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Abstract 

 

   Siderophile (Fe-loving) elements are depleted in the Earth´s mantle because they have been 

extracted into the Earth´s core by core formation processes. Metal – silicate partitioning of 

siderophile elements can provide major constraints on the conditions that prevailed during 

core formation of the Earth because partitioning is dependent on pressure, temperature, 

oxygen fugacity and the silicate and metal compositions. The liquid metal – liquid silicate 

partitioning behaviour of the non-volatile elements Ni, Co, Mo and W and the volatile 

elements Cu, Sn, Sb, Ge, Pb, Ag, Au, P and As has been studied at pressures between 11 and 

23 GPa and temperatures of 2342 K to 2911 K by performing partitioning experiments in a 

multi-anvil apparatus. This work has been primarily focused on volatile elements, because 

previous studies and therefore core formation models lack data for this group of elements. The 

silicate starting material of the experiments had a peridotitic composition and the starting Fe-

rich metal has been varied by adding S in the case of non-volatile elements and Si or S when 

investigating volatile element partitioning. This enables the influence of these light elements, 

that potentially contribute to the Earth´s core density deficit, on the partitioning of siderophile 

elements to be quantified. The metal, ferropericlase and silicate phases of 104 samples have 

subsequently been analysed with the electron probe micro-analyser for the first two phases 

and the laser ablation inductively coupled plasma mass spectrometer in the case of silicate. 

Subsequently partition and exchange coefficients have been calculated on a molar basis. The 

partitioning was analysed by employing the ε-approach as formulated by Ma et al. (2001). It 

was found that over the experimentally investigated pressure and temperature range the 

partitioning of all elements studied does not change significantly. The addition of Si to the 

starting metal powder resulted in decreased siderophility for all volatile elements. Since the 

addition of Si is accompanied by a decrease in oxygen fugacity this implies that for each 

volatile element studied the interaction of Si with these elements in the metal counteracts the 

effect of low fO2 which normally results in increased siderophile behaviour. This shows that 

reducing conditions in the early stages of core formation do not necessarily result in complete 

or even strong depletion of siderophile elements when Si is present as a light element in the 

metal phase. The quantification of the effect of Si on the metal – silicate partitioning of 

volatile elements furthermore facilitates the identification of the valence states of these 

elements in the silicate phase. It was found that Cu and Ag are present as 1+ cations, Au and 

Pb are divalent, Sn and Ge have a valence of 3+ and Sb and As are tetravalent and pentavalent 
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respectively. The addition of S to the metal phase of the experiments resulted in increased 

siderophility for the elements Ag, Cu, Pb and Ni and vise versa for all other elements studied. 

Finally, the parameterization of the metal – silicate partitioning behaviour of all elements – in 

the case of non-volatile elements including literature - was incorporated into a single stage 

core formation model, in which oxygen fugacity was set by the present day FeO content of the 

Earth´s mantle and the temperature was fixed by the peridotitic liquidus at a given pressure 

after Liebske et al. (2012). For the non-volatile elements it was attempted to match their 

absolute abundances in the Earth´s mantle or if not possible the ratio between the partition 

coefficients of two elements. In the case of volatile elements the ratio of the respective mantle 

abundances of two elements with similar 50% condensation temperature was tried to explain 

in order to be able to neglect any assumptions about the degree of volatility these elements 

might have experienced. It was found that increasing pressure facilitates the achievement of 

the correct relative abundances of Mo/W (29 GPa), Cu/Au (12 GPa), Cu/As (5 GPa) and 

Sn/Pb (21 GPa). It was furthermore possible to explain the absolute abundances of Ni and Co 

in the Earth by enormeously high pressures of 126 and 116 GPa respectively. Incorporating 

the influence of S on the partitioning behaviour of the elements of interest extended the 

pressure range that can explain the relative abundances of Ni/Co, Cu/Au, Cu/As, and Ag/Sb. 

In particular it has been found that the solutions for the element pairs Cu/Au and Cu/As 

intersect at 7 GPa and 4.5 wt% S, Cu/Au and Ag/Sb have the same solution at 2 GPa and 9 

wt% S and the trends for Cu/As and Ag/Sb intersect at 9 GPa and 12 wt% S. These results 

clearly exceed the assumed abundance of around 2 wt % S in the Earth´s core (Dreibus and 

Palme, 1996), but are not in conflict with the theory of a late S-rich accretionary component 

as proposed by O´Neill (1991). For each pair of volatile elements (Cu/Au, Cu/As, Ag/Sb and 

Sn/Pb) a combination of S and Si in the metal prevents their fractionation from one another at 

various pressures. In particular it was found that S and Si contents of each less than 1 wt % at 

pressures between 6 and 9 GPa can explain the relative abundances of Cu, Au and As 

simultaneously. However a unique solution that is capable of explaining even the relative 

abundances of all elements studied has not been found. In summary a single stage core 

formation event can be excluded by the results of this study. It seems that increasing pressure 

and with it increasing temperature, as well as increasing S-contents of the metal facilitate the 

achievement of the relative mantle abundances of various elements. Best results have been 

obtained when the effects of Si- and S- metal contents on siderophile element partitioning 

have been taken into account simultaneously.  
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Zusammenfassung 

 

   Siderophile (Fe-liebende) Elemente sind im Erdmantel verarmt, da sie bei der 

Differentiation der Erde in den metallischen Kern extrahiert wurden. Das 

Verteilungsverhalten siderophiler Elemente zwischen Metall und Silikat ist abhängig vom 

herrschenden Druck, der Temperatur, der Sauerstofffugazität (fO2) und der Zusammensetzung 

der Metall- und Silikatphasen und kann deshalb herangezogen werden um die herrschenden 

Bedingungen bei der Erdkernbildung einzugrenzen. Im Zuge dieser Arbeit wurde das Metall – 

Silikat Verteilungsverhalten der nicht-volatilen Elemente Ni, Co, Mo und W, sowie der 

volatilen Elemente Cu, Sn, Sb, Ge, Pb, Ag, Au, P und As experimentell untersucht. Der 

Schwerpunkt der vorliegenden Arbeit wurde auf die volatilen Elemente gelegt, da es zum 

jetzigen Zeitpunkt an ausreichenden Literaturdaten mangelt um das Verteilungsverhalten 

dieser in Kernbildungsmodelle einzubeziehen. Alle Experimente wurden mit mithilfe von 

Vielstempelpressen in einem Druckbereich zwischen 11 GPa und 23 GPa und Temperaturen 

zwischen 2342 K und 2911 K durchgeführt. Dabei wurden eine Silikatphase mit 

peridotitischer Zusammensetzung und ein Fe-reiches Metall equilibriert. Die 

Zusammensetzung der Metallphase wurde durch unterschiedliche S-Konzentrationen variiert. 

Im Falle von volatilen Elemente wurden zusätzliche Experimente mit variierender Si-

Konzentration in der Metallphase durchgeführt. Beide Elemente (S und Si) könnten, falls im 

Erdkern vorhanden, dessen geringere Dichte im Vergleich zu einer reinen FeNi-Verbindung 

erklären. Die Zusammensetzung der experimentell entstandenen Metall- und 

Ferroperiklasphasen von insgesamt 104 Proben wurden im Anschluss an die Experimente 

mithilfe einer Elektronenstrahl-Mikrosonde analysiert, wohingegen die 

Silikatzusammensetzung durch Laserablation-ICP-Massenspektrometrie ermittelt wurde. 

Basierend auf den molaren Zusammensetzungen der Metall- und Silikatphasen wurden 

anschließend Verteilungs- und Austauschkoeffizienten berechnet und das 

Verteilungsverhalten der untersuchten Elemente mithilfe des ε-Models parameterisiert (Ma et 

al., 2011). Innerhalb des untersuchten Druck- und Temperaturbereichs änderte sich das 

Verteilungsverhalten der untersuchten Elemente nur geringfügig. Mit steigenden Si-

Konzentrationen im Metall ist eine Verringerung der Sauerstofffugazität verbunden, was 

üblicherweise zu steigender Affinität der siderophilen Elemente für die Metallphase führt. Die 

Ergebnisse dieser Arbeit zeigen jedoch, dass die Anwesenheit von Si im Metall eine 

Verringerung der Verteilungskoeffizienten aller untersuchten volatilen Elemente zur Folge 
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hat. Dies bedeutet, dass bei Anwesenheit von Si im Erdkern reduzierende Bedingungen in den 

frühen Stadien der Erdkernbildung nicht notwendigerweise zu einer völligen Extrahierung 

siderophiler Elemente in den Erdkern geführt haben müssen. Durch die Parameterisierung des 

Einflusses von Si auf das Verteilungsverhalten von siderophilen Elementen konnten zudem 

deren Oxidationszustände in der Silikatphase ermittelt werden. Die Elemente Cu und Ag 

bilden einwertige Kationen, Pb und Au zweiwertige, Ge und Sn haben einen 

Oxidationszustand von 3+, Sb ist vierwertig und As fünfwertig. Die Zugabe von S zur 

Metallphase führte zu einer Steigerung der Verteilungs- und Austauschkoeffizienten von Ag, 

Cu, Pb und Ni und einer Verringerung derer aller anderen untersuchten Elemente. Alle 

Ergebnisse – im Falle von nicht-volatilen Elementen unter Einbeziehung von Literaturdaten - 

wurden im Zuge eines einstufigen Modells zur Erdkernbildung ausgewertet. In diesem Modell 

wurde die Sauerstofffugazität durch den heutigen FeO-Gehalt des Erdmantels fixiert und die 

Temperatur entlang des Peridotit-Liquidus bei gegebenem Druck berechnet (Liebske et al., 

2012). Ziel war es die Absolutwerte der Konzentrationen der nicht-volatilen Elemente im 

Erdmantel oder das Verhältnis zweier Verteilungskoeffizienten zueinander zu modelieren. Im 

Falle von volatilen Elementen wurde versucht die Verhältnisse der Mantelkonzentrationen 

zweier Elemente mit annähernd gleicher 50% Kondensationstemperatur zu erzielen, um auf 

Annahmen über den Grad der Volatilität verzichten zu können. Die Ergebnisse zeigen, dass 

durch erhöhte Drücke die relativen Verhältnisse jeweils zweier Elemente zueinander erklärt 

werden können: Mo/W (29 GPa), Cu/Au (12 GPa), Cu/As (5 GPa) und Sn/Pb (21 GPa). Die 

Absolutwerte von Ni und Co im Erdmantel können durch enorm hohe Drücke von 126 GPa 

und 116 GPa erreicht werden. Durch den Einfluss von S wird der Druckbereich vergrößert 

indem die relativen Verhältnisse der Mantelkonzentrationen von Ni/Co, Cu/Au, Cu/As und 

Ag/Sb erklärt werden können. Das Verhältnis der Mantelkonzentrationen der Elemente 

Cu/Au, sowie Cu/As kann übereinstimmend bei 7 GPa und einer S-Konzentration im Metall 

von 4.5 Gew.% erreicht werden, die Elementpaare Cu/Au und Ag/Sb lassen sich bei 2 GPa 

und 9 Gew.% S erklären und im Falle von Cu/As und Ag/Sb werden 9 GPa und 12 Gew.% S 

benötigt. Die berechneten S-Konzentrationen übersteigen die geschätze Konzentration von 2 

Gew.% S im Erdkern (Dreibus und Palme, 1996), die Ergebnisse stehen jedoch nicht im 

Widerspruch zur Theorie einer späten Akkretion einer sulphidreichen Phase. (O´Neill, 1991). 

Für alle volatilen Elementpaare (Cu/Au, Cu/As, Ag/Sb und Sn/Pb) wurde schließlich eine 

Kombination von Si und S bei unterschiedlichen Drücken ermittelt um die Verhältnisse der 

Mantelkonzentrationen beider Elemente zu erklären. Im Zuge dessen konnte gezeigt werden, 

dass S- und Si-Konzentrationen von je weniger als 1 Gew.% in einem Druckbereich von 6 – 9 
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GPa die relativen Mantelkonzentrationen von Cu, Au und As gleichzeitig erklären können. 

Eine gemeinsame Lösung zur Erklärung der relativen Verhältnisse aller Elemente konnte 

jedoch nicht ermittelt werden. Die Ergebnisse dieser Arbeit verdeutlichen, dass ein einstufiger 

Kernbildungsprozess ausgeschlossen werden kann. Steigende Drücke, sowie erhöhte S-

Konzentrationen im Metall erklären die Verhältnisse einiger Elemente zueinander. Die besten 

Ergebnisse wurden jedoch durch den kombinierten Einfluss von Si und S auf das Metall – 

Silikat Verteilungsverhalten der siderophilen Elemente erzielt. 
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1. Introduction 
 

1.1 Solar System evolution 
 

   The evolution of the Solar System began 4.567 billion years ago with the collapse of the 

Solar Nebula, the latter being one of many denser parts of a giant molecular cloud (Amelin et 

al., 2002; Weissman, 2007; Halliday and Chambers, 2007). According to Faure and Mensing 

(2007) the Solar Nebula consisted of gas and dust, mainly H and He atoms, but also contained 

all other chemical elements – the remnants of exploded Red Giant Stars. The dust particles 

amount to 2 % (by mass) of the collapsing matter and are composed of different interstellar 

grains like silicates, organics and condensed ices (Weissman, 2007). Initially triggered by an 

external source, the Solar Nebula contracted due to gravitational forces. The deaths of 

neighbouring red giant stars and the corresponding shockwaves or the pressure of photons 

radiated by other stars, as well as fortuitous movements of atoms and particles are considered 

to initiate the collapse (Faure and Mensing, 2007). Material of the collapsing nebula forms a 

rotating disk around a protostar continuously transporting mass into its center. This episode 

proceeds until hydrogen burning becomes possible and solar winds start to remove the 

remaining gas. Around 105 – 106 years are estimated to have elapsed until this stage of Solar 

System formation (Taylor, 2001).  

   The removal of gas by solar winds towards the outer and cooler regions of the disk was 

followed by the condensation of ices beyond the Snow Line at a distance around 5 AU 

(astronomical units) from the sun (Taylor, 2001; Taylor and McLennan, 2009). Due to the 

increasing density in this region the outer giant planets grew rapidly, forming from masses of 

ices and dust. Their early development facilitated the capture of gases (H and He) prior to the 

dispersion of the Solar Nebula gas. Following the growth of the outer giant planets, the inner 

terrestrial planets began to develop from dry rocky refractory material. In contrast to the rapid 

formation of the giant planets (timescale of 105 years), the accretion of the two largest inner 

planets, Earth and Venus, took around 10 to 100 Million years (Taylor and McLennan; 2009).  

   The growth of the terrestrial planets is dominated by gravitational attraction as soon as 

building blocks of 1 to 10 km in diameter have formed (Wetherill, 1989). Prior to this stage 

agglomeration of dust grains was induced by electrostatic forces. Furthermore it can be shown 

that collisions at low velocities (tens of m/s) are sufficient to result in adherence. With 
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increasing aggregation size however the possibility of fragmentation during collisions rises. 

At this point an incorporation mechanism of smaller objects into larger ones at velocities of 

more than 10 m/s becomes important (Halliday and Chambers, 2007). Further growth of 

kilometer-sized objects – now known as planetesimals – is then mainly driven by mutual 

gravitational interactions. The term “runaway growth” describes the fact that larger 

planetesimals will grow faster at the expense of smaller surrounding objects due to their 

greater gravitational influence (Chambers, 2004). As a result tens to hundreds of lunar- to 

Mars-sized embryos formed (Weidenschilling, 2000). According to Chambers (2004) it took 

approximately 0.1 – 1 million years to create only a few tens of these embryos. A late stage of 

planetary evolution then involves growth of the largest embryos, now called protoplanets, and 

is termed “oligarchic growth” (Thommes et al., 2003). At this point giant impacts occur when 

mutual gravitational influences of similarly sized bodies result in crossing orbits (Rubie et al., 

2007). The late stages of planetary accretion are often modeled by N-body simulations in the 

course of which Raymond et al. (2004) showed that the development of the inner planets by 

oligarchic growth needs ~ 108 year. 

   It is now generally accepted by most scientists that the Earth´s Moon originated from a giant 

impact of a Mars-sized body with the Earth. This collision resulted in a protolunar disk from 

which the Moon quickly accumulated (Canup, 2012; Ćuk and Stewart, 2012; Geiss and Rossi, 

2013). The latter authors report that the conversion of gravitational energy into heat during 

lunar accretion was sufficient to cause global melting. Subsequent cooling consequently led to 

the formation of an anorthositic crust and a mafic mantle on the Moon when gravitational 

segregation occurred (Geiss and Rossi, 2013).  

   Figure 1 shows a schematic picture of the Solar System that eventually emerged from the 

mechanisms described above. Here the relative sizes of all bodies are displayed, whereas 

distances are not correctly shown (modified after Brown and Mussett, 1981).  
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Figure 1: Schematic picture of the Solar System. Mechanisms that lead to its formation are described in the text. 

The relative sizes are displayed correctly, whereas this is not the case for the distances between the objects. One 

should note that that according to the Resolutions B5 and B6 adopted by the International Astronomical Union 

(IAU) in 2006 "Pluto" is no longer recognized as a planet, but called a "dwarf planet". (modified after Brown 

and Mussett, 1981) 

 
   At the time of accretion the terrestrial planets underwent differentiation, this means core 

formation occurred separating the silicate mantle from a Fe-rich core (Stevenson, 1981; 

Rushmer et al., 2000; Rubie et al., 2007). The mechanisms of differentiation are discussed in 

Section 1.3 Segregation Mechanisms.  

 

 

 

1.2 Thermal evolution 
 

   It is crucial to understand the thermal evolution of the Earth, because core formation, in 

particular the segregation of metal from silicate, requires high temperatures, which may 

facilitate the development of a global magma ocean, or at least lead to partial melting. 

Furthermore heating in small bodies (e.g. planetesimals) needs to be considered, because it 

constrains whether the accreting material was already differentiated. The main heat sources 

are thought to be radioactive decay of short lived radioactive nuclides, energy that was 

delivered by giant impacts and finally the conversion of gravitational energy into heat induced 

by the segregation of metal from a silicate mantle (Rubie et al. 2007). 
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   It has been shown, that collisions between asteroids with sizes of less than a few hundred 

kilometers in diameter are insufficient to cause global melting (Keil, 1997). Instead the decay 

of 26Al and 60Fe with half lives of 0.73 x 106 and 1.5 x 106 years respectively (Rubie et al., 

2007) can increase the temperatures in smaller bodies up to 1000 °C or more that means 

above the Fe-FeS eutectic melting point. Thus the Earth might have accreted from already 

differentiated objects (Yoshino et al., 2003). The melting of small bodies induced by 

radioactive decay must have taken place in the very early stages of Solar System formation, 

probably within 1 million years (Baker et al., 2005). However the evidence of undifferentiated 

asteroids such as Ceres (Thomas et al., 2005) questions whether a mixture of differentiated 

and undifferentiated objects might have contributed to the Earth´s accretion (Rubie et al., 

2007). 

   The late stages of accretion involved giant impacts that resulted in the formation of one or 

several global magma oceans (Rubie et al., 2007; Tonks and Melosh, 1993; Melosh, 1990; 

Benz and Cameron, 1990). It has been shown that the impact that probably led to the 

formation of the Earth´s Moon was able to cause melting of the entire Earth (Cameron, 2000; 

Canup and Asphaug, 2001). One should note that even the latter scenario is characterized by 

temperature gradients with the region close to the impact exhibiting the highest temperatures. 

Yet average temperatures reach values of several thousand K (Rubie et al., 2007).  

   The mechanisms of metal – silicate segregation on Earth will be discussed in detail in 

Section 1.3. However independent of the kind of segregation (e.g percolation or dyking) 

descending iron is always associated with the conversion of gravitational potential energy into 

heat. This causes an increase in core temperatures of hundreds up to a few thousand K (Rubie 

et al., 2007). 

 

 

 

1.3 Segregation mechanisms 
 

   The formation of the Earth´s iron-rich metallic core results from the segregation of metal 

from the silicate mantle. Metal tends to separate from silicate due to the density contrast. 

Possible segregation mechanisms involve percolation, the separation of molten metal from 

molten silicate in a magma ocean and the processes of diapirism and dyking. The mechanisms 
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of metal – silicate segregation depend on the physical state of the early Earth, are visualized in 

Figure 2 (Rubie et al, 2007) and are discussed in detail further below.  

   However although metal – silicate segregation in a magma ocean is believed to be very 

efficient (Righter, 2005) it has been proposed that core formation might have been partially 

inefficient with some metal remaining in the silicate mantle (Rubie et al., 2007; Jones and 

Drake, 1986). It has furthermore been proposed that metal might have been added back from 

the core to the mantle, what could significantly influence the highly siderophile element 

abundances in the Earth´s mantle as discussed by Walker (2000), Brandon and Walker (2005) 

and Rubie et al. (2007). 

 

 

 

 

Figure 2: Schematic image showing possible mechanisms of metal - silicate segregation during core formation.  

The base of the magma ocean is defined at a melt fraction of 60 % (Solomatov, 2000). Θ represents the dihedral 

(or wetting angle) in polycrystalline aggregates, which needs to be < 60° for efficient percolation to occur (von 

Bargen and Waff, 1986). For further details see text. (modified after Rubie et al., 2007) 
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1.3.1 Percolation  

 

   Liquid metal can percolate through a mantle made of polycrystalline silicates by porous 

flow as long as the liquid is interconnected. The constraint on interconnection depends on the 

dihedral angle θ, which is defined as the angle of a liquid in contact with two solid grains 

(Rushmer et al., 2000). If the dihedral or wetting angle is less than 60° the liquid forms a 

network along the grain edges, whereas dihedral angles above 60° will lead to isolated melt 

pockets until a critical melt fraction is achieved (von Bargen and Waff, 1986). The critical 

melt fraction or “connection boundary” lies at 2 – 6 % when dihedral angles vary between 60 

– 85°. Higher melt fractions enable sufficient percolation, but if the melt fraction drops to a 

certain value below the critical melt fraction, the rest of the liquid ends up stranded in the 

silicate mantle. Since the dihedral angle was found to exceed 60° in a typical core formation 

regime (Shannon and Agee, 1996 and 1998), percolation can be excluded as an efficient 

process for metal-silicate segregation, because the amount of stranded metal in the silicate 

mantle is inconsistent with the concentration of siderophile elements in the mantle (Rubie et 

al. 2011).  

 

 

 

1.3.2 Metal – Silicate separation in a magma ocean 

 

   It has been shown that isostatic adjustment can lead to the development of a global magma 

ocean with a uniform depth after a giant impact (Tonks and Melosh, 1993). The base of the 

magma ocean can be defined at a melt fraction of 60 % and the time span until solidification 

is estimated to be only 103 years when neither a thick atmosphere nor an insulating crust 

delays cooling (Solomatov, 2000; Pritchard and Stevenson, 2000). The development of a 

thick atmosphere and/or an insulating lid can prolong magma ocean lifetimes to 107 to 108 

years respectively (Spohn and Schubert, 1991 and Abe, 1997,  respectively). 

   It has been proposed that equilibration between the core forming metal and the silicate 

mantle involves a metal layer that ponded at the base of a magma ocean (Righter et al., 1997; 

Solomotov, 2000). In contrast it has been argued that metal droplets equilibrate with the 

mantle while sinking through the magma ocean (Stevenson, 1990; Rushmer et al., 2000; 

Rubie et al., 2003). In particular the results of Rubie et al. (2003) showed that the first 

mechanism, equilibration between a ponded metal layer with the overlying silicate mantle, is 
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not capable of achieving chemical equilibrium between metal and silicate because 

equilibration timescales exceed the time span estimated for magma ocean cooling by some 

orders of magnitude. The latter authors found that accreting metal can emulsify to a stable 

droplet size of about 1 cm. Their settling velocities have been estimated to be 0.5 m s-1. It 

should be noted that the convection velocity of a magma ocean is on the order of a few meters 

per second, thus leading to longer settling times for the metal droplets. The break up into 

stable metal droplets takes place at very short settling distances, most likely only a few times 

of the original size of the body. Therefore even the largest impacting bodies must exhibit a 

high degree of emulsification. This process is capable of allowing chemical equilibration 

between the metal and the silicate. However according to Rubie et al. (2003) the equilibration 

of metal droplets with the surrounding mantle depends significantly on the dynamics of the 

magma ocean properties such as convection and mixing. 

   Based on fluid dynamical models of turbulent mixing, Dahl and Stevenson (2010) showed 

that Rayleigh-Taylor instabilities can cause emulsification of Fe metal enabling siderophile 

elements to chemically equilibrate. However these authors found that impacting cores with 

sizes > 10 km do not disaggregate completely, because of which the last giant impact, that 

formed the Earth´s Moon, did not result in in complete re-equilibration. Dahl and Stevenson 

(2010) conclude that Hf-W chronometry (see Section 1.4) probably does not constrain the 

timing of the last giant impact, since the abundances of both elements in the Earth´s mantle 

are established by earlier core formation processes.  

   Partial disequilibrium is also considered by Nimmo et al. (2010) who combined N-body 

simulations with a Hf-W evolution model. They proposed that the Earth´s Hf-W 

characteristics can be explained if each impactor partly re-equilibrates with the Earth´s mantle 

to an extent between 30 and 80 %. 

    Similar to the results of Rubie et al. (2003), Samuel (2012) showed on the basis of 

numerical investigations and theoretical calculations that metal, that sinks through a magma 

ocean, breaks up until it reaches a stable droplet size of 0.2 m. In contrast to the results of 

Dahl and Stevenson (2010), Samuel (2012) predicts that only in the case of Fe bodies with 

sizes exceeding the thickness of the magma ocean are emulsification and re-equilibration 

hindered. 

   Recently also Deguen et al. (2014) found that Fe metal undergoes fragmentation when 

falling through a magma ocean, but the authors showed that this process is not essential for 

metal – silicate equilibration. Instead equilibration could be achieved prior to the metal break 
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up by turbulent mixing in a magma ocean at least for impactors with core diameters less than 

the magma ocean thickness. 

  

 

 

1.3.3 Diapirism and dyking 

 

    Metal that accumulates at the base of a magma ocean can further sink towards the center of 

the Earth by forming large diapirs with this process being triggered by gravitational 

instabilities (Karato and Murthy, 1997).  

   The transport of molten metal through fractures in the surrounding host-material, termed 

dyking, is also capable of efficiently separating Fe from a silicate mantle (Rubin, 1995; Rubie 

et al., 2007).  

   However in contrast to the processes of emulsification and percolation, the descent of metal 

bodies via diapirs (> 1 - 10 km) or by dykes does not facilitate chemical equilibrium of the 

metal with the bulk of the surrounding silicate, i.e. with the lower mantle (Karato and Murthy, 

1997; Rubie et al., 2007). 

 

 

  

1.4 Constraints on the timing of core formation 
 

   Constraints on the timescales of core formation can be obtained by employing the Hf-W 

radioactive series. The mode of operation of the Hf-W chronometer has been summarized by 

Rubie et al. (2007). The major characteristics are the siderophile behaviour of W compared to 

the lithophile element Hf. The radioactive isotope 182Hf decays to the stable isotope 182W with 

a half-life of only 9 million years. Early core formation, prior to the entire decay of 182Hf, will 

thus enrich the Earth´s mantle in the stable isotope 182W due to ongoing decay processes, 

whereas late core formation will extract the siderophile decay product 182W into the Earth´s 

core, leaving a W-depleted mantle. 
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   Employing the Hf-W chronometer together with comparisons between the terrestrial 

radiogenic W-isotope composition and chondrites leads to the conclusion that core formation, 

here treated as a single stage event, was terminated after 30 million years (Jacobsen, 2005). 

   A major advantage of the Hf-W chronometer is that both elements are refractory. In contrast 

to other dating systems like U-Pb and Pd-Ag a volatility related loss of elements during 

accretion does not have to be considered (Rubie et al. 2007). 

   However, latest investigations have shown that the Hf-W chronometer depends on the 

degree of equilibration between the Earth´s mantle and core, as well as on the timing of core 

formation. On this account Rudge et al. (2010) estimated that at least 36 % of the terrestrial 

core was developed in equilibrium with the Earth´s mantle.  

   The siderophile behaviour of W is dependent on the conditions that prevailed during core 

formation, namely pressure, temperature, oxygen fugacity and composition. Moreover these 

conditions might have varied over the period of accretion (Halliday, 2004). For this reason it 

is necessary to precisely determine the partitioning behaviour of W as has been attempted, for 

example, by Cottrell (2009 and 2010) and Wade et al. (2012). 

 

 

 

1.5 The late veneer hypothesis 
 

   Many scientists favor the idea of a late accretionary event, called the “late veneer” in the 

course of which ~ 1 % of the Earth´s mass was delivered by small leftover planetesimals after 

the giant impact stage (Kimura, 1974; Chou, 1978; Albarède, 2009; Palme and O´Neill, 2003; 

Mann et al., 2012; Rubie et al., 2007).  

   A major justification of the late veneer hypothesis is that it explains the abundances of 

highly siderophile elements in the Earth´s mantle and moreover their presence in chondritic 

relative proportions provided the accreting matter was either Fe-free or became oxidized after 

the impact, so that metal segregation and with it the extraction of highly siderophile elements 

into the Earth´s core was prohibited (Palme and O´Neill, 2003 and 2014). In this way 

Holzheid et al. (2000) were able to explain the upper mantle abundances of Pd and Pt by the 

addition of chondritic material after core formation was ceased. In addition also the results of 
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Mann et al. (2012) are in accordance with the constraint of a late chondritic veneer that led to 

an overprint of the HSE abundance pattern.  

   However the amount and type of the late accreting material as well as the diameters of the 

impactors are still under discussion: While some studies still doubt the necessity of a late 

accretionary component (Snow and Schmidt, 1998), other studies attempt to precisely 

characterize and quantify the impacting material. Where Javoy (1997) suggests the addition of 

CI compositional material, it has been proposed by O´Neill (1991) that both, the Earth and the 

Moon, were hit by reduced chondritic material – most likely H-group ordinary chondrites. 

Moreover it has been shown by Drake and Righter (2002) that water-bearing carbonaceous 

chondrites are inconsistent with the observed 187Os/188Os ratio of the primitive upper mantle. 

Instead they also consider anhydrous ordinary chondrites.  

   Schlichting et al. (2012) suggest that the late veneer mainly consisted of small residual, 

undifferentiated planetesimals of chondritic composition with radii less than 10 m beside a 

minority of larger planetesimals and that the late accretion delivered 1 % of the Earth´s total 

mass. On the other hand latest publications suggest a late accretionary stage which involved 

impactors with diameters of up to 4000 km (Bottke et al., 2010; Raymond et al., 2013).  

 

 

 

1.6 Geochemistry 
 

1.6.1 Geochemical classification of the elements after Goldschmidt 

 

   According to their geochemical affinities elements can be grouped into lithophile, 

chalcophile, siderophile and atmophile elements (Goldschmidt, 1937).  

   Siderophile elements are iron-loving elements. With respect to core formation processes this 

means that these elements partition preferentially into the metal phase and as a result are 

extracted from the Earth´s silicate mantle into the core. Lithophile elements in contrast are 

incorporated into the silicates of the Earth´s mantle and have thus not been depleted by core 

formation processes. Chalcophile elements will preferentially be enriched in sulphides, 

whereas atmophile elements are concentrated in the Earth´s atmosphere (Goldschmidt, 1937; 

Palme and O´Neill, 2003 and 2014).  
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   However several elements do not exclusively belong to one of the above mentioned groups. 

Instead they show secondary affinities. The classification of elements into siderophile, 

lithophile, chalcophile and atmophile can be read from Figure 3 (modified after Faure, 1998), 

secondary affinities are additionally displayed (underlined elements). 
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Geochemical Character  *Secondary affinity 

siderophile  W, As, Pb 

chalcophile  Ge, Sn, Cr, Fe, Mo 

lithophile  C, Ga, Ge, Tl, Fe, H 

atmophile  C, O 
 

 

Figure 3: The periodic system of the elements showing their geochemical characters. Underlined elements 

exhibit secondary affinites. The element P tends to be siderophile as well as lithophile. (modified after Faure, 

1998) 

 

   Siderophile elements that are the subject of this study can furthermore be divided into 

moderately siderophile and highly siderophile elements having partition coefficients ܦ௠௘௧ି௦௜௟ 

of less and more than 104 at 1 bar respectively. The boundary between lithophile and 

siderophile behavior is defined as Dmet-sil
  = 1 (Rubie et al., 2007). 
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1.6.2 Volatile and refractory elements 

 

  Elements can furthermore be divided into volatile and refractory elements that exhibit lower 

and higher condensation temperatures than the three most abundant elements in terrestrial 

rocks, Mg, Si and Fe, respectively (Lodders, 2003).  

   The depletions of siderophile elements in the Earth´s mantle can be recognized in a diagram 

of their silicate Earth values, normalized to CI chondrite composition and the refractory 

element Ti (Palme and O´Neill, 2003) (Figure 4), plotted against their 50 % condensation 

temperatures (Lodders, 2003 or Wasson, 1985). At these temperatures the individual elements 

are one half each in the gas and in the condensate phase (Lodders, 2003). The volatility trend, 

defined by lithophile elements, is one reason for low element abundances in the Earth´s 

mantle, but additionally depletions due to siderophile behaviour, coming along with 

extraction into the metallic core, have to be considered. For example it has been shown by 

Rubie et al. (2010) that Cu does not simply follow the observed volatility trend but must be 

additionally affected by core formation processes. 

   A broad estimation of 50 % condensation temperatures has been published by Lodders 

(2003). The values have been computed simultaneously, taking into account that major 

elements might control minor element condensations. Total, partial and vapor pressures as 

well as elemental distributions between gases and condensates were employed as constraining 

parameters (Lodders, 2003). A total pressure of 10-4 bars was adopted for all calculations 

since it represents the likely pressure in the Solar Nebula at a distance of 1 AU (Lodders, 

2003 and Fegley, 2000). 

   The classification of volatile elements into moderately volatile, volatile and highly volatile 

elements used in this study is from Lodders (2003). Moderately volatile elements exhibit 50 

% condensation temperatures from 1290 to 704 K prior to the condensation of FeS. Volatile 

elements have 50 % condensation temperatures of 704 to 371 K that marks the boundary with 

the highly volatile elements. Lodders (2003) defines a group of “common elements”, namely 

Mg, Si, Fe, Co, Cr, Ni, Pd and Eu with 50 % condensation temperatures between 1360 and 

1290 K that separates volatile elements from refractory elements. The refractory element 

group, exhibiting 50 % condensation temperatures above 1360 K is furthermore sub-divided, 

but this has been neglected in this study for simplification. 

   An older estimate of 50 % condensation temperatures was published by Wasson (1985). 

The determined values are generally in good agreement with the data given by Lodders 
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(2003). However, a major difference is found for the volatile element Pb. Lodders (2003) 

determined a 50 % condensation temperature of 727 K for Pb, whereas Wasson (1985) reports 

a temperature of only 496 K at a total pressure of 10-5 bar, thus leading to a discrepancy of 

231 K (Figure 5). It is necessary to note that all conclusions that are based on the partitioning 

behaviour of Pb in this study are based on the values given by Lodders (2003). This in 

particular corresponds to the assumption of Sn and Pb being depleted to the same extent in the 

Earth´s mantle independent of the volatility trend. 

 

 
 

Figure 4: Depletion diagram: Element abundances of the Earth´s mantle normalized to CI chondrites and the 

refractory element Ti (data after Palme and O´Neill, 2003) plotted against their 50 % condensation 

temperatures given by Lodders (2003). The distinction between volatile and refractory elements was adopted 

from Lodders (2003). Elements are depleted in the Earth´s mantle due to their volatility. However additional 

depletions due to siderophile behaviour and thus extraction of elements into the Earth´s core can be observed 

(Rubie et al., 2010). 
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Figure 5: Depletion diagram: Element abundances of the Earth´s mantle normalized to CI chondrites and the 

refractory element Ti (data after Palme and O´Neill, 2003) plotted against their 50 % condensation 

temperatures given by Wasson (1985). The 50 % condensation temperatures are very similar to those obtained 

by Lodders (2003) except for Pb. Its 50 % condensation temperature differs by 231 K compared to the value 

given by Lodders (2003). All conclusions in this study concerning Pb are based on the value given by Lodders 

(2003).  

 

   Volatile elements are depleted in the Earth´s mantle most probably because they failed to 

condense at high temperatures in the inner part of the Solar Nebula, independent of their 

geochemical character and of geochemical processes (Palme and O´Neill, 2003 and 2014). 

Evidence against evaporation of formerly undepleted volatile elements in the Earth has been 

provided by Palme et al. (1988) who showed that recondensation would elsewhere lead to 

enrichments which have never been observed. Moreover Humayun and Cassen (2000) and 

Nebel et al. (2011) pointed out that isotopic fractionations, which are related to local 

volatilization processes, have not been discovered in samples from the Earth and meteorites. 
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1.7 Light elements in the core 
 

   The Earth´s core is generally considered to consist of Fe-Ni alloys, but it has been found 

that the outer core especially requires the admixture of one or more light elements, since its 

density is 5 to 10 % too low to consist only of Fe and Ni (e.g. Birch, 1952; Anderson and 

Issak, 2002). Additionally it has been suggested by Jephcoat and Olson (1987), that some 

light elements also must be present in the inner core, accounting for a density deficit that has 

been quantified as 2 – 3 % by Alfe et al. (2002).  

   Light elements, dissolved in liquid Fe, are known to influence the metal – silicate 

partitioning behaviour of siderophile elements (e.g. Li and Agee, 2001; Mann et al., 2009; 

Tuff et al., 2011; Wade et al., 2012; Buono et al., 2013). The knowledge of the composition of 

the Earth´s core is important, because it constrains not only the conditions that prevailed 

during core formation by influencing the metal-silicate partitioning behavior of siderophile 

elements,  but also the Earth´s bulk composition (Rubie et al., 2007) and structure and 

dynamics of the Earth´s core (e.g. Helffrich and Kaneshima, 2004; Buffett and Seagle, 2010). 

Still questions remain about the number of and which elements come into question, as has 

been investigated by several authors. 

   Poirier (1994) argued that not one but several light elements contribute to the density deficit 

of the Earth´s outer core and he justified the presence of Si, S, O, H and C. Graphite and P are 

likely present, but only in minor concentrations. McDonough and Sun (1995) proposed 0.5 

wt% P, while according to McDonough (2003) the amount of C and P each do not exceed 0.2 

wt%. Zhang and Yin (2012) determined a similar value for C of 0.1 to 0.7 wt%. Several 

studies have concluded that the Earth´s core S-content does not exceed 1.7 - 1.9 wt% (Dreibus 

and Palme, 1996; McDonough, 2003). 

   It has been suggested by several authors that the outer core might contain large proportions 

of FeO (Ringwood, 1997; Ohtani and Ringwood, 1984; Ohtani et al., 1984). Later on both 

Rubie et al. (2004) and Asahara et al. (2007) yielded estimates of 7 - 8 wt% O indicating that 

O might be the main light element present in the core. Slightly lower values of 6 wt% have 

been obtained by Frost et al. (2010). 

   A study of isotopic fractionations of Si leads to a contribution of 6 wt% Si in the core 

(Ziegler et al. 2010). This is in good agreement with a determination of Si partitioning into the 

core that leads to a value of 7 wt% (Gessmann et al. 2001). The latter investigation was based 

on Si solubilities in liquid Fe-rich metal at pressures up to 23 GPa. Similar results, although 
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based on the idea that core equilibration took place in a low pressure regime, have earlier been 

obtained by Allegre et al. (1995), who predicted a contribution of 7.3 wt% Si and additionally 

a contribution of O by around 4 wt% to account for the density deficit.  

   By performing ab initio calculations of densities and chemical potentials of Si, O and S and 

taking into account seismic observations Alfe et al. (2002) have predicted that the Earth´s 

liquid outer core must contain 8.0 mole% O together with a combined amount of the light 

elements Si and S of 10 mole%. The high abundance of O in the liquid outer core is explained 

by its strong partitioning from solid to liquid Fe metal. The comparatively small size of O 

atoms causes its presence in solid metal to be less stable than in the liquid metal phase. 

According to Alfe et al. (2002) the Earth´s solid inner core accommodates only 0.2 mole% O 

but 8.5 mole% of Si + S.  

   On the basis of sound velocity measurements in alloys of Fe and either Si, O or S Badro et 

al. (2007) found that the Earth´s inner core contains 2.3 wt% Si and only 0.1 wt% O, whereas 

the presence of 5.3 wt% O and 2.8 wt% Si could account for the outer core´s density deficit. 

   However, the simultaneous contributions of O and Si to the light element budget of the 

Earth´s metallic core was for a long time thought to be mutually exclusive, because Si was 

found to be incorporated into metal at low oxygen fugacity (Rubie et al., 2007; Li and Fei, 

2003, Kilburn and Wood, 1997; O´Neill, 1998; Hillgren, 2000). This point of view changed 

as soon as pressure and in particular temperature effects on the partitioning behaviour of these 

elements were taken into account.  

   Takafuji et al. (2005) recommended a combined contribution of 3 wt% O and 6 wt% Si at 

135 GPa and 3500 K that can account for a density deficit of 7 %. Sakai et al. (2006) 

determined a possible incorporation into metallic iron of 6.3 wt% O and 4.0 wt% Si at 139 

GPa and 3000 K. According to these studies high pressures and temperatures enable the 

incorporation of both elements into liquid iron, which has been verified recently by Tsuno et 

al. (2013).  

   To date the main element that causes the reduced density of the Earth´s core seems to be Si. 

Latest investigations quantified the light element budget of the Earth´s core to 8 wt% Si, 2 

wt% S and 0.5 wt% O (Rubie et al., 2011), or 6 wt% Si and 1.3 wt% O (Siebert et al., 2013) . 
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1.8 Metal – silicate partitioning of elements 
 

   As will be shown in detail in Chapters 4 – 6 the liquid metal – liquid silicate partitioning 

behaviour of an element M potentially depends on temperature, pressure, oxygen fugacity and 

composition of both metal and silicate phases (e.g. Li and Agee, 1996; Kegler et al., 2008; 

Wood et al., 2008; Mann et al., 2009 and 2012; Cottrell et al., 2009 and 2010; Righter, 2010; 

Wood and Halliday, 2010; Wade at al., 2012; Siebert et al., 2013; Ballhaus et al., 2013).  

   Partitioning can be expressed by a metal – silicate partition coefficient Dmet-sil that is defined 

as the ratio of the abundance of an element of interest M in the metal phase over its amount in 

the silicate phase (equation 1). 

 

௠௘௧ି௦௜௟ܦ ൌ 	
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మ
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                                [1] 

 

   For its determination, molar values have been employed in this study, whereas other 

investigations have been based on the mass ratio of the elements of interest. The 

concentrations of the elements of interest M in the metal phase have been calculated as pure 

elemental molar abundances, whereas the concentrations in the silicate phase have been 

computed as molar oxide values. 

   Another way of describing the partitioning behaviour of any element M is the formulation of 

an exchange coefficient ܭ஽
ெିி௘ that can be understood as the normalization of the partition 

coefficient Dmet-sil to the partition coefficient of Fe with respect to the valence state n of the 

element of interest M (equation 2). Its advantage is that it is independent of oxygen fugacity. 
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   The quantification of pressure, temperature, compositional and oxygen fugacity 

dependences together with present day abundances of elements in the Earth´s mantle and core 

provides information on the conditions that must have prevailed during core formation. In 
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particular it has been found that low pressure – moderate temperature conditions, based on 

partitioning experiments at 1 bar and 1200 °C – 1500 °C, cannot explain the abundances of a 

wide range of elements in the Earth´s mantle. The significant overabundance of these 

elements has been termed the “excess siderophile element problem”. Figure 6 demonstrates 

the depletion of siderophile elements in the Earth´s mantle due to core formation, where red 

squares indicate refractory elements and blue triangles correspond to volatile elements. Green 

circles reflect the results that have been obtained from low pressure and temperature 

partitioning experiments of siderophile elements (Walter et al., 2000).  

  

 

 

Figure 6: Depiction of the “excess siderophile element problem“. The depletion of siderophile elements in the 

Earth´s mantle due to core formation is shown. Red squares indicate refractory elements, whereas blue triangles 

denote volatile elements. Green circles indicate the results of low pressure – moderately temperature 

partitioning experiments. (modified after Walter et al., 2000) 

 

   A major step in understanding the “excess siderophile element problem” was made by Li 

and Agee (1996), who showed that the partition coefficients of Ni and Co, two elements that 

are depleted by about the same amount in the Earth´s mantle, differ by around one order of 

magnitude at low pressures but converge with increasing pressures, and furthermore become 

consistent with Earth´s mantle abundances. The partitioning experiments of Li and Agee 

(1996) indicated a single stage core formation event at a pressure of 28 GPa, corresponding to 

a magma ocean of 750 to 1100 km depth. Afterwards the partitioning behaviour of Ni and Co 
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has been refined (e.g. Kegler et al., 2008) and together with investigations of the partitioning 

behaviour or solubilities of other siderophile elements a wide range of possible pressure and 

temperature conditions has been published, as summarized in Table 1 (modified after Rubie et 

al., 2007 and 2015).  

 

Table 1: Summary of conditions that could have prevailed during core formation. The results are based on 

partitioning or solubility studies of siderophile elements and refer to single stage core formation scenarios or to 

averaged conditions during core formation. (modified after Rubie et al., 2007 and 2015) 

P (Gpa) T (K) Elements employed for investigations References 
28 2400 – 2700 Ni, Co Li and Agee (1996) 
27 2200 Ni, Co, P, Mo, W Righter et al. (1997) 
37 2260 Ni, Co, Fe  O´Neill et al. (1998) 
37 3360 Cr O´Neill et al. (1998) 
> 35 > 3600 V, Cr, Mn Gessmann and Rubie (2000) 
43 – 59 2400 – 4200 Ni, Co Li and Agee (2001) 
25 3350 Si Gessmann et al. (2001) 
27 2250 P, W, Co, Ni, Mo, Re, Ga, Sn, Cu Righter and Drake (2003) 
40 2800 Ni, Co Walter and Tronnes (2004) 
40 3750 V, Ni, Co, Mn, Si Wade and Wood (2005) 
30 – 60 > 2000 Ni, Co Chabot et al. (2005) 
10 – 40 - Nb, V Mann et al. (2009) 
30 - 60 - Ga, Mn, In, Zn Mann et al. (2009) 
22.5 2673 Mo, P Righter et al. (2010) 
27 - 33 3300 - 3600 Mn, V, Cr, Ni, Co, Mo, W, P, Cu, Ga, Pd Righter (2011) 
 

   One should note that these proposed conditions refer mainly to single stage core formation 

scenarios, i.e. assuming equilibration of core and mantle at a single pressure, temperature and 

oxygen fugacity. However it has been argued that the siderophile element abundances in the 

Earth´s mantle cannot be explained within the framework of single stage core formation 

(Rubie et al., 2011). Instead multi-stage or continuous core formation scenarios with changing 

pressure, temperature and oxygen fugacity conditions should be considered. 

