
Predictive Control Algorithms: Stability
despite Shortened Optimization Horizons

Philipp Braun ∗ Jürgen Pannek ∗∗ Karl Worthmann ∗

∗University of Bayreuth, 95440 Bayreuth, Germany
∗∗University of the Federal Armed Forces, 85577 Munich, Germany

Abstract: The stability analysis of model predictive control schemes without terminal constraints
and/or costs has attracted considerable attention during the last years. We pursue a recently
proposed approach which can be used to determine a suitable optimization horizon length
for nonlinear control systems governed by ordinary differential equations. In this context,
we firstly show how the essential growth assumption involved in this methodology can be
derived and demonstrate this technique by means of a numerical example. Secondly, inspired by
corresponding results, we develop an algorithm which allows to reduce the required optimization
horizon length while maintaining asymptotic stability or a desired performance bound. Last,
this basic algorithm is further elaborated in order to enhance its robustness properties.
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1. INTRODUCTION

Within the last decades, model predictive control (MPC)
has grown mature for both linear and nonlinear systems,
see, e.g., Camacho and Bordons [2004] or Rawlings and
Mayne [2009]. Although analytically and numerically chal-
lenging, the method itself is attractive due to its simplicity:
In a first step, a new measurement of the current system
state is obtained which is thereafter used to compute an
optimal control over a finite optimization horizon. In the
third and last step, a portion of this control is applied to
the process and the entire problem is shifted forward in
time rendering the scheme to be iteratively applicable.

Stability of the MPC closed loop can be shown by imposing
endpoint constraints, Lyapunov type terminal costs or
terminal regions, cf. Keerthi and Gilbert [1988] and Chen
and Allgöwer [1998]. Here, we study MPC schemes without
these ingredients for which stability and, in addition,
bounds on the required horizon length can be deduced,
both for linear and nonlinear systems, cf. Primbs and
Nevistić [2000] and Tuna et al. [2006]. We follow the recent
approach from Reble and Allgöwer [2011] extending Grüne
[2009], Grüne et al. [2010] to continuous time systems
which not only guarantees stability but also reveals an
estimate on the degree of suboptimality with respect to
the optimal controller on an infinite horizon.

In this work, we show how the essential assumption needed
to apply the methodology proposed in Reble and Allgöwer
[2011] can be practically verified. Then, based on observa-
tions drawn from numerical computations, implementable
MPC algorithms with variable control horizons are devel-
oped which allow for smaller optimization horizons while
maintaining stability or a desired performance bound. To
overcome the lack of robustness implied by prolonging the
control horizon and, thus, staying in open loop for longer
time intervals, conditions are presented which ensure that
the control loop can be closed more often. Similar ideas

were introduced in Pannek and Worthmann [2011] for
a discrete time setting. Last, the computational effort
is further reduced by introducing slack which allows to
violate our main stability condition — a relaxed Lyapunov
inequality — temporarily, cf. Giselsson [2010].

The paper is organized as follows: In Section 2 the problem
formulation is given. In the ensuing Section 3, we summa-
rize stability results from Reble and Allgöwer [2011] and
propose a technique to verify the key assumption which
is illustrated by an example. Thereafter, we present algo-
rithms which allow for shortening the optimization horizon
by using time varying control horizons. Before drawing
conclusions, Section 5 contains results on how stability
may be guaranteed by using weaker stability conditions.

2. SETUP AND PRELIMINARIES

Let N and R denote the set of natural and real numbers
respectively and ‖ · ‖ the Euclidean norm on Rd, d ∈ N.
A continuous function η : R≥0 → R≥0 is called class K∞-
function if it satisfies η(0) = 0, is strictly increasing and
unbounded. A continuous function β : R≥0 × R≥0 → R≥0

is said to be of class KL if for each r > 0 we have that
limt→∞ β(r, t) = 0 holds, and for each t ≥ 0 the condition
β(·, t) ∈ K∞ is satisfied.

