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Numerical methods for nonlinear

optimal control problems
Summary. In this article we describe the three most common approaches for numerically solving

nonlinear optimal control problems governed by ordinary differential equations. For computing ap-

proximations to optimal value functions and optimal feedback laws we present the Hamilton-Jacobi-

Bellman approach. For computing approximately optimal open loop control functions and trajectories

for a single initial value, we outline the indirect approach based on Pontryagin’s Maximum Principles

and the approach via direct discretization.

Introduction

This article concerns optimal control problems governed by nonlinear ordinary differ-

ential equations

ẋ(t) = f(x(t), u(t)) (1)

with f : R × Rn × Rm → Rn. We assume that for each initial value x ∈ Rn and

measurable control function u(·) ∈ L∞(R,Rm) there exists a unique solution x(t) =

x(t, x, u(·)) of (1) satisfying x(0, x, u(·)) = x.

Given a state constraint set X ⊆ Rn and a control constraint set U ⊆ Rm, a

running cost g : X × U → R, a terminal cost F : X → U and a discount rate δ ≥ 0,

we consider the optimal control problem

minimize
u(·)∈UT (x)

JT (x, u(·)) (2)
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where

JT (x, u(·)) :=

∫ T

0

e−δsg(x(s, x, u(·)), u(s))ds

+ e−δTF (x(T, x, u(·)))

(3)

and

UT (x) :=

u(·) ∈ L∞(R, U)

∣∣∣∣∣∣∣∣
x(s, x, u(·)) ∈ X

for all s ∈ [0, T ]

 (4)

In addition to this finite horizon optimal control problem, we also consider the

infinite horizon problem in which T is replaced by “∞”, i.e.,

minimize
u(·)∈U∞(x)

J∞(x, u(·)) (5)

where

J∞(x, u(·)) :=

∫ ∞
0

e−δsg(x(s, x, u(·)), u(s))ds (6)

and

U∞(x) :=

u(·) ∈ L∞(R, U)

∣∣∣∣∣∣∣∣
x(s, x, u(·)) ∈ X

for all s ≥ 0

 , (7)

respectively.

The term “solving” (2)–(4) or (5)–(7) can have various meanings. First, the

optimal value functions

V T (x) = inf
u(·)∈UT (x)

JT (x, u(·))

or

V ∞(x) = inf
u(·)∈U∞(x)

J∞(x, u(·))

may be of interest. Second, and often more importantly, one would like to know the

optimal control policy. This can be expressed in open loop form u? : R→ U , in which the

function u? depends on the initial value x and on the initial time which we set to 0 here.

Alternatively, the optimal control can be computed in state and time dependent closed

loop form, in which a feedback law µ? : R×X → U is sought. Via u?(t) = µ?(t, x(t)),

this feedback law can then be used in order to generate the time dependent optimal

control function for all possible initial values. Since the feedback law is evaluated along
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the trajectory, it is able to react to perturbations and uncertainties which may make

x(t) deviate from the predicted path. Finally, knowing u? or µ? one can reconstruct

the corresponding optimal trajectory by solving

ẋ(t) = f(x(t), u?(t)) or ẋ(t) = f(x(t), µ?(t, x(t))).

Hamilton-Jacobi-Bellman approach

In this section we describe the numerical approach to solving optimal control problems

via Hamilton-Jacobi-Bellman equations. We first describe how this approach can be

used in order to compute approximations to the optimal value function V T and V ∞,

respectively, and afterwards how the optimal control can be synthesized using these

approximations. In order to formulate this approach for finite horizon T , we interpret

V T (x) as a function in T and x. We denote differentiation w.r.t. T and x with subscript

T and x, i.e., V T
x (x) = dV T (x)/dx, V T

T (x) = dV T (x)/dT etc.

We define the Hamiltonian of the optimal control problem as

H(x, p) := max
u∈U
{−g(x, u)− p · f(x, u)},

with x, p ∈ Rn, f from (1), g from (3) or (6) and “·” denoting the inner product in Rn.

