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A Distributed Optimization Algorithm for the
Predictive Control of Smart Grids

Philipp Braun1, Lars Grüne1, Christopher M. Kellett2, Steven R. Weller2, and Karl Worthmann3

Abstract—In this paper, we present a hierarchical, iterative
distributed optimization algorithm, and show that the algorithm
converges to the solution of a particular global optimization
problem. The motivation for the distributed optimization problem
is the predictive control of a smart grid, in which the states of
charge of a network of residential-scale batteries are optimally
coordinated so as to minimize variability in the aggregated
power supplied to/from the grid by the residential network.
The distributed algorithm developed in this paper calls for
communication between a central entity and an optimizing agent
associated with each battery, but does not require communi-
cation between agents. The distributed algorithm is shown to
achieve the performance of a large-scale centralized optimization
algorithm, but with greatly reduced communication overhead
and computational burden. A numerical case study using data
from an Australian electricity distribution network is presented
to demonstrate the performance of the distributed optimization
algorithm.

Index Terms—Distributed Optimization, Model Predictive
Control, Smart Grid

I. INTRODUCTION

The well-known curse of dimensionality encountered when
trying to solve large-scale optimization problems has led to
several work-arounds including various distributed optimiza-
tion algorithms. In the control literature, this approach was
initiated in the thesis of Tsitsiklis [1] (see also [2]), wherein
decentralized optimization schemes with and without commu-
nication between agents or processors were studied. Adopting
a more modern terminology, we refer to decentralized algo-
rithms with and without communication between agents as
distributed and decentralized algorithms, respectively.

Recent work in the field of multi-agent systems, particularly
in the field of consensus, has seen a resurgence of interest in
the area of distributed optimization; see for example [3], [4],
[5], [6], [7], [8], [9] and the references therein. Much of this
work assumes the existence of a global cost function decom-
posable into the sum of cost functions for each agent. This
allows individual agents to solve optimization problems locally
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and, under various communication schemes and topologies, to
arrive at a globally optimal solution without the need to solve
a (potentially large) optimization problem centrally.

A notable recent exception is [10], where the global cost
function is not separable. In [10], it is assumed that each agent
knows the global cost function, but only has access to its local
decision variables and local constraint set. Furthermore, [10]
assumes a global coupled inequality constraint, where each
agent knows its (functional) contribution to the global coupled
constraint. In this setting, [10] presents a distributed optimiza-
tion algorithm based on neighbor-to-neighbor communication.
Importantly, it is shown that this distributed optimization
algorithm converges to the solution of the global optimization
problem.

With recent advances in battery technology, widespread de-
ployment of battery storage at the residential level, particularly
as a complement to rooftop solar photovoltaics, is expected
to occur over the next decade. This deployment presents
various challenges to current electricity networks, including
the possibility of large supply-demand power swings if battery
charging and discharging is poorly scheduled. This has led to
a significant research effort in the area of battery scheduling;
see [11], [12], [13], [14], [15] and the references therein.

In [16], we studied the problem of optimally scheduling
battery storage at the residential level so as to minimize
variability in energy supply and demand at a local level;
for example at the level of a residential neighborhood where
residences have installed both energy generation and storage
technologies such as solar photovoltaic panels and batteries,
respectively. Unfortunately, this optimal scheduling problem
does not lead to a global cost function that is decomposable
as a sum of cost functions at each residence. Hence, in
[16], we proposed and compared centralized, distributed, and
decentralized algorithms, where a degradation in performance
was observed from the centralized solution. Of course, the
benefit of the distributed and decentralized algorithms resulted
from their scalability.

In this paper, we present a hierarchical, iterative, distributed
optimization algorithm that converges to the solution of the
centralized optimization problem for the specific cost function
and system dynamics used in [16]. In contrast to [10], the
algorithm presented herein relies on the presence of a central
entity with which all agents communicate. Note that this is the
only communication present; i.e., agents do not communicate
directly with each other. Naturally, the structural difference
between the algorithm presented herein and that in [10] means
that a different proof technique is required to show that the
distributed algorithm converges to the global optimum.
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The paper is organized as follows: in Section II we recall the
system dynamics and optimization problem considered in [16].
In Section III we recall centralized and decentralized model
predictive control schemes from [16]. In Section IV we present
a hierarchical distributed optimization algorithm and prove
that this algorithm converges to the solution of the centralized
optimization problem. We additionally compare our algorithm
to the primal-dual decomposition approach and the distributed
consensus-based primal-dual perturbation of [10]. In Section V
we investigate the performance of our algorithm using data
provided by an Australian electricity distribution company.
Finally, concluding remarks are made in Section VI.

II. THE RESIDENTIAL ENERGY SYSTEM

Let I ∈ N be the number of Residential Energy Systems
(RESs) connected in the local area under consideration. A
simple model of RES i, i ∈ {1, . . . , I}, presented in [16],
is given by

xi(k + 1) = xi(k) + Tui(k), (1)
zi(k) = wi(k) + ui(k) (2)

where xi is the state of charge of the battery in kilowatt-hours
(kWh), ui is the battery charge/discharge rate in kilowatts
(kW), wi is the static load minus the local generation in
kilowatts (kW), and zi is the power supplied by/to the grid in
kilowatts (kW). Here, T represents the length of the sampling
interval in hours (h); e.g., T = 0.5 corresponds to 30 minutes.
While the system dynamics (1) is autonomous, the perfor-
mance output (2) depends on the time varying quantity wi(·).

The RES network is then defined by the following discrete-
time system

x(k + 1) = f(x(k), u(k)),

z(k) = h(u(k), w(k))

where x, u, w, z ∈ RI , and the definitions of f and h are given
componentwise by (1) and (2), respectively. For each RES, the
constraints on the battery capacity and charge/discharge rates
are described by the constants Ci, ui ∈ R>0 and ui ∈ R<0,
i.e.,

0 ≤ xi(k) ≤ Ci and ui ≤ ui(k) ≤ ui ∀k ∈ N0 (3)

for i ∈ {1, . . . , I}.
From the point of view of the distribution network, one

reasonable performance goal is to reduce variability in usage
of the network; i.e., to have a nearly constant power profile.
This allows the network operator to avoid expense infrastruc-
ture that may only be required to deal with rare peak demand
or oversupply events. In our notation, this corresponds to
reducing variability in the performance output z. We introduce
two relevant performance metrics. To this end, let

Π(k) :=
1

I
I∑
i=1

zi(k) (4)

denote the average power demand at time k and let N denote
the number of samples comprising a simulation length. The

performance metric of peak-to-peak (PTP) variation of the
average demand of all RESs is given by(

max
k∈{0,...,N−1}

Π(k)

)
−
(

min
k∈{0,...,N−1}

Π(k)

)
. (PTP)

The second performance metric, the root-mean-square (RMS)
deviation from the average, is defined as√√√√ 1

N
N−1∑
k=0

(Π(k)− Υ )
2 (RMS)

with the average demand Υ := 1
NI
∑N−1
k=0

∑I
i=1 wi(k).

