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beschäftigen zu müssen. Ich habe sie dankbar angenommen. :-)

Chrissie: Ach, wo soll ich da anfangen. Danke für’s Rücken freihalten, wenn ich wieder
einen guten Lauf hatte und für’s in den Allerwertesten treten, wenn der Lauf wieder
mal in’s Stocken geraten ist. Alles Weitere gehört sicherlich nicht hier rein.
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Introduction

Reachability and controllability analysis for dynamic control systems are powerful tools for

numerous applications like trajectory prediction, system verification, collision avoidance or

control strategy validation. The computation of reachable sets (and controllability sets) is a

central part of this analysis.

During the last decades a lot of approaches for computing these sets have been published.

Two popular and fast algorithms for general nonlinear dynamics are based on a level–set

computation of a solution of a Hamilton–Jacobi–Isaacs partial differential equation [22, 23]

or on solving a family of special optimal control problems [2,3]. Both algorithms are capable

of considering lower–dimensional projections of reachable sets. This is very welcome since

the handling of higher–dimensional sets within numerical algorithms is not efficient (and

aside from that often impossible with current hardware).

For very general problems, the optimal control approach (based on distance functions)

of Baier and Gerdts [2, 3] seems to be much more flexible. While the HJI–algorithm is

only discussed for handling simple projections to Euclidean coordinate system planes, the

optimal control approach offers more freedom owing to the ability of defining submanifolds

by nonlinear equality constraints which intersect with the reachable set. It is also possible

to restrict the trajectories at any time, not only at the beginning and/or the end. So, for

universal nonlinear control systems, this approach currently seems to be the fastest and most

promising way of approximating reachable sets. In addition to that, the algorithm is simple

enough and quickly implemented by using some generic numerical modules like nonlinear

optimizers and differential equation solvers.

However, we will see later in this work that this approach comes with some weaknesses.

These are almost completely inherited from the underlying nonlinear program which is the
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INTRODUCTION

core of the algorithm. The irony of situation is that the nonlinear program (which causes

most of the problems) computes a solution of an optimal control problem which is only a

makeshift proxy of the essential problem and question: Is a specific point reachable?

In this work, we will take the best of all the generic modules of the original algorithm

– an optimal control context, nonlinear program and ODE–solver – and merge it to a spe-

cialized algorithm for solving thousands of pure reachability problems (instead of optimal

control problems), which add up to a reachable set. The final algorithm will efficiently run

on manycore computers and meet important requirements which are needed to port the

calculation kernels to CUDA hardware.

How to read this work

This work is written in strict top–down design. We start in Chapter 1 by simply analyzing

our aimed hardware to get the skills for efficiently implementating parallel algorithms for it.

After developing the theory of our new approach we will discuss the details about modi-

fying and tuning a nonlinear optimizer for our special case in Chapter 2. This will lead to a

specific iteration loop containing a linear system of equations which is the major part of the

computational effort.

We slightly restrict the generality of the problem setting in Chapter 3 so that this linear

system of equations will have a sparse regular structure. After a slight detour to a little

parallelization theory and methods for solving linear systems of equations in Chapter 4, we

will develop the procedures for efficiently solving the sparse linear system of equations in

Chapter 5.

Finally in Chapter 6, we will bring everything together, define a detailed algorithm for

computing a reachable set in parallel and will also have a small outlook on some CUDA

implementation concepts. As a demonstration we will use this algorithm in Chapter 7 to

compute the controllability set of a satellite docking on an uncontrolled target in earth’s

orbit.
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INTRODUCTION

Problem class definition

Generally, we consider the dynamic control system

ẋ(t) = f(t, x(t), u(t))

x(t) ∈ X (t)

u(t) ∈ U(t)

t ∈ [0, T ]

(1)

with time–dependent state constraints X (t) ⊂ Rn (which by the way implicitly define the

initial value of the ordinary differential equation) and control constraints and U(t) ⊂ Rm on

a bounded time interval. Without loss of generality we choose the start of the time interval

as zero. For any t ∈ [0, T ] we define

R(t) := {x(t) ∈ X (t) | ∃ u(·) : (x(·), u(·)) solves (1) } (2)

as the reachable set of (1) at time t.

The definition is quite universal. The reachable set is not restricted to the start or the end

of the trajectory which is why the problem formulation can be used to compute reachable

sets and controllability sets.
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Chapter 1

Hardware considerations

The reachable set algorithm will be constructed with the intent to benefit from parallel

computation possibilities of the underlaying hardware. Therefore we will have a look at

two common parallelization architectures: A conventional multicore CPU (like Intel i7) and

nVidia’s CUDA enabled GPU. Both architectures require totally different parallelization

techniques. In this section we will consider the main characteristics of these different archi-

tectures to enable us to design a suitable algorithm, which will (hopefully) perform well on

both processor types.

1.1 Multicore parallelization

In the majority of cases a parallel execution should simply occupy the different cores of a

multicore CPU like Intel’s Dual–Core or Quad–Core processors. The growing number of

cores, a huge amount of (shared) system memory and the easy–to–use libraries like OpenMP

or pthreads turn these processors into versatile devices.

Conventional multicore CPUs can run threads with completely different instruction se-

quences or functions with almost arbitrary memory operations on each of the CPU cores.

Starting and synchronizing threads is not very expensive on this hardware, but it will take

some time, since the thread management is done by the operating system. Communication

between all threads is very easy and can be implemented by using the system’s main memory

with some mutex protection around memory accesses.
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Efficient multicore CPU implementations are often using some producer–consumer or

parallel queue processing techniques.

1.2 CUDA computation

Describing CUDA parallelization is much more complicated than describing CPU implemen-

tations. This is why we have to look a bit closer at this architecture to find out the main

requirements of efficient implementation of algorithms. Unfortunately, this topic is way too

huge to deal with all details. Here we will just mention some important facts to motivate

some decisions taken later during the algorithm design. For further details, refer to [12, 18]

and have a look at the official CUDA documentation, guides and white papers published by

nVidia .

1.2.1 Hardware background

First of all, a GPU consists of several cores, the multiprocessors. Each multiprocessor, in

turn, consists of several processors. The number of processors per multiprocessor depends

on the device. For example, a Tesla C2050 device has 14 multiprocessors, each with 32

processors. Presently, newer devices consist of up to 192 processors per multiprocessor.

Currently, a multiprocessor is designed as a SIMD device (single instruction streams,

multiple data streams). While all processors can work in parallel, they lack of most of CPU’s

instruction control mechanisms: Every processor of a multiprocessor has the choice between

executing the same instruction or doing nothing. The result of a processor instruction only

differs by the data on which this instruction is performed.

The start of a GPU program (device code, called kernel) is done within a CPU program

(host code) by the nVidia driver. The driver uploads GPU code together with execution

parameters to the device and starts the kernel execution, which altogether will take some

time.

6
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1.2.2 Thread hierarchy

For a fast and efficient data–to–thread assignment, the threads on a GPU device are strictly

organized in a two-level hierarchical way. On the lowest level, up to 512 threads with a

three–dimensional enumeration are considered as a so called thread block. A thread block is

SIMD–executed on a single multiprocessor1. All thread blocks are set into a two–dimensional

block grid which can hold up to 65535 × 65535 thread blocks.

When the kernel is executed, all thread blocks are processed by all multiprocessors of the

device in an undefined order. Hence, a synchronization between different threadblocks is not

possible.

1.2.3 Parallel memory access: The difference between faster and

slower

As already stated, a single instruction within a thread block works on different data values

at the same time. As a consequence a single instruction can produce a very high memory

traffic at once. Since memory access is terribly slow compared to computing instructions,

coalescing memory access of multiple threads can be the crucial factor and often makes the

difference between good and bad performance.

To accelerate the memory access, the GPU can merge the memory reads and writes of

neighboring threads into single 128 byte transfers... and this is both a blessing and a curse.

There are two things that can disturb parallel memory accesses and thereby destroy the

efficiency of a GPU program:

• Misaligned memory access : A merged 128 byte transfer must always access memory

blocks whose starting addresses are multiples of 128 bytes. If a memory access is not

aligned, then two 128 byte blocks are copied with twice the transfer time. This problem

often occurs during processing matrices with odd row and column numbers.

• Strided memory access : This happens, when thread i accesses a data element at ad-

dress i · s, where s is a striding factor. An operation like that aims to leave big regions

1Actually, it is not perfectly SIMD–executed, since in particular 32 processors cannot process 512 threads
in SIMD style. But it is easier to understand and there is not a big difference from the user’s point of view.
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of memory between single elements untouched (depending on the size of s). Unfortu-

nately, all requested elements will be copied via several 128 byte transfers with a lot

of unwanted data, which might be the death blow for the algorithm’s GPU-efficiency.

A problem like that easily happens e.g. during matrix multiplication, where s is the

number of rows or columns.

1.2.4 Maximizing the kernel execution performance

As mentioned before, the execution of a thread block is tied to a single multiprocessor. The

number of threads per block is not tied to the number of processors per multiprocessor.

The hardware scheduler makes the processors’ activity jump between threads by suspending

(marking as inactive) and resuming (marking as active) them. By doing so, the hardware

can reduce idle time caused by memory transactions, register latency, and things like that.

This mechanism also faciliates the multiprocessor to handle more thread blocks at the same

time, which means more threads to switch over and more ways of reducing idle time.

Besides a maximum number, the amount of simultaneously processed thread blocks is

limited by the ressources a thread block needs for execution. These ressources are registers,

shared memory and threads. A multiprocessor has maximum limits, which vary from device

to device. Determined by the physical design, the hard limits per multiprocessor of a Tesla

C2050 are:

Resident thread blocks: 8

Registers: 32768

Shared Memory: up to 48 kb

Threads: 1536

In this example we should try to write kernels with at most 192 threads per block, 6kb

of shared memory usage and 21 registers per thread to achieve 100% device occupancy2. Of

2A kernel produces maximum device occupancy if the multiprocessor can run the maximum amount of
possible threads – 1536 threads in this case. 48 kb distributed to 8 blocks are 6 kb per block, 32768 registers
distributed to 1546 threads are ≈ 21 registers per thread.
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course, this is just a vague starting guess. The runtime performance of a kernel indirectly

depends on a lot of properties and also the complexity of the algorithm is often tied to the

blocksize and memory copy transactions. In practice, optimal kernel performance is lively

discussed in the CUDA community and often ends up in trial–and–error. However, a rule

of thumb is in order to achieve a minimum of 50% device occupancy for a good idle time

reduction.

The parallelization width should be big enough such that all available multiprocessors

can run with maximum occupancy for a while.

1.2.5 Multiple CUDA–devices

Multiple CUDA–devices can be used at the same time which can be considered as an addi-

tional hierarchical level of parallelization. In this case, all devices work independently and

can run their own kernels. The concept is similar to simple multicore CPU scheduling as de-

scribed in Section 1.1, with a small difference: There is no GPU memory that can be shared

between all devices during kernel runtime. If two CUDA–devices need to communicate, the

data has to be copied to the CPU host memory followed by a copy transaction to the other

CUDA–device. It is obvious that these copying transactions need a lot of time and should

be avoided whenever possible.

1.2.6 CUDA in a nutshell

CUDA programming is a very huge topic. There is still much more to learn in addition to

this chapter, like warps, efficient shared memory usage, thread branching and stuff like that.

Some facts here have been described from a quite simplified point of view. But becoming

CUDA experts is not the goal of this work. We want to outline the most restrictive properties

of the CUDA hardware in order to have an idea, whether an algorithm has the chance to

perform well or not before it has been implemented. Thus, when designing a reachable set

algorithm, which is also suitable for nVidia’s GPUs, we should try to keep some facts in

mind:

9
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1. Stick to the thread hierarchy. The problem must be distributable to independently

running thread blocks, whose instructions are basically being executed in strict SIMD

style. If going for multiple CUDA cards, every card must be able to process a part

of the algorithm with very rare communication between all parts, since synchronizing

multiple cards is comparatively slow.

2. Size matters after all. When trying to achieve full occupancy on a Tesla C2050 you

should run 1536 threads per multiprocessor. Since this hardware has 14 multiprocessors

and we are able to use a computing server containing four of these cards, we have to

feed 1792 hungry processors with at least 86016 threads. An algorithm should be suited

for this massive parallelization.

3. Kernels must be slim. Huge kernels that require a lot of registers and/or shared

memory reduce the device occupancy and along with it the execution speed. Instead

of writing one big kernel it could be better to write several smaller ones, and run them

serially.

4. Seriously: Do not use any memory. As this might not be possible, we should at

least try to keep memory transactions at a minimum. The possibility of doing a lot of

computation on registers or shared memory will speed up the execution significantly.

If a high memory throughput cannot be avoided, design the kernel to make use of

coalesced memory transactions by all means and knock on wood.
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Chapter 2

A feasibility problem approach

A promising algorithm was first described in 2009 by Baier and Gerdts [2] and theoretically

refined in [3]. The algorithm is based on minimizing distance functions via optimally con-

trolled trajectories. The algorithm has very nice properties from the parallelization point of

view. Furthermore, the concept allows for some modifications that enables the algorithm to

handle dynamical systems of higher dimension under suitable circumstances. One applica-

tion, which is based on this original algorithm and computes two–dimensional projections of

reachable sets of a 7–dimensional system has been published in [29].

In this chapter we will describe the basic idea of Baier end Gerdts and enhance their

concept in order to improve numerical speed, reliability and its ability for parallel imple-

mentation.

2.1 The original algorithm based on distance functions

2.1.1 Algorithm definition

The idea of this algorithm is quite simple. First of all, we choose a rectangular domain

X̄ = [xl1, x
u
1 ]× · · · × [xln, x

u
n] ⊂ Rn (2.1)

11
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wherein the reachable set is expected and define a discrete equidistant grid

G =

{
(x1, . . . , xn) | xi = xli +

xui − xli
Gi − 1

· k, k = 0, . . . , Gi − 1

}
(2.2)

that approximately covers X̄ .
∏n

i=1 Gi is the number of gridpoints.

For each gridpoint x̃ ∈ G we compute the optimal control function û(·) which minimizes

the distance between x̃ and the optimal trajectory point x̂(t). The point x̂(t) will either

be equal to a grid point or part of the boundary of R(t). The set of all points x̂(t) is the

resulting approximation of R(t).

More precisely, for all x̃ ∈ G we solve the following optimization problem:

min
u(·)
‖x(t)− x̃‖2

2

s.th. (x(·), u(·)) solve (1)

(2.3)

The approximation R̃(t) is then defined as

R̃(t) := {x̂(t) | (x̂(·), û(·)) solve (2.3) for at least one x̃ ∈ G} (2.4)

To allow a simple computation of (2.3), we transform the optimal control problem into a

static nonlinear program by approximating u(·) by a piecewise constant function. We choose

a time–horizon discretization length N with stepsize η = T/N . For better readability, we

define

ti := iη. (2.5)

The control functions can now be approximated by

u(t) ≡ uN,i ∈ Rm for t ∈ [ti, ti+1[, i = 0, . . . , N − 1 (2.6)

Alltogether, this leads to the distance function based algorithm for computing approxi-

mations of reachable sets:

Algorithm 2.1: Computing a reachable set approximation, original distance function
approach

12



2.1. THE ORIGINAL ALGORITHM BASED ON DISTANCE FUNCTIONS

1: function ReachableSet(G)

2: R̃η(t)← ∅

3: for all x̃ ∈ G do

4: Solve the nonlinear program

û(·) = argmin
uN

‖x(t)− x̃‖2
2

s.th. ẋ(t) = f(t, x(t), u(t))

u(t) ≡ uN,i, t ∈ [ti, ti+1[, i = 0, . . . , N − 1

uN,i ∈ U(ti), i = 0, . . . , N − 1

x(t) ∈ X (t)

t ∈ [0, T ]

(2.7)

5: R̃η(t)← R̃η(t) ∪ {xû(t)(t)}

6: end for

7: return R̃η(t)

8: end function

2.1.2 Testing the algorithm

We use the Rayleigh problem [2] for benchmarking the algorithm. It is defined via the

two–dimensional initial value problem

ẋ1(t) = x2(t)

ẋ2(t) = −x1(t) + x2(t)(1.4− 0.14x2(t)2) + 4u(t)

x1(0) = −5

x2(0) = −5

u(t) ∈ [−1, 1]

t ∈ [0, 2.5]

(2.8)
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As a test setting we compute R̃η(2.5) with a little MATLAB implementation. An interior

point method with L–BFGS1 Hessian approximation and accuracy 10−5 will solve the non-

linear program. Furthermore, we choose X̄ = [−7, 0] × [3, 5.5] and G1 = G2 = 200. The

optimizer’s iteration limit is 100 iterations. Trajectories are approximated with N = 20 via a

Runge–Kutta method of order 4. To accelerate the computation and improve the optimizer’s

reliability we traverse the grid row by row and always use the last solution as new initial

guess.

Figure 2.1: Reachable set of the Rayleigh problem (2.8) calculated with Algorithm 2.1 (grid:
200 × 200, N = 20), the colors of the dots indicate the number of required interior point
steps to solve the corresponding NLP

The result is shown in Figure 2.1. The contours of the set have been approximated

1Limited Memory BFGS–approximation, see [24].
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2.2. DERIVING AN IMPROVED ALGORITHM

nicely. The cornered style of the line is ascribed to the quite rough stepsize of the trajectory

approximation.

A closer look reveals little holes in the interior of the set which should not be there. Some

regions of the set require some tricky control functions to be reached and the optimizer

struggles to get there. The high number of iteration steps (visualised by the dots’ colors)

also attract attention. The median of iteration steps per grid point is 18, mean is approx.

21.

2.2 Deriving an improved algorithm

Since the first concepts of the distance function approach have been published, several im-

provements have been developed. Most of them consider speed enhancements by adaptively

skipping grid points with redundant information [3], grid refinement techniques [26] and par-

allelization. Another work considers fast updates of reachable sets after parameter changes,

based on sensitivity analysis [10].

This work is primarly aimed at advancing the speed and reliability of set detection.

Strategies, which improve reachable point detection by using global optimization methods

have already been considered in [4]. The new approach of this work makes use of the

feasibility aspect of the whole problem. This is motivated by the idea that a set of reachable

points of a dynamical system coincides with the set of feasible points, as already stated in [3].

We will also reduce the number of the optimizer’s iteration steps and create an algorithm

that is optimized for parallel hardware. At best it will nicely run on multiple CUDA devices.

2.2.1 Feasible solutions are good enough

Actually, we are not interested in a trajectory solution which hits a specific grid point as

close as possible. The important question is: Can we reach a grid point? Since the answer

doesn’t include a precise distance, it should be easier to determine.

Therefore we simply introduce an equality constraint

‖x(T )− x̃‖ ≤ εG (2.9)
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to the original optimization problem (2.7), where εG denotes the distance of two neighboring

points in the grid. This restriction ensures that the trajectory will pass a cell around x̃ if

possible. In exchange, the objective

min
uN
‖x(T )− x̃‖2

2

can be omitted, as it is not interesting where the cell is passed.

Simply choosing an objective function equal to zero can cause stability problems. To

ensure a regular Hessian matrix of the Lagrangian function, we temporarily introduce the

objective

min
uN

1

2
ξ ‖uN − ū‖2

2 (2.10)

with ξ > 0 and uN is a complete discrete control trajectory as piecewisely defined in (2.6).