Then, under appropriate regularity conditions on the problem data, the optimal value

functions V T and V ∞ satisfy the first order partial differential equations (PDEs)

V T
T (x) + δV T (x) +H(x, V T

x (x)) = 0

and

δV ∞(x) +H(x, V ∞x (x)) = 0

in the viscosity solution sense. In the case of V T , the equation holds for all T ≥ 0 with

the boundary condition V 0(x) = F (x).
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The framework of viscosity solutions is needed because in general the optimal

value functions will not be smooth, thus a generalized solution concept for PDEs must

be employed, see Bardi and Capuzzo Dolcetta (1997). Of course, appropriate boundary

conditions are needed at the boundary of the state constraint set X.

Once the Hamilton-Jacobi-Bellman characterization is established, one can com-

pute numerical approximations to V T or V ∞ by solving these PDEs numerically. To

this end, various numerical schemes have been suggested, including various types of

finite element and finite difference schemes. Among those, semi-Lagrangian schemes

(Falcone (1997) or Falcone and Ferretti (2013)) allow for a particularly elegant inter-

pretation in terms of optimal control synthesis, which we explain for the infinite horizon

case.

In the semi-Lagrangian approach, one takes advantage of the fact that by the

chain rule for p = V ∞x (x) and constant control functions u the identity

δV ∞(x)− p · f(x, u) =
d

dt

∣∣∣∣
t=0

− (1− δt)V ∞(x(t, x, u))

holds. Hence, the left hand side of this equality can be approximated by by the difference

quotient

V ∞(x)− (1− δh)V ∞(x(h, x, u))

h

for small h > 0. Inserting this approximation into the Hamilton-Jacobi-Bellman equa-

tion, replacing x(h, x, u) by a numerical approximation x̃(h, x, u) (in the simplest case

the Euler method x̃(h, x, u) = x + hf(x, u)), multiplying by h and rearranging terms,

one arrives at the equation

V ∞h (x) = min
u∈U
{hg(x, u) + (1− δh)V ∞h (x̃(h, x, u))}

defining an approximation V ∞h ≈ V ∞. This is now a purely algebraic dynamic program-

ming type equation which can be solved numerically, e.g., by using a finite element

approach. The equation is typically solved iteratively using a suitable minimization
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routine for computing the “min” in each iteration (in the simplest case U is discretized

with finitely many values and the minimum is determined by direct comparison). We

denote the resulting approximation of V ∞ by Ṽ ∞h . Here, approximation is usually un-

derstood in the L∞ sense, see Falcone (1997) or Falcone and Ferretti (2013).

The semi-Lagrangian scheme is appealing for synthesis of an approximately

optimal feedback because V ∞h is the optimal value function of the auxiliary discrete

time problem defined by x̃. This implies that the expression

µ?h(x) := argmin
u∈U

{hg(x, u) + (1− δh)V ∞h (x̃(h, x, u))},

is an optimal feedback control value for this discrete time problem for the next time

step, i.e., on the time interval [t, t + h) if x = x(t). This feedback law will be ap-

proximately optimal for the continuous time control system when applied as a discrete

time feedback law and this approximate optimality remains true if we replace V ∞h in

the definition of µ?h by its numerically computable approximation Ṽ ∞h . A similar con-

struction can be made based on any other numerical approximation Ṽ ∞ ≈ V ∞, but

the explicit correspondence of the semi-Lagrangian scheme to a discrete time auxiliary

system facilitates the interpretation and error analysis of the resulting control law.