III. MODEL PREDICTIVE CONTROL APPROACHES

We recall two model predictive control (MPC) algorithms
for the control of a network of RESs introduced in [16] and
[17]. The first approach is a centralized MPC (CMPC) scheme,
in which full communication of all relevant variables for the
entire network as well as a known model of the network
are required. The second approach is a decentralized MPC
(DeMPC) approach where each RES implements its own local
MPC controller. This requires no communication or coopera-
tion between RESs. The main contribution of this paper is the
presentation and the analysis of a distributed optimization al-
gorithm in Section IV. The distributed optimization algorithm
combines the advantages of DeMPC and CMPC, i.e., local
optimization with high flexibility of the network topology and
reduced communication while maintaining optimality.

MPC iteratively minimizes an optimization criterion with
respect to predicted trajectories and implements the first part of
the resulting optimal control sequence until the next optimiza-
tion is performed (see, e.g., [18] or [19]). We propose such a
predictive controller. To this end, we assume that we have pre-
dictions of the residential load and generation some time into
the future that is coincident with the horizon of the predictive
controller. In other words, given a prediction horizon N ∈ N,
we assume knowledge of wi(j) for j ∈ {k, . . . , k + N − 1},
where k ∈ N0 is the current time.

Note that the focus of this paper is the efficient computation
of a solution of a static minimization or optimal control
problem, respectively and not the analysis of the closed loop
performance of an MPC algorithm using the solution of the
minimization problem in a receding horizon fashion.

A. Centralized Model Predictive Control (CMPC)

Define the predicted average power usage for RES i as

ζi(k) :=
1

N

k+N−1∑
j=k

wi(j). (5)

To implement the CMPC algorithm, we compute the overall
average at every time step k, on the prediction horizon by

ζ̄(k) :=
1

I
I∑
i=1

ζi(k) (6)
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and then minimize the joint cost function

V (x(k); k) := min
û(·)

k+N−1∑
j=k

(
ζ̄(k)− 1

I
I∑
i=1

(wi(j) + ûi(j))︸ ︷︷ ︸
ẑi(j)

)2
(7)

with respect to the predicted control inputs û(·) =
(û1(·), û2(·), . . . , ûI(·))T with ûi(·) = (ûi(j))

k+N−1
j=k , i ∈

{1, 2, . . . , I}, subject to the system dynamics (1), the current
state x(k) = (x1(k), . . . , xI(k))T , and the constraints (3) for
i ∈ {1, . . . , I}. The vector of the predicted performance output
ẑ(·) is defined in the same way as the predicted control û(·).
To simplify the notation, the current time k is dropped when
it does not convey extra information. Additionally we use the
notation u(j) = (u1(j), . . . , uI(j))T for a fixed time j ∈ N.
The same holds for the other variables x, w, and z.

Here, and in what follows, we denote predicted controls
and outputs in the MPC algorithm by hats, i.e., for RES i
at time j the predicted control is ûi(j) and the predicted
performance output is ẑi(j). Optimal solutions of the CMPC
minimization problem (7) are indicated by ], i.e., the minimum
in (7) is attained for u](·) and z](·), respectively. Note that
the minimum of the CMPC minimization problem exists since
the objective function is continuous and the constraints define
a non-empty compact set. However, the minimizer u](·) is,
in general, not unique.

B. Decentralized Model Predictive Control (DeMPC)

The CMPC approach presented above requires a significant
amount of communication overhead. A further drawback of the
CMPC approach is that it requires a central entity or controller
with full knowledge of the network model, in particular,
constraints (3) for each i ∈ {1, . . . , I}. Therefore, any change
in the network such as the addition of new generation or
storage devices or the replacement of such devices requires
an update of the central model. As a remedy we recall a
decentralized control approach from [16] that reduces the
communication overhead and the computational burden of
solving a (large-scale) optimization problem.

A straightforward option in order to flatten the energy
profile zi of RES i is to penalize deviations from its (an-
ticipated) average usage defined in (5). This can be achieved
by minimizing a local version of the cost function (7), i.e.,

min
ûi(·)

k+N−1∑
j=k

(ζi(k)− (wi(j) + ûi(j))︸ ︷︷ ︸
ẑi(j)

)2

subject to the system dynamics (1), the current state of charge
xi(k) of the energy storage and the constraints (3). With each
RES solving its own optimization problem with no reference
to the rest of the network, the aforementioned communication
and computation difficulties of the CMPC are no longer
present in the DeMPC algorithm.

In Figure 1 the aggregated power profile and the aggregated
battery state of charge profile are presented for a simulation
of one week (N = 336, T = 0.5) for 100 RESs, initial condi-
tions xi(0) = 0.5[kWh], constraints ui = −ui = 0.3[kW] and

battery capacity Ci = 2[kWh] for all i ∈ {1, . . . , 100}. Load
and generation data, w, is taken from a dataset provided by the
Australian electricity distribution network provider, Ausgrid.
This dataset is described in detail in [20].

In previous work, [17] and [16], it was shown that a simple
controller, only based on the current state of the battery,
does not manage to flatten the profile significantly and that
sophisticated algorithms need to be used to have an impact
on the performance. Figure 1 compares the uncontrolled
system dynamics with the closed loop dynamics of CMPC and
DeMPC. Both CMPC and DeMPC improve the performance
significantly. Additionally, as a consequence of the central
controller having comprehensive information on all parameters
for every RES, CMPC outperforms DeMPC.
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Fig. 1. Performance of Centralized and Decentralized MPC for a
simulation length of one week and 100 RESs. The top plot shows
the average power demand, including the uncontrolled or no-battery
case for comparison, while the bottom plot shows the average state
of charge of the batteries.

IV. CENTRALIZED MPC WITH DISTRIBUTED
COMPUTATION

In this section, we propose a hierarchical distributed model
predictive control (DiMPC) approach where each RES can
communicate with a central entity with the aim of achieving
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the performance of the CMPC algorithm, i.e., a network-
wide objective while keeping the main advantage of DeMPC:
flexibility. After introducing the algorithm we show that the
optimal values at a fixed time step of the minimization
problems corresponding to DiMPC and CMPC coincide.

A. The Distributed Optimization Algorithm

The distributed optimization algorithm is based on the cost
function (7) introduced in the centralized setting. Instead
of solving one minimization problem, several iterations are
performed at every time step k in which every RES mini-
mizes only over its own control variables. The central entity
communicates the aggregated performance output between
the systems and computes the variable step size θ in every
iteration.

The communication structure of Algorithm 1 is visualized
in Figure 2.

Iteration `, Phase 1

Central Entity

• Compute ✓`

• Update ẑ`+1

• Compute ⇧`

RES i

• Update ẑ`+1

• Compute ẑ?`+1
i

Iteration `, Phase 2

ẑ?`1 · · · ẑ?`I

ẑ?`+1
i

✓`,⇧`

✓`,⇧`

Fig. 2. Visualization of the communication structure of Algorithm 1.