Let ū be a parameter which is very close to the final solution of the resulting optimization

problem. The KKT conditions (see [24]) can then be written as

ξ(uN − ū)−Dh(uN)Ty = 0

h(uN) = 0
(2.11)

where y are Lagrangian multipliers, h are active constraints (including (2.9)) and Dh is the

Jacobian matrix of h. Dh(uN) is assumed to have full rank for all uN with h(uN) = 0. The

computation of the search direction within Newton’s method requires the solution of the

linear system of equationsξId−
∑
k

∇2hk(uN)yk −Dh(uN)T

Dh(uN) 0


pu
py

 =

−ξ(uN − ū) +Dh(uN)Ty

−h(uN)

 . (2.12)

Assuming that we can start Newton’s method with a very good initial guess, the equations

can be simplified by disregarding uN − ū which is already almost zero. Hence, the conditions

(2.11) and the full rank of Dh(uN) imply that the components yk are also very small and
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(2.12) can approximately be written as

 ξId −Dh(uN)T

Dh(uN) 0

pu
py

 =

Dh(uN)Ty

−h(uN)

 . (2.13)

Of course, Dh(uN)Ty will also be very small but this does not complicate solving the linear

system of equations, so we will keep this term and will not worsen the approximation any

more.

As the gradient ξ(uN − ū) of the objective function does not appear on the right hand

side (which means, that the current iterate uN is already considered as optimal with respect

to the objective function), the Newton step will focus on satisfying the condition h(uN) = 0.

Large values for ξ will reduce the convergence speed of Newton’s method, since they shorten

the original step size. On the other hand, ξ must be large enough such that

ξId−
∑
k

∇2hk(uN)yk ≈ ξId (2.14)

is an valid approximation. Numerical experiments in the end of this chapter will reveal that

ξ = 0.1 is often a reasonable guess.

Since there is no need to compute a BFGS–like approximation (the hessian approximation

has been reduced to a simple ξId matrix), the search direction can be computed faster. It is

also possibile to make use of the partially sparse structure of the identity, which will speed

up the computation further more and reduces memory transfers.

2.2.2 Tuning the convergence criteria

The iteration of the nonlinear program can instantly stop once a feasible solution has been

found. There is no need to do final iterations to achieve a good accuracy with respect to an

objective function. Hence, we choose a new exit condition based on a penalty criterion of

the form

P (uN) := ‖h(uN)‖∞ < νεG, (2.15)

where ν is an accuracy parameter.
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If (2.9) is the only restriction for the feasibility problem, the nonlinear program exits

immediately when the cell around x̃ has been hit, which is perfect. If the feasibility problem

also contains some equality constraints which are always active, the penalty criterion (2.15)

will need a little more time to trigger. The iteration cannot simply stop when hitting the grid

cell, as some equality constraints could still be violated. One could try to design the equality

constraints in such a way that they converge quite fast during the Newton iterations, e.g.

linear or heavy weighted (and ignore the weights within the penalty criterion).

2.2.3 A queue–based domain grid processing algorithm

The approximated step computation in (2.13) requires a very good initial guess. We can

achieve this by reusing the optimal solutions of neighboring reachable cells. The idea is quite

simple: After we found a reachable cell, we use the optimal solution to check the reachability

of all neighboring cells by storing the cells and the initial guess in a FIFO buffer F . This step

is repeated until the buffer ran empty. This, in precise, leads to Algorithm 2.2. Note that

an initial guess (uN , y) is required which must be a valid solution of the feasibility problem.

Algorithm 2.2: Computing a reachable set approximation, new feasibility problem
approach

1: function ReachableSet(uN , y,G) . valid initial guess uN , y

2: init F . initialize FIFO–buffer

3: determine grid point x̃ next to xu(·)(t)

4: R̃η(t)← {x̃}

5: loop

6: for all gridpoints x̃i adjacent to x̃ with x̃i /∈ R̃η(t) do

7: push (x̃i, uN , y) onto F

8: end for

9: repeat

10: if F = ∅ then

11: return R̃η(t)

12: end if

13: pop (x̃, ũN , ỹ) from F
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14: Solve the feasibility problem:

search uN (and y) that satisfies penalty criterion (2.15) including (2.9),

use approximations of (2.13) for NLP iterations and ũN , ỹ for

warmstarting.

15: until found uN and y

16: R̃η(t)← R̃η(t) ∪ {x̃}

17: end loop

18: end function

By doing so, every cell is tried to be reached within several attempts (e.g. up to eight

attempts in a 2D set). This leads to a quite reliable reachability detection. In some cases,

the trajectory switches discontinuously between two neighboring grid points. This might

happen, if an obstacle can be passed on two different sides or a rotating object needs four

turns instead of five. These cases can also be handled better by the buffer–approach. One

cell can be processed with multiple initial guesses which can be completely different and

come from distinct areas of the already computed reachable set.

Unfortunately, this will only work well if there always exists a path between two random

reachable points whose corresponding trajectories vary continously. If this is not true, the

optimizer has to “jump over a border” with a bad initial guess at least one time. Since this

border usually has a lot of attached cells on both sides, hundreds or thousands of attempts

will happen. Hence, there is a high probability that the algorithm can detect the complete

set, although this is not guaranteed. The probability can be increased further by starting

the algorithm with several initial guesses which are distributed over the reachable set.

2.2.4 Early infeasibility assumption

Another key to fast grid processing is early dropping a feasibility problem, if a single grid cell

cannot be reached or is hard to reach. A failed feasibility check will be followed by several

additional attempts with different initial guesses. So it is not necessary to do hundreds of

iterations to finally solve hard feasibility checks. It might be more economic to exit quite

early when the problem seems to diverge and hope for better luck during the next try.
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A heuristic approach could be to observe the quotient

P (u+
N)

P (uN)
(2.16)

where u+
N is the next iterate while solving the nonlinear problem. If P (uN) does not converge

to zero, then the quotient will converge to one, which can be (approximately) detected after

a few steps. Of course, this can easily lead to false alerts, as problems could just have bad

convergence at the beginning of the iterations. But since one grid point will be visited several

times by the algorithm, there is no need to make the most out of one feasibility check. Three

attempts with 10 iterations are still better than a single attempt with 100 iterations.

In practice we simply terminate a single feasibility check if (2.16) is greater than 0.95 a

couple of times, assuming that another attempt will be more promising.

2.3 Numerical results

To test the new concept we make use of the previous example (2.8) and compute the set

approximation with the same grid size and optimizer accuracy. We choose ξ = 0.1 and as

infeasibility assumption we abort the grid point processing after (2.16) has been sctrictly

greater than one 10 times in a row. A simple trajectory with zero control has been used as

initial trajectory for the queue processing.

The result is quite good. Figure 2.2 demonstrates how the algorithm proceeds. The

algorithm starts to detect reachable points near the first trajectory and spreads from there

until the whole set approximation has been computed. The figure also shows that no holes

have been left, so the concept seems to be more reliable then the original algorithm.

Figure 2.3 shows a comparison between the required iteration steps of the original and the

new algorithm. Note that the color bar of the second plot has been modified to a logarithmic

scale to emphasize the differences. The new concept produces much lower iteration numbers

which are approximately three steps in average and median.

The last goal of the new design is to create a very big potential to parallelize the algorithm.

While the original algorithm can process all grid points at the same time, the parallelization

bandwith of the new concept is restricted to the current size of the FIFO buffer. Fortunately,
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this buffer grows quite fast, even for this simple example. Figure 2.4 shows the varying buffer

size during the algorithm execution. The buffer size instantly grows up to 300 grid points

and stays around 700 grid points most of the time. This should be more than enough for

running efficient CPU and GPU programs.

As conclusion, we can say that the new feasibility based approach seems to be very

promising with respect to reliability and iteration speed and is worth to be developed further.

The remainder of this thesis is dedicated to the design of a high performance implementation

of this concept for general nonlinear problems.
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Figure 2.2: Demonstration of the queue processing including the final result of the feasibility
based approach
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Figure 2.3: Comparison of needed iteration steps per gridpoint
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Chapter 3

Tuning the interior point method

The resulting nonlinear program (2.10) of the last chapter is unproblematic from a numerical

point of view. Any NLP algorithm which is capable of solving nonlinear restricted optimiza-

tion problems should yield a useful result. In this work we choose the idea of the nonlinear

interior point method [24] as a base and specialize this algorithm in solving the feasibility

problems in parallel, fast and efficiently. We choose this method for two reasons:

1. While iterating, the structure of the interior point method does not change, even if

restrictions are switching beween being active or inactive (since they do not really

“switch” discretely). This fact will allow a potential implementation on CUDA hard-

ware, which is known as quite unflexible.

2. Considering the difficulty with warmstarting of interior point methods, the curse is

actually a blessing in this case. The barrier parameter µ > 0, which keeps the solution

away from active constraints during NLP iterations (and worsens the value of the

objective function), works like an accelerator for fulfilling inequality constraints like

the grid restriction (2.9).

In this chapter we will analyze the details of the interior point method and see what

happens if we use this method for solving feasibility problems. We will develop a detailed

problem formulation for the feasibility problem which will lead to memory–saving and sparse

matrix algebra with a fixed structure in order to be suitable for CUDA implementations.
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3.1 The interior point method

The formulation of the interior point method in this section is very close to Nocedal and

Wright [24]. We refer to the book for more details and proofs of convergence. Here, we will

just elaborate the important computational steps of the interior point method and adapt

them to our feasibility problem setting.

3.1.1 Problem formulation

We consider the nonlinear program

min
x
J(x)

s.t. h(x) = 0

g(x) ≥ 0

(3.1)

where J(x) is the objective function and h(x) and g(x) are equality and inequality con-

straints.

The interior point method for solving the general nonlinear program (3.1) is based on the

so called barrier problem

min
x,s

J(x)− µ
∑
i

log si

s.t. h(x) = 0

g(x)− s = 0

(3.2)

where si ≥ 0 are slack variables (positive values are assured by the term −µ
∑

log si) and

µ > 0 is the barrier parameter. The KKT–conditions for solving (3.2) are

∇J(x)−Dh(x)Ty −Dg(x)T z = 0

−µS−1e+ z = 0

h(x) = 0

g(x)− s = 0

(3.3)

where z ≥ 0 and y are Lagrangian multiplicators, S is a matrix with si as diagonal elements

26



3.1. THE INTERIOR POINT METHOD

and e = (1, . . . , 1)T . The barrier approach iteratively searches for a solution of (3.3) while

sending the barrier parameter to zero with every iteration step.

3.1.2 An interior point step for feasibility problems

One iteration step of the interior point method basically consists of an iteration of Newton’s

method, solving (3.3). Due to stability issues, we transform the second equation

− µS−1e+ z = 0 ⇔ Sz − µe = 0. (3.4)

Moreover, we can apply the approximations that have been described in Section 2.2.1 and

finally compute an approximated step of Newton’s method by solving the linear system of

equations


ξId 0 −Dh(x)T −Dg(x)T

0 Z 0 S

Dh(x) 0 0 0

Dg(x) −Id 0 0




px

ps

py

pz


= −


−Dh(x)Ty −Dg(x)T z

Sz − µe

h(x)

g(x)− s


(3.5)

where px, ps, py, pz are search directions.

The next iterate (x+, s+, y+, z+) of the interior point method step can be obtained by

x+ = x+ αspx

s+ = s+ αsps

y+ = y + αzpy

z+ = z + αzpz

(3.6)

with αs and αz are defined by

αs = max{α ∈ (0, 1] | s+ αps ≥ (1− τ)s}

αz = max{α ∈ (0, 1] | z + αpz ≥ (1− τ)z}
(3.7)
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in which τ ∈ (0, 1) is chosen as τ = 0.995. Shortening the stepsize by the factors αs and αz

(the so called fraction to boundary rule) ensures that the convergence does not stick to an

active restriction too early (which would extremely limit the size of the next steps). While

iterating, the parameter must be updated such that τ → 1 holds to reach active restrictions

in the end.

3.1.3 Line search method

The step size can optionally be shortened further by a one–dimensional line search towards

the search direction. It turns out that the Armijo condition is well suited, since it does not

need any additional gradient evaluations. For all αs ≥ 0 we define a merit function

Φ(αs) =
∑
i

|hi(x+ αspx)|+
∑
i∈I

|gi(x+ αspx)| (3.8)

whose minimum is a good indicator for feasible solutions. I is the set of indices of active

(or violated) inequality constraints. Assuming that Φ(αs) is differentiable at αs = 0 we can

write the derivative as

Φ′(0) =
∑
i

∇hi(x)px · sgn(hi(x))−
∑
i∈I

∇gi(x)px. (3.9)

A step size αs will be accepted if the Armijo condition

Φ(αs) ≤ Φ(0) + γαsΦ
′(0) (3.10)

holds with, e.g., γ = 10−4. If not, a backtracking line search is performed by iteratively

approximating Φ(αs) by a quadratic polynomial and choosing the minimum as new back-

tracking step until (3.10) holds. The following theorem describes how to choose the next

backtracking step size α+
s .

Theorem 3.1

Let Φ be a merit function with Φ′(0) < 0 and αs > 0 a step size which violates the Armijo

condition with 0 < γ < 1
2
. The next backtracking step size α+

s minimizing a quadratic
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approximation of Φ is given by

α+
s =

−Φ′(0)α2
s

2 (Φ(αs)− Φ(0)− Φ′(0)αs)
(3.11)

which approximates the minimum of Φ. In particular, 0 < α+
s < αs holds.

Proof: Let Φ be approximated by a polynomial of the form

PΦ(αs) = a0 + a1αs + a2α
2
s,

where PΦ fulfills the following interpolation conditions:

PΦ(0) = a0 = Φ(0)

PΦ(αs) = a0 + a1αs + a2α
2
s = Φ(αs)

ṖΦ(0) = a1 = Φ′(0)

Then a2 can be obtained by

Φ(0) + Φ′(0)αs + a2α
2
s = Φ(αs)

⇔ a2 =
1

α2
s

(Φ(αs)− Φ(0)− Φ′(0)αs)

Since the Armijo condition (3.10) does not hold, it holds that

Φ(αs)− Φ(0)− Φ′(0)αs > Φ(0) + γαsΦ
′(0)− Φ(0)− Φ′(0)αs = (γ − 1)αsΦ

′(0) ≥ 0, (3.12)

therefore PΦ is convex and the minimum α+
s is given by

0 = ṖΦ(α+
s ) = Φ′(0) + 2

α2
s

(Φ(αs)− Φ(0)− Φ′(0)αs)α
+
s

⇔ α+
s =

−Φ′(0)α2
s

2 (Φ(αs)− Φ(0)− Φ′(0)αs)
.
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Furthermore, due to (3.12) and Φ′(0) < 0 it holds that

0 <
−Φ′(0)α2

s

2 (Φ(αs)− Φ(0)− Φ′(0)αs)
= α+

s

<
−Φ′(0)α2

s

2(γ − 1)αsΦ′(0)
=

1

2(1− γ)
αs

< αs.

�

3.1.4 The termination condition

Motivated by (2.15) we simply use the merit function Φ for defining a termination condition.

As it becomes zero once a feasible point has been found, we exit the iteration if the condition

Φ(0) =
∑
i

|hi(x)|+
∑
i∈I

|gi(x)| < νεG (3.13)

holds with ν = 10−2. This strategy allows a small numerical constraint violation which is of

the same magnitude as the grain size of the chosen grid G and thus tolerable.

3.1.5 Updating the barrier parameter

While performing the iterations of the interior point method, the barrier parameter µ has

to be updated such that µ → 0. We prefer an adaptive selection of µ. This allows to

start with larger values for µ (to provide a better stability) and to react quickly to good

initial guesses at the same time. The reference [24] describes an adaptive strategy which

uses sT z (converges to zero) to estimate the progress of the iteration steps. The next barrier

parameter µ+ is defined by

µ+ = σ
sT z

m
, (3.14)

where m is the number of inequality constraints. Here σ > 0 is a factor which accelerates

the descent of µ for small values of σ.

To achieve a uniform convergence of all inequality constraints, the parameter σ can be

chosen in such a way that it becomes larger when individual constraints converge too fast
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to their active border. In every step, we choose σ adaptively as

σ = 0.1 min

{
0.05

1− ξ
ξ

, 2

}3

with ξ =
mini{sizi}

1
m
sT z

(3.15)

which causes the descent of µ to be much slower if the smallest complementary product sizi

is far from the average.

A uniform convergence of all inequality constraints is supported by the Fiacco-McCormick

approach. While iterating, we fix the barrier parameter until

∑
i

|hi(x)|+
∑
i∈I

|gi(x)| < µ (3.16)

holds. Then we update µ as described in (3.14) and continue. This procedure enables slowly

converging inequality constraints to close the gap on fast converging ones and prevents

individual si and zi from converging to zero too fast.

When updating the barrier parameter, we also update τ+ = max{1− 0.1µ+, 0.995}.

3.2 Constructing a sparse linear system of equations

The previous section has shown a modification of the interior point method for solving general

feasibility problems. We will now apply this method to our optimal control problem. The

most expensive part (by far) of the interior point method lies in solving the linear system of

equations (3.5). Storing the matrix will need a lot of memory and solving the system a lot

of time. We will make this step less expensive by defining the optimal control problem in a

way such that Dh and Dg are sparse matrices. This will “sparsify” the whole structure of

the matrix in (3.5) as Z and S are simple diagonal matrices.

3.2.1 A full discretization formulation of the feasibility problem

An optimal control problem with the constraints

ẋ(t) = f(t, x(t), u(t)) (3.17a)
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u(t) ≡ ui, t ∈ [ti, ti+1[, i = 0, . . . , N − 1 (3.17b)

ui ∈ U(ti), i = 0, . . . , N − 1 (3.17c)

x(t) ∈ X (t) (3.17d)

with t ∈ [0, T ] must be expressed by the constraint functions g and h of the interior point

method.

Using an r–stage Runge–Kutta method [6] with A ∈ Rr×r and c, b ∈ Rr, x(t) can be

approximated via

ki,j = f(ti−1 + cjη, xi−1 + η

r∑
l=1

aj,lki,l, ui), j = 1, . . . , r

xi = xi−1 + η
r∑
l=1

blki,l

(3.18)

with i = 1, . . . , N and xi ≈ x(ti) and x0 = x(t0). We approximately implement the the-

oretical constraints (3.17a) and (3.17b) by the equations (3.18). Naturally, just doing one

Runge–Kutta step per horizon step can be a quite rough approximation. On the other hand,

embedding the Runge–Kutta method into the optimizer’s iteration loop makes it possible to

use high order implicit methods with comparatively few stages and without any additional

cost (e.g. Radau 5).

The other constraints (3.17c) and (3.17d) can be modeled via a combination of nonlinear

functions

ru(ui) > 0, i = 1, . . . , N (3.19a)

rx(xi) > 0, i = 0, . . . , N (3.19b)

qu(ui) = 0, i = 1, . . . , N (3.19c)

qx(xi) = 0, i = 0, . . . , N (3.19d)

and reduced box constraints

PU
u,iui ≤ ũUi , i = 1, . . . , N (3.20a)
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PL
u,iui ≥ ũLi , i = 1, . . . , N (3.20b)

PU
x,ixi ≤ x̃Ui , i = 0, . . . , N (3.20c)

PL
x,ixi ≥ x̃Li , i = 0, . . . , N (3.20d)

where PU
u,i, P

L
u,i, P

U
x,i and PL

x,i are permutation matrices, which “select” individual elements of

ui and xi for being constrained. ũUi and x̃Ui are upper bounds, ũLi and x̃Li are lower bounds.

For better readability, we use the abbreviations

fi,j := f(ti−1 + cjη, xi−1 + η

r∑
l=1

aj,lki,l, ui) (3.21a)

∂ufi :=


∂
∂u
fi,1
...

∂
∂u
fi,r

 (3.21b)

∂xfi :=


∂
∂x
fi,1
...

∂
∂x
fi,r

 (3.21c)

∂xf
A
i :=


a1,1η

∂
∂x
fi,1 · · · a1,rη

∂
∂x
fi,1

...
. . .