The main advantage of the Hamilton-Jacobi-approach is that it directly com-

putes an approximately optimal feedback law. Its main disadvantage is that the number

of grid nodes needed for maintaining a given accuracy in a finite element approach to

compute Ṽ ∞h in general grows exponentially with the state dimension n. This fact —

known as the curse of dimensionality — restricts this method to low dimensional state

spaces. Unless special structure is available which can be exploited, as, e.g., in the max-

plus approach, see McEneaney (2006), it is currently almost impossible to go beyond

state dimensions of about n = 10, typically less for strongly nonlinear problems.
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Maximum Principle approach

In contrast to the Hamilton-Jacobi-Bellman approach, the approach via Pontryagin’s

Maximum Principle does not compute a feedback law. Instead, it yields an approxi-

mately open loop optimal control u? together with an approximation to the optimal

trajectory x? for a fixed initial value. We explain the approach for the finite horizon

problem. For simplicity of presentation, we omit state constraints in our presentation,

i.e., we set X = Rn and refer to, e.g., Vinter (2000), Bryson and Ho (1975) or Grass et al

(2008) for more general formulations as well as for rigorous versions of the following

statements.

In order to state the Maximum Principle (which, since we are considering a

minimization problem here, could also be called Minimum Principle) we define the

non-minimized Hamiltonian as

H(x, p, u) = g(x, u) + p · f(x, u).

Then, under appropriate regularity assumptions there exists an absolutely continuous

function p : [0, T ] → Rn such that the optimal trajectory x? and the corresponding

optimal control function u? for (2)–(4) satisfy

ṗ(t) = δp(t)−Hx(x
?(t), p(t), u?(t)) (8)

with terminal or transversality condition

p(T ) = Fx(x
?(T )) (9)

and

u?(t) = argmin
u∈U

H(x?(t), p(t), u), (10)

for almost all t ∈ [0, T ], see Grass et al (2008), Theorem 3.4. The variable p is referred

to as the adjoint or costate variable.
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For a given initial value x0 ∈ Rn, the numerical approach now consists of finding

functions x : [0, T ]→ Rn, u : [0, T ]→ U and p : [0, T ]→ Rn satisfying

ẋ(t) = f(x(t), u(t)) (11)

ṗ(t) = δp(t)−Hx(x(t), p(t), u(t)) (12)

u(t) = argmin
u∈U

H(x(t), p(t), u) (13)

x(0) = x0, p(T ) = Fx(x(T )) (14)

for t ∈ [0, T ]. Depending on the regularity of the underlying data the conditions (11)–

(14) may only be necessary but not sufficient for x and u being an optimal trajectory

x? and control function u?, respectively. However, usually x and u satisfying these

conditions are good candidates for the optimal trajectory and control, thus justifying

the use of these conditions for the numerical approach. If needed, optimality of the

candidates can be checked using suitable sufficient optimality conditions for which we

refer to, e.g., Maurer (1981) or Malanowski et al (2004). Due to the fact that in the

Maximum Principle approach first optimality conditions are derived which are then

discretized for numerical simulation, it is also termed first optimize then discretize.

Solving (11)–(14) numerically amounts to solving a boundary value problem,

because the condition x?(0) = x0 is posed at the beginning of the time interval [0, T ]

while the condition p(T ) = Fx(x
?(T )) is required at the end. In order to solve such a

problem, the simplest approach is the single shooting method which proceeds as follows:

We select a numerical scheme for solving the ordinary differential equations (11)

and (12) for t ∈ [0, T ] with initial conditions x(0) = x0, p(0) = p0 and control function

u(t). Then, we proceed iteratively as follows:

(0) Find initial guesses p0
0 ∈ Rn and u0(t) for the initial costate and the control, fix

ε > 0 and set k := 0
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(1) Solve (11) and (12) numerically with initial values x0 and pk0 and control function

uk. Denote the resulting trajectories by x̃k(t) and p̃k(t).

(2) Apply one step of an iterative method for solving the zero finding problem G(p) = 0

with

G(pk0) := p̃k(T )− Fx(x̃k(T ))

for computing pk+1
0 . For instance, in case of the Newton method we get

pk+1
0 := pk0 −DG(pk0)−1G(pk0).

If ‖pk+1
0 − pk0‖ < ε stop; else compute

uk+1(t) := argmin
u∈U

H(xk(t), pk(t), u),

set k := k + 1 and go to (1).