 

 

 

1.9 Core formation models 
 

   The idea of a single stage core formation scenario including a magma ocean with a defined 

depth is unlikely to be realistic. Instead the Earth most probably experienced several giant 
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impacts with each of them causing a global magma ocean with different depths (Rubie et al., 

2007). 

   A simplified heterogeneous two-stage accretion model has been proposed very early by 

Wänke (1981). This model suggests an early accretion of differentiated material under 

reducing conditions without any re-equilibration with the Earth´s mantle. In a second step 

oxidized chondritic material accretes and enhances the siderophile element abundances of the 

Earth´s mantle. A disadvantage of this model is that it assumes a low pressure scenario, which 

can be excluded according to the results of e.g. Mann et al. (2009) who showed that the 

chondritic ratios of the volatile element pairs Ga/Mn and In/Zn cannot be explained by core 

formation processes at low pressures, but rather equilibration occurred at pressures between 

10 – 40 GPa and 30 – 60 GPa respectively. 

   To date, models can be distinguished into continuous and multistage core formation models. 

Continuous core formation was proposed by Wade and Wood (2005). According to this study 

the magma ocean on the early Earth increases in depth as the Earth grows by further 

accretion. With the constraint of a fixed peridotitic liquidus temperature at the base of the 

magma ocean, Wade and Wood (2005) were able to match the siderophile element 

abundances of the Earth´s mantle for V, Ni, Co and W only if the oxygen fugacity was 

increased over two logarithmic units, eventually being in accordance with the present day´s 

mantle FeO abundance. 

 Similar results have been obtained by Tuff et al. (2011), who established a continuous core 

formation model with respect to metal – silicate partitioning data of Si and its influence on the 

partitioning behaviour of siderophile elements.  

   Rubie et al. (2011) investigated a multistage core formation model, assuming episodically 

occurring metal – silicate segregations caused by collisions of the growing Earth with bodies 

that were 10 % of the actual Earth´s mass. This approach neglects any assumptions on oxygen 

fugacity, but constrains the bulk composition of the accreting bodies, which in turn defines 

oxygen fugacity by the partitioning of Fe between metal and silicate. The composition of the 

accreting matter is defined as CI chondritic with enhanced concentrations of Al, Ca, Ta, Nb, 

W and V. The cores of the impacting bodies are considered to react with the silicate mantle, 

before being segregated to the Earth´s core. The composition of metal and silicate has been 

calculated after each impact by employing mass balance equations for the elements Fe, Ni, Si 

and O together with partition coefficients of Ni, Si and O. The concentrations of Co, Cr, V, 

Nb, W and Ta have been determined exclusively from partition coefficients. 
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   In summary Rubie et al. (2011) showed, that accretion of the initial 60 – 70 % of the Earth 

(by mass) involved highly reduced material, followed by 30 – 40 % of oxidized impactors. 

This model is consistent with high pressure metal – silicate equilibration but it requires some 

extent of disequilibrium between the cores of some large impactors and the silicate Earth. 

Similar to continuous core formation models the oxygen fugacity is found to increase during 

accretion due to the variations of the accreting material. 

 

 

 

1.10 Aims of the study 
 

   The aim of this study was the systematic investigation of the liquid metal – liquid silicate 

partitioning behaviour for a wide range of elements in order to better constrain the conditions 

that prevailed during core formation.  

  Multi-anvil experiments have been performed to determine the pressure and temperature 

dependences of the partitioning and exchange coefficients for the refractory elements Ni, Co, 

W and Mo, the moderately volatile elements Cu, Sb, Ge, As, P, Au, Ag and the volatile 

elements Sn and Pb. The 50 % condensation temperatures cover a range from 704 K (Sn) to 

1789 K (W) and the depletions of elements in the Earth´s mantle vary by around two orders of 

magnitude. Clearly the attention has been turned on volatile elements, because the literature 

and with it core formation models lack data for this group of elements. 

  It is well known that the Earth´s core contains one or several light elements (see Section 1.7) 

and that S is most probably one of these (Dreibus and Palme, 1996; McDonough, 2003). S 

furthermore has a major influence on the liquid metal – liquid silicate partitioning behaviour 

of siderophile elements (e.g. Wade et al., 2012; Mann et al., 2009) and was thus incorporated 

into the study to find additional constraints on the type and amount of light elements in the 

Earth´s core and their influence on metal - silicate equilibration. For this reason the same 13 

elements as mentioned above have been chosen in order to quantify the effect of S on the 

corresponding partition and exchange coefficients, by performing isobaric multi anvil 

experiments at 11 GPa. S was added as FeS to the starting metal material and a range from S-

free experiments, over 10 and 20 wt% S up to pure FeS has been covered. 

   Additionally the effect of Si, possibly the major contributor to the budget of light elements 

in the Earth´s core (Rubie et al., 2011; Siebert et al., 2013), and with it the influence of 
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different oxygen fugacities has been studied by determining partitioning behaviours with 

Fe91Si9 or Fe83Si17 plus element(s) of interest being employed as starting metal materials. The 

importance of this determination arises from the fact that latest core formation models have 

shown that the oxidation state of the Earth varied over time from an initially reduced to a 

more oxidized system (e.g. Wade and Wood, 2005), see Section 1.9. Moreover it was the aim 

of this study to identify the oxidation states of the volatile elements in the silicate phase  

   All partitioning data were quantified in form of regression coefficients and interaction 

parameters ߝ௜
௞ have been provided, that describe the influence on the activity of a given 

element i as a function of the concentration of another element k dissolved in Fe metal. 

Whenever possible, the derived expressions for the partitioning and exchange coefficients 

have been compared with other literature data sets in order to expand the experimental 

pressure and temperature ranges.  

   Finally the intention has been to derive accurate partitioning data for 13 elements that can 

be incorporated into future core formation models, themselves in turn being used to better 

define constraints on pressure, temperature and oxygen fugacity conditions during core 

formation scenarios, the amount and nature of light elements in the Earth´s core and the type 

of material that most probably accreted to the Earth in form of the late veneer.  
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2. Experimental and analytical methods 
 

2.1 Experimental methods 
 

2.1.1 Preparation of the starting materials 

 

   13 elements, namely the non-volatile elements Ni, Co, W and Mo, the moderately volatile 

elements Cu, Sb, Ge, P, Au, As and Ag and the volatile elements Sn and Pb have been chosen 

for the investigation of their partitioning behaviour. All experiments were performed with 

combinations of different metal and silicate powders, the preparation of which is described 

below. 

 

 

 

2.1.1.1 Metal powders 

 

  The main component of the metal phase was Fe, Fe91Si9, Fe83Si17 or Fe plus S with the latter 

being added as FeS. The S contents ranged from 10 wt % up to pure FeS. One to five 

elements of interest have been added to the starting metal powders of the experiments either 

in form of pure elements or as oxides. The quantities ranged from 0.5 wt% to 3.5 wt%. 

Initially the elements of interest were grouped into three different batches: 

 

a) Ni, Co, W, Mo 

b) Cu, Sn, Sb, Ge and Pb  

c) As, P, Au and Ag 

 

   However experiments performed with the latter two combinations of elements exhibited 

exsolutions within the metal spheres during quenching, which was found to be strongly 

facilitated by the presence of Ag and Pb. In subsequent experiments Ag and Pb have therefore 

been extracted from the mixes b and c and treated separately. Moreover their concentrations 

in the metal phase were halved to 0.5 wt% in order to prevent the formation of exsolutions in 

the metal phase. Table 2 summarizes the initial compositions of all starting metal powders 
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that were employed in this study. All components were mixed, ground under ethanol for at 

least 35 minutes and subsequently dried in an extractor hood at room temperatures or under an 

infrared lamp. 
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Table 2: Composition of the starting metal powders in wt%. 

  met#1a met#1b(S10) met#1c(S20) met#1d(FeS)     

Fe  93.95 66.76 41.09 -     
FeS  - 26.90 54.76 95.89     
Ni  1.66 1.66 1.04 1.01     
Co  1.27 1.56 1.04 1.03     
W  1.66 1.56 1.02 1.03     
Mo  1.46 1.56 1.05 1.03     
          

 met#2 met#2a met#2b(S10) met#2c(S20) met#2d(FeS) met#2e(FeO5) met#2f(FeO10) met#2g(Fe83Si17) met#2h(Fe91Si9) 

Fe 92.18 95.33 65.40 41.11 - 91.00 86.00 - - 
FeS - - 26.72 54.78 95.90 - - - - 
FeO - - - - - 5.00 10.00 - - 
Fe83Si17 - - - - - - - 96.00 - 
Fe91Si9 - - - - - - - - 96.00 
Cu 1.74 1.19 1.46 1.03 1.02 1.00 1.00 1.00 1.00 
SnO 1.16 0.99 1.85 1.02 1.04 1.00 1.00 1.00 1.00 
Sb2O3 1.45 1.29 1.55 1.03 1.03 1.00 1.00 1.00 1.00 
GeO2 1.74 1.19 1.46 1.02 1.01 1.00 1.00 1.00 1.00 
Pb3O4 1.74 - 1.55 - - - - - - 
          

 met#3 met#3a met#3b(S10) met#3c(S20) met#3d(FeS) met#3e(FeO5) met#3f(FeO10) met#3g(Fe83Si17) met#3h(Fe91Si9) 

Fe 92.53 94.66 65.48 39.91 - 89.84 84.83 - - 
FeS - - 27.40 54.59 94.93 - - - - 
FeO - - - - - 5.00 9.98 - - 
Fe83Si17 - - - - - - - 94.72 - 
Fe91Si9 - - - - - - - - 94.77 
As 1.28 1.02 1.09 1.00 1.03 1.04 1.04 1.03 1.00 
Au 1.67 1.01 1.29 1.01 1.02 1.01 1.00 1.00 1.04 
P2O5 3.44 3.32 3.66 3.48 3.03 3.11 3.15 3.26 3.19 
Ag2O 1.08 - 1.09 - - - - - - 
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Table 2 continued 

  met#4a  met#4c(S20) met#4d(FeS) met#4e(FeO5) met#4f(FeO10) met#4g(Fe83Si17) met#4h(Fe91Si9) 

Fe  99.35  44.66 - 94.50 89.50 - - 
FeS  -  54.84 99.49 - - - - 
FeO  -  - - 5.00 10.00 - - 
Fe83Si17  -  - - - - 99.50 - 
Fe91Si9  -  - - - - - 99.50 
Pb3O4  0.65  0.50 0.51 0.50 0.50 0.50 0.50 
          
   
  

met#5a  met#5c(S20) met#5d(FeS) met#5e(FeO5) met#5f(FeO10) met#5g(Fe83Si17) met#5h(Fe91Si9) 

Fe  99.50  44.65 - 94.50 89.50 - - 
FeS  -  54.84 99.50 - - - - 
FeO  -  - - 5.00 10.00 - - 
Fe83Si17  -  - - - - 99.50 - 
Fe91Si9  -  - - - - - 99.50 
Ag2O  0.50  0.51 0.50 0.50 0.50 0.50 0.50 
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2.1.1.2 Silicate powders 

 

   For the silicate phases a peridotitic composition has been employed based on the primitive 

mantle composition of Palme and O´Neill (2003). However the initial amount of FeO was 

reduced by 4.1 wt% since reactions during the experiments lead to an increase in FeO 

abundances. In contrast to this primitive mantle (PM) composition several minor oxides, 

namely TiO2, Cr2O3, Na2O and K2O were omitted for simplification. In order to prevent 

impurities due to reactions of CaO and FeO with O2 and CO2 respectively these compounds 

were added in form of Fe2O3 and CaCO3. Subsequent reduction and decarbonation ensured 

that the initially sought composition was achieved (see below). Two batches of silicate 

powder were prepared, their initial compositions are given in Table 3. 

 
Table 3: Initial composition of the silicate powders in wt%. 

 
 sil#1 sil#2 
SiO2 46.56 46.68 
MgO 37.56 37.79 
Al2O3 4.61 4.62 
CaCO3 6.93 6.80 
Fe2O3 4.34 4.11 

 

   Prior to the preparation of the peridotitic powders, all oxides were heated in order to remove 

water. The oxides CaCO3 and Al2O3 were heated to 120°C for 3 hours. MgO and SiO2 were 

placed into platinum crucibles and Fe2O3 was contained in an aluminum crucible in order to 

prevent reaction with the sample holder. The three powders were then heated to 1000°C for 

one hour employing a box furnace.  

   After cooling the powders were weighed, mixed and ground under ethanol for at least 40 

minutes and subsequently dried in an extractor hood at room temperature or under the infrared 

lamp. Subsequently the powder was heated in a platinum crucible to 1000°C for five hours to 

decarbonate. Each silicate powder was reduced at an oxygen fugacity of 2 logarithmic units 

below the FMQ buffer in a CO-CO2 atmosphere at 1273 K or 1373 K in a gas-mixing furnace. 
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2.1.1.3 Reversed experiment 

 

   In order to verify that choosing the metal to be the initial host phase for the elements of 

interest does not influence the outcome of the experiments a reversal experiment has been 

performed in which the starting material consisted of pure Fe metal and Pb oxide has been 

added to the peridotitic silicate (sil#1) starting material. The initial composition of this 

powder, which has likewise been ground under ethanol for 40 minutes and subsequently been 

dried in an extractor hood, is given in Table 4. 

 

Table 4: Initial composition (wt%) of the starting silicate material that was prepared for the reversed 

experiment H3455. 

 
 sil#1Pb 

sil#1 99.25 
Pb3O4 0.75 

 

 

 

2.1.2 High pressure – high temperature experiments in the multi-anvil apparatus 

 

   All experiments have been performed with a multianvil apparatus, namely the 5000 tonne 

Zwick / Voggenreiter press or the 1000 tonne Hymag press (indicated by capital “Z” or “H” 

in front of the experiment´s running numbers). Detailed descriptions of the functional 

principles of these high-pressure devices are presented by, for example, Kawai and Endo 

(1970), Kawai et al. (1973), Ito et al. (1984), Walker (1990), Rubie (1999), Frost et al. (2004), 

and Keppler and Frost (2005). The two latter studies provide information on the calibration 

systematics for the 5000 tonne press and for the 1000 tonne press respectively (Figure 7). 

 

a) b) 
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Figure 7: Multi-anvil apparatus of the Bayerisches Geoinstitut Bayreuth: a: 1000 tonne Hymag Press, b: 5000 

tonne Press from Zwick and Voggenreiter. 

 

   Each press operates with a two-stage hydraulically-moved anvil system. Whereas the 1000 

tonne Hymag press lowers the upper part of the anvil system in order to create a uniaxial 

force, pressures are reached by lifting the lower part of the outer anvil system when 

employing the 5000 tonne press from Zwick and Voggenreiter. In both cases the upper and 

the lower parts of the outer anvil system consist of 3 steel anvils that form a cubic cavity 

when the system is closed. The high-pressure device contains an inner anvil system, which is 

comprised of 8 tungsten carbide (WC) cubes whose corners are triangularly truncated in the 

way that an octahedral cavity arises when assembled. The WC cubes that are used for the 

1000 tonne Hymag press and 5000 tonne press from Zwick and Voggenreiter differ from each 

other by their edge lengths which are 32 mm and 54 mm respectively. The cubes are either 

covered with Teflon tape that serves as insulation or with cardboard that inhibits the 

movement of pyrophyllite gaskets, which seal the pressure medium.  

   The pressure medium itself is located inside the cavity formed by the inner anvil system and 

consists of a Cr2O3-doped MgO octahedron. A typical 18/11 pressure medium (explanations 

on this notation are given below) is schematically displayed in Figure 8.  

 

a) b) 
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Figure 8: Schematic illustration showing the inside of a multi-anvil sample assembly. 

 

   The octahedron contains a cylindrical hole which is lined with thermally insulating ZrO2 

typically completed by a ring of MgO at the bottom and top. Into this is inserted a stepped 

LaCrO3 resistance heater which minimizes thermal gradients in the sample region (Frost et al., 

2004). The outer heater parts enclose one hollow and one solid MgO cylinder respectively 

and the middle part of the stepped heating system accommodates two MgO capsules that are 

separated by a MgO lid. A molybdenum disc and a molybdenum ring in contact with the solid 

and hollow MgO cylinders respectively complete the assembly and connect the pressure 

medium to the truncations of the WC cubes enabling electrical conduction to the heater. All 

LaCrO3 parts as well as the octahedron and the MgO parts were heated at 1000 °C for 30 to 

60 minutes to remove water and organic impurities. 

   For determinations of the temperatures that prevail during the experiments a thermocouple 

was located inside the MgO sleeve. It consists of a fourfold perforated aluminium tube in 

which W25Re75 and W3Re97 wires are located that are crossed to form a junction. The wires 

that emerge from edges of the octahedron are covered with coils of the same type of wire in 

order to prevent breakage due to friction. The use of the same type of wire is required in order  

to avoid a secondary EMF (electromagnetic force) (Nishihara et al., 2006). 

   A complete set up is illustrated in Figure 9. It is separated from the outer anvil system by 

epoxy sheets which operate as a low-friction surface when the assembly is compressed. Small 

pieces of copper foil that are bent through cuts in the epoxy sheets ensure electrical 

conduction to the heater. 
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   Higher pressures can either be achieved by increasing the force applied to the system or by 

reducing the sizes of the pressure medium and thus by using smaller truncations of the inner 

anvil system. Several assembly types can therefore be distinguished. They are characterized 

by the notation OEL/ TEL (octahedral edge length / truncation edge length in millimetre). For 

this study assemblies of the type 18/11, 18/8 and 10/4 have been used with which pressures of 

11, 18, 20, 21 and 23 GPa have been generated over a temperature range of 2342 K to 2911 

K. However, in contrast to the 18/11 and 18/8 assemblies the comparatively small 10/4 

assembly can only accommodate one capsule instead of two. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9a: Image of all individual parts of a typical 18/11 assembly before its preparation. b: The assembly is 

placed into the octahedral space that arises when the prepared cubes are assembled. The cubes are either glued 

with cardboard or with grey Teflon tape. The epoxy sheet (yellow) will finally be attached to the sides of the 

cube. It exhibits a copper foil that forms part of the electrical heating surface.  

 

   Pressures were increased slowly over a period of 200 to 280 minutes. Maximum pressures 

were maintained for 1 hour and the subsequent decompression lasted for 850 to 1000 minutes. 

The heating of the samples was performed in steps of around 100 to 200 K per minute, but the 

time-intervals were reduced once temperatures exceeded 1773 K. In most cases the samples 

were held for 10 minutes at 1773 K in order to allow the assembly to stabilize at the high 

temperatures. Maximum temperatures were maintained for a period of 1 to 3 minutes (Table 

5). Finally the experiments were quenched by switching off the electrical power.  

   The determinations of temperature were based on thermocouple readings and subsequent 

power-temperature (Watts / K) correlations above 1773 K. The best correlation – that means 

a) b) 

a) b) 
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the one that was found to be the most stable and that additionally resulted in the highest 

temperatures as a function of power – was used to derive the temperatures of all experiments. 

However different power – temperature correlations have been employed when experiments 

were performed in different presses, at different pressures or when a new consignment of 

LaCrO3 resulted in minor differences in the composition of the resistance heater. The 

employment of the correlation that exhibits the highest temperatures is based on the 

assumption that lower temperatures most likely result from an outward movement of the 

thermocouple at the extremely high pressures that prevail during the experiments. They are 

thus not representing the temperatures within the sample region. In order to further account 

for temperature gradients an error of +/- 100 K has been assumed for all experiments. An 

example of a typical power-temperature correlation (experiment Z822, 11 GPa, 18/11 

assembly) is given in Figure 10.  

 

 

    

 

 

 

 

 

 

 

 

 

Figure 10: Power-temperature correlation for the experiment Z822. Details are given in the text.  

 

   The experiments H3355 to H3407 were conducted with a mixed powder of silicate and 

metal with a mass ratio of 75/25. In subsequent experiments the individual metal and silicate 

powders were loaded so that a metal layer was sandwiched between two layers of silicate 

powder (Figure 11). This approach was found to facilitate the formation of a single large 

metal sphere. The composition of the metal and silicate powders, the metal/silicate mass 

ratios and the conditions of the individual experiments are given in Table 5.  
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Figure 11: Sample configuration of high pressure – high temperature multi anvil experiments: Sample H3496, 

23 GPa, 2200°C. The temperature was too low to melt the starting materials at 23 GPa. This “failed” 

experiment enables the initial way of sample loading to be seen: a metal layer (white) is sandwiched between 

two layers of peridotite powder (grey). The metal/silicate mass ratio is 62:38. 

 

Table 5: Experimental conditions of experiments performed in this study. Additional information include the 

assembly type, the composition (for notation see tables 2, 3 and 4) the metal/silicate mass ratio and the duration 

of heating. 

Sample Assembly type T (K) 
Composition 

(notation see Tables 
2, 3, 4) 

Metal/silicate mass 
ratio 

Duration of 
heating (s) 

 
11GPa 

 
  

  

H3355a 18/11 2490 met#2 + sil#1 75:25 120 
H3355b 18/11 2490 met#2 + sil#1 75:25 120 
H3361a 18/11 2844 met#2b + sil#1 75:25 120 
H3361b 18/11 2844 met#2 + sil#1 75:25 120 
H3364a 18/11 2570 met#2b + sil#1 75:25 120 
H3364b 18/11 2570 met#2b + sil#1 75:25 120 
H3367b 18/11 2342 met#2b + sil#1 75:25 120 
H3371a 18/11 2773 met#1b + sil#1 75:25 120 
H3371b 18/11 2773 met#1a + sil#1 75:25 120 
H3372a 18/11 2478 met#1b + sil#1 75:25 140 
H3372b 18/11 2478 met#1a + sil#1 75:25 140 
H3400a 18/11 2553 met#3 + sil#1 75:25 120 
H3400b 18/11 2553 met#3b + sil#1 75:25 120 
H3404a 18/11 2777 met#3 + sil#1 75:25 130 
H3404b 18/11 2777 met#3b + sil#1 75:25 130 
H3439a 18/11 2567 met#3 + sil#1 78:22 197 
H3439b 18/11 2567 met#3 + sil#1 67:33 197 
H3444a 18/11 2609 met#5a + sil#1 51:49 190 
H3444b 18/11 2609 met#5a + sil#1 82:18 190 
H3449a 18/11 2560 met#4a + sil#1 50:50 190 

Silicate 
 

Metal 
 

Thermo 
couple 



Chapter 2: Exp. and anal. methods 

44 
 

Table 5 continued 

H3449b 18/11 2560 met#4a + sil#1 66:34 190 
H3450a 18/11 2560 met#2a + sil#1 72:28 192 

H3455a*1 18/11 2562 sil#1Pb + Fe 54:46 195 
H3455b*1 18/11 2562 sil#1Pb + Fe 40:60 195 
H3497a 18/11 2718 met#4a + sil#1 60:40 180 
H3497b 18/11 2718 met#5a + sil#1 47:53 180 
H3586a 18/8 2609 met#1a + sil#1 74:26 130 
H3586b 18/8 2609 met#1a + sil#1 48:52 130 
H3704a 18/11 2639 met#4g + sil#2 70:30 120 
H3704b 18/11 2639 met#4h + sil#2 52:48 120 
H3707a 18/11 2584 met#5h + sil#2 54:46 120 
H3707b 18/11 2584 met#5g + sil#2 43:57 120 
H3718a 18/11 2658 met#2f + sil#2 65:35 120 
H3718b 18/11 2658 met#2h + sil#2 67:33 120 
Z798a 18/11 2500 met#5a + sil#1 66:34 190 
Z798b 18/11 2500 met#5a + sil#1 61:39 190 
Z822a 18/11 2573 met#2a + sil#1 64:36 180 
Z822b 18/11 2573 met#1a + sil#1 54:46 180 
Z915a 18/11 2641 met#2a + sil#2 41:59 120 
Z915b 18/11 2641 met#2g + sil#2 61:39 120 
Z916a 18/11 2580 met#5a + sil#2 64:36 120 
Z916b 18/11 2580 met#1a + sil#2 48:52 120 
Z919a 18/11 2605 met#4a + sil#2 60:40 120 
Z919b 18/11 2605 met#4f + sil#2 52:48 120 
Z920b 18/11 2580 met#4e + sil#2 57:43 120 

Z922a*2 18/11 2588 met#5e + sil#2 60:40 120 
Z922b*2 18/11 2588 met#5f + sil#2 52:48 120 
Z926a*3 18/11 2668 met#2e + sil#2 52:48 120 
Z926b*3 18/11 2668 met#2e + sil#2 54:46 120 
Z941b 18/11 2752 met#2a + sil#2 56:44 120 
Z1000a 18/11 2612 met#3a + sil#2 67:33 120 
Z1000b 18/11 2612 met#3a + sil#2 66:34 120 
Z1001a 18/11 2636 met#4d + sil#1 86:14 155 
Z1002a 18/11 2602 met#3g + sil#2 67:33 120 
Z1002b 18/11 2602 met#3h + sil#2 66:34 120 
Z1008a 18/11 2614 met#2d + sil#2 80:20 120 
Z1008b 18/11 2614 met#3e + sil#2 93:7 120 
Z1009b 18/11 2619 met#1b + sil#2 75:25 120 
Z1011a 18/11 2605 met#3f + sil#2 69:31 120 
Z1011b 18/11 2605 met#1a + sil#2 81:19 120 
Z1013a 18/11 2624 met#5c + sil#2 89:11 120 
Z1016a 18/11 2607 met#5d + sil#2 74:26 130 
Z1016b 18/11 2607 met#4d + sil#2 89:11 130 
Z1019a 18/11 2624 met#4c + sil#2 81:19 120 
Z1019b 18/11 2624 met#3g + sil#2 68:32 120 
Z1043a 18/11 2636 met#3c + sil#2 87:13 120 
Z1043b 18/11 2636 met#3c + sil#2 80:20 120 
Z1051a 18/11 2626 met#1c + sil#2 89:11 120 
Z1051b 18/11 2626 met#1c + sil#2 87:13 120 
Z1062a 18/11 2636 met#2c + sil#2 75:25 120 
Z1062b 18/11 2636 met#2c + sil#2 73:27 120 

 
18 GPa 

 
  

  

Z852a 18/8 2663 met#5a + sil#1 66:34 145 
Z854a 18/11 2740 met#4a + sil#2 64:36 120 
Z854b 18/11 2740 met#5a + sil#2 60:40 120 
Z858a 18/11 2942 met#5a + sil#2 53:47 120 
Z858b 18/11 2942 met#4a + sil#2 54:46 120 
Z859a 18/11 2717 met#1a + sil#2 60:40 124 
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Table 5 continued 

Z859b 18/11 2717 met#2a + sil#2 50:50 124 
Z865a 18/11 2834 met#2a + sil#2 53:47 60 
Z865b 18/11 2834 met#1a + sil#2 60:40 60 
Z869b 18/11 2677 met#3 + sil#2 60:40 120 
Z878a 18/11 2742 met#3 + sil#2 64:36 120 
Z878b 18/11 2742 met#3 + sil#2 68:32 120 
Z881a 18/11 2653 met#4a + sil#2 64:36 120 
Z881b 18/11 2653 met#3 + sil#2 77:23 120 
Z957b 18/11 2603 met#3a + sil#2 69:31 120 

 
20 GPa 

 
  

  

Z929a 18/11 2799 met#1a + sil#2 59:41 90 
Z929b 18/11 2799 met#2a + sil#2 59:41 90 

 
21 GPa 

 
  

  

Z949b 18/8 2870 met#2a + sil#1 58:42 90 
Z950a 18/8 2904 met#1a + sil#2 46:54 90 
Z950b 18/8 2904 met#2a + sil#2 63:37 90 
Z969a 18/8 2897 met#3a + sil#2 70:30 90 
Z969b 18/8 2897 met#3a + sil#2 72:28 90 
Z970a 18/8 2911 met#1a + sil#2 58:42 90 
Z970b 18/8 2911 met#1a + sil#2 59:41 90 
Z977a 18/8 2893 met#4a + sil#2 76:24 90 
Z977b 18/8 2893 met#5a + sil#2 72:28 90 
Z980a 18/8 2911 met#5a + sil#2 55:45 100 
Z980b 18/8 2911 met#4a + sil#2 70:30 100 

 
23 GPa 

 
  

  

H3518 10/4 2594 met#4a + sil#1 66:34 180 
H3536 10/4 2542 met#4a + sil#1 78:22 180 
H3581 10/4 2540 met#4a + sil#1 60:40 60 
H3606 10/4 2540 met#5a + sil#2 64:36 60 
H3629 10/4 2589 met#4a + sil#2 53:47 60 

 
*1 Reversed experiment 
*2 Composition of samples Z922a and Z922b probably vice versa 
*3 Metal/silicate mass ratios of Z926a and Z926b probably vice versa 

 

 

 

2.2 Analytical methods 
 

   In a successfully performed experiment, a round metal sphere develops that is surrounded 

by a silicate matrix (Figure 12). The use of MgO capsules leads to the formation of 

ferroperriclase crystals near the border of the capsules and occasionally around the metal 

spheres. Metal and ferropericlase phases were analysed by the electron probe micro-analyser 

(EPMA), whereas the concentrations of all elements in the silicate were measured with laser 

ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) (see below). 



Chapter 2: Exp. and anal. methods 

46 
 

        

 

Figure 12a: Backscattered electron image of sample: H3444a (left) and b (right), 11 GPa, 2609 K, ΔIW = -2.0 / 

-2.3 respectively, Ag-bearing. Metal spheres (white) are surrounded by a silicate matrix that exhibits elongated 

skeletal olivine quench crystals. Ferropericlase has formed around the metal spheres and at the borders of the 

capsules. b) Close-up of the metal phase of sample H3444a that exhibits very tiny (< 1 µm) exsolutions (white) 

that are enriched in Ag. 

 

 

 

2.2.1 Electron probe micro-analyser (EPMA) 

 

   A JEOL JXA-8200 electron probe micro-analyser (EPMA) was employed for all 

quantitative analyses of the metal and ferropericlase phases. The accelerating voltage and the 

beam current were set to 15 kV and 15 nA respectively and the peak counting times were 

fixed at 20 s for every element on the peak position and 10 s for all background 

measurements. 

   A range of pure metals, oxides, silicates, as well as an arsenide, a telluride, a phosphate and 

a boride have been employed as standards for measurements. These are listed against 

elements that were analysed in Table 6. 

   All data have been corrected by either the phi-rho-z routine or by the ZAF approach. 

 

 

 

 

Ferropericlase 
(detrmination of 

ΔIW) 
 

Metal 
 

Silicate 

a) b) 
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Table 6: Elements that have been analyzed with the electron probe micro-analyser (EPMA) correlated to the 

standards employed 

Element Standard Chemical Formula 
Si Andradite Ca3Fe2[SiO4]3 
Ca Andradite Ca3Fe2[SiO4]3 
Al Spinel MgAl2O4 
Mg Enstatite Mg2[Si2O6] 
Fe Iron Fe 
O Periclase MgO 
S Pyrite FeS2 
Ni Nickel Ni 
Co Cobalt Co 
W Tungsten W 
Mo Molybdenum Mo 
Cu Copper Cu 
Ge Germanium Ge 
Sn Tin dioxide SnO2 
Sb Antimony Sb 
Pb Lead telluride PbTe 
Ag Silver Ag 
Au Gold Au 
As Indium arsenide InAs 
P Apatite Ca5[(PO4)3(F,Cl,OH)] 
 
Measured in case of suspected contamination by impurities 
La Lanthanum hexaboride LaB6 
Cr Chromium Cr 
Re Rhenium Re 
Zr Zirconium Zr 

 

 

 

2.2.1.1 Metal phases 

 

   When analyzing the metal phases of the experiments a defocused electron beam with a 

diameter of usually 20 µm was adopted. In some cases, for smaller metal spheres, diameters 

of 5 or 10 µm have additionally been applied. The number of measurements of the metal 

phase of each sample ranged between 20 and 77 analyses, depending on the size of the metal 

spheres.  

   Occasionally, quenching of the samples led to exsolutions of heavy elements like Ag, Au 

and Pb, identifiable by small bright round blobs within a grey-toned metal matrix in a 

backscattered electron image (compare Figure 13a). These exsolutions may be very tiny and 

uniformly distributed within the metal sphere, however they were also found to reach sizes of 

more than 1 µm right up to (extremely rarely) > 5 µm and also to occur preferentially at the 

rim of the metal spheres. When equally distributed and tiny (~1µm) the use of a broad 
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defocused electron beam together with the combination of numerous analyses was found to 

facilitate the determination of the bulk composition of the metal phase, since additional 

calculations that were based on image analyses (see below) led to the same results. If, 

however, exsolution was concentrated at the rim of the metal spheres determining the bulk 

metal composition becomes extremely difficult, because analyses of the metal are not 

statistically uniform and measurements too close to the metal rim may also be contaminated 

by the surrounding silicate phases.  

   It was found that reducing the number of elements of interest in the starting metal material 

as well as lower concentrations inhibited the formation of exsolutions. Because of this 

observation, the number of elements in the starting metal material was minimized and Ag as 

well as Pb were probed individually and with lower concentrations as previously described in 

Section 2.1.1.1. 

   Samples exhibiting exsolutions exceeding 1 µm in size (Figure 13a) were investigated by 

image analysis (Chapter 3). In these cases the exsolutions of heavy elements were analysed 

individually with beam diameters of 1 µm (occasionally 5 µm), as well as the grey metal 

matrix, where beam diameters ranged from 5 to 20 µm. Due to the small sizes of the 

exsolutions and additionally due to their limited abundance the number of analyses was 

restricted to 10 to 31 measurements. The matrix of the metal spheres was similarly analysed 

20 to 30 times to prevent that numerous sub-micron exsolutions are incorporated into the 

analyses. 

   It was also found that O and Si exsolve in some cases within the metal phases, forming 

round blobs that appear black in backscattered electron images (Figure 13b). The exsolutions 

of O and Si usually have sizes ~5 µm in diameter and their formation was found to be 

facilitated by the presence of and, in particular, increasing S-contents. In contrast to the above 

mentioned bright exsolutions of heavy elements, these were found to generally be distributed 

uniformly within the whole metal sphere. Therefore averaged analyses of numerous 

measurements, performed with a broad defocused electron beam with a diameter of usually 20 

µm, provide reliable results as already discussed for the exsolutions of heavy elements (see 

above).  

   In both cases (i.e. in metal spheres with exsolutions that are either enriched in heavy 

elements or in O and Si), occasionally an exsolution free border region formed within the 

metal phase adjacent to the silicate phase (see Chapter 3). If compositionally different from 

the rest of the metal phase this region was avoided for bulk metal analyses with a broad 
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electron beam. When image analyses were required to integrate the exsolutions of the heavy 

elements into the bulk metal composition, this rim was analysed as part of the metal matrix. 

 

        

 

Figure 13a: Example for the exsolution of heavy elements (white blobs within the grey-toned metal sphere). 

Sample H3404a, 11 GPa, 2777 K, ΔIW -2.4. The exsolutions are enriched in Au, As, Ag and P and occur mainly 

around the rim of the metal sphere, which necessitates image analysis to properly determine the bulk metal 

composition. b) Example of exsolutions of Si and O (black blobs within the grey-toned metal sphere). Sample 

H3497b, 11 GPa, 2718 K, ΔIW -2.3. The exsolutions are tiny and uniformly distributed within the metal phase 

enabling the investigation of the bulk metal composition by the use of a broad defocused electron beam. 

 

 

 

2.2.1.2 Ferropericlase 

 

  The formation of ferropericlase was induced by the use of poly- and single-crystal MgO-

capsules. The crystals were located in the silicate melt usually close to the capsule walls as 

well as around the metal spheres. Crystals that were surrounded by silicate melt were 

analysed preferentially in order to ensure equilibrium resulting from sufficient Fe-Mg 

exchange between ferropericlase and the silicate melt. For the same reason – the achievement 

of Fe-Mg equilibrium at experimental conditions - the measurements were performed very 

close to the edges of these crystals. However, due to quenching, a small rim, which is 

enriched in Fe, was found at the edges of the crystals. This rim can easily be identified on the 

backscattered images displayed on the electron probe micro-analyser since the higher atomic 

number of Fe in comparison to Mg results in brighter shades of grey. Analyses of these rims 

will inevitably lead to errorneous values for the oxygen fugacity, whereas analyses that are 

a) b) 
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too close to the center of the ferropericlase phases may also not mirror the correct conditions. 

The Fe enriched rim in all ferropericlase phases has a thickness of approximately 1 µm. The 

beam diameter used for the analysis was also 1 µm. All analyses were thus performed around 

2 µm distant from the crystal´s edge.  

   Whenever samples lacked ferropericlase crystals in the silicate melt or around metal 

spheres, the border of the MgO capsules adjacent to the silicate phase of the samples has been 

analysed instead.  

    

 

 

2.2.2 Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) 

 

   Due to the low concentrations of the siderophile elements of interest in the silicate melt, 

quantitative analysis of both major and trace element concentrations in the silicate have been 

performed with an Elan DRC-e quadrupole mass spectrometer (Perkin Elmer Instruments, 

Canada) connected to a GeolasPro 193 nm ArF Excimer Laser System (Coherent Inc., USA). 

All analyses were performed with the help of Dr. Andreas Audétat who additionally provided 

an Excel-based program for the integration of the signal intensities and the subsequent 

acquisition of the concentrations of the elements of interest, which was based on the study of 

Longerich et al. (1996). During the analyses the sample chamber was flushed with helium gas 

at a rate of 0.4 l/min which was complemented by Ar gas and H2 gas with rates of 0.95 l/min 

and 5 ml/min respectively. 

   The instrument background was measured once before each set of standards and each set of 

sample measurements with the measuring times on background and signal lasting between 10 

s and 40 s.  

   Because of the often coarse-grained heterogeneous quench structures of the silicate melt a 

beam diameter of  20 to (normally) 80 µm at a frequency range between 5 – 10 Hz has been 

employed dependent on the available space between coexisting metal and ferropericlase 

phases. Spikes were deleted manually by replacing the value at this time by the mean of the 

neighbouring values. A typical diagram displaying the signal intensities of various elements 

against time is shown in Figure 14.  
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Figure 14: Example of a typical diagram that shows the signal intensities of - in this case – S, Mg, Si, Fe and Ag 

obtained from the LA-ICP-MS measurements. The sample has been analyzed 6 times at different spots. While 

changing the spot the signal intensity drops down significantly. The green arrows at 2 s and 62 s mark the range 

of the background measurements and red lines indicate the area of the sample measurements that will be 

integrated. After 309 s the signal of Ag exhibits a spike which was deleted manually when integrating this 

section.  

 

   The integrated signal intensities were referenced to the external standard NIST SRM 610 

that was measured prior to and after all other measurements in the case of all elements except 

S because the concentration of S in the standard NIST SRM 610 is low and poorly 

constrained. The concentration of S in the silicate melt has therefore been obtained by using 

either Afghanite (Seo et al., 2011) or a S-bearing basaltic glass kindly provided by Roman 

Botcharnikov (Botcharnikov #19; Botcharnikov et al., 2011) as external standards. 

   The derived element ratios were converted into absolute abundances by normalizing SiO2, 

CaO, FeO, Al2O3 and MgO to 100 wt%. In contrast to these oxides the concentrations of all 

other elements have been obtained as pure element ppm abundances. Table A3 in the 

appendix summarizes the results of the LA-ICP-MS measurements and additionally provides 

the number of averaged analyses for each sample. 

   In order to get an estimate of the quality of the measurements, the USGS silicate glass 

standards BCR-2G (Wilson, 2006a), NKT-1G (Wilson, 2006b) and another S-bearing basaltic 

glass (Botcharnikov #36; Botcharnikov et al., 2011) have been periodically analyzed as 

unknowns. The results obtained for MgO, Al2O3, SiO2, CaO, Fe2O3, P2O5, Co, Mo and S 

typically agree within less than 10 % uncertainty of the certified/reference values at the most, 

whereas the contents of other trace elements in the secondary standards are not constrained 

precisely enough to allow a firm comparison. 



Chapter 2: Exp. and anal. methods 

52 
 

2.2.3 Field-emission scanning electron microscopy (FESEM) 

 

   As described above, exsolutions of heavy elements such as Pb and Ag occurred during 

quenching (e.g. Gessmann et al., 1998; O´Neill et al., 1998). Therefore it is important to 

integrate the concentrations of the elements within these phases into the bulk metal 

composition. As already mentioned in Section 2.2.1.1 the exsolutions of heavy elements 

occasionally occurred at the rim of the metal spheres and were then analysed separately from 

the metal matrix. Subsequent investigations of the bulk metal composition require image 

analyses based on several backscattered electron images of the corresponding samples.  

   For this purpose the field-emission scanning electron microscope LEO 1530 Gemini that is 

connected to the energy dispersive X-ray spectroscopy system Oxford INCA has been 

employed. The magnification was varied in order to obtain images of the whole metal sphere 

as well as several close-ups within the metal and was thus dependent on the size of the metal 

spheres. The electron beam was operated at an EHT (extra high tension) of 20 kV.  
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3. General results 
 

   In the course of this study 104 samples were produced over a pressure and temperature 

range from 11 GPa to 23 GPa and 2342 K to 2911 K respectively. Elements of interest were 

the non-volatile siderophile elements Ni, Co, W and Mo and the volatile elements Cu, Sn, Sb, 

Ge, Pb, Au, As, Ag and P. For each element multiple experiments have been performed at 

various pressure and temperature conditions.  

   Additionally the influence of S on the partitioning of all elements has been investigated by 

performing experiments at 11 GPa with four different S metal concentrations. Besides 

experiments in which the starting metal material was either free of S or consisted of FeS plus 

elements of interest, additional experiments have been performed with concentrations of 10 

wt% and 20 wt% S in the starting metal material (see Table 2, Chapter 2).  

   The effect of Si dissolved in the metal phase and associated changes in oxygen fugacity 

have been investigated for all volatile elements. For this purpose additional experiments have 

been performed within which the starting metal material consisted of Fe91Si9 or Fe83Si17 plus 

elements of interest (see Table 2, Chapter 2). As will be shown in Chapter 4 it was 

additionally possible to derive the valence states of the elements of interest in the silicate by 

investigating how they are influenced by the presence of Si in the metal phase.   

   As previously described in Chapter 2 successfully performed experiments resulted in the 

formation of a single large metal sphere surrounded by quenched silicate matrix that exhibits 

skeletal olivine crystals. Due to the use of MgO capsules ferropericlase formed at the border 

of the capsules and occasionally around the metal sphere. Figure 15 displays a backscattered 

electron image of experiment H3444 that was performed at 11 GPa and 2609 K. The 

experiment was performed with two capsules (left hand side: a; right hand side: b) that were 

separated by a single crystal MgO lid, the corresponding oxygen fugacity of each sample was 

determined as -2.0 and -2.3 logarithmic units relative to the iron-wüstite buffer respectively. 

The white semicircle on the left edge of Figure 15 is part of the thermocouple that was used to 

determine temperature during the experiment.  



Chapter 3: General results 

54 
 

 

 

Figure 15: Backscattered electron image of sample: H3444a (left) and b (right), 11 GPa, 2609 K, ΔIW = -2.0 / -

2.3 respectively, Ag-bearing. Metal spheres (white) are surrounded by a silicate matrix that exhibits elongated 

skeletal olivine quench crystals. Ferropericlase has formed around the metal spheres and at the borders of the 

capsules. 

 

   Figure 16 displays a more detailed picture of the metal phase of sample H3444a. By varying 

the contrast, sub-micron and uniformly-distributed exsolutions (white) that are enriched in Ag 

become visible that can easiliy be taken into account by the use of a broad defocused electron 

beam when determining bulk metal compositions with the electron probe micro-analyser (see 

Section 2.2.1.1).  
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Figure 16: Backscattered electron image of the metal phase of sample H3444a, 11 GPa, 2609 K, ΔIW = -2.0, Ag 

bearing. The sub-micron white phases are uniformly distributed exsolutions that are enriched in Ag. When 

determining the bulk metal composition they can easily be taken into account by analyzing the metal sphere with 

a broad defocused electron beam. 

 

   In contrast Figure 17 shows the metal phase of sample H3404a that exhibits exsolutions that 

are enriched in the siderophile elements Ag, Au, As and P and that are not uniformly 

distributed but are preferentially located around the rim of the metal sphere, which requires 

image analysis when determining the bulk metal composition. 
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Figure 17: Backscattered electron image of the metal phase of sample H3404a, 11 GPa, 2777 K, ΔIW -2.4. The 

white exsolutions are enriched in Au, As, P and Ag and form during quenching (Gessmann et al., 1998; O´Neill 

et al., 1998). Because of their non-uniform distribution image analyses are necessary when determining the bulk 

metal composition.  

 

   For the sake of completeness Figure 18 shows exsolutions in the metal phase of sample 

Z1008b that contain up to 40 wt% and 50 wt% Si and O. Besides Fe, its starting composition 

contained 5 wt% of FeO, 1 wt% of each of the siderophile elements As and Au and 3 wt% 

P2O5. The backscattered electron image of the metal phase of sample Z1008b has in this case 

been obtained by employing the electron probe micro-analyser rather than the field-emission 

scanning electron microscope. 

   The exsolutions with high concentrations of Si and O are uniformly distributed within the 

metal sphere rather than being present at the rim of the metal sphere. Therefore the bulk metal 

composition has been investigated with the electron probe micro-analyser by the use of a 

broad defocused electron beam as explained above (Section 2.2.1.1).   
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Figure 18: Backscattered electron image of sample Z1008b, 11 GPa, 2614 K, ΔIW -2.9, P-, As- and Au-bearing. 

The black round exsolutions within the grey-toned metal matrix are enriched in Si and O. Because they are 

uniformly distributed the bulk metal composition has been investigated by the electron probe micro-analyser 

with a broad defocused electron beam. 