...

ar,1η
∂
∂x
fi,r · · · ar,rη

∂
∂x
fi,r

− Id (3.21d)

B :=
(
ηb1Id · · · ηbrId

)
(3.21e)

qu,i := qu(ui) (3.21f)

qx,i := qx(xi) (3.21g)

ru,i := ru(ui) (3.21h)

rx,i := rx(xi) (3.21i)

q̇u,i := q̇u(ui) (3.21j)

q̇x,i := q̇x(xi) (3.21k)

ṙu,i := ṙu(ui) (3.21l)

ṙx,i := ṙx(xi) (3.21m)
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in the rest of this thesis.

If we combine all the variables ui, xi and ki,j into one vector

x := (u1, . . . , uN , x0, . . . , xN , k1,1, . . . , k1,r, . . . , kN,1, . . . , kN,r)
T ∈ RNm+(N+1)n+Nnr (3.22)

we can write the constraint functions as

h(x) =



f1,1 − k1,1

...

f1,r − k1,r

x0 + η
∑r

l=1 blk1,l − x1

...

fN,1 − kN,1
...

fN,r − kN,r

xN−1 + η
∑r

l=1 blkN,l − xN

qu,1
...

qu,N

qx,0
...

qx,N



, g(x) =



ũU1 − PU
u,1u1

PL
u,1u1 − ũL1

ru,1
...

ũUN − PU
u,NuN

PL
u,NuN − ũLN

ru,N

x̃U0 − PU
x,0x0

PL
x,0x0 − x̃L0

rx,0
...

x̃UN − PU
x,NxN

PL
x,NxN − x̃LN

rx,N



(3.23)
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with the corresponding Jacobian matrices

Dh(x) =



∂uf1 ∂xf1 ∂xf
A
1

0 Id −Id B

. . . ∂xf2
. . . . . .

∂ufN ∂xfN ∂xf
A
N

0 Id −Id B

q̇u,1
. . .

q̇u,N

q̇x,0

q̇x,1
. . .

q̇x,N−1

q̇x,N



(3.24a)
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and

Dg(x) =



−PU
u,1 0

PL
u,1

...

ṙu,1
. . .

−PU
u,N

PL
u,N

ṙu,N

−PU
x,0

PL
x,0

ṙx,0
. . .

−PU
x,N

PL
x,N

...

ṙx,N 0



. (3.24b)

These matrices have a nice sparse structure which can be exploited when calculating the

search direction of the interior point method.

3.2.2 Identifying the non–zero elements

Finally, we will analyze the sparse structure of the linear system of equations (3.5) so that we

can configure a solver to keep the zero elements in mind. Before we substitute the matrices

Dg and Dh as defined in (3.24a) and (3.24b) we can simplify the problem a little bit by

reducing the actual matrix.

The linear system of equations (3.5) can be written as

ξpx −Dh(x)Tpy −Dg(x)Tpz = Dh(x)Ty +Dg(x)T z (3.25a)

Zps + Spz = µe− Sz (3.25b)

Dh(x)px = −h(x) (3.25c)
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Dg(x)px − ps = −g(x) + s. (3.25d)

Equations (3.25b) and (3.25d) imply the explicit partial solutions

ps = Dg(x)px + g(x)− s (3.26a)

pz = −S−1Zps − z + µS−1e. (3.26b)

Substituting ps and pz in (3.25a) and defining Σ = S−1Z (Σ is also a diagonal matrix), we

get

ξpx −Dh(x)Tpy −Dg(x)T (−Σps − z + µS−1e)

= ξpx −Dh(x)Tpy −Dg(x)T (−Σ(Dg(x)px + g(x)− s)− z + µS−1e)

= (ξId+Dg(x)TΣDg(x))px −Dh(x)Tpy −Dg(x)T (−Σ(g(x)− s)− z + µS−1e)

= Dh(x)Ty +Dg(x)T z

=⇒ (ξId+Dg(x)TΣDg(x))px −Dh(x)Tpy

= Dh(x)Ty +Dg(x)T z +Dg(x)T (−Σ(g(x)− s)− z + µS−1e)

= Dh(x)Ty +Dg(c)T (z − Σ(g(x)− s)− z + µS−1e)

= Dh(x)Ty +Dg(c)T (−Σg(x) + S−1Zs+ µS−1e)

= Dh(x)Ty +Dg(c)T (z − Σg(x) + µS−1e)

Hence, the linear system of equations (3.5) can be solved by calculating px and py implicitly

via

ξId+Dg(x)TΣDg(x) Dh(x)T

Dh(x) 0

 px

−py

 =

Dh(x)Ty +Dg(c)T (z − Σg(x) + µS−1e)

−h(x)

 (3.27)
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and ps and pz afterwards by using the explicit equations (3.26a) and (3.26b). Note that by

inverting the sign of py, the matrix of (3.27) becomes symmetric.

The diagonal elements of Σ are given by

Σ =



Σu,1

. . .

Σu,N

Σx,0

. . .

Σx,N


(3.28)

with

Σu,i :=


σUu,i

σLu,i

σru,i

 and Σx,i :=


σUx,i

σLx,i

σrx,i

 , (3.29)

where σUu,i is a diagonal matrix containing the components of S−1Z which are associated

with the inequality constraints of the upper boxed constraints of ui, σ
L
u,i for the lower boxed

constraints and σru,i for the nonlinear inequality constraints defined by ru,i. The matrices

σUx,i, σ
L
x,i and σrx,i are defined respectively.
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Exploiting the structure of Dg(x) as defined in (3.24b) it holds that

ξId+Dg(x)TΣDg(x) =



σu,1
. . .

σu,N

σx,0
. . .

σx,N

ξId

. . .

ξId



(3.30a)

with

σu,i := ξId+ PUT
u,i σ

U
u,iP

U
u,i + PLT

u,i σ
L
u,iP

L
u,i + ṙTu,iσ

r
u,iṙu,i (3.30b)

σx,i := ξId+ PUT
x,i σ

U
x,iP

U
x,i + PLT

x,i σ
L
x,iP

L
x,i + ṙTx,iσ

r
x,iṙx,i. (3.30c)

Note that σu,i and σx,i are not necessarily diagonal matrices if nonlinear constraints are

used. On the other hand, if only box constraints are used, an operation like PUT
u,i σ

U
u,iP

U
u,i leads

to diagonal matrices again. σUu,i can be smaller than the actual dimension of the control,

as some of the control components might be unlimited. Hence, PUT
u,i σ

U
u,iP

U
u,i can have lower

rank. Of course, the same facts apply to σx,i, too.

Besides that, σu,i and σx,i are positive definite and symmetric matrices in any case. The

inner σU , σL and σr matrices are diagonal matrices with positive entries. The matrix pro-

ducts generate lower rank symmetric matrices with eigenvalues greater than or equal to zero.

Adding ξId shifts the minimal eigenvalue to ξ > 0.

With these considerations, we can identify the individual non–zero components of the

matrix used in the reduced linear system of equations (3.27). Figure 3.1 shows an exemplary

setting with N = 4. One can easily decode the sparse structure for arbitrary values of N .

39



C
H

A
P

T
E

R
3
.

T
U

N
IN

G
T

H
E

IN
T

E
R

IO
R

P
O

IN
T

M
E

T
H

O
D

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22

23

23

24

24

25

25

26

26

27

27

28

28

29

29

30

30

σu,1

σu,2

σu,3

σu,4

σx,0

σx,1

σx,2

σx,3

σx,4

ξId

ξId

ξId

ξId
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q̇Tx,4

Figure 3.1: Example matrix of (3.27) with N = 4
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Chapter 4

Parallel direct methods on sparse

matrices

In this chapter we will discuss an algorithm for solving symmetric sparse linear systems

of equations like (3.27). The first difficult task is the choice of the algorithm, particularly

whether using a direct or indirect method.

Of course, there is a serious discussion about the advantages and disadvantages of iterative

and direct methods for sparse matrices. For our medium–sized matrices they balance each

other. The authors of [27] had a closer look at direct methods and present a comprehensive

overview of current software packages with different algorithms. They came to the conclusion,

that although a perfect direct method for sparse matrices doesn’t really exist, they (the direct

methods) can pay off if the individual problem is well suited. By the name of this chapter

one could have already guessed that I share their opinion.

In the first section of this chapter we will consider some important tools for handling

sparse matrices. These tools help to answer the question whether a matrix is well suited for

direct solvers, or not. The method of our choice will be the old–school Cholesky method

which can be redesigned for good parallel SIMD performance and sparse structures. To our

surprise, after some reordering this will be the only required method, even though (3.27) is

indefinite.1

1We will see in the next chapter that solving the linear system of equations (3.27) will result in solving
multiple smaller positive definite symmetric systems.

41



CHAPTER 4. PARALLEL DIRECT METHODS ON SPARSE MATRICES

4.1 The basics

A very good book in the context of direct methods for sparse matrices has been written by

Duff, Erisman and Reid [7]. This section will pick up their ideas and describe the concepts

needed in this work.

4.1.1 Dealing with fill–ins

While iterative methods only modify the iteration vector, direct methods modify elements of

the matrix. If things go wrong, zeros of the matrix will be destroyed during elimination steps

and generate fill–ins. These fill–ins are additional data values, which need further memory.

The memory must be allocated and assigned to the matrix element’s position on–the–fly. In

the worst case, every zero element is eliminated by fill–ins and the matrix becomes dense in

the end.

The amount and position of fill–ins can be manipulated by an a priori permutation of

the matrix. For example, the following matrix will result in a dense decomposition after

applying Cholesky’s method2:



∗ ∗ ∗ ∗ ∗

∗ ∗ 0 0 0

∗ 0 ∗ 0 0

∗ 0 0 ∗ 0

∗ 0 0 0 ∗


=⇒



∗ 0 0 0 0

∗ ∗ 0 0 0

∗ ∗ ∗ 0 0

∗ ∗ ∗ ∗ 0

∗ ∗ ∗ ∗ ∗


(4.1)

Simply permuting the first row to the bottom and the left column to the right prevents every

2We will discuss details of Cholesky’s method in Section 4.2.
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zero from being overwritten:



∗ 0 0 0 ∗

0 ∗ 0 0 ∗

0 0 ∗ 0 ∗

0 0 0 ∗ ∗

∗ ∗ ∗ ∗ ∗


=⇒



∗ 0 0 0 0

0 ∗ 0 0 0

0 0 ∗ 0 0

0 0 0 ∗ 0

∗ ∗ ∗ ∗ ∗


(4.2)

The structure of the last matrix (before being decomposed) is called doubly–bordered block

diagonal form and has the nice property that Gaussian and Cholesky elimination steps do

not modify any zero elements.

4.1.2 Matrix graphs

A very important tool for analyzing squared matrix structures are matrix graphs. These

graphs consist of one node for each row containing the number of the row. If the matrix has

an element ai,j 6= 0 then the two nodes with the numbers i and j are connected. Since the

matrix is symmetric, the connections have no direction. The graph of the first matrix (4.1)

looks like this:

2

5 1 3

4

Diagonal elements cause connections of nodes with themselves. We illustrate this case via

bold borders of graph nodes. In the case above, every diagonal element is non–zero.

One feature of matrix graphs is that they give information about possible diagonal block

submatrices, even if they are not visible at a first glance. For example, the matrix
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1

1

2

2

3

3

4

4

5

5

6

6

generates the matrix graph

1 2 3

4 5 6

with three unconnected subgraphs. We can now perform symmetrical permutations on the

matrix so that we reorder the rows/columns in a way that the nodes (which are equivalent to

rows/columns) of each subgraph are grouped together in the matrix. The result is a matrix

with three independent block diagonal matrices (rows 1, 2-4, 5-6):

1

1

2

2

3

3

4

4

5

5

6

6

4.1.3 Nested dissection

The idea of the (one–way–)dissection is based on the fact that a linear system of equations

can easily be solved if it has doubly–bordered block diagonal form. If a linear system of

equations is defined as


A1,1 A1,N

. . .
...

AN−1,N−1 AN−1,N

AT1,N · · · ATN−1,N AN,N




x1

...

xN−1

xN


=


b1

...

bN−1

bN


(4.3)
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then (x1, . . . , xN)T can be calculated via Gaussian elimination steps

D = AN,N −
N−1∑
i=1

ATi,NA
−1
i,i Ai,N (4.4a)

c = bN −
N−1∑
i=1

ATi,NA
−1
i,i bi (4.4b)

xN = D−1c (4.4c)

xi = A−1
i,i (bi − Ai,NxN) , i = 1, . . . , N − 1 (4.4d)

where D and c are temporary matrices (see [7]). The matrix inversions in (4.4) can be

substituted by solving smaller linear systems of equations with temporary matrices Qi and

Ri:

solve Ai,iQi = Ai,N , i = 1, . . . , N − 1 (4.5a)

solve Ai,iRi = bi, i = 1, . . . , N − 1 (4.5b)

D = AN,N −
N−1∑
i=1

ATi,NQi (4.5c)

c = bN −
N−1∑
i=1

ATi,NRi (4.5d)

solve DxN = c (4.5e)

xi = Ri −QixN , i = 1, . . . , N − 1 (4.5f)

Since (4.5a) and (4.5b) can make use of the same matrix decomposition, we replace those

systems by a single linear system of equations

solve Ai,i

(
Qi Ri

)
=

(
Ai,N bi

)
, i = 1, . . . , N − 1 (4.5g)

where the notation
(
A B

)
indicates a matrix which is concatenated from A and B.

Fortunately, the N − 1 linear systems of equations (4.5g) and also (4.5f) can be evaluated

in parallel since the results do not depend on each other. The evaluation of (4.5e) is a parallel

reduction task and must be done serially. A matrix with a small AN,N block (the so called

separator block) needs less serial computational time – something we should keep in mind.

45



CHAPTER 4. PARALLEL DIRECT METHODS ON SPARSE MATRICES

We can use matrix graphs to develop permutations which transform matrices to doubly–

bordered block diagonal forms. As shown in Section 4.1.1, unconnected subgraphs of a

matrix graph make it possible to permute the matrix to independent diagonal blocks Ai,i.

These subgraphs can be generated by “removing” individual graph nodes. “Re–appending”

the corresponding rows/columns of the removed nodes to the lower right end of the matrix

results in the desired double–borders. The removed nodes are associated with the lower right

block AN,N . Since they separate the graph in unconnected parts it becomes clear why AN,N

is called separator block.

Figure 4.1 shows an example matrix and the permuted version, which has the intended

form. The permutation is described by Figure 4.2. The matrix graph turns out to be

quite regular. Removing the three nodes 5, 7 and 3 results in three unconnected subgraphs.

The permutation is defined by clustering the rows/columns of each subgraph consecutively

followed by the three removed nodes.

The concept of nested dissection is based on the idea that the smaller linear systems

of equation (4.5g), in turn, can be solved by doing a dissection on each subgraph. As a

result, each diagonal block will also have doubly–bordered block diagonal form. Figure

4.3 demonstrates the second dissection step of each of the diagonal blocks. In a parallel

implementation, each of the dark blue highlighted diagonal blocks can be solved in parallel,

which means a parallel bandwidth of 6 in this case. The linear system of equations (4.5e)

of the separator blocks has to be solved for each diagonal block of the first dissection with

a parallel bandwidth of 3 linear systems of equations.

Note that choosing the separator nodes is a very sensitive process. In some sense it

corresponds to a pivoting strategy which, of course, can fail when done wrong. Figure 4.4

demonstrates how a bad dissection can cause singular diagonal blocks, even if the original

matrix is regular.

Particularly, for larger matrices one is interested in doing the dissection automatically. A

short summary of current algorithms is given in [19]. Unfortunately, most of these works

only consider graphs which come from numerical solutions of partial differential equations,

like [8, 9] by Alan George, who originally proposed the nested dissection algorithm. I have

not found any work that considers singularity problems which arise due to a bad dissection.
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(b) permuted matrix

Figure 4.1: Permutation of an example matrix to doubly–bordered block diagonal form

This is why we will not make use of automatic dissection algorithms in this work. Since

the considered matrices are not very big and have a regular structure, the dissection can

easily be done manually with a pen and a sheet of paper. The manual dissection has some

important advantages:

• The nested dissection can be chosen with respect to the later goal of a parallel imple-

mentation on CUDA hardware. In particular, we focus on achieving similar diagonal

blocks.
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1 8 11 10 12 6

5 7 3

4 2 9

(a) original matrix graph

1 8 11 10 12 6

5 7 3

4 2 9

(b) Removing three nodes results in three unconnected subgraphs

Figure 4.2: Modifications to the matrix graph of Figure 4.1 to achieve a doubly–bordered
block diagonal form

• Bad dissections with singular diagonal blocks can be avoided.

• If we know the individual elements of the sparse matrix, the elimination steps can be

developed analytically without the need of additional data. A general nested dissection

solver needs more or less complex data structures like trees to store the information

of the different dissection stages. Trees have a quite ugly and irregular data format in

terms of GPU computation (see section 1.2.3).

4.1.4 Suitable matrices for direct methods

What is still left is the question whether a matrix is well suited for direct methods or not.

This strongly depends on the possibility of choosing a good dissection strategy. The following

list is a summary of criteria which boost the effiency of direct methods with nested dissection.

The criteria are ordered descending by their importance.

1. Actually, needless to say: A1,1, . . . , AN−1,N−1 must be invertible.
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(a) Second dissection stage: Nodes 8, 2 and 12 are removed
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(b) Matrix of figure 4.1 permuted by nested dissection,

the diagonal blocks of the second dissection stage are highlighted.

Figure 4.3: Two–way nested dissection of an example matrix

2. The matrices A1,1, . . . , AN,N must be small since they lead to linear systems of equations

with cubic complexity. Fill–ins only appear within these block diagonal matrices.

3. A small separator block AN,N reduces the serial overhead during parallel processing.

4. If A1,1, . . . , AN−1,N−1 are positive definite we can use a fast Cholesky implementation

for solving (4.5g).

5. In addition to the 4th criterion, if AN,N = 0, we can use Cholesky’s method to solve

(4.5e) after a little modification. Since A−1
i,i , i = 1, . . . , N − 1, is also symmetric and
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(c) Good dissection strategy

Figure 4.4: Example of a bad dissection strategy, which leads to a singular diagonal block

positive definite, a Cholesky decomposition A−1
i,i = RRT exists and it holds that

D = −
N−1∑
i=1

ATi,NA
−1
i,i Ai,N = −

N−1∑
i=1

ATi,NRR
TAi,N = −

N−1∑
i=1

ATi,NR
(
ATi,NR

)T
. (4.6)

Hence, D is a negative sum of symmetric positive definite matrices. By multiplying

(4.5e) by minus one, the linear system of equations

−DxN = −c (4.7)

becomes positive definite and can be solved by Cholesky’s method. We achieve AN,N =
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0 by not choosing diagonal nodes as separator block.

If all these criteria are satisfied, the matrix is highly suitable for direct methods. We will

see in the next chapter that our matrix (3.27) fulfills all these requirements.

4.2 Parallelizing Cholesky’s method

A common implementation of Cholesky’s method for A ∈ Rn×n is shown in Algorithm 4.1.

It stores the values of R ∈ Rn×n with A = RRT in the lower triangular elements of A. The

loops of the algorithm are designed to run serially, processing the elements one by one.

Algorithm 4.1: A serial implementation of Cholesky’s method

1: function Cholesky(A) . A ∈ Rn×n

2: for i← 1, . . . , n do

3: for j ← 1, . . . , i do

4: temp← Ai,j

5: for k ← 1, . . . , j − 1 do

6: temp← temp− Ai,kAj,k
7: end for

8: if i > j then

9: Ai,j ← temp/Aj,j

10: else if temp > 0 then

11: Ai,i ←
√
temp

12: else

13: return failed

14: end if

15: end for

16: end for

17: return success

18: end function

In this section we want to develop an alternative implementation, which performs certain

operations in parallel, although it does exactly the same from an analytical point of view.
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This can be achieved by systematically reordering individual instructions.