A feasible initialization of RES i, i ∈ {1, . . . , I} is
for example given by ẑ?1i (j) = ẑ1i (j) := wi(j), which
corresponds to the choice u1i (·) ≡ 0 and can be replaced by
any other admissible initialization. Additionally the parameters
wi(j) := wi(k+j), j = 0, 1, . . . , N−1, for i ∈ {1, 2, . . . , I},
and x0 := x(k) have to be given. The average value ζ̄ := ζ̄(k)
has to be computed based on the information of (ẑ1i (j))N−1j=0

by the central entity similar to Equation (6).
Algorithm 1 is terminated either after a fixed number of

iterations `max or if the stopping criteria |V `+1 − V `| ≤ ε is
satisfied. The input u(k) is defined in a similar way to the
update rule (9), i.e., as a convex combination of the last two
computed inputs. Alternatively, the input ui(k) := û

?`max
i (0)

for i ∈ {1, 2, . . . , I} can be used. Since the constraints define
a convex set it is ensured that ẑ`+1(·) corresponds to an
admissible input sequence in every iteration. In Theorem IV.9
we show that, as the iteration index ` converges to infinity,
Algorithm 1 converges to the unique optimal value of the
considered optimal control problem.

Remark IV.1. Rather than solving the optimization problem
(8), the parameter θ in iteration ` can be computed by

Algorithm 1 Distributed Optimization Algorithm
Input:
• RES i, i ∈ {1, 2, . . . , I}: initial state of charge xi(0),

prediction horizon N , power profile (wi(j))
N−1
j=0 .

• Central Entity: Number of RESs I, prediction hori-
zon N , maximal iteration number `max ∈ N ∪ {∞},
desired precision ε.

Initialization:
• RES i, i ∈ {1, 2, . . . , I}: define and transmit

(ẑ?1i (j))N−1j=0 and (ẑ1i (j))N−1j=0 .
• Central Entity: Set the iteration counter ` = 0 and V 1 =
∞, receive (ẑ1i (j))N−1j=0 , i ∈ {1, 2, . . . , I}, transmit ζ̄.

Phase 1 (Central Entity): Increment the iteration counter `.
Then, receive (ẑ?`i (j))N−1j=0 , i = 1, 2, . . . , I.
• Compute the step size θ` as

argmin
θ∈[0,1]

N−1∑
j=0

(
ζ̄ − 1

I
I∑
i=1

[
θẑ?`i (j) + (1− θ)ẑ`i (j)

])2
(8)

• Compute

ẑ`+1(j) := θ`ẑ?`(j) + (1− θ`)ẑ`(j) (9)

and the predicted average demand

Π`(j) :=
1

I
I∑
i=1

ẑ`+1
i (j)

for j ∈ {0, 1, . . . , N−1}. Evaluate the performance index

V `+1 :=

N−1∑
j=0

(
ζ̄ −Π`(j)

)2
. (10)

• If |V `+1 − V `| < ε or ` ≥ `max holds, terminate the
algorithm. Otherwise transmit θ` and (Π`(j))N−1j=0

Phase 2 (RES i, i ∈ {1, 2, . . . , I}): Receive θ` and
(Π`(j))N−1j=0

• For j = 0, 1, . . . , N − 1 compute

ẑ`+1
i (j) := θ`ẑ?`i (j) + (1− θ`)ẑ`i (j) (11)

• Solve the (local) minimization problem

min
ûi(·)

N−1∑
j=0

(
ζ̄ −Π`(j) +

ẑ`+1
i (j)

I − wi(j) + ûi(j)

I

)2

(12)

subject to the system dynamics (1), x̂i(0) = xi(0),
and the constraints (3) to obtain the unique minimizer
(ẑ
?`+1

i (j))N−1j=0 := (wi(j) + û
?`+1

i (j))N−1j=0 .
• Transmit (ẑ

?`+1

i (j))N−1j=0 .

projecting the expression

θ̃ =

∑N−1
j=0

(∑I
i=1

(
ζ̄ − ẑ`i (j)

))(∑I
i=1

(
ẑ?`i (j)− ẑ`i (j)

))
∑N−1
j=0

(∑I
i=1

(
ẑ?`i (j)− ẑ`i (j)

))2
to the interval [0, 1], i.e., θ = max{0,min{θ̃, 1}}. In order to
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show this, define the function

F (θ) :=

N−1∑
j=0

(
ζ̄ − 1

I
I∑
i=1

(θẑ?`i (j) + (1− θ)ẑ`i (j))
)2

=

N−1∑
j=0

(
ζ̄ − 1

I
I∑
i=1

ẑ`i (j)−
θ

I
I∑
i=1

(ẑ?`i (j)− ẑ`i (j))
)2

.

Since F is strictly convex, the assertion follows by setting
F ′(θ) = 0 and projecting the resulting θ on the interval [0, 1].
Note that the expression −I2/2 · F ′(θ) is given by

I
N−1∑
j=0

[(
ζ̄ − 1

I
I∑
i=1

ẑ`i (j)−
θ

I
I∑
i=1

(
ẑ?`i (j)− ẑ`i (j)

))

·
I∑
i=1

(
ẑ?`i (j)− ẑ`i (j)

) ]

=

N−1∑
j=0

( I∑
i=1

(
ζ̄ − ẑ`i (j)

))
·
( I∑
i=1

(
ẑ?`i (j)− ẑ`i (j)

))

− θ
N−1∑
j=0

( I∑
i=1

(
ẑ?`i (j)− ẑ`i (j)

))2

.

In the case where the explicit expression for θ` is not defined,
i.e.,

N−1∑
j=0

( I∑
i=1

(
ẑ?`i (j)− ẑ`i (j)

))2

= 0,

we have ẑ?`i (j) = ẑ`i (j) for all (i, j) ∈ {1, . . . , I} ×
{0, 1, . . . , N − 1} which implies that the algorithm already
found the minimum.

Remark IV.2. Instead of using one parameter θ, one can also
cluster the RESs in M groups, 1 ≤ M ≤ I and define an
optimization variable for each cluster. Then, the central entity
minimizes

N−1∑
j=0

(
ζ̄ − 1

MIm

M∑
m=1

Im∑
i=1

(
θmẑ

`
m,i(j)− (1− θm)ẑ?`m,i(j)

))2

(13)

with respect to the update parameter θ ∈ [0, 1]M where Im
denotes the number of RESs in the m-th cluster while the
subindices in ẑ?`m,i(·) and ẑ`m,i(·) give a numbering for the∑M
m=1 Im = I RESs. Observe that the minimization problem

is quadratic with (convex) box constraints and can be solved
efficiently if the number of optimization variables is small
compared to the number of systems. In the case that M = 1,
we are in the situation of Remark IV.1 and have an exact
solution formula which can be used as a lower bound with
respect to performance. Even if the minimization problem (13)
is not solved until convergence, performing several iterations
improves the outcome of the `-th iteration if θi = θ from
Remark IV.1 is used as an initial guess.

In every iteration, the central entity broadcasts N values
(the average consumption at each time within the prediction
window) and the parameter θ to all RESs. Additionally, each

RES transmits N values in each iteration. Hence, the amount
of data transmitted by the central entity is independent of
the number of systems and the information can be broadcast
instead of individually communicated to each RES. Since the
optimization problems are solved by all RESs individually,
the complexity of the algorithm does not grow with the
number of systems. The central entity does not make use of
the constraints (3). Changing system dynamics, constraints or
adding/removing single systems can be achieved easily on
a local level, making the algorithm readily scalable — in
contrast to CMPC.