Within this work we consider nonlinear time invariant
control systems

ẋ(t) = f(x(t), u(t)) (1)

where x(t) ∈ Rn and u(t) ∈ Rm denote the state and
control at time t ≥ 0. Constraints can be included via
suitable subsets X ⊂ Rn and U ⊂ Rm of the state and
control space, respectively. We denote a state trajectory
which emanates from the initial state x0 and is subject to
the control function u : R≥0 → Rm by xu(t) = xu(t;x0).
In the presence of constraints, a control function u is called
admissible for x on the interval [0, T ) if the corresponding
solution xu(·;x) exists and satisfies
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xu(t;x) ∈ X, t ∈ [0, T ], and u(t) ∈ U, t ∈ [0, T ). (2)

The set of these admissible control functions is denoted by
Ux([0, T )). For an infinite time interval, u : R≥0 → Rm is
called admissible for x if u|[0,T ) ∈ Ux([0, T )) holds for each
T > 0 and the respective set is denoted by Ux([0,∞)).

For system (1) we assume an equilibrium (x?, u?) ∈ X×U
to exist, i.e. f(x?, u?) = 0 holds. Our goal is to design a
feedback control law µ : Rn → Rm such that the resulting
closed loop is asymptotically stable with respect to x?, i.e.
there exists β ∈ KL such that ‖xµ(t;x0)− x?‖ ≤ β(‖x0 −
x?‖, t), t ≥ 0, holds for all x0 ∈ X where xµ(·;x0) denotes
the closed loop trajectory induced by µ. The stabilization
task is to be accomplished in an optimal fashion which is
measured by a cost functional. To this end, we introduce
the continuous running cost ` : Rn×Rm → R≥0 satisfying

`(x?, u?) = 0 and inf
u∈U

`(x, u) > 0 ∀x 6= x?.

Then, for a given state x ∈ X, the cost of an admissible
control u ∈ Ux([0,∞)) is

J∞(x, u) :=

∫ ∞
0

`(xu(t;x), u(t)) dt.

The computation of a corresponding minimizer is, in gen-
eral, computationally hard due to the curse of dimensional-
ity, cf. Bardi and Capuzzo-Dolcetta [1997]. Hence, we use
model predictive control (MPC) to approximately solve
this task. The central idea of MPC is to truncate the in-
finite horizon, i.e. to compute a minimizer u? ∈ Ux([0, T ))
of the cost functional

JT (x, u) :=

∫ T

0

`(xu(t;x), u(t)) dt, (3)

which can be done efficiently using discretization meth-
ods and nonlinear optimization algorithms, see, e.g., Ma-
ciejowski [2002] or [Grüne and Pannek, 2011, Chapter 10].
Furthermore, we define the corresponding optimal value
function VT (x) := infu∈Ux([0,T )) JT (x, u), T ∈ R≥0 ∪ {∞}.
To obtain an infinite horizon control, only the first portion
of the computed minimizer is applied, i.e. we define the
feedback law via

µT,δ(t;x) := u?(t), t ∈ [0, δ), (4)

for the so called control horizon δ ∈ (0, T ). Last, the
optimal control problem is shifted forward in time which
renders Algorithm 1 to be iteratively applicable.

Algorithm 1 MPC

Given: T > δ > 0
(1) Measure the current state x̂
(2) Compute a minimizer u? ∈ Ux̂([0, T )) of (3) and

define the MPC feedback law via (4)
(3) Implement µT,δ(t; x̂)|t∈[0,δ), shift the horizon forward

in time by δ and goto (1)

The closed loop state trajectory emanating from the
initial state x0 subject to the MPC feedback law µT,δ
from Algorithm 1 is denoted by xµT,δ(·;x0). Furthermore,

u
µT,δ
MPC : R≥0 → Rm denotes the control function obtained

by concatenating the applied pieces of control functions,
i.e.

u
µT,δ
MPC(t;x0) = µT,δ(t− bt/δcδ, xµT,δ(bt/δcδ;x0)).

The resulting MPC closed loop cost are given by

V
µT,δ
∞ (x) :=

∫ ∞
0

`(xµT,δ(t;x), u
µT,δ
MPC(t)) dt.

Note that we tacitly assume that Problem (3) is solvable
for all x0 ∈ X and the minimum is attained in each step of
Algorithm 1. For a detailed discussion of feasibility issues
we refer to [Grüne and Pannek, 2011, Chapter 8].

3. STABILITY AND PERFORMANCE BOUNDS

Due to the truncation of the infinite horizon, stability and
optimality properties of the optimal control may be lost.
Yet, stability can be shown if the optimization horizon is
sufficiently long, cf. Alamir and Bornard [1995], Jadbabaie
and Hauser [2005]. Additionally, an optimization horizon
length T can be determined for which both asymptotic
stability as well as a performance bound on the MPC
closed loop in comparison to the infinite horizon control
law hold.