4.2.1 The concept of dependency graphs

As a tool for systematic reordering of instructions we use dependency graphs. They will

help us to identify instructions which actually do not depend on each other’s results and

therefore can be executed in parallel.

The idea is to assign one graph node to each instruction. If an instruction B directly needs

the results of another instruction A, an edge pointing from node A to node B is inserted.

This indicates the flow of data between both instructions:

A B

The fully generated graph contains a set of nodes N0 from which all edges point away since

an algorithm must have an entry point. The corresponding instructions can be executed in

parallel as they do not need any results from other nodes. We remove the nodes of N0 from

the graph and continue searching for the next set of nodes N1 from which all edges point

away. The execution of every node of N1 obviously depends on the result of N0, otherwise

these single independent nodes would have already been selected by N0.

The seriesN0, N1, . . . defines a new graph containingNi as supernodes with simultaneously

executable instructions. Figure 4.5 demonstrates the construction of Ni via a series of

originally executed instructions A, . . . , I.

Note that this strategy is very trivial and, of course, does not replace the extensive research

about parallel implementation of algorithms currently happening. A simple example which

is not fully covered by this easy approach is a sum of elements

a =
4∑
i=1

bi

which naively comes with a series of instructions

a← 0, a← a+ b1, a← a+ b2, a← a+ b3, a← a+ b4.

These instructions depend on each other, as each instruction needs the value of a which has
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A B C D E F G H I

(a) Serial sequence of instructions

E G D

H C F

I A B

E G D

H C F

I A B

G

H C F

I B

(b) Example dependencies (c) N0 = {A,D,E} (d) N1 = {B,H, I}

G

C F

A, D, E B, H, I C, F G

(e) N2 = {C,F},
N3 = {G}

(f) Resulting graph with supernodes containing
parallel instructions

Figure 4.5: Example parallelization via dependency graph

been altered by the previous instruction. Strangely, the instructions can be reordered, e.g.

to

a← 0, a← a+ b1, a← a+ b3, a← a+ b2, a← a+ b4,

without changing the final result. This makes us regarding this situation with suspicion.

And just to carry it to extremes: One could introduce a temporary variable c and achieve

the same result by calculating

a← 0, a← a+ b1, a← a+ b2,
a← a+ c

c← 0, c← c+ b3, c← c+ b4,

on two parallel program streams.

Obviously, there is a lot more about parallelization which can not be handled efficiently

with this simple dependency graph approach. The interested reader is refered to [11], which

considers a lot more parallelization techniques in detail. Fortunately, in case of Cholesky’s
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method analyzing the dependency graph helps a lot.

4.2.2 Instruction reordering

We analyze Cholesky’s method by simulating the computation steps with n = 4 to receive

an impression about what actually happens. The resulting 20 instructions of the algorithm

are shown in Figure 4.6. The corresponding dependency graph is shown in Figure 4.7.

By successively removing the sets of nodes N0, N1,. . . the parallely executable instructions

grouped by supernodes can be identified. Figure 4.8 shows the reordered graph.

1. A1,1 ←

√

A1,1 8. A3,3 ← A3,3 −A3,1A3,1 15. A4,3 ← A4,3 −A4,2A3,2

2. A2,1 ← A2,1/A1,1 9. A3,3 ← A3,3 −A3,2A3,2 16. A4,3 ← A4,3/A3,3

3. A2,2 ← A2,2 −A2,1A2,1 10. A3,3 ←

√

A3,3 17. A4,4 ← A4,4 −A4,1A4,1

4. A2,2 ←

√

A2,2 11. A4,1 ← A4,1/A1,1 18. A4,4 ← A4,4 −A4,2A4,2

5. A3,1 ← A3,1/A1,1 12. A4,2 ← A4,2 −A4,1A2,1 19. A4,4 ← A4,4 −A4,3A4,3

6. A3,2 ← A3,2 −A3,1A2,1 13. A4,2 ← A4,2/A2,2 20. A4,4 ←

√

A4,4

7. A3,2 ← A3,2/A2,2 14. A4,3 ← A4,3 −A4,1A3,1

Figure 4.6: Instructions of Cholesky’s method with n = 4

Now we can develop a parallel variant of Cholesky’s method by analyzing the regularity

of the reordered graph. Obviously, there’s a loop which serially counts from 1 to n. Every

step consists of three different types of supernodes. A single supernode contains equal

instructions which are processed on different data indices, which makes it possible to run

the whole algorithm on CUDA hardware. A closer look at the indices of the supernodes

reveals a parallel implementation of Cholesky’s method for arbitrary values n, described by

Algorithm 4.2.

Algorithm 4.2: A parallel implementation of Cholesky’s method

1: function ParallelCholesky(A) . A ∈ Rn×n

2: for i← 1, . . . , n do
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A1,1 ←

√

A1,1 A4,1 ← A4,1/A1,1

A2,1 ← A2,1/A1,1 A4,2 ← A4,2 −A4,1A2,1

A2,2 ← A2,2 −A2,1A2,1 A4,2 ← A4,2/A2,2

A2,2 ←

√

A2,2 A4,3 ← A4,3 −A4,1A3,1

A3,1 ← A3,1/A1,1 A4,3 ← A4,3 −A4,2A3,2

A3,2 ← A3,2 −A3,1A2,1 A4,3 ← A4,3/A3,3

A3,2 ← A3,2/A2,2 A4,4 ← A4,4 −A4,1A4,1

A3,3 ← A3,3 −A3,1A3,1 A4,4 ← A4,4 −A4,2A4,2

A3,3 ← A3,3 −A3,2A3,2 A4,4 ← A4,4 −A4,3A4,3

A3,3 ←

√

A3,3 A4,4 ←

√

A4,4

Figure 4.7: Dependency graph of Cholesky’s method with n = 4

3: if Ai,i ≤ 0 then

4: return failed

5: end if

6: Ai,i ←
√
Ai,i

7: for all j ∈ {i+ 1, . . . , n} do . parallel loop

8: Aj,i ← Aj,i/Ai,i

9: end for

10: for all j ∈ {i+ 1, . . . , n}, k ∈ {i+ 1, . . . , j} do . parallel loop

11: Aj,k ← Aj,k − Aj,iAk,i
12: end for

13: end for

14: return success

15: end function
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A1,1 ←

√

A1,1

A2,1 ← A2,1/A1,1 A3,1 ← A3,1/A1,1 A4,1 ← A4,1/A1,1

A2,2 ← A2,2 −A2,1A2,1 A3,2 ← A3,2 −A3,1A2,1 A4,2 ← A4,2 −A4,1A2,1

A3,3 ← A3,3 −A3,1A3,1 A4,3 ← A4,3 −A4,1A3,1

A4,4 ← A4,4 −A4,1A4,1

A2,2 ←

√

A2,2

A3,2 ← A3,2/A2,2 A4,2 ← A4,2/A2,2

A3,3 ← A3,3 −A3,2A3,2 A4,3 ← A4,3 −A4,2A3,2

A4,4 ← A4,4 −A4,2A4,2

A3,3 ←

√

A3,3

A4,3 ← A4,3/A3,3

A4,4 ← A4,4 −A4,3A4,3

A4,4 ←

√

A4,4

Figure 4.8: Supernodes with parallel instructions of Cholesky’s method with n = 4

4.2.3 Cherry on the cake: A sparse parallel variant with fill–in

reduction

The principle of a sparse variant of Cholesky’s method is to ignore instructions which actually

do not do anything. Instructions of the type

Aj,i ← Aj,i/Ai,i (4.8)
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can be ignored, if Aj,i is a zero element. Besides, we do not need to process an elimination

instruction

Aj,k ← Aj,k − Aj,iAk,i, (4.9)

if Aj,i = 0 or Ak,i = 0. One has to pay attention to fill–ins, which can appear during this

step, if Aj,k originally is a zero element, but Aj,iAk,i 6= 0. After a fill–in at Aj,k happened,

this element has to be considered as a non–zero element for the rest of the algorithm. In

practice, a hash table can be used to keep track of all non–zero elements.

If the decomposition is frequently used with a constant matrix structure but different

values (like in the case of our interior point implementation), it is worth to generate an

instruction scheduler a priori. This scheduler is defined by a series of sets

V1, . . . , Vn−1 and W1, . . . ,Wn−1 (4.10)

where Vi contains the indices j of all relevant instructions (4.8), and Wi contains the index–

tuples (j, k) of all relevant instructions (4.9) in the i–th step. A scheduler can easily be

generated by a simple “dry–run” of Cholesky’s method. Instead of modifying the matrix A,

we collect and store the relevant indices in Vi and Wi and update a temporary hashtable

containing the non–zero elements if necessary.

A scheduler also works perfectly with sparse data structures like rows–, columns– and

values–arrays. Vi and Wi can then simply hold the position of the elements within these

arrays. A fill–in element is easily handled by appending the position to the rows– and

columns–array and a zero to the values–array. In this case, one should use a map instead of

a hash. It should store pairs of (i, j)→ l, where l is the index of the element Ai,j within the

sparse data structures.

To reduce the number of fill–ins we use an approach called Approximate Minimum Degree

Ordering Algorithm [1, 28] which performs an intelligent preordering of the matrix. The

concept of this approach becomes clear when considering the first parallel elimination step
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in Figure 4.8 which consists of

A2,2 ← A2,2 − A2,1A2,1, A3,2 ← A3,2 − A3,1A2,1, A4,2 ← A4,2 − A4,1A2,1,

A3,3 ← A3,3 − A3,1A3,1, A4,3 ← A4,3 − A4,1A3,1,

A4,4 ← A4,4 − A4,1A4,1.

(4.11)

All the factors Aj,1 and Ak,1 are represented by edges which are connected to the first node.

A fill–in appears, if Aj,k is originally zero. This means nodes j and k are not connected as

neighbors. If we choose a permutation which brings the node with the smallest degree to

the first row/column, most of the products Aj,1Ak,1 will be zero. Hence, the probability of

producing non–zero products and, in particular, the probability of producing fill–ins during

the first elimination step is reduced significantly.

For the rest of the runtime of Cholesky’s method the first node will not be used any more,

so we remove it from the graph and repeat. By doing this, a permuation is successively

generated.

The crux of the matter is, that removing elimination instructions will reduce the pa-

rallelization bandwidth (actually O(n2)) significantly. On very sparse matrices with O(n)

elements the complexity of the supernodes with elimination instructions even drops to O(1).

For this reason, the sparse parallel variant of Cholesky’s method will perform best on “not–

so–dense” matrices with O(n2) elements but a lot of zeros which ought to be recognized.
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Chapter 5

Parallel search direction computation

In Section 3.2 we have found a problem definition which leads to a sparse linear system of

equations (3.27). The evaluation of the individual submatrices of this system can be done

with a parallel bandwidth of O(N), where N is the length of the discretization horizon, as

fi,j, ∂ufi, ∂xfi and the rest of the matrix content can be computed independently.

We will now try to find a permutation in such a way that...

a) ... most of the computation while solving the linear system of equations can be done

in parallel,

b) ... we make use of the sparse structure of the matrix with reduced fill–ins,

c) ... all matrix inversions of subsystems can be done by Cholesky’s method.

The permutation will be constructed with the help of the tools which have been introduced

in Chapter 4.

5.1 Permuting the search direction matrix

First, we construct the matrix graph based on the example matrix with N = 4 on page 40.

The full graph is shown by Figure 5.1a. Due to the problem definition the graph has a nice

regular structure (except for nodes 9 and 30). This will make it easy to divide the graph

into similarly structured blocks in order to satisfy the requirements of CUDA hardware. The

first dissection step can be performed either by eliminating nodes (5, 6, 7, 8, 9) or (15, 17,
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19, 21). Since we aim for using Cholesky’s method in the end, we take (15, 17, 19, 21) as

first separator nodes, because they do not represent diagonal elements. Hence, this choice of

the separator block keeps positive eigenvalues at the block diagonal matrices. The separator

block itself is a zero matrix, as the separator nodes are not connected in the original graph.

Thus, Cholesky’s method can be used to solve the separator block system (4.5e) of the first

dissection (see Section 4.1.4).

In the second dissection step we choose (14, 16, 18 20) as separator nodes, which in turn

leads to zero–matrices as separator blocks and divides the subgraphs of the first dissection

step into almost equally sized subgraphs. As in the first dissection step, we can use Cholesky’s

method to solve (4.5e).

The third and last dissection step is done by eliminating (22,...,30). Doing this is a bit

risky, since it does not divide a subgraph into nice diagonal blocks and, hence, will produce

some calculation overhead. On the other hand, it will lead to a lot of independent, symmet-

ric and positive definite diagonal block matrices1 which can all be processed simultaneously

by Cholesky’s method. The last dissection step will merely permute q̇u,i and q̇x,i out to the

double–borders. The sizes of the separator blocks are given by the number of nonlinear

equality constraints. If we assume that we do not have “so much” nonlinear equality con-

strainst per horizon step, it is also safe to assume that the third dissection step will pay off

with respect to computational effort. Again, we generate zero matrices as separator blocks,

so (4.5e) of the third dissection step can be solved with Cholesky’s method.

The fully permuted matrix is shown in Figure 5.2. First and second dissection steps are

indicated by solid light blue and dashed dark blue frames. One can easily decode the regular-

ity of the individual indices for arbitrary values of N . Since all block diagonal matrices have

the same structure (except the block with σx,4) but different values, the whole decomposition

is well suited for SIMD architecture like CUDA hardware.

1The remaining diagonal nodes are associated with σu,i, σx,i and ξId which are symmetric and positive
definite as stated in Section 3.2.2.
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26 27 28 29 30

5 15 6 17 7 19 8 21 9

14 10 16 11 18 12 20 13

1 22 2 23 3 24 4 25

(a) Full matrix graph

26 27 28 29 30

5 15 6 17 7 19 8 21 9

14 10 16 11 18 12 20 13

1 22 2 23 3 24 4 25

(b) First dissection step

26 27 28 29 30

5 15 6 17 7 19 8 21 9

14 10 16 11 18 12 20 13

1 22 2 23 3 24 4 25

(c) Second dissection step

26 27 28 29 30

5 15 6 17 7 19 8 21 9

14 10 16 11 18 12 20 13

1 22 2 23 3 24 4 25

(d) Third dissection step

Figure 5.1: Matrix graph and nested dissection of (3.27) with N = 4
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Figure 5.2: Three–way dissected matrix of (3.27) with N = 4
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5.2 Solving the linear system of equations

We will now identify the computation steps of a manual three–way dissection which results

in the matrix shown in Figure 5.2. The five phases of a one–way dissection (4.5g), ..., (4.5f)

must be repeated recursively each time when (4.5g) has to be evaluated for an individual

dissection level. To be honest, this section might be a little bit uncomfortable to read and

one could regret not having used an automatic dissection algorithm. But since the manual

work provides a robust nested dissection and eliminates the need of a bulky data structure

for hierarchically storing the information about dissection steps, we are encouraged to stay

on course.

We assume that the linear system of equations (3.27) is given by

Âp = b̂ (5.1)

and a permutation matrix P has been constructed with the result that A = PÂP T has

the desired form of Figure 5.2. Thus, the right hand side of the permuted linear system of

equations is defined as b = P b̂. The final solution of (3.27) can be obtained by p = P Ty,

where y is the solution of the permuted system Ay = b.

First of all, the dissection phase (4.5g) will be considered for all diagonal blocks of the first

dissection level. A close inspection reveals three different blocks Ai,i, 1 ≤ i ≤ N + 1. The

cases i = 1 and 2 ≤ i ≤ N look similar, but differ in the right hand side of the linear system

of equations. Case i = N + 1 falls out of alignment with respect to structure and size. The

three cases have to be considered individually. At the end of this chapter we evaluate the

remaining dissection phases of the first dissection level and formulate an algorithm which

solves (3.27), taking account of all previous results in this chapter.

5.2.1 First dissection level, 2 ≤ i ≤ N

Computing (4.5g) of the first dissection level with 2 ≤ i ≤ N is solving the linear system of

equations:
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

σu,i q̇Tu,i ∂uf
T
i

q̇u,i

σx,i−1 q̇Tx,i−1 ∂xf
T
i

q̇x,i−1

ξId ∂xf
AT
i

∂ufi ∂xfi ∂xf
A
i



(
Qi Ri

)
=


. . .

(i−1)-st−−−−→
column

0 0

. . .

bi,1

0 0 bi,2

−Id Id bi,3

0 0 bi,4

0 BT bi,5

0 0 bi,6


(5.2)

To solve this system, we have to solve (4.5g) of the second dissection level for all three

diagonal blocks.

First diagonal block: For the first block of (5.2), we solve

σu,i q̇Tu,i

q̇u,i

( Qi,1 Ri,1

)
=

 ∂uf
T
i . . . 0 0 . . . bi,1

0 . . . 0 0 . . . bi,2

 (5.3)

in turn by solving (4.5g) of the third dissection level, which leads to the system

σu,i

(
Qi,1,1 Ri,1,1

)
=

(
q̇Tu,i ∂uf

T
i . . . 0 0 . . . bi,1

)
.

We introduce temporary matrices ỹi,1,1, ỹi,1,2, ỹi,1,3 and solve

σu,i

(
ỹi,1,1 ỹi,1,2 ỹi,1,3

)
=
(
q̇Tu,i ∂uf

T
i bi,1

)
,
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then it holds that

Qi,1,1 = ỹi,1,1

Ri,1,1 =
(
ỹi,1,2 . . . 0 0 . . . ỹi,1,3

)
.

The equations (4.5c) and (4.5d) of the third dissection level are given by

Di,1 = −q̇u,iỹi,1,1

ci,1 =
(

0 . . . 0 0 . . . bi,2

)
− q̇u,iRi,1,1

=
(
−q̇u,iỹi,1,2 . . . 0 0 . . . bi,2 − q̇u,iỹi,1,3

)

and (4.5e) is given by the linear system of equations

Di,1yi,1,2 = ci,1

(−q̇u,iỹi,1,1)yi,1,2 =
(
−q̇u,iỹi,1,2 . . . 0 0 . . . bi,2 − q̇u,iỹi,1,3

)
,

where yi,1,2 is another temporary matrix. We solve this by introducing ỹi,1,4 and ỹi,1,5 and

solving

(−q̇u,iỹi,1,1)
(
ỹi,1,4 ỹi,1,5

)
=
(
−q̇u,iỹi,1,2 bi,2 − q̇u,iỹi,1,3

)
.

So, yi,1,2 is given by

yi,1,2 =
(
ỹi,1,4 . . . 0 0 . . . ỹi,1,5

)
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and (4.5f) of the third dissection level is

yi,1,1 = Ri,1,1 −Qi,1,1yi,1,2 =

=
(
ỹi,1,2 . . . 0 0 . . . ỹi,1,3

)
− ỹi,1,1

(
ỹi,1,4 . . . 0 0 . . . ỹi,1,5

)
.

The matrix yi,1,1
yi,1,2

 =
(
Qi,1 Ri,1

)
is the solution of (5.3), so it holds that

Qi,1 =

ỹi,1,2 − ỹi,1,1ỹi,1,4
ỹi,1,4

 =:

ỹi,1
ỹi,2


Ri,1 =

. . . 0 0 . . . ỹi,1,3 − ỹi,1,1ỹi,1,5

. . . 0 0 . . . ỹi,1,5

 =:

. . . 0 0 . . . ỹi,3

. . . 0 0 . . . ỹi,4

 ,

where ỹi,1, ỹi,2, ỹi,3 and ỹi,4 are matrices which hold the full information of Qi,1 and Ri,1.

Alltogether, this leads to Algorithm 5.1.