B. Convergence of Algorithm 1

In this section, we prove convergence of the proposed
algorithm to the optimal value of CMPC. To this end we first
formalize the crucial steps and the corresponding functions of
the algorithm. For all RESs i ∈ {1, . . . , I}, for a fixed wi, the
constraints of the local minimization problems define compact
and convex sets

Di =


zi(·) ∈ RN

∣∣∣∣∣∣∣∣∣∣∣∣

xi(k) = x0i
xi(j + 1) = xi(j) + Tui(j)
zi(j) = wi(j) + ui(j)
ui ≤ u(j) ≤ ui
0 ≤ x(j + 1) ≤ Ci

∀j = k, . . . , k +N − 1


. (14)

The corresponding parameter dependent objective function vi :
Di → R+ can be written as

vi(ẑi(·); pi(·)) :=

N−1∑
j=0

(
pi(j)−

1

I ẑi(j)
)2

(15)

and changes in every iteration ` according to the parameter
p`i(·) ∈ RN given by

p`i(j) := ζ̄ −Π`−1(j) +
1

I ẑ
`
i (j)

for j = 0, . . . , N − 1.
Since vi is strictly convex, the local minimizer

ẑ?i (·) := argmin
ẑi(·)∈Di

vi(ẑi(·); pi(·))

is unique and since, additionally, vi is continuous in pi(·) it
follows that the mapping

pi(·) 7→ ẑ?i (·) (16)

from the parameters to the minimizers is continuous.
The solutions of the local minimization problems are used

by the central entity to evaluate the global objective function
V : D1 × . . .×DI → R+ defined as

V (ẑ1(·), . . . , ẑI(·)) =

N−1∑
j=0

(
ζ̄ − 1

I
I∑
i=1

ẑi(j)

)2

(cf. the definition of the CMPC cost function, (7)). V is con-
tinuous and convex but not necessarily strictly convex, unlike
the local objective functions vi. For the values computed by
Algorithm 1 we employ the more compact notation

V ` = V (ẑ`+1
1 (·), . . . , ẑ`+1

I (·)).
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In the following, we will use the properties of the functions
vi and V to show convergence of Algorithm 1 to the optimal
value of CMPC. First, we show that the sequence (V `)`∈N0

computed in (10) is nonincreasing.

Lemma IV.3. The sequence (V `)`∈N0 generated by Algo-
rithm 1 is nonincreasing, i.e. V `+1 ≤ V ` holds for all ` ∈ N.
If, additionally, ẑ?`(·) 6= ẑ`(·), then V `+1 < V ` holds.
Hence, the sequence (V `)`∈N0

is monotonically decreasing
until Algorithm 1 stops.

Proof: Since θ` ∈ [0, 1] is chosen such that F (θ) attains
its minimum (see Remark IV.1) replacing θ` by I−1 yields a
larger value

V `+1 =

N−1∑
j=0

(
ζ̄ −Π`(j)

)2
=

N−1∑
j=0

(
ζ̄ − 1

I

I∑
i=1

ẑ`i (j) +
1

I

I∑
i=1

θ`
(
ẑ`i (j)− ẑ?`i (j)

))2

=

N−1∑
j=0

(
ζ̄ −Π`−1(j) +

1

I

I∑
i=1

θ`
(
ẑ`i (j)− ẑ?`i (j)

))2

≤
N−1∑
j=0

(
1

I

I∑
i=1

(
ζ̄ −Π`−1(j) +

1

I

(
ẑ`i (j)− ẑ?`i (j)

)))2

≤
I∑

i=1

1

I

N−1∑
j=0

(
ζ̄ −Π`−1(j) +

1

I

(
ẑ`i (j)− ẑ?`i (j)

))2

︸ ︷︷ ︸
=vi(ẑ

?`
i (·);p`i(·))

≤ 1

I

I∑
i=1

vi(ẑ
`
i (·); p`i(·)) =

1

I

I∑
i=1

N−1∑
j=0

(
ζ̄ −Π`−1(j)

)2
= V `.

The first inequality follows with θ` = 1/I. The second
inequality follows from the definition of convex functions (or
Jensen’s inequality), i.e.,

f

(
M∑
m=1

αixi

)
≤

M∑
m=1

αif(xi),

M∑
m=1

αi = 1, αi ≥ 0

applied to f(x) = x2. The third inequality is a direct
consequence of the optimality of ẑ?`i (·). Since vi(·; p`i(·))
is strictly convex we obtain

∑I
i=1 vi(ẑ

?`
i (·); p`i(·)) <∑I

i=1 vi(ẑ
`
i (·); p`i(·)) if there exists an index (i, j) ∈

{1, 2, . . . , I} × {0, 1, . . . , N − 1} such that ẑ?`i (j) 6= ẑ`i (j)
holds.

The proof of Lemma IV.3 shows that 1/I is a possible
choice for θ in Algorithm 1. Hence, the subsequent statements
in this chapter also hold if the (optimal) stepsize in Algorithm
1 is replaced by the stepsize 1/I.

Corollary IV.4. For ` → ∞ the sequence (V `)`∈N0
⊂ R of

Algorithm 1 converges, i.e., lim`→∞ V ` = V ? ∈ R.

Proof: Since V ` ≥ 0 and (V `)`∈N0
is monotonically

decreasing by Lemma IV.3, (V `)`∈N0
converges to its infimum

V ?.
In Lemma IV.3 and Corollary IV.4 we have shown that the

sequence (V `)`∈N is converging. Our remaining task, which
is the main result of this paper, is to demonstrate that the limit

of the sequence (V `)`∈N is equal to the optimal value of the
centralized cost function (7).

Theorem IV.5. The limit V ? of the sequence (V `)`∈N0 gen-
erated by Algorithm 1 coincides with the optimal value V ] of
the minimization problem (7).

Proof: Let z](·) denote a solution of Problem (7), i.e.,

V ] := V (z]1(·), . . . , z]I(·)).

