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EXTENDED ABSTRACT. In recent decades, Nonlinear Model Predictive
Control (NMPC) has proven to be an important tool in control of nonlinear systems
in modern technological applications. NMPC is an approach to feedback design that
is based on the solution, at each controller update step, of an optimal control problem
(OCP). Increased attention in the study of NMPC over the years has been continu-
ously bringing results that address challenges in the performance of this method, the
stability of the closed-loop system and robustness of NMPC schemes.

Let us consider a plant with dynamics given by the discrete-time model x(k+1) =
f (x(k), u(k)) where x(k) represents the plant state and u(k) denotes the control at
time step tk with 0 < k ∈ Z. Let X be the state space, U be the control value space,
and xu(·, x0) be the trajectory for control sequence u and initial state x0. For the
general NMPC algorithm with finite time horizon length N ≥ 2, at each sampling
time tn, n = 0, 1, 2, . . . , N − 1, we measure the state x(n) ∈ X of the system. We set
x0 = x(n) and solve the following OCP:

minimize JN (z) :=

N−1∑
k=0

ωN−k` (n+ k, xu(k, x0), u(k)) + F (n+N, xu(N, x0))

with respect to the optimization variable
z := (xu(0, x0)ᵀ, . . . , xu(N, x0)ᵀ, u(0)ᵀ, . . . , u(N − 1)ᵀ)

ᵀ

subject to the initial value xu(0, x0) = x0,

dynamics xu(k + 1, x0) = f (xu(k, x0), u(k)) , k = 0, . . . , N − 1,

other equality constraints G(z) = 0,

and inequality constraints H(z) ≥ 0.

In this formulation, ` represents the running cost function, ωN−k are the weights of the
running cost function and F is the terminal cost function. In the optimal solution, we
refer to the obtained optimal control sequence as u?(·) ∈ UNX0

(n, x0) where UNX0
(n, x0)

denotes the set of admissible finite horizon control sequences for terminal constraint
set X0, where we assume that the terminal constraint xu(N, x0) ∈ X0 is contained
in the constraints found in G(z) = 0 and H(z) ≥ 0. Our approach applies to MPC
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formulations both with and without terminal constraint, in the latter case we set
X0 = X. We define the closed-loop NMPC-feedback law as µN (n, x(n)) := u?(0) ∈ U ,
i.e., as the first element of the obtained optimal control sequence and use this control
value in the next sampling period to obtain x(n+ 1).

Rigorous statements on the systems theoretical aspects of existing NMPC schemes
such as various ideas exemplifying approaches to achieve stability and robustness are
considerably well-established in the literature. For example, see Grüne, Pannek [3].

The described OCP can be viewed as a nonlinear programming (NLP) problem
that depends on the parameter x0. First, let

G̃(z) =

 xu(0, x0)− x0
xu(k + 1, x0)− f (xu(k, x0), u(k)) , k = 0, . . . , N − 1

G(z)

 .
Suppose G̃(z) ∈ Rne , H(z) ∈ Rni . Let C(z) :=

[
G̃(z), H(z)

]ᵀ
∈ Rnc where nc =

ne + ni. Then we can write the NLP problem as P(p) which is parametric in the
initial state p := x0 = x(n) via

min JN (z, p) subject to z ∈ Σ(p)

where

Σ(p) = {z | Ci(z, p) = 0, i = 1, . . . , ne, Ci(z, p) ≥ 0, i = ne + 1, . . . , nc}

denotes the admissible set,

L(z, µ, p) = JN (z, p) + µᵀC(z, p)

denotes the Lagrangian function,

A(z, p) = {1, . . . , ne} ∪ {i | Ci(z, p) = 0, i = ne + 1, . . . , nc}

denotes the index set of active constraints and CA(z,p) denotes the active constraints
and µA(z,p) are the corresponding multipliers.

Now the NLP Sensitivity Theorem in Fiacco [1] states sufficient conditions for the
differentiability of an optimal solution z(p) with respect to p. The theorem states that
if JN and Ci, i = 1, . . . , nc are twice differentiable in a neighborhood of the nominal
solution z?(p0) and second order sufficient conditions (SOSC), linear independent
constraint qualification (LICQ) and strict complementarity hold at z?(p0), then for
p in a neighborhood of p0, there exists a unique, continuous and differentiable z?(p)
which is a local miminizer satisfying SOSC and LICQ for the problem P(p). Moreover,
z(p) and µ(p) are continuously differentiable functions of p in the said neighborhood
of p0 and based on the implicit function theorem

[
∇2
zzL(z?, µ?, p0) ∇zCA(z?,p0)(z

?, p0)ᵀ

∇zCA(z?,p0)(z
?, p0) 0

]
·


∂z

∂p
(p0)

∂µA(z?,p0)

∂p
(p0)


= −

[
∇2
zpL(z?, µ?, p0)

∇pCA(z?,p0)(z
?, p0)

]
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holds. The matrix

[
∂z

∂p
(p0),

∂µA(z?,p0)

∂p
(p0)

]ᵀ
is called the sensitivity matrix which

consists of the sensitivity of the solution z and the sensitivity of the multipliers cor-
responding to active contraints both with respect to the parameter p evaluated at p0.