Algorithm 5.1: Solving the linear system of equations, i ≤ N , second dissection level,
first block

1: function BlockURestr(i)

2: t1 ← [q̇Tu,i, ∂uf
T
i , bi,1]

3: t1 ← CholSolve(σu,i, t1)

4: D ← −q̇u,it1[1]

5: t2 ← [−q̇u,it1[2], bi,2 − q̇u,it1[3]]

6: t2 ← CholSolve(−D, −t2)

7: return [t1[2]− t1[1]t2[1], t2[1], t1[3]− t1[1]t2[2], t2[2]] . ỹi,1, ỹi,2, ỹi,3 and ỹi,4

8: end function

If ui, i ≥ 2, has no nonlinear equality constraints, then no third dissection step is required.

ỹi,1,1, ỹi,1,4 and ỹi,1,5 have no elements and the algorithm becomes much easier, as shown in
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Algorithm 5.2.

Algorithm 5.2: Solving the linear system of equations, i ≤ N , second dissection level,
first block, no equality constraints

1: function BlockU(i)

2: t← [∂uf
T
i , bi,1]

3: return CholSolve(σu,i, t1) . ỹi,1, and ỹi,3

4: end function

Second diagonal block: The equation (4.5g) of the second diagonal block of (5.2) is

given by

σx,i−1 q̇Tx,i−1

q̇x,i−1

( Qi,2 Ri,2

)
=

 ∂xf
T
i . . . −Id Id . . . bi,3

0 . . . 0 0 . . . bi,4

 . (5.4)

Again, we solve this by computing (4.5g) of the third dissection level

σx,i−1

(
Qi,2,1 Ri,2,1

)
=
(
q̇Tx,i−1 ∂xf

T
i . . . −Id Id . . . bi,3

)
.

We introduce the temporary matrices ỹi,2,1, ỹi,2,2, ỹi,2,3 and ỹi,2,4 and solve

σx,i−1

(
ỹi,2,1 ỹi,2,2 ỹi,2,4 ỹi,2,3

)
=
(
q̇Tx,i−1 ∂xf

T
i Id bi,3

)
.

Then it holds

Qi,2,1 = ỹi,2,1

Ri,2,1 =
(
ỹi,2,2 . . . −ỹi,2,4 ỹi,2,4 . . . ỹi,2,3

)
Di,2 = −q̇x,i−1ỹi,2,1

ci,2 =
(

0 . . . 0 0 . . . bi,4

)
− q̇x,i−1Ri,2,1

=
(
−q̇x,i−1ỹi,2,2 . . . q̇x,i−1ỹi,2,4 −q̇x,i−1ỹi,2,4 . . . bi,4 − q̇x,i−1ỹi,2,3

)
.
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Since σ−1
x,i−1 is symmetric, we can save a little bit of computation time by simplifying

q̇x,i−1ỹi,2,4 = q̇x,i−1σ
−1
x,i−1Id =

((
σ−1
x,i−1

)T
q̇Tx,i−1

)T
=
(
σ−1
x,i−1q̇

T
x,i−1

)T
= ỹTi,2,1

⇒ ci,2 =
(
−q̇x,i−1ỹi,2,2 . . . ỹTi,2,1 −ỹTi,2,1 . . . bi,4 − q̇x,i−1ỹi,2,3

)
.

The equation (4.5e) is given by

Di,2yi,2,2 = ci,2

(−q̇x,i−1ỹi,2,1)yi,2,2 =
(
−q̇x,i−1ỹi,2,2 . . . ỹTi,2,1 −ỹTi,2,1 . . . bi,4 − q̇x,i−1ỹi,2,3

)
,

where yi,2,2 is a temporary matrix. We introduce ỹi,2,5, ỹi,2,6 and ỹi,2,7 and solve

(−q̇x,i−1ỹi,2,1)
(
ỹi,2,5 ỹi,2,7 ỹi,2,6

)
=
(
−q̇x,i−1ỹi,2,2 ỹTi,2,1 bi,4 − q̇x,i−1ỹi,2,3

)
.

The back substitution (4.5f) of the third dissection level is given by

yi,2,2 =
(
ỹi,2,5 . . . ỹi,2,7 −ỹi,2,7 . . . ỹi,2,6

)
yi,2,1 = Ri,2,1 −Qi,2,1yi,2,2 =

=
(
ỹi,2,2 . . . −ỹi,2,4 ỹi,2,4 . . . ỹi,2,3

)
−

ỹi,2,1

(
ỹi,2,5 . . . ỹi,2,7 −ỹi,2,7 . . . ỹi,2,6

)

and with yi,2,1
yi,2,2

 =
(
Qi,2 Ri,2

)
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the solution of the second diagonal block (5.4) of the second dissection level is given by

Qi,2 =

ỹi,2,2 − ỹi,2,1ỹi,2,5
ỹi,2,5

 =:

ỹi,5
ỹi,6


Ri,2 =

. . . −ỹi,2,4 − ỹi,2,1ỹi,2,7 ỹi,2,4 + ỹi,2,1ỹi,2,7 . . . ỹi,2,3 − ỹi,2,1ỹi,2,6

. . . ỹi,2,7 −ỹi,2,7 . . . ỹi,2,6


=:

. . . −ỹi,7 ỹi,7 . . . ỹi,9

. . . −ỹi,8 ỹi,8 . . . ỹi,10

 ,

which defines ỹi,5, ỹi,6, ỹi,7, ỹi,8, ỹi,9 and ỹi,10. These matrices hold the full information of Qi,2

and Ri,2. A compact algorithm representation of the second block computation is shown in

Algorithm 5.3. The modified variant without equality constraints is shown in Algorithm 5.4.

Algorithm 5.3: Solving the linear system of equations, i ≤ N , second dissection level,
second block

1: function BlockXRestr(i)

2: t1 ← CholSolve(σx,i−1, Id)

3: t2 ← [t1q̇
T
x,i−1, t1∂xf

T
i , t1bi,3]

4: D ← −q̇x,i−1t2[1]

5: t3 ← [−q̇x,i−1t2[2], t2[1]T , bi,4 − q̇x,i−1t2[3]]

6: t3 ← CholSolve(−D, −t3)

7: return [t2[2]− t2[1]t3[1], t3[1], t1 + t2[1]t3[2], −t3[2], t2[3]− t2[1]t3[3], t3[3]]

. ỹi,5, ỹi,6, ỹi,7, ỹi,8, ỹi,9 and ỹi,10

8: end function

Algorithm 5.4: Solving the linear system of equations, i ≤ N , second dissection level,
second block, no equality constraints

1: function BlockX(i)

2: t← CholSolve(σx,i−1, Id)

3: return [t∂xf
T
i , t, tbi,3]; . ỹi,5, ỹi,7 and ỹi,9

4: end function
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Third diagonal block: The third diagonal block of (5.2) is quite easy since no third

dissection level must be evaluated:

(
Qi,3 Ri,3

)
=

(
ξId

)−1 (
∂xf

AT
i . . . 0 BT . . . bi,5

)
Qi,3 =

1

ξ
∂xf

AT
i

Ri,3 =
(
. . . 0 1

ξ
BT . . . 1

ξ
bi,5

)

Merging all blocks of the second dissection level: To compute the solution of (5.2)

we first have to evaluate (4.5c) and (4.5d):

Di = −
(
∂ufi 0

)ỹi,1
ỹi,2

− (∂xfi 0

)ỹi,5
ỹi,6

−−1

ξ
∂xf

A
i ∂xf

AT
i

= −∂ufiỹi,1 − ∂xfiỹi,5 −
1

ξ
∂xf

A
i ∂xf

AT
i

ci =
(
. . . 0 0 . . . bi,6

)
−
(
∂ufi 0

)
Ri,1 −

(
∂xfi 0

)
Ri,2 − ∂xfAi Ri,3

=
(
. . . 0 0 . . . bi,6

)
−
(
. . . 0 0 . . . ∂ufiỹi,3

)
−
(
. . . −∂xfiỹi,7 ∂xfiỹi,7 . . . ∂xfiỹi,9

)
−
(
. . . 0 1

ξ
∂xf

A
i B

T . . . 1
ξ
∂xf

A
i bi,5

)
=

(
. . . ∂xfiỹi,7 −∂xfiỹi,7 − 1

ξ
∂xf

A
i B

T . . .

. . . bi,6 − ∂ufiỹi,3 − ∂xfiỹi,9 − 1
ξ
∂xf

A
i bi,5

)

We introduce the temporary matrices ỹi,11, ỹi,12 and ỹi,13, and compute the relevant elements

of (4.5e) (of the second dissection level) by solving

Di

(
ỹi,11 ỹi,12 ỹi,13

)
=(

∂xfiỹi,7 −∂xfiỹi,7 − 1
ξ
∂xf

A
i B

T bi,6 − ∂ufiỹi,3 − ∂xfiỹi,9 − 1
ξ
∂xf

A
i bi,5

)
.

yi,6 =
(
. . . ỹi,11 ỹi,12 . . . ỹi,13

)
.
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The three iterations of (4.5f) are given by

yi,1
yi,2

 =

. . . 0 0 . . . ỹi,3

. . . 0 0 . . . ỹi,4

−
ỹi,1
ỹi,2

(. . . ỹi,11 ỹi,12 . . . ỹi,13

)

=

. . . −ỹi,1ỹi,11 −ỹi,1ỹi,12 . . . ỹi,3 − ỹi,1ỹi,13

. . . −ỹi,2ỹi,11 −ỹi,2ỹi,12 . . . ỹi,4 − ỹi,2ỹi,13


yi,3
yi,4

 =

. . . −ỹi,7 ỹi,7 . . . ỹi,9

. . . −ỹi,8 ỹi,8 . . . ỹi,10

−
ỹi,5
ỹi,6

(. . . ỹi,11 ỹi,12 . . . ỹi,13

)

=

. . . −ỹi,7 − ỹi,5ỹi,11 ỹi,7 − ỹi,5ỹi,12 . . . ỹi,9 − ỹi,5ỹi,13

. . . −ỹi,8 − ỹi,6ỹi,11 ỹi,8 − ỹi,6ỹi,12 . . . ỹi,10 − ỹi,6ỹi,13


yi,5 =

(
. . . 0 1

ξ
BT . . . 1

ξ
bi,5

)
− 1

ξ
∂xf

AT
i

(
. . . ỹi,11 ỹi,12 . . . ỹi,13

)
=

(
. . . −1

ξ
∂xf

AT
i ỹi,11

1
ξ
(BT − ∂xfATi ỹi,12) . . . 1

ξ
(bi,5 − ∂xfATi ỹi,13)

)

and (finally) the solution ( Qi | Ri ) of (5.2) can be obtained by

Qi =


. . .

(i−1)-st−−−−→
column

−ỹi,1ỹi,11 −ỹi,1ỹi,12

. . .

−ỹi,2ỹi,11 −ỹi,2ỹi,12

−ỹi,7 − ỹi,5ỹi,11 ỹi,7 − ỹi,5ỹi,12

−ỹi,8 − ỹi,6ỹi,11 ỹi,8 − ỹi,6ỹi,12

−1
ξ
∂xf

AT
i ỹi,11

1
ξ
(BT − ∂xfATi ỹi,12)

ỹi,11 ỹi,12


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=:


. . .

(i−1)-st−−−−→
column

Q
(1,2)
i Q

(1,1)
i

. . .

Q
(2,2)
i Q

(2,1)
i

Q
(3,2)
i Q

(3,1)
i

Q
(4,2)
i Q

(4,1)
i

Q
(5,2)
i Q

(5,1)
i

Q
(6,2)
i Q

(6,1)
i



Ri =



ỹi,3 − ỹi,1ỹi,13

ỹi,4 − ỹi,2ỹi,13

ỹi,9 − ỹi,5ỹi,13

ỹi,10 − ỹi,6ỹi,13

1
ξ
(bi,5 − ∂xfATi ỹi,13)

ỹi,13


=:



R
(1)
i

R
(2)
i

R
(3)
i

R
(4)
i

R
(5)
i

R
(6)
i


.

5.2.2 First dissection level, i = 1

For i = 1, the dissection is similar to the case 2 ≤ i ≤ N . Only the right hand side of the

linear system of equations differs a little bit:



σu,i q̇Tu,i ∂uf
T
i

q̇u,i

σx,i−1 q̇Tx,i−1 ∂xf
T
i

q̇x,i−1

ξId ∂xf
AT
i

∂ufi ∂xfi ∂xf
A
i



(
Qi Ri

)
=



0

. . .

bi,1

0 bi,2

Id bi,3

0 bi,4

BT bi,5

0 bi,6


(5.5)
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First diagonal block: Processing the first diagonal block of (5.5) is exactly the same as

for 2 ≤ i ≤ N . So we compute Qi,1 and Ri,1 via

σu,i q̇Tu,i

q̇u,i

( Qi,1 Ri,1

)
=

 ∂uf
T
i 0 . . . bi,1

0 0 . . . bi,2

 (5.6)

with Algorithm 5.1 and/or 5.2.

Second diagonal block: The next block differs a bit from the case 2 ≤ i ≤ N . The linear

system of equations is

σx,i−1 q̇Tx,i−1

q̇x,i−1

( Qi,2 Ri,2

)
=

 ∂xf
T
i Id . . . bi,3

0 0 . . . bi,4

 , (5.7)

where the right hand side lacks the −Id element. Since this element has not been explicitly

calculated (we have only processed the Id element and used the negative result), we can use

the algorithms of the case 2 ≤ i ≤ N again. The solution is given by

Qi,2 =

ỹi,2,2 − ỹi,2,1ỹi,2,5
ỹi,2,5

 =:

ỹi,5
ỹi,6


Ri,2 =

ỹi,2,4 + ỹi,2,1ỹi,2,7 . . . ỹi,2,3 − ỹi,2,1ỹi,2,6

−ỹi,2,7 . . . ỹi,2,6


=:

ỹi,7 . . . ỹi,9

ỹi,8 . . . ỹi,10

 ,

where ỹi,5, ỹi,6, ỹi,7, ỹi,8, ỹi,9 and ỹi,10 are obtained by Algorithm 5.3 and/or Algorithm 5.4.

Third diagonal block: The last block of (5.5) leads to the same evaluations as for the

case 2 ≤ i ≤ N :

(
Qi,3 Ri,3

)
=

(
ξId

)−1 (
∂xf

AT
i BT . . . bi,5

)
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Qi,3 =
1

ξ
∂xf

AT
i

Ri,3 =
(

1
ξ
BT . . . 1

ξ
bi,5

)
.

Merging all blocks of the second dissection level: We put everything together to

solve (5.5)

Di = −
(
∂ufi 0

)ỹi,1
ỹi,2

− (∂xfi 0

)ỹi,5
ỹi,6

−−1

ξ
∂xf

A
i ∂xf

AT
i

= −∂ufiỹi,1 − ∂xfiỹi,5 −
1

ξ
∂xf

A
i ∂xf

AT
i

ci =
(

0 . . . bi,6

)
−
(
∂ufi 0

)
Ri,1 −

(
∂xfi 0

)
Ri,2 − ∂xfAi Ri,3

=
(

0 . . . bi,6

)
−
(

0 . . . ∂ufiỹi,3

)
−
(
∂xfiỹi,7 . . . ∂xfiỹi,9

)
−
(

1
ξ
∂xf

A
i B

T . . . 1
ξ
∂xf

A
i bi,5

)
=

(
−∂xfiỹi,7 − 1

ξ
∂xf

A
i B

T . . . bi,6 − ∂ufiỹi,3 − ∂xfiỹi,9 − 1
ξ
∂xf

A
i bi,5

)

We compute ỹi,12 and ỹi,13 by solving

Di

(
ỹi,12 ỹi,13

)
=
(
−∂xfiỹi,7 − 1

ξ
∂xf

A
i B

T bi,6 − ∂ufiỹi,3 − ∂xfiỹi,9 − 1
ξ
∂xf

A
i bi,5

)

yi,6 =
(
ỹi,12 . . . ỹi,13

)
.

Note that we skipped ỹi,11. This leads to a consistent index numbering with respect to the

case 2 ≤ i ≤ N . The three iterations of (4.5f) are given by

yi,1
yi,2

 =

0 . . . ỹi,3

0 . . . ỹi,4

−
ỹi,1
ỹi,2

(ỹi,12 . . . ỹi,13

)

=

−ỹi,1ỹi,12 . . . ỹi,3 − ỹi,1ỹi,13

−ỹi,2ỹi,12 . . . ỹi,4 − ỹi,2ỹi,13



74



5.2. SOLVING THE LINEAR SYSTEM OF EQUATIONS

yi,3
yi,4

 =

ỹi,7 . . . ỹi,9

ỹi,8 . . . ỹi,10

−
ỹi,5
ỹi,6

(ỹi,12 . . . ỹi,13

)

=

ỹi,7 − ỹi,5ỹi,12 . . . ỹi,9 − ỹi,5ỹi,13

ỹi,8 − ỹi,6ỹi,12 . . . ỹi,10 − ỹi,6ỹi,13


yi,5 =

(
1
ξ
BT . . . 1

ξ
bi,5

)
− 1

ξ
∂xf

AT
i

(
ỹi,12 . . . ỹi,13

)
=

(
1
ξ
(BT − ∂xfATi ỹi,12) . . . 1

ξ
(bi,5 − ∂xfATi ỹi,13)

)
.

The solution ( Qi | Ri ) of (5.5) can be obtained by

Qi =



−ỹi,1ỹi,12

. . .

−ỹi,2ỹi,12

ỹi,7 − ỹi,5ỹi,12

ỹi,8 − ỹi,6ỹi,12

1
ξ
(BT − ∂xfATi ỹi,12)

ỹi,12


=:



Q
(1,1)
i

. . .

Q
(2,1)
i

Q
(3,1)
i

Q
(4,1)
i

Q
(5,1)
i

Q
(6,1)
i



Ri =



ỹi,3 − ỹi,1ỹi,13

ỹi,4 − ỹi,2ỹi,13

ỹi,9 − ỹi,5ỹi,13

ỹi,10 − ỹi,6ỹi,13

1
ξ
(bi,5 − ∂xfATi ỹi,13)

ỹi,13


=:



R
(1)
i

R
(2)
i

R
(3)
i

R
(4)
i

R
(5)
i

R
(6)
i


.

Thanks to the consistent choice of indices for both cases 2 ≤ i ≤ N and i = 1, we can

formulate a universal algorithm for the block merging step and i ≤ N . The implementation

is shown in Algorithm 5.5.

Algorithm 5.5: Solving the linear system of equations, i ≤ N , first dissection level

1: function BlockMerge(i, v, w)
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. v = [ỹi,1, ỹi,2, ỹi,3, ỹi,4]

. w = [ỹi,5, ỹi,6, ỹi,7, ỹi,8, ỹi,9, ỹi,10]

2: D ← −∂ufiv[1]− ∂xfiw[1]− 1
ξ
∂xf

A
i ∂xf

AT
i

3: if i ≥ 2 then

4: t← [−∂xfiw[3]− 1
ξ
∂xf

A
i B

T , bi,6 − ∂ufiv[3]− ∂xfiw[5]− 1
ξ
∂xf

A
i bi,5, ∂xfiw[3]]

5: else

6: t← [−∂xfiw[3]− 1
ξ
∂xf

A
i B

T , bi,6 − ∂ufiv[3]− ∂xfiw[5]− 1
ξ
∂xf

A
i bi,5]

7: end if

8: t← CholSolve(−D,−t)

. 2nd and 4th component of Q1, Q2 and R

. can have zero dimension if ui or xi

. have no nonlinear equality constraints.

9: Q1←



−v[1]t[1]

−v[2]t[1]

w[3]− w[1]t[1]

w[4]− w[2]t[1]

1
ξ
(BT − ∂xfATi t[1])

t[1]


, R←



v[3]− v[1]t[2]

v[4]− v[2]t[2]

w[5]− w[1]t[2]

w[6]− w[2]t[2]

1
ξ
(bi,5 − ∂xfATi t[2])

t[2]


10: if i ≥ 2 then

11: Q2←



−v[1]t[3]

−v[2]t[3]

−w[3]− w[1]t[3]

−w[4]− w[2]t[3]

−1
ξ
∂xf

AT
i t[3]

t[3]


12: else

13: Q2← [ ] . empty placeholder...