For any z̃i(·) ∈ Di, i = 1, . . . , I, with

V (z̃1(·), . . . , z̃I(·)) > V ] (17)

one step of Algorithm 1 with ẑ`i (·) = z̃i(·) for i = 1, . . . , I
yields

V (ẑ`+1
1 (·), . . . , ẑ`+1

I (·)) < V (z̃1(·), . . . , z̃I(·)) (18)

or

V (ẑ`+1
1 (·), . . . , ẑ`+1

I (·)) = V (z̃1(·), . . . , z̃I(·)) (19)

due to Lemma IV.3. If Equation (19) holds, we addition-
ally obtain from Lemma IV.3 that ẑ`+1

i (·) = z̃i(·) for all
i ∈ {1, . . . , I}, i.e., the algorithm is stationary. To show that
this case cannot happen while (17) holds simultaneously, we
define the function F : [0, 1]I → R as

F (η) :=

N−1∑
j=0

(
ζ̄ − 1

I
I∑
i=1

(
(1− ηi)z̃i(j) + ηiz

]
i (j)

))2

=

N−1∑
j=0

(
ζ̄ − 1

I
I∑
i=1

z̃i(j)−
1

I
I∑
i=1

ηi(z
]
i (j)− z̃i(j))

)2

for η ∈ [0, 1]I . With the notation 1I = [1, . . . , 1] ∈ RI and
0I = [0, . . . , 0] ∈ RI , it holds that

F (1I) = V ] < V (z̃1(·), . . . , z̃I(·)) = F (0I). (20)

Since F is convex, its directional derivative in 0I with respect
to η = 1I is less than zero, i.e.,

0 > 〈gradF (0I),1I〉 =

I∑
i=1

∂F

∂ηi
(0I). (21)

Inequality (20) implies the existence of an index i ∈
{1, . . . , I} such that z]i (·) 6= z̃i(·) and, thus, 0 > ∂F

∂ηi
(0I)

holds. However, then the i-th RES updates z̃i(·), cf. (15) which
contradicts the assumption ẑ`+1

i (·) = z̃i(·). Hence inequality
(18) holds for all z̃i(·) ∈ Di, i = 1, . . . , I, satisfying
inequality (17).

The function V is continuous and defined on a compact
set. Therefore, there exists an (admissible) accumulation point
z?(·) of the sequence (ẑ`(·))∞`=0 satisfying the equality

V (z?1(·), . . . , z?I(·)) = V ?.

It is clear that V ? ≥ V ]. To show that V ? = V ], assume to
the contrary that V ? > V ]. Since the solutions of the local
optimization problems depend continuously on the parameters
pi(·), as per (16), and the function V is continuous, the
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decrease property (18) at the accumulation point z?(·) implies
the existence of an ε > 0 such that the inequality

V (ẑ`+1
1 (·), . . . , ẑ`+1

I (·)) < V ? (22)

is satisfied whenever (z`1(·), . . . , z`I(·)) ∈ Bε(z?1(·), . . . , z?I(·))
holds, where Bε(·) represents the open ball of radius ε >
0 centered at the specified point. Since ẑ?(·) is an accu-
mulation point, there exists an index ` ∈ N such that
(z`1(·), . . . , z`I(·)) ∈ Bε(z

?
1(·), . . . , z?I(·)) holds and, thus,

Inequality (22) holds. However, taking the monotonicity of
the sequence (V `)`∈N0 into account (Lemma IV.3), this con-
tradicts the definition of V ?. Hence, the assertion V ? = V ]

holds.
Theorem IV.5 is the main result of this paper. Since V ?

coincides with V ] the performance of CMPC and DiMPC
can be expected to be equal if Algorithm 1 is iterated until
convergence. The following results give further insight into
some properties of Algorithm 1 that can be used to increase
its convergence speed. We show that the values Π`(j), j =
0, 1, . . . , N − 1, converge for ` → ∞. Hence, the limit can
be used as an initial guess in the optimization problem of the
algorithm.

Lemma IV.6. The values Π?(j) = 1
I
∑I
i=1 zi(j), j ∈

{0, 1, . . . , N − 1}, such that

V ? =

N−1∑
j=0

(
ζ̄ −Π?(j)

)2
holds are unique.

Proof: Let Π?(j) and Π̄(j) both be optimal. From the
definition of Π?(j), j = 0, 1, . . . , N − 1, it is straightforward
that (Π?(j)/2 + Π̄(j)/2)N−1j=0 corresponds to an admissible
performance output z. Thus by strict convexity of quadratic
functions we obtain

N−1∑
j=0

(
ζ̄ − 1

2

(
Π?(j) + Π̄(j)

))2

<
1

2

N−1∑
j=0

(
ζ̄ −Π?(j)

)2
+

1

2

N−1∑
j=0

(
ζ̄ − Π̄(j)

)2
=

k+N−1∑
j=k

(
ζ̄ −Π?(j)

)2
which contradicts the optimality of Π?(·).

As a consequence of Lemma IV.4, Lemma IV.6, and the
strict convexity of the function f : RN → R,

f(Π) =

N−1∑
j=0

(
ζ −Π(j)

)2
we obtain the following corollary.

Corollary IV.7. The convergence Π`(j) → Π?(j), j =
0, 1, . . . , N − 1, holds for `→∞.

So far we have shown that (V `)`∈N and (Π`(·))`∈N con-
verge. As a final step, it would be desirable if additionally
it could be shown that (ẑ`(·))`∈N converges. Unfortunately

we can only show that the difference between two solutions,
ẑ`(·) and ẑ`−1(·), converges to zero for ` → ∞. In order to
demonstrate that the stepsize ‖ẑ`(·) − ẑ`−1(·)‖ converges to
zero, we need the following theorem.

Theorem IV.8 ([21, Theorem 2]). Let Q be a positive definite
matrix and Θ ⊂ Rm be a polyhedron. Furthermore, let S ⊂
Rn be a polytope. Consider the function q : Θ→ R ∪ {∞}
defined by the multi-parametric quadratic program

q(δ) :=

 mins cT s+ 1
2s
TQs

s.t. As ≤ b+ Fδ
s ∈ S

. (23)

Then the set of feasible parameters Θf ⊂ Θ is convex, the op-
timizer s(δ) : Θf → Rn is unique, continuous and piecewise
affine, and the value function q(δ) : Θf → R is continuous,
convex, and piecewise quadratic.

Theorem IV.9. Let (ẑ`(·))`∈N0
be the sequence generated by

Algorithm 1. Then, the stepsize ‖∆ẑ`(·)‖ with ∆ẑ`(·) :=
ẑ`(·)− ẑ`−1(·) converges to zero for `→∞.

Proof: With the definition of ẑ`+1(·) in Equation (9),
‖∆ẑ`(·)‖ can be written as

‖ẑ`+1(·)− ẑ`(·)‖ = θ‖ẑ?`(·)− ẑ`(·)‖.
Hence, showing that ‖ẑ?`(·) − ẑ`(·)‖ converges to zero for
` → ∞ is sufficient to prove the assertion. We first write the
local minimization problems (12) in the form (23). Let Π?(j),
j = 0, 1, . . . , N − 1, be the unique values from Lemma IV.6.
With δ(·) := (δ(0), . . . , δ(N − 1))T ∈ RN , the set

Θ =

{
δ(·) ∈ RN |δ(j) = Π?(j)− 1

I
I∑
i=1

zi(j), zi(·) ∈ Di

}
,

where Di is as in (14), is compact, convex, and contains the
vector δ(·) = 0N . Then, for an arbitrary iteration index ` ∈ N0,
Π`(·) from Algorithm 1 can be written as

Π`(j) = Π?(j)− δ`(j), j ∈ {0, 1, . . . , N − 1} (24)

for δ`(·) ∈ Θ. The objective of the local minimization problem
(12), in the form (15), of the RES i can be written as

vi(ẑi(·);p`i(·)) =

N−1∑
j=0

(
p`i(j)−

1

I ẑi(j)
)2

(24)
=

N−1∑
j=0

(
ζ̄ −Π?(j) + δ`(j) +

1

I
(
ẑ`i (j)− ẑi(j)

))2

.

