital Ele-
vation Map (GDEM) (http://asterweb.jpl.nasa.gov/gdem.
asp).
The chosen variables showed no correlation with each

other (Pearson’s correlation with the threshold set to
0.7, -0.7 respectively).

Statistical analysis
To investigate the influence of forest fractional cover and
texture on home range sizes, we used linear mixed mod-
els [37] on the log transformed home range areas (km2).
Afterwards we ran a backfit on the t–values to derive the
essential variables [38]. Preliminary analysis showed that
the variables texture and elevation have a hump–shaped
relationship with home range size in the red deer data and
we therefore used a quadratic fit in the models.
Following the framework of Zuur et al. (2009) [39] for

mixed effect models, we first identified the best structure
for the random effect term. We fitted random intercepts
for each individual (ID), different sexes and the year the
locations were sampled, using the full model with respect
to fixed effects terms and using the REML criterion for
fitting. We started with the full random term and then
simplified the model. Afterwards we compared the mod-
els with an ANOVA and the best model was evaluated
with the Akaike Information Criterion (AIC). For variable
selection, models were fitted with a maximum likelihood
criterion. We considered as fixed effects the mean value
of the fractional cover layer forest within a home range,
the standard deviation of fractional cover values within
a home range, the texture metric contrast and elevation.
The final models where fitted using the REML criterion.
We derived minimal adequate models by backward step-
wise selection using a t–value of 2 as a threshold for
inclusion [38]. We repeated the analysis for the three defi-
nitions of home range size and for the three definitions of
temporal scale.
We used the software tool R version 3.0.1 [40] for all

analysis. The package “adehabitatHR” [28] was used for
the kernel calculations, “raster” [41], “EBImage” [42] and
“randomForest” [43] for creation of the environmental
variables and “lmer” [37] and “LMERConvenienceFunc-
tions” [38] were used for the statistical analyses.

Results
The fractional cover approach allows a differentiation of
variations within land cover types, compared to cate-
gorical classes. The spatial heterogeneity of within class
variation is captured by this approach. The fit of the
random forest regression model for the forest layer was

70.15%. The diversity of fractional cover values within the
home range level can be seen in Figure 2. As outlined
in Figure 1, the corresponding categorical values are rep-
resented by the very high percentage values within the
fractional Cover approach.
Home ranges of red deer show a high variation in size in

our study area (Additional file 1: Table S1). We analysed
the variation of home range sizes with a mixed model,
using mean and standard deviation of the forest fractional
cover, as well as the variable elevation and a texturemetric.
The main random effect in all models was the individual
effect (variable ID) with an explained deviance of 0.26–
0.38% (Additional file 1: Table S3). The fixed effects of
the most parsimonious models explained between 26.88%
and 30.88% of the observed variation in home range size
for red deer across the different spatio–temporal scales
(Additional file 1: Table S2).
In all models the texture metric showed the high-

est explained deviance (7.98%–14.72%) across scales and
was the dominant variable explaining variation in home
range size with a hump–shaped relationship (Figure S3,
Additional file 1: Table S2). However, this hump–shaped
relationship was only pronounced at the monthly time
scale, whereas in the biweekly and weekly time scale this
relationship changed to a negative linear relationship. The
texture metric can be interpreted as an index for spatial
heterogeneity in a given area. Hence, at larger temporal
scales very homogeneous and very heterogeneous land-
scapes are leading to small home ranges, while at smaller
temporal scales only very heterogeneous landscapes lead
to small home ranges.
Furthermore the variation of forest fractional cover (the

standard variation) within a home range contributes sig-
nificantly with an explained deviance of 7.22–11.59% and
a positive relationship, leading to larger home ranges
where the variation of forest fractional cover values is
higher (Figure 3).
Additionally mean showed a positive effect (5.48–

7.12% explained deviance), with no effect on the
monthly time scale kernel 50% isopleth (Additional file 1:
Figure S2A).
Elevation had a hump–shaped effect on home range

size and showed a low explanatory value of 0.35%–6.02%
(Additional file 1: Figure S2B).

Discussion
Many studies of habitat use and home range variation
consider the landscape as a categorical map with defined
and clearly separated patches [13,14]. This study inves-
tigates the use of continuous land cover information,
fractional cover, to analyse the within land cover class
variation of home ranges over different spatial and tem-
poral scales for red deer in the Bohemian Forest. We
demonstrate that small scale variations represented by

http://asterweb.jpl.nasa.gov/gdem.asp
http://asterweb.jpl.nasa.gov/gdem.asp
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Figure 2 Representation of the landscape for one home range with both approaches, the categorical and the continuous fractional
cover. The lower panels show the distribution of the values within the home range for each approach.