 

   Some metal phases that exhibit exsolutions, either of heavy elements or enriched in O and 

Si, developed an exsolution-free rim adjacent to the surrounding silicate. In the case of O and 

Si rich exsolutions this has also been observed by Ohtani and Ringwood (1984) and O´Neill 

et al. (1998). The latter authors argued that in this region the exsolved components migrated 

to the metal - silicate interface during quenching. If compositional differences between the 

border region of a metal phase and its interior were observed, this exsolution-free zone was 

avoided for bulk metal analyses with a broad electron beam. When performing image analysis 

on metal phases exhibiting exsolutions of heavy elements that are visible around the metal 

sphere in a backscattered electron image, the rim was taken into account as part of the 

exsolution-free metal matrix.  
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   Samples H3455a and b resulted from an experiment that was performed at 11 GPa and 2652 

K with the element of interest Pb being added to the starting silicate powder rather than to the 

starting metal powder. A further experiment was performed at the same conditions (11 GPa 

and 2650 K), but, as usual, Pb was initially hosted by the metal phase (H3449b). As can be 

read from Table 13, Chapter 5, the exchange coefficients of all three samples agree within 

error with one another, showing that the choice of metal being the initial host phase of the 

elements of interest did not influence the outcome of the experiments. 

 

 

 

3.1 Data treatment 
 

3.1.1 Metal 

 

   The concentrations of all elements in the metal phase of each sample were obtained as mass 

percentages from the electron probe micro-analyser (EPMA) measurements. The results are 

displayed in Table A1 in the appendix together with the number of the averaged analyses, the 

beam diameters and an indication if image analyses have been performed (see below). 

   For each sample the results of 20 to 77 analyses have been converted into molar values and 

renormalized and averaged. Errors were obtained as 1 σ standard deviations.  

   As mentioned above the metal phases occasionally exhibit exsolutions that are enriched in 

heavy elements (see Figure 17). These have separated from a homogeneous metallic liquid 

during quenching (Gessmann et al., 1998; O´Neill et al., 1998). When determining liquid 

metal – liquid silicate partition or exchange coefficients it is thus important to integrate these 

exsolutions into the bulk metal composition. As mentioned earlier these blobs that are 

enriched in heavy elements such as Ag and Pb are often uniformly distributed over the whole 

metal sphere. However occasionally they were found to be enriched at the rim of the metal 

phase. In these cases exsolutions and metal matrix were analysed separately (see Chapter 2, 

Section 2.2.1.1).  

   Subsequent calculations of the bulk metal composition were then based on image analysis, 

which have been performed using the public domain software ImageJ: Based on several 

backscattered electron images the areal proportions of exsolved blobs and metal matrix have 
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been investigated. In agreement with Gessmann et al. (1998) and O´Neill et al. (1998) it has 

been assumed that the areal proportions are identical to the volumetric fractions of the 

individual phases. Taking into account these individual proportions and the densities of each 

phase, calculated as the ratio of the average molar mass and average molar volume, the bulk 

metal composition has been recalculated in form of mass percentages. Subsequently all values 

have been converted into renormalized molar abundances. 

   Errors have been calculated by error propagation taking into account the standard deviations 

of exsolutions and metal matrix analyses as well as the standard deviations of the image 

analyses. 

 

 

 

3.1.2 Ferropericlase 

 

   As with the metal analyses the concentrations of all elements in the ferropericlase phases 

were obtained as mass percentages. Table A2 in the appendix provides the results of the 

ferropericlase analyses, the associated errors and the number of the averaged measurements. 

   In order to obtain reliable concentrations of especially FeO and MgO in the ferropericlase 

phase the individual results of 15 to 59 analyses have been converted into renormalized molar 

oxide values and been averaged. The corresponding errors have been calculated as 1 σ 

standard deviations.  

 

 

 

3.1.3 Silicate 

 

   Table A3 in the appendix provides the results of the silicate analyses, the associated errors 

and the number of the averaged measurements. The major element concentrations of the 

silicate phase have been obtained by the laser ablation inductively coupled plasma mass 

spectrometry (LAICPMS) as weight percentages of their corresponding oxides, whereas the 

abundances of the elements of interest were initially received in ppm. The bulk silicate 

composition has subsequently been converted into renormalized molar oxide values. 
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Typically 4 to 6 analyses were averaged. As for the metal and ferropericlase analyses, errors 

have been calculated as 1 σ standard deviations.  

 

 

 

3.2 Primary calculations 
 

3.2.1 Partition and exchange coefficients 

 

   There are two ways of describing the liquid metal – liquid silicate partitioning behaviour of 

siderophile elements: either in form of a partition coefficient Dmet-sil or by an exchange 

coefficient ܭ஽
ெିி௘.  

   As shown in equation [3] partition coefficients Dmet-sil are defined as the molar ratio of the 

concentration of an element M in the metal phase to its concentration in the silicate phase. In 

the silicate phase the molar abundance of the element of interest M refers to an one cation 

based oxide, which necessitates assumptions about the valence n of the element of interest M 

(see below): 

 

௠௘௧ି௦௜௟ܦ ൌ 	
ܺெ
௠௘௧

ܺெை೙
మ

௦௜௟
	

                  [3] 

 

   However partitioning can also be understood as an exchange reaction that involves Fe and 

FeO: 

 

௡ܱܯ
ଶ
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݊

2
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݊

2
	௦௜௟ܱ݁ܨ	

                 [4] 

 

   Exchange coefficients ܭ஽
ெିி௘ can be defined by the respective mole fractions of each phase 

with respect to the valence n of the element M as follows: 
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                             [5] 

 

   Contrary to the equilibrium constant K the exchange coefficient ܭ஽
ெିி௘ does not include the 

activities of the individual components. ܭ஽
ெିி௘-values can thus be understood simply as a 

normalization of the partition coefficient Dmet-sil of element M to the partition coefficient of Fe 

with the latter being raised to the power of half of the valence of the element M. Equation [5] 

once more clarifies the importance of knowledge of the valence state of the element M.  

   By normalizing partition coefficients to that for Fe, the liquid metal – liquid silicate 

partitioning behaviour can be described independently of oxygen fugacity, thus simplifying 

the comparison of results from different data sets. 

   How partition and exchange coefficients depend thermodynamically on pressure and 

temperature as well as on the composition of the metal phase which will be shown in detail in 

Chapters 4 to 6. 

 

 

 

3.2.2 Oxygen fugacity relative to the iron-wüstite buffer 

 

   A critical parameter of all partitioning experiments is the oxygen fugacity of the sample, 

which can be computed relative to the iron-wüstite buffer from the composition of 

ferropericlase in the sample due to the equilibrium: 

 

݁ܨ	2 ൅	ܱଶ ൌ 	ܱ݁ܨ	2

                              [6] 

 

   Calculations were based on the following equation that has been derived by Mann et al. 

(2009): 
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                      [7] 

 

   The definition of the Margueles interaction parameter ிܹ௘ெ௚
௙௣  was adopted from Frost 

(2003) as: 

 

ிܹ௘ெ௚
௙௣

ൌ 11000 ൅ 0.011	ܲ	

                    [8] 

 

   In equation [7] ܺி௘ை
௙௣  and ܺி௘

௠௘௧ stand for the mole fractions of FeO in ferropericlase and Fe 

in metal respectively, R is the gas constant and T denotes the temperature in K. The 

calculation of the Margueles interaction parameter ிܹ௘ெ௚
௙௣  involves pressure (P) in bar. 

Equation [7] is based on the equilibrium constant of equation [6] and furthermore assumes the 

validity of Raoult´s Law for the metal, thus implying a value of 1 for the activity coefficient 

of Fe in the metal phase. Uncertainties on ΔIW were calculated by error propagation taking 

into account the standard derivations of the metal and ferropericlase values as well as 

uncertainties of 1 GPa and 100 K on the pressure and temperature values respectively that 

were reached during the experiments. 

   In the case of S-bearing samples the mole fraction of Fe in the metal phase was reduced by 

the value of the mole fraction of S, that means by the amount of Fe necessary to form FeS. 

Oxygen fugacities have not been calculated for samples in which the metal phase contained a 

higher mole fraction of S than of Fe. 
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4. The dependence of volatile element partitioning on oxygen 
fugacity and Si contents of the Fe metal: Implications for the 
valence states of volatile elements in the silicate liquid 

 

4.1 Introduction 
 

   Recent core formation models are based on multistage core formation scenarios in which 

pressure and temperature change through time. In addition the composition of the accreting 

matter is believed to have varied from initially reduced to more oxidized at the end of the 

Earth´s accretion. Linked with the composition of the accreting material is the oxidation state 

of the Earth meaning that oxygen fugacity additionally varied over the time of accretion.   

   As already introduced in the first Chapter, Wade and Wood (2005) incorporated an increase 

in oxygen fugacity of two logarithmic units into their continuous core formation model. As a 

result, the abundances of the elements Ni, Co, W and V in the Earth´s mantle could be 

explained when the temperatures of core formation at the base of a magma ocean are fixed 

along the peridotitic liquidus. However Wade and Wood (2005) argued that the main 

mechanism that caused the Earth´s mantle to oxidize is the crystallization of perovskite rather 

than the addition of oxidized material to the accreting Earth alone. According to the authors 

magnesium silicate perovskite is capable of incorporating Al3+ and Fe3+ instead of Mg2+ and 

Si4+. This substitution mechanism is enhanced by the disproportionation of Fe2+ into Fe3+ and 

native Fe (Frost et al. 2004). Subsequently the produced Fe can be extracted to the Earth´s 

core and thus cause an increase in the oxidation state of the mantle, but it has been shown by 

Frost et al. (2008) that this mechanism is only efficient in the late stages of accretion, when 

the amount of accreting Fe metal is too low to cause the disproportionation reaction to be 

reversed. Frost et al. (2008) furthermore showed that the metal – silicate partitioning 

behaviour of Si predicts significant dissolution of Si into the Earth´s core which results in 

increased FeO contents and with it oxidation of the Earth´s mantle due to the exchange 

reaction: 

 

ܱܵ݅ଶ
௦௜௟ ൅ ௠௘௧݁ܨ2 ൌ 	ܵ݅௠௘௧ ൅	2ܱ݁ܨ௦௜௟ 

                             [9] 
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   In the study of Rubie et al. (2011) the oxidation state of the Earth´s mantle is increased by 

varying the material that accreted to the growing Earth and also by the reaction displayed in 

equation [9]. Here the first 60 – 70 wt% of the Earth was composed of highly-reduced 

material, which was complemented by the later addition of more oxidized material. The 

authors found that the abundances of Ni, Co and W in the Earth´s mantle can only be 

explained in the case of some extent of disequilibrium between the cores of late impactors and 

the Earth´s mantle. In the course of their investigations Rubie et al. (2011) found the Earth´s 

core to contain 8 wt% Si together with 5 wt% Ni, 0.5 wt % O and 2 wt% S. 

   As shown by the above studies, the investigation of the metal – silicate partitioning 

behaviour of siderophile elements can constrain the conditions that prevailed during the 

formation of the Earth´s core. It is thus important to investigate the dependence of siderophile 

element partitioning on oxygen fugacity, which in addition can provide information about the 

valence state n of the element of interest M when dissolved in silicate liquid. 

   Knowledge of elemental valences in turn is crucial when the partitioning behaviour of 

element M is described by an exchange coefficient ܭ஽
ெିி௘. The latter facilitates the 

comparison of partitioning data that were obtained at various oxygen fugacity conditions, 

since ܭ஽
ெିி௘ is a normalization of the partition coefficient Dmet-sil of the element of interest M 

to the partition coefficient Dmet-sil of Fe with the latter being raised to the power of half of the 

valence of the element of interest in the silicate phase (see Chapter 3, equation 5). 

Furthermore ܭ஽
ெିி௘ values are used to extrapolate experimental partitioning data to higher 

pressures and temperatures that are assumed in most core formation models. 

   To date the generalized approach of determining valence states from partitioning 

experiments is based on an oxidation reaction of the element M: 

 

௡ܱܯ
ଶ

௦௜௟ ൌ ௠௘௧ܯ	 ൅	
݊

4
	ܱଶ 

                [10] 

    

   The equilibrium constant of equation [10] is defined as:  
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           [11] 

 

   The conversion into logarithmic values leads to: 

 

logܭ ൌ	log
ܺெ
௠௘௧

ܺெை೙
మ

௦௜௟
൅ log

ெߛ
௠௘௧
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൅ 	
݊

4
log ݂ܱଶ 

                           [12] 

 

   Together with the definition of the partition coefficient Dmet-sil as the ratio of the molar 

concentration of the element M in the metal phase to its molar concentration in the silicate 

phase and the assumption that the activities of the individual components remain constant at 

isobaric and isothermal conditions, equation [12] can be rearranged to the following 

expression that gives the dependence of the partitioning behaviour of an element M on oxygen 

fugacity which is expressed relative to the iron-wüstite buffer: 

 

logܦ ൌ െ	
௡

ସ
ܹܫ߂	 ൅  [13]           .ݐݏ݊݋ܿ

 

   In a diagram of logarithmic partition coefficient values against logarithmic oxygen fugacity 

expressed relative to the iron-wüstite buffer the slope of the corresponding regression line 

equals one quarter of the valence of the element of interest M in the silicate phase. Equation 

[13] also shows that the metal – silicate partitioning behaviour of an element with a high 

valence state is more strongly affected by changes in oxygen fugacity than the partitioning 

behaviour of low-valence elements. 

   By employing this approach a number of studies have addressed the valence state of mostly 

refractory siderophile elements:  

   Capobianco et al. (1994) determined a valence of 1+ for Ag and Sn based on solubility 

experiments in a gas mixing furnace at 1293 °C and partitioning experiments at 1260 °C 

respectively. These authors could not completely exclude the presence of a zero-valence Ag-

species in the silicate melt. Gessmann et al. (1999) investigated the partitioning behaviour of 

Ni, Co, Mn, Cr, V and Si between liquid metal and magnesiowüstite at pressures and 
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temperatures of 9 – 18 GPa and 2200 °C respectively. This study showed that Co, Mn and V 

are divalent, Si is tetravalent and that Ni and Cr have valence states of 1.5+ and 2.5+ 

respectively. The mixed valences of Ni and Cr are, according to the authors, most likely 

caused by non-ideal mixing behaviour of these elements in the metal and/or magnesiowüstite 

phase, meaning that the corresponding activity coefficients might not be constant over the 

experimental range of condition. The investigations of Capobianco et al. (1999) that were 

based on experiments performed at 1 atm and at oxygen fugacity between -1.3 and +3.8 

logarithmic units relative to the iron-wüstite buffer led to the conclusion that Ge is present as 

GeO2 in the silicate. Mann et al. (2009) determined the liquid metal – liquid silicate 

partitioning behaviour of a wide range of elements at pressures and temperatures between 2 – 

24 GPa and 2023 – 2873 K respectively. The results indicate a 1+ valence state for In, the 

elements Zn, Ga, Mn and Cr were found to be divalent, V and Si had valence states of 3+ and 

4+ respectively, whereas Nb and Ta both exhibited a 5+ valence state. Kegler et al. (2009) 

report that Cu has a valence of 0.76+ in the silicate phase of partitioning experiments that 

were performed at 0.5 GPa and 1350 °C. The investigations of the partitioning behaviour of 

Ge at comparatively low pressures of 0.5 GPa and temperatures of 1350 °C by Kegler and 

Holzheid (2011) resulted in a valence of 2+ for Ge within an oxygen fugacity range of -0.9 to 

-2.7 logarithmic units relative to the iron wüstite buffer which is in disagreement with the 

results of Capobianco (1999) of a GeO2 species in the silicate phase (see above). Therefore 

Kegler and Holzheid (2011) argue for a change in the valence state of Ge close to the iron-

wüstite buffer. Siebert et al. (2011) characterized the siderophile elements Ni, Co, Mn, Cr and 

Zn as divalent and V, Ga and Ge as trivalent. The elements Mo and W exhibited valence 

states of 4.1+ and 4.4+ respectively and P, As and Nb had a valence of 5+. The liquid metal – 

liquid silicate partitioning behaviour of highly siderophile elements has been investigated by 

Mann et al. (2012). The authors determined a valence of 2+ for the elements Ru, Rh, Re and 

1+ for Pt and Pd.       

   When determining valence states, oxygen fugacity is often decreased by adding Si to the Fe 

metal. But as will be shown below Si can affect the partitioning behaviour and with it the 

determination of valence states. In the framework of this study it was found that the presence 

of Si in the metal phase significantly lowers the partition coefficients of all elements studied 

(compare Section 4.3). Thus the amount of Si and its interaction with the element of interest 

M have to be taken into account when determining valence states on the basis of experiments 

that exhibit significant amounts of Si in the metal phase, the procedure of which is explained 

in detail further below.  
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   To date the effects of Si on the metal-silicate partition coefficients of siderophile elements 

have been investigated for a wide range of non-volatile elements, namely Ni, Co, Mo, W, V, 

Cr and Nb, by Tuff et al. (2011). The metal – silicate partitioning experiments of their study 

were performed at 1.5 GPa and 6 GPa at temperatures of 1923 K and 2123 K. Tuff et al. 

(2011) found that the partitioning of Ni, Co, Mo, W and V is affected by increasing Si 

contents in the metal by lowering their metal-silicate partition coefficients. On the other hand 

the partitioning of Cr and Nb was found to not depend on the presence of Si in the metal. 

Thus if Si contributes to the Earth´s core density deficit the elements Ni, Co, Mo, W and V 

behave more lithophile than in the case of a Si-free metal what means that these elements 

were extracted from the Earth´s mantle to a lesser extent than  in the case  of a pure Fe metal. 

Tuff et al. (2011) conclude that if Si is present in the liquid metal that formed the Earth´s core 

the pressures that prevailed during core formation are 5 GPa lower than the estimated 

pressures that are derived from studies based on a Si-free metallic liquid. 

   It is thus important to understand the effect of Si, when dissolved in liquid Fe, on the 

partitioning behaviour of siderophile elements because many studies have shown that Si 

might be the main abundant light element in the Earth`s core that contributes to its density 

deficit (e.g. Rubie et al., 2011; Fischer et al., 2012; Fischer et al., 2013; Siebert et al., 2013). 

In order to quantify the abundances of Si and O in the Earth´s core Ricolleau et al. (2011) 

have recently performed high pressure metal – silicate partitioning experiments of these two 

elements. The authors found that O becomes more siderophile with increasing oxygen 

fugacity, pressures and temperatures. In the case of Si the same tendency has been observed 

for pressure and temperature, but its siderophility increases with decreasing oxygen fugacity. 

By incorporating their results into a continuous core formation model Ricolleau et al. (2011) 

conclude that the Earth´s core cannot contain more than 2.5 wt% O while the Si abundance 

might lie between 1 and 11 wt% and that several combinations of Si and O contents could 

explain the Earth´s core density deficit. However Tsuno et al. (2013) clarified that at high 

temperatures O dissolved in the liquid Fe metal leads to an increase on the siderophile 

behaviour of Si. In contrast to low temperature conditions O and Si are not any longer 

mutually exclusive as has been assumed by previous studies (e.g. O´Neill et al., 1998). If 

equilibration between the core forming metal and the silicate Earth took place at pressures ad 

temperatures of 45 – 55 GPa and > 3300 K respectively similar concentrations of both Si and 

O can account for and even exceed the Earth´s core density deficit. In the latter case a Si and 

O rich layer might have formed in the upper region of the outer core that in turn could enrich 

the base of the lower mantle in SiO2 and FeO concentrations when temperatures decrease. 
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4.2 Methods 
 

   All experiments as well as the analyses of the metal, ferropericlase and silicate phases have 

been performed according to the routines described in Chapter 2. For the investigation of the 

effect of fO2 and the amount of Si in the metal phase on the liquid metal – liquid silicate 

partitioning behaviour of volatile elements, high pressure – high temperature experiments 

have been performed at 11 GPa and approximately 2600 K in the multi anvil apparatus. In this 

study the liquid metal – liquid silicate partitioning behaviours of the volatile elements Sn and 

Pb and the moderately volatile elements Ag, Cu, Ge, Sb, As, Au and P have been 

investigated. The determinations of the effects of changing fO2 and the Si contents in the 

metal phase on the partitioning behaviour also enabled the valence states of the elements to be 

determined. 

   The partitioning of an element M between liquid metal and liquid silicate can be described 

by a molar partition coefficient Dmet-sil: 

 

௠௘௧ି௦௜௟ܦ ൌ 	
ܺெ
ܺெை೙

మ

 

              [14] 

 

   where n denotes the valence of the element of interest in the silicate phase. The partitioning 

of the element M between liquid metal and liquid silicate can furthermore be expressed by an 

exchange reaction that involves Fe:  
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   From this equation, the equilibrium constant K is defined as: 
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   In equation [16] X denotes the molar fractions of components in the individual phases, γ are 

the activity coefficients and n is the valence of the element of interest M. The equilibrium 

constant K can further be simplified by assuming that the activity coefficients in the silicate 

phase remain constant over the narrow range of silicate compositions in our experiments. 

Incorporating this assumption, the expression for K becomes: 
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                  [17] 

    

   At chemical equilibrium the Gibbs free energy change ΔG0 can be related to the equilibrium 

constant K as follows: 

 

଴ܩ߂ ൌ 	െܴ݈ܶ݊ܭ 

                         [18] 

 

   Together with the definition of the partition coefficient, the equilibrium constant K and the 

assumptions that the activity coefficients of the oxides in the silicate phase are constant and 

may be neglected, equation [18] can be rearranged to 
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                    [19] 

 

   The activities of Fe and the element of interest M in the metal phase have been calculated 

employing the ε-model as formulated by Ma et al. (2001). The general expression for 

calculating activities of Fe (solvent: 1) and of any solute i among a number of N solutes in Fe-

bearing metallic solutions is given by equation [20] and [21] respectively. 
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   The interaction parameter ߝ௜
௞ describes the influence on the activity of a given element i as a 

function of the concentration of another element k dissolved in Fe metal. The parameter ߛ௜
௢ is 

the activity of the element i at infinite dilution and X is the mole fraction of the individual 

components in Fe metal. Equations [20] and [21] have been solved for a three-component 

system with Fe (solvent) and Si and the element of interest M being solutes:    
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   By the use of these equations the partition coefficient Dmet-sil values have been recalculated 

on the assumption of a constant ΔG0 value within the suite of isobaric and isothermal 

experiments in this study. ΔG0 has initially been calculated for an experiment whose starting 

metal was free of Si and FeO components. According to the Steelmaking Data Sourcebook an 

interaction parameter ߝ௜
௞ equals the interaction parameter ߝ௞

௜ . However in the Steelmaking 

Data Sourcebook mass related ݁௜
௞ values are listed which can be converted into interaction 

parameter values ߝ௜
௞ by employing equation [24] in which ܯ௞ denotes the molar mass of 

element k: 

 

݁௜
௞ ൌ 0.00434	 ൤൫ߝ௜

௞ െ 1൯	
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                   [24] 

   

   When available the values for the activities at infinite dilution and the individual interaction 

parameters ߝ௜
௞ were derived from the values given in the Steelmaking Data Sourcebook in 

order to calculate lnγM and lnγFe (equations [22] and [23]). If the values were not available for 

certain elements they were set to zero. However because the terms ߝெ
ெ, ߝௌ௜

ௌ௜ and ߛெ
଴  in 

equations [22] and [23] have no significant compositional dependence they are essentially 

constant at given pressure and temperature. If unknown and thus set to zero they can therefore 

be added to the ΔG0 term and they simply become part of the refinement of ΔG0, which we 

continue to refer to as ΔG0 for simplicity. Table 7 summarizes the values obtained from the 

Steelmaking Data Sourcebook that are used in the calculations of this study.  
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Table 7: Summary of interaction parameter values ࢏ࢿ
࢏ࢽ and activity coefficients at infinite dilution ࢑

૙ that were 

used to calculate the activity coefficients of Fe and the element of interest M in the metal. All values were 

derived from the Steelmaking Data Sourcebook (see text). 

 

 Cu Ag Au Pb Sn Ge Sb As P Si 

ࡹࢽ
૙  8.58 200 - 837 2.58 - - - - - 

ࡹࢿ
 12.43 7.35 - - 1.80 0.29- - - 18.73- 5.38- ࡹ

 

   These values however refer to a temperature of 1873 K. Temperature corrections have been 

performed following Tuff et al. (2011). 
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   The individual interaction parameters ߝௌ௜
ெ were fitted by minimizing the sum of the weighted 

deviation between experimentally determined and calculated log ܦ௠௘௧ି௦௜௟ values. The sum of 

the weighted deviations was calculated by employing equation [26] where ߜ logܦ௠௘௧ି௦௜௟ሺ௘௫௣ሻ 

denotes the error on the experimentally investigated logarithmic exchange coefficients as 

calculated by error propagation: 
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                   [26]  

 

   The quantification of the ߝெ
ௌ௜ values has been performed for different possible valence states 

and subsequently the individual deviations as calculated by equation [26] have been 

compared. The lowest value of σ obtained represents the best fit between the calculated 

(equation [19]) and experimental Dmet-sil values.  

   In order to give some comparability between different elements the deviations obtained by 

equation [26] have been normalized to the number of experiments and to the calculated 
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logarithmic Dmet-sil value of the experiment that has initially been employed to estimate ΔG0. 

This normalized residual function will during the further procedure be abbreviated with NR. 

   The derived interaction parameter values ߝெ
ௌ௜ likewise refer to a temperature of 1873 K 

comparable to the mass related interaction parameters ݁௜
௝ in the Steelmaking Data 

Sourcebook. As mentioned above temperature corrections were performed following Tuff et 

al. (2011) employing equation [25]. 

 

 

 

4.3 Results 
 

   For each element Table 8 summarizes the experimental conditions, the experimentally 

determined as well as the calculated partition coefficient values ܦ௠௘௧ି௦௜௟, the exchange 

coefficient values ܭ஽
ெିி௘ that were calculated on the basis of the derived valence states for 

the individual elements and the oxygen fugacity relative to the IW buffer. Uncertainties that 

were obtained by error propagation are given for the last digit(s).  
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Table 8: Summary of experimental conditions, experimental and recalculated partition coefficient values Dmet-sil, exchange coefficients, Si metal contents (mole 

fractions) and oxygen fugacity relative to the IW buffer. Pressures and temperatures are given in GPa and K respectively. Values in brackets represent 

uncertainties for the last digit(s) that were obtained via error propagation.  

Exp. P T ࢔ࡿࡰ
࢔ࡿࡰ ࢖࢞ࢋ

ࡰࡷ ࢉ࢒ࢇࢉ
࢈ࡿࡰ ࢋࡲି࢔ࡿ

࢈ࡿࡰ ࢖࢞ࢋ
ࡰࡷ ࢉ࢒ࢇࢉ

ࢋࡳࡰ ࢋࡲି࢈ࡿ
ࢋࡳࡰ ࢖࢞ࢋ

ࡰࡷ ࢉ࢒ࢇࢉ
࢏ࡿࢄ ࢋࡲିࢋࡳ

࢚ࢋ࢓
 ΔIW 

H3707a 11 2641 198 (44) 198 2.4 (5) 7778 (1849) 7774 21 (6) 1231 (257) 1231 15 (3) - -2.2 (2) 
H3707b 11 2641 643 (83) 643 0.11 (3) 14906 (4137) 14906 0.14 (7) 4833 (1261) 4833 0.8 (3) 0.210 (3) -4.7 (4) 
H3718a 11 2658 228 (48) 173 3.0 (7) 19884 (4972) 6611 61 (18) 2192 (478) 1093 29 (7) - -2.1 (2) 
H3718b 11 2658 864 (218) 1445 0.8 (2) 52724 (18934) 47163 5 (2) 7183 (2082) 6209 7 (2) 0.0766 (8) -3.7 (2) 
Z926a 11 2668 202 (58) 187 2.4 (8) 15383 (4876) 7035 43 (16) 1864 (603) 1149 23 (8) - -2.4 (4) 
Z926b 11 2668 315 (118) 222 3 (1) 12855 (4961) 8367 32 (13) 2302 (726) 1297 25 (8) - -2.2 (2) 

              
Exp. P T ࢛࡯ࡰ

࢛࡯ࡰ ࢖࢞ࢋ
ࡰࡷ ࢉ࢒ࢇࢉ

࢈ࡼࡰ ࢋࡲି࢛࡯
࢈ࡼࡰ ࢖࢞ࢋ

ࡰࡷ ࢉ࢒ࢇࢉ
ࢍ࡭ࡰ ࢋࡲି࢈ࡼ

ࢍ࡭ࡰ ࢖࢞ࢋ
ࡰࡷ ࢉ࢒ࢇࢉ

࢏ࡿࢄ ࢋࡲିࢍ࡭
࢚ࢋ࢓

 ΔIW 

H3707a 11 2641 33 (4) 33 8 (1) - - - - - - - -2.2 (2) 
H3707b 11 2641 136 (16) 136 8 (1) - - - - - - 0.210 (3) -4.7 (4) 
H3718a 11 2658 32 (3) 32 7.6 (8) - - - - - - - -2.1 (2) 
H3718b 11 2658 75 (9) 74 7.3 (9) - - - - - - 0.0766 (8) -3.7 (2) 
Z926a 11 2668 32 (4) 33 7 (1) - - - - - - - -2.4 (4) 
Z926b 11 2668 38 (4) 35 8.5 (9) - - - - - - - -2.2 (2) 

              
Z919a 11 2605 - - - 26 (13) 26 1.1 (5) - - - - -2.4 (2) 

H3704a 11 2639 - - - 57 (56) 46 0.2 (2) - - - 0.205 (2) -4.5 (3) 
H3704b 11 2639 - - - 56 (29) 56 0.4 (2) - - - 0.118 (1) -3.8 (3) 
Z919b 11 2605 - - - 20 (16) 20 1.1 (9) - - - - -2.1 (2) 
Z920b 11 2580 - - - 24 (18) 24 1.1 (8) - - - - -2.3 (3) 

              
H3444a 11 2609 - - - - - - 23 (17) 23 5 (3) - -2.03 (8) 
H3444b 11 2609 - - - - - - 23 (9) 25 5 (2) - -2.3 (3) 
Z915a 11 2584 - - - - - - 31 (16) 31 3 (2) 0.114 (1) -4.2 (6) 
Z915b 11 2584 - - - - - - 44 (49) 32 2 (2) 0.259 (2) -4.7 (3) 
Z916a 11 2580 - - - - - - 23 (17) 24 5 (4) - -2.5 (3) 
Z922a 11 2588 - - - - - - 25 (14) 23 5 (3) - -2.5 (4) 
Z922b 11 2588 - - - - - - 21 (10) 21 5 (2) - -1.97 (9) 
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Table 8 continued 

Exp. P T ࢛࡭ࡰ
࢛࡭ࡰ ࢖࢞ࢋ

ࡰࡷ ࢉ࢒ࢇࢉ
࢙࡭ࡰ ࢋࡲି࢛࡭

࢙࡭ࡰ ࢖࢞ࢋ
ࡰࡷ ࢉ࢒ࢇࢉ

ࡼࡰ ࢋࡲି࢙࡭
ࡼࡰ ࢖࢞ࢋ

ࡰࡷ *ࢉ࢒ࢇࢉ
࢏ࡿࢄ *ࢋࡲିࡼ

࢚ࢋ࢓
 ΔIW 

Z1000b 11 2612 6811 (2238) 6811 212 (70) 20779 (11537) 20772 4 (2) 52 (7) 52 0.009 (1) - -2.7 (3) 
Z1002b 11 2602 12741 (5701) 12384 130 (59) 83490 (22516) 83490 0.9 (3) 531 (289) 361 0.006 (3) 0.043 (2) -3.5 (2) 
Z1008b 11 2614 13289 (5078) 5132 524 (203) 58510 (15328 10328 18 (6) 144 (53) 29 0.04 (2) - -2.9 (7) 
Z1011a 11 2605 7266 (3578) 3370 455 (226) 32250 (12136) 3480 32 (13) 129 (51) 9 0.13 (5) - -2.1 (3) 
Z1019b 11 2624 5218 (3828) 5557 10 (8) 13898 (5747) 7293 0.002 (1) 379 (101) 379 0.00007 (2) 0.214 (3) -4.8 (4) 
Z1000a 11 2612 3329 (3802) 6025 117 (139) 2335 (3937) 12306 1 (1) 26 (8) 38 0.006 (5) - -2.7 (4) 
Z1002a 11 2602 8060 (3356) 8060 26 (12) - - - - - - 0.158 (3) -4.5 (1) 
 

௉ܦ *
௖௔௟௖ values and ܭ஽

௉ିி௘ values are calculated based on the assumption of a 5+ valence state. For details see text. 
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4.3.1 Metal – Silicate partition coefficients Dmet-sil    

 

   Experimental data have been compared to literature data sets when available. In previous 

studies partition coefficients have often been calculated on the basis of mass and additionally 

the method of determining oxygen fugacity shows differences between individual studies. 

Therefore these parameters have been recalculated from the analytical results that have been 

published by the individual authors. Out of a given data set comparable experiments have 

been carefully selected on the basis of similar experimental conditions as well as consistency 

between the composition of metal and silicate phases and the capsule material. However due 

to the limited amount of experimental partitioning studies for volatile elements, the results 

have additionally been compared to data that were obtained in experiments with slightly 

different compositions and capsule material, when other conformable investigations were not 

available.  

      The experimental and recalculated results (equation [19]) are shown in Figures 19a – 27a 

together with comparable experimental data from the literature. In these plots logarithmic 

partition coefficient values of the individual elements have been plotted against logarithmic 

oxygen fugacity relative to the iron-wüstite buffer. Half-filled symbols represent experiments 

from literature datasets that were conducted in graphite capsules. For each element studied the 

fitted partitioning trend matches the experimental observations very well. Concerning the data 

points from the literature one should note that in contrast to the suite of isobaric and 

isothermal experiments of this study, previous results have often been determined at different 

pressure and temperature conditions as indicated in Figures 19a to 27a. 

   Figures 19b – 27b show the normalized residual functions (NR) for various valence states of 

the individual elements. The lowest value represents the best fit and thus indicates the valence 

of the element of interest in the silicate phase.  

   The derived interaction parameters ߝௌ௜
ெ of each element refer to a temperature of 1873 K. 

Temperature corrections were performed employing equation [25]. 
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4.3.1.1 Monovalent elements copper and silver 

 

   The comparison of the summed and normalized deviations (NR) between experimental and 

recalculated partition coefficient values shows a clear minimum at a valence state of 1+ in the 

silicate phase for the element Cu (Figure 19b). The partitioning of copper is thus little affected 

by changes in oxygen fugacity that might have occurred during accretion of the Earth. The 

interaction parameter ߝ஼௨
ௌ௜  was determined to be 0.73. This relatively small interaction 

parameter testifies to a small influence of the metal Si content on the partitioning behavior of 

this element – in other words the siderophility of Cu is hardly affected by the presence of Si in 

the metal. The results for the volatile element Cu are compared with data from Corgne et al. 

(2008), Wood et al. (2008) and Righter et al. (2010) in Figure 19a. Agreement between the 

dataset of this study and those from the literature was found for the latter two publications, 

whereas the first one results in slightly lower logarithmic partition coefficient values. This 

might be caused by different pressure and temperature conditions as well as by the fact that 

the experiments of Corgne et al. (2008) were performed in C-capsules. It is well known that 

the presence of C - another element that possibly accounts for the Earth´s core density deficit 

(e.g. Poirier, 1994) - in the metallic liquid can influence the partitioning behaviour of 

siderophile elements (e.g. Mann et al., 2009). From the Steelmaking Data Sourcebook a 

positive interaction parameter between C and Cu can be derived, that implies that C in the Fe-

rich metal causes a decrease in siderophility for the element Cu. 

   Similar results have been obtained for the siderophile element Ag. The normalized residual 

function NR shows a minimum at a valence of 1+ with an interaction parameter ߝௌ௜
஺௚ of 6.42. 

When comparing the experimental data for Ag to the work of Wheeler et al. (2011) it was 

found that the results are not in good agreement with one another. This might be caused by 

the fact that the experiments of Wheeler et al. (2011) have been performed at lower pressures 

and temperatures of 2 GPa and 2273 K respectively (see Chapter 5). However the 

observations of this study are in perfect agreement with the derivations of Capobianco et al 

(1994) that were based on solubility experiments of Ag in a gas mixing furnace at 1566 K. 

The latter authors could not exclude a possible contribution of a zero-valence Ag species in 

the silicate phase. The comparison of the NR values obtained for various valence states in this 

study indeed shows a minimum at a valence of 1+, yet similarly the difference in NR values 

between a 1+ valence and a zero-valence species is not very distinct. All experimental and 

recalculated data of this study, the results of Wheeler et al. (2011) and the deviation trend 

between experimental and recalculated data are shown in Figures 20a and 20b. 
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Figure 19a: Logarithmic partition coefficient values of the experimental data of this study, a second order 

polynomial fit to the recalculated results and literature data have been plotted against oxygen fugacity relative 

to the IW buffer for the element Cu. Errors on the logarithmic partition coefficients of Cu do not exceed the 

symbol size. Half-filled symbols denote experiments that were performed in C-capsules. The dotted line 

represents the partitioning trend for a 1+ cation without the effect of Si. b: The values of the normalized residual 

function NR (see equation [26] and text) plotted against possible valence states of the element Cu.  
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Figure 20a: Logarithmic partition coefficient values of the experimental data of this study, a second order 

polynomial fit to the recalculated results and literature data have been plotted against oxygen fugacity relative 

to the IW buffer for the element Ag. The dotted line represents the partitioning trend for a 1+ cation without the 

effect of Si. b: The values of the normalized residual function NR (see equation [26] and text) plotted against 

possible valence states of the element Ag.  
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4.3.1.2 Divalent elements lead and gold 

 

   Minimum deviations of the experimentally determined partition coefficients from the 

calculated ones were found for the divalent state for the volatile element Pb as displayed in 

Figure 21b. The interaction parameter ߝ௉௕
ௌ௜  was determined to be 11.30. 

   The experimental partitioning data of Pb are shown in Figure 21a together with the data that 

has been recalculated from the analytical results given by Lagos et al. (2008), Wood et al. 

(2008), Wood and Halliday (2010), Ballhaus et al. (2013) and Bouhifd et al. (2013). Perfect 

agreement was found between the results of this study and those of Wood et al. (2008), Wood 

and Halliday (2010) and Ballhaus et al. (2013). However large discrepancies have been found 

when comparing the data to the results of Lagos et al. (2008) and Bouhifd et al. (2013). The 

offset of the partition coefficient values from Lagos et al. (2008) is possibly caused by their 

use of C-capsules that results in an influence of C in the metal phase on the partitioning 

behaviour of Pb. From the Steelmaking Data Sourcebook a positive interaction parameter 

between C and Pb can be derived, that implies that C in the Fe-rich metal causes a decrease in 

siderophility for the element Pb. Additionally the pressures and temperatures of the 

experiments of Lagos et al. (2008) were significantly lower than in this study. For the 

investigations of Bouhifd et al. (2013) the Fe–C–Ni–Si–S metal system was employed. 

However, the datapoint shown in Figure 21a denotes an experiment the metal phase of which 

contained negligible amounts of C, Ni and S. Pressures and temperatures were 8 GPa and 

2373 K respectively. Slight differences exist in the starting silicate composition which was 

chosen to be similar to a CI-chondritic composition rather than the peridotitic composition 

employed in this study.  

   In the case of Au the values of the normalized residual functions NR are almost constant in 

the cases of valences from zero to 2+ (compare Figure 22b). However the deviation of the 

calculated from the experimental Dmet-sil values becomes minimum at a valence of 2+. The 

corresponding ߝ஺௨
ௌ௜  value is 17.00. The results for the element Au are displayed in Figure 22a. 

   Borisov and Palme (1996) investigated the solubility of Au in silicate melts rather than 

performing partitioning experiments between metal and silicate. The experiments were 

performed in a vertical tube furnace at 1 atm and temperatures between 1573 K and 1753 K. 

Combined with a thermodynamic description of the activity of Au in Fe metal, partition 

coefficients of Au were calculated for temperatures of 1623 K and 3000 K at an oxygen 

fugacity of IW -2. The results of respectively 2.5 x 107 and 2.4 x 106 are several orders of 
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magnitude higher than the observations of this study which is probably caused by the huge 

difference in applied pressures. 

   Solubility experiments of Au have additionally been conducted by Brenan and McDonough 

(2009). The latter authors furthermore performed four partitioning experiments between metal 

and silicate. However the experimental conditions of Brenan and McDonough (2009) and the 

experiments of this study differ strongly: The experiments of Brenan and McDonough (2009) 

were performed in C-capsules rather than in MgO capsules. The composition of the silicate 

phase was chosen to be basaltic in contrast to the peridotitic composition employed in this 

study and additionally the experiments of Brenan and McDonough (2009) were conducted at 

comparatively lower pressures of 2 GPa. The results of Dmet-sil from this study and from 

Brenan and McDonough (2009) differ by around 1 logarithmic unit. All results are displayed 

in Figure 22a. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 4: Investigation of valence states 

82 
 

 

 
Figure 21a: Logarithmic partition coefficient values of the experimental data of this study, a second order 

polynomial fit to the recalculated results and literature data have been plotted against oxygen fugacity relative 

to the IW buffer for the element Pb. Half-filled symbols denote experiments that were performed in C-capsules. 

The dotted line represents the partitioning trend for a 2+ cation without the effect of Si. b: The values of the 

normalized residual function NR (see equation [26] and text) plotted against possible valence states of the 

element Pb.  
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Figure 22a: Logarithmic partition coefficient values of the experimental data of this study, a polynomial fit to 

the recalculated results and literature data have been plotted against oxygen fugacity relative to the IW buffer 

for the element Au. Half-filled symbols denote experiments that were performed in C-capsules. The dotted line 

represents the partitioning trend for a 2+ cation without the effect of Si. b: The values of the normalized residual 

function NR (see equation [26] and text) plotted against possible valence states of the element Au.  

2.0

3.0

4.0

5.0

6.0

7.0

-5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1

Au

exp. results
2nd order polyn. fit
to calc. results

Brenan and McDonough (2009) 
2 GPa, 2588 K 

lo
g

 D
m

et
-s

il

log fO
2 

rel. to IW

this study                              Lit. data
(11 GPa, 2602 - 2624 K)   

22b)

2+

1.0x10-4

1.5x10-4

2.0x10-4

2.5x10-4

3.0x10-4

3.5x10-4

0 1 2 3 4 5

Au (11 GPa, 2602 - 2624 K)

Valence State

N
R

22b)



Chapter 4: Investigation of valence states 

84 
 

4.3.1.3 Trivalent elements tin and germanium 

 

   In two cases a valence of 3+ was determined, namely for the elements Sn and Ge. The 

corresponding interaction parameters ߝௌ௡
ௌ௜  and ீߝ௘

ௌ௜  have values of 17.79 and 16.58 respectively. 

The values of the normalized residual function NR for various valence states of Sn and Ge are 

displayed in Figures 23b and 24b respectively. The experimental and calculated results are 

shown in Figures 23a and 24a together with a variety of literature data (see below). 

   The results of the partitioning behaviour of Sn are in quite good agreement with the data 

published by Righter et al. (2010) and Ballhaus et al. (2013). In particular the data given by 

Ballhaus et al. (2013) match the fitted trend of the partition coefficients obtained in this study 

when extrapolated to higher oxygen fugacity.  

   The liquid metal – liquid silicate partitioning behaviour of Ge has been compared to the 

results of Siebert et al. (2011), Righter et al. (2011) and Kegler et al. (2011). The results of the 

first two studies lie on the extrapolation of the partitioning behaviour trend obtained in this 

study towards higher oxygen fugacity. The Dmet-sil values that have been recalculated from the 

analytical results of Kegler et al. (2011) are slightly higher than those of this study, probably 

due to the use of basaltic silicate starting material and lower pressure and temperature 

conditions of 0.5 GPa and 1623 K respectively. 
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Figure 23a: Logarithmic partition coefficient values of the experimental data of this study, a second order 

polynomial fit to the recalculated results and literature data have been plotted against oxygen fugacity relative 

to the IW buffer for the element Sn. The dotted line represents the partitioning trend for a 3+ cation without the 

effect of Si. b: The values of the normalized residual function NR (see equation [26] and text) plotted against 

possible valence states of the element Sn.  
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Figure 24a: Logarithmic partition coefficient values of the experimental data of this study, a second order 

polynomial fit to the recalculated results and literature data have been plotted against oxygen fugacity relative 

to the IW buffer for the element Ge. The dotted line represents the partitioning trend for a 3+ cation without the 

effect of Si. b: The values of the normalized residual function NR (see equation [26] and text) plotted against 

possible valence states of the element Ge.  
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4.3.1.4 Tetravalent element antimony 

 

   Of the elements investigated in this study Sb was found to have a valence of 4+ in the 

silicate phase (compare Figure 25b). The interaction between the Si content of the metal and 

Sb in the metal phase results in an interaction parameter value, ߝௌ௕
ௌ௜  of 28.51.  

   A broad investigation of the metal – silicate partitioning behaviour of Sb has been 

performed by Righter et al. (2009). Of their experiments ten were conducted in MgO capsules 

and only two of those exhibited negligible amounts of S in the metal phase. These two results 

have been recalculated and compared to the results of this study. Pressures and temperatures 

were 1.5 GPa and 1873 and 2073 K respectively. The results diverge strongly from the 

observations of this study which might have the following reasons: The silicate compositions 

of the experiments from Righter et al. (2009) were basaltic and rhyolitic rather than the 

peridotitic composition of the silicate phase in this study. Moreover one of the compared 

experiments exhibited high amounts of Pd in the metal phase (22.5 mole%) Finally the 

experiments of Righter et al. (2009) were conducted at comparatively low pressures and 

temperatures (see above). The experimental and calculated partition coefficients as well as 

those that were derived from the study of Righter et al. (2009) are shown in Figure 25a. 
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Figure 25a: Logarithmic partition coefficient values of the experimental data of this study, a second order 

polynomial fit to the recalculated results and literature data have been plotted against oxygen fugacity relative 

to the IW buffer for the element Sb. The dotted line represents the partitioning trend for a 4+ cation without the 

effect of Si. b: The values of the normalized residual function NR (see equation [26] and text) plotted against 

possible valence states of the element Sb.  
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4.3.1.5 Pentavalent element arsenic 

 

   Arsenic is present in form of As2O5 in the silicate phase (Figure 26b). The influence of Si in 

the metal phase on its partitioning behaviour has been fitted to give ߝ஺௦
ௌ௜  = 43.47. However in 

the case of As the recalculated results do not completely match the experimental observations. 