The procedure described in this algorithm is called single shooting because the iteration

is performed on the single initial value pk0. For an implementable scheme, several details

still need to be made precise, e.g., how to parameterize the function u(t) (e.g., piecewise

constant, piecewise linear or polynomial), how to compute the derivative DG and its

inverse (or an approximation thereof) and the argmin in (2). The last task considerably

simplifies if the structure of the optimal control, e.g., the number of switchings in case

of a bang-bang control, is known.

However, even if all these points are settled, the set of initial guesses p0
0 and u0

for which the method is going to converge to a solution of (11)–(14) tends to be very

small. One reason for this is that the solutions of (11) and (12) typically depend very

sensitively on p0
0 and u0. In order to circumvent this problem, multiple shooting can

be used. To this end, one selects a time grid 0 = t0 < t1 < t2 < . . . < tN = T and

in addition to pk0 introduces variables xk1, . . . , x
k
N−1, p

k
1, . . . , p

k
N−1 ∈ Rn. Then, starting

from initial guesses p0
0, u

0 and x0
1, . . . , x

0
N−1, p

0
1, . . . , p

0
N−1, in each iteration the equations
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(11)–(14) are solved numerically on the intervals [tj, tj+1] with initial values xkj and pkj ,

respectively. We denote the respective solutions in the k-th iteration by x̃kj and p̃kj . In

order to enforce that the trajectory pieces computed on the individual intervals [tj, tj+1]

fit together continuously, the map G is redefined as

G(xk1, . . . , x
k
N−1, p

k
0, p

k
1, . . . , p

k
N−1) =

x̃k0(t1)− xk1
...

x̃kN−2(t1)− xkN−1

p̃k0(t1)− pk1
...

p̃kN−2(t1)− pkN−1

p̃kN−1(T )− Fx(x̃kN−1(T ))



.

The benefit of this approach is that the solutions on the shortened time intervals

depend much less sensitively on the initial values and the control, thus making the

problem numerically much better conditioned. The obvious disadvantage is that the

problem becomes larger as the function G is now defined on a much higher dimensional

space but this additional effort usually pays off.

While the convergence behavior for the multiple shooting method is considerably

better than for single shooting, it is still a difficult task to select good initial guesses

x0
j , p

0
j and u0. In order to accomplish this, homotopy methods can be used, see, e.g.,

Pesch (1994) or the result of a direct approach as presented in the next section can be

used as an initial guess. The latter can be reasonable as the Maximum Principle based

approach can yield approximations of higher accuracy than the direct method.

In the presence of state constraints or mixed state and control constraints the

conditions (12)–(14) become considerably more technical and thus more difficult to be

implemented numerically, cf. Pesch (1994).
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Direct discretization

Despite being the most straightforward and simple of the approaches described in this

article, the direct discretization approach is currently the most widely used approach

for computing single finite horizon optimal trajectories. In the direct approach we first

discretize the problem and then solve a finite dimensional nonlinear optimization prob-

lem (NLP), i.e., we first discretize, then optimize. The main reason for the popularity

of this approach are the simplicity with which constraints can be handled and the

numerical efficiency due to the availability of fast and reliable NLP solvers.

The direct approach again applies to the finite horizon problem and computes an

approximation to a single optimal trajectory x?(t) and control function u?(t) for a given

initial value x0 ∈ X. To this end, a time grid 0 = t0 < t1 < t2 < . . . < tN = T and a

set Ud of control functions which are parametrized by finitely many values are selected.

The simplest way to do so is to choose u(t) ≡ uj ∈ U for all t ∈ [ti, ti+1]. However,

other approaches like piecewise linear or piecewise polynomial control functions are

possible, too. We use a numerical algorithm for ordinary differential equations in order

to approximately solve the initial value problems

ẋ(t) = f(x(t), ui), x(ti) = xi (15)

for i = 0, . . . , N − 1 on [ti, ti+1]. We denote the exact and numerical solution of (15) by

x(t, ti, xi, ui) and x̃(t, ti, xi, ui), respectively. Finally, we choose a numerical integration

rule in order to compute an approximation

I(ti, ti+1, xi, ui) ≈
∫ ti+1

ti

e−δtg(x(t, ti, xi, u), u(t))dt.