The sensitivity
∂z

∂p
(p0) gives rise to a first-order approximation of the optimal solution

for a perturbed parameter via

z̃(p) = z?(p0) +
∂z

∂p
(p0) (p− p0) .

One of the main challenges in NMPC applications is reducing the computational
effort brought about by the online solution of an OCP at every time step tn. Reducing
the computational load due to these NLP problems should be accomplished without
sacrificing statements on the stability, performance and robustness of the resulting
control algorithm. To solve this problem, a straightforward approach is using a multi-
step feedback, i.e., using more than just the first element of the resulting finite horizon
optimal control sequence and thus performing the optimization less often. Instead of
only the first element of the obtained optimal control sequence, we implement the
first m elements, i.e. u?(0), u?(1), . . . , u?(m − 1), and then proceed with the next
optimization. We call the number m the control horizon. With this, we write the
feedback law µN (x, k) := u?(k), k = 0, . . . ,m − 1 which we refer to as a multistep
NMPC-feedback law.

Consider the OCP with initial state x0 ∈ X and optimization horizon N ∈ N0.
Let VN (x0) denote the finite horizon optimal value function, V

µN,m
∞ (x0) denote the

multistep feedback optimal value function and V∞(x0) denote the infinite horizon
optimal value function. In the simplest case where neither terminal costs nor ter-
minal constraints are imposed, via relaxed dynamic programming, [2] establishes the
estimate

αV∞(x0) ≤ αV µN,m
∞ (x0) ≤ VN (x0)

for some α ∈ (0, 1] describing the suboptimality of the multistep feedback µN,m for
the infinite horizon problem. Through this, [2] further establishes a suitable bound for
VN (xµN,m

(n)) for all n and that µN,m yields asymptotic stability of the MPC closed-
loop system. Hence, upon using longer control horizons, stability and performance
results still remain valid.

However, longer control horizon may reduce robustness since the use of more
elements of the control sequences implies that the system runs in open loop for a
longer time. More precisely, due to external perturbations, modeling errors etc. the

measured states x
(m)
k := x(n + k), k = 1, . . . ,m− 1, will in general deviate from the

predicted states xu?(k, x(n)) and since in a multistep feedback law we do not use this
information the controller cannot react to this deviation.

A remedy for this issue is incorporating sensitivity, which can be used to update
the next entry of the multistep feedback which is actually the first element of the tail
of the optimal control sequence, injecting the updated control value to the system
to generate the next state, and repeating this process to the remaining succeeding
entries of the multistep feedback before finally performing the next optimization solv-
ing the next NLP problem at time tn+m. In a different context, it has already been
demonstrated by Zavala and Biegler [5] that sensitivity techniques are well suited in
order to perform such an update based on recent measurements.
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We thus propose the following strategy. With initial value x0 = x(n) we solve
the problem P(x0) and obtain the optimal control sequence u?0, u

?
1, u

?
2, . . . , u

?
N−1. We

then implement u?0 to obtain x?1 := xu?(1, x0). Now by Cor. 3.16 in [3], the tail
u?1, u

?
2, . . . , u

?
N−1 is the optimal control sequence for the problem P(x?1) with initial

value x?1, time instant t1 and optimization horizon N − 1. The idea is, since as
an initial value, x?1 corresponds to u?1, u

?
2, . . . , u

?
N−1, we can improve u?1 using the

sensitivity
∂u?1
∂x?1

, which tells us how u?1 changes with respect to x?1, and the perturbation

x
(m)
1 − x?1, where x

(m)
1 denotes the measured state at time tn+1. We thus obtain the

correction

ũ1 = u?1 +
∂u?1
∂x?1

(
x
(m)
1 − x?1

)
.

We perform the same procedure to update u?2, . . . , u
?
m before once again performing

an optimization to solve the succeeding NLP.
For this proposed algorithm, we present numerical results from various examples

and investigate the effects of this approach on the robustness of the NMPC method.
Moreover, we indicate how this procedure can be incorporated into the stability and
performance analysis of the MPC closed loop.
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