Several LA-ICP-MS measurements failed in detecting the concentration of As in the silicate 

phase, because of which the obtained partition coefficients represent maximum values. 

Further experiments will be necessary to verify the observations of this study. 

   Only a single experiment from the study of Siebert et al. (2011) was suitable for comparing 

the metal – silicate partitioning behaviour of As. It is in perfect agreement with the results of 

this study as can be seen in Figure 26a. 
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Figure 26a: Logarithmic partition coefficient values of the experimental data of this study, a second order 

polynomial fit to the recalculated results and literature data have been plotted against oxygen fugacity relative 

to the IW buffer for the element As. The dotted line represents the partitioning trend for a 5+ cation without the 

effect of Si. b: The values of the normalized residual function NR (see equation [26] and text) plotted against 

possible valence states of the element As.  
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4.3.1.6 Special case: phosphorus 

 

   Unfortunately the results of the dependence of the liquid metal – liquid silicate partitioning 

behaviour on oxygen fuagcity and Si metal contents are unreliable for the element P. The 

investigations of this study lead to a chemically unrealistic valence of 6+ (Figure 27b) and an 

interaction parameter ߝ௉
ௌ௜ of 34.02. Moreover during the preparation of the starting material 

the incorporation of P2O5 into the starting metal composition was hindered by its strong 

hygroscopic behaviour.  More experiments are necessary to better characterize the influence 

of Si on the partitioning of P and to derive its valence state in the silicate phase. 

   During the further procedure P will therefore be treated as a 5+ cation following the results 

of Siebert et al. (2011). The corresponding interaction parameter ߝ௉
ௌ௜ for a valence of 5+ yields 

a value of 26.82. The experimentally determined and recalculated data (for P5+) are shown in 

Figure 27a together with a suite of data sets from various authors. If extrapolated to higher 

oxygen fugacity values the partitioning trend for P is in good agreement with the results given 

by Ballhaus et al. (2013), Righter et al. (2010), Righter et al. (2011) and Siebert et al. (2011). 
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Figure 27a: Logarithmic partition coefficient values of the experimental data of this study, a second order 

polynomial fit to the recalculated results and literature data have been plotted against oxygen fugacity relative 

to the IW buffer for the element P. One should note that fitting was based on a P5+ cation as derived by Siebert et 

al. (2011). For details see text The dotted line represents the partitioning trend for a 5+ cation without the effect 

of Si. b: The values of the normalized residual function NR (see equation [26] and text) plotted against possible 

valence states of the element P.  
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4.3.2 Exchange coeffcients ࡰࡷ
 ࢋࡲିࡹ

  

   The effect of Si on the partitioning behaviour of the volatile elements of this study can be 

clarified by expressing the partitioning in form of an exchange coefficient ܭ஽
ெିி௘ as defined 

in equation 5, Chapter 3. In Figure 28 the experimentally determined logarithmic exchange 

coefficient values are plotted against the molar fraction of Si in the metal phase of the 

partitioning experiments in order to illustrate the dependence of Si metal contents on the 

partitioning behaviour. The calculations of ܭ஽
ெିி௘ values are based on the valence states that 

were determined in the course of this study. In the case of P a 5+ valence state was assumed 

following the results of Siebert et al. (2011). Dotted lines represent linear regressions to the 

experimental data. 
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Figure 28: The effect of Si metal contents on the logarithmic exchange coefficients ܭ஽
ெିி௘ for the volatile 

elements a: Cu, b: Ag, c: Pb, d: Au, e: Sn, f: Ge, g: Sb, h: As and i: P. Valence states for the calculation of 

஽ܭ
ெିி௘ values have been adopted from the derivations of this study except for P. Here a valence of 5+ was 

assumed following the results of Siebert et al. (2011). Si was found to lower the logarithmic exchange 

coefficients for each element studied. 
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4.4 Summary and conclusions 
 

   The deviations of the experimental data from the calculated Dmet-sil values have been 

compared for different valence states of the elements of interest in form of the normalized 

residual function NR (see equation [26] and text). The lowest value that was obtained 

represents the best fit of the experimental results to the recalculated values. The valence states 

and interaction parameters that have been determined are summarized in Table 9.  

   In the case of P the determination of its valence state was not possible. More experiments 

are needed to better constrain this parameter.  

   Table 9 additionally lists interaction parameters ߝௌ௜
ெ derived from the Steelmaking Data 

Sourcebook. In this study it was found that increasing Si contents reduce the siderophility of 

Pb, whereas the value derived from the Steelmaking Data Sourcebook predicts the opposite. 

In all other cases, that means for Cu, Sn and P, the result of increasing Si contents of the metal 

leading to reduced partition coefficients is the same, but the absolute values of the individual 

interaction parameters are different. 

 

Table 9: Summary of the derived valence states and interaction parameters ࢏ࡿࢿ
 of this study and from the ࡹ

Steelmaking Data Sourcebook. All interaction parameters correspond to a temperature of 1873 K (compare 

Section 4.2 Methods). 

Element Valence State Interaction Parameter
ெߝ
ௌ௜ (1873 K) 

This study 

Interaction Parameter	
ெߝ
ௌ௜ (1873 K) 

Steelmaking Data Sourcebook 
Cu 1+ 0.73 3.64 
Ag 1+ 6.42 - 
Au 2+ 17.00 - 
Pb 2+ 11.30 -11.26 
Sn 3+ 17.79 7.2 
Ge 3+  16.58 - 
Sb 4+ 28.51 - 
As 5+ 43.47 - 
P 5+ 26.82 11.95 
(P 6+ 34.02)  

 

    

   In Figure 29 the derived interaction parameters ߝௌ௜
ெ are plotted against their corresponding 

valence states. Higher valence states indicate that the element of interest is more strongly 

effected by changes in oxygen fugacity with lower fO2 leading to an increase in siderophility. 

This means that Sn and Ge will be affected more strongly by changes in oxygen fugacity in 
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comparison to Au regardless of the Si content in the metal, because these three elements 

exhibit very similar interaction parameter values ߝௌ௜
ெ. 

   However for elements that exhibit the same valence state, higher ε-values indicate a 

stronger influence of Si in the metal phase on the partitioning behaviour by decreasing the 

partition coefficient values to a greater extent.  

Within the suite of the elements investigated in this study this means that Pb tends to become 

relatively less lithophile than Au. The same conclusion can be referred for the element pairs 

Cu - Ag and P5+ - As respectively.  

 

 

Figure 29: The derived valence states for all elements studied are shown together with their corresponding 

interaction parameter values.  

 

   In summary it was found that for each element studied the interaction of Si with these 

counteracts the effect of low fO2 which normally results in increased siderophile behaviour. 

This shows that reducing conditions in the early stages of core formation do not necessarily 

result in complete or even strong depletion of siderophile elements when Si is present as a 

light element in the metal phase. 
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5. The dependence of volatile element partitioning on pressure, 
temperature and the Si- and S-content of the metal 

 

5.1 Introduction 
 

5.1.1 Pressure and temperature 

 

   Experimental studies have demonstrated that the abundances of many siderophile elements 

in the Earth´s mantle, regardless of being classified as volatile or refractory, cannot be 

explained by low pressure – low temperature metal – silicate partitioning experiments (e.g. 

Walter et al., 2000; Rubie et al., 2007; Kegler et al., 2008; Mann et al., 2009). In fact an 

overabundance of most elements in the Earth´s mantle is observed terming this issue the 

“excess siderophile element problem” (Chapter 1, Figure 6). A solution to this problem was 

first provided by Li and Agee (1996), who showed that the partition coefficients of Ni and Co 

decrease with increasing pressure. Based on these results, the absolute abundances of Ni and 

Co in the Earth´s mantle could be explained by a core formation event at a pressure of 28 

GPa, which corresponds to a magma ocean depth of 750 km. Furthermore the authors found 

that Ni partitioning is more strongly effected by increasing pressure than Co partitioning. 

According to Li and Agee (1996) at 28 GPa the partition coefficients converge, thus 

explaining the chondritic relative abundances of Ni and Co in the Earth´s mantle (see also 

Chapters 1 and 6). Subsequent investigations on the effects of pressure as well as of 

temperature and composition of silicate and metal phases have supported the idea of a high 

pressure and also high temperature core formation scenario. However, the pressure and 

temperature conditions estimated to account for the depletions of elements in the Earth´s 

mantle cover a wide range as illustrated in Table 1, Chapter 1. 

   As previously discussed in Chapter 1, a number of core formation models that are based on 

metal – silicate partitioning data have confirmed the theory of equilibration between the core-

forming Fe-rich metal and the silicate mantle at high pressures and temperatures. In addition, 

as described in detail in Chapter 4, these core formation models place constraints on other 

important parameters such as oxygen fugacity and the degree of equilibration between the 

Earth´s core and mantle: It has been shown that the oxygen fugacity in the Earth´s mantle 

most likely changed over a range of around two logarithmic units from initially reduced to 
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more oxidized at the later stages of accretion (e.g. Wade and Wood, 2005; Wood et al., 2006; 

Corgne et al., 2008; Rubie et al., 2011). According to Rubie et al. (2011) changes in oxygen 

fugacity over time can be caused by the accretion of relatively reduced material in the early 

stages of Earth´s growth, followed by the addition of oxidized material, that means matter that 

is enriched in oxygen and perhaps volatile elements, in the later stages of accretion. These 

authors furthermore find evidence for a significant degree of disequilibrium between the 

metal that was added late to the Earth and the mantle. Disequilibrium was also proposed by 

Rudge et al. (2010) who argued for only 36 wt% of the core having been in equilibrium with 

the mantle. 

   However to date most of the investigations of the pressure and temperature dependences of 

siderophile elements that can be incorporated into core formation models have been focused 

primarily on refractory elements and precise determinations of metal – silicate partitioning 

behaviour are still lacking for the volatile element group. Among the few experimental studies 

that address the effects of pressure and temperature on the partitioning behaviour of volatile 

elements is the work of Corgne et al. (2008), who, in addition to other refractory elements, 

investigated the metal – silicate partitioning of the volatile elements Mn, Ga, Cu and Zn at 

pressures between 3.6 and 7.7 GPa and temperatures between 2123 and 2473 K. They showed 

that increasing temperatures reduce the partition coefficients for the element Zn whereas the 

opposite in the case for all other elements studied. Changes in pressure only effected the 

partitioning behaviour of the two volatile elements Ga and Mn, where increasing pressure 

resulted in decreased and increased siderophility respectively. The authors favored the idea 

that core formation, involving equilibration in a magma ocean at high pressures, can explain 

the abundances of Ga, Mn and Zn in the Earth´s mantle rather than depletions being the result 

of volatility alone. Mann et al. (2009) emphasized that core formation must have involved a 

deep magma ocean with this conclusion basing on the study of the liquid metal – liquid 

silicate partitioning behaviour of the volatile elements Mn, Ga, In and Zn. The experiments of 

Mann et al. (2009) have been performed between 2 - 24 GPa and 2023 – 2873 K at oxygen 

fugacity ranging between -1.3 to -4.2 logarithmic units relative to the iron-wüstite buffer. The 

authors find that pressures > 30 to 60 GPa are necessary to explain the chondritic element 

ratios of Ga/Mn and In/Zn. Siebert et al. (2011) studied the partitioning behaviour of the 

volatile elements As, Ge, P, Zn, Ga and Mn at a pressure and temperature range of 0.5 – 18 

GPa and 1873 – 2873 K respectively. Additionally the effect of silicate melt composition on 

metal – silicate partitioning behavior was constrained by varying the silicate composition 

from basaltic to peridotitic. Increasing temperature was found to result in increased 
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siderophile behaviour for Mn and Zn, whereas the partition coefficients of Ge and As are 

decreased. The partitioning behaviour of Ga and P was hardly effected by temperature. With 

increasing pressure the elements Ga and As became less siderophile, while the metal –silicate 

partitioning of all other volatile elements did not exhibit a pressure dependence. Including 

several refractory elements the authors were able to find a single stage core formation solution 

with pressures between 32 and 42 GPa and temperatures between 3000 and 3200 K that can 

effectively account for the Earth´s mantle abundances of the elements Ni, Co, Cr, Mn, Zn, W 

and Mo, but not for V, Nb, Ge, Ga, As and P. Even when applying a continuous core 

formation model in which oxygen fugacity is increased with time the abundances of Ge and 

Ga still remain unexplainable within the framework of the experimental investigations of 

Siebert et al. (2011). The authors emphasize the necessity of studying the effects of light 

elements on the metal – silicate partitioning behaviour of volatile elements to further 

constrain the conditions that prevailed during the accretion of the Earth and the segregation of 

the core-forming metal from the silicate Earth´s mantle. Contrasting conclusions about the 

mechanism that resulted in the volatile element budget of the Earth´s mantle have recently 

been published by Ballhaus et al. (2013). The partitioning behaviour of a wide range of 

volatile elements, namely Pb, P, Rb, Cs, Sn, Zn, In, Cd and Tl, was investigated by 

performing metal-silicate partitioning experiments at 1 – 5 GPa and 1773 – 2373 K. Ballhaus 

et al. (2013) found that the partitioning of none of the elements studied depends significantly 

on pressure within the experimental pressure range. Increasing temperature resulted in an 

increase of siderophility for the elements Pb, P, Cd, Tl and Zn, whereas the partition 

coefficients of Sn and In remained constant over the temperature range covered in this study. 

Rb and Cs were found to be lithophile at all experimental conditions. Ballhaus et al. (2013) 

did not find a solution that satisfactorily explains the abundances of the studied volatile 

elements in the Earth´s mantle based on metal – silicate equilibration in a deep magma ocean. 

Instead the authors conclude that the moderately volatile element inventory of the Earth´s 

mantle was mainly delivered by a late accretionary component after core formation was 

terminated. In particular the latter study implies a final addition of 2.5% volatile rich material 

delivering up to 90% of the Earth´s Pb. Several other studies additionally investigated the 

liquid metal – liquid silicate partitioning of single volatile elements, e.g. Sb by Righter et al. 

(2009), Au by Brenan and McDonough (2009), Pb by Wood and Halliday (2010), P by 

Righter et al. (2010) and Ge by Righter et al. (2011) and Kegler et al. (2011). 

   In order to better compare the individual results of the pressure and temperature 

dependences of volatile element partitioning all studies that have been mentioned above 
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together with several other investigations are summarized in Table 10. Here authors are 

correlated with their investigated elements. Red plus (+) or minus (–) signs indicate whether 

the particular element becomes more or less siderophile with increasing temperature. By 

contrast blue plus (+) or minus (–) signs respectively show if increasing pressure results in 

increased or decreased siderophility of the individual volatile elements. One should note that 

if the pressure dependence exhibits the opposite algebraic sign in comparison to the 

temperature dependence, the latter can be reversed at very high pressures, because the 

pressure and temperature dependences are coupled as can be seen in equation [33], Section 

5.2.1. 
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Table 10: Summary of studies that investigated the pressure and / or temperature dependence of volatile elements. Red plus or minus signs indicate whether the siderophility 

of a particular element is increased or decreased by increasing temperature respectively. Blue plus or minus signs respectively denote whether increasing pressure causes an 

increase or a decrease of metal – silicate partition coefficients. Purple shaded columns mark volatile elements the pressure- and temperature dependent partitioning of which 

is also investigated within the course of this study. N.e. stands for “no effect”.  

Volatile elements  P S V Mn Cu Zn Ga Ge As Ag Cd In Sn Sb Au Tl Pb 
Publications 

 
 

 
         

  
   

 
 

Walker et al. (1993) +       –          

Ohtani et al. (1997) 
 
– 

 
+ 
+ 

+ 
+ 

      
  

   
 

 

Gessmann et al. (1998)   + +              
Gessmannn et al. (1999)   n.e. n.e.              

Gessmann et al. (2000)   
+ 
+ 

+ 
+ 

      
  

   
 

 

Danielson et al. (2005)           
  

  
+ 
– 

 
 

Wade and Wood (2005)   
+ 

n.e. 
+ 
– 

      
  

   
 

 

Holzheid et al. (2007)     –   –          

Corgne et al. (2008)    
+ 
+ 

– 
n.e.

– 
n.e.

+ 
– 

   
  

   
 

 

Lagos et al. (2008)                 – 
Wood et al. (2008)                + + 

Brenan and McDonough (2009)           
  

  
–

n.e. 
 

 

Kegler et al. (2009)     
– 
– 

     
  

   
 

 

Mann et al. (2009)   
+ 

n.e.*
+ 

n.e. 
 

n.e.
– 

n.e. 
– 

   
 n.e.

– 
   

 
 

 

increasing temperature leads to increased (+) or decreased (–) siderophility: 
increasing pressure leads to increased (+) or decreased (–) siderophility: 
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Table 10 continued 

Righter et al. (2009)           
  

 
– 
– 

 
 

 

Wood et al. (2009)   
+ 
–

       
  

   
 

 

Righter et al. (2010) +  + + – + –      –     

Wood and Halliday (2010)           
  

   
 + 

+ 
Righter et al. (2011)        –          

Siebert et al. (2011) 
n.e.
n.e.

 
+ 

n.e. 
+ 

n.e. 
 

+ 
n.e.

n.e. 
– 

– 
n.e.

– 
–

 
  

   
 

 

Wheeler et al. (2011)          n.e.        

Ballhaus et al. (2013) 
+ 

n.e.
    

+ 
n.e.

    
+ 

n.e.
n.e.
n.e.

n.e.
n.e.

  
+ 

n.e. 
+ 

n.e. 

Bouhifd et al. (2013)           
  

   
 + 

– 

Boujibar et al. (2014)  
– 
+ 

        
  

   
 

 

Siebert et al. (2013)   
+ 

n.e. 
       

  
   

 
 

 

*above 6 GPa 
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5.1.2 S-content of the Fe metal 

 

   It has been explained in Chapter 1, Section 1.7 and shown in Chapter 4 that the nature and 

concentration of light elements in the core-forming metallic melt can significantly influence 

the partitioning behaviour of siderophile elements. In this Chapter it will be shown that also S 

can cause major changes in the partition coefficients of volatile elements that could change 

their absolute and relative abundances in the mantle. To study the effect of S on the metal – 

silicate partitioning of volatile elements is of particular importance, because it has been 

proposed by several authors that the Earth´s core contains up to 2 wt% S (Dreibus and Palme, 

1996; McDonough, 2003). Moreover it has been argued by O´Neill (1991) that significant 

amounts of S have been added to the Earth in its final stages of growth, which was extracted 

to the Earth´s core in the form of the “Hadean matte” – a Fe-Ni-S-O liquid – with the result of 

chalcophile (S-loving) elements being particularly depleted. Recently Boujibar et al. (2014) 

investigated the metal – silicate partitioning behaviour of S at high pressures and 

temperatures. When these results are incorporated into core formation models the authors find 

indications for both: The Earth´s S abundances might either be established by metal –silicate 

equilibration in a magma ocean or by the addition of a late veneer. 

   A few studies have exclusively investigated the effects of S in the metal phase on 

partitioning including the early studies of Jana and Walker (1997) and of Gaetani and Grove 

(1997). Both studies were focused on refractory elements, yet also provide results for the 

volatile elements Ge, W, P, Au and Cu. Jana and Walker (1997) showed that Ge, P and Au 

become less siderophile with increasing S content in the metal. The authors could not explain 

the abundances of the studied elements in the Earth´s mantle by the contribution of S in the 

metal phase alone. However one should note that their experiments were conducted at 

comparably low pressures of 1 – 5 GPa and that the experiments were performed in graphite 

capsules which is known to influence the partitioning of siderophile elements due to 

dissolution of C in the metal phase during the experiment. On the basis of experiments with 

variable S contents that were conducted at 1 atm and 1623 K Gaetani and Grove (1997) could 

also not satisfactorily explain the mantle abundance of Cu. The influence of increasing S 

contents in the metal on the partitioning behaviour of Pb and Tl based on experiments 

performed at 2 GPa and 1650 to 2158 K was studied by Wood et al. (2008). Increasing the S 

content from 0 to 35 wt% resulted in increased partition coefficient values for both elements. 

The authors argue that a late extraction of 0.1 % sulphide to the Earth´s core through a 
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partially molten mantle can satisfy both the concentration and isotopic signature of Pb and Tl. 

Recently Bouhifd et al (2013) investigated the partitioning behaviour of U and Pb between a 

CI like silicate melt and different Fe rich metal phases in the system Fe-C-Ni-Si-S at a 

pressure and temperature range between 3 and 8 GPa and 2073 and 2373 K respectively. The 

investigations of Bouhifd et al. (2013) showed that both elements become more siderophile if 

the concentration of S in the metal phase is enhanced. Bouhifd et al. (2013) found that either 

high pressure – high temperature equilibration in a deep magma ocean or the additions of a 

late accretionary component that exhibits > 30 wt% S in the metal phase can account for the 

depletion of Pb in the Earth´s mantle. Lately the high pressure – high temperature partitioning 

of a wide range of elements (Cu, In, Tl, Pb, Ag, Mn, Zn, Cr, Co, Ni, Sb and Cd) between 

sulphide (FeS) and an anhydrous basaltic melt in graphite capsules has been investigated by 

Kiseeva et al. (2013). The authors argue for a simple relationship between the FeO content of 

the silicate phase and the sulphide - silicate partition coefficients of the elements of interest. A 

detailed description of the approach of constraining the sulphide - silicate partitioning 

behaviour as proposed by Kiseeva et al. (2013) follows at the end of Section 5.2. 

   Table 11 summarizes the results of the S dependent partitioning behaviour of volatile 

elements of the above mentioned publications as well as several other studies that partly 

incorporated S bearing phases into their set of partitioning experiments (e.g. Mann et al., 

2009). Plus signs (+) indicate that the particular element becomes more siderophile with 

increasing S content of the metal phase and vice versa for minus signs (–). 
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Table 11: Summary of experimental studies that investigated the influence of S on the partitioning behaviour of 

volatile elements. Green plus or minus signs respectively indicate whether increasing S-contents of the metal 

phase cause an increase or decrease of a particular element. Purple shaded columns mark volatile elements the 

S-dependent partitioning of which is also investigated within the course of this study. N.e. stands for “no effect”.   

Volatile elements  P K V Mn Zn Ga Ge Ag In Sb Au Tl Pb
Publications 

 
  

          
 
 
 

Jana and Walker (1997) –      –    –   
Ohtani et al. (1997)   n.e. n.e.          
Chabot and Drake (1999)  +            
Lagos et al. (2008)             + 
Wood et al. (2008)            + + 
Mann et al. (2009)   + + n.e. +   n.e.     
Righter et al. (2009)          +    
Wood and Halliday 
(2010) 

 
 

          + 

Wheeler et al (2011)        –      
Bouhifd et al. (2013)             + 
 

 

 

5.1.3 Si-content of the metal 

 

   In Chapter 4 the effect of Si dissolved in the metal on the partitioning of the volatile 

elements Cu, Ag, Pb, Au, Sn, Ge, Sb, As and P has been extensively studied. The results 

relate to the investigations of this Chapter since the derived valence states are used to 

calculate the concentrations of the oxides of the elements of interest in the silicate phase and 

more importantly to formulate exchange coefficient values ܭ஽
ெିி௘. In the course of the 

calculations of this Chapter the derived interaction parameter values ߝௌ௜
ெ of Chapter 4 have 

been refined facilitated by several other additional experiments.  

 

 

 

 

 

 

increasing S-content of the metal leads to increased (+) or 
decreased (–) siderophility 
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5.2 Methods 
 

5.2.1 This study 

 

   The volatile elements Ag, Cu, Au, Pb, Sn, Ge, Sb, As and P were chosen for investigations 

of liquid metal – liquid silicate partitioning behaviour at pressures and temperatures between 

11 and 23 GPa and 2400 – 2800 K. Furthermore experiments at 11 GPa were performed in 

order to quantify the effect of variable S-contents in the metal phase. The experiments, the 

determination of temperatures and the analysis of metal, ferropericlase and silicate phases 

were performed following the routines that are described in Chapter 2. Partition coefficients 

as well as exchange coefficients and oxygen fugacities have been calculated employing 

equations [3], [5] and [7] (Chapters 3). The determinations incorporate molar values for both: 

the native element of interest in the metal phase and the oxide values (based on one cation) of 

the element of interest in the silicate phase. The formulation of the oxides and the final 

calculations of ܭ஽
ெିி௘ values are based on the valence states that have been derived in 

Chapter 4.  

   As described in Chapter 4 the partitioning of any element of interest M between liquid metal 

and liquid silicate can be described by formulating an exchange reaction that involves Fe and 

FeO: 

 

݊

2
௠௘௧݁ܨ	 ൅	ܱܯ௡

ଶ

௦௜௟ ൌ 	
݊

2
௦௜௟ܱ݁ܨ	 ൅	ܯ௠௘௧	

                          [27] 

 

   The equilibrium constant of this equation is defined as: 

 

ܭ ൌ	
ܺெ
௠௘௧	ߛெ

௠௘௧	൫ܺி௘ை
௦௜௟ ி௘ைߛ	

௦௜௟ ൯
௡
ଶ

ܺெை೙
మ

௦௜௟ ெை೙ߛ	
మ
	

௦௜௟ 	ሺܺி௘
௠௘௧	ߛி௘

௠௘௧ሻ
௡
ଶ

	

                  [28] 

 

   X and γ denote the molar fractions of the individual phases and their corresponding activity 

coefficients respectively. The parameter n is the valence of the element of interest in the 

silicate phase. In concordance with the assumptions made in Chapter 4 the equilibrium 
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constant K can be simplified by assuming that the activity coefficients in the silicate phase 

remain constant over the narrow range of silicate compositions in our experiments. 

Employing the definition of the exchange coefficient ܭ஽
ெିி௘ (equation [5], Chapter 3) the 

expression for K reduces to: 

 

ܭ ൌ	ܭ஽
ெିி௘ 	

ெߛ
௠௘௧

ሺߛி௘
௠௘௧ሻ

௡
ଶ

	

              [29] 

 

   At chemical equilibrium K is related to the Gibbs free energy change of the standard state, 

the temperature (in K) and the gas constant R as follows: 

 

െܩ߂଴ ൌ 	ܭ݈݊	ܴܶ

              [30] 

    

   The combination of equations [29] and [30] together with a conversion from the natural to 

the common logarithm leads to an expression for logarithmic ܭ஽
ெିி௘: 

 

logܭ஽
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                [31] 

 

   Finally the Gibbs free energy change of the standard state -ΔG0 can be described with the 

help of expressions for the enthalpy, entropy and volume change at standard state conditions: 

 

െܩ߂௢ ൌ ଴ܪ߂	 െ ଴ܵ߂ܶ ൅  [32]             ܸ߂ܲ

 

   Incorporating equation [32] into equation [31] leads to the following expression of 

logܭ஽
ெିி௘ in which a, b and c denote constants that are correlated to the entropy, enthalpy 

and the volume change respectively:  

 

logܭ஽
ெିி௘ ൌ ܽ ൅	

ܾ

ܶ
൅	
ܿ	ܲ

ܶ
െ	
lnሺߛெሻ

lnሺ10ሻ
൅	

݊
2
lnሺߛி௘ሻ

lnሺ10ሻ
	

               [33] 
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   The activities of Fe and the element of interest M in the metal phase have been calculated 

employing the ε-model as formulated by Ma et al. (2001). The general expressions for 

calculating activities of Fe (solvent: 1) and of any solute i among a number of N solutes in Fe-

bearing metallic solutions are given by equations [34] and [35] respectively. 
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               [34] 
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   The interaction parameter ߝ௜
௞ describes the influence on the activity of a given solute i as a 

function of the concentration of another solute all dissolved in Fe metal. The parameter ߛ௜
௢ is 

the activity of i at infinite dilution and X are the mole fractions of the individual components 

in Fe metal. In the framework of this study the effects of pressure, temperature and of Si- and 

S- contents of the metal phase on the partitioning behaviour of volatile elements have been 

quantified. Equations [34] and [35] were thus solved for a quarternary system with the solvent 

Fe (1) and the three solutes S, Si and the element of interest M. The expressions for the 

calculations of lnγFe and lnγM are given in equations [36] and [37] respectively. 
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   According to the Steelmaking Data Sourcebook an interaction parameter ߝ௜
௞ equals the 

interaction parameter ߝ௞
௜ . One should note that the Steelmaking Data Sourcebook provides 

mass related ݁௜
௞ values that can be converted into interaction parameter values ߝ௜

௞ by 

employing equation [38] in which ܯ௞ denotes the molar mass of element k: 

 

݁௜
௞ ൌ 0.00434	 ൤൫ߝ௜

௞ െ 1൯	
55.85

௞ܯ
൅ 1൨	

              [38] 

 

   When available the values for the activities at infinite dilution and the individual interaction 

parameters ߝ௜
௞ were derived from the values given in the Steelmaking Data Sourcebook. If the 

values were not available for certain elements they were set to zero. Table 12 summarizes the 

values that are used in this study. 

 

Table 12: Summary of interaction parameter values ࢏ࢿ
࢏ࢽ and activity coefficients at infinite dilution ࢑

૙ that were 

used to calculate the activity coefficients of Fe and the element of interest M in the metal with regards to 

equations [36] to [37]. All values were derived from the Steelmaking Data Sourcebook. 

 Cu Ag Au Pb Sn Ge Sb As P 

ࡹࢽ
૙  8.58 200 - 837 2.58 - - - - 

ࡹࢿ
 7.35 - - 1.80 0.29- - - 18.73- 5.38- ࡹ

          

࢏ࡿࢿ
         12.43 ࢏ࡿ

ࡿࢿ
         5.66- ࡿ

࢏ࡿࢿ
ࡿ  9.16         



Chapter 5: Volatile element partitioning 

111 
 

   Temperature corrections were performed following Tuff et al. (2011): 
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                    [39] 

  The interaction parameters ߝௌ௜
ெ and ߝௌ

ெ as well as the constants a, b and c were fitted 

simultaneously by minimizing the sum of the weighted deviation between experimentally 

determined and calculated log ܭ஽
ெିி௘ values. The summarized weighted deviations were 

calculated by employing equation [40] where ߜ logܭ஽
ெିி௘ሺ௘௫௣ሻ denotes the error on the 

experimentally investigated logarithmic exchange coefficients as calculated by error 

propagation: 
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                [40] 

   Uncertainties on the expressions for logarithmic ܭ஽
ெିி௘values are derived from the average 

deviation between experimentally determined logarithmic ܭ஽
ெିி௘values and those that were 

calculated from the fitted parameters employing equation [41]. N. stands for the number of 

experiments. 

 

േ logܭ஽
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ଶ
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                                                      [41] 

 

 

 

5.2.2 Parameterization of the sulphide – silicate partitioning behaviour as proposed by 
Kiseeva et al. (2013) 

 

   As mentioned above Kiseeva et al. (2013) investigated the high pressure – high temperature 

partitioning of a wide range of elements (Cu, In, Tl, Pb, Ag, Mn, Zn, Cr, Co, Ni, Sb and Cd) 
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between sulphide (FeS) and an anhydrous basaltic melt. The authors argue for a simple 

relationship between the FeO content of the silicate phase and the sulphide-silicate partition 

coefficients of the individual elements. Kiseeva et al. (2013) consider an exchange reaction 

that involves two sulphides and the valence n of the element of interest M in the silicate phase 

when parameterizing the partitioning behaviour: 
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   The authors assume that the activity coefficient ratio of  
ఊெௌ೙

మ

ೞೠ೗೛೓

ఊ	ெை೙
మ

ೞ೔೗  is constant for experiments 

at constant pressure and temperature, that the activity of FeS equals 1 and that the activity of 

FeO in the silicate phase is also constant because it was found by O´Neill and Eggins (2002) 

that ߛி௘ை
௦௜௟  is only very little effected by composition. Taking into account these assumptions 

and defining a sulphide-metal partition coefficient as the molar ratio of the concentration of 

the element of interest M in the sulphide phase over its concentration in the silicate phase the 

equilibrium constant K becomes: 
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௡
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                [43] 

 

   Logarithmic ܦெ
௦௨௟௣௛ି௦௜௟ values are thus related to the FeO content of the silicate phase as 

shown in equation [44]: 
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2
logܺி௘ை
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                [44] 

 

   However these assumptions are only valid if the effect of S on the partitioning behaviour is 

investigated close to the FeS composition. For lower concentrations of S in the metal phase 

the activity of FeS needs to be corrected. To a first approximation it can be equated with the 

molar fraction of FeS in the metal phase. For this study equation [44] was thus expanded to 

the following expression: 
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                [45] 

 

   It was found that this equation (or the “enhanced Kiseeva et al. (2013) approach”) is not 

capable of reproducing partition coefficients of S-bearing samples if S-free experiments are 

taken into account when fitting the data. If S-free experiments are neglected this approach is 

capable of reproducing partition coefficients in the compositional metal region close to FeS, 

but does not match the observed partition coefficient values if the S-contents of the metal 

phase is lower. An example is shown for the element Cu in Section 5.3.1.1, Figure 31 a and b.  

   Although the ε-approach that will be used to parameterize partitioning in this study (see 

above) is established for iron alloys rather than for sulphides, it will be shown that this 

approach is sufficient for describing partitioning even if the S content of the metal phase is 

varied from pure Fe metal to FeS. The calculated exchange coefficient values matched the 

experimentally determined values in almost all cases as can be seen in Section 5.3 Results.  

 

 

 

5.3 Results 
 

   For each element Table 13 summarizes the experimentally determined as well as the 

recalculated (equation [33]) exchange coefficient values ܭ஽
ெିி௘. Additionally the values for 

the Gibbs free energy change –ΔG0 and the molar fractions of Fe, Si, S and the element of 

interest M in the metal phase are given. Pressure, temperature and oxygen fugacity relative to 

the iron-wüstite buffer are also displayed. Uncertainties that were obtained by error 

propagation are given for the last digit(s).  

   Experimental data have been compared to literature data sets when available. In order to 

ensure comparability between the individual results the exchange coefficient values have been 

recalculated from the published results according to the criteria described in Chapter 3. Out of 

a given data set comparable experiments have been carefully selected on the basis of similar 

experimental conditions including agreement between the composition of metal and silicate 

phases and the capsule´s material. Because of this not all studies listed in Tables 10 and 11 
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have been used for comparison. On the other hand, results of two studies that did not derive a 

complete pressure, temperature or S trend, namely Kegler et al. (2011) and Kiseeva et al. 

(2013), could be compared to the results of this study. However due to the limited amount of 

experimental partitioning studies for volatile elements, the results have additionally been 

compared to data that was based on experiments with slightly different composition and 

capsule material, when other conformable investigations were not available. 

   A significant effect of pressure on the partitioning of the studied elements has not been 

observed for any element, while the partitioning of several elements is sensitive to 

temperature. Increasing S contents are capable of changing the exchange coefficient values 

significantly to both higher and lower values. The interaction parameters ߝௌ௜
ெ which have been 

derived in Chapter 4 have been refined by the incorporation of several additional experiments. 

As will be shown further below the results do not significantly change. 

   The following Section provides detailed results for every element. In each case the pressure 

and / or temperature dependences are illustrated by plotting the experimentally investigated 

logarithmic exchange coefficients ܭ஽
ெିி௘ minus the activity terms of equation [33] against 

inverse temperature. The calculated pressure and / or temperature dependences are shown by 

solid lines. Equation [46] displays the relationship between the calculated pressure and 

temperature dependences and the modified exchange coefficient values.  

 

logܭ஽
ெିி௘ ൅	

lnሺߛெሻ

lnሺ10ሻ
െ	

݊
2
lnሺߛி௘ሻ

lnሺ10ሻ
ൌ logܭ஽

ெିி௘ െ ݏ݉ݎ݁ݐ	ݕݐ݅ݒ݅ݐܿܽ ൌܽ ൅	
ܾ

ܶ
൅	
ܿ	ܲ

ܶ
		

                  [46] 

 

   Secondly the experimentally determined logarithmic exchange coefficient values have been 

plotted against inverse temperature. The ranges of inverse temperature (x-axis) and 

logarithmic exchange coefficient values (y-axis) have been expanded in order to be able to 

compare the results of this study with comparable literature data. Finally the parameterization 

of the S-dependent partitioning of each element is demonstrated by a diagram of logarithmic 

exchange coefficients against the S content of the metal phase. Dotted lines represent a linear 

regression line to the calculated results.  

   In the case of Cu two other diagrams illustrate the results of the parameterization of the S-

dependent partitioning behaviour based on the “enhanced Kiseeva et al. (2013) approach” (see 

above). 
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   The individual results Sections are ordered by increasing valence states as derived in 

Chapter 4. 
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Table 13: Summary of the results of experimental and calculated ࡰࡷ
 values and the Gibbs free energy change –ΔG0 for each element studied. X denote the molar ࢋࡲିࡹ

fractions of Fe, Si, S and the element of interest in the metal phase. Pressures and temperatures are given in GPa and K respectively, oxygen fugacity is expressed relative to 

the iron-wüstite buffer. When determining fO2 in the case of S-bearing samples the Fe content of the metal phase was corrected by subtracting the amount of Fe equal to the 

amount of S (formation of FeS). Uncertainties that were obtained by error propagation are given for the last digit(s).  

Copper           

Experiment P (GPa) T (K) ΔIW -ΔG0 [J/mole] ࡰࡷ
ࡰࡷ (exp) ࢋࡲି࢛࡯

ࢋࡲࢄ (calc) ࢋࡲି࢛࡯
࢚ࢋ࢓

࢏ࡿࢄ 
࢚ࢋ࢓

ࡿࢄ 
࢚ࢋ࢓

࢛࡯ࢄ 
࢚ࢋ࢓

 

H3355a 11 2490 -2.18 (8) 76417 7.8 (6) 8.6 0.9481 0.0011  0.0196 

H3355b 11 2490 -2.02 (9) 76417 6 (3) 8.0 0.9383 0.0055  0.0009 

H3361b 11 2844 -2.3 (2) 77563 8 (8) 7.0 0.9245 0.0014  0.0242 

H3450a 11 2560 -2.4 (4) 76644 8.0 (6) 8.0 0.9655 0.0011  0.0118 

H3707a 11 2641 -2.2 (2) 76906 8 (1) 7.6 0.9687 0.0026  0.0117 

H3707b 11 2641 -4.7 (4) 76906 8 (1) 7.5 0.7551 0.2101  0.0119 

H3718a 11 2658 -2.1 (2) 76961 7.6 (8) 7.5 0.9490 0.0041  0.0121 

H3718b 11 2658 -3.7 (2) 76961 7.3 (9) 7.2 0.8941 0.0766  0.0091 

Z822a 11 2573 -2.2 (1) 76686 7.7 (8) 7.9 0.9456 0.0078  0.0122 

Z926a 11 2668 -2.4 (4) 76994 7 (1) 7.4 0.9459 0.0052  0.0126 

Z926b 11 2668 -2.2 (2) 76994 8.5 (9) 7.7 0.9473 0.0028  0.0196 

Z941b 11 2752 -2.5 (4) 77265 7.5 (8) 7.1 0.9559 0.0044  0.0125 

Z859b 18 2717 -2.1 (2) 77152 6.7 (6) 7.2 0.9450 0.0079  0.0118 

Z865b 18 2834 -2.4 (6) 77531 5.4 (4) 6.8 0.9530 0.0081  0.0127 

Z929b 20 2799 -2.5 (5) 77418 7.7 (5) 6.9 0.9583 0.0041  0.0124 

Z949b 21 2870 -2.0 (1) 77647 5.1 (6) 6.6 0.9312 0.0186  0.0119 

Z950b 21 2904 -2.37 (3) 77757 6.0 (5) 6.5 0.9548 0.0121  0.0124 

Z1062b 11 2636 -0.9 (3) 76890 13 (2) 14.9 0.5526 0.0006 0.3699 0.0137 

Z1062a 11 2636 -1.6 (7) 76890 11 (2) 15.3 0.5616 0.0000 0.3834 0.0142 

Z1008a 11 2614 - 76819 21 (2) 20.6 0.4090 0.0027 0.5113 0.0235 

H3361a 11 2844 -2.0 (3) 77563 4 (1) 9.2 0.7749 0.0001 0.1403 0.0311 

H3364-1 11 2570 -1.8 (3) 76676 7 (2) 11.7 0.7749 0.0001 0.1546 0.0365 

H3364-2 11 2570 -1.8 (3) 76676 9 (2) 10.9 0.7741 0.0000 0.1758 0.0106 

H3367b 11 2342 -1.6 (2) 75938 8 (2) 13.6 0.7783 0.0001 0.1647 0.0208 
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Table 13 continued 

Silver           

Experiment P (GPa) T (K) ΔIW -ΔG0 [J/mole] 
ࡰࡷ
ࡰࡷ (exp) ࢋࡲିࢍ࡭

ࢋࡲࢄ (calc) ࢋࡲିࢍ࡭
࢚ࢋ࢓

࢏ࡿࢄ 
࢚ࢋ࢓

ࡿࢄ 
࢚ࢋ࢓

ࢍ࡭ࢄ 
࢚ࢋ࢓

 

H3400a 11 2553 -1.89 (6) 115564 5 (4) 5.1 0.9668 0.0001  0.0057 

H3404a 11 2777 -2.4 (2) 127255 3.0 (6) 7.3 0.9528 0.0001  0.0037 

H3439a 11 2567 -2.08 (8) 116295 1 (2) 4.9 0.9671 0.0004  0.0011 

H3439b 11 2567 -1.8 (1) 116295 2 (3) 5.0 0.9092 0.0003  0.0019 

H3444a 11 2609 -2.03 (8) 118487 5 (3) 5.3 0.9781 0.0060  0.0033 

H3444b 11 2609 -2.3 (3) 118487 5 (2) 5.3 0.9809 0.0045  0.0030 

H3497b 11 2718 -2.3 (2) 124176 2 (1) 6.2 0.9840 0.0055  0.0011 

Z798a 11 2500 -2.2 (1) 112798 5 (2) 4.3 0.9803 0.0067  0.0028 

Z798b 11 2500 -2.04 (7) 112798 4 (2) 4.4 0.9830 0.0013  0.0029 

Z915a 11 2584 -4.3 (6) 117182 3 (2) 2.9 0.8825 0.1142  0.0015 

Z915b 11 2584 -4.7 (3) 117182 2. (2) 1.4 0.7369 0.2588  0.0012 

Z916a 11 2580 -2.5 (3) 116973 5 (4) 5.0 0.9842 0.0064  0.0028 

Z922a 11 2588 -2.5 (4) 117391 5 (3) 5.2 0.9907 0.0035  0.0026 

Z922b 11 2588 -1.97 (9) 117391 5 (2) 5.2 0.9835 0.0027  0.0024 

Z852a 18 2663 -2.6 (5) 110058 0.5 (4) 3.3 0.9744 0.0114  0.0004 

Z858a 18 2942 -2.5 (5) 124619 4 (2) 5.5 0.9714 0.0121  0.0029 

Z869b 18 2677 -2.5 (3) 110789 3 (6) 3.6 0.8930 0.0079  0.0027 

Z878a 18 2742 -2.4 (1) 114181 3 (5) 4.0 0.9491 0.0077  0.0030 

Z881b 18 2653 -2.39 (8) 109536 3 (8) 3.4 0.9155 0.0082  0.0031 

Z977b 21 2893 -2.3 (2) 117241 4 (2) 4.0 0.9726 0.0207  0.0025 

Z980a 21 2911 -2.2 (2) 118181 4 (2) 4.3 0.9749 0.0134  0.0031 

H3606 23 2540 -2.3 (2) 95605 0.4 (2) 1.6 0.9524 0.0296  0.0003 

H3400b 11 2553 -1.66 (6) 115564 9 (7) 8.4 0.8281 0.0001 0.1422 0.0096 

H3404b 11 2777 -2.2 (2) 127255 9 (8) 11.9 0.8186 0.0001 0.1432 0.0105 

Z1013a 11 2624 - 119270 26 (3) 26.4 0.4648 0.0001 0.4810 0.0024 

Z1016a 11 2607 - 118383 31 (8) 31.7 0.4219 0.0007 0.5345 0.0022 
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Table 13 continued 

Gold           

Experiment P (GPa) T (K) ΔIW -ΔG0 [J/mole] ࡰࡷ
ࡰࡷ (exp) ࢋࡲି࢛࡭

ࢋࡲࢄ (calc) ࢋࡲି࢛࡭
࢚ࢋ࢓

࢏ࡿࢄ 
࢚ࢋ࢓

ࡿࢄ 
࢚ࢋ࢓

࢛࡭ࢄ 
࢚ࢋ࢓

 

H3400a 11 2553 -1.89 (6) 133912 763 (323) 548.5 0.9668 0.0001  0.0056 

H3404a 11 2777 -2.4 (2) 134707 157 (35) 341.2 0.9528 0.0001  0.0065 

H3439a 11 2567 -2.08 (8) 133962 2415 (868) 528.0 0.9671 0.0004  0.0054 

H3439b 11 2567 -1.8 (1) 133962 1291 (605) 528.9 0.9092 0.0003  0.0047 

Z1000a 11 2612 -2.7 (4) 134122 122 (141) 477.0 0.9557 0.0005  0.0043 

Z1000b 11 2612 -2.7 (4) 134122 220 (72) 476.2 0.9566 0.0006  0.0048 

Z1002a 11 2602 -4.5 (1) 134086 27 (12) 27.6 0.8151 0.1583  0.0064 

Z1002b 11 2602 -3.4 (2) 134086 135 (61) 234.6 0.9244 0.0434  0.0035 

Z1008b 11 2614 -2.9 (7) 134129 545 (209) 448.8 0.9618 0.0039  0.0031 

Z1011a 11 2605 -2.1 (3) 134097 474 (234) 473.5 0.9639 0.0019  0.0022 

Z1019b 11 2624 -4.8 (4) 134164 11 (8) 8.8 0.7721 0.2141  0.0015 

Z869b 18 2677 -2.5 (3) 134352 274 (97) 367.7 0.8930 0.0079  0.0048 

Z878a 18 2742 -2.4 (1) 134583 173 (68) 324.1 0.9491 0.0077  0.0043 

Z878b 18 2742 -2.4 (3) 134583 347 (140) 331.8 0.9515 0.0062  0.0041 

Z881b 18 2653 -2.39 (8) 134267 490 (343) 384.5 0.9155 0.0082  0.0046 

Z957b 18 2603 -2.9 (6) 134090 476 (120) 483.1 0.9607 0.0009  0.0050 

Z969a 21 2897 -2.5 (3) 135133 338 (118) 248.8 0.9478 0.0062  0.0052 

Z969b 21 2897 -2.5 (4) 135133 571 (245) 259.5 0.9487 0.0034  0.0048 

H3400b 11 2553 -1.66 (6) 133912 471 (313) 518.2 0.8281 0.0001 0.1422 0.0043 

H3404b 11 2777 -2.2 (2) 134707 75 (58) 324.1 0.8186 0.0001 0.1432 0.0022 

Z1043a 11 2636 -1.3 (4) 134207 125 (41) 388.7 0.6093 0.0001 0.3629 0.0028 

Z1043b 11 2636 -1.4 (4) 134207 404 (158) 393.6 0.6211 0.0001 0.3390 0.0025 

           