14: end if

15: return [Q1, Q2, R]

16: end function
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5.2.3 First dissection level, i = N + 1

The last diagonal block of the first dissection level is given by

σx,i−1 q̇Tx,i−1

q̇x,i−1

( Qi Ri

)
=

 . . .
−Id bi,3

0 bi,4

 . (5.8)

For the second dissection level, we have to solve

σx,i−1

(
Qi,2,1 Ri,2,1

)
=

(
q̇Tx,i−1 . . . −Id bi,3

)
.

Since this problem is similar to (5.4), we choose a similar enumeration of Qi,2,1 and Ri,2,1.

Otherwise, the indices would interfere with the second dissection level enumeration of the

previous cases. We solve this equation by introducing temporary matrices ỹi,2,1, ỹi,2,3 and

ỹi,2,4 and solving

σx,i−1

(
ỹi,2,1 ỹi,2,4 ỹi,2,3

)
=
(
q̇Tx,i−1 Id bi,3

)
.

Then it holds that

Qi,2,1 = ỹi,2,1

Ri,2,1 =
(
. . . −ỹi,2,4 ỹi,2,3

)
and the separator block is given by

Di,2 = −q̇x,i−1ỹi,2,1

ci,2 =
(
. . . 0 bi,4

)
−NT

i,2,1Ri,2,1

=
(
. . . ỹTi,2,1 bi,4 − q̇x,i−1ỹi,2,3

)
,

since

q̇x,i−1ỹi,2,4 = q̇x,i−1σ
−1
x,i−1Id =

((
σ−1
x,i−1

)T
q̇Tx,i−1

)T
=
(
σ−1
x,i−1q̇

T
x,i−1

)T
= ỹTi,2,1.
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We solve the linear system of equations

yi,2,2 = D−1
i,2 ci,2

= (−q̇x,i−1ỹi,2,1)−1
(
. . . ỹTi,2,1 bi,4 − q̇x,i−1ỹi,2,3

)

of the separator block by introducing temporary matrices ỹi,2,6, ỹi,2,7 and solving

(−q̇x,i−1ỹi,2,1)
(
ỹi,2,7 ỹi,2,6

)
=

(
ỹTi,2,1 bi,4 − q̇x,i−1ỹi,2,3

)
⇒ yi,2,2 =

(
. . . ỹi,2,7 ỹi,2,6

)
.

With the backsubstitution step

yi,2,1 = Ri,2,1 −Qi,2,1yi,2,2 =

=
(
. . . −ỹi,2,4 ỹi,2,3

)
−

ỹi,2,1

(
. . . ỹi,2,7 ỹi,2,6

)

the solution of (5.8) is given by

Qi =

 . . .
−ỹi,2,4 − ỹi,2,1ỹi,2,7

ỹi,2,7

 =:

 . . .
Q

(3,2)
i

Q
(4,2)
i


Ri =

ỹi,2,3 − ỹi,2,1ỹi,2,6
ỹi,2,6

 =:

R(3)
i

R
(4)
i

 .

A compact implementation of these computation steps is shown in Algorithm 5.6. If no

nonlinear equality constraints are defined for xN , the computation becomes a lot easier since

no second dissection step is required any more (Algorithm 5.7).

Algorithm 5.6: Solving the linear system of equations, i = N + 1, first dissection level
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1: function BlockXRestrLast

2: t1 ← CholSolve(σx,N , Id)

3: t2 ← [t1q̇
T
x,N , t1bN+1,3]

4: D ← −q̇x,N t2[1]

5: t3 ← [t2[1]T , bN+1,4 − q̇x,N t2[2]]

6: t3 ← CholSolve(−D, −t3)

7: return [ [−t1 − t2[1]t3[1], t3[1]], [t2[2]− t2[1]t3[2], t3[2]] ] . QN+1, RN+1

8: end function

Algorithm 5.7: Solving the linear system of equations, i = N + 1, first dissection level,
no equality constraints

1: function BlockXLast

2: t← CholSigma(x, N , Id)

3: return [−t, tbN+1,3]; . QN+1, RN+1

4: end function

5.2.4 Finalizing the first dissection level

Now that we have computed (4.5g) for each diagonal block of the first dissection level, we can

construct D and c of (4.5c) and (4.5d). Just to call to mind, those are equations (iterator

bounds and separator block equal to zero has already been applied)

D = −
N+1∑
i=1

ATi,N+2Qi (4.5c)

c = bN+2 −
N+1∑
i=1

ATi,N+2Ri. (4.5d)
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In the case of 2 ≤ i ≤ N , it holds that

ATi,N+2Qi =

(i−1)-st−−−−→
row



...

0 0 −Id 0 0 0

0 0 Id 0 B 0

...




. . .

(i−1)-st−−−−→
column

Q
(1,2)
i Q

(1,1)
i

. . .

Q
(2,2)
i Q

(2,1)
i

Q
(3,2)
i Q

(3,1)
i

Q
(4,2)
i Q

(4,1)
i

Q
(5,2)
i Q

(5,1)
i

Q
(6,2)
i Q

(6,1)
i



=



...

. . .
(i−1)-st−−−−→
column

↓ (i− 1)-st row

. . .
−Q(3,2)

i −Q(3,1)
i

Q
(3,2)
i +BQ

(5,2)
i Q

(3,1)
i +BQ

(5,1)
i

...



ATi,N+2Ri =

(i−1)-st−−−−→
row



...

0 0 −Id 0 0 0

0 0 Id 0 B 0

...





R
(1)
i

R
(2)
i

R
(3)
i

R
(4)
i

R
(5)
i

R
(6)
i


=

(i−1)-st−−−−→
row



...

−R(3)
i

R
(3)
i +BR

(5)
i

...


,

if i = 1,

ATi,N+2Qi =

0 0 Id 0 B 0

...





Q
(1,1)
i

. . .

Q
(2,1)
i

Q
(3,1)
i

Q
(4,1)
i

Q
(5,1)
i

Q
(6,1)
i


=

Q(3,1)
i +BQ

(5,1)
i . . .

...


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ATi,N+2Ri =

0 0 Id 0 B 0

...





R
(1)
i

R
(2)
i

R
(3)
i

R
(4)
i

R
(5)
i

R
(6)
i


=

R(3)
i +BR

(5)
i

...



and if i = N + 1,

ATi,N+2Qi =

 ...

−Id 0

 . . .
Q

(3,2)
i

Q
(4,2)
i

 =

 ...

. . . −Q(3,2)
i


ATi,N+2Ri =

 ...

−Id 0

R(3)
i

R
(4)
i

 =

 ...

−R(3)
i

 .

Alltogether, one can write

D = −
N+1∑
i=1

ATi,N+2Qi =



Ã1 B̃2

C̃2

. . .

B̃N

C̃N ÃN


(5.9)

c = bN+2 −
N+1∑
i=1

ATi,N+2Ri = bN+2 −


D̃1

...

D̃N

 (5.10)

with

Ãi := −Q(3,1)
i −BQ(5,1)

i +Q
(3,2)
i+1 (5.11)

B̃i := Q
(3,1)
i (5.12)

C̃i := −Q(3,2)
i −BQ(5,2)

i (5.13)
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D̃i := R
(3)
i +BR

(5)
i −R

(3)
i+1. (5.14)

Finally, we solve

DyN+2 = c. (5.15)

We can make use of the very nice regular structure of D. In Section 4.2.3, we have already

seen a concept of how to handle sparsity patterns within Cholesky’s method. The size of

the submatrices of (5.9) is n× n, thus the parallel approach could be worthwhile for bigger

systems. D is symmetrical by design, hence we only use B̃i and save the computation of C̃i.

For the last phase (4.5f) of the first dissection level

yi = Ri −QiyN+2, i = 1, . . . , N + 1 (5.16)

we write yN+2 as

(yN+2,1, . . . , yN+2,N)T := yN+2. (5.17)

Therewith, the final solution of our linear system of equation (3.27) is given by

y =



(
R

(j)
1 −Q

(j,1)
1 yN+2,1

)
j=1,...,6(

R
(j)
2 −Q

(j,2)
2 yN+2,1 −Q(j,1)

2 yN+2,2

)
j=1,...,6

...(
R

(j)
N −Q

(j,2)
N yN+2,N−1 −Q(j,1)

N yN+2,N

)
j=1,...,6(

R
(j)
N+1 −Q

(j,2)
N+1yN+2,N

)
j=3,...,4

yN+2


. (5.18)

A compact pseudocode program of the overall algorithm for evaluating (3.27) is shown

in Algorithm 5.8. While writing a real implementation of this algorithm, one has to take

care of the sizes of Q
(2,1)
i , Q

(4,1)
i , Q

(2,2)
i , Q

(4,2)
i , R

(2)
i and R

(4)
i (and all related factors). These

matrices have various numbers of rows, as the number of nonlinear equality constraints may

differ between individual horizon steps. A real implementation must also be able to handle

zero–height matrices, which occur if no equality constraints are defined for several horizon
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steps.

Algorithm 5.8: Solving the linear system of equations for search direction computation

1: function SearchDir

2: b← P b̂

3: for all i ∈ {1, . . . , N} do . parallel evaluation

4: v ← BlockURestr(i) or BlockU(i)

5: w ← BlockXRestr(i) or BlockX(i)

6:



Q
(1,1)
i

Q
(2,1)
i

Q
(3,1)
i

Q
(4,1)
i

Q
(5,1)
i

Q
(6,1)
i

,

Q
(1,2)
i

Q
(2,2)
i

Q
(3,2)
i

Q
(4,2)
i

Q
(5,2)
i

Q
(6,2)
i

,

R
(1)
i

R
(2)
i

R
(3)
i

R
(4)
i

R
(5)
i

R
(6)
i


← BlockMerge(i, v, w) . Q

(j,2)
1 has zero dimension

7: end for

8:

Q(3,2)
N+1

Q
(4,2)
N+1

,
R

(3)
N+1

R
(4)
N+1

← BlockXRestrLast or BlockXLast

9: for all i ∈ {1, . . . , N} do . parallel evaluation

10: Ãi ← −Q(3,1)
i −BQ(5,1)

i +Q
(3,2)
i+1

11: D̃i ← −R(3)
i −BR

(5)
i +R

(3)
i+1

12: if i ≥ 2 then

13: B̃i ← Q
(3,1)
i

14: end if

15: end for

16: yN+2 ← solution of (5.15) defined by Ai, Bi and Di (sparse Cholesky’s method)

17: Evaluate the remaining parts of y as defined in (5.18)

18: return P Ty

19: end function
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Chapter 6

Algorithm implementation

Finally, we have everything we need to implement a fast solver for reachable set problems.

It’s time to bring everything together, so turn on the text editor and put the final touches

on the Makefiles.

In this chapter, we will start with an implementation which is written in Fortran and C++.

It will extensively make use of CPU multi–core parallelization. The core of the algorithm

will be split into smaller modules. Actually, this is not necessary, but we will use this

fragmentation for benchmarking and identifying the module which is most time–consuming

of all. Eventually, we will exemplarily port the according module to a CUDA–kernel.

6.1 Parallelization concepts

Until now, we established a general basis by simply meeting as many parallelization require-

ments as possible, be it for CPU or CUDA hardware. We will now have to do it properly

and develop a precise implementation strategy. The strategy aims for running the algorithm

parallely on several CUDA devices (e.g. several Tesla cards). Since individual CUDA devices

are completely independent of each other, a CPU implementation of this strategy can easily

be derived by applying the same parallel distribution to the CPU cores and running the

individual CUDA–kernel grids as simple serial loops.

Running several CUDA devices in parallel can be done by initializing and using the

individual devices within different CPU threads (e.g. POSIX pthread). Each card has its

85



CHAPTER 6. ALGORITHM IMPLEMENTATION

own device memory. The whole system can be considered as a parallelization model without

shared memory, since a fast data transfer via GPUdirect can only be done as peer–to–peer

transactions between two devices. During an instant data synchronization of several devices,

a single device would have to copy its data a couple of times, depending on the total number

of CUDA devices.

On the other hand we can think of a scenario where data synchronization is required, but

not instantly. Then, we could make use of the CPU main memory which is accessible by all

devices and use a shared memory parallelization model. A GPU device can upload its data

to the CPU memory where other devices can download and use it. Assuming that memory

transfers of different devices usually do not happen at the same time, a single thread is

synchronized basically after two memory transactions.

6.1.1 Parallel queue processing

An approach which does not need instant data synchronization is processing the FIFO–buffer

of Algorithm 2.2 in parallel by one worker per CUDA device.

Each worker pops items from the global FIFO–buffer (which is stored on the CPU memo-

ry). The locally stored problem is processed and the result is pushed onto the FIFO–buffer

again. Since the number of iterations per problem vary, the workers will not finish their local

problems at the same time and colliding accesses to the global buffer can mostly be avoided.

Of course, the ordering of the original FIFO–buffer will be disturbed by the parallel

processing. In our case, this is not a big problem. We used a FIFO ordering such that the

problems drop out again as soon as possible which keeps the total size of the buffer small.

The parallel work will merely cause some local permutations of individual problems which

is still fine.

A parallel queue processing must be implemented carefully. While processing, some prob-

lems can arise when the buffer runs low. If a worker cannot pop any more problems due to

an empty buffer, it must not quit instantly, since another worker could push some new data

to the buffer. Therefore we need a mechanism which allows a worker to go to sleep and be

awakened again by another worker which has just produced new buffer data. When the last

worker comes to an empty buffer (all other workers are already sleeping), it has to wake all
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other workers so that they can quit the program. An implementation of this mechanism is

shown in Algorithm 6.1, which is a modification of Algorithm 2.2.

Algorithm 6.1: Computing a reachable set approximation, parallel queue processing

1: function ReachableSetParallel(uN , y, ref R̃η(t)) . valid initial guess uN , y

2: working ← number of workers

3: init F . initialize FIFO–buffer

4: Determine grid point x̃ next to xu(·)(t)

5: R̃η(t)← {x̃}

6: for all gridpoints x̃i adjacent to x̃ do

7: push (x̃i, uN , y) onto F

8: end for

9: parallel w ∈ {1, . . . , number of workers}

10: lock mutex

11: loop

12: while F = ∅ do

13: working ← working − 1

14: wait . unlock mutex, wait for broadcast, lock mutex

15: if working = 0 then . woken up by the last worker, quitting...

16: unlock mutex

17: return

18: end if

19: working ← working + 1

20: end while

21: pop (x̃, ũN , ỹ) from F

22: unlock mutex . next waiting worker is allowed to continue

23: (uN , y)← solve the feasibility problem like in Algorithm 2.2

24: lock mutex

25: if solution (uN , y) has been found then

26: for all gridp. x̃i adjacent to x̃ with x̃i /∈ R̃η(t) do

27: push (x̃i, uN , y) onto F

87



CHAPTER 6. ALGORITHM IMPLEMENTATION

28: end for

29: R̃η(t)← R̃η(t) ∪ {x̃}

30: end if

31: broadcast . wake waiting workers

32: if F = ∅ and working = 1 then

33: working ← 0

34: unlock mutex

35: return

36: end if

37: end loop

38: end parallel

39: end function

In this implementation we protect shared variables like working or the FIFO–buffer with

a mutex. The wait command blocks the current worker until another worker calls the

broadcast command. Prior to this, it unlocks the mutex. When the worker wakes up

again, it asks for a mutex lock before continuing. By doing so, we can guarantee that lines

12 to 21 are not processed by multiple workers, though all workers wake up at the same

time. Since the buffer could be emptied yet again by another worker who got the mutex

lock earlier, we wrap the wait command in a loop so that we can go to sleep again without

doing anyting.

The commands wait and broadcast are doing exactly the same as the POSIX pthread

library functions pthread cond wait() and pthread cond broadcast(). The result R̃η(t)

of the algorithm is returned via call–by–reference since parallel worker threads cannot have

return values.

6.1.2 Accelerating the linear algebra via CUDA

In the last section we have chosen one worker per CUDA device. Nevertheless, most of the

code shown in Algorithm 6.1 still runs on the CPU. Simple queue processing is not a job for

CUDA hardware.
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GPU parallelization happens in a much more subtle way inside the feasibility solver. We

can use the hardware to accelerate basic linear algebra operations like matrix multiply–add–

operations and Cholesky decompositions. The changing sizes of non–rectangular matrices

during the algorithm runtime make it impossible to write one big GPU–kernel for all com-

putational jobs. The configuration of the kernel execution grid is usually tied to the size of

the matrices. Hence, we have to write many small kernels for individual calculation steps.

An example workflow is shown in Figure 6.1.

Matrix operation 1

Sync/CPU operations

Matrix operation 2

Sync/CPU operations

CPU GPU

Figure 6.1: Linear algebra computation with two kernels on different grids within a single
worker

One could actually come up with the idea of using the cuBLAS library1 instead of writing

own kernels for linear algebra operations. Unfortunately, this library is only efficient when

working with large matrices (thousands of matrix entries) and ours are comparatively small.

Just to name but a few values: A dynamical system with state dimension n = 10, control

dimension m = 4 and Runge Kutta stages s = 3 would lead to matrices with the sizes 4×30,

10× 30, 30× 30 within the linear algebra operations.

What we can do is to increase the size of the kernel execution grids by processing multiple

problems by one worker in parallel. We can modify Algorithm 6.1 such that one worker

actually pops a bunch of problems to its local device memory, processes all of them in parallel

1The cuBLAS library comes with the CUDA SDK and provides CUDA–accelerated basic linear algebra
functions.
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and pushes all results back to the buffer. The device kernels must be designed to handle

multiple matrix operations on different memory areas at once. Figure 6.2 demonstrates an

example workflow of this concept. The number of simultaneously processed problems is

limited by the total memory of a single CUDA device.

Matrix operation 1

...

Matrix operation 100

Sync/CPU operations

Matrix operation 101

...

Matrix operation 200

Sync/CPU operations

CPU GPU

Figure 6.2: Linear algebra computation with two kernels processing multiple problems in
parallel within a single worker

6.1.3 Dynamic problem replacing

The concept shown in Figure 6.2 has two disadvantages. First, the buffer must contain

enough problems to feed several hungry workers, each with hundreds of problems. Of course,

this depends on the actual reachable set. A three–dimensional nice and solid set will produce

a much larger number of pending problems than a one–dimensional submanifold. The latter

might be completely unsuitable for this approach. The example in Figure 2.4 on page 24

shows that the buffer size can grow very fast, even for two–dimensional problems. So we will
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simply accept that disadvantage.

The second problem is much more relevant. It will often happen that most of the problems,

which are assigned to a worker, have already been finished long before the last problem is

solved (the numbers of iteration steps can greatly differ). So the actual grid size of the

kernels will decrease very fast, most of the time running just a few problems before the

results can be pushed back to the FIFO–buffer.

We can handle this issue, if we enable the solver to instantly replace finished problems by

new ones. Actually, we merge iteration steps of the interior point method with the buffer

processing algorithm. Instead of executing the feasibility solver as a black box in Algorithm

6.1, a few solver iterations are computed until some finished problems drop out. For every

finished problem, we pop a new one from the FIFO–buffer and execute some interior point

initializion code before we start the core–iterations on hundreds of problems again. We define

this approach more precisely in Algorithm 6.2.

Basically, this algorithm starts like its predecessor:

Algorithm 6.2: Computing a reachable set approximation, multiple worker, each
processing multiple problems

1: function ReachableSetMultiProblem(uN , y, ref R̃η(t)) . valid init. guess uN , y

2: working ← number of workers

3: init F . initialize FIFO–buffer

4: Determine grid point x̃ next to xu(·)(t)

5: R̃η(t)← {x̃}

6: for all gridpoints x̃i adjacent to x̃ do

7: push (x̃i, uN , y) onto F

8: end for

9: parallel w ∈ {1, . . . , number of workers}

10: init Lw . initialize a local array for each worker

11: lock mutex

12: loop

13: while F = ∅ do

14: working ← working − 1
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15: wait . unlock mutex, wait for broadcast, lock mutex

16: if working = 0 then . woken up by the last worker, quitting...