If δ`(·) = 0N , the strict convexity of vi(·; pi(·)) implies
global optimality and thus, ẑ?`(·) = ẑ`(·), which shows the
assertion. Otherwise, if δ`(·) 6= 0N , we define the coordinate
transformation

si(δ
`(·)) = δ`(·) +

1

I
(
ẑ`i (·)− ẑ?`i (·)

)
= δ`(·) +

1

I
(
û`i(·)− û?`i (·)

)
.

Then the objective function of the local minimization problem
(12) can be equivalently written as

min
si

1

2
sTi si + (ζ̄ −Π?(0), . . . , ζ̄ −Π?(N − 1))si (25)
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with si = si(δ
`(·)) = (si(δ

`(0), si(δ
`(1), . . . , si(δ

`(N−1))T .
(Constant values are omitted in the minimization formulation,
since they do not change the optimal solution si.) The lower
and upper bounds ui ≤ ui(j) ≤ ui in the variables si and
δ`(·) read

1Nui ≤ Iδ`(·) + û`i(·)− Isi ≤ 1Nui (26)

⇐⇒
{
−Isi ≤ (1Nui − û`i(·)) − Iδ`(·)
Isi ≤ −(1Nui − û`i(·)) + Iδ`(·) .

The constraints on the battery 0 ≤ xi(j) ≤ Ci and the system
dynamics xi(j + 1) = xi(j) + Tui(j) can be written in the
form

0 ≤ 1Nx
0
i + TLui(·) ≤ 1NCi (27)

where L ∈ RN×N is defined as

L =

 1
...

. . .
1 · · · 1

 .

In the variables si and δ` the inequality (27) reads

0 ≤ 1Nx
0
i + ITLδ`(·) + TLû`i(·)− ITLsi ≤ 1NCi (28)

⇔
{
−ITLsi ≤ (1N (Ci − x0i )− TLû`i(·))− ITLδ`(·)
ITLsi ≤ (1Nx

0
i + TLû`i(·)) + ITLδ`(·)

Now we can apply Theorem IV.8 to the optimization problem
q(δ`) defined by the objective function (25) and the constraints
(26) and (28) in order to obtain a piecewise affine function
si(δ) with si(0N ) = 0N and

1

I (ẑ`i (·)− ẑ?`i (·)) = si(δ
`(·))− δ`(·). (29)

Since δ`(·)→ 0N for `→∞ (by Corollary IV.7) we obtain

lim
`→∞

1

I (ẑ`i (·)− ẑ?`i (·)) = 0RN (30)

for all i = 1, . . . , I, showing the assertion.
The convergence of the sequence (∆ẑ`(·))`∈N does not

imply the convergence of the sequence (ẑ`(·))`∈N0
. Since

the optimal solution of the minimization problem (7) is not
unique, the sequence can have several accumulation points
with the same performance. The convergence of (∆ẑ`(·))`∈N
can in particular be used to improve the stopping criterion
of Algorithm 1. A stopping criterion only based on the
value |V `−1 − V `| might stop the algorithm early. Hence,
checking additionally the values ‖Π`−1(·)−Π`(·)‖ according
to Corollary IV.7 and ‖∆ẑ`(·)‖ according to Theorem IV.9 can
help preventing stopping the algorithm too early, i.e., when the
solution is still far from optimal.

Even though we can show that Algorithm 1 yields the same
optimal value as the CMPC algorithm at every time step, the
closed loop behavior may differ. Since the optimal solution is,
in general, not unique, the choice of different optimal solutions
can have an impact in the closed loop trajectory. This is
not only a problem of the distributed optimization Algorithm
1, but can also appear in the CMPC algorithm if different
optimization algorithms (for example active set methods or
interior point methods) are used to compute the optimal
solution. This behavior is illustrated in the next example.

Example IV.10. Let N = I = 2, T = 1, wi = {1, 1,−1},
xi(0) = 1 for i = 1, 2, and consider the constraints

0 ≤ xi(j) ≤ 2

−1 ≤ ui(j) ≤ 1

for j ∈ N0 and i = 1, 2. For the time k = 0 we get ζ(0) = 1
which leads to the optimal open loop trajectories

û1(0) = [0 0], ẑ1(0) = [1 1],

û2(0) = [0 0], ẑ2(0) = [1 1].

For k = 1 we obtain ζ̄(1) = 0 and optimal open loop solutions
are given by

û1(1) = [−1 1], ẑ1(1) = [0 0],

û2(1) = [−1 1], ẑ2(1) = [0 0].

For the cost function we obtain the values V (x(0)) =
V (x(1)) = 0.

On the other hand, the values

û1(0) = [1 0], ẑ1(0) = [2 1],

û2(0) = [−1 0], ẑ2(0) = [0 1].

are also optimal, i.e., V (x(0)) = 0. In this case we obtain
x1(1) = 2 and x2(1) = 0 but since the second battery is
empty we obtain

û1(1) = [−1 1], ẑ1(1) = [0 0],

û2(1) = [0 1], ẑ2(1) = [1 0].

as the optimal open loop solution with V (x(1)) = 1/4 for the
cost function.

C. Comparison to decomposition algorithms

a) Primal and dual decomposition: In this section we
compare Algorithm 1 with primal and dual decomposition
algorithms described in [22]. Decomposition approaches de-
scribe methods to break a single optimization problem into
several optimization problems which are easier to solve. Primal
decomposition refers to the decomposition of the original
problem, while dual decomposition manipulates the dual for-
mulation. Dual decomposition has been used in distributed
MPC algorithms [23], [24], [25], [26] when the cost function
is quadratic and separable.

Consider the minimization problem

min
v,y

f(v, y)

s.t. (v, y) ∈ P
(31)

given in [22]. Here f denotes a convex function and P a
polyhedron of suitable dimension. We assume that the function
f and the polyhedron P can be split such that the minimization
problem (31) can be equivalently written as

min
v,y

∑I
i=1 fi(vi, y)

s.t. vi ∈ Pi ∀i = 1, . . . , I
y ∈ Py

(32)

with convex functions fi and polyhedra Py and Pi for i ∈
{1, . . . , I}. Hence the objective function is decoupled with
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respect to the variables vi, and for a fixed value y ∈ Py , one
can solve the minimization problems

min
vi

fi(vi, y)

s.t. vi ∈ Pi
(33)

separately. This technique of rewriting (31) as several prob-
lems of the form (33) is called primal decomposition. To
solve the problem in a distributed way, (33) is solved for all
i ∈ {1, . . . , I} and a fixed value y ∈ Py . Afterwards, the
optimization variable y is updated and the process is repeated
until an optimal solution is found.