Lead           

Experiment P (GPa) T (K) ΔIW -ΔG0 [J/mole] 
ࡰࡷ
ࡰࡷ (exp) ࢋࡲି࢈ࡼ

ࢋࡲࢄ (calc) ࢋࡲି࢈ࡼ
࢚ࢋ࢓

࢏ࡿࢄ 
࢚ࢋ࢓

ࡿࢄ 
࢚ࢋ࢓

࢈ࡼࢄ 
࢚ࢋ࢓

 

H3355a 11 2490 -2.18 (8) 98614 2 (2) 1.2 0.9481 0.0011  0.0033 

H3355b 11 2490 -2.02 (9) 98614 1 (1) 1.2 0.9383 0.0055  0.0029 

H3361b 11 2844 -2.3 (2) 98614 1 (1) 1.3 0.9245 0.0014  0.0026 
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Table 13 continued 

H3449a 11 2560 -1.9 (2) 98614 2 (1) 1.2 0.9742 0.0022  0.0025 

H3449b 11 2560 -1.94 (5) 98614 1 (1) 1.2 0.9736 0.0029  0.0021 

H3455a 11 2562 -1.8 (1) 98614 0.6 (6) 1.2 0.9795 0.0006  0.0017 

H3455b 11 2562 -2.0 (2) 98614 0.3 (3) 1.2 0.9895 0.0001  0.0019 

H3497a 11 2718 -2.3 (3) 98614 1.5 (7) 1.2 0.9811 0.0074  0.0014 

H3704a 11 2639 -4.5 (3) 98614 0.2 (2) 0.2 0.7845 0.2050  0.0012 

H3704b 11 2639 -3.8 (3) 98614 0.4 (2) 0.5 0.8796 0.1180  0.0004 

Z919a 11 2605 -2.4 (2) 98614 1.1 (5) 1.2 0.9864 0.0082  0.0010 

Z919b 11 2605 -2.1 (2) 98614 1.1 (9) 1.2 0.9907 0.0015  0.0011 

Z920b 11 2580 -2.3 (3) 98614 1.1 (8) 1.2 0.9871 0.0039  0.0008 

Z854a 18 2740 -2.3 (2) 98643 1.0 (3) 1.1 0.9460 0.0148  0.0009 

Z858b 18 2942 -2.4 (3) 98643 1 (1) 1.2 0.9684 0.0128  0.0013 

Z881a 18 2653 -2.5 (4) 98643 1.0 (5) 1.1 0.9671 0.0137  0.0009 

Z977a 21 2893 -2.3 (7) 98656 1.2 (6) 1.1 0.9697 0.0251  0.0011 

Z980b 21 2911 -2.3 (3) 98656 1.1 (5) 1.1 0.9656 0.0220  0.0010 

H3518 23 2594 -2.6 (3) 98664 0.8 (4) 1.1 0.9646 0.0186  0.0013 

H3536 23 2542 -2.4 (7) 98664 2 (1) 1.1 0.9704 0.0111  0.0016 

H3581 23 2540 -2.1 (2) 98664 1.0 (3) 1.2 0.9608 0.0087  0.0010 

H3629 23 2589 -2.3 (3) 98664 1.4 (4) 1.0 0.9482 0.0246  0.0011 

Z1001a 11 2636 - 98614 1.7 (5) 1.7 0.4325 0.0024 0.5237 0.0010 

H3361a 11 2844 -2.0 (3) 98614 1.0 (7) 1.3 0.7749 0.0001 0.1403 0.0023 

H3364-1 11 2570 -1.8 (3) 98614 1.3 (9) 1.3 0.7749 0.0001 0.1546 0.0030 

H3364-2 11 2570 -1.8 (3) 98614 2 (1) 1.3 0.7741 0.0000 0.1758 0.0033 

H3367b 11 2342 -1.6 (2) 98614 0.9 (7) 1.3 0.7783 0.0001 0.1647 0.0030 

Z1016b 11 2607 - 98614 1.6 (7) 1.8 0.4190 0.0006 0.5518 0.0012 

Z1019a 11 2624 0.8 (2) 98614 1.0 (8) 1.6 0.4893 0.0005 0.4508 0.0004 

           

Tin           

Experiment P (GPa) T (K) ΔIW -ΔG0 [J/mole] ࡰࡷ
ࡰࡷ (exp) ࢋࡲି࢔ࡿ

ࢋࡲࢄ (calc) ࢋࡲି࢔ࡿ
࢚ࢋ࢓

࢏ࡿࢄ 
࢚ࢋ࢓

ࡿࢄ 
࢚ࢋ࢓

࢔ࡿࢄ 
࢚ࢋ࢓

 

H3355a 11 2490 -2.18 (8) 36426 2.3 (3) 2.8 0.9481 0.0011  0.0036 
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Table 13 continued 

H3355b 11 2490 -2.02 (9) 36426 1.6 (7) 2.6 0.9383 0.0055  0.0032 

H3361b 11 2844 -2.3 (2) 37657 1 (2) 2.6 0.9245 0.0014  0.0051 

H3450a 11 2560 -2.4 (4) 36669 3.4 (5) 2.8 0.9655 0.0011  0.0042 

H3707a 11 2641 -2.2 (2) 36951 2.7 (6) 2.7 0.9687 0.0026  0.0032 

H3707b 11 2641 -4.7 (4) 36951 0.12 (4) 0.1 0.7551 0.2101  0.0038 

H3718a 11 2658 -2.1 (3) 37010 3.3 (8) 2.6 0.9490 0.0041  0.0045 

H3718b 11 2658 -3.7 (2) 37010 0.9 (2) 1.0 0.8941 0.0766  0.0046 

Z822a 11 2573 -2.2 (2) 36714 2.5 (4) 2.5 0.9456 0.0078  0.0049 

Z926a 11 2668 -2.4 (4) 37045 2.7 (9) 2.6 0.9459 0.0052  0.0045 

Z926b 11 2668 -2.2 (2) 37045 4 (2) 2.6 0.9473 0.0028  0.0049 

Z941b 11 2752 -2.5 (4) 37337 2.1 (3) 2.5 0.9559 0.0044  0.0045 

Z859b 18 2717 -2.1 (2) 45707 4.0 (7) 3.6 0.9450 0.0079  0.0047 

Z865b 18 2834 -2.4 (6) 46114 3.1 (5) 3.4 0.9530 0.0081  0.0044 

Z929b 20 2799 -2.5 (5) 48418 4.0 (9) 4.0 0.9583 0.0041  0.0041 

Z949b 21 2870 -2.0 (2) 49878 4 (1) 3.5 0.9312 0.0186  0.0044 

Z950b 21 2904 -2.4 (3) 49996 2.5 (7) 3.7 0.9548 0.0121  0.0040 

Z1062b 11 2636 -0.9 (3) 36934 0.38 (8) 0.4 0.5526 0.0006 0.3699 0.0037 

Z1062a 11 2636 -1.6 (7) 36934 0.4 (1) 0.4 0.5616 0.0000 0.3834 0.0044 

Z1008a 11 2614 - 36857 0.15 (7) 0.2 0.4090 0.0027 0.5113 0.0026 

H3361a 11 2844 -2.0 (3) 37657 0.6 (2) 1.4 0.7749 0.0001 0.1403 0.0058 

H3364-1 11 2570 -1.8 (3) 36704 0.8 (1) 1.3 0.7749 0.0001 0.1546 0.0061 

H3364-2 11 2570 -1.8 (3) 36704 0.9 (2) 1.2 0.7741 0.0000 0.1758 0.0067 

H3367b 11 2342 -1.6 (2) 35911 1.0 (2) 1.2 0.7783 0.0001 0.1647 0.0066 

           

Germanium           

Experiment P (GPa) T (K) ΔIW -ΔG0 [J/mole] ࡰࡷ
ࡰࡷ (exp) ࢋࡲିࢋࡳ

ࢋࡲࢄ (calc) ࢋࡲିࢋࡳ
࢚ࢋ࢓

࢏ࡿࢄ 
࢚ࢋ࢓

ࡿࢄ 
࢚ࢋ࢓

ࢋࡳࢄ 
࢚ࢋ࢓

 

H3355a 11 2490 -2.18 (8) 59350 17 (2) 17.1 0.9481 0.0011  0.0077 

H3355b 11 2490 -2.02 (9) 59350 11 (7) 16.2 0.9383 0.0055  0.0065 

H3361b 11 2844 -2.3 (2) 67787 5 (8) 17.1 0.9245 0.0014  0.0116 

H3450a 11 2560 -2.4 (4) 61018 0.15 (6) 17.2 0.9655 0.0011  0.0062 
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Table 13 continued 

H3707a 11 2641 -2.2 (2) 62949 15 (3) 16.9 0.9687 0.0026  0.0051 

H3707b 11 2641 -4.7 (4) 62949 0.8 (3) 0.9 0.7551 0.2101  0.0056 

H3718a 11 2658 -2.1 (3) 63354 29 (7) 16.6 0.9490 0.0041  0.0054 

H3718b 11 2658 -3.7 (2) 63354 7 (2) 6.7 0.8941 0.0766  0.0054 

Z822a 11 2573 -2.2 (2) 61328 15 (4) 15.8 0.9456 0.0078  0.0079 

Z926a 11 2668 -2.4 (4) 63592 23 (8) 16.4 0.9459 0.0052  0.0046 

Z926b 11 2668 -2.2 (2) 63592 25 (8) 16.9 0.9473 0.0028  0.0049 

Z941b 11 2752 -2.5 (4) 65594 8 (2) 16.6 0.9559 0.0044  0.0071 

Z859b 18 2717 -2.1 (2) 64760 14 (8) 15.9 0.9450 0.0079  0.0069 

Z865b 18 2834 -2.4 (6) 67549 21 (4) 15.9 0.9530 0.0081  0.0072 

Z929b 20 2799 -2.5 (5) 66715 34 (6) 16.6 0.9583 0.0041  0.0066 

Z949b 21 2870 -2.0 (2) 68407 14 (5) 14.2 0.9312 0.0186  0.0066 

Z950b 21 2904 -2.4 (3) 69217 11 (3) 15.3 0.9548 0.0121  0.0069 

Z1062b 11 2636 -0.9 (3) 62830 0.28 (7) 0.3 0.5526 0.0006 0.3699 0.0049 

Z1062a 11 2636 -1.6 (7) 62830 0.35 (8) 0.2 0.5616 0.0000 0.3834 0.0065 

Z1008a 11 2614 - 62305 0.01 (1) 0.0 0.4090 0.0027 0.5113 0.0005 

H3361a 11 2844 -2.0 (3) 67787 1.9 (5) 4.7 0.7749 0.0001 0.1403 0.0094 

H3364-1 11 2570 -1.8 (3) 61256 2.4 (6) 3.5 0.7749 0.0001 0.1546 0.0080 

H3364-2 11 2570 -1.8 (3) 61256 2.9 (9) 2.8 0.7741 0.0000 0.1758 0.0084 

H3367b 11 2342 -1.6 (2) 55822 3.3 (9) 2.7 0.7783 0.0001 0.1647 0.0075 

           

Antimony           

Experiment P (GPa) T (K) ΔIW -ΔG0 [J/mole] ࡰࡷ
ࡰࡷ (exp) ࢋࡲି࢈ࡿ

ࢋࡲࢄ (calc) ࢋࡲି࢈ࡿ
࢚ࢋ࢓

࢏ࡿࢄ 
࢚ࢋ࢓

ࡿࢄ 
࢚ࢋ࢓

࢈ࡿࢄ 
࢚ࢋ࢓

 

H3355a 11 2490 -2.18 (8) 64445 14 (2) 21.9 0.9481 0.0011  0.0029 

H3355b 11 2490 -2.02 (9) 64445 3 (4) 20.0 0.9383 0.0055  0.0027 

H3361b 11 2844 -2.3 (2) 73607 2 (5) 21.9 0.9245 0.0014  0.0042 

H3450a 11 2560 -2.4 (4) 66257 1.7 (9) 22.0 0.9655 0.0011  0.0004 

H3707a 11 2641 -2.2 (2) 68353 21 (6) 21.3 0.9687 0.0026  0.0043 

H3707b 11 2641 -4.7 (4) 68353 0.14 (7) 0.1 0.7551 0.2101  0.0068 

H3718a 11 2658 -2.1 (3) 68793 61 (18) 20.7 0.9490 0.0041  0.0054 
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Table 13 continued 

H3718b 11 2658 -3.7 (2) 68793 5 (2) 4.4 0.8941 0.0766  0.0036 

Z822a 11 2573 -2.2 (2) 66594 0.8 (3) 19.1 0.9456 0.0078  0.0003 

Z926a 11 2668 -2.4 (4) 69052 43 (16) 20.2 0.9459 0.0052  0.0032 

Z926b 11 2668 -2.2 (2) 69052 32 (13) 21.2 0.9473 0.0028  0.0035 

Z941b 11 2752 -2.5 (4) 71226 9 (2) 20.6 0.9559 0.0044  0.0067 

Z859b 18 2717 -2.1 (2) 70320 11 (9) 19.2 0.9450 0.0079  0.0064 

Z865b 18 2834 -2.4 (6) 73349 1.0 (5) 19.3 0.9530 0.0081  0.0002 

Z929b 20 2799 -2.5 (5) 72443 37 (9) 20.8 0.9583 0.0041  0.0059 

Z949b 21 2870 -2.0 (2) 74280 10 (5) 15.8 0.9312 0.0186  0.0061 

Z950b 21 2904 -2.4 (3) 75160 7 (3) 17.9 0.9548 0.0121  0.0057 

Z1062b 11 2636 -0.9 (3) 68224 2.3 (9) 0.4 0.5526 0.0006 0.3699 0.0050 

Z1062a 11 2636 -1.6 (7) 68224 1.7 (4) 0.4 0.5616 0.0000 0.3834 0.0055 

Z1008a 11 2614 - 67655 0.06 (3) 0.1 0.4090 0.0027 0.5113 0.0026 

H3361a 11 2844 -2.0 (3) 73607 3 (2) 6.3 0.7749 0.0001 0.1403 0.0059 

H3364-1 11 2570 -1.8 (3) 66516 2 (1) 4.8 0.7749 0.0001 0.1546 0.0049 

H3364-2 11 2570 -1.8 (3) 66516 8 (5) 3.8 0.7741 0.0000 0.1758 0.0069 

H3367b 11 2342 -1.6 (2) 60615 7 (3) 3.7 0.7783 0.0001 0.1647 0.0045 

           

Arsenic           

Experiment P (GPa) T (K) ΔIW -ΔG0 [J/mole] ࡰࡷ
ࡰࡷ (exp) ࢋࡲି࢙࡭

ࢋࡲࢄ (calc) ࢋࡲି࢙࡭
࢚ࢋ࢓

࢏ࡿࢄ 
࢚ࢋ࢓

ࡿࢄ 
࢚ࢋ࢓

࢙࡭ࢄ 
࢚ࢋ࢓

 

H3400a 11 2553 -1.89 (6) 47724 7 (3) 9.4 0.9668 0.0001  0.0105 

H3404a 11 2777 -2.4 (2) 48624 7 (2) 8.2 0.9528 0.0001  0.0132 

H3439b 11 2567 -1.8 (1) 47780 1 (1) 9.3 0.9092 0.0003  0.0067 

Z1000b 11 2612 -2.7 (4) 47961 5 (3) 8.9 0.9566 0.0006  0.0070 

Z1002b 11 2602 -3.5 (2) 47921 1.2 (4) 2.2 0.9244 0.0434  0.0062 

Z1008b 11 2614 -2.9 (7) 47969 24 (8) 8.0 0.9618 0.0039  0.0077 

Z1011a 11 2605 -2.1 (3) 47933 42 (17) 8.6 0.9639 0.0019  0.0048 

Z1019b 11 2624 -4.8 (4) 48009 0.003 (1) 0.0 0.7721 0.2141  0.0044 

Z869b 18 2677 -2.5 (3) 72060 6 (4) 19.9 0.8930 0.0079  0.0102 

Z878a 18 2742 -2.4 (1) 72322 4 (2) 18.9 0.9491 0.0077  0.0094 



Chapter 5: Volatile element partitioning 

123 
 

Table 13 continued 

Z878b 18 2742 -2.4 (3) 72322 37 (10) 19.7 0.9515 0.0062  0.0093 

Z881b 18 2653 -2.39 (8) 71964 48 (13) 20.1 0.9155 0.0082  0.0093 

Z957b 18 2603 -2.9 (6) 71763 22 (5) 26.7 0.9607 0.0009  0.0089 

Z969a 21 2897 -2.5 (3) 83161 21 (7) 26.4 0.9478 0.0062  0.0075 

Z969b 21 2897 -2.5 (4) 83161 17 (4) 28.6 0.9487 0.0034  0.0080 

H3400b 11 2553 -1.66 (6) 47724 2 (1) 7.5 0.8281 0.0001 0.1422 0.0077 

H3404b 11 2777 -2.2 (2) 48624 0.7 (6) 6.6 0.8186 0.0001 0.1432 0.0031 

Z1043a 11 2636 -1.3 (4) 48057 1.9 (6) 6.4 0.6093 0.0001 0.3629 0.0089 

Z1043b 11 2636 -1.4 (4) 48057 6 (2) 6.3 0.6211 0.0001 0.3390 0.0076 

           

Phosphorus           

Experiment P (GPa) T (K) ΔIW -ΔG0 [J/mole] ࡰࡷ
ࡰࡷ (exp) ࢋࡲିࡼ

ࢋࡲࢄ (calc) ࢋࡲିࡼ
࢚ࢋ࢓

࢏ࡿࢄ 
࢚ࢋ࢓

ࡿࢄ 
࢚ࢋ࢓

ࡼࢄ 
࢚ࢋ࢓

 

H3400a 11 2553 -1.89 (6) -99380 0.007 (5) 0.0090 0.9668 0.0001  0.0049 

H3404a 11 2777 -2.4 (2) -99640 0.020 (3) 0.0124 0.9528 0.0001  0.0137 

H3439a 11 2567 -2.08 (8) -99397 0.09 (3) 0.0090 0.9671 0.0004  0.0079 

H3439b 11 2567 -1.8 (1) -99397 0.03 (1) 0.0091 0.9092 0.0003  0.0069 

Z1000a 11 2612 -2.7 (4) -99449 0.006 (5) 0.0089 0.9557 0.0005  0.0240 

Z1000b 11 2612 -2.7 (4) -99449 0.009 (1) 0.0089 0.9566 0.0006  0.0249 

Z1002b 11 2602 -3.5 (2) -99437 0.006 (3) 0.0038 0.9244 0.0434  0.0143 

Z1008b 11 2614 -2.9 (7) -99451 0.04 (2) 0.0089 0.9618 0.0039  0.0121 

Z1011a 11 2605 -2.1 (3) -99441 0.13 (5) 0.0091 0.9639 0.0019  0.0137 

Z1019b 11 2624 -4.8 (4) -99463 0.00007 (2) 0.0001 0.7721 0.2141  0.0039 

Z869b 18 2677 -2.5 (3) -99524 0.04 (1) 0.0087 0.8930 0.0079  0.0211 

Z878a 18 2742 -2.4 (1) -99600 0.08 (2) 0.0098 0.9491 0.0077  0.0213 

Z878b 18 2742 -2.4 (3) -99600 0.14 (3) 0.0101 0.9515 0.0062  0.0201 

Z881b 18 2653 -2.39 (8) -99496 0.06 (1) 0.0082 0.9155 0.0082  0.0238 

Z957b 18 2603 -2.9 (6) -99438 0.037 (9) 0.0089 0.9607 0.0009  0.0209 

Z969a 21 2897 -2.5 (3) -99779 0.04 (1) 0.0129 0.9478 0.0062  0.0192 

Z969b 21 2897 -2.5 (4) -99779 0.028 (7) 0.0133 0.9487 0.0034  0.0232 

H3400b 11 2553 -1.66 (6) -99380 0.0005 (6) 0.0016 0.8281 0.0001 0.1422 0.0026 
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Table 13 continued 

H3404b 11 2777 -2.2 (2) -99640 0.005 (2) 0.0023 0.8186 0.0001 0.1432 0.0158 

Z1043a 11 2636 -1.3 (4) -99477 0.0001 (1) 0.0001 0.6093 0.0001 0.3629 0.0001 

Z1043b 11 2636 -1.4 (4) -99477 0.00016 (9) 0.0002 0.6211 0.0001 0.3390 0.0002 
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5.3.1 Monovalent elements copper and silver 

 

5.3.1.1 Copper 

 

   The parameterization of the metal – silicate partitioning behaviour of the volatile element 

Cu resulted in ߝௌ௜
ெ and ߝௌ

ெ values of 0.73 and -2.58 respectively. The partitioning of Cu was 

found to be insensitive to changes in pressure. Increasing temperature however leads to 

decreased siderophility. The constants a and b (equation [33]) were found to be 0.17 and 3571 

respectively. The temperature trend is shown in Figure 30a. The general trend of increasing 

temperature leading to decreasing siderophility of Cu is in agreement with the observations of 

Corgne et al. (2008), Kegler et al. (2009) and Righter et al. (2010). In agreement with this 

study Corgne et al. (2008) also showed that the partitioning of Cu is not affected by pressure. 

However, Kegler et al. (2009) and Righter et al. (2010) reported a negative pressure 

dependence (Table 10). 

   In Figure 30b the experimental results of the logarithmic exchange coefficient values 

஽ܭ
஼௨ିி௘of this study and of Corgne et al. (2008) and Righter et al. (2010) are plotted against 

inverse temperature. Perfect agreement was found between the absolute values obtained in 

this study and by Righter et al. (2010). Differences between the results of this study and the 

results of the investigations made by Corgne et al. (2008)  might be rooted in the use of 

graphite capsules by the latter authors, which necessitates corrections for the activities of Cu 

dissolved into the metal phase. From the Steelmaking Data Sourcebook a positive interaction 

parameter between C and Cu can be derived, that implies that C in the Fe-rich metal causes a 

decrease in siderophility for the element Cu. 

   Figure 30c shows the effect of increasing S contents of the metal phase on Cu partitioning. 

Logarithmic exchange coefficients change only slightly over the range of experimentally 

investigated conditions. An increase from 0 to 0.5 mole% S in the metal phase leads to an 

increase in siderophility of only half a logarithmic unit. The data of this study has been 

compared to the recalculated results of Wood et al. (2008) and Kiseeva et al. (2013). 

Differences between the results of this study and the results of the investigations made by 

Kiseeva et al. (2013) might be caused by the lower temperatures of the latter study. According 

to equation [41] a very small uncertainty on the fit for Cu of ± log ܭ஽
ெିி௘ = 0.07 was found.  
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Figure 30a: The temperature dependence of the partitioning behaviour of Cu. Experimentally determined 

logarithmic exchange coefficients minus the activity terms for Fe and Cu (equation [46]) are plotted against 

inverse temperature. The solid line represents the calculated temperature dependence of Cu partitioning. b: 

Comparison between the results of this study and the recalculated results from literature data sets for Cu. 

Experimentally obtained logarithmic exchange coefficient values are plotted against inverse temperature. c: The 

dependence of the metal – silicate partitioning of Cu on the S-content of the metal (mole fractions). The red 

dotted line represents a linear regression to the recalculated results for a fitted ࡿࢿ
 value of -2.58. Unfilled ࢛࡯

symbols in b) and c) denote experiments that were conducted in graphite capsules. 

 

   As mentioned earlier the epsilon approach is established for trace elements in iron alloys. At 

very high S concentrations however the metal phase becomes a sulphide. Kiseeva et al. (2013) 

proposed that the partitioning behaviour of siderophile elements between liquid sulphide and 

liquid silicate can be parameterized by correlating the logarithmic partition coefficients Dmet-sil  

to the FeO content of the silicate phase (Section 5.2.2). However this approach has been 

solely designed for isobaric and isothermal experiments because of which the number of 

experiments was reduced. It was found that the “enhanced Kiseeva et al. (2013) approach” is 

not capable of reproducing partition coefficients of S-bearing samples if S-free experiments 

are incorporated into the fit. This can be seen in Figure 31a: In this diagram logarithmic 

partition coefficients are plotted against molar FeS contents of the metal or sulphide phase. 

Constant a in equation [45] equals -8.25. The calculated values only match with the 

experimental data in the case of S-free experiments. The results of the S-bearing samples 
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however are missed by 10 orders of magnitude. This changes when S-free experiments are 

neglected for fitting the experimental data as can be seen in Figure 31b. Now, as predicted by 

Kiseeva et al. (2013) the calculated partition coefficients are in perfect agreement with the 

experimental findings in the case of pure FeS. Constant a of equation [45] has a value of 2.57. 

However, the experimental data of experiments with lower concentrations of S in the metal 

phase are still not well reproduced by this approach. 

   In summary it is confirmed that the approach published by Kiseeva et al. (2013) is capable 

of parameterizing sulphide – silicate partition coefficients. For metal phases with S-

concentrations up to 20 mole% however it was found that this approach does not produce 

good results. Instead it has been found that the ε-approach works perfectly even if the metal 

phase of the experiments was completely replaced by FeS. Therefore the complete 

parameterization of the influence of S on the partitioning behaviour of siderophile elements in 

this study was based on the ε-approach. 
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Figure 31: Experimental and calculated logarithmic partition coefficients for the element Cu are plotted against 

the molar fraction of FeS in the experiments. The calculated data points have been obtained by employing the 

“enhanced Kiseeva et al. (2013) approach” as given in equation [45]. a: All experiments – S-free up to pure 

FeS – have been taken into account when fitting the data. b: S-free experiments have been neglected when fitting 

the data. 
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5.3.1.2 Silver 

 

   The pressure and temperature dependent partitioning behaviour of Ag is best described by 

neglecting constant b of equation [33]. The constants a and c were found to be 2.73 and -84 

respectively. The siderophility of Ag thus increases with increasing temperature and decreases 

with increasing pressure. In good agreement with Chapter 4 the interaction parameter between 

Si and Ag was refined to be 6.75. Increasing S contents lead to an increase in siderophility, 

corresponding to an ߝௌ
஺௚ value of -4.07. The uncertainty on the fit for Ag is 0.17 logarithmic 

units.  

   The data of this study have been compared to the datasets of Wheeler et al. (2011) and 

Kiseeva et al. (2013). Within the error bars the results of this study and those from the first 

publication are in agreement although Wheeler et al. did not observe any effect of temperature 

on the metal – silicate partitioning of Ag. The exchange coefficient values derived from the 

dataset of Kiseeva et al. (2013) were again found to exceed the observations of this study by 

around half a logarithmic unit. According to the results of this study this might be caused by a 

difference in pressure.  

   The pressure and temperature dependent partitioning behaviour of Ag, the comparison to 

literature and the influence of S on the metal – silicate partitioning are displayed in Figures 

32a, 32b and 32c respectively.  
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Figure 32a: The pressure and temperature dependences of the partitioning behaviour of Ag. Experimentally 

determined logarithmic exchange coefficients minus the activity terms for Fe and Ag (equation [46]) are plotted 

against inverse temperature. The solid lines represent the calculated temperature dependence of Ag partitioning 

at 11 GPa and 21 GPa. b: Comparison between the results of this study and the recalculated results from 

literature datasets for Ag. Experimentally obtained logarithmic exchange coefficient values are plotted against 

inverse temperature. c: The dependence of the metal – silicate partitioning of Ag on the S-content of the metal 

(mole fractions). The red dotted line represents a linear regression to the recalculated results for a fitted ࡿࢿ
 ࢍ࡭

value of -4.07. Unfilled symbols denote experiments that were conducted in graphite capsules. 

 

 

 

5.3.2 Divalent elements lead and gold 

 

5.3.2.1 Lead 

 

   In agreement with the investigations of Ballhaus et al. (2013) no pressure dependence was 

found for the metal – silicate partitioning behaviour of Pb (see Table 10). However previous 

studies found that increasing temperature leads to increased siderophility of Pb. In the course 

of this study a negative effect of temperature on the metal silicate partitioning of Pb has been 
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observed over the experimental range of conditions. The constants a and b (equation [33]) 

have values of 0.22 and 5149 respectively. The results are shown in Figure 33a. 

   However as can be seen in Figure 33b the absolute exchange coefficient values for Pb 

obtained in this study are in perfect agreement with the results of Wood and Halliday (2010). 

The experiments performed by Lagos et al. (2008) were conducted in graphite capsules, 

which possibly explains the mismatch between the latter study and this one since according to 

the Steelmaking Data Sourcebook that C dissolved in the metal decreases the siderophility of 

Pb. 

   The addition of S to the metal phase slightly increases the partitioning behaviour of Pb 

which is in perfect agreement with the observations of Lagos et al. (2008), Wood et al. 

(2008), Wood and Halliday (2010) and Bouhifd et al. (2013) (compare Table 11). The derived 

interaction parameter ߝௌ
௉௕ equals -0.6. The logarithmic exchange coefficient values ܭ஽

௉௕ିி௘ of 

the S-bearing samples are shown in Figure 33c together with comparable experimental results 

of Wood et al. (2008), Kiseeva et al. (2013) and Bouhifd et al. (2013). The different datasets 

are in very good agreement with one another.  

  In concordance with the results of Chapter 4 the interaction of Si with Pb has been refined to 

ௌ௜ߝ
௉௕ = 10.59. Uncertainties on logarithmic exchange coefficient values are ± 0.1 logarithmic 

units. 
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Figure 33a: The temperature dependence of the partitioning behaviour of Pb. Experimentally determined 

logarithmic exchange coefficients minus the activity terms for Fe and Pb (equation [46]) are plotted against 

inverse temperature. The solid line represents the calculated temperature dependence of Pb partitioning. b: 

Comparison between the results of this study and the recalculated results from literature datasets for Pb. 

Experimentally obtained logarithmic exchange coefficient values are plotted against inverse temperature. c: The 

dependence of the metal – silicate partitioning of Pb on the S-content of the metal (mole fractions). The red 

dotted line represents a linear regression to the recalculated results for a fitted ࡿࢿ
 value of -0.60. Unfilled ࢈ࡼ

symbols in b) and c) denote experiments that were conducted in graphite capsules. 
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dependence of the partitioning behaviour of Au are plotted against inverse temperature. The 

observations of a negative temperature dependence and an insensitivity on pressure are in 

perfect agreement with the partitioning trends given by Brenan and McDonough (2009), yet 

contrary to the trends reported by Danielson et al. (2005) (compare Table 10). The results of 

the partitioning experiments of Brenan and McDonough (2009) and this study are plotted 

against inverse temperature in Figure 34b. The absolute values of logܭ஽
஺௨ିி௘ are similar. 

However, contrary to the experiments of this study, Brenan and McDonough (2009) used 

graphite capsules in their experiments and the silicate composition was basaltic rather than 

peridotitic. 

   The results of the effect of S on the liquid metal – liquid silicate partitioning of Au are 

shown in Figure 34c. Sulphur hardly changes the exchange coefficient values of Au. The ߝௌ
஺௨ 

value of 0.49 is the smallest S dependence of all elements studied. Increasing S contents 

slightly lower the partition or exchange coefficients of Au as it has also been proposed by 

Jana and Walker (1997) (Table 11).    

   By incorporating several more experiments into the fitting during the procedure of which 

the constants a and b and the interaction parameters ߝௌ
஺௨ and  ߝௌ௜

஺௨ have been fitted 

simultaneously the interaction of Si with Au has been refined to a higher value of ߝௌ௜
஺௨= 23.06 

instead of 17. 

   Uncertainties for the fitted logarithmic exchange coefficients have been calculated by 

equation [41] to ± 0.23.  
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Figure 34a: The temperature dependence of the partitioning behaviour of Au. Experimentally determined 

logarithmic exchange coefficients minus the activity terms for Fe and Au (equation [46]) are plotted against 

inverse temperature. The solid line represents the calculated temperature dependence of Au partitioning. b: 

Comparison between the results of this study and the recalculated results from literature datasets for Au. 

Experimentally obtained logarithmic exchange coefficient values are plotted against inverse temperature. 

Experiments of Brenan and McDonough (2009) were performed in graphite capsules. c: The dependence of the 

metal – silicate partitioning of Au on the S-content of the metal (mole fractions). The red dotted line represents a 

linear regression to the recalculated results for a fitted ࡿࢿ
 .value of 0.49 ࢛࡭

 

 

 

5.3.3 Trivalent elements tin and germanium 

 

5.3.3.1 Tin 

 

   Parameterizing the effects of pressure, temperature and Si- and S-contents in the metal on 

the liquid metal – liquid silicate partitioning behaviour of Sn resulted in a, b and c values of 

0.18, 753 and 63 respectively, ߝௌ
ௌ௡ equals 6.34 and ߝௌ௜

ௌ௡ is 17.79 (equation [33]). The 

interaction parameter between Si and Sn is still in agreement with the result that was obtained 
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in Chapter 4 based on less experiments. The uncertainty on the fit that corresponds to 

equation [41] is only ±0.09 logarithmic units.  

   In agreement with the observations of Ballhaus et al. (2013) and Righter et al. (2010) 

(compare Table 10) the pressure dependence of the liquid metal – liquid silicate partitioning 

of Sn was found to be almost insignificant, whereas increasing temperatures result in slightly 

lower exchange coefficient values (Figure 35a). This observation is confirmed when 

comparing the experimental data of this study with the results of Righter et al. (2010) and 

Ballhaus et al. (2013) which were conducted at lower temperatures and show comparatively 

higher ܭ஽
ௌ௡ିி௘values (Figure 35b). 

   Increasing S contents of the metal result in decreased exchange coefficient values (Figure 

35c) as shown by the interaction parameter value ߝௌ
ௌ௡ = 6.34. The latter has been derived 

individually because the simultaneous parameterization of the constants a, b and c and the 

ௌ௜ߝ
ௌ௡- and  ߝௌ

ௌ௡ values did not result in a satisfying reproduction of the exchange coefficients of 

S-bearing samples. Five experiments from the dataset of Righter et al. (2009), performed in 

MgO capsules, have been compared to the results of this study. These experiments contained 

either a basaltic or rhyolitic silicate composition. The recalculated logarithmic exchange 

coefficient values ܭ஽
ௌ௡ିி௘ are significantly different from the observations of this study.  
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Figure 35a: The pressure and temperature dependences of the partitioning behaviour of Sn. Experimentally 

determined logarithmic exchange coefficients minus the activity terms for Fe and Sn (equation [46]) are plotted 

against inverse temperature. The solid lines represent the calculated temperature dependence of Sn partitioning 

at 11 GPa and 21 GPa. b: Comparison between the results of this study and the recalculated results from 

literature data sets for Sn. Experimentally obtained logarithmic exchange coefficient values are plotted against 

inverse temperature. c: The dependence of the metal – silicate partitioning of Sn on the S-content of the metal 

(mole fractions). The red dotted line represents a linear regression to the recalculated results for a fitted ࡿࢿ
 ࢔ࡿ

value of 6.34. 

 

 

 

5.3.3.2 Germanium 

 

Within the experimental range of pressures and temperatures in this study the moderately 

volatile element Ge exhibits neither a pressure nor a temperature dependence on its liquid 

metal – liquid silicate partitioning behaviour (Figure 36a). Constant a in equation [33] was 

fitted to 1.24.  

   These observations find support when comparing the results of this study to the results 

published by Righter et al. (2011) and Siebert et al. (2011) (Figure 36b). Although conducted 

at lower temperatures and variable pressures all logarithmic ܭ஽
ீ௘ିி௘ values are within one 

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

0 0.1 0.2 0.3 0.4 0.5 0.6

Sn

exp. results
(11 GPa, 2490 - 2844 K)
linear regression
to calc. results

Righter et al. (2009) 
(1.5 GPa 1773 - 2073 K)

this study                                          literature data                               

lo
g

 K
D

S
n

-F
e

X
S

35c)



Chapter 5: Volatile element partitioning 

142 
 

order of magnitude which contradicts the observations of several studies that proposed that 

increasing temperature results in increasing siderophility of Ge (Table 10).  

   A possible explanation for the slightly higher values that were obtained by Kegler et al. 

(2011) might be that the silicate composition of the latter study was basaltic rather than the 

peridotitic composition that was chosen for the investigations of this study.  

   The partitioning behaviour of Ge is strongly dependent on S contents in the metal phase 

which is mirrored by a high ߝௌ
ீ௘value of 13.04. Increasing S contents significantly lower the 

siderophility of Ge – a trend that has also been observed by Jana and Walker (1997) (Table 

11). As can be seen in Figure 36c the logarithmic exchange coefficients of Ge decrease by 3 

orders of magnitude within the experimentally investigated range of S contents. The refitted 

value of ߝௌ௜
ீ௘ equals 16.76 instead of 16.58 as derived in Chapter 4. Uncertainties on the fit 

that correspond to equation [41] were calculated to ± 0.24 logarithmic units.  
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Figure 36a: The pressure and temperature dependence of the partitioning behaviour of Ge. Experimentally 

determined logarithmic exchange coefficients minus the activity terms for Fe and Ge (equation [46]) are plotted 

against inverse temperature. b: Comparison between the results of this study and the recalculated results from 

literature data sets for Ge. Experimentally obtained logarithmic exchange coefficient values are plotted against 

inverse temperature. c: The dependence of the metal – silicate partitioning of Ge on the S-content of the metal 

(mole fractions). The red dotted line represents a linear regression to the recalculated results for a fitted ࡿࢿ
 ࢋࡳ

value of 13.04. 

 

 

 

5.3.4 Tetravalent element antimony  

 

   The liquid metal – liquid silicate partitioning behaviour of Sb was found to be independent 

of pressure and temperature over the experimental range of conditions. Constant a (equation 

[33]) is 1.35. The experimental logarithmic exchange coefficient values ܭ஽
ௌ௕ିி௘ minus the 

activity terms of equation [46] are shown in Figure 37a. 

   As can be seen in Figure 37b the results of this study are similar to the results obtained by 
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rhyolitic. The authors however report that both increasing temperature and pressure reduce the 

siderophility of Sb. 

   In agreement with the observations of Righter et al. (2009) increasing S contents were found 

to decrease the logarithmic exchange coefficient values of Sb (Figure 37c). Over the 

experimentally investigated range of S contents the exchange coefficient values dropped 

down by two orders of magnitude. The interaction parameter between S and Sb exhibits a 

value of 12.95.  

   Like derived in Chapter 4 Si influences the partitioning of Sb by lowering its siderophility, 

the interaction parameter ߝௌ௜
ௌ௕ retained its value of 28.51. Uncertainties on the logarithmic 

exchange coefficient values for Sb have been calculated to ± 0.45 logarithmic units. 
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Figure 37a: The pressure and temperature insensitivity of the partitioning behaviour of Sb. Experimentally 

determined logarithmic exchange coefficients minus the activity terms for Fe and Sb (equation [46]) are plotted 

against inverse temperature. b: Comparison between the results of this study and the recalculated results from 

literature datasets for Sb. Experimentally obtained logarithmic exchange coefficient values are plotted against 

inverse temperature. c: The dependence of the metal – silicate partitioning of Sb on the S-content of the metal 

(mole fractions). The red dotted line represents a linear regression to the recalculated results for a fitted ࡿࢿ
 ࢈ࡿ

value of 12.95. 

 

 

 

5.3.5 Pentavalent elements arsenic and phosphorus 

 

5.3.5.1 Arsenic 

 

   The siderophility of the volatile element As was found to increase with pressure, constants a  

and c of equation [33] are 0.21 and 178 respectively. The logarithmic exchange coefficients 

minus the activity terms for Fe and As (equation [46]) are plotted against inverse temperature 

in Figure 38a.  
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   Although Siebert et al. (2011) find that both increasing temperature and pressure results in 

decreased siderophile behaviour of As the logarithmic exchange coefficient values of the 

experiments performed by the latter authors are partly in agreement with the results obtained 

by this study as can be seen in Figure 38b.  

   The partitioning behaviour of As is weakly effected by the addition of S to the metal phase 

as can be seen in Figure 38c. The parameterization was performed separately and led to an 

ௌߝ
஺௦ value of 2.64. However the fit does not reproduce the data very well. More experiments 

are necessary to better constrain the influence of S on the metal – silicate partitioning of As. 

  Taking all available experiments into account the ߝௌ௜
஺௦value of 43.47 as derived in Chapter 4 

remained constant.  
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Figure 38a: The pressure and temperature dependence of the partitioning behaviour of As. Experimentally 

determined logarithmic exchange coefficients minus the activity terms for Fe and As (equation [46]) are plotted 

against inverse temperature. b: Comparison between the results of this study and the recalculated results from 

literature datasets for As. Experimentally obtained logarithmic exchange coefficient values are plotted against 

inverse temperature. c: The dependence of the metal – silicate partitioning of As on the S-content of the metal 

(mole fractions). The red dotted line represents a linear regression to the recalculated results for a fitted ࡿࢿ
 ࢙࡭

value of 2.64.  

 

 

5.3.5.2 Phosphorus 

 

   Phosphorus is the only element investigated in this study that exhibits a negative b value 

when parameterizing its metal – silicate partitioning behaviour meaning that increasing 

temperatures result in increasing siderophility of P. This observation is in perfect agreement 

with the results of Walker et al. (1993), Righter et al. (2010) and Ballhaus et al. (2013) as 

illustrated in Table 10. The corresponding parameters to equation [33] are: a: -0.06, b: -5036, 

ௌ௜ߝ
஺௦: 26.82 and ߝௌ

஺௦: 15.77. No pressure dependence has been found. The temperature 

dependence of the liquid metal – liquid silicate partitioning of P is shown in Figure 39a in 

which logarithmic exchange coefficients minus the activity terms of equation [33] are plotted 

against inverse temperature.  
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   The comparison of the results of this study with recalculated literature data is displayed in 

Figure 39b. The data is in agreement with the results of Righter et al. (2010), Ballhaus et al. 

(2013) and Siebert et al. (2011). In particular the results of Righter et al. (2010) support the 

observation that decreasing temperatures result in reduced exchange coefficient values.  

   Within the framework of this study P is the element that is effected the most by the addition 

of S to the metal phase, which is reflected by its high interaction parameter ߝௌ
௉ of 15.77. 

Similar to Ge the logarithmic exchange coefficient values for P are decreased by more than 3 

logarithmic units over the range of investigated S concentrations as can be seen in Figure 39c. 

Uncertainties on the fit correspond to ± 0.47 logarithmic units. 
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Figure 39a: The temperature dependence of the partitioning behaviour of P. Experimentally determined 

logarithmic exchange coefficients minus the activity terms for Fe and P (equation [46]) are plotted against 

inverse temperature. The solid line represents the calculated temperature dependence of P partitioning. b: 

Comparison between the results of this study and the recalculated results from literature datasets for P. 

Experimentally obtained logarithmic exchange coefficient values are plotted against inverse temperature. c: The 

dependence of the metal – silicate partitioning of P on the S-content of the metal (mole fractions). The red dotted 

line represents a linear regression to the recalculated results for a fitted ࡿࢿ
 .value of 15.77 ࡼ

 

 

 

5.4 Summary and implications 
 

   The liquid metal – liquid silicate partitioning behaviour has been parameterized for a wide 

range of volatile elements, namely Cu, Ag, Pb, Au, Sn, Ge, Sb, As and P. In particular the 

effects of pressure, temperature, Si- and S-contents have been parameterized. In general it was 

found that the partitioning behaviour of most elements studied is affected insignificantly by 

pressure, but is partly sensitive to temperature. Increasing S-contents of the metal phase cause 

an increase in siderophility for the elements Ag, Cu and Pb and vise versa for Au, Sn, Ge, Sb, 

As and P with Ge, Sb and P being influenced to the greatest extent. 
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   The results of this study are in very good agreement with the results that were obtained from 

literature datasets. Only minor differences were found which might be the result of different 

capsule material, silicate composition or applied pressures and temperatures. 

   Table 14 shows the fitted parameters a, b, c, ߝௌ௜
ெ and ߝௌ

ெ that were derived in this study for 

each of the volatile elements. By employing equation [33] exchange coefficient values can 

now be derived for specified pressure, temperature and metal compositions. Additionally the 

uncertainty on calculated logܭ஽
ெିி௘ values is given. One should note that the interaction 

parameters ߝ௜
௞ are valid for a given temperature of 1873 K and thus need to be corrected to the 

temperature of interest by the use of equation [39].  

 

Table 14: Summary of fitted parameters that correspond to equation [33]. Uncertainties on ݈ܭ݃݋஽
ெିி௘ are 

obtained by employing equation [41]. 

Element a b c ߝௌ௜
ெ 
 

(1873 K) 

ௌߝ
ெ 

 
(1873 K) 

Uncertainty 
on log 
஽ܭ
ெିி௘ 

Ag 2.73 - -84 6.75 -4.07 0.17 
Cu 0.17 3571 - 0.73 -2.58 0.07 
Au 0.19 6521 - 23.06 0.49 0.23 
Pb 0.22 5149 - 10.59 -0.60 0.10 
Sn 0.18 753 63 17.79 6.34 0.09 
Ge 1.24 - - 16.76 13.04 0.24 
Sb 1.35 - - 28.51 12.95 0.45 
As 0.21 - 178 43.47 2.64 0.41 
P -0.06 -5036 - 26.82 15.77 0.47 
 

   Table 15 compares the interaction parameters ߝௌ௜
ெ and ߝௌ

ெ that have been derived in this 

study with those derived from the massrelated e-values in the Steelmaking Data Sourcebook. 

In the cases of Pb (ߝௌ௜
௉௕), Au ሺߝௌ

஺௨ሻ and Sn (ߝௌ
ௌ௡) the opposite effect of Si or S on the 

partitioning of these elements was observed.  
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Table 15: Comparison between the interaction parameters derived in this study with those derived from the 

Steelmaking Data Sourcebook. All values refer to a temperature of 1873 K. 