17: unlock mutex

18: return

19: end if

20: working ← working + 1

21: end while

Nothing has changed so far apart from initializing an empty local storage Lw for each worker.

At this point, we modify the original algorithm such that several problems are popped from

the buffer until the local memory of the worker’s CUDA device is full. For each newly added

problem we have to execute some initialization code of the interior point method (variable

initialization, first function evaluations, etc...). Actually, we do not simply store (x̃, ũN , ỹ) at

Lw but the data structure which defines the whole interior point process for the individual

problem which is based on (x̃, ũN , ỹ).

22: for all free cells of Lw do

23: pop (x̃, ũN , ỹ) from F

24: Store (x̃, ũN , ỹ) on a free cell of Lw
25: Interior point method pre–processing for (x̃, ũN , ỹ)

26: end for

27: unlock mutex

We now insert the interior point iterations which process all problems which are stored on

the workers local memory Lw. The linear algebra operations of these iteration steps can

be merged to big kernel calls like shown in Figure 6.2. The loop instantly stops, if a single

problem was successfully solved or is considered as infeasible.

28: repeat

29: parallel for all problems (x̃, ũN , ỹ) stored in Lw
30: SearchDir . see Algorithm 5.8

31: Step correction by fraction to boundary rule and line search

32: Apply step and update barrier parameter

33: end parallel
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34: until some problems finished or failed

The rest of the algorithm remains almost untouched. Pushing the new problems to the

FIFO–buffer must be done for each new feasible solution.

35: lock mutex

36: for all finished problems (x̃, ũN , ỹ) stored in Lw do

37: if solution (uN , y) has been found then

38: for all gridpoints x̃i adjacent to x̃ with x̃i /∈ R̃η(t) do

39: push (x̃i, uN , y) onto F

40: end for

41: R̃η(t)← R̃η(t) ∪ {x̃}

42: end if

43: Free the specific cell of Lw
44: end for

45: broadcast . wake waiting workers

46: if F = ∅ and working = 1 then

47: working ← 0

48: unlock mutex

49: return

50: end if

51: end loop

52: end parallel

53: end function

6.2 CUDA implementation

Algorithm 6.2 is the final version of the reachable set approximation algorithm. It is able to

keep several CUDA devices busy and creates a sufficiently large parallelization bandwidth

for each device kernel. A pure C++/Fortran implementation of this algorithm is included

in the attached CD. It uses the pthread library for running parallel worker threads.

An efficient CUDA implementation of the whole algorithm with custom–made device
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kernels is extremely time–consuming and not part of this work. But since experiments have

shown that the function BlockMerge (Algorithm 5.5), which is part of the SearchDir

function (line 30 of Algorithm 6.2) takes most of the computational time2, we will exemplarly

show how a CUDA–version of BlockMerge could be implemented.

BlockMerge must be called for every horizon step (N times per interior point iteration

step). By construction, the function calls of the individual horizon steps do not depend on

each other and can be executed in parallel.

The function BlockMerge consists of three distinct parts:

1. Prepare D and t by evaluating terms of the type

A = B − CD − EF −GH

where the result A ∈ Rn·s×n·s will be symmetric (n is the state dimension, s is the

number of Runge–Kutta–stages).

2. Compute the Cholesky–decomposition and solve a linear system of equations by using

forward– and backward–substitution.

3. Compute the rest of Q1, Q2 and R by evaluating terms of the type

A = B − CD.

6.2.1 Matrix Multiply–Add–Operations

The technique of efficiently multiplying matrices on CUDA hardware is well explained within

Nvidia’s programming guide [25]. Our job is to modify the code, such that p multiplications

(problems) can be processed by a single block, if the matrix is small. As the size of a thread

block we choose 16×16 since this will lead to nice occupancy on our Tesla C2050 devices. If

the size of A is larger than 16× 16, we iterate over submatrices until all elements of A have

been calculated (see [25]). If the total number of elements in A is less than 256, we increase

2In the next chapter we consider a realistic example where BlockMerge takes 95% of the total compu-
tational time.
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p. In detail, we calculate the number of grid blocks b and the number of threads per block t

by

tp = min{16, n · s}2 threads per problem,

p = b256/tpc problems per block,

t = min{p, size(Lw)} · tp threads per block,

b = dsize(Lw)/pe blocks.

The individual threads are mapped to the matrix elements as shown in Figure 6.3. Some

threads have to compute two or four elements of the resulting matrix serially in this example

while others idle after computing one element. By adjusting the size of the thread block to

the individual setting, the idle time can be reduced. If a smaller setting with p > 1 is given,

a single thread block processes several matrices in parallel (see Figure 6.4).
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Figure 6.3: Indices of threads, processing the elements of a 20× 20 resulting matrix (p = 1)
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Figure 6.4: Indices of threads, processing the elements of two 9×9 resulting matrices (p = 2)

6.2.2 Cholesky’s method

An appropriate scheduler for Cholesky’s method can be generated as shown in Section 4.2.

The data of the scheduler must be stored on CUDA device memory within integer arrays:

ndivi defines how many division instructions of the type

Aj,i ← Aj,i/Ai,i

happen in the i–th iteration of Cholesky’s method.

scdivl defines all division instructions consecutively via j–indices. They can be assigned to

the i–th iteration by adding up the entries of ndiv.

nelimi defines how many elimination instructions of the type

Aj,k ← Aj,k − Aj,iAk,i,

happen in the i–th iteration of Cholesky’s method.

sceliml is defined like scdivl but stores all (j, k)–tuples in a row.

A CUDA implementation of Cholesky’s method is shown in Algorithm 6.3 on the next

pages. It is important to understand that device kernels always run in parallel by blocksize×
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blockgridsize threads. When writing kernels, these threads must be assigned to data ele-

ments. It must be possible to change the data assignment or pause/resume threads during

kernel runtime. Defining this behaviour within pseudocode could make the algorithm look

confusing due to tons of cases, parallel loops and indices. To handle this high parallelism

and thread management, we write the pseudocode such that the whole program is executed

on all threads simultaneously and introduce threadfilters for nice CUDA–pseudocode which

are defined as follows.

Definition 6.1

Let D ⊂ N be compact, Γ : D → Ns be an injective function and i be the total index of a

thread within the kernel–blockgrid, i.e.

i = blockindex · blocksize+ threadindex.

Γ defines the behaviour of a kernel thread with index i such that

a) if i ∈ D: thread passes the filter, Γ(i) = (j1, . . . , js) is an index tupel which assigns

thread i to data elements defined by j1, . . . , js,

b) if i /∈ D: thread i idles.

We call Γ a “threadfilter”.

For Cholesky’s method, we define the following threadfilter where tp is the number of

threads per problem, p is the number of problems per block, t = tp · p is the number of

threads per block, b is the number of blocks and D = [0, size(Lw) · tp] ∩ N:

P : D → N3, i 7→


j1

j2

j3

 :=


⌊
i
tp

⌋
⌊
i
tp

⌋
mod p

i mod tp

 (6.1)

The element j1 ∈ {0, . . . , size(L)−1} will be the total index of the problem, j2 ∈ {0, . . . , p−1}

will be the relative index of the problem within the current block and j3 ∈ {0, . . . , tp − 1}

will be the relative index of the current thread with respect to the current problem.
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A new

filter expr

instruction

...

instruction

end filter

environment in the pseudo language describes the application of filters on threads. If expr

(which depends on a thread index i) is a valid expression, the corresponding thread may

process the instructions inside the filter environment. If not, the thread has to wait until

all other threads have finished processing. At the end of the environment, the threads are

barrier–synchronized.

We use two types of expressions: j ← Γ means that the threadfilter Γ is evaluated for

every thread and the result is stored in a variable j which is defined locally per thread. The

filter will block any thread for whose index Γ is not defined. The second type is a simple

condition which depends on the thread’s index. If the condition is true for a single tread, it

passes the filter, otherwise it idles.

For easier handling, we use indices starting at zero in this algorithm, even for matrix

elements Ai,j. Algorithm 6.3 requires the state dimension n to be smaller than or equal to

the block size tp to work properly. During runtime, scheduler indices are cached on shared

memory, so that every problem which is processed in the same threadblock benefits from

one memory access. Let’s have a look at the details...

Algorithm 6.3: A CUDA implementation of Cholesky’s method

1: function CUDACholesky(ndiv, scdiv, nelim, scelim, A(0), A(1), . . .)

2: local addr A . a local pointer for every thread

3: shared array C(n, p) . shared memory for storing columns

4: shared array I(n) . shared memory for storing j–indices of scdiv

5: shared array J(tp) . shared memory for storing (j, k)–tuples of scelim

6: shared c1 ← 0 . cursor for reading scdiv

7: shared c2 ← 0 . cursor for reading scelim
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Keep in mind that this code is processed by t · b threads in parallel. So far, we declared the

types of memory. Shared memory has a threadblock scope such that every threadblock has

its own shared data. The variable A is defined locally. We now apply the filter P , defined in

(6.1), which blocks out a few threads (since p · b > size(Lw) in general) and assigns threads

to primary data indices.

8: filter (j, k, l)← P

9: A← addr of A(j) . ...for better readability

10: for i← 0, . . . , n− 1 do

This is the main loop of the algorithm. We now read the i–th column of the matrix into

the shared memory. Every problem processed by a thread block has its own shared memory

column (index k). We read out the column of A which is a pointer to the matrix of the j–th

problem. Since we just need to read the elements i, . . . , n, the first threads of each problem

are blocked.

11: filter i ≤ l < n

12: Cl,k ← Al,i . copy column i to shared memory for each problem

13: end filter

14: if Ci,k ≤ 0 then

15: Mark problem j as failed

16: return . ...not positive definite

17: end if

If the j–th problem has a indefinite matrix we block the threads which are assigned to this

problem for the rest of the function execution. All other threads must continue as only

the j–th problem might be affected. After that, we load the next indices of the division

scheduler into the shared memory. Only the first ndivi threads of the first problem of each

thread block are used to copy the indices. All other threads can use them since they are

shared. After that we increment the cursor which is processing the scdiv array by a single

thread per thread block (first thread of the first problem per block).

18: filter k = 0 ∧ l < ndivi

19: Il ← scdivc1+l . load division instructions of scheduler

20: end filter
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21: filter k = 0 ∧ l = 0

22: c1 ← c1 + ndivi

23: c3 ← 0

24: end filter

25: filter l = 0

26: Ci,k ←
√
Ci,k . square root of the diagonal element

27: end filter

But before we do the division step, we have to take the square root of the i–th diagonal

element. Only a single thread per problem is assigned to this step. We let the first thread

of each problem do the job.

28: filter l < ndivi

29: CIl,k ← CIl,k/Ci,k . ...the division instruction

30: end filter

31: filter i ≤ l < n

32: Al,i ← Cl,k

33: end filter

After the division step, the column is completed and can be moved to the global memory

again. The elimination step can consist of much more than tp elimination instructions (since

its order is O(n2)). So we iterate over all scheduled tuples for the i–th step with tp threads

in parallel and increment the cursor by that value. tp is generally not a multiple of nelimi,

so there must be a bit of safeguarding.

34: while c3 < nelimi do

35: filter c3 + l < nelimi

36: filter k = 0

37: Jl ← scelimc2+l . threads of first problem load elimination instr.

38: end filter

39: local (j̃, k̃)← Jl . every thread loads elimination instr...

40: Aj̃,k̃ ← Aj̃,k̃ − Cj̃,kCk̃,k . ... and process it

41: end filter

42: filter k = 0 ∧ l = 0
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43: c2 ← c2 + min{nelimi, tp} . increase cursors

44: c3 ← c3 + min{nelimi, tp}

45: end filter

46: end while

47: end for

48: Mark problem j as successful

49: end filter

50: return

51: end function

We can read the column–values for the elimination instructions from the shared memory. But

the read–write access at Aj̃,k̃ can be anywhere left from the i–th column in the lower diagonal

part of the matrices. As we assume the matrices to be too large for shared memory caching,

we have to count on coalesced global memory transactions. To ensure as much coalesced3

memory reads and writes as possible, we must sort the (j, k)–tuples of the scheduler by k

and with second priority by j. By doing so, the elimination steps will be processed column–

by–column by tp threads in parallel. This is the ordering of the matrix in the memory which

ensures coalesced memory transactions.

An intelligent preordering to reduce fill–ins can easily be applied to the algorithm by

permuting the matrix indices before accessing the elements. This can already be done by

the scheduler to save memory accesses to the permutation array during runtime. A further

improvement is to skip zero–elements while copying a column to the shared memory. By

“densing” them to a small shared memory array, the algorithm can process even larger, but

sparse, matrices. The scheduler should be constructed such that it uses the densed indices

on the shared memory cache.

A detailed CUDA–implementation of Algorithm 6.3 (including the improvements of the

previous paragraph) can be found on the CD which is attached to this work. This implemen-

tation also includes CUDA kernels for forward– and backward–substitution. Parallel CUDA

implementations of these substitutions can be developed in the same way as demonstrated

on Cholesky’s method (dependency graph, scheduler, etc...) and will not be discussed here.

3See Section 1.2.3.
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The only interesting thing which is different to the implementation of Cholesky’s method

is the fact that forward substitution processes column–data in parallel while backward sub-

stition accesses the matrices row–by–row in parallel. Actually, this is a problem, since a

matrix is stored column–by–column in the memory and a parallel access to a row cannot be

coalesced. Therefore we simply copy and transpose the lower triangular part of the Cholesky

decomposition to the upper right area of the matrix. This generates a symmetric matrix

and the row–by–row access of the backward–substitution can be implemented as coalesced

column–operations. An efficient matrix transpose implementation is described in [16].

6.2.3 Cloning intermediate results on device memory

Since we only implement a small part of the algorithm exemplarily on CUDA hardware, we

have to clone all required matrices on device memory as they are needed by CPU and GPU.

This affects almost every intermediate result like ỹi,1, . . . , ỹi,10 and also function evaluations

∂xfi, ∂ufi, ∂xf
A
i and parts of the right–hand side of the linear system of equations bi,5, bi,6

for all i = 1, . . . , N . The results Q1, Q2 and R must be copied back to CPU memory. Yes,

all in all this is indeed as ugly as it sounds and will significantly lower the overall efficiency

of the CUDA implementation.

Fortunately, we can abate the pain by using Pinned (page–locked) memory and Asyn-

chronous memory transfers. Usually, the OS virtualizes the system memory by using pages.

Those pages can be moved within the physical memory and also be swapped to disk without

changing pointers which are actually used by active programs. This is good, since the OS

can optimize the memory usage and provide large free areas.

But due to this fact, data must be copied twice4 during a memory transfer from a CPU

host to GPU device (also in the other direction). First, a memory block is copied from the

paged system memory to a small area which is not paged by the OS. This operation will

be managed by the CPU. After that, a DMA controller moves the memory block to the

CUDA device memory which works asynchronously, so the CPU is not occupied and can do

something else.

The CUDA driver provides the functionality of allocating host memory such that it will

4This is done automatically by the CUDA driver.
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not be paged by the OS (as we said above: the pinned or page–locked memory). By doing

so, the DMA controller can directly access the memory and CPU work is almost unnecessary

for the whole transfer. The big advantage is that a memory transfer and host code execution

can be done in parallel. In our case, computing ỹi,1, . . . , ỹi,10 and all other matrices which

are needed by the kernel need some time. E.g. we can start copying ỹi,1 to device memory

while already computing ỹi,2 on the CPU. The additional time which is needed for cloning

the data will be minimal.

The disadvantage of using page–locked memory is serious. Using too much of pinned

memory unables the OS to rearrange the memory pages which produces small free “holes”.

These holes are useless for bigger allocations. The efficiently usable memory will be reduced

and allocations start to fail much earlier even if there is actual free host memory left. To

make sure that a big amount of pinned memory can be used without destabilizing the whole

system, the user should have at least twice as much host memory as device memory (which is

a rule of thumb). More information about page–locked memory can be found in the CUDA

programming guide [25] and in NVidia’s developer blog [14].

6.2.4 Concurrent kernel execution

Since the introduction of Fermi–architecture (like on our Tesla C2050), a CUDA device has

three processing engines which run completely independently from each other:

• H2D–Engine: Copies data from host memory to device memory. Only one transfer

can be processed at a time.

• Kernel–Engine: Executes device kernels. Multiple device kernels can be executed

simultaneously as long as they “fit” on the GPU (they share ressources like shared

memory, registers, etc.).

• D2H–Engine: Copies data from device memory to host memory. Only one transfer

can be processed at a time.

All of these engines work asynchronously such that a host program can start these engines

and instantly continues running host code. To feed these engines, asynchronous CUDA–API
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calls can be executed on several streams. When calling API functions on the same stream,

the host code will block when another action (like a memory transfer or kernel execution)

is currently processed on that stream. To feed all three engines in parallel, the API calls

must be done on different streams. Even if using several streams, the host code can block

when an engine is currently occupied in processing other streams. For example, a Host–to–

Device API function call will block if another Host–to–Device transfer is currently processed.

A kernel execution may block if the Kernel–Engine has no more ressources of running an

additional kernel. Figure 6.5 shows an example execution with three streams and how it is

actually executed on the three processing engines.

How it is implemented

Stream 1 H-D 20% D-H H-D 15% D-H

Stream 2 H-D 80% D-H H-D 20% D-H

Stream 3 H-D 80% D-H H-D 65% D-H

How it is actually executed

H2D–Engine H-D H-D H-D H-D H-D H-D

Kernel Engine

20%

80%

80% 15%

20%

65%

D2H–Engine D-H D-H D-H D-H D-H D-H

Runtime

Figure 6.5: Example processing of three streams by the H2D–, Kernel– and D2H–Engine of
a CUDA device. The percentage is a simplification of required kernel ressources.
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Efficient asynchronous API calls must be implemented very carefully. Unintented blocking

on API calls can happen very easily. A complete guide to good CUDA scheduling can be

found in the NVidia developer blog [15].

In our case, we have to run the kernels for each horizon step (namely N times). So

we assign each horizon step to one of up to 16 CUDA streams (which is the maximum

on Fermi–architecture) since every horizon step can be processed independently during the

BlockMerge calls. The host–to–device memory transfers (which is the cloning of the

intermediate results) has already been explained in the last subchapter. To optimize the

device–to–host transfers, we have to arrange the resulting matrices for every processed prob-

lem such that they can be copied by a single memory transaction per horizon step.
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Chapter 7

A real world application: The DEOS

mission

We finally want to test the whole implementation with an example from real life. A nice

and very challenging application is the so called DEOS mission (Deutsche Orbitale Servicing

Mission).

The goal of this mission is to launch a satellite which is able to dock on uncontrolled and

inactively tumbling obstacles (targets) in orbit and initiate a controlled reentry. Optimally

controlled docking maneuvers have already been discussed in [5,20,21]. In this work, we will

use this problem setting to compute a controllability set, i.e. the set of all starting points

from which a successful docking maneuver can be carried out within a given time span.

7.1 Problem definition

Since a detailed description of the satellite model can be looked up in [5,20,21], we will just

use the results in this work.

We define a LVLH (local vertical, local horizontal coordinate) system such that the origin

lies within the center of the target. The x–axis is an extension of the straight line which

goes through the center of the earth and the center of the target, pointing away from earth.

The y–axis points in the direction of orbital movement of the target and the z–axis is chosen

such that it completes the orthogonal tripod (see Figure 7.1).