In our case, the minimization problem at a fixed time step
can be written as

min
v1,...,vI

∑I
i=1 fi(v1, . . . , vI)

s.t. vi ∈ Pi ∀i = 1, . . . , I
where vi = ui and

f(v1, . . . , vI) =

N−1∑
j=0

(
ξ(j)− 1

I
I∑
i=1

vi(j)

)2

with constant values ξ(j). Observe that due to the square,
the function f is not separable with respect to the variables
v1, . . . , vI . Additionally, an analog of the variable y does
not exist in our setting. Nevertheless, it is possible to find
similarities between primal decomposition and Algorithm 1.
Define the values

yi(j) = ξ(j)− 1

I
I∑

j=1;i 6=j
ṽi(j)

for given values ṽi(j). Then we can define the functions

f(vi, yi) =
1

I
N−1∑
j=0

(
yi(j)−

1

I vi(j)
)2

and the corresponding minimization problems

min
vi

fi(vi, yi)

s.t. vi ∈ Pi
which are separated for constant values yi or constant values
ṽi, respectively. Hence, the minimization problems can be
solved in a distributed manner by iteratively updating ṽi.
A smart way of updating ṽi is given by Algorithm 1. In
contrast to primal decomposition, however, we point out that
in our case yi is not an optimization variable and we need an
individual yi for every fi.

In dual decomposition, the minimization problem (32) is
written in the form

min
vi,yi

∑I
i=1 fi(vi, yi)

s.t. vi ∈ Pi ∀i = 1, . . . , I
yi ∈ Py ∀i = 1, . . . , I
yi = yj ∀i, j = 1, . . . , I.

(34)

Instead of fixing the parameter y, yi is used as an additional
optimization variable. The optimization problem (34) can be
separated by looking at the Lagrangian and fixing the Lagrange
variables. In dual decomposition, the minimization problems

are solved for the unknowns (xi, yi) and fixed Lagrange
variables for the next iteration. The Lagrange variables are
updated until a solution is found. As emphasized above, the
variable y does not exist in our objective function and hence,
dual decomposition is not applicable in our context.

b) Distributed consensus-based primal-dual perturbation
[10]: In [10] a distributed optimization algorithm applicable
to our setting is presented. For our setting, the variables

yj =
1

I
I∑
i=1

zi(j)

j = {0, . . . , N − 1} and the cost function

F(y) =

N−1∑
j=0

(
ζ̄ − yj

)2
have to be defined. Every system tries to find the optimal
solution y. Convergence against a global optimum is achieved
by communicating between neighboring systems and under the
assumption that the corresponding graph is strongly connected.
The iterative solutions are computed by evaluating the gradient
∇F , moving in a decreasing direction, and projecting the new
solution on the local constraint sets.

Algorithm 1, by contrast, is a hierarchical algorithm due
to the central entity, which mediates the information between
RESs. The central entity does this by aggregating the infor-
mation of all RESs and broadcasts only aggregate informa-
tion. Note that, in the context of the considered smart grid
application, customer privacy is an important goal and, using
the hierarchical approach proposed herein, customers com-
municate only with the central entity. Furthermore, customer
information must generally be shared with a central entity
in this way for billing purposes. The neighbor-to-neighbor
approach of [10], however, requires that detailed supply-
consumption data be shared among neighbors. Additionally,
in Algorithm 1, by computing the variable step size θ, the
central entity makes sure, that the received data is used in an
optimal way, with respect to a single iteration.

V. A NUMERICAL CASE STUDY

This section starts by describing a common technique in
MPC applications, warm-start, as applied to the numerical
implementation of Algorithm 1 for achieving the CMPC
performance in a distributed fashion. Then, based on real data
from an Australian electricity distribution company, Ausgrid, a
numerical case study is presented in order to show the benefit
of DiMPC compared to CMPC and DeMPC. An overview of
the load and generation data provided by Ausgrid can be found
in [20].

A. Warm-Start

The computational complexity of Algorithm 1 depends
strongly on the number of iterations needed to satisfy the
stopping criteria. An initialization of ẑ1(·) with an almost
optimal value of the objective function can reduce the number
of iterations significantly. Since an optimization problem has
to be solved at every time step in MPC, it is natural to use the
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(optimal) solution of the previous iteration as the initial guess
at the current time instant. This method, which is called warm-
start, can be used in our context in view of Corollary IV.7.

Let ẑ?(·; k) = (ẑ?(k; k), ẑ?(k+1; k), . . . , ẑ?(k+N−1; k))T

and ẑ?(·; k + 1) = (ẑ?(k + 1; k + 1), . . . , ẑ?(k +N ; k + 1))T

denote optimal solutions at time k and time k + 1, respec-
tively. Here, the second argument indicates the time index
at which the output value is computed. Since the underlying
optimization problems only differ in the initial value x(k) and
x(k+ 1), respectively, and in the shifted power demand w(·),
we expect that the average value and the optimal performance
output only change slightly, i.e., ζ(k) ≈ ζ(k + 1) and
ẑ?(k + j; k) ≈ ẑ?(k + j; k + 1) for all j ∈ {1, . . . , N − 1}.
Hence, we define

ẑ1i (j) := ẑ?i (k + j + 1; k)

û1i (j) := û?i (k + j + 1; k)

for all i ∈ {0, . . . , I} and for all j ∈ {0, . . . , N − 2} in
Algorithm 1 instead of ẑ1i (j) = wi(k + j). Additionally, we
set û1i (N − 1) = 0, which implies ẑ1i (N − 1) = wi(k + N),
to make sure that the initial trajectory is feasible.

B. Case Study

All minimization problems involved in the numerical exper-
iments are solved using the Interior Point Optimizer (IPOPT)
[27] and the HSL mathematical software library [28] to solve
the underlying linear systems of equations.

For all numerical experiments we fix the initial values
xi(0) = 0.5[kWh] and the constraints Ci = 2[kWh] and
ui = −ui = 0.3[kW] for all i ∈ {1, . . . , I}.

Benefits of Warm-Start and variable θ: In Lemma IV.5
we showed that the optimal value V ? obtained by the CMPC
algorithm coincides with the value lim`→∞ V ` obtained by
the distributed optimization Algorithm 1. In Figure 3 we
visualize the number of iterations of this algorithm for a
simulation length of 3 days (i.e., N = 144, T = 0.5[h]),
and 20 RESs, which are necessary to ensure the accuracy
|V `(k) − V ?(k)| ≤ 10−i for i = 1, . . . , 5. Additionally,
Figure 3 shows the importance of the step length θ. If the
fixed value θ = 1/I is used instead of a variable θ according
to the minimization problem (8), approximately twice as many
iterations are necessary to obtain a certain accuracy. A variable
θ in combination with warm-start reduces the number of
iterations even further.