Element ߝௌ௜
ெ 
 

(1873 K) 
This study 

ௌ௜ߝ
ெ 
 

(1873 K) 
Steelmaking Data 

Sourcebook

ௌߝ
ெ 

 
(1873 K) 

This study 

ௌߝ
ெ 

 
(1873 K) 

Steelmaking Data 
Sourcebook 

Ag 6.75 - -4.07 - 
Cu 0.73 3.64 -2.58 -2.34 
Au 23.06 - 0.49 -0.25 
Pb 10.59 -11.26 -0.60 -42.03 
Sn 17.79 7.2 6.34 -3.28 
Ge 16.76 - 13.04 3.89 
Sb 28.51 - 12.95 0.68 
As 43.47 - 2.64 -5.66 
P 26.82 11.95 15.77 4.92 
 
 
   The parameterization of the partitioning behaviour of volatile elements was used to derive 

constraints about the conditions that prevailed during core formation of the Earth by 

incorporating the results into a core formation model: 

   The bulk Earth composition is assumed to be similar to CI chondrites except for volatile 

element depletion. By employing a mass balance equation that takes into account the mass 

fractions of the Earth´s mantle and core, McDonough (2003) calculated the concentrations of 

elements in the Earth´s core based on their known mantle and CI chondrite abundances. 

However as mentioned in Chapter 1 volatile elements are depleted relative to CI chondrites 

because they most likely failed to condense at the high temperatures in the inner part of the 

Solar System (Palme and O´Neill, 2003). The degree of volatility however is still under 

debate. Pairs of elements, namely Cu-Au, Cu-As, Ag-Sb and Sn-Pb, have been incorporated 

individually into a simplified core formation model in order to model their partitioning 

behaviour. The elements of each pair have, according to Lodders (2003), similar condensation 

temperatures and should therefor be affected to the same extent by volatility, because of 

which any assumptions about volatilization can be avoided. One should note however that the 

results of the element pair Cu – As are probably in error because the partitioning behaviour of 

As has been parameterized with a comparatively high error of almost half a logarithmic unit 

(exchange coefficient values). However because the ratio of the core – mantle partition 

coefficients of these element pairs changes with different degree of volatilization, the ratio of 

the mantle concentrations has been used as the constraining parameter. Table 16 summarizes 
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the mantle and core abundances of the volatile elements that have been used to model the 

relative but not the absolute abundances of elements with similar condensation temperatures. 

 

Table 16: Element pairs that have been incorporated into a single stage core formation model. Given are the 

50% condensation temperatures of each element, the respective mantle and core abundances and the 

corresponding mantle ratio that has been used as constraining parameter.  

Element 
(Pairs shaded 
similarly 

50% 
Condensation 
temperature  
(Lodders, 2003) 

Mantle 
abundance (ppm) 
(McDonough, 
2003) 

Core abundance 
(ppm) 
(McDonough, 
2003) 

Mantle ratio 

Cu 1037 K 30 125 Cu / Au 
Au 1060 K 0.001 0.5 30000 
Cu 1037 K 30 125 Cu / As 
As 1065 K 0.05 5 600 
Ag 996 K 0.008 0.15 Ag / Sb 
Sb 979 K 0.006 0.13 1.33 
Pb 727 K 0.15 0.4 Pb / Sn 
Sn 704 K 0.13 0.5 1.15 
 
 
   Assuming a single stage core formation scenario it has then been modeled how the ratio of 

the mantle abundances of the volatile elements changes with pressure and temperature, which 

can also be understood as an average of a continuous core formation scenario. For a given 

pressure the temperature was fixed at the peridotitic liquidus as given by Liebske et al. 

(2012). The Earth´s core was assumed to contain 85.5 wt% Fe and 5.2 wt % Ni. The evolution 

of the mantle abundance ratio with increasing pressure (and with it increasing temperature) is 

shown in Figure 40 a-d for each element pair. It was found that the relative abundances of 

Cu/As, Cu/Au and Pb/Sn are matched at 5 GPa, 12 GPa and 21 GPa respectively. No 

satisfying solution was found for the element pair Ag/Sb. In this cases the individual elements 

become more and more fractionated with increasing pressure. However one should note that 

the extrapolation to very high pressures involves high uncertainties on the derived partition 

coefficient values, because of which the solution for a pressure regime that can explain the 

relative mantle abundances of the above mentioned elements might be expanded. In particular 

it can be seen in Figure 40 b-d that a wide range of pressures leads to ratios of Cu/As, Ag/Sb 

and Sn/Pb that are very close to the ratios of these elements in the Earth´s mantle. 
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Figure 40: The silicate mass ratio of a) Cu/Au, b) Cu/As, c) Ag/Sb, d) Pb/Sn is plotted against increasing 

pressure. The temperature is fixed at the peridotitic liquidus (Liebske et al. (2012). Pressures of 12, 5 and 21 

GPa can respectively explain the ratio of the mantle abundances of Cu /Au, Cu/As and Pb/Sn. No solution was 

found for the element pair Ag/Sb. 
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   In a second approach the influence of S on the partitioning behaviour has been taken into 

account. It has been mentioned earlier that the Earth´s core might contain up to 2 wt% S 

(Dreibus and Palme, 1996; McDonough, 2003). However it has been argued by O´Neill 

(1991) that a late S-rich accretionary component, the hadean matte, might have influenced the 

extraction of siderophile elements from the Earth´s mantle to its core. Therefore it has been 

calculated for increasing pressure the amount of S that is necessary to produce the mantle 

ratio of the individual element pairs. The metal phase consisted of Fe, S and the element of 

interest and the temperature was again fixed at the peridotitic liquidus as derived from 

Liebske et al. (2012). An intersection of the trends for two element pairs was found between 2 

GPa and 9 GPa with S-contents ranging from 2 wt% to 12 wt%. More precisely, the solutions 

for the element pairs Cu – Au and Cu - As intersect at 7 GPa and 4.5 wt% S, Cu/Au and 

Ag/Sb have the same solution at 2 GPa and 9 wt% S and the trends for Cu/As and Ag/Sb 

intersect at 9 GPa and 12 wt% S. No solution at any pressure was found to explain the relative 

abundance of Sn and Pb in the Earth´s mantle. The results are shown in Figure 41. 

 

 

Figure 41: The concentration of S in the metal phase, necessary to match the relative abundance of the volatile 

element pairs Cu/Au, Cu/As and Ag/Sb, is plotted against increasing pressure.  

 

   In a third step the combined influence of Si and S has been modeled for each volatile 
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5.2 wt% Ni. Therefore this model was designed in the way that the combination of S- and Si-

metal contents did not exceed the remaining 9.3 wt %. As before the temperature was fixed at 

the peridotitic liquidus (Liebske et al., 2012). For increasing pressure the individual 

concentrations of S and Si in the metal phase that can explain the relative mantle abundance 

of each volatile element pair were calculated. The results are shown in Figure 42 a – d. While 

no unique solution was found it can still be seen that the mantle ratio of every element pair 

can be explained by a combination of Si and S, which has not been the case if only pressure 

and temperature or pressure, temperature and S has been taken into account (see above). The 

elements Cu, As and Au all have similar condensation temperatures (Table 16). It was found 

that < 1wt% S and Si can explain the relative abundances of all three elements between 6 – 9 

GPa. In general the amount of Si always exceeds the concentration of S. 

 

   

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

Figure 42: The concentrations of S and Si in the metal phase, necessary to match the mantle abundance ratio of 

a) Cu/Au, b) Cu/As, c) Ag/Sb and d) Sn/Pb, are plotted against increasing pressure. 
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   In summary it was found that only the combination of Si and S provides an explanation for 

the relative mantle abundances of individual element pairs. However more complex 

continuous and heterogeneous core formation models need to be considered to provide better 

constraints on the conditions that prevailed during core formation. Moreover it will be helpful 

to also incorporate the influence of other light elements, such as O, and variable silicate 

compositions.  
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6. The dependence of non-volatile element partitioning on 
pressure, temperature and S-content of the metal  

 

6.1 Introduction 
 

   As discussed in Chapters 1 and 5, the abundances of siderophile elements in the Earth´s 

mantle are too high to be explained by metal – silicate equilibration at low pressures and 

moderately temperatures (e.g. Ringwood, 1966; Jagoutz et al., 1979; Jones and Drake, 1986; 

Newsom, 1990; Murthy, 1991; Walter et al., 2000; Rubie et al., 2007). It has furthermore 

been shown that increasing temperatures alone are not capable of yielding the observed 

abundances of siderophile elements in the Earth´s mantle. A solution to this so called “excess 

siderophile element problem” was found in 1996 by Li and Agee (1996). The latter authors 

performed metal – silicate partitioning experiments in a multi anvil apparatus at pressures 

between 2 and 20 GPa and a temperature of 2273 K. The elements investigated were Ni and 

Co, two refractory siderophile elements that are known to be depleted to the same extent in 

the Earth´s mantle, thus requiring similar partition coefficients (Palme and O´Neill, 2003). As 

can be seen in Figure 43a and c, at low pressures the partition coefficients of Ni and Co differ 

by more than one order of magnitude. However with increasing pressures both elements 

become less siderophile and in particular Ni becomes less siderophile to a greater extent than 

Co. Li and Agee (1996) found that the extrapolation of the experimentally determined 

pressure dependences resulted in an intersection between 28 and 42 GPa, depending on 

whether the partition coefficient ratio DNi/DCo of 1.1 is interpreted as the result of 

equilibration at the base of a magma ocean or as an average of partition coefficient ratios from 

the top to the bottom of the – in this case deeper – magma ocean (compare Figure 43b). These 

pressures correspond to a magma ocean depth of 750 to 1100 km.  

   The experiments that were performed by Li and Agee (1996) produced a metal phase with 

significant amounts of S (26.96 – 29.69 wt %). Sulphur is known to have an effect on the 

metal – silicate partitioning behaviour (e.g. Peach, 1993; Jana and Walker, 1997; Kiseeva et 

al., 2013; this work) and so Li and Agee (1996) compared their results for Ni and Co 

partitioning between silicate and a S-bearing metal alloy to the results that were obtained by 

Thibault and Walter (1995) that were based on S-free experiments. As can be seen in Figure 

43c the partitioning data for Ni and Co in a S-bearing and a S-free system differ only slightly, 
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thus the results of Li and Agee (1996) are applicable to core formation scenarious without the 

necessity of constraining the amount of S that contributes to the Earth´s core. 

 

 

 

Figure 43a-c: Modified after Li and Agee (1996). a) Partition coefficients for Ni and Co are plotted against 

pressure. At low pressures DNi and DCo differ by more than one order of magnitude, yet the partitioning trends 

converge at higher pressures. b) The experimental partition coefficient ratio between DNi and DCo is plotted 

against pressure. Vertical line indicates the Earth´s near chondritic DNi/DCo ratio. Within the errors diagram b) 

shows in another way that pressure between 28 and 42 GPa can account for the mantle depletions of Ni and Co, 

depending on whether the partition coefficient ratio was established by equilibration at the base of the magma 

ocean (solid line) or is an average of partition coefficient ratios from the top to the (deeper) bottom of the 

magma ocean (dotted line). c) The study of Li and Agee was based on a S-bearing metallic phase. However S 

does not influence the partitioning behaviour of Ni and Co proving that the derived conclusions of high pressure 

– high temperature equilibration are valid (grey and purple data points are from Thibault and Walter (1995)). 

 

   Subsequently there have been further investigations by Gessmann and Rubie (1998) and 

Chabot et al. (2005) which additionally investigated the influence of temperature on Ni and 

Co partitioning. According to these authors increasing temperatures cause a decrease in 

siderophility for both elements. It has been mentioned several times that Wade and Wood 

(2005) investigated a continuous core formation model in which oxygen fugacity is increased 

over two logarithmic units during the time of Earth´s accretion. The results of their model 

were based on experiments of the metal – silicate partitioning behaviour of Ni and Co as well 

as V, Mn and Si. Kegler et al. (2008) studied the partitioning of Ni and Co at 1 atm – 25 GPa 

and 1570 – 2573 K. The starting materials consisted of a FeCoNi alloy and in most cases a 

basaltic silicate phase. In two experiments the silicate composition was peridotitic. In general 

the pressure trend of the partitioning of Ni and Co according to the results of Kegler et al. 

(2008) and of Li and Agee (1996) are in agreement with one another. Both studies find a 

decrease in partition coefficient values or in the case of Kegler et al. (2008) a decrease in 
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exchange coefficient values for both elements. However Kegler et al. (2008) argued for two 

different pressure regimes. Their results indicate that the slopes of the regressions of Ni and 

Co are much steeper at low pressures up to 5 GPa than at pressures above 5 GPa. The authors 

can explain the abundances of Ni and Co in the Earth´s mantle by high pressure equilibration 

at 35 GPa in the case of Co and 45 – 50 GPa in the case of Ni. The required ratio of the 

partition coefficients of Ni and Co of almost 1 is reached at even higher pressures of 55 GPa, 

but at these conditions the absolute abundances of Ni and Co in the Earth´s mantle could not 

be explained. In summary Kegler et al. (2008) conclude that a single stage core formation 

scenario is unrealistic, a theory that to date is accepted by most scientists (e.g. Wade and 

Wood, 2005; Schönbächler et al., 2010; Rubie et al., 2011). 

   Recently the experimental pressure range for the determination of the partitioning of Ni and 

Co has been extended to pressures of 35 to 74 GPa by Siebert et al. (2012) employing the 

laser-heated diamond anvil cell. Temperatures between 3100 and 4400 K have been achieved. 

The results support the previously derived pressure trend for Ni and Co of decreasing partition 

coefficients with increasing pressures. The authors show that the mantle abundances of Ni and 

Co are the result of metal – silicate equilibration in a deep magma ocean at a maximum 

pressure of 60 GPa. 

   It has been discussed in detail in Chapter 1 that the parameterization of the liquid metal – 

liquid silicate partitioning behaviour of W is important because the Hf-W decay system with 

Hf being lithophile and W being siderophile can provide information on the timing of core 

formation (Jacobsen, 2005; Kleine et al., 2005; Kleine et al., 2009) and on the degree of 

equilibration (Rudge et al., 2010; Nimmo et al., 2010). Several studies have already provided 

metal – silicate partitioning data for W. Among these are the publications of Cottrell et al. 

(2009 and 2010), Righter et al. (2010), Siebert et al. (2011), Wade et al. (2012) and Ballhaus 

et al. (2013) with which the results of this study will be compared in Section 6.3. With the 

exception of Cottrell et al (2009 and 2010) all of these studies showed that increasing 

temperature causes the siderophility of W to decrease. Siebert et al. (2011) and Wade et al 

(2012) furthermore found that increasing pressure by contrast results in decreased 

siderophility of W as has been reported earlier by Cottrell et al. (2009 and 2010), although 

only for pressures above 4 GPa. 

   Another refractory element that has been depleted by core formation processes is Mo. Its 

metal – silicate partitioning behaviour has been studied by Righter et al. (2010), Siebert et al. 

(2011) and Wade et al. (2012) with partly different outcomes. Both Siebert et al. (2011) and 
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Wade et al. (2012) found that increasing pressure reduces the siderophility of Mo. Increasing 

temperature however led to lower partition or exchange coefficient values according to 

Righter et al. (2010) and Siebert et al. (2011), whereas the opposite was found by Wade et al. 

(2012). 

   In Chapter 5 it has been discussed on the basis of previous investigations and the results of 

this study that S needs to be considered when investigating liquid metal –liquid silicate 

partitioning of siderophile elements. The above mentioned study of Wade et al. (2012) 

investigated the partitioning of both W and Mo with experimental pressures and temperatures 

ranging between 1.5 - 24 GPa and 1803 – 2073 K respectively. The Fe metal has in some 

cases been modified by the addition of FeS or FeSi2 and the silicate composition was based on 

the system anorthite-diopside-forsterite. Taking into account interaction parameters in order 

to correct the activities of W and Mo in a S-bearing metal phase and including their results on 

the partitioning behaviour of both elements Wade et al. (2012) employed a core formation 

model that showed that the abundances of the refractory elements W and Mo in the Earth´s 

mantle can be explained if S is added solely during the final 20% of accretion. 

   It has been mentioned earlier that the partitioning of Ni and Co between metal and silicate 

phases is hardly effected by the presence of S in the metal phase (Li and Agee, 1996). This 

has been confirmed by Jana and Walker (1997) who also showed that the siderophility of both 

Ni and Co only decreases moderately with increasing S-content of the metal phase. Additional 

studies (Li and Agee, 2001 and Kiseeva et al., 2013) exhibit some metal – silicate partitioning 

experiments with S being an additive to the metal phase. Their results, more precisely the 

corresponding exchange coefficient values, will be compared to the findings of this study in 

section 6.3. 

 

 

 

6.2 Methods  
 

   The liquid metal – liquid silicate partitioning of the refractory elements Ni, Co, W and Mo 

has been investigated at pressures between 11 and 21 GPa and temperatures of 2478 – 2911 

K. In order to additionally quantify the effect of S in the metal phase of the samples the S 

concentrations in the metal phase of the starting material have been varied from a S-free 

system up to FeS. The experimental and analytical methods followed the routines described in 
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Chapter 2 and partition and exchange coefficients have been calculated employing equations 

[3] and [5] (Chapter 3). Following the results of Wade et al. (2012) the elements W and Mo 

were treated as hexavalent and tetravalent cations in the silicate phases respectively. Ni and 

Co were assumed to be present as divalent cations as it has already been proposed by 

Holzheid et al. (1994).  

   As described in Chapter 5 partitioning is described by an exchange reaction that involves Fe 

and FeO: 
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   The parameterization of the liquid metal – liquid silicate partitioning behaviour of non-

volatile elements follows the procedures that have been described in Chapter 5 (equations 

[28] to [33]). In agreement with the parameterization of the partitioning behaviour of volatile 

elements also the partitioning of the non-volatile elements Ni, Co, W and W has been 

quantified in form of the following expression for logarithmic exchange coefficient values: 
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   The aim of this Chapter is the quantification of the effects of pressure, temperature and S 

content of the metal phase on the partitioning behaviour of Ni, Co, W and Mo. Therefore the 

calculation of the activities of Fe and the element of interest in the metal phase is based on a 

ternary system similar to that described in Chapter 4. Equations [34] and [35] were solved for 

the three components Fe, M and S, where M is the element of interest:  
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   Here X is the molar fraction of the components, ߛெ
଴  denotes the activity of the element of 

interest at infinite dilution and ε denotes the interaction of components with one another, 

where ߝ௜
௝ = ߝ௝

௜. Temperature corrections are performed employing equation [39], Chapter 5. 

Table 17 summarizes the values of ߛெ
଴ ௌߝ ,

ௌ and ߝெ
ெ that were taken from the Steelmaking Data 

Sourcebook with the interaction parameters being calculated from the mass related ݁௜
௞ values 

by employing equation [38], Chapter 5. If the values were not available for certain elements 

they were set to zero.  

 

Table 17: Summary of interaction parameter values ࢏ࢿ
࢏ࢽ and activity coefficients at infinite dilution ࢑

૙ that were 

used to calculate the activity coefficients of Fe and the element of interest M in the metal using equations [49] 

and [50]. All values are from the Steelmaking Data Sourcebook.  

 Ni Co W Mo 

ࡹࢽ
૙  0.66 0.55 1 1 

ࡹࢿ
 0.0121 - 0.00509 0.0007 ࡹ

     

ࡿࢿ
    5.66- ࡿ

 

    

   Except for replacing equations [36] and [37] (Chapter 5) by equations [49] and [50] 

respectively, the parameters a, b, c and ߝெ
ௌ  were obtained following the procedure given in 

Chapter 5. All parameters were solved by minimizing the sum of the derivations between 

calculated and experimental logarithmic exchange coefficient values employing equation [40] 

(Chapter 5). Uncertainties on the expressions for logarithmic ܭ஽
ெିி௘ values are derived from 

the average deviation between experimentally determined and calculated logarithmic ܭ஽
ெିி௘ 

values employing equation [41], Chapter 5. 
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6.3 Results 
 

   Liquid metal – liquid silicate partitioning has been studied for the non-volatile elements Ni, 

Co, W and Mo at a pressure and temperature range of 11 to 21 GPa and 2478 to 2911 K. The 

S content of the starting metal was varied between zero and 20 wt%. Table 19 lists the 

experimental conditions of each experiment as well as the measured and recalculated 

exchange coefficient values ܭ஽
ெିி௘ that were obtained by the parameterization of the data of 

this study (see below). The values for the Gibbs free energy change –ΔG0 and the molar 

fractions of Fe, S and the element of interest M in the metal phase are also listed. 

Uncertainties that were obtained by error propagation are given for the last digit(s). 

   The partitioning behaviour of non-volatile elements is significantly better studied than the 

partitioning behaviour of volatile elements. For this reason the results obtained in this study 

can be better compared to existing data sets. It was possible to select several experiments 

from literature studies that were performed at very similar conditions. The previously 

published data have been recalculated and incorporated into the parameterization of the 

partitioning behaviour of Ni, Co, Mo and W with the aim of better constraining the pressure 

and temperature dependences. The selected experiments were performed in the same type of  

capsules (MgO), used the same silicate composition (peridotitic) and were free of Si or S in 

the metal phase. The selected samples from the literature are listed in Table 18.  

 

Table 18: Summary of experiments from the literature that have been used to better constrain the pressure and 

temperature dependences of Ni, Co and W.  Agreement between capsule material and silicate composition was 

presupposed. The metal phases needed to be free of Si and S.  

 

 
Kegler et al. (2008) 

sample, P, T 
Siebert et al. (2011) 

sample, P, T 
Siebert et al. (2012) 

sample, P, T 
Wade and Wood (2012) 

sample, P, T 

Ni 

 
PPC1: 3.5 GPa, 2073 K 
PHP1: 5 GPa, 2373 K 

 

52: 1.5 GPa, 2123 K 
139: 3 GPa, 2123 K 

X1-4: 50 GPa, 3700 K 
 

 

Co 

 
PPC1: 3.5 GPa, 2073 K 
PHP1: 5 GPa, 2373 K 

 

52: 1.5 GPa, 2123 K 
139: 3 GPa, 2123K 

X1-4: 50 GPa, 3700 K  

Mo  
52: 1.5 GPa, 2123 K 
139: 3 GPa, 2123K 

 

 
755: 24 GPa, 2473 K 
758: 24 GPa, 2673 K 

 

W    

 
755: 24 GPa, 2473 K 
758: 24 GPa, 2673 K 
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      As in Chapter 5 the following Section provides a detailed look on the results for each 

studied element separately. In each case the pressure and / or temperature dependences are 

illustrated by plotting the experimentally investigated logarithmic exchange coefficients 

஽ܭ
ெିி௘ minus the activity terms of equation [48] against inverse temperature. The calculated 

pressure and / or temperature dependences are shown by green and black lines according to 

whether literature data was incorporated into the fit or not. Equation [51] displays the 

relationship between the calculated pressure and temperature dependences and the modified 

exchange coefficient values.  
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                [51] 

 

   In a second diagram experimentally determined logarithmic exchange coefficient values 

have been plotted against inverse temperature. The range of inverse temperatures (x-axis) and 

logarithmic exchange coefficient values (y-axis) has been expanded in order to be able to 

compare the results of this study with additional literature data that are based on experiments 

conducted at similar conditions yet not necessarily exactly the same. Finally the 

parameterization of the S-dependent partitioning of each element is demonstrated by a 

diagram of logarithmic exchange coefficients against increasing S contents of the metal 

phase. Dotted green and red lines represent a linear regression line to the calculated results 

according to whether the parameterization of the partitioning behaviour of the particular 

experiments involved the literature data points as given in Table 18 or not.  
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Table 19: Summary of experimental conditions, values of the Gibbs free energy change –ΔG0 and of the experimentally obtained and recalculated exchange coefficient values 

that were obtained from the parameterization of the experimental results of this study alone. Additionally  the molar fractions of Fe, S and the element of interest (Ni, Co, Mo, 

W) are given. Errors were obtained by error propagations and are given in parenthesis for the last digit. 

        Ni            Co           

Sample 
P 

(GPa) 
T (K)  ΔIW 

‐ΔG0

(J/mole) 
ࡰࡷ
 ࢋࡲି࢏ࡺ
(exp) 

ࡰࡷ
 ࢋࡲି࢏ࡺ
(calc) 

ࢋࡲࢄ
࢚ࢋ࢓

  ࡿࢄ
࢚ࢋ࢓

  ࢏ࡺࢄ
࢚ࢋ࢓

 
‐ΔG0

(J/mole) 
ࡰࡷ
 ࢋࡲି࢕࡯
(exp) 

ࡰࡷ
 ࢋࡲି࢕࡯
(calc) 

ࢋࡲࢄ
࢚ࢋ࢓

  ࡿࢄ
࢚ࢋ࢓

  ࢕࡯ࢄ
࢚ࢋ࢓

 

H3371b 11 2773 -2.4 (2) 55977 14 (3) 13.4 0.9070  0.0244 34576 6 (1) 6.6 0.9070  0.0264 
H3372b 11 2478 -2.11 (5) 50064 10 (1) 17.3 0.9457  0.0115 33955 4.9 (4) 8.0 0.9457  0.0166 
H3586b 11 2609 -2.3 (1) 52690 22 (4) 15.3 0.9457  0.0122 34231 9.8 (6) 7.3 0.9457  0.0195 
H3586a 11 2609 -2.2 (3) 52690 19 (8) 15.3 0.9389  0.0153 34231 9 (3) 7.3 0.9389  0.0234 
Z822b 11 2573 -2.1 (1) 51968 16 (2) 15.8 0.9356  0.0125 34155 8.1 (7) 7.5 0.9356  0.0192 
Z916b 11 2580 -2.2 (1) 52109 12 (4) 15.7 0.9508  0.0125 34170 7 (1) 7.5 0.9508  0.0186 
Z1011b 11 2605 -2.7 (5) 52610 28 (5) 15.4 0.9205  0.0168 34222 11 (2) 7.3 0.9205  0.0240 
Z859a 18 2717 -2.1 (3) 54854 16 (1) 15.5 0.9259  0.0123 34458 6.8 (4) 6.8 0.9259  0.0185 
Z865a 18 2834 -2.8 (5) 57199 16 (4) 14.2 0.9332  0.0131 34705 8 (1) 6.4 0.9332  0.0193 
Z929a 20 2799 -2.5 (6) 56498 15 (1) 14.9 0.9453  0.0128 34631 6.4 (4) 6.5 0.9453  0.0190 
Z950a 21 2904 -2.0 (3) 58602 10 (2) 14.0 0.9343  0.0124 34852 5.2 (8) 6.1 0.9343  0.0188 
Z970a 21 2911 -2.8 (8) 58742 12 (2) 13.9 0.9377  0.0128 34867 5.8 (7) 6.1 0.9377  0.0192 
Z970b 21 2911 -2.2 (2) 58742 14 (1) 13.9 0.9357  0.0130 34867 7.2 (6) 6.1 0.9357  0.0196 
Z1009b 11 2605 -2.1 (6) 52610 23 (4) 15.6 0.7354 0.1999 0.0193 34222 8 (1) 6.7 0.7354 0.1999 0.0212 
H3371a 11 2478 -1.9 (2) 50064 15 (1) 17.5 0.7521 0.1782 0.0216 33955 6.6 (6) 7.3 0.7521 0.1782 0.0225 
H3372a 11 2626 -1.8 (1) 53031 15.2 (7) 15.2 0.8146 0.1071 0.0189 34267 5.9 (3) 6.9 0.8146 0.1071 0.0199 
Z1051a 11 2626 -1.4 (4) 53031 19 (5) 15.5 0.5995 0.3440 0.0204 34267 6.0 (8) 6.1 0.5995 0.3440 0.0090 
Z1051b 11 2619 -1.1 (4) 52890 26 (5) 15.7 0.5803 0.3568 0.0199 34252 7 (1) 6.1 0.5803 0.3568 0.0088 

                               

        Mo            W           

Sample 
P 

(GPa) 
T (K)  ΔIW 

‐ΔG0

(J/mole) 
ࡰࡷ
 ࢋࡲି࢕ࡹ
(exp) 

ࡰࡷ
 ࢋࡲି࢕ࡹ
(calc) 

ࢋࡲࢄ
࢚ࢋ࢓

  ࡿࢄ
࢚ࢋ࢓

  ࢕ࡹࢄ
࢚ࢋ࢓

 
‐ΔG0

(J/mole) 
ࡰࡷ
 (exp) ࢋࡲିࢃ ࡰࡷ

 (calc) ࢋࡲିࢃ ࢋࡲࢄ
࢚ࢋ࢓

  ࡿࢄ
࢚ࢋ࢓

  ࢃࢄ
࢚ࢋ࢓

 

H3371b 11 2773 -2.4 (2) 36485 6 (3) 4.8 0.9070  0.0212 -63473 0.05 (2) 0.064 0.9070  0.0128 
H3372b 11 2478 -2.11 (5) 35105 0.7 (2) 5.1 0.9457  0.0040 -63334 0.017 (6) 0.046 0.9457  0.0033 
H3586b 11 2609 -2.3 (1) 35718 3 (1) 5.1 0.9457  0.0049 -63396 0.018 (6) 0.054 0.9457  0.0038 
H3586a 11 2609 -2.2 (3) 35718 4 (2) 5.0 0.9389  0.0065 -63396 0.01 (1) 0.054 0.9389  0.0050 
Z822b 11 2573 -2.1 (1) 35550 5 (1) 5.1 0.9356  0.0049 -63379 0.05 (1) 0.052 0.9356  0.0049 
Z916b 11 2580 -2.2 (1) 35582 3 (2) 5.1 0.9508  0.0049 -63382 0.03 (1) 0.052 0.9508  0.0045 
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Table 19 continued 

Z1011b 11 2605 -2.7 (5) 36485 6 (3) 5.1 0.9205  0.0065 -63473 0.06 (3) 0.064 0.9205  0.0058 
Z859a 18 2717 -2.1 (3) 36223 7 (1) 5.1 0.9259  0.0050 -63447 0.09 (3) 0.060 0.9259  0.0048 
Z865a 18 2834 -2.8 (5) 36771 5 (2) 5.1 0.9332  0.0050 -63502 0.07 (3) 0.068 0.9332  0.0047 
Z929a 20 2799 -2.5 (6) 36607 5 (1) 5.1 0.9453  0.0050 -63485 0.05 (1) 0.065 0.9453  0.0046 
Z950a 21 2904 -2.0 (3) 37098 3 (1) 5.1 0.9343  0.0047 -63535 0.09 (3) 0.072 0.9343  0.0045 
Z970a 21 2911 -2.8 (8) 37131 3.5 (7) 5.1 0.9377  0.0049 -63538 0.08 (2) 0.072 0.9377  0.0046 
Z970b 21 2911 -2.2 (2) 37131 4 (1) 5.1 0.9357  0.0049 -63538 0.09 (3) 0.072 0.9357  0.0046 

Z1009b 11 2605 -2.1 (6) 35699 3 (2) 3.4 0.7354 0.1999 0.0093 -63394 0.010 (5) 0.012 0.7354 0.1999 0.0034 
H3371a 11 2478 -1.9 (2) 35105 1.7 (3) 3.5 0.7521 0.1782 0.0102 -63334 0.016 (3) 0.011 0.7521 0.1782 0.0044 
H3372a 11 2626 -1.8 (1) 35798 3.9 (5) 3.9 0.8146 0.1071 0.0174 -63404 0.024 (3) 0.024 0.8146 0.1071 0.0061 
Z1051a 11 2626 -1.4 (4) 35798 2.8 (9) 2.8 0.5995 0.3440 0.0088 -63404 0.004 (1) 0.004 0.5995 0.3440 0.0020 
Z1051b 11 2619 -1.1 (4) 35765 4 (1) 2.8 0.5803 0.3568 0.0096 -63401 0.003 (2) 0.004 0.5803 0.3568 0.0012 
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6.3.1 Divalent elements nickel and cobalt 

 

6.3.1.1 Nickel 

 

   The exchange coefficients for the refractory element Ni decrease very slightly with 

increasing temperature. If literature data are included into the fit the observed effect is much 

more distinct. The parameterization of all Ni results showed that its partitioning behaviour is 

insensitive to changes in pressures regardless of literature data (with peridotitic silicate 

composition) is incorporated into the fit or not. In both cases the partitioning behaviour of Ni 

can be explained by the effect of temperature changes alone - an observation that is different 

to previous results that reported that increasing pressures reduce the siderophility of Ni (e.g. 

Li and Agee, 1996; Siebert et al., 2013). Moreover, unlike Kegler et al. (2008), no evidence 

for a difference in the partitioning behaviour of Ni below and above 5 GPa was found.  

   As can be seen in Figure 44a adding other literature data into the fit causes significant 

changes in the outcome. However the parameterization of the partitioning data of Ni clearly 

benefits from the addition of other data points as can be seen in Figure 44b: Although 

conducted at slightly different conditions a clear temperature trend is shown with increasing 

temperature significantly reducing the exchange coefficient values. Although no pressure 

dependence was found the data of this study is in very good agreement to literature results.  

   It is furthermore observed that S hardly effects the partitioning behaviour of Ni. In Figure 

44c logarithmic exchange coefficients are plotted against increasing S content of the metal 

phase. Green and red dotted lines represent a linear regression to the calculated results 

according to whether literature as given in Table 18 was included in the parameterization of 

Ni partitioning or not. The temperature effect is included in the fit. The observations are in 

good agreement with the results of Li and Agee (1996, 2001). The exchange coeffiecients 

obtained from Kiseeva et al. (2013) are higher than the values obtained in this study, most 

likely because the experiments of Kiseeva et al. (2013) were performed at much lower 

pressure and temperature. Equations [52] and [53] show the parameterization of the liquid 

metal – liquid silicate partitioning behaviour of Ni for this study and including literature 

according to Table 18 respectively. 

 

 



Chapter 6: Non-volatile element partitioning 

172 
 

logܭ஽
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ܶ
	െ	
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Figure 44a: Experimentally determined logarithmic exchange coefficients minus the activity terms for Fe and Ni 

(equation [51]) are plotted against inverse temperature. The solid green and black lines represent the calculated 

temperature dependence of Ni partitioning with and without literature data being incorporated into the fit 

respectively. b: Comparison between the results of this study and the recalculated results from literature data 

sets for Ni. Experimentally obtained logarithmic exchange coefficient values are plotted against inverse 

temperature. c: The dependence of the metal – silicate partitioning of Ni on the S-content of the metal (mole 

fractions). The red and green dotted lines represent a linear regression to the recalculated results for a given 

ࡿࢿ
 value of 0.01 or -0.05 with the latter one being the result of the parameterization when literature data ࢏ࡺ

according to Table 18 was taken into account to better constrain the pressure and temperature dependence of 

Ni. Partly unfilled symbols in c) denote experiments that were conducted in graphite capsules. Literature: a) 

Siebert et al. (2011), b) Kegler et al. (2008), c) Siebert et el. (2013), d) Righter et al. (2010), e) Wade and Wood 

(2005), f) Gessmann et al. (1998). 

 

 

 

6.3.1.2 Cobalt 

 

   The liquid metal – liquid silicate partitioning behaviour of Co is weakly effected by changes 

in pressure and temperature. In fact only when incorporating literature data into the fit the 

parameterization of Co partitioning shows that increasing pressure slightly lowers the 
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siderophility of Co, but the calculated temperature trends at 11 GPa and 21 GPa are not 

distinguishable from one another (Figure 45a). This observation is similar to the results of Li 

and Agee (1996) (Figure 43a). However the parameterization of the results of this study and 

the combined parameterization that includes literature data with peridotitic silicate 

composition (compare Table 18) are, within the error, in agreement with one another. 

Moreover, similar to Ni, no evidence for a low pressure regime was found as it has been 

proposed by Kegler et al. (2008). 

   The data are furthermore in good agreement with other literature data sets, only the results 

of Righter et al. (2010) exhibit higher exchange coefficient values (Figure 45b). 

   As shown in Figure 45c the partitioning behaviour of Co is only effected very slightly by 

the presence of S in the metal phase. The results of this study are in agreement with the results 

of Li and Agee (1996 and 2001) and Kiseeva et al. (2013) even though the experiments of the 

latter study were conducted in C-capsules. Again red and green dotted lines represent 

regression lines to calculated results according to the fit of experiments solely from this study 

and the fit that included literature data according to Table 18 respectively. 

   Equations [54] and [55] show the parameterization of the partitioning behaviour of Co for 

this study and including literature respectively.  

 

logܭ஽
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Figure 45a: Experimentally determined logarithmic exchange coefficients minus the activity terms for Fe and 

Co (equation [51]) are plotted against inverse temperature. The solid green and black lines represent the 

calculated temperature dependence of Co partitioning with and without literature data being incorporated into 

the fit respectively. When literature data is included increasing pressure was found to slightly reduce the 

siderophility of Co. However the calculated temperature trends at 11 GPa and 21 GPa are hardly 

distinguishable from one another.  b: Comparison between the results of this study and the recalculated results 

from literature data sets for Co. Experimentally obtained logarithmic exchange coefficient values are plotted 

against inverse temperature. c: The dependence of the metal – silicate partitioning of Co on the S-content of the 

metal (mole fractions). The red and green dotted lines represent a linear regression to the recalculated results 

for a given ࡿࢿ
 value of 0.58 or 2.07 with the latter one being the result of the parameterization when literature ࢕࡯

data according to Table 18 was taken into account to better constrain the pressure and temperature dependence 

of Co. Partly unfilled symbols in c) denote experiments that were conducted in graphite capsules. Literature: a) 

Siebert et al. (2011), b) Kegler et al. (2008), c) Siebert et el. (2013), d) Righter et al. (2010), e) Wade and Wood 

(2005), f) Gessmann et al. (1998). 
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    The partitioning behaviour of Mo was found to be insensitive to variations in pressure. The 

parameterization of the metal – silicate partitioning behaviour of Mo shows that increasing 
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temperature results in decreasing exchange coefficient values. This is also the case when 

literature data with peridotitic composition according to Table 18 is included into the 

parameterization. The results of the temperature dependence are shown in Figure 46a.  

   The experimental results are in good agreement with the observations by Righter et al. 

(2010), Siebert et al. (2011) and Wade et al. (2012). Because the first two studies are 

performed at comparatively low pressures and temperatures, this confirms the fact that a 

pressure dependence could not be parameterized (Figure 46b). However it should be noted 

that Siebert et al. (2011) found that the siderophility of Mo is decreased by increasing 

pressure. Therefore further experiments will be necessary to better parameterize the 

partitioning behaviour of Mo into which additionally the dependence on silicate melt 

composition should be taken into account. 

   The presence of S in the metal phase reduces the siderophility of Mo as shown in Figure 

46c. Red and green dotted lines denote the results of the parameterization of the S-dependence 

of the Mo partitioning in the cases of fitting the experimental results without or with further 

literature data respectively. The results of this study are in excellent agreement with the data 

given by Wade et al. (2005). Equation [56] and [57] give the final parameterization of the 

partitioning behaviour of Mo of this study and of this study plus literature respectively. 
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Figure 46a: Experimentally determined logarithmic exchange coefficients minus the activity terms for Fe and 

Mo (equation [51]) are plotted against inverse temperature. The solid green and black lines represent the 

calculated temperature dependence of Mo partitioning with and without literature data being incorporated into 

the fit respectively. Literature: a) Siebert et al. (2011), b) Wade and Wood (2012). b: Comparison between the 

results of this study and the recalculated results from literature data sets for Mo. Experimentally obtained 

logarithmic exchange coefficient values are plotted against inverse temperature. c: The dependence of the metal 

– silicate partitioning of Mo on the S-content of the metal (mole fractions). The red and green dotted lines 

represent a linear regression to the recalculated results for a given ࡿࢿ
 value of 2.88 or 4.65 with the latter one ࢕ࡹ

being the result of the parameterization when literature data according to Table 18 was taken into account to 

better constrain the pressure and temperature dependence of Mo.  

 

 

 

6.3.3 Hexavalent element tungsten 

 

    The liquid metal – liquid silicate partitioning behaviour of W is strongly dependent on 

temperature with increasing temperatures resulting in higher ܭ஽
ௐିி௘ values. This is the case 

regardless of parameterizing the partitioning behaviour of W on the basis of the experiments 
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(compare Table 18). The individual regressions are indistinguishable as can be seen in Figure 

47a. No pressure dependence has been observed. 

   The data are in good agreement with the results published by Righter et al. (2010) and 

Ballhaus et al. (2013) and one experiment from the study of Cottrell et al. (2009 and 2010) 

that was conducted in a MgO capsule (Figure 47b). 

   Within the suite of studied refractory elements W exhibits the strongest dependence on the 

S content of the metal phase. Within the range of experimentally investigated S 

concentrations the logarithmic exchange coefficients of W decrease by one logarithmic unit. 

The data are not in good agreement with the data set of Wade et al. (2012). This might be due 

to differences in the silicate composition. The parameterization of the S-dependent 

partitioning behaviour of W is the same whether literature data are included into the fit or not 

(Figure 47c). 

   The parameterization of the partitioning behaviour of W with and without additional 

experiments from the literature is given by equations [58] and [59].  
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Figure 47a: Experimentally determined logarithmic exchange coefficients minus the activity terms for Fe and W 

(equation [51]) are plotted against inverse temperature. The solid green and black lines represent the calculated 

temperature dependence of W partitioning with and without literature data being incorporated into the fit 

respectively. b: Comparison between the results of this study and the recalculated results from literature data 

sets for W. Experimentally obtained logarithmic exchange coefficient values are plotted against inverse 

temperature. c: The dependence of the metal – silicate partitioning of W on the S-content of the metal (mole 

fractions). The red and green dotted lines represent a linear regression to the recalculated results for a given ࡿࢿ
 ࢃ

value of 10.46 or 10.44 with the latter one being the result of the parameterization when literature data 

according to Table 18 was taken into account to better constrain the pressure and temperature dependence of W.  
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Increasing S contents on the metal phase significantly influence the partitioning behaviour of 

Mo and W by lowering their ܭ஽
ெିி௘ values. 

   The results have additionally been parameterized including experiments from the literature 

that were comparable in terms of capsule material (MgO), silicate composition (peridotitic) 

and that did not exhibit significant amounts of Si or S in the metal phase. In the cases of Co, 

Mo and W the parameterization of their partitioning behaviours led to very similar results. In 

the case of Ni however, the parameterization of the influence of temperature changed 

significantly: when fitting the data of this study alone hardly any temperature dependence has 

been detected, whereas the addition of literature data clearly shows that increasing 

temperature lowers the siderophility of Ni. Unlike previous studies (e.g. Li and Agee, 1996; 

Kegler et al., 2008; Siebert et al., 2012) the partitioning behaviour of Ni was found to be 

independent of pressure, but strongly affected by temperature. Moreover an observation of 

two separate pressure regimes below and above 5 GPa, as proposed by Kegler et al. (2008), 

has not been identified for Ni and Co. Righter (2011) also proposed that the partitioning of Ni 

and Co does not differ between the two pressure regimes. The latter author argues that the 

observations of Kegler et al. (2008) are caused by variable silicate melt composition, which 

cannot be confirmed by the results of this study, because all experiments that were 

incorporated into the fit involved a peridotitic silicate composition.  

   All logarithmic exchange coefficient values have furthermore been compared to other 

literature data that were obtained at slightly different conditions. It was found that the results 

of this study are in excellent agreement with the results published by various authors. Minor 

differences might be the result of varying silicate composition.  

   Table 20 summarizes the fitted parameters a, b, c and ߝௌ
ெ that were derived in this study for 

each element. For each of the four studied elements a second set of parameterizations that 

includes literature data (Table 18) are given. By employing equations [48], [49] and [50], 

exchange coefficients can be derived as a function of pressure, temperature and metal 

composition. Interaction parameters ߝௌ
ெ are listed for a given temperature of 1873 K and thus 

need to be corrected to the temperature of interest using equation [39], Chapter 5. 

Additionally the uncertainty on each fit is given that has been calculated employing equation 

[41], Chapter 5. 
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Table 20: Summary of fitted parameters that correspond to equation [48], [49] and [50]. Uncertainties were 

obtained by employing equation [41], Chapter 5. Additionally the parameterization of the combined results of 

this study and those mentioned in Table 18 are given. 

Element a b c ࡿࢿ
ࡰࡷ log ± ࡹ

 ࢋࡲିࡹ
Ni (this study) 1.05 21 - 0.01 0.10 
Ni (this study + lit.) -1.06 5824 - -0.05 0.11 
Co (this study) 0.11 1501 - 0.58 0.07 
Co (this study + lit.) 0.02 2011 -13 2.07 0.10 
Mo (this study) 0.24 1228 - 2.88 0.15 
Mo (this study + lit.) -1.04 4813 - 4.65 0.26 
W (this study) -0.02 -3247 - 10.46 0.15 
W (this study + lit.) -0.02 -3266 - 10.44 0.20 
 

   The derived interaction parameters between S and the elements of interest are compared to 

those derived from the mass related e-values in the Steelmaking Data Sourcebook in Table 

21. The results for Ni and Co are in very good agreement with the values derived from the 

Steelmaking Data Sourcebook. In the cases of Mo and W it is consistently found that 

increasing S-contents of the metal phase lower the siderophility of both elements. However in 

this study a stronger dependence on the S-content of the metal phase for Mo and W has been 

observed than predicted by the values given in the Steelmaking Data Sourcebook. 

 

Table 21: Comparison between interaction parameters for non-volatile elements derived in this work and those 

given in the Steelmaking Data Sourcebook. 

Interaction Parameter This study 
This study + 

literature 
Steelmaking Data 

Sourcebook 

ࡿࢿ
 0.05- 0.05- 0.01 ࢏ࡺ
ࡿࢿ
 0.58 2.07 0.58 ࢕࡯
ࡿࢿ
 0.35 4.65 2.88 ࢕ࡹ
ࡿࢿ
 6.05 10.44 10.46 ࢃ

 

   The combined parameterization of the partitioning data of this study and literature data as 

given in Table 20 (this study + lit.) was finally incorporated into a simplified core formation 

model similar to that discussed in Chapter 5:  

   As before, the mantle and core abundances of the elements of interest have been adopted 

from McDounough (2003). The values are given in Table 22 together with the partition 

coefficient ratios of Ni/Co and Mo/W. 