continuous landscape data provide important information
for modelling habitat use.
Red deer as a mixed feeder [44] has the ability to digest

a broad spectrum of food items and benefits from forest
edges and from the food supply of younger forest stands
which show a low forest canopy cover and therefore have a
pronounced understory, as sunlight can reach the ground.
Mean forest fractional cover shows a positive relationship
with home range size meaning that a higher proportion of
dense forest will lead to larger home ranges. Whereas in
forest patches with less crown cover and therefore more
heterogeneous structure, food resources are more abun-
dant which leads to smaller home ranges. This result is
in support with other studies [14,45,46]. Mean forest frac-
tional cover is a rather unsuitable derivative, as it averages
all pixels within the home range. Nevertheless it shows a
significant explanatory value and gives an overview of the
overall forest structure within the home range.
The standard deviation of forest fractional cover val-

ues captures the variability of values within a home range.
High values indicate a wide spectrum of forest fractional
cover and therefore a more heterogeneous landscape

while small values indicate a more homogeneous land-
scape within the home range. Tufto et al. (1996) [11] have
shown, that female roe deer adjust the size of their home
range in response to food supply. In accordance to this
study red deer home range sizes increase in our study
area with increasing standard deviation and therefore with
more heterogeneous forest fractional cover, leading to a
higher amount of unfavourable forest habitat within the
home range.
The explanatory deviance is largest for the texture met-

ric and also consistent over all spatio–temporal scales with
a hump–shaped relationship at larger time scales. Low
values of the texture metric correspond to high hetero-
geneity within the home range, while high values of the
texture metric correspond to landscapes which have large
aggregated patches. This relationship was detected in a
previous study [47] and can be explained by the char-
acteristics of the National Parks. Bark beetle outbreaks
in the 90ies affected an area of approximately 5,600 ha
especially in the subalpine regions, leading to sunny open-
ings and large regeneration areas characterized by high
grass cover, lying dead wood and regrowing vegetation
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[23]. These areas appear very homogeneous when calcu-
lated with a texture metric but offer good habitat for deer,
as different resources are provided in a small area, lead-
ing to small home ranges, as both requirements, food and
cover, are fulfilled at the same spot. Furthermore a hetero-
geneous landscape, providing many different resources,
leads to small home ranges as all the resources needed
can be reached within a small distance. The hump–shaped
effect flattens in the biweekly and weekly time scale and
can only be described with a negative linear trend. How-
ever, a pattern towards a hump–shaped distribution can
be seen (Figure 3B). This result shows that the tempo-
ral scale needs to be accounted for when analysing home
ranges as they are likely to change not based on eco-
logical patterns only but on the time scale of the study.
The time period of the study is restricted to the summer
months, therefore the resource cover can be regarded as
static, i.e. not highly changing over the time, while the
resource food is dynamic and depleting. Therefore food
supply is the main force shaping home range size dur-
ing summer. When large patches of dense forest occur
within the home range, the texture value will increase.
These areas provide shelter against predators, but provide
only little food resources. Therefore, as food resources
are regarded to be a main force shaping home range size,
home ranges will increase in size with the inclusion of
large patches of dense forest (intermediate values of tex-
ture). Furthermore, these regeneration areas are located at
higher altitude and are therefore explaining the effect of
elevation, reflecting the importance of bark beetle areas
in this study. Like the regeneration areas, elevation shows
a hump–shaped fit leading to smaller home ranges where
important resources are abundant [48].
It is known that other factors, like bodymass, age, repro-

ductive status or climatic parameters like temperature or
rainfall have an effect on home range size (please see [46]
for a more complete list) and it is likely, that by includ-
ing these parameters, the explanatory value of the models
could be increased. However, the best method to estimate
home ranges is under debate. While we used at least 10
relocation points [30] to estimate our home ranges other
studies suggest at least 20 relocation points [29].
The choice of environmental parameters is important

for habitat use modelling. Using classified land cover
requires clear definitions of the land cover types but def-
initions often vary between different maps making them
difficult to compare [49]. Moreover do these classes need
to reflect the ecological requirements. An increased dis-
crimination of different land cover types is often helpful to
better describe a landscape but an increase in the number
of land cover classes often results in lower per–class accu-
racy. Using alternative information such as continuous
cover can help to improve how a landscape is repre-
sented in a model. Applying remote sensing time–series

data can be valuable to further discriminate land cover
types and hence allow more fractional cover classes if dis-
tinct temporal signature exist for the different targeted
land cover types. Applying continuous land cover infor-
mation for environmental analysis provides detailed infor-
mation about ecotones and within land cover variation.
This research illustrates that fractional cover mapping has
potential benefits for ecological research by avoiding cat-
egorical values or sharp, most often artificial, boundaries
in the landscape. However, the fractional cover approach
requires more analytical steps including spatial prediction
models and might therefore be potentially biased by the
model used.

Conclusion
The study demonstrates that continuous land cover infor-
mation can provide valuable information about spa-
tial within class variation as well as gradual vegetation
changes, a feature that is not available when using discrete
classes. This is especially relevant in movement ecol-
ogy where a continuous representation of the landscape
might be more ecological appropriate. However, to evalu-
ate the added value of the fractional cover approach with
regard to land cover classification or biophysical parame-
ter further analysis are needed. Fractional cover mapping
of different land cover types adds information, critical
to ecological studies, beyond what traditional land cover
categorical mapping can offer. As the synergy between
remote sensing and ecology increases improved process-
ing and analysis methods will continue to be developed
which will have a positive impact on ecological research.
These benefits will be especially important with the grow-
ing interest in spatio–temporal movement pattern.
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