107



CHAPTER 7. A REAL WORLD APPLICATION: THE DEOS MISSION

Earth

y

Orb
it

Target

x

z

Figure 7.1: Definition of the LVLH system

We assume, that the target travels with constant orbital speed and height. Hence, we can

model the satellite’s position dynamics via Clohessy-Wiltshire equations

ẍ = 2nẏ + 3n2x+
vx
M

(7.1a)

ÿ = −2nẋ+
vy
M

(7.1b)

z̈ = −n2z +
vz
M

(7.1c)

where n is the mean motion of the target, M is the mass of the satellite and (vx, vy, vz) is

a three dimesional acceleration control vector made by thrusters with respect to the LVLH

system.

The orientation dynamics of the satellite is expressed via quaternions (qi, qj, qk, ql), where

(qi, qj, qk) is the vector part and ql is the scalar part. We use a BFC (body–fixed coordinates)

system which coincides with the LVLH system if the satellite is unrotated and positioned

at the LVLH–origin. As indices of the BFC system we choose {1, 2, 3} as opposed to the

{x, y, z} indices which describe the elements of the LVLH system. The orientation dynamics

can be modelled as

ω̇1 =
1

J11

(ω2ω3(J22 − J33) +m1) (7.1d)

ω̇2 =
1

J22

(ω1ω3(J33 − J11) +m2) (7.1e)
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ω̇3 =
1

J33

(ω1ω2(J11 − J22) +m3) (7.1f)

q̇i =
1

2
(qjω3 − qkω2 + qlω1) (7.1g)

q̇j =
1

2
(−qiω3 + qkω1 + qlω2) (7.1h)

q̇k =
1

2
(qiω2 − qjω1 + qlω3) (7.1i)

q̇l =
1

2
(−qiω1 − qjω2 − qkω3) (7.1j)

where ω1, ω2, ω3 are angular velocities, (m1,m2,m3) is the momentum control vector with

respect to the satellite and J11, J22, J33 are the diagonal elements of the inertia tensor which

is assumed to coincide with the principal axis of the satellite.

Alltogether we get a 13–dimensional first order differential equation which describes the

dyamics of the satellite. The target can be modelled with an additional differential equation.

By construction, the target does not change its position. Hence, we just use the orientation

dynamics for the target simulation which is a 7–dimensional first order differential equation.

To model the docking condition, we introduce the docking points dS and dT of the satellite

and the target (Figure 7.2 ). A successful docking maneuver requires matching docking points

dS = dT and velocity of docking points ḋS = ḋT for a short moment. In order to formally

define this condition in the coordinate system we are using the rotation matrix

R =


q2
i − q2

j − q2
k + q2

l 2(qiqj − qkql) 2(qiqk + qjql)

2(qiqj + qkql) −q2
i + q2

j − q2
k + q2

l 2(qjqk − qiql)

2(qiqk − qjql) 2(qjqk + qiql) −q2
i − q2

j + q2
k + q2

l

 (7.2)

which transforms BFC vectors to LVLH vectors. The docking condition can then be modelled

as

dS − dT =


x

y

z

+RS


dS1

dS2

dS3

−RT


dT1

dT2

dT3

 = 0 (7.3a)
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ḋS − ḋT =


ẋ

ẏ

ż

+RS


ωS1

ωS2

ωS3

×RS


dS1

dS2

dS3

−RT


ωT1

ωT2

ωT3

×RT


dT1

dT2

dT3

 = 0 (7.3b)

where the S and T superscripts indicate the components of the dynamical systems of satellite

and target respectively.

Sate
llite

dS

Targ
et

dT

Figure 7.2: Docking points and their moving directions (due to body rotation) of satellite
and target

In addition to the docking condition we want to avoid a collision and have to restrict the

control values to their physical limit. So we introduce a safety distance δmin and define state

constraints

x2 + y2 + z2 ≥ δ2
min (7.4)

for all trajectory points. For reasons of numerical stability, we choose

δmin = 0.95(‖dS‖+ ‖dT‖) (7.5)

which provides a little bit of freedom while searching for a docking point. The control

variables are restricted by box constraints

− vmax ≤ v1, v2, v3 ≤ vmax, −mmax ≤ m1,m2,m3 ≤ mmax (7.6)
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and the acceleration control variables of the LVLH system in (7.1) can be obtained by


vx

vy

vz

 = RS


v1

v2

v3

 . (7.7)

The satellite must stand still and unrotated when starting the docking maneuver. Hence,

the start of the trajectory is restricted by

0 = ẋ = ẏ = ż = ω̇1 = ω̇2 = ω̇3 (7.8a)

0 = qi = qj = qk (7.8b)

1 = ql. (7.8c)

The goal of this chapter is to compute the approximation controllability set

R(0) :=


x(0) ∈ R13

∣∣∣∣∣∣∣∣∣∣∣∣∣

x(·) solves (7.1) with control function u(·)

x(0) fulfills (7.8)

x(T ) fulfills (7.3), (7.4)

u(τ) fulfills (7.6), τ ∈ [0, T ]


(7.9)

where x is the full state vector

x := (x, y, z, ẋ, ẏ, ż, ω1, ω2, ω3, qi, qj, qk, ql)
T (7.10)

and u the full control vector

u := (v1, v2, v3,m1,m2,m3)T . (7.11)

Condition (7.8) restricts R(0) to a three–dimensional submanifold, since ẋ, ẏ, ż, ω1, ω2, ω3,
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qi, qj, qk, ql are fixed. Thus, computing the projection


x1

x2

x3

 ∈ R3

∣∣∣∣∣∣∣∣∣∣
x ∈ R̃η(0)

 (7.12)

preserves the full set information and can be done with moderate requirements to storage

memory.

7.2 Finding the first feasible trajectory

Since the algorithm is heavily dependent on a good initial guess we have to find a single valid

trajectory. One could try to simply run an optimal control problem and use its solution as

initial guess. But particularly on larger control horizons these optimal control algorithms

might struggle and take a long time.

In this section we discuss a concept of finding an initial guess which is based on the specific

anatomy of the satellite example and may be not very useful for a general case. At first, we

try to find a valid docking position for the satellite. After that we simulate the satellite’s

trajectory backwards in time and try to stabilize the state such that it converges to a valid

vector in sense of initial condition (7.8). We will not satisfy the initial condition exactly but

we can start the reachable set algorithm with a trajectory which is at least very close to all

constraints.

7.2.1 Computing a valid docking point

The first step will be to find a valid state which satisfies the docking condition (7.3). As

there is no unique solution for this problem, we define a nonlinear optimization problem

min
x
λ

3∑
i=1

x2
i +

12∑
i=4

x2
i + (x13 − 1)2 (7.13)
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with respect to (7.3) and (7.4) as constraints. The optimal value of the objective function

of this optimization problem is not important for the solution, since we are just searching

for a feasible docking point. But the objective function pushes the docking point towards

a state which might already be very close to the starting condition (7.8). The weight λ of

the (not so important) position (x, y, z) can be chosen quite small but is necessary for a well

conditioned problem formulation.

Since the safety distance δmin is a little relaxed towards the target, it is possible to find

state vectors x which fulfill the docking condition and the safety distance condition, but have

velocity components that let the satellite come from the inside of the target. To avoid this

case, we have to use an additional restriction which makes the velocity vector of the satellite

point towards the target. We develop this condition with the help of simple geometry:

Origin/Target

Satellite
α−(x, y, z)T

(ẋ, ẏ, ż)T

Obviously, the satellite is moving towards (or at least parallel with) the target if α ≤ 90.

The inequality constraint 〈
x

y

z

 ,


ẋ

ẏ

ż


〉
≤ 0 (7.14)

forces this condition.

7.2.2 Generating an almost–feasible trajectory

After computing a valid docking point we use the concept of MPC (model predictive control,

[13]) to generate a backwards trajectory which ends (well, actually starts) near a valid

starting point. Therefore we choose a cost function

l(x,u) = (x− a)TΛx(x− a) + λuu
Tu (7.15)

113



CHAPTER 7. A REAL WORLD APPLICATION: THE DEOS MISSION

where a is an offset vector, Λx is a positive definite diagonal matrix for applying individual

costs each element of x, λu is a weight for the controls. We choose a such that the con-

trolled trajectory is pulled towards (7.8) at a position where we assume the center of the

controllability set.

With a MPC horizon Ñ ≤ N we can define a moving horizon subproblem for horizon

steps i = N − Ñ , . . . , 0

min
x
i,...,i+Ñ−1

u
i,...,i+Ñ−1

i+Ñ−1∑
j=i+1

l(xj,uj) + βl(xi,ui)

s.th. xj+1 = Φ(η,xj,uj)

xj,uj fulfill (7.4) and (7.6),
j = i, . . . , i+ Ñ − 1

where xj,uj are the state and control vectors at timestep j, β is a scaling factor to emphasize

the subproblem’s last element of the backwards trajectory (this coincides with the terminal

weights of the common MPC algorithm [13]) and Φ(η,x,u) is a numerical method to solve the

corresponding differential equation η seconds in forward time, beginning at x with applied

control u. It is recommened to use the same Runge–Kutta method like in the reachable set

algorithm in order to use the temporary stage variables for the initial guess generation.

Note that the MPC horizon is shifted backwards while the trajectories of the subproblems

are generated forwards in time. In the first MPC step, we choose xN = dS as a valid docking

point and terminal condition of the subproblem. After that, in the i–th MPC step, xi+Ñ

is not in the set of optimized variables any more and defines the new constant terminal

condition.

By solving the subproblems, we iteratively generate a full initial guess for the reachable

set algorithm. The quality of the resulting initial guess heavily depends on the proper choice

of the weights Λx and λu and the MPC horizon length Ñ . Position components of the offset

vector a can also worsen the result if they are far away from the reachable set.

Since the dynamics are very insensitive to the controls (respectively, the satellite’s controls

are very weak compared to the mass), the derivatives within the optimization problem are

quite flat. The nonlinear program must be built carefully and the time step η should be

big enough to handle this issue. Altogether, sometimes this method seems to require a few
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attempts until a good parameter setting has been found for a given target orientation.

7.3 Numerical results

The CD contains a pure CPU implementation (C++ with Fortran kernels) and an-

other implementation which has a CUDA version of the functions BlockX(Restr),

BlockU(Restr) and BlockMerge. We will compare the runtime of both variants in

order to get an idea of the efficiency of the CUDA implementation.

Our testing environment has the following parameters:

Model parameters

orbit radius [m] rx = 7071000

gravitational constant [N(m
kg

)2] G = 398 · 1012

mean motion [1
s
] n =

√
G
r3x

satellite mass [kg] M = 200

maximum thrust [N ] vmax = 0.15

maximum torque [Nm] mmax = 1

satellite angular mass in x [kg
2

m
] JS11 = 2000

satellite angular mass in y [kg
2

m
] JS22 = 5000

satellite angular mass in z [kg
2

m
] JS33 = 2000

target angular mass in x [kg
2

m
] JT11 = 1000

target angular mass in y [kg
2

m
] JT22 = 2000

target angular mass in z [kg
2

m
] JT33 = 1000

docking point of satellite [m] (dS1 , d
S
2 , d

S
3 ) = (0,−1, 0)

docking point of target [m] (dT1 , d
T
2 , d

T
3 ) = (0, 1, 0)

minimum distance [m] δmin = 1.9

Simulation parameters

horizon length N = 30
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Simulation parameters

step size [s] η = 3

ODE method Radau IA, order 5, s = 3 (see [17])

target trajectory start (angular velocity) (ωT1 , ω
T
2 , ω

T
3 ) = (−0.02, 0.0349, 0.057453)

target trajectory start (orientation) (qTi , q
T
j , q

T
k , q

T
l ) = (−0.05, 0, 0, 0.99875)

Initial guess computation

docking point position weights λ = 1

state weights Λx = diag(10−4, 10−4, 10−4,

10, 10, 10, 103, 103, 103, 104, 104, 104, 104)

control weight λu = 10−4

state offset a = (0,−1.2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)

end cost weight β = 1

MPC horizon length Ñ = 7

optimizer Ipopt v3.11.8

Reachable set

domain X̄ = [−2, 6]× [−5, 1.5]× [−3.5, 4.2]

grid size (G1, G2, G3) = (64, 64, 64)

approx. grain size εG = 0.125

Feasibility check

initial barrier parameters µ0 = 0.99, τ0 = 0.005

relative accuracy ν = 10−2

warmstart slack variable shift +10 · νεG

warmstart barrier parameter µ = max{min{µ0 · 104, 0.9}, 10−5}

hessian approximation factor ξ = 0.2

max. interior point iteration steps 100
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Feasibility check

divergence check steps 10

local buffer (CPU variant) size(Lw) = 10

local buffer (CUDA variant) size(Lw) = 100

Runtime Environment

CPUs 2× Intel Xeon E5620, 4 cores, 2.4 GHz

host memory 24 GB

operating system Ubuntu 14.04 LTS, x64

CUDA devices 4× Nvidia Tesla C2050

device memory per device 3 GB per device

CUDA driver version 6.0

Figures 7.3 and 7.4 show the result of the algorithm. For the visualization, reachable grid

points have been considered as cubes. A mesh of triangles has been computed which covers

all visible faces of the cubes. The surface was smoothened by performing two steps:

1. Each vertex has been replaced by its average over all vertices which are connected with

the original vertex (indirectly) over up to two edges.

2. Each vertex was moved up to half of the cell size such that the total length of all edges

is minimal.

These smoothening steps increase the maximum discretization error by 3
2
εG, which is still

tolerable. A nice gouraud shading adds a vivid finishing. The figure also illustrates the

minimum distance δmin = 1.9 to the target (located at the origin) as a ball shape which is

cut out of the set.
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Figure 7.3: Smoothened illustration of the controllability set (front)
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Figure 7.4: Smoothened illustration of the controllability set (back)
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We will first do some time measurements on the CPU variant. The following table shows

the runtime in hours while using a different number of CPU cores. The func. time column

displays the time spent on executing the BlockX(Restr), BlockU(Restr) and Block-

Merge functions in order to compare them to the CUDA implementation afterwards. We

also compute the ratio of the function execution time and the total runtime. The efficiency

of parallelization is given by

effiency =
runtime of single core variant

runtime of parallel variant× number of cores
× 100%

cores Intel Xeon E5620

total time [h] func. time [h] ratio efficiency

1 10:50 9:42 89.5% 100.0%

2 5:22 4:48 89.4% 100.8%

3 3:36 3:13 89.3% 100.1%

4 2:42 2:24 89.0% 100.6%

5 2:14 2:00 88.9% 96.5%

6 1:53 1:41 89.0% 95.7%

7 1:37 1:27 89.0% 95.0%

8 1:25 1:15 88.6% 95.5%

An efficiency value > 100% might be confusing at a first glance. Changing the number

of queue workers will change the order of processed problems (see Section 6.1.1). This will

change pathes of recursive spreading within the set (see Section 2.2.3 and Figure 2.2) and

the number of actually computed feasibility checks. As a consequence, the efficiency value

will be a bit “blurry”. In our experiments it seems like, the single–core run had more failed

feasibility checks than the run on two cores, so the calculated efficiency value is greater than

100%.

The noticeable performance decrease when activating te fifth core could be caused by

memory bus conflicts as the second CPU starts working. But this is just a guess.
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The same measurement is done with up to four Tesla cards and the CUDA variant of the

algorithm:

devices/ Nvidia Tesla C2050 (with Intel Xeon E5620 host)

cores total time [h] func. time [h] ratio efficiency

1 2:54 1:35 54.8% 100.0%

2 1:31 0:48 52.4% 95.4%

3 1:01 0:32 52.2% 95.2%

4 0:46 0:25 54.9% 94.3%

The following table compares the speedup factors (CPU runtime divided by GPU runtime)

for different numbers of cores and devices.

GPU

CPU
1 2 3 4 5 6 7 8

1 ×3.7 ×1.9 ×1.2 ×0.9 ×0.8 ×0.6 ×0.6 ×0.5

2 ×7.1 ×3.5 ×2.4 ×1.8 ×1.5 ×1.2 ×1.1 ×0.9

3 ×10.7 ×5.3 ×3.5 ×2.7 ×2.2 ×1.9 ×1.6 ×1.4

4 ×14.1 ×7.0 ×4.7 ×3.5 ×2.9 ×2.5 ×2.1 ×1.8

Since a multicore CPU and multiple GPU cards are completely different hardware archi-

tectures, it is not easy to draw inferences from the runtime of the algorithm about the actual

efficiency. The good news are: The CUDA–implementation does really fail as it can be

considered as faster than the CPU version (this is not self–evident in the context of CUDA

programming!). But with regard to the real costs of the CUDA implementation (time of de-

velopment, electricity cost, cost of purchase,... ) the CPU variant can be clearly considered

as the cheaper way to go.
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Conclusions

Compared to the original distance function approach, the new algorithm is fast, very reliable1

(as shown in Chapter 2) and promising. As long as the resulting set has a modest dimension,

high dimensional dynamics (like a satellite in earth orbit) can be considered and processed

in acceptable time which is a great result.

8.1 Tuning the parameters

Unfortunately, the reliability of the algorithm depends on a good choice of some specific

parameters like ξ (see Section 2.2.1). Besides, an interior point method always comes with

some difficulties when using warm starting data. Slack variables must be shifted a little and

µ0 (see Section 3.1.5) should be chosen wisely.

A good start of further research could be to adapt the parameters automatically to the

problem while proceeding the buffer. Since we are actually solving thousands of almost

similar problems, the algorithm could “learn” somehow which parameter values lead to the

best results. For example, one could vary the value of ξ while processing a few problems to

get a feeling of which modification of ξ could lead to better convergence.

1...once an initial guess has been found.
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8.2 Improving the CUDA performance

Technically, the bad CUDA performance was not very surprising since we have constantly

broken Rule Nr. 4: we used memory2. Of course we had to use memory, as we had to

clone a lot of matrices to the device memory. But this is not the point. Since we made

the algorithm for a general setting, we designed the kernels in a way that they can handle

large matrices. While a matrix multiplication kernel was designed to run well on large data

structures, the big size destroyed the efficiency of the CUDA–implementation of Cholesky’s

method and the forward– and backward–substitution. Same columns and single elements

have to be accessed on the device memory very often during a single kernel execution.

The best case would be to load the whole data which is needed by a kernel into shared

memory, do all calculations and pass it back to the device memory. But this requires quite

small system dimensions such that n · s× n · s matrices and the right hand side of a linear

system of equations completely fit into the shared memory (e.g. n = 3, s = 2). On the

downside this will reduce the parallelization bandwidth of Cholesky’s method. But this

would be a small price for the gained runtime improvement.

8.3 Future development

One could easily modify the algorithm such that it does not simply calculate a single set

for a given time, but the whole reachable tube on the given horizon. Each timestep could

have its own grid and initial guess buffer. A single found feasible trajectory could mark a

cell on each grid and provide its initial guess data for adjoining cells. After the reachable

set of the last timestep has been found, the algorithm could continue processing the grid of

the previous timestep, which has already a lot of marked reachable cells and initial guesses.

With each timestep, the algorithm will finish much faster. Figure 8.1 illustrates this strategy.

It might also be useful to try some adaptive–grid strategies (e.g. like shown in [26] by W.

Riedl) in Algorithm 6.2. In the current version, the queue manager pops a new initial guess

and a corresponding grid point x̃ from the buffer. Within this step, the manager initializes

the required memory and applies boxed constraints of the trajectory which restrict it to the

2see Section 1.2.6
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t0
t1

t2
t3

Figure 8.1: Computing a reachable tube: A single trajectory marks multiple grids generates
multiple initial guesses

neighborhood of x̃ at a considered time step. Hence, the feasibility check routines (which

are the core of the algorithm) actually don’t care about the size of the neighborhood. As a

consequence, adaptive grid strategies could be implemented easily without changing much

of the program code.
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