 However because Ni, Co, W and Mo are classified as non-volatile it has been tried to model 

the absolute values of the partition coefficients of these elements in the Earth.  
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Table 22: Abundance of Ni, Co, Mo and W in the Earth´s mantle and core adopted from McDonough (2003).  

Additionally the partition coefficient ratio of Ni/Co and Mo/W is given. 

Element Mantle abundance 
(McDonough, 2003) 

Core abundance 
(McDonough, 2003) 

Partition coefficient 
ratio 

Ni 1960 ppm 5.2 wt% Ni/Co 
Co 105 ppm 0.25 wt% 1.11 
Mo 0.05 ppm 5 ppm Mo/W 
W 0.029 ppm 0.47 ppm 6.17 
 
 
   In a first approach only the influence of pressure and temperature has been modeled. The 

metal phase contained 85.5 wt% Fe plus the individual amounts of the elements of interest as 

given in Table 22. The temperature was fixed at the peridotitic liquidus as given by Liebske et 

al. (2012). As has been proposed by various authors (e.g. Li and Agee, 1996; Kegler et al., 

2008) the partition coefficients of Ni and Co were found to converge with increasing pressure, 

since increasing pressure involves an increase in the peridotitic liquidus temperature. The 

absolute abundances of Ni and Co can only be matched at enormously high pressures of 126 

and 116 GPa respectively (Figure 48).  

   The evolution of the partition coefficient ratio of Ni and Co with increasing pressure is 

shown in Figure 49. This in another way shows that high pressures can prevent the 

fractionation of Ni and Co, as these two elements were found to be depleted to the same 

amount in the Earth´s mantle relative to CI chondrites (Palme and O´Neill, 2003 and 2014, 

compare Chapter 1, Figure 4). 
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Figure 48: Logarithmic partition coefficients are plotted against increasing pressure for the elements Ni and 

Co. The absolute abundances of both elements in the Earth are matched at 116 and 126 GPa for Co and Ni 

respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 49: The partition coefficient ratio of Ni and Co is plotted against increasing pressure. At high pressures 

the partition coefficient ratio approaches the Earth´s Ni/Co partition coefficient ratio. 

 

   However extrapolated partition coefficients at very high pressures have high uncertainites 

because of which it cannot be excluded that the absolute abundances of Ni and Co and with it 

their partition coefficient ratio is matched at lower pressures. As can be seen in Figures 48 
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and 49 the trend of Ni and Co partitioning converges with the values for the Earth probably 

around 60 GPa. 

   In the case of W and Mo no pressure/temperature scenario led to the absolute abundance of 

both elements in the Earth´s mantle. Pressures above 65 GPa furthermore result in W being 

more siderophile than Mo, the opposite of which is observed for the Earth (Figure 50). The 

relative abundances of Mo and W however can be matched at 29 GPa as illustrated in Figure 

51, in which the partition coefficient ratio of these elements is plotted against increasing 

pressure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 50: Logarithmic partition coefficients are plotted against increasing pressure for the elements Mo and 

W. The absolute abundance of both elements in the Earth cannot be matched. 
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Figure 51: The partition coefficient ratio of Mo and W is plotted against increasing pressure. At 29 GPa the 

partition coefficient ratio is consistent with the observation for the Earth. 

 

   In a second step the influence of S on the partitioning behaviour was modeled either for Ni 

and Co or for Mo and W. Again very high pressures between 95 and 104 GPa together with 

small amounts of S (up to 0.4 wt%) can explain the Ni and Co abundances in the Earth. 

(Figure 52). 
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Figure 52: The concentration of S in the metal phase necessary to match the abundance of the elements Ni and 

Co in the Earth is plotted against increasing pressure.  

 

   It has been proposed by Wade et al. (2012) that the abundances of W and Mo in the Earth´s 

mantle can be explained if S is added to the growing Earth during the final 10 to 20 % of 

accretion. In this study it has been found that W is more strongly affected by the presence of S 

in the metal phase than Mo. Thus above 65 GPa high amounts of S in the metal phase can 

reverse the result of W being more siderophile than Mo. However no combination of pressure 

and S- metal contents with temperature being fixed at the peridotitic liquidus (Liebske et al. 

(2012) could exactly reproduce the absolute or relative abundances of Mo and W in the Earth.  

   However, in Figure 53 logarithmic partition coefficients of Mo and W are plotted against 

increasing S-content of the metal phase at a pressure of 65 GPa. At this point both elements 

exhibit the same partition coefficients if the metal phase is S-free. Therefore it can be 

visualized how increasing S-contents effect the partitioning behaviour of both elements to 

different extents.  
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high uncertainties these results show that the addition of a S-rich metal phase to the Earth 

could explain the depletions of Mo and W in the Earth´s mantle as similarly proposed by 

Wade et al. (2012).  

 

 

Figure 53: Logarithmic partition coefficients of Mo and W are plotted against increasing S-contents of the metal 

phase at a pressure of 65 GPa with temperature being fixed at the peridotitic liquidus (Liebske et al., 2012). 

 

 

Figure 54: The partition coefficient ratio of Mo and W are plotted against increasing S-contents of the metal 

phase at a pressure of 65 GPa with temperature being fixed at the peridotitic liquidus (Liebske et al., 2012). 
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   In summary it has been shown that high pressures can reproduce the partition coefficient 

ratio of the non-volatile element pairs Ni-Co and Mo-W, but a unique solution has not been 

found. The absolute abundances of Ni and Co are matched at extremely high pressures of 126 

and 116 GPa respectively. The absolute abundances of Mo and W cannot be reproduced, 

regardless of modeling the pressure and temperature dependence alone or the additional 

influence of S on the partitioning behaviour of both elements, but it has been shown that the 

addition of S can cause the partitioning trends of both elements to converge with the 

respective core – mantle partition coefficients. Continuous core formation models will have to 

be employed to provide further constraints on the conditions that prevailed during core 

formation in the Earth. Additionally the influence of other light elements dissolved in the 

metal phase (e.g. O) or the influence of variable silicate composition have to be considered. 
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7. Summary and outlook 
 

   The liquid metal – liquid silicate partitioning behaviour of the non-volatile elements Ni, Co, 

Mo and W and the volatile elements Cu, Sn, Sb, Ge, Pb, Ag, Au, P and As has been studied at 

pressures between 11 and 23 GPa and temperatures between 2342 K to 2911 K. The 50 % 

condensation temperatures of these elements cover a range from 704 K (Sn) to 1789 K (W) 

and the depletions of these elements in the Earth´s mantle vary by around two orders of 

magnitude. This work has been primarily focused on volatile elements, because the literature 

and with it core formation models lack data of this group of elements. The experiments of this 

study contained a Fe-rich metal phase and a peridotitic silicate phase. However, the Earth´s 

core is known to exhibit a density deficit of around 9.3 wt% (McDonough, 2003), which is 

most likely caused by the presence of light elements such as S, Si and O (e.g. Birch, 1952; 

Jephcoat and Olson, 1987; Anderson and Issak, 2002). In order to investigate the influence of 

light elements dissolved in the metal phase on the partitioning of siderophile elements the 

starting metal powder was varied by the addition of different concentrations of S or Si.  

   A total of 104 successful experiments have been performed employing the multi-anvil 

apparatus. In the resulting samples the initially layered metal powder formed a spherical metal 

phase that is surrounded by quenched silicate matrix. Due to the use of MgO capsules 

ferropericlase has formed at the rim of the capsules and occasionally around the metal sphere. 

The composition of the ferropericlase phases has been used to calculate oxygen fugacity 

relative to the iron-wüstite buffer as described by Mann et al. (2009).  

   All metal and ferropericlase phases have been analysed with the electron probe micro-

analyser, whereas the abundances of both major and trace elements in the silicate phase have 

been detected by employing the laser ablation inductively coupled plasma mass spectrometer. 

The results have been used to calculate partition and exchange coefficient values and finally 

the liquid metal – liquid silicate partitioning behaviour has been parameterized employing the 

ε-approach as formulated by Ma et al. (2001).  

   In a first step the influence of Si on the partitioning behaviour of volatile elements has been 

quantified in terms of interaction parameters ߝௌ௜
ெ. It was found that the addition of Si to the 

metal phase of the partitioning experiments resulted in decreased siderophility for all elements 

studied. Since the addition of Si is accompanied by a decrease in oxygen fugacity this implies 

that for each element studied the interaction of Si with these counteracts the effect of low fO2 

which normally results in increased siderophile behaviour. This shows that reducing 
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conditions in the early stages of core formation do not necessarily result in complete or even 

strong depletion of siderophile elements when Si is present as a light element in the metal 

phase.  

   By parameterizing the effect of Si on the partitioning of volatile elements it was furthermore 

possible to derive the valence states of the elements of interest in the silicate phase. These are 

crucial to know if partitioning is expressed in form of exchange coefficient values and 

especially if partitioning data are used to extrapolate to higher pressure and temperature. Table 

23 summarizes the derived valence states for the volatile elements studied in this work. In the 

case of P an unlikely valence of +6 was observed. More experiments are necessary to better 

parameterize the influence of Si on its partitioning behaviour. During the further procedure of 

this study P was treated as a 5+ cation as suggested by Siebert et al. (2011). 

 

Table 23: Valence state of volatile elements in the silicate phase derived in this study. 

Element Cu Ag Au Pb Sn Ge Sb As (P) 
Valence 

State 
1+ 1+ 2+ 2+ 3+ 3+ 4+ 5+ (6+) 

 

    

   Secondly the partitioning of all volatile elements has been investigated and quantified with 

regards to changes in pressure, temperature and Si- and S-metal contents. The interaction 

parameters ߝௌ௜
ெ were refined by the addition of several more experiments. Additionally 

interaction parameters that describe the influence between S and the elements of interest have 

been investigated.  

   Lastly the effects of pressure, temperature and S-contents of the metal have been studied for 

the non-volatile elements Ni, Co, Mo and W. Again the interaction of S dissolved in the metal 

phase with the elements of interest was described in form of interaction parameter values. 

Table 24 provides the results of the parameterization of the metal – silicate partitioning 

behaviour of all elements. Interaction parameters refer to a temperature of 1873 K. The 

constants a, b and c are related to the entropy, enthalpy and volume change of a chemical 

reaction that involves the native element of interest plus FeO in exchange with pure Fe and an 

oxide of the element of interest. These constants can be used to calculate logarithmic 

exchange coefficient values employing equation [60]: 
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               [60] 

   In the cases of Ni, Co, Mo and W a further parameterization is provided in which literature 

data has been taken into account. To ensure comparability the selected literature data was 

carefully chosen on the basis of the same (peridotitic) silicate and metal composition. 

Furthermore only samples that have been conducted in MgO capsules have been incorporated 

into the fit in order to exclude the possibility of contamination of the metal phase by, for 

example, the dissolution of C from graphite capsules. Finally an uncertainty in the calculated 

logarithmic exchange coefficient values is given as calculated by equation [41]. 

 

Table 24: Summary of the parameterization of the liquid metal - liquid silicate partitioning behaviour of volatile 

and non-volatile elements as derived in Chapters 5 and 6 respectively. 

Element a b c 
ௌ௜ߝ
ெ 
 

(1873 K) 

ௌߝ
ெ 
 

(1873 K) 

Uncertainty  
on log ܭ஽

ெିி௘ 

Volatile       
Ag 2.73 - -84 6.75 -4.07 0.17 
Cu 0.17 3571 - 0.73 -2.58 0.07 
Au 0.19 6521 - 23.06 0.49 0.23 
Pb 0.22 5149 - 10.59 -0.60 0.10 
Sn 0.18 753 63 17.79 6.34 0.09 
Ge 1.24 - - 16.76 13.04 0.24 
Sb 1.35 - - 28.51 12.95 0.45 
As 0.21 - 178 43.47 2.64 0.52 
P -0.06 -5036 - 26.82 15.77 0.47 
Non-volatile       
Ni (this study) 1.05 21 - - 0.01 0.10 
Ni (this study + lit.) -1.06 5824 - - -0.05 0.11 
Co (this study) 0.11 1501 - - 0.58 0.07 
Co (this study + lit.) 0.02 2011 -13 - 2.07 0.10 
Mo (this study) 0.24 1228 - - 2.88 0.15 
Mo (this study + lit.) -1.04 4813 - - 4.65 0.26 
W (this study) -0.02 -3247 - - 10.46 0.15 
W (this study + lit.) -0.02 -3266 - - 10.44 0.20 
 

   Finally the parameterization of the liquid metal – liquid silicate partitioning behaviour has 

been used to derive constraints on the conditions that prevailed during core formation. The 

partitioning of non-volatile and volatile elements has been modeled with the aim of 

explaining the absolute or relative abundances in the Earth´s mantle. In the case of volatile 
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elements the partitioning of pairs of elements with similar 50% condensation temperatures as 

given by Lodders (2003) has been modeled in order to be able to neglect assumptions about 

the extent of volatility that these elements might have experienced. Therefore the ratio of the 

silicate mantle abundances has been employed as constraining parameter in the models. For 

both groups of elements, volatiles and non-volatiles, their abundances in the Earth´s core and 

mantle have been adopted from McDonough (2003). Oxygen fugacity was fixed by the 

present day FeO content of the Earth´s mantle as given by the latter study and the temperature 

was connected to the particular pressure as its corresponding liquidus temperature (Liebske et 

al., 2012). 

   It was found that increasing pressure facilitates the achievement of the correct relative 

abundances of Mo/W (29 GPa), Cu/Au (12 GPa), Cu/As (5 GPa) and Sn/Pb (21 GPa). It has 

to be considered that the derived partition coefficients have high uncertainties, because of 

which the individual partition coefficient ratios can possibly be explained by a range of 

pressures. 

  In the case of Ni and Co it was possible to explain their absolute abundances in the Earth by 

very high pressures of 126 and 116 GPa respectively. However a unique solution that 

simultaneously explains the abundances of all elements in the Earth has not been found. In the 

cases of Ag/Sb and Cu/As (> 5 GPa) increasing pressures even resulted in the opposite and 

fractionated the particular elements from one another.  

   Incorporating the influence of S on the partitioning behaviour of the elements of interest 

extended the pressure range that can explain the relative abundances of Ni/Co, Cu/Au, Cu/As, 

and Ag/Sb. In particular it has been found that the ratio of the element pairs Cu/Au and Cu/As 

can be explained at 7 GPa and 4.5 wt% S. The correct ratios of Cu/Au and Ag/Sb can 

simultaneously be matched at 2 GPa and 9 wt% S and in the case of Cu/As and Ag/Sb 

pressures of 9 GPa together with 12 wt% S in the metal phase are necessary to explain both 

ratios at the same time. These results clearly exceed the assumed abundance of around 2 wt% 

S in the Earth´s core (Dreibus and Palme, 1996), but it is not in conflict with the theory of a 

late S-rich accretionary component as proposed by O´Neill (1991). At pressures above 65 

GPa the addition of S to the metal phase can furthermore prevent W becoming more 

siderophile than Mo as would be the result of pressure and temperature alone. However the 

addition of S to the metal phase did not provide an explanation to the relative abundances of 

Sn/Pb. 
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   As Si is most likely one of the elements that contributes the most to the Earth´s core density 

deficit (Rubie et al., 2011; Fischer et al., 2012 and 2013) the combined effect of S- and Si-

metal contents has been modeled at various pressure and temperature conditions. For each 

pair of volatile elements (Cu/Au, Cu/As, Ag/Sb and Sn/Pb) a combination of S and Si 

prevents their fractionation from one another at various pressures. In particular it was found 

that S and Si contents of each less than 1 wt % at pressures between 6 and 9 GPa can explain 

the relative abundances of Cu, Au and As, three elements with similar 50% condensation 

temperatures (Lodders, 2003). However still a single set of pressure, temperature, S- and Si-

contents that could either be understood as a single stage core formation scenario or the 

averaged effect in a continuous core formation episode could not be determined. 

   In summary a single stage core formation event can be excluded by the results of this study. 

It seems that increasing pressure and with it increasing temperature facilitates the 

achievement of the relative mantle abundances of various element pairs. Best results have 

been obtained when the effects of Si- and S- metal contents have been taken into account 

simultaneously.  

   In order to better place constraints on the conditions that prevailed during core formation of 

the Earth the results of this study will have to be incorporated into continuous and 

heterogeneous core formation models that allow changes in oxygen fugacity, pressure, 

temperature and material with time. Furthermore it will be necessary to study the effect of 

other light elements, such as O, and different silicate compositions on the partitioning of 

siderophile elements.  

   With regards to this study the valence state of P needs to be clarified by several more 

experiments. Furthermore the partitioning behaviour of As, Ge and Sb should be studied in 

more detail in order to settle whether or not these elements are affected by changes in pressure 

and temperature. 
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Appendix 
 

Table A1: Average composition of all metal phases as detected by EPMA. The concentrations are given in wt% and the values in brackets give the error on the last digit (1 σ 

standard deviation). “N” stands for the number of analyses that have been averaged and column “Ø” lists the employed beam diameters. Shaded rows mark experiments the 

metal composition of which was calculated by Image Analyses. Given are the composition of the exsolutions (exs.) and the metal matrix and their relative fractions (by area). 

Exp. Mg Al Si Ca Fe O S Co Ni Mo W Cu Ge Sn Sb Pb P As Au Ag N Ø 
                       
11GPa                       
H3355a 0.001 (3) 0.005 (8) 0.06 (3) - 93 (1) 0.38 (4) 0.02 (2) - - - - 2.2 (1) 1.0 (1) 0.76 (8) 0.62 (9) 1 (1) - - - - 34 10+20 
H3355b 0.2 (6) 0.1 (2) 0.3 (6) 0.03 (8) 93 (4) 1 (2) 0.01 (1) - - - - 0.1 (4) 0.8 (2) 0.7 (1) 0.6 (2) 1 (1) - - - - 41 10+20 
H3361a  
Exs. 31.2% - 0.004 (7) 0.003 (6) - 85.9 (9) 0.35 (5) 5.5 (8) - - - - 2.4 (2) 1.5 (2) 1.22 (9) 1.2 (1) 0.5 (7) - - - - 30 10 
Matrix 68.8% 0.003 (6) 0.003 (5) 0.005 (9) - 65 (4) 3 (2) 19 (2) - - - - 8 (3) 0.6 (2) 1.8 (7) 2.2 (8) 2 (1) - - - - 31 10 
H3361b 0.1 (5) 0.0 (2) 0.1 (4) 0.01 (7) 90 (5) 1 (1) 0.09 (9) - - - - 2 (2) 1.5 (5) 0.5 (7) 2.1 (9) 1.0 (9) - - - - 61 10 
H3364a 0.001 (4) 0.005 (7) 0.002 (5) - 82 (2) 0.4 (2) 10.7 (8) - - - - 1.3 (3) 1.2 (2) 1.5 (4) 1.6 (3) 1.3 (8) - - - - 34 10 
H3364b 
Exs. 1.5% 0.009 (8) 0.005 (6) 0.05 (4) - 5.2 (8) 1.0 (7) 0.07 (9) - - - - 60 (10) 0.2 (2) 19 (3) 7.2 (9) 12 (21) - - - - 10 1 
Matrix 98.5% 0.001 (2) 0.003 (6) 0.006 (8) - 83 (2) 0.35 (6) 10 (2) - - - - 3.2 (8) 1.1 (3) 1.1 (2) 1.0 (2) 1.0 (8) - - - - 10 10 
H3367b 0.00 (1) 0.003 (6) 0.01 (2) - 81 (2) 0.4 (2) 10 (1) - - - - 2.5 (5) 1.0 (2) 1.5 (2) 1.0 (4) 1.1 (9) - - - - 49 10+20 
H3371a 0.007 (9) 0.002 (5) - 0.002 (3) 80 (1) 0.3 (4) 11 (1) 2.5 (1) 2.4 (1) 1.86 (8) 1.6 (2) - - - - - - - - - 31 10 
H3371b 0.01 (1) 0.002 (5) - 0.006 (6) 83 (3) 0.20 (4) 0.25 (9) 2.5 (3) 2.3 (4) 3 (1) 3.8 (8) - - - - - - - - - 
H3372a 0.02 (2) 0.004 (7) - 0.012 (8) 83.2 (6) 0.45 (4) 6.3 (1) 2.15 (8) 2.02 (7) 3.05 (6) 2.1 (2) - - - - - - - - - 30 10 
H3372b 0.02 (2) 0.005 (7) 0.15 (1) 0.003 (4) 95.1 (5) 0.44 (4) 0.04 (2) 1.76 (7) 1.22 (7) 0.7 (2) 1.1 (3) - - - - - - - - - 30 10 
H3400a 
Exs. 1.04% 0.10 (7) 0.12 (2) 0.04 (5) 0.07 (3) 4 (1) 0.9 (6) 0.004 (9) - - - - - - - - - 0.007 (9) 0.2 (2) 36 (7) 64 (7) 12 1 
Matrix 98.96% 0.001 (4) 0.006 (7) 0.004 (7) 0.015 (9) 92 (2) 0.15 (4) 0.02 (1) - - - - - - - - - 0.3 (2) 1.3 (3) 1.4 (5) 0.06 (3) 29 10 
H3400b 
Exs. 1.6% 0.05 (4) 0.11 (2) 0.0 (1) 0.02 (1) 5 (3) 0.5 (2) 0.3 (4) - - - - - - - - - 0.002 (5) 0.3 (2) 38 (13) 61 (12) 21 1 
Matrix 98.4% - 0.004 (5) 0.006 (9) 0.013 (7) 86.1 (6) 0.14 (3) 8.5 (4) - - - - - - - - - 0.2 (2) 1.1 (3) 0.5 (3) 0.03 (2) 30 10 
H3404a 
Exs. 0.8% 0.06 (3) 0.05 (1) 0.01 (2) 0.02 (1) 3.9 (6) 0.9 (5) 0.00 (1) - - - - - - - - - - 0.2 (2) 51 (2) 49 (2) 10 1 
Matrix 99.2% - 0.003 (5) 0.005 (8) 0.003 (4) 92.2 (0.4) 0.27 (5) 0.02 (2) - - - - - - - - - 0.74 (8) 1.7 (2) 1.7 (5) 0.03 (2) 20 20 
H3404b 
Exs. 1.6% 0.2 (3) 0.2 (1) 0.05 (8) 0.1 (1) 4 (2) 1 (1) 0.3 (3) - - - - - - - - - 0.0 (1) 0.1 (2) 15 (5) 79 (6) 21 1 
Matrix 98.4% 0.003 (6) 0.005 (7) 0.004 (6) 0.012 (8) 87.8 (6) 0.16 (3) 8.9 (4) - - - - - - - - - 0.9 (3) 0.4 (3) 0.5 (4) 0.06 (3) 30 10 
H3439a - 0.007 (8) 0.02 (2) 0.002 (4) 93 (1) 0.27 (4) - - - - - - - - - - 0.4 (1) 1.0 (2) 1.8 (5) 0.2 (3) 50 20 
H3439b 0.01 (1) 0.006 (8) 0.02 (1) 0.11 (1) 93 (2) 2.0 (4) 0.02 (1) - - - - - - - - - 0.4 (1) 0.9 (3) 1.7 (5) 0.4 (5) 51 20 
H3444a 0.01 (1) 0.005 (7) 0.30 (4) 0.003 (4) 98,5 (7) 0.36 (4) - - - - - - - - - - - - - 0.6 (4) 30 20 
H3444b 0.01 (1) 0.005 (9) 0.23 (7) 0.002 (3) 98.8 (4) 0.33 (7) - - - - - - - - - - - - - 0.6 (2) 29 20 
H3449a 0.005 (9) 0.002 (5) 0.11 (8) 0.013 (7) 99.6 (6) 0.6 (2) - - - - - - - - - 0.9 (8) - - - - 30 20 
H3449b 0.01 (1) 0.005 (8) 0.15 (6) 0.016 (7) 99.9 (6) 0.6 (1) - - - - - - - - - 0.8 (6) - - - - 30 20 
H3450a 0.002 (6) 0.004 (8) 0.05 (3) - 94.5 (8) 0.30 (4) - - - - - 1.32 (7) 0.8 (1) 0.9 (1) 0.08 (2) - - - - - 30 20 
H3455a 0.01 (1) 0.003 (5) 0.03 (5) 0.003 (4) 98.3 (8) 0.5 (4) - - - - - - - - - 0.6 (6) - - - - 30 20 
H3455b 0.006 (9) 0.005 (6) 0.007 (9) 0.004 (4) 92 (1) 0.22 (5) - - - - - - - - - 0.7 (7) - - - - 30 20 
H3497a 0.01 (1) 0.002 (6) 0.4 (4) 0.002 (4) 99.0 (9) 0.3 (2) - - - - - - - - - 0.5 (3) - - - - 31 20 
H3497b 0.006 (9) 0.003 (7) 0.28 (7) 0.003 (5) 98.7 (5) 0.26 (6) - - - - - - - - - - - - - 0.2 (1) 31 20 
H3586a 0.01 (2) 0.004 (7) 0.001 (5) 0.002 (3) 91.3 (5) 0.29 (5) - 2.40 (8) 1.56 (6) 1.09 (8) 1.6 (2) - - - - - - - - - 30 20 
H3586b 0.005 (6) 0.003 (6) 0.05 (8) 0.003 (4) 93.4 (6) 0.4 (1) - 2.03 (7) 1.26 (5) 0.8 (1) 1.2 (2) - - - - - - - - - 30 20 
H3704a 0.006 (8) 0.003 (5) 11.6 (2) 0.001 (2) 88.2 (8) 0.29 (5) - - - - - - - - - 0.5 (5) - - - - 30 20 
H3704b 0.01 (1) 0.004 (6) 6.38 (7) 0.002 (2) 94.5 (3) 0.05 (2) - - - - - - - - - 0.17 (9) - - - - 31 20 
H3707a 0.003 (7) 0.003 (6) 0.1 (2) 0.001 (2) 96.1 (8) 0.1 (2) - - - - - 1.33 (7) 0.7 (1) 0.7 (1) 0.9 (1) - - - - - 30 20 
H3707b 0.01 (2) 0.02 (3) 11.6 (2) 0.002 (4) 83.0 (7) 0.2 (1) - - - - - 1.5 (2) 0.8 (2) 0.9 (1) 1.6 (2) - - - - - 26 20 
H3718a 0.1 (5) 0.1 (2) 0.2 (7) 0.1 (4) 93 (3) 0 (1) - - - - - 1.34 (7) 0.7 (1) 0.9 (2) 1.2 (2) - - - - - 30 20 
H3718b 0.001 (2) 0.006 (8) 3.94 (4) 0.001 (1) 91.5 (4) 0.19 (7) - - - - - 1.05 (6) 0.7 (1) 0.99 (3) 0.80 (3) - - - - - 30 20 
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Table A1 continued 

Exp. Mg Al Si Ca Fe O S Co Ni Mo W Cu Ge Sn Sb Pb P As Au Ag N Ø 
                       
Z798a 0.005 (2) 0.005 (8) 0.34 (7) 0.002 (3) 99.4 (5) 0.31 (7) - - - - - - - - - - - - - 0.6 (2) 30 20 
Z798b 0.006 (9) 0.005 (7) 0.07 (4) 0.002 (3) 99.6 (5) 0.36 (8) - - - - - - - - - - - - - 0.6 (2) 30 20 
Z822a 0.1 (3) - 0.4 (8) 0.1 (3) 93 (2) 1 (1) - - - - - 1.37 (8) 1.0 (1) 1.0 (0.1) 0.06 (1) - - - - - 30 20 
Z822b - 0.02 (4) 0.4 (8) 0.04 (9) 94 (1) 0.4 (6) - 2.0 (1) 1.31 (6) 0.9 (1) 1.6 (2) - - - - - - - - - 30 20 
Z915a 0.007 (9) 0.005 (7) 6.13 (7) 0.002 (3) 94.2 (5) 0.05 (5) - - - - - - - - - - - - - 0.3 (2) 30 20 
Z915b 0.01 (1) 0.01 (2) 15.1 (1) 0.002 (3) 85.3 (5) 0.09 (5) - - - - - - - - - - - - - 0.3 (3) 30 20 
Z916a - 0.01 (6) 0.3 (4) 0.02 (8) 98 (2) 0.2 (4) - - - - - - - - - - - - - 0.5 (4) 40 20 
Z916b 0.004 (7) 0.001 (3) 0.2 (2) 0.004 (4) 95.1 (6) 0.1 (1) - 1.96 (8) 1.32 (6) 0.8 (1) 1.5 (2) - - - - - - - - - 31 20 
Z919a 0.01 (2) 0.01 (1) 0.4 (2) 0.01 (2) 100.2 (5) 0.1 (1) - - - - - - - - - 0.4 (2) - - - - 31 20 
Z919b 0.01 (1) 0.007 (9) 0.08 (9) 0.003 (6) 100.8 (6) 0.2 (2) - - - - - - - - - 0.4 (3) - - - - 30 20 
Z920b 0.02 (7) 0.01 (3) 0.2 (2) 0.01 (5) 99.5 (8) 0.2 (2) - - - - - - - - - 0.3 (2) - - - - 30 20 
Z922a 0.004 (4) 0.005 (8) 0.2 (1) 0.001 (2) 100.2 (6) 0.1 (1) - - - - - - - - - - - - - 0.5 (3) 30 20 
Z922b 0.1 (3) - 0.2 (6) 0.1 (3) 100 (3) 0.3 (1) - - - - - - - - - - - - - 0.5 (2) 30 20 
Z926a - 0.01 (5) 0.1 (2) - 96 (1) 0.2 (3) - - - - - 1.48 (8) 0.6 (2) 1.0 (3) 0.7 (2) - - - - - 29 20 
Z926b 0.03 (2) 0.003 (6) 0.06 (3) 0.001 (3) 95.3 (7) 0.23 (9) - - - - - 2.25 (8) 0.6 (1) 1.1 (3) 0.8 (2) - - - - - 29 20 
Z941b 0.0001 (4) 0.004 (9) 0.2 (5) 0.001 (3) 94 (1) 0.3 (4) - - - - - 1.40 (8) 0.9 (1) 0.9 (1) 1.4 (1) - - - - - 29 20 
Z1000a - 0.003 (5) 0.02 (5) 0.003 (3) 91.3 (6) 0.2 (2) - - - - - - - - - - 1.27  (9) 0.9 (2) 1.5 (4) - 40 20 
Z1000b 0.01 (4) 0.01 (2) 0.03 (7) 0.02 (7) 91.8 (8) 0.1 (2) - - - - - - - - - - 1.3 (1) 0.9 (2) 1.6 (3) - 40 20 
Z1001a 0.1 (2) 0.03 (6) 0.2 (3) 0.3 (4) 56 (1) 1.3 (8) 38.9 (9) - - - - - - - - 0.5 (1) - - - - 31 20 
Z1002a 0.000 (2) 0.005 (8) 7.8 (1) 0.011 (6) 79.6 (9) 0.4 (1) - - - - - - - - - - 0.28 (3) 0.2 (2) 2.2 (4) - 30 20 
Z1002b - 0.002 (6) 2.2 (1) 0.006 (5) 92.9 (7) 0.23 (9) - - - - - - - - - - 0.8 (1) 0.8 (2) 1.2 (3) - 39 20 
Z1008a 0.3 (5) 0.1 (1) 0.2 (4) 0.1 (3) 53 (1) 2 (1) 38 (1) - - - - 3.5 (2) 0.08 (9) 0.7 (3) 0.7 (4) - - - - - 60 20 
Z1008b - 0.004 (9) 0.2 (4) 0.006 (5) 94.5 (9) 0.3 (3) 0.05 (2) - - - - - - - - - 0.66 (8) 1.0 (2) 1.1 (4) - 50 20 
Z1009b 0.004 (7) 0.004 (6) 0.002 (6) 0.005 (5) 78 (2) 0.3 (1) 12 (2) 2.4 (1) 2.2 (1) 1.7 (2) 1.2 (3) - - - - - - - - - 51 20 
Z1011a 0.0001 (4) 0.006 (7) 0.1 (2) 0.003 (4) 96 (1) 0.4 (5) 0.05 (2) - - - - - - - - - 0.8 (1) 0.6 (2) 0.8 (3) - 50 20 
Z1011b 0.01 (1) 0.01 (1) 0.5 (9) 0.007 (5) 91 (1) 0.5 (7) 0.03 (1) 2.49 (8) 1.74 (6) 1.10 (8) 1.9 (2) - - - - - - - - - 50 20 
Z1013a 0.01 (1) 0.004 (6) 0.006 (9) 0.017 (7) 59.3 (3) 1.9 (1) 35.3 (2) - - - - - - - - - - - - 0.59 (6) 50 20 
Z1016a 0.1 (2) 0.01 (3) 0.05 (9) 0.01 (1) 55.7 (8) 1.5 (4) 40.5 (6) - - - - - - - - - - - - 0.6 (1) 29 20 
Z1016b 0.0 (1) 0.02 (4) 0.0 (1) 0.03 (3) 55 (1) 1.0 (6) 41.6 (1) - - - - - - - - 0.6 (3) - - - - 30 20 
Z1019a 0.03 (4) 0.01 (2) 0.03 (5) 0.05 (4) 63.4 (4) 2.1 (3) 33.5 (4) - - - - - - - - 0.2 (1) - - - - 20 20 
Z1019b - 0.01 (2) 11.8 (2) 0.003 (4) 84.5 (5) 0.12 (8) - - - - - - - - - - 0.24 (5) 0.6. 2 0.6 (4) - 40 20 
Z1043a 0.001 (3) 0.004 (6) 0.01 (1) 0.006 (6) 71 (2) 0.5 (7) 24 (2) - - - - - - - - - 0.007 (8) 1.4 (3) 1.2 (3) - 53 20 
Z1043b 0.0002 (9) - 0.01 (1) 0.004 (5) 71 (2) 1.0 (9) 22 (2) - - - - - - - - - 0.015 (8) 1.2 (2) 1.0 (4) - 50 20 
Z1051a 0.01 (1) 0.005 (8) - 0.004 (5) 68 (2) 0.5 (5) 23 (2) 1.1 (1) 2.5 (0.6) 1.7 (1) 0.7 (2) - - - - - - - - - 30 20 
Z1051b 0.01 (1) 0.01 (5) 0.004 (8) 0.007 (5) 67 (2) 0.8 (6) 24 (2) 1.1 (1) 2.4 (3) 1.9 (1) 0.5 (2) - - - - - - - - - 60 20 
Z1062a 0.002 (4) 0.003 (5) 0.001 (2) 0.006 (5) 62 (3) 0.8 (1) 24 (2) - - - - 1.8 (3) 0.9 (2) 1.0 (3) 1.3 (3) - - - - - 50 20 
Z1062b 0.02 (3) 0.005 (7) 0.04 (5) 0.01 (1) 66 (2) 2 (1) 25 (2) - - - - 1.9 (2) 0.8 (2) 0.9 (2) 1.3 (2) - - - - - 51 20 
                       

18 GPa 
Z852a 0.006 (8) 0.005 (6) 0.06 (7) 0.005 (6) 99 (1) 0.4 (5) - - - - - - - - - - - - - 0.07 (6) 31 20 
Z854a 0.01 (1) 0.007 (8) 0.8 (1) 0.016 (7) 96.3 (9) 1.1 (2) - - - - - - - - - 0.3 (1) - - - - 31 20 
Z854b 0.01 (1) 0.003 (5) 0.7 (3) 0.030 (9) 97.9 (9) 1.0 (3) - - - - - - - - - - 0.09 (2) 0.1 (1) 0.1 (2) 0.6 (2) 31 20 
Z858a 0.006 (7) 0.003 (6) 0.6 (2) 0.004 (5) 99.2 (7) 0.4 (1) - - - - - - - - - - - - - 0.6 (3) 30 20 
Z858b 0.006 (8) 0.001 (2) 0.7 (2) 0.005 (5) 99.7 (7) 0.5 (2) - - - - - - - - - 0.5 (3) - - - - 30 20 
Z859a 0.006 (8) 0.004 (6) 0.7 (5) 0.009 (7) 95 (1) 0.6 (5) - 2.00 (7) 1.33 (5) 0.88 (9) 1.6 (3) - - - - - - - - - 29 20 
Z859b - 0.005 (8) 0.4 (5) 0.006 (5) 94 (1) 0.5 (4) - - - - - 1.33 (7) 0.9 (1) 1.0 (1) 1.4 (1) - - - - - 40 20 
Z865a 0.01 (1) 0.004 (6) 0.5 (3) 0.01 (1) 94.4 (9) 0.4 (2) - 2.06 (8) 1.39 (5) 0.9 (1) 1.6 (2) - - - - - - - - - 31 20 
Z865b 0.002 (5) 0.003 (5) 0.4 (3) 0.002 (3) 94.9 (7) 0.4 (2) - - - - - 1.44 (7) 0.9 (1) 0.9 (2) 0.05 (2) - - - - - 31 20 
Z869b - 0.02 (3) 0 (1) 0.013 (8) 90 (4) 2 (1) - - - - - - - - - - 1.2 (3) 1.4 (3) 1.7 (6) 1 (1) 30 20 
Z878a - 0.005 (6) 04 (7) 0.003 (3) 94 (2) 0.2 (5) - - - - - - - - - - 1.2 (2) 1.3 (2) 1.5 (5) 1 (1) 30 20 
Z878b - 0.006 (8) 0.3 (9) 0.003 (4) 94 (2) 0.2 (7) - - - - - - - - - - 1.1 (2) 1.2 (3) 1.5 (5) 0.5 (8) 30 20 
Z881a 0.01 (1) 0.003 (5) 0.70 (5) 0.02 (1) 98.8 (5) 0.5 (2) - - - - - - - - - 0.3 (2) - - - - 30 20 
Z881b - 0.006 (7) 0.4 (6) 0.08 (2) 92 (3) 1.0 (5) - - - - - - - - - - 1.3 (2) 1.3 (2) 1.6 (6) 1 (2) 77 10+20 
Z957b - 0.002 (5) 0.02 (1) 0.001 (2) 93.0 (8) 0.08 (3) - - - - - - - - - - 1.2 (3) 1.2 (2) 1.7 (3) - 20 51 
                       

20 GPa 
Z929a 0.01 (1) 0.006 (9) 0.33 (8) 0.003 (3) 93.4 (7) 0.2 (1) - 1.99 (7) 1.33 (5) 0.8 (1) 1.5 (2) - - - - - - - - - 30 20 
Z929b 0.002 (6) 0.003 (5) 0.2 (§) 0.002 (3) 94.4 (8) 0.2 (2) - - - - - 1.39 (6) 0.8 (1) 0.9 (2) 1.3 (2) - - - - - 30 20 
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Table A1 continued 

Exp. Mg Al Si Ca Fe O S Co Ni Mo W Cu Ge Sn Sb Pb P As Au Ag N Ø 
                       
21 GPa                       
Z949b 0.001 (3) 0.004 (7) 1 (2) - 95 (2) 1 (1) - - - - - 1.39 (9) 0.9 (1) 1.0 (2) 1.4 (2) - - - - - 30 20 
Z950a 0.003 (6) 0.004 (7) 1 (1) 0.002 (3) 93 (2) 0.3 (8) - 1.98 (9) 1.31 (7) 0.8 (1) 1.5 (2) - - - - - - - - - 31 20 
Z950b 0.001 (3) 0.003 (6) 0.6 (1) 0.001 (2) 95.0 (5) 0.1 (1) - - - - - 1.40 (7) 0.9 (2) 0.8 (1) 1.2 (1) - - - - - 30 20 
Z969a 0.0001 (6) 0.004 (5) 0.3 (6) 0.009 (5) 93 (1) 0.4 (5) - - - - - - - - - - 1.0 (2) 1.0 (2) 1.8 (4) - 41 20 
Z969b - 0.003 (5) 0.2 (2) 0.009 (7) 92.0 (7) 0.3 (1) - - - - - - - - - - 1.2 (2) 1.0 (2) 1.6 (5) - 40 20 
Z970a 0.01 (1) 0.005 (7) 0.7 (1) 0.005 (4) 94.1 (5) 0.2 (1 - 2.04 (7) 1.35 (5) 0.84 (8) 1.5 (2) - - - - - - - - - 40 20 
Z970b 0.01 (1) 0.003 (6) 0.7 (3) 0.003 (4) 93.8 (9) 0.2 (2) - 2.07 (9) 1.37 (0.06) 0.8 (2) 1.5 (2) - - - - - - - - - 40 20 
Z977a 0.01 (1) 0.003 (6) 1.3 (2) 0.001 (2) 98.9 (6) 0.1 (1) - - - - - - - - - 0.4 (2) - - - - 35 20 
Z977b 0.007 (8) 0.003 (5) 1.0 (3) 0.002 (4) 96.5 (7) 0.1 (2) - - - - - - - - - - - - - 0.5 (2) 45 20 
Z980a 0.01 (1) 0.005 (9) 0.7 (4) 0.002 (3) 98 (1) 0.2 (3) - - - - - - - - - - - - - 0.6 (3) 35 20 
Z980b 0.006 (9) 0.004 (6) 1.1 (7) 0.001 (2) 97 (1) 0.3 (5) - - - - - - - - - 0.4 (2) - - - - 75 20 
                       

23 GPa 
H3518 0.01 (1) 0.003 (6) 1.0 (3) 0.01 (1) 98 (1) 0.4 (2) - - - - 0.1 (1) - - - - 0.5 (2) - - - - 32 20 
H3536 0.01 (1) 0.005 (8) 0.6 (3) 0.009 (9) 97.9 (7) 0.4 (2) - - - - 0.8 (2) - - - - 0.6 (2) - - - - 32 20 
H3581 0.001 (1) 0.003 (6) 0.4 (2) 0.018 (9) 97.8 (6) 0.8 (2) - - - - - - - - - 0.4 (1) - - - - 31 10+20 
H3606 0.02 (6) 0.005 (7) 1.5 (3) 0.02 (6) 98 (1) 0.5 (2) - - - - - - - - - - - - - 0.06 (3) 31 20 
H3629 0.004 (7) 0.003 (5) 1 (1) 0.003 (6) 99 (3) 1 (1) - - - - - - - - - 0.4 (1) - - - - 30 20 
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Table A2: Average composition of all ferropericlase phases as detected by EPMA. The concentrations are given in wt % and the values in brackets give the error on the last 

digit (1 σ standard deviation). “No” stands for the number of analyses that have been averaged. The beam diameter was set to 1µm in each case. 