In Figure 4 we visualize

1

N
N−1∑
k=0

|V `(k)− V ?(k)|,

i.e., the average deviation from the optimal solution computed
by the centralized MPC algorithm in iteration `. The average
is with respect to the simulation length N = 144. The
figure illustrates the rate of convergence of the distributed
optimization algorithm using fixed θ = 1/I and variable θ
with and without warm-start. We can observe that the method
consists of two phases with a linear rate of convergence. We
obtain linear convergence in all cases and variable θ clearly

a) Variable θ b) Variable θ & warm-start
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c) Fixed θ = 1/I d) Fixed θ = 1/I & warm-start

0 24 48 72 96 120 144
0

50

100

150

200

N
u
m

b
e
r 

o
f 
it
e
ra

ti
o
n
s

Time index k
0 24 48 72 96 120 144

0

50

100

150

200

N
u
m

b
e
r 

o
f 
it
e
ra

ti
o
n
s

Time index k

Fig. 3. Number of iterations needed to ensure |V `(k) − V ?(k)| ≤
10−i for i = 1, . . . , 5 at time k. V ? denotes the solution of CMPC.

without warm-start with warm-start
θ = 1/I variable θ θ = 1/I variable θ

av. no. of iterations
ε = 10−1 8.61 3.81 1.59 0.27
ε = 10−2 23.90 15.05 13.57 1.44
ε = 10−3 59.33 33.04 28.20 3.86
ε = 10−4 99.85 51.44 42.02 7.67
ε = 10−5 142.69 65.89 55.56 11.57
max. no. of iterations
ε = 10−1 12 6 20 3
ε = 10−2 42 24 63 16
ε = 10−3 86 46 107 38
ε = 10−4 131 67 152 58
ε = 10−5 176 89 197 69
min. no. of iterations
ε = 10−1 6 3 0 0
ε = 10−2 10 6 0 0
ε = 10−3 13 11 0 0
ε = 10−4 14 16 0 0
ε = 10−5 16 19 0 0

TABLE I
Number of iterations needed to obtain a certain accuracy for

variable and fixed θ, with and without warm-start.

outperforms the method with fixed θ. After the accuracy of
the optimizer is reached, the results do not improve anymore.

Impact of the Number of Systems: In Figure 5 the
influence of the number of RESs instead of the accuracy is
analyzed. We vary the number of RESs from 10 to 300 in steps
of 10 and count the number of iterations until the accuracy
|V ` − V ?| ≤ ε is obtained with and without warm-start. On
average the optimization algorithms using warm-start clearly
outperform the algorithm without warm-start independent of
the number of systems. However, we also observe that in
the worst case, the algorithm with warm-start requires more
iterations than the one without. The number of iterations is
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Fig. 4. Average speed of convergence of the distributed optimization
algorithm with fixed θ = 1/I with (red) and without (green) warm-
start and variable θ with (black) and without (blue) warm-start.
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Fig. 5. Average number of iterations needed to obtain the accuracy
|V `−V ?| ≤ 10−2 for a different number of RESs without warm-start
(blue) and with warm-start (red). The dashed lines show the maximal
and minimal number of iterations.

not independent of the number of systems. The number of
iterations seems to increase sublinearly with respect to the
number of RESs (for more than 50 RESs).

Imperfect Optimization: In Figure 5 we see that the
algorithm needs about 15 iterations on average to obtain an
accuracy of 10−2 in the setting of 100 RESs, variable θ, and
warm-start. However, if we do not iterate up to a certain
accuracy and always perform a fixed number of iterations at
every time step, we can conclude that 3 iterations are sufficient
to obtain a closed loop performance which is close to CMPC
(cf. Figure 7 and Table II), even though the difference to the
optimal value is still large (cf. Figure 6) and, in most of the
cases, greater than 10−2. Note that Figure 6 only shows the
first 144 time steps. The missing time steps show a similar
behavior and are not visualized to keep the description clear.)

Remark V.1. For the considered dataset in this section, i.e.,
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Fig. 6. Comparison of the optimal value function of centralized MPC
and distributed MPC for 100 RESs using warm-start and incomplete
optimization.
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Fig. 7. Comparison of the closed loop behavior of CMPC and DMPC
for 100 RESs using warm-start and 3 iterations at every time step.

PTP RMS
Centralized MPC

0.5016 0.0568
Dist MPC without warm-start
` = 3 0.5016 0.0780
` = 5 0.5016 0.0670
` = 10 0.5016 0.0609
Dist MPC with warm-start
` = 3 0.5016 0.0583
` = 5 0.5016 0.0574
` = 10 0.5016 0.0569

TABLE II
CMPC performance and performance of distributed MPC for 100

RESs and incomplete optimization.

the 144 samples and a variable number of RESs, the values
V ? are in the interval [0.054, 1.850]. A large (small) V ?

corresponds to a large (small) deviation from the average ζ.
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Therefore, we use the absolute error∣∣V ` − V ?∣∣ ≤ ε
instead of the relative error∣∣V ` − V ?∣∣ ≤ ε · V ?
as a measure of the quality of the results. If V ? is small the
performance with respect to our metrics is good even if the
relative error might still be large. The choice ε = 10−2 for
most of the numerical simulations seems to be reasonable for
our application, but can be replaced by any other value.

VI. CONCLUSION

In this paper we presented a novel distributed optimization
algorithm for the receding horizon control of a distributed
electricity network, based on communication with a central
entity. Optimality was established for the corresponding cen-
tralized optimization problem. The communication structure of
the algorithm is independent of the number of RESs connected
to the grid and the number of iterations needed at every time
step is reduced significantly by optimizing the step length in
every iteration. Additionally, we showed that the number of
iterations increases very moderately with the number of RESs
if the algorithm is combined with a warm start method. Indeed,
already very few iterations are sufficient to obtain a result
comparable to CMPC if the algorithm is applied in an MPC
context.

Future work will concentrate on the benefit to individual
RESs. While in the presented algorithm the motivation of an
RES in minimizing the fluctuation in the network are not clear,
we will investigate algorithms with a similar communication
structure, but with cost functions representing real energy
prices. Hence, in this future work, the goal of the grid operator
(minimizing the fluctuations in the power demand) can be
interpreted as a minimization of the electricity costs for each
individual RES.
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[10] T.-H. Chang, A. Nedić, and A. Scaglione. Distributed constrained
optimization by consensus-based primal-dual perturbation method. IEEE
Transactions on Automatic Control, 59(6):1524–1538, 2014.

[11] C. A. Hill, M. C. Such, D. Chen, J. Gonzalez, and W. M. Grady.
Battery energy storage for enabling integration of distributed solar power
generation. IEEE Transactions on Smart Grid, 3(2):850–857, 2012.

[12] K. M. M. Huq, M. E. Baran, S. Lukic, and O. E. Nare. An energy
management system for a community energy storage system. In Proc.
IEEE Energy Conversion Congress and Exposition, 2012.

[13] N.-K. C. Nair and N. Garimella. Battery energy storage systems:
Assessment for small-scale renewable energy integration. Energy and
Buildings, 42(11):2124–2130, 2010.

[14] A. Nottrott, J. Kleissl, and B. Washom. Energy dispatch schedule
optimization and cost benefit analysis for grid-connected, photovoltaic-
battery storage systems. Renewable Energy, 55:230–240, 2013.

[15] E. L. Ratnam, S. R. Weller, and C. M. Kellett. An optimization-
based approach to scheduling residential battery storage with solar PV:
Assessing customer benefit. Renewable Energy, 75:123–134, March
2015.

[16] K. Worthmann, C. M. Kellett, P. Braun, L. Grüne, and S. R. Weller.
Distributed and decentralized control of residential energy systems
incorporating battery storage. IEEE Transactions on Smart Grid, 2015.
Doi: 10.1109/TSG.2015.2392081.

[17] K. Worthmann, C. M. Kellett, L. Grüne, and S. R. Weller. Distributed
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