In the simplest case, one might choose x̃ as the Euler scheme and I as the rectangle

rule, leading to

x̃(ti+1, ti, xi, ui) = xi + (ti+1 − ti)f(xi, ui)
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and

I(ti, ti+1, xi, ui) = (ti+1 − ti)e−δtig(xi, ui).

Introducing the optimization variables u0, . . . , uN−1 ∈ Rm and x1, . . . , xN ∈ Rn,

the discretized version of (2)–(4) reads

minimize
xj∈Rn,uj∈Rm

N−1∑
i=0

I(ti, ti+1, xi, u) + e−δTF (xN)

subject to the constraints

uj ∈ U, j = 0, . . . , N − 1

xj ∈ X, j = 1, . . . , N

xj+1 = x̃(tj+1, tj, xj, u), j = 0, . . . , N

This way, we have converted the optimal control problem (2)–(4) into a finite di-

mensional nonlinear optimization problem (NLP). As such, it can be solved with any

numerical method for solving such problems. Popular methods are, for instance, sequen-

tial quadratic programming (SQP) or interior point (IP) algorithms. The convergence

of this approach was proved in Malanowski et al (1998), for an up to date account on

theory and practice of the method see Gerdts (2012) and Betts (2010). These references

also explain how information about the costates p(t) can be extracted from a direct

discretization, thus linking the approach to the Maximum Principle.

The direct method sketched here is again a multiple shooting method and the

benefit of this approach is the same as for solving boundary problems: thanks to the

short intervals [ti, ti+1] the solutions depend much less sensitively on the data than the

solution on the whole interval [0, T ], thus making the iterative solution of the resulting

discretized NLP much easier. The price to pay is again the increase of the number

of optimization variables. However, due to the particular structure of the constraints

guaranteeing continuity of the solution, the resulting matrices in the NLP have a par-
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ticular structure which can be exploited numerically by a method called condensing,

see Bock and Plitt (1984).

An alternative to multiple shooting methods are collocation methods, in which

the internal variables of the numerical algorithm for solving (15) are also optimization

variables. However, nowadays the multiple shooting approach as described above is

usually preferred. For a more detailed description of various direct approaches see also

Binder et al (2001), Section 5.

Further approaches for infinite horizon problems

The last two approaches only apply to finite horizon problems. While the Maximum

Principle approach can be generalized to infinite horizon problems, the necessary con-

ditions become weaker and the numerical solution becomes considerably more involved,

see Grass et al (2008). Both the Maximum Principle and the direct approach can, how-

ever, be applied in a receding horizon fashion, in which an infinite horizon problem is

approximated by the iterative solution of finite horizon problems. The resulting control

technique is known under the name of Model Predictive control (MPC, see Grüne and

Pannek (2011)) and under suitable assumptions a rigorous approximation result can

be established.

Summary and Future Directions

The three main numerical approaches to optimal control are

• the Hamilton-Jacobi-Bellman approach, which provides a global solution in feed-

back form but is computationally expensive for higher dimensional systems

• the Pontryagin Maximum Principle approach which computes single optimal

trajectories with high accuracy but needs good initial guesses for the iteration
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• the direct approach which also computes single optimal trajectories but is less

demanding in terms of the initial guesses at the expense of a somewhat lower

accuracy

Currently, the main trends in numerical optimal control lie in the areas of Hamilton-

Jacobi-Bellman equations and direct discretization. For the former, the development of

discretization schemes suitable for increasingly higher dimensional problems are in the

focus. For the latter, the popularity of these methods in online applications like MPC

triggers continuing effort to make this approach faster and more reliable.

Beyond ordinary differential equations, the development of numerical algorithms

for the optimal control of partial differential equations (PDEs) has attracted consider-

able attention during the last years. While many of these methods are still restricted to

linear systems, in the near future we can expect to see many extensions to (classes of)

nonlinear PDEs. It is worth noting that for PDEs Maximum Principle-like approaches

are more popular than for ordinary differential equations.
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