Theorem 3.1. Suppose a control horizon δ > 0 and a
monotone bounded function B : R≥0 → R≥0 satisfying

Vt(x) ≤ B(t) inf
u∈U

`(x, u) =: B(t)`?(x), t ≥ 0, (5)

for all x ∈ X to be given. If T > δ is chosen such that
αT,δ > 0 holds for

αT,δ := 1− e
−
∫ T
δ
B(t)−1dt

e
−
∫ T
T−δ

B(t)−1dt[
1− e−

∫ T
δ
B(t)−1dt

] [
1− e−

∫ T
T−δ

B(t)−1dt
] ,
(6)

then the relaxed Lyapunov inequality

VT (x)−VT (xµT,δ(δ;x)) ≥ αT,δ
∫ δ

0

`(xµT,δ(t;x), µT,δ(t;x))dt

(7)

as well as the performance estimate

V
µT,δ
∞ (x) ≤ α−1

T,δV∞(x) (8)

are satisfied for all x ∈ X. If, additionally, there exist K∞
functions η, η such that η(x) ≤ `?(x) ≤ η(x) hold for all
x ∈ X, then the MPC closed loop is asymptotically stable
for horizon length T .

A detailed proof of Theorem 3.1 is given in Reble and
Allgöwer [2011]. We point out that for a given control
horizon δ > 0 and a desired performance specification
α ∈ [0, 1) on the MPC closed loop, there always exists an
optimization horizon T > δ such that αT,δ > α is satisfied,
cf. Worthmann [2012]. Interpreting (8) exemplarily, the
choice α = 0 corresponds to asymptotic stability of the
MPC closed loop whereas α = 0.5 limits the cost of the
MPC control to double the cost of the infinite horizon
control.

The crucial assumption which has to be verified in order
to apply Theorem 3.1 is the growth condition (5). Here,
we demonstrate this by means of the following example:

Example 3.2. Consider the system dynamics of a syn-
chronous generator given by

ẋ1(t) = x2(t)

ẋ2(t) = −b1x3(t) sin(x1(t))− b2x2(t) + P

ẋ3(t) = b3 cos(x1(t))− b4x3(t) + E + u(t)



with constants b1 = 34.29, b2 = 0.0, b3 = 0.149, b4 =
0.3341, P = 28.22 and E = 0.2405, cf. Galaz et al.
[2003]. The equilibrium we wish to stabilize is located
at x? = (1.124603730, 0, 0.9122974248)> and the running
costs are defined as

`(x(t), u(t)) = ‖x(t)− x?‖22 + λ‖u(t)‖22
where the parameter λ = 0.01 is used to penalize the taken
control effort. Due to physical considerations x1 and x3 are
restricted to the interval [0, π/2] and R≥0 respectively.

For Example 3.2, we want to determine an optimization
horizon length T such that asymptotic stability of the
resulting MPC closed loop is guaranteed, i.e. α = 0.

To achieve this goal, the following methodology can be
applied to compute a function B(·) such that (5) holds:

(1) For each state x ∈ X derive a monotone function
Bx : R≥0 → R≥0 satisfying

Vt(x) ≤ Bx(t)`?(x) ∀ t ≥ 0. (9)

(2) Then, B(t) is defined pointwise as supx∈XBx(t).

To accomplish Step (1) we exploit the fact that optimality
of this bound is not needed. Hence, for each t ∈ N ·∆ for
some ∆ > 0 we solve

min
u∈Ux([0,t))

Jt(x, u)

over the class of sampled data systems with zero order hold
and sampling period ∆, i.e. control functions satisfying
u(t) = constant for t ∈ [(n− 1)∆, n∆), n ∈ N. This yields
monotone bounds Bx(t), t ∈ ∆N, satisfying (9) by dividing
by `?(x) = ‖x−x?‖. Then, Step (2) is carried out in order
to compute B(t). Since neither terminal constraints nor
costs were imposed, Vt(x) is monotonically increasing in t
which implies Vt(x) ≤ Vn∆(x) ≤ B(n∆)`?(x), t ∈ ((n −
1)∆, n∆]. Note that B is only