Exp. Mg Al Si Ca Fe O S Co Ni Mo W Cu Ge Sn Sb Pb P As Au Ag N 
                      

11GPa                      
H3355a 55.8 (9) 0.74 (6) 0.04 (1) 0.028 (6) 6.4 (6) 39.7 (7) 0.003 (3) - - - - 0.03 (3) 0.05 (6) 0.004 (7) 0.01 (1) 0.2 (4) - - - - 20 
H3355b 54.4 (8) 0.98 (8) 0.05 (1) 0.036 (8) 7.5 (4) 39.7 (8) 0.002 (3) - - - - 0.02 (2) 0.04 (5) 0.01  (1) 0.01 (1) 0.3 (4) - - - - 18 
H3361a 56 (2) 0.6 (1) 0.02 (1) 0.038 (7) 6 (2) 40 (1) 0.002 (3) - - - - 0.06  (3) 0.05 (5) 0.004 (6) 0.01 (1) 0.2 (2) - - - - 15 
H3361b 55 (1) 0.6 (1) 0.02 (1) 0.03 (1) 5 (1) 38,9 (8) 0.002 (2) - - - - 0.04 (3) 0.03 (5) 0.006 (9) 0.002 (4) 0.4 (5) - - - - 31 
H3364a  56 (2) 0.7 (2) 0.03 (1) 0.027 (8) 7 (2) 40 (1) 0.003 (4) - - - - 0.03 (3) 0.05 (6) 0.01 (1) 0.01 (2) 0.2 (3) - - - - 15 
H3364b  55 (2) 0.06 (2) 0.03 (2) 0.026 (5) 7 (3) 40 (1) 0.002 (3) - - - - 0.07 (6) 0.05 (8) 0.005 (6) 0.01 (2) 0.5 (4) - - - - 16 
H3367b 54 (2) 0.4 (2) 0.02 (2) 0.018 (8) 8 (2) 40 (1) 0.002 (2) - - - - 0.05 (4) 0.05 (7) 0.004 (8) 0.01 (2) 0.2 (4) - - - - 16 
H3371a 56.2 (9) 0.65 (7) 0.02 (1) 0.037 (6) 6 (1) 39.3 (6) 0.003 (2) 0.03 (3) 0.02 (1) 0.005 (9) 0.06 (8) - - - - - - - - - 16 
H3371b 57 (1) 0.58 (9) 0.02 (1) 0.039 (8) 5 (1) 39.7 (6) 0.004 (4) 0.03 (3) 0.02 (3) 0.004 (8) 0.04 (4) - - - - - - - - - 15 
H3372a 55 (1) 0.8 (1) 0.03 (1) 0.028 (5) 7 (1) 39.5 (6) 0.004 (4) 0.04 (3) 0.03 (2) 0.008 (8) 0.02 (4) - - - - - - - - - 16 
H3372b 55.2 (4) 1.00 (7) 0.04 (1) 0.032 (8) 6.8 (4) 39.4 (4) 0.002 (3) 0.04 (3) 0.03 (3) 0.004 (5) 0.1 (1) - - - - - - - - - 15 
H3400a 53.4 (6) 1.37 (9) 0.07 (2) 0.035 (8) 9.2 (5) 39.2 (2) 0.009 (9) - - - - - - - - - 0.01 (1) 0.10 (9) 0.1 (2) 0.01 (1) 22 
H3400b 54.1 (7) 1.22 (5) 0.06 (2) 0.04 (1) 8.5 (4) 39.4 (4) 0.01 (1) - - - - - - - - - 0.006 (7) 0.07 (9) 0.1 (2) 0.01 (1) 31 
H3404a 57 (1) 0.7 (1) 0.03 (1) 0.031 (8) 6 (1) 40.1 (4) 0.006 (9) - - - - - - - - - 0.004 (5) 0.07 (8) 0.1 (2) 0.01 (1) 31 
H3404b 58 (1) 0.6 (1) 0.03 (1) 0.021 (5) 5 (1) 40.3 (5) 0.004 (7) - - - - - - - - - 0.005 (7) 0.1 (1) 0.1 (2) 0.01 (1) 30 
H3439a 53.9 (6) 0.9 (1) 0.04 (2) 0.026 (7) 7.3 (7) 38.0 (5) - - - - - - - - - - 0.002 (2) 0.1 (1) 0.1 (2) 0.002 (3) 30 
H3439b 51 (2) 1.1 (2) 0.06 (1) 0.033 (8) 10 (1) 38 (1) 0.004 (5) - - - - - - - - - 0.006 (5) 0.1 (1) 0.1 (2) 0.003 (4) 30 
H3444a 53.7 (8) 0.84 (7) 0.04 (1) 0.024 (6) 7.9 (8) 39.5 (9) - - - - - - - - - - - - - 0.01 (1) 31 
H3444b 55 (2) 1.0 (3) 0.04 (2) 0.028 (8) 6 (2) 40 (1) - - - - - - - - - - - - - 0.007 (9) 31 
H3449a 52 (2) 1.3 (3) 0.07 (2) 0.039 (6) 9 (2) 39.7 (5) - - - - - - - - - 0.3 (4) - - - - 31 
H3449b 51.6 (6) 1.47 (8) 0.08 (1) 0.039 (8) 8.4 (5) 39.8 (5) - - - - - - - - - 0.4 (5) - - - - 29 
H3450a 55 (2) 1.0 (5) 0.04 (3) 0.03 (1) 5 (2) 38.5 (6) - - - - - 0.02 (2) 0.03 (5) 0.005 (7) 0.001 (2) - - - - - 32 
H3455a 51 (2) 1.4 (3) 0.07 (2) 0.04 (1) 10 (2) 38.3 (7) - - - - - - - - - 0.2 (4) - - - - 31 
H3455b 53 (2) 1.2 (3) 0.07 (2) 0.030 (9) 8 (2) 39.1 (6) - - - - - - - - - 0.4 (5) - - - - 29 
H3497a 56 (1) 0.6 (1) 0.027 (9) 0.030 (6) 6 (2) 38.7 (4) - - - - - - - - - 0.01 (2) - - - - 30 
H3497b 55.8 (9) 0.66 (9) 0.03 (1) 0.023 (6) 6 (1) 38.7 (3) - - - - - - - - - - - - - 0.002 (3) 30 
H3586a 55 (2) 0.6 (1) 0.02 (1) 0.026 (6) 6 (2) 38.0 (8) - 0.03 (3) 0.02 (2) 0.005 (6) 0.04 (6) - - - - - - - - - 30 
H3586b 55 (1) 0.9 (1) 0.04 (2) 0.05 (1) 5.3 (9) 38.3 (8) - 0.02 (2) 0.01 (1) 0.004 (6) 0.06 (7) - - - - - - - - - 30 
H3704a 59.4 (8) 0.7 (2) 0.03 (2) 0.025 (6) 0.4 (1) 39 (1) - - - - - - - - - 0.007 (9) - - - - 30 
H3704b 58.7 (7) 0.8 (2) 0.03 (1) 0.026 (8) 0.9 (3) 39 (1) - - - - - - - - - 0.01( 1) - - - - 31 
H3707a 55 (2) 0.7 (2) 0.026 (8) 0.026 (6) 7 (2) 38 (2) - - - - - 0.02 (3) 0.05 (6) 0.005 (7) 0.003 (5) - - - - - 33 
H3707b 60 (1) 0.6 (1) 0.03 (2) 0.022 (4) 0.3 (1) 40 (2) - - - - - 0.01 (2) 0.03 (4) 0.004 (7) 0.004 (5) - - - - - 33 
H3718a 55 (2) 0.8 (2) 0.04 (2) 0.030 (5) 7 (2) 38 (2) - - - - - 0.02 (2) 0.04 (5) 0.003 (7) 0.004 (7) - - - - - 33 
H3718b 59 (1) 0.8 (1) 0.03 (1) 0.023 (6) 1.1 (3) 39 (2) - - - - - 0.01 (2) 0.04 (4) 0.008 (1) 0.003 (5) - - - - - 35 
Z798a 55 (1) 0.9 (1) 0.04 (2) 0.024 (9) 7 (1) 39 (9) - - - - - - - - - - - - - 0.007 (9) 29 
Z798b 53.1 (8) 1.3 (1) 0.06 (2) 0.039 (7) 7.5 (6) 39.1 (9) - - - - - - - - - - - - - 0.006 (9) 34 
Z822a 54 (1) 0.7 (1) 0.03 (2) 0.017 (6) 7 (1) 38.5 (1) - - - - - 0.02 (2) 0.02 (4) 0.006 (8) 0.002 (3) - - - - - 30 
Z822b 54.1 (9) 0.8 (1) 0.03 (1) 0.03 (1) 6.5 (9) 38.2 (7) - 0.02 (2) 0.01 (2) 0.005 (6) 0.06 (9) - - - - - - - - - 30 
Z915a 59.9 (9) 0.5 (3) 0.03 (2) 0.026 (8) 0.5 (4) 39 (1) - - - - - - - - - - - - - 0.004 (7) 31 
Z915b 59.5 (8) 0.8 (1) 0.03 (2) 0.022 (5) 0.3 (1) 39 (1) - - - - - - - - - - - - - 0.002 (5) 30 
Z916a 56 (2) 0.7 (2) 0.03 (2) 0.032 (5) 5 (2) 39 (1) - - - - - - - - - - - - - 0.003 (5) 33 
Z916b 55 (1) 0.8 (2) 0.03 (1) 0.028 (6) 6 (1) 38.2 (8) - 0.03 (2) 0.01 (2) 0.005 (8) 0.04 (7) - - - - - - - - - 30 
Z919a 56 (1) 0.8 (2) 0.03 (2) 0.030 (5) 5 (1) 38.9 (9) - - - - - - - - - 0.01 (1) - - - - 31 
Z919b 55 (2) 0.7 (1) 0.03 (1) 0.028 (6) 8 (2) 38.6 (8) - - - - - - - - - 0.01 (1) - - - - 30 
Z920b 56 (2) 0.8 (2) 0.03 (2) 0.027 (7) 6 (2) 38 (1) - - - - - - - - - 0.005 (7) - - - - 25 
Z922a 57 (2) 0.6 (2) 0.03 (2) 0.027 (7) 5 (1) 38 (1) - - - - - - - - - - - - - 0.004 (5) 30 
Z922b 53.6 (9) 0.8 (1) 0.03 (2) 0.030 (6) 8.5 (8) 38 (1) - - - - - - - - - - - - - 0.003 (4) 33 
Z926a 57 (2) 0.6 (2) 0.03 (2) 0.030 (6) 5 (2) 39 (1) - - - - - 0.02 (2) 0.04 (5) 0.002 (4) 0.002 (4) - - - - - 30 
Z926b 56 (1) 0.7 (1) 0.03 (1) 0.024 (5) 6 (2) 39 (2) - - - - - 0.03 (3) 0.03 (5) 0.004 (6) 0.004 (7) - - - - - 30 
Z941b 57 (2) 0.7 (3) 0.03 (2) 0.030 (9) 5 (2) 39.1 (7) - - - - - 0.02 (2) 0.02 (4) 0.004 (6) 0.006 (8) - - - - - 31 
Z1000a 57 (1) 0.6 (1) 0.02 (1) 0.025 (5) 4 (2) 39.3 (5) - - - - - - - - - - 0.002 (3) 0.07 (9) 0.1 (1) - 19 
Z1000b 57 (2) 0.5 (2) 0.02 (2) 0.033 (9) 4 (1) 39.3 (7) - - - - - - - - - - 0.004 (4) 0.04 (5) 0.1 (1) - 23 
Z1001a 56.9 (9) 0.7 (2) 0.03 (2) 0.018 (5) 3.5 (7) 40 (1) 0.005 (5) - - - - - - - - 0.01 (2) - - - - 30 
Z1002a 58.9 (5) 0.68 (6) 0.02 (1) 0.021 (6) 0.39 (5) 40.0 (7) - - - - - - - - - - 0.002 (3) 0.04 (7) 0.1 (1) - 19 
Z1002b 58.1 (5) 0.9 (2) 0.04 (2) 0.027 (9) 1.4 (3) 40 (1) - - - - - - - - - - 0.001 (2) 0.07 (9) 0.1 (1) - 24 
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Table A2 continued 

Exp. Mg Al Si Ca Fe O S Co Ni Mo W Cu Ge Sn Sb Pb P As Au Ag N 
                      

Z1008a 58 (1) 0.4 (3) 0.02 (2) 0.015 (5) 2 (2) 39.0 (4) 0.004 (4) - - - - 0.02 (2) 0.04 (6) 0.01 (1) 0.0001 (5) - - - - - 30 
Z1008b 57 (2) 0.5 (4) 0.02 (2) 0.026 (6) 3 (2) 38.9 (6) 0.003 (4) - - - - - - - - - 0.006 (5) 0.07 (9) 0.1 (1) - 28 
Z1009b 57 (3) 0.6 (3) 0.03 (2) 0.023 (7) 4 (3) 38.8 (7) 0.004 (4) 0.02 (2) 0.01 (2) 0.001 (3) 0.04 (5) - - - - - - - - - 20 
Z1011a 54 (2) 0.7 (2) 0.03 (1) 0.029 (6) 7 (2) 38.5 (6) 0.003 (5) - - - - - - - - - 0.002 (3) 0.06 (9) 0.1 (1) - 30 
Z1011b 57 (2) 0.6 (3) 0.03 (1) 0.033 (7) 3 (2) 38.9 (6) 0.003 (4) 0.02 (2) 0.01 (2) 0.01 (1) 0.04 (5) - - - - - - - - - 34 
Z1013a 53.3 (9) 1.1 (2) 0.05 (2) 0.020 (7) 7.4 (9) 38.3 (3) 0.004 (5) - - - - - - - - - - - - 0.005 (6) 30 
Z1016a 54.7 (1) 1.0 (2) 0.04 (2) 0.021 (4) 5.8 (8) 38.7 (4) 0.004 (5) - - - - - - - - - - - - 0.005 (7) 30 
Z1016b 57.3 (9) 0.7 (2) 0.03 (1) 0.021 (6) 3.1 (9) 39.2 (3) 0.004 (5) - - - - - - - - 0.01 (1) - - - - 28 
Z1019a 54.0 (8) 0.8 (1) 0.04 (2) 0.018 (6) 8 (1) 38.8 (5) 0.003 (4) - - - - - - - - 0.01 (2) - - - - 31 
Z1019b 59.0 (6) 0.9 (3) 0.04 (2) 0.026 (7) 0.3 (1) 40 (1) - - - - - - - - - - 0.002 (3) 0.05 (7) 0.1 (1) - 38 
Z1043a 56 (2) 0.7 (3) 0.03 (2) 0.023 (5) 5 (2) 39.8 (9) 0.002 (4) - - - - - - - - - 0.002 (3) 0.06 (9) 0.1 (2) - 30 
Z1043b 56 (2) 0.7 (2) 0.03 (2) 0.02 (2) 5 (2) 38.7 (9) 0.004 (4) - - - - - - - - - 0.002 (4) 0.07 (8) 0.1 (2) - 45 
Z1051a 56 (2) 0.9 (5) 0.06 (8) 0.03 (5) 4 (2) 39 (9) 0.003 (3) 0.02 (2) 0.02 (2) 0.004 (7) 0.03 (5) - - - - - - - - - 29 
Z1051b 55 (2) 0.8 (3) 0.03 (2) 0.021 (7) 5 (2) 39.0 (4) 0.004 (4) 0.03 (2) 0.02 (2) 0.01 (1) 0.04 (6) - - - - - - - - - 32 
Z1062a 58 (2) 0.4 (2) 0.02 (2) 0.017 (6) 2 (2) 39.1 (4) 0.004 (4) - - - - 0.02 (2) 0.04 (5) 0.01 (1) 0.001 (2) - - - - - 33 
Z1062b 55 (1) 0.7 (2) 0.03 (2) 0.022 (6) 6 (1) 38.8 (5) 0.003 (5) - - - - 0.02 (2) 0.02 (4) 0.01 (1) - - - - - - 29 
                      

18 GPa 
Z852a 57 (2) 0.5 (2) 0.04 (2) 0.03 (2) 4 (2) 38.8 (5) - - - - - - - - - - - - - - 31 
Z854a 55 (1) 0.7 (1) 0.04 (1) 0.035 (6) 6 (1) 37.7 (4) - - - - - - - - - 0.1 (1) - - - - 30 
Z854b 55.1 (9) 0.80 (8) 0.05 (2) 0.033 (5) 6 (1) 38.6 (4) - - - - - - - - - - 0.007 (7) 0.04 (8) 0.1 (1) 0.004 (9) 27 
Z858a 56 (2) 0.6 (2) 0.04 (2) 0.033 (6) 5 (3) 37.8 (6) - - - - - - - - - - - - - 0.009 (9) 30 
Z858b 56 (1) 0.7 (1) 0.04 (2) 0.033 (5) 5 (2) 37.6 (6) - - - - - - - - - 0.01 (1) - - - - 35 
Z859a 55 (2) 0.8 (2) 0.04 (2) 0.032 (9) 7 (2) 37.8 (5) - 0.03 (2) 0.02 (2) 0.01 (1) 0.04 (7) - - - - - - - - - 25 
Z859b 54 (1) 0.74 (8) 0.02 (4) 0.025 (7) 7 (1) 38.3 (4) - - - - - 0.03 (2) 0.04 (6) 0.006 (7) 0.003 (6) - - - - - 25 
Z865a 57 (2) 0.6 (3) 0.04 (2) 0.04 (2) 5 (3) 38.2 (6) - 0.02 (2) 0.01 (2) 0.004 (7) 0.04 (5) - - - - - - - - - 30 
Z865b 57 (3) 0.6 (3) 0.04 (2) 0.05 (2) 5 (4) 38.3 (8) - - - - - 0.3 (3) 0.05 (6) 0.004 (7) 0.008 (9) - - - - - 30 
Z869b 56 (1) 0.6 (1) 0.04 (2) 0.030 (8) 4 (2) 38.8 (5) - - - - - - - - - - 0.004 (5) 0.06 (9) 0.1 (2) 0.01 (1) 31 
Z878a 56 (1) 0.67 (8) 0.04 (2) 0.028 (5) 5.3 (9) 38.8 (9) - - - - - - - - - - 0.004 (5) 0.04 (7) 0.2 (2) 0.00 (1) 25 
Z878b 56 (2) 0.6 (2) 0.03 (1) 0.029 (6) 5 (2) 39.0 (8) - - - - - - - - - - 0.004 (5) 0.05 (8) 0.1 (2) 0.005 (8) 25 
Z881a 56 (2) 0.7 (3) 0.04 (2) 0.027 (9) 5 (2) 38.8 (5) - - - - - - - - - 0.01 (2) - - - - 30 
Z881b 56.2 (5) 0.78 (5) 0.05 (1) 0.026 (5) 4.9 (5) 37.9 (5) - - - - - - - - - - 0.004 (3) 0.05 (7) 0.1 (2) 0.005 (6) 23 
Z957b 58 (2) 0.5 (2) 0.03 (2) 0.031 (6) 3 (2) 39.3 (7) - - - - - - - - - - 0.001 (2) 0.06 (7) 0.1 (2) 31 
                      

20 GPa 
Z929a 57 (3) 0.6 (3) 0.04 (2) 0.026 (5) 4 (3) 39 (1) - 0.01 (1) 0.01 (1) 0.005 (7) 0.04 (5) - - - - - - - - - 30 
Z929b 57 (2) 0.6 (3) 0.04 (2) 0.03 (2) 5 (3) 39 (1) - - - - - 0.03 (4) 0.02 (4) 0.004 (5) 0.003 (7) - - - - - 30 
                      

21 GPa 
Z949b 55 (1) 0.70 (7) 0.05 (1) 0.038 (6) 8 (1) 38.6 (7) - - - - - 0.04 (3) 0.04 (6) 0.003 (4) 0.004 (5) - - - - - 30 
Z950a 54 (3) 0.7 (2) 0.06 (2) 0.05 (2) 8 (3) 38 (2) - 0.04 (3) 0.02 (3) 0.003 (5) 0.02 (5) - - - - - - - - - 28 
Z950b 56 (2) 0.6 (2) 0.05 (2) 0.034 (8) 5 (2) 38 (2) - - - - - 0.04 (3) 0.03 (5) 0.01 (1) 0.004 (6) - - - - - 28 
Z969a 56 (1) 0.7 (1) 0.05 (2) 0.036 (7) 5 (2) 38 (2) - - - - - - - - - - 0.004 (4) 0.1 (1) 0.1 (2) - 29 
Z969b 55 (3) 0.6 (3) 0.05 (2) 0.04 (1) 5 (2) 39 (2) - - - - - - - - - - 0.004 (4) 0.09 (9) 0.1 (1) - 37 
Z970a 58 (3) 0.4 (3) 0.04 (2) 0.05 (1) 3 (3) 39 (1) - 0.02 (2) 0.01 (2) 0.005 (7) 0.04 (7) - - - - - - - - - 34 
Z970b 55 (1) 0.7 (2) 0.05 (2) 0.04 (1) 6 (2) 38 (1) - 0.03 (2) 0.01 (2) 0.01 (1) 0.04 (7) - - - - - - - - - 35 
Z977a 44 (17) 0.6 (3) 0.1 (1) 0.03 (1) 4 (3) 31 (13) - - - - - - - - - 0.01 (1) - - - - 26 
Z977b 56 (1) 0.71 (5) 0.06 (2) 0.04 (1) 6 (1) 38 (1) - - - - - - - - - - - - - 0.01 (1) 30 
Z980a 55 (2) 0.7 (1) 0.03 (2) 0.04 (1) 7 (2) 39 (1) - - - - - - - - - - - - - 0.01 (1) 29 
Z980b 51 (5) 0.7 (1) 0.04 (4) 0.04 (1) 5 (2) 38 (2) - - - - - - - - - 0.01 (1) - - - - 59 
                      

23 GPa 
H3518 57 (1) 0.52 (2) 0.05 (2) 0.03 (1) 4 (1) 39.1 (4) - - - - 0.06 (9) - - - - 0.02 (3) - - - - 30 
H3536 56 (3) 0.06 (1) 0.06 (2) 0.04 (1) 5 (4) 39 (1) - - - - 0.1 (1) - - - - 0.02 (2) - - - - 26 
H3581 55 (2) 0.57 (8) 0.05 (2) 0.034 (7) 7 (2) 38 (6) - - - - - - - - - 0.007 (8) - - - - 30 
H3606 55.9 (9) 0.68 (7) 0.05 (1) 0.036 (7) 6 (1) 36.9 (3) - - - - - - - - - - - - - 0.001 (1) 30 
H3629 56 (2) 0.6 (1) 0.05 (2) 0.032 (7) 6 (2) 38.3 (5) - - - - - - - - - 0.01 (1) - - - - 33 
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Table A3: Average composition of all silicate phases as detected by LA-ICP-MS. The concentrations of the main elements (oxides) are given in wt %, whereas the abundances 

of the elements of interest are given in ppm (native element). Depending on the standard used, the concentration of S is either given in wt % (Afghanite) or in ppm 

(Botcharnikov) (blue and pink shaded cells respectively). The values in brackets give the error on the last digit (1 σ standard deviation). “N” stands for the number of 

analyses that have been averaged and column “Ø” lists the employed beam diameters.  

 
MgO Al2O3 SiO2 CaO FeO S Co Ni Mo W Cu Ge Sn Sb Pb P As Au Ag N Ø 

                      

 11GPa                      
H3355a 43.6  

(2) 
3.38  
(7) 

42.7  
(3) 

4.28 
(7) 

5.99 
(3) 

- - - - - 
605  
(20) 

5.9 
 (3) 

34.2 
 (5) 

1.00  
(5) 

372 
 (4) 

- - - - 5 80 

H3355b 42.2 
 (5) 

4.3 
 (2) 

41.9 
 (1) 

5.2 
 (3) 

6.4 
 (4) 

- - - - - 
37 
 (5) 

9 
 (5) 

47  
(14) 

4 
 (5) 

431 
 (54) 

- - - - 4 80 

H3361a 46  
(1) 

2.8 
 (1) 

40 
 (1) 

4.0 
 (1) 

7.1 
 (1) 

0.228  
(8) 

- - - - 
2142  
(15) 

115 
 (15) 

367 
 (32) 

18  
(12) 

633 
 (11) 

- - - - 3 80 

H3361b 45.1  
(4) 

2.8 
 (1) 

42.4 
 (9) 

4.29 
(9) 

5 
 (1) 

- - - - - 
731  

(274) 
27 

 (40) 
67 

 (65) 
7 

 (13) 
386 
 (99) 

- - - - 4 80 

H3364a 42.0 
 (7) 

4.0 
 (2) 

41.2 
 (3) 

5.2 
 (3) 

7.6 
 (2) 

0.11 
 (1) 

- - - - 
373 
 (42) 

75 
 (18) 

320 
 (38) 

10 
 (6) 

547 
 (118) 

- - - - 5 80 

H3364b 44  
(1) 

3.33 
 (9) 

41.  
(1) 

3.92 
(6) 

8.1 
 (3) 

0.11 
 (1) 

- - - - 
1633 
(327) 

93 
 (8) 

369 
 (15) 

26 
 (15) 

719 
 (30) 

- - - - 4 80 

H3367b 36.5 
 (8) 

5.9 
 (3) 

39.5 
 (3) 

6.0 
 (4) 

12.1 
 (4) 

0.086 
 (2) 

- - - - 
926 
 (16) 

119 
 (5) 

542 
 (6) 

18 
 (2) 

1408 
 (132) 

- - - - 5 80 

H3371a 45.3 
 (4) 

2.9  
(1) 

41.2  
(2) 

4.5  
(3) 

6.2  
(3) 

0.17  
(1) 

230 
(15) 

95 
 (3) 

37 
 (5) 

189 
(20) 

- - - - - - - - - 4 40+50 

H3371b 45 
 (1) 

2.82  
(8) 

42.7 
 (8) 

4.5 
 (2) 

4.9 
 (3) 

- 
184 
(20) 

79 
(13) 

9 
 (2) 

50 
 (15) 

- - - - - - - - - 4 70 

H3372a 43.1  
(4) 

3.5  
(2) 

42.7  
(3) 

3.9  
(2) 

6.8 
 (1) 

0.13  
(2) 

232  
(6) 

85 
 (3) 

29 
 (4) 

181 
(11) 

- - - - - - - - - 5 80 

H3372b 42.2  
(9) 

4.4 
 (3) 

42.8 
 (3) 

4.9  
(4) 

5.6 
 (3) 

- 
166 
 (7) 

59 
 (6) 

19 
 (1) 

51 
 (9) 

- - - - - - - - - 5 80 

H3400a 38.9 
 (9) 

5.7  
(4) 

41.7 
 (2) 

6.4 
 (4) 

7.2  
(3) 

- - - - - - - - - - 
265 
 (68) 

1.4 
 (3) 

1.5 
 (3) 

487 
(25) 

5 80 

H3400b 40.4 
 (7) 

5.3 
 (2) 

40.4 
 (5) 

7.1 
 (2) 

6.9 
 (1) 

0.12 
 (1) 

- - - - - - - - - 
2464 
(100) 

4  
(1) 

2.1 
 (4) 

525 
(24) 

3 80 

H3404a 44.9 
 (3) 

3.1 
 (1) 

42.2  
(3) 

4.1 
 (2) 

5.63 
 (7) 

- - - - - - - - - - 
142 
 (13) 

1.0 
 (2) 

6.7  
(4) 

502 
(13) 

5 80 

H3404b 45.8 
 (3) 

3.0  
(2) 

42.3 
 (3) 

3.8  
(2) 

5.2 
 (2) 

0.19 
 (1) 

- - - - - - - - - 
708 
 (24) 

3  
(1) 

5 
 (2) 

521 
(17) 

4 80 

H3439a 40.8 
 (4) 

3.8  
(2) 

44.7 
 (1) 

4.1 
 (2) 

6.6 
 (1) 

- - - - - - - - - - 
26  
(2) 

- 
0.42 
(9) 

357 
(10) 

5 80 

H3439b 37. 
3 (9) 

5.5 
 (4) 

43.5 
 (3) 

6.1  
(4) 

7.6 
 (2) 

- - - - - - - - - - 
105 
 (8) 

8 
 (7) 

0.8  
(3) 

404 
(22) 

4 80 

H3444a 41.7 
 (4) 

3.59 
 (6) 

44.3 
 (7) 

4.2  
(2) 

6.3 
 (2) 

- - - - - - - - - - - - - 
282 
(16) 

5 80 

H3444b 39 
 (1) 

5.2 
 (2) 

43.82 
(8) 

6.1 
 (3) 

5.6 
 (4) 

- - - - - - - - - - - - - 
254 
(11) 

4 80 

H3449a 37 
 (1) 

5.9 
 (3) 

43.3  
(2) 

6.4 
 (3) 

7.3  
(3) 

- - - - - - - - - 
327 
 (13) 

- - - - 4 80 

H3449b 36 
 (1) 

6.4 
 (7) 

43.3  
(5) 

7.7 
 (5) 

6.6 
 (4) 

- - - - - - - - - 
326 
 (17) 

- - - - 5 80 

H3450a 37.3 
 (8) 

6.6 
 (2) 

43.3 
 (2) 

6.5 
 (2) 

6.2 
 (3) 

- - - - - 
358 
 (14) 

4 
 (2) 

27.8 
 (8) 

1.2 
 (6) 

- - - - - 5 80 
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Table A3 continued 

 MgO Al2O3 SiO2 CaO FeO S Co Ni Mo W Cu Ge Sn Sb Pb P As Au Ag N Ø 

                      
H3455a 41 

 (9) 
5.8  
(5) 

37 
 (7) 

8  
(2) 

8 
 (1) 

- - - - - - - - - 
714 

 (266) 
- - - - 4 40+50+80 

H3455b 38 
 (3) 

6.2  
(3) 

42 
 (2) 

6.4 
 (4) 

6.9 
 (6) 

- - - - - - - - - 
1206 
(168) 

- - - - 5 80 

H3497a 44.5 
 (4) 

3.07 
 (6) 

42.9 
 (2) 

3.8 
 (1) 

5.8  
(1) 

- - - - - - - - - 
165  
(7) 

- - - - 5 80 

H3497b 43.8 
 (7) 

3.0 
 (2) 

43.4  
(4) 

4.3 
 (2) 

5.5 
 (3) 

- - - - - - - - - - - - - 
221 
 (9) 

6 80 

H3586a 47 
 (2) 

2.1 
 (4) 

42 
 (1) 

3.7 
 (9) 

5 
 (1) 

- 
116 
(32) 

35 
(12) 

4 
 (2) 

64 
 (17) 

- - - - - - - - - 6 20 

H3586b 43 
 (1) 

3.6  
(3) 

42.0  
(5) 

6.5  
(4) 

5.0 
 (2) 

- 
85 
 (3) 

24 
 (4) 

4 
 (1) 

37  
(11) 

- - - - - - - - - 4 30 

H3704a 47.3 
 (7) 

3.31 
 (9) 

45.4  
(7) 

3.5 
 (1) 

0.45 
 (2) 

- - - - - - - - - 
87 
 (4) 

- - - - 5 80 

H3704b 45.9 
 (5) 

3.6 
 (2) 

45.4 
 (1) 

4.1 
 (3) 

0.96 
 (6) 

- - - - - - - - - 
33  
(2) 

- - - - 5 80 

H3707a 42.9 
 (5) 

3.1 
 (1) 

42.7 
 (5) 

4.0  
(2) 

7.3 
 (4) 

- - - - - 
405 
 (46) 

6.0  
(7) 

34 
 (4) 

1.3 
 (2) 

- - - - - 6 80 

H3707b 48.0 
 (3) 

2.9 
 (1) 

45.2 
 (2) 

3.5 
 (3) 

0.35 
 (6) 

- - - - - 
103 
 (4) 

1.7 
 (3) 

13.1 
 (8) 

1.2 
 (3) 

- - - - - 5 80 

H3718a 42.4 
 (3) 

3.3 
 (1) 

42.86 
(9) 

3.9 
 (2) 

7.6 
 (1) 

- - - - - 
427 
 (25) 

3.6 
 (3) 

42  
(2) 

0.66 
 (8) 

- - - - - 5 80 

H3718b 45.8 
 (5) 

3.3 
 (1) 

45.6  
(2) 

4.0 
 (2) 

1.25 
 (7) 

- - - - - 
142 
 (15) 

1.1 
 (2) 

11 
 (3) 

0.17 
 (6) 

- - - - - 
7  

(Ge 5, Sb 6) 
80 

Z798a 42 
 (1) 

4.0 
 (2) 

44.3 
 (4) 

4.3 
 (3) 

5.8 
 (4) 

- - - - - - - - - - - - - 
249 
(16) 

4 80 

Z798b 37.9 
 (3) 

5.7 
 (2) 

43.4 
 (3) 

6.6 
 (2) 

6.4 
 (1) 

- - - - - - - - - - - - - 
281 
(7) 

4 80 

Z822a 44.1 
 (8) 

3.1 
 (2) 

42.5 
 (2) 

3.9 
 (3) 

6.4 
 (3) 

- - - - - 
398 
 (24) 

8 
 (2) 

47 
 (2) 

1.7 
 (5) 

- - - - - 5 80 

Z822b 44.2 
 (9) 

3.1 
 (2) 

42.9 
 (3) 

4.1 
 (4) 

5.7 
 (3) 

- 
118 
 (2) 

38 
(2) 

3.4 
 (6) 

27 
 (3) 

- - - - - - - - - 5 80 

Z915a 46.9 
 (4) 

3.51 
 (8) 

44.7 
 (4) 

3.7 
 (1) 

1.13 
 (4) 

- - - - - - - - - - - - - 
97 
 (4) 

5 80 

Z915b 47.6 
 (9) 

3.2  
(3) 

45.1 
 (5) 

3.8  
(3) 

0.24 
 (2) 

- - - - - - - - - - - - - 
56 
 (5) 

5 80 

Z916a 43.5 
 (4) 

3.7 
 (1) 

42.6 
 (3) 

6.3  
(2) 

3.94 
 (6) 

- - - - - - - - - - - - - 
246 
(15) 

5 80 

Z916b 42.9 
 (5) 

3.7 
 (1) 

42.6 
 (2) 

4.3 
 (2) 

6.5 
 (4) 

- 
150 
(23) 

59 
(21) 

7 
 (5) 

64 
 (29) 

- - - - - - - - - 4 80 

Z919a 42.8 
 (5) 

3.4 
 (1) 

43.8 
 (2) 

4.1 
 (2) 

5.9 
 (3) 

- - - - - - - - - 
167 
 (27) 

- - - - 7 80 

Z919b 41.1 
 (7) 

3.1 
 (1) 

43.4  
(1) 

4.4 
 (3) 

7.9 
 (3) 

- - - - - - - - - 
218 
 (13) 

- - - - 7 80 

Z920b 42.8 
 (6) 

3.4  
(2) 

43.3 
 (3) 

4.2  
(3) 

6.4 
 (4) 

- - - - - - - - - 
143 
 (7) 

- - - - 6 80 

Z922a 43.6 
 (6) 

3.5  
(2) 

42.2 
 (3) 

4.1 
 (2) 

6.6 
 (4) 

- - - - - - - - - - - - - 
216 
(20) 

5 80 

Z922b 43 
 (1) 

3.3 
 (2) 

42.0 
 (2) 

4.0 
 (3) 

8.0 
 (7) 

- - - - - - - - - - - - - 
219 
(25) 

5 80 

Z926a 43.4 
 (8) 

3.01 
 (9) 

42.2 
 (9) 

4.2 
 (2) 

7.2  
(2) 

- - - - - 
459  
(20) 

3.6 
 (5) 

47 
 (3) 

0.5 
 (1) 

- - - - - 5 80 

Z926b 43.1  
(7) 

3.0 
 (2) 

42.91 
(9) 

4.1 
 (3) 

6.8 
 (2) 

- - - - - 
590 
 (39) 

3  
(1) 

33 
 (8) 

0.7 
 (2) 

- - - - - 5 80 



Appendix 

221 
 

Table A3 continued 

 MgO Al2O3 SiO2 CaO FeO S Co Ni Mo W Cu Ge Sn Sb Pb P As Au Ag N Ø 
 

                     

Z941b 44  
(1) 

3.6 
 (2) 

42.6 
 (7) 

4.1 
 (3) 

5.2 
 (1) 

- - - - - 
378  
(31) 

9 
 (2) 

38 
 (2) 

2.6 
 (4) 

- - - - - 5 80 

Z1000a 48  
(2) 

2.6 
 (4) 

41 
 (2) 

4 
(1) 

5  
(2) 

- - - - - - - - - - 
575 

 (173) 
- 5 (6) - 2  30 

Z1000b 45.0 
 (4) 

3.1  
(1) 

42.5 
 (4) 

5.1 
 (1) 

4.35 
 (5) 

- - - - - - - - - - 
303 
 (23) 

0.4 
 (2) 

2.7 
 (7) 

- 
5  

(As 4) 
80 

Z1001a 46.9 
 (3) 

3.1  
(1) 

41.8 
 (1) 

3.3 
 (2) 

4.8 
 (1) 

5873 
 (308) 

- - - - - - - - 
187 
 (10) 

- - - - 5 80 

Z1002a 49.1  
(6) 

3.3 
 (3) 

43 
 (1) 

4.2 
 (4) 

0.39 
(7) 

- - - - - - - - - - 
191  

(225) 
1 

 (1) 
3 

 (1) 
- 5 50 

Z1002b 46.6 
 (9) 

3.7 
 (3) 

43.5 
 (3) 

4.7  
(4) 

1.39 
 (8) 

- - - - - - - - - - 
17  
(9) 

0.086 
(4) 

1.1 
 (4) 

- 
4 

 (As 2) 
80 

Z1008a 49 
 (1) 

3.1  
(2) 

39 
 (1) 

3.5  
(3) 

5.3 
 (2) 

17041 
(7259) 

- - - - 
406 
 (28) 

1748 
(84) 

1069 
(101) 

840 
(100) 

- - - - - 6 80 

Z1008b 44.7 
 (9) 

3. 
 (4) 

41.7 
 (2) 

4.4 
 (5) 

5.5 
 (4) 

- - - - - - - - - - 
53  

(18) 
0.15 
 (3) 

0.89 
(8) 

- 5 80 

Z1009b 45 
 (1) 

3.6 
 (5) 

40.8  
(5) 

- - 
997 

 (165) 
188 
(18) 

62 
(10) 

21 
(10) 

282 
(89) 

- - - - - - - - - 6 80 

Z1011a 44 
 (1) 

3.4 
 (3) 

39.9 
 (4) 

4.1  
(6) 

8.7 
 (5) 

- - - - - - - - - - 
66 

 (23) 
0.17 
 (3) 

1.1 
 (2) 

- 
6  

(As 3) 
80 

Z1011b 45.8 
 (9) 

3.3 
 (3) 

41.7 
 (3) 

4.1 
 (4) 

5.1 
 (4) 

- 
98 

 (11) 
27 
 (4) 

3 
 (1) 

18 
 (6) 

- - - - - - - - - 6 80 

Z1013a 42.8 
 (8) 

4.3 
(2) 

41.0 
 (3) 

4.3 
 (3) 

7.6 
 (2) 

3326 
 (200) 

- - - - - - - - - - - - 
61 
 (4) 

6 80 

Z1016a 45.4 
 (6) 

3.9 
 (3) 

42.0 
 (2) 

4.1 
 (3) 

4.6 
 (1) 

5687 
 (325) 

- - - - - - - - 
241 
 (8) 

- - - 
 

5 80 

Z1016b 45.2 
 (8) 

3.7 
 (3) 

41.6 
 (4) 

3.6  
(3) 

6.0 
 (1) 

4265 
 (131) 

- - - - - - - - - - - - 
45 
 (3) 

6 80 

Z1019a 44 
 (1) 

3.5 
 (2) 

41.4  
(6) 

2.9  
(2) 

8.2 
 (3) 

3641 
 (403) 

- - - - - - - - 
168 
 (8) 

- - - - 5 80 

Z1019b 45.0 
 (5) 

5.0 
 (2) 

44.1  
(1) 

5.6 
 (2) 

0.23 
 (1) 

- - - - - - - - - - 
6.6 
 (9) 

0.37  
(8) 

1.1 
 (3) 

- 5 80 

Z1043a 45.9 
 (6) 

3.4  
(3) 

41.6 
 (2) 

3.4  
(2) 

5.8  
(1) 

2237 
 (65) 

- - - - - - - - - 
769 
 (42) 

7.5 
 (7) 

5.8 
 (9) 

- 5 80 

Z1043b 45.7  
(7) 

3.12 
 (8) 

41.3 
 (8) 

3.6  
(1) 

6.2 
 (1) 

1684 
 (11) 

- - - - - - - - - 
1138 
 (18) 

2.2 
 (5) 

1.7 
 (3) 

- 5 80 

Z1051a 44.9  
(3) 

3.7 
 (1) 

42.6 
 (1) 

3.8 
 (2) 

5.0 
 (1) 

2500 
 (162) 

103 
(4) 

72 
 (7) 

20  
(6) 

316 
(24) 

- - - - - - - - - 5 80 

Z1051b 45 
 (1) 

3.8 
 (4) 

42.0 
 (1) 

4.2 
 (5) 

5.5 
 (4) 

1877  
(189) 

101 
 (8) 

60  
(6) 

19 
 (6) 

391 
(44) 

- - - - - - - - - 6 80 

Z1062a 46. 
3 (7) 

3.0  
(1) 

39.6 
 (7) 

3.5 
 (1) 

7.6 
 (3) 

3418 
 (174) 

- - - - 
449  
(21) 

781 
 (45) 

716 
 (44) 

68 
 (2) 

- - - - - 5 80 

Z1062b 44.7  
(5) 

3.4 
 (1) 

40.8 
 (2) 

3.9 
 (1) 

7.2 
 (1) 

2607 
 (260) 

- - - - 
372 
 (21) 

685 
 (33) 

613  
(41) 

42 
 (13) 

- - - - - 3 80 

 
                     

18 GPa 
                    

 

Z852a 36  
(2) 

3.6  
(2) 

49 
 (1) 

5.5  
(2) 

5.9 
 (2) 

- - - - - - - - - - - - - 
309 
(25) 

4 50+70 

Z854a 39.1 
 (3) 

3.64 
 (9) 

46.8 
 (4) 

4.02 
(6) 

6.4 
 (1) 

- - - - - - - - - 
177  
(9) 

- - - - 4 50+70 

Z854b 39.3 
 (7) 

3.9 
 (2) 

46.8 
 (3) 

4.3 
 (2) 

5.7 
 (1) 

- - - - - - - - - - - - - 
260 
(14) 

4 70 
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Table A3 continued 

 MgO Al2O3 SiO2 CaO FeO S Co Ni Mo W Cu Ge Sn Sb Pb P As Au Ag N Ø 
 

                     

Z858a 38.8 
 (7) 

3.5 
 (1) 

46.7 
 (1) 

4.1 
 (1) 

6.9  
(3) 

- - - - - - - - - - - - - 
314 
(10) 

4 70 

Z858b 37 
 (1) 

3.6 
 (2) 

49 
 (1) 

3.9 
 (2) 

6.2 
 (3) 

- - - - - - - - - 
172 
 (38) 

- - - - 4 40+50 

Z859a 38.7 
 (6) 

3.85  
(6) 

46.4  
(6) 

4.08 
(5) 

6.9 
 (1) 

- 
166 
 (5) 

47 
 (3) 

3.8 
(3) 

28 
 (6) 

- - - - - - - - - 5 70 

Z859b 39 
 (1) 

3.6  
(1) 

47.3 
 (6) 

4.0  
(2) 

6.6 
 (3) 

- - - - - 
442 
 (31) 

8 
 (4) 

30 
 (3) 

3  
(3) 

- - - - - 5 70 

Z865a 39.6 
 (6) 

3.75 
 (7) 

46.1  
(5) 

4.00 
(9) 

6.6 
 (1) 

- 
147 
(22) 

48 
(12) 

5  
(2) 

32  
(16) 

- - - - - - - - - 5 70 

Z865b 39 
 (1) 

3.6 
 (1) 

45.1 
 (7) 

3.9 
 (2) 

8.1 
 (1) 

- - - - - 
647  
(28) 

7 
 (1) 

49 
 (2) 

2.0 
 (5) 

- - - - - 4 70 

Z869b 44 
 (3) 

3.2  
(2) 

43 
 (2) 

4.0 
 (6) 

5.8 
 (3) 

- - - - - - - - - - 
158 
 (37) 

1.1 
 (6) 

3.1 
 (6) 

423 
(22) 

3 40 

Z878a 40.8 
 (5) 

3.23  
(9) 

46.3 
 (6) 

4.0  
(1) 

5.7  
(2) 

- - - - - - - - - - 
57 
 (4) 

1.2 
 (6) 

4.1 
 (7) 

451 
(17) 

5 50 

Z878b 40 
 (1) 

3.2 
 (2) 

46 
 (1) 

3.7 
 (4) 

7.1 
 (2) 

- - - - - - - - - - 
54  
(3) 

0.232 
(5) 

2.4  
(3) 

503 
(47) 

4  
(As 2) 

50 

Z881a 41.0 
 (7) 

4.0 
 (2) 

45.1 
 (2) 

4.3 
 (2) 

5.6 
 (2) 

- - - - - - - - - 
150 
 (12) 

- - - - 4 80 

Z881b 42.0 
 (3) 

3.71 
 (7) 

45.2 
 (2) 

2.09 
(6) 

5.0 
 (1) 

- - - - - - - - - - 
67 
 (5) 

0.08 
 (2) 

1.4 
 (8) 

430 
(15) 

5  
(As 3) 

80 

Z957b 43.7 
 (7) 

3.8 
 (1) 

42.5 
 (9) 

4.4 
 (4) 

5.5 
 (2) 

- - - - - - - - - - 
110 
 (4) 

0.19 
 (2) 

1.7 
 (2) 

- 
3 

 (As 2) 
80 

 
                     

20 GPa 
                    

 

Z929a 40  
(5) 

4.1  
(1) 

44.6 
 (4) 

3.9 
 (1) 

6.8 
 (1) 

- 
176 
 (7) 

51 
 (3) 

5 
 (1) 

45  
(5) 

- - - - - - - - - 5 80 

Z929b 40.6 
 (7) 

4.2 
 (1) 

44.9 
 (5) 

4.6 
 (2) 

5.8 
 (2) 

- - - - - 
375 
 (18) 

2.4 
 (2) 

21 
(1) 

0.7 
 (1) 

- - - - - 5 80 

 
                    

 

21 GPa                      

Z949b 37.6 
 (6) 

3.79 
 (7) 

46.9 
 (5) 

4.9 
 (2) 

6.9 
 (2) 

- - - - - 
595 
 (39) 

7 
 (3) 

29 
 (6) 

3  
(2) 

- - - - - 4 80 

Z950a 37 
 (2) 

4.07 
 (4) 

46 
 (2) 

4.6 
  (2) 

8.3 
 (4) 

- 
264 
 (3) 

93 
(21) 

11 
 (2) 

44  
(11) 

- - - - - - - - - 5 80 

Z950b 39 
 (5) 

3.96 
 (8) 

46.8 
 (5) 

4.6  
(2) 

5.7 
 (2) 

- - - - - 
479 
 (33) 

8 
 (1) 

32  
(7) 

3  
(2) 

- - - - - 6 80 

Z969a 40 
 (2) 

3.8 
 (1) 

45 
 (1) 

4.4 
 (3) 

6.4 
 (3) 

- - - - - - - - - - 
146 
 (26) 

0.25 
 (5) 

2.8 
 (8) 

- 
6  

(As 2, 
70µm) 

70 + 50 

Z969b 39.4 
 (5) 

4.2  
(1) 

46.2 
 (5) 

4.76 
(9) 

5.4 
 (2) 

- - - - - - - - - - 
161 
 (23) 

0.22 
 (4) 

1.3 
 (4) 

- 
6 

 (As 3) 
80 

Z970a 
38 .0 (5) 

4.24 
 (6) 

46.0 
 (4) 

3.8  
(1) 

7.0 
 (4) 

- 
204 
(21) 

67 
 (8) 

7 
 (1) 

30 
 (4) 

- - - - - - - - - 5 80 

Z970b 38.3 
 (6) 

4.16 
 (4) 

46.2 
(4) 

4.8 
 (2) 

6.6 
 (2) 

- - 
54 
 (4) 

6 
 (1) 

23 
 (5) 

- - - - - - - - - 5 80 

Z977a 39. 
2 (6) 

4.3 
 (1) 

46.1  
(6) 

4.7 
 (1) 

5.7 
 (1) 

- - - - - - - - - 
147 
 (20) 

- - - - 6 80 

Z977b 38.9 
 (8) 

4.12 
 (8) 

46.4  
(5) 

5.0 
 (2) 

5.5 
 (5) 

- - - - - - - - - - - - - 
283 
(20) 

5 80 
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Table A3 continued 

 MgO Al2O3 SiO2 CaO FeO S Co Ni Mo W Cu Ge Sn Sb Pb P As Au Ag N Ø 
 

                     

Z980a 37.8 
 (6) 

4.07 
 (3) 

46.8 
 (4) 

4.97 
(9) 

6.3 
 (3) 

- - - - - - - - - - - - - 
305 
(17) 

5 80 

Z980b 39.3 
 (7) 

3.8 
 (1) 

46.2 
(3) 

4.6  
(1) 

6.1  
(2) 

- - - - - - - - - 
175 
 (4) 

- - - - 5 80 

 
                    

 

23 GPa                      

H3518 38 
 (1) 

2.71 
 (8) 

52 
 (1) 

4.2 
 (2) 

4 
 (1) 

- - - - - - - - - 
174 
 (23) 

- - - - 4 20+30 

H3536 69 
 (9) 

2.2 
 (3) 

22 
 (8) 

1 
 (2) 

6 
 (4) 

- - - - - - - - - 
178 
 (84) 

- - - - 4 20 

H3581 38.7 
 (5) 

3.5 
 (2) 

47.2 
 (5) 

4.4 
 (2) 

6.1 
 (6) 

- - - - - - - - - 
174 
 (4) 

- - - - 3 50 

H3606 36 
 (1) 

3.6 
 (1) 

50 
 (1) 

4.2 
 (2) 

5.5 
 (5) 

- - - - - - - - - - - - - 
343 
(63) 

5 30+40+50 

H3629 35.2 
 (8 

4.1 
 (1) 

50 
 (7) 

4.28 
(5) 

6.4 
 (2) 

- - - - - - - - - 
151 
 (6) 

- - - - 3 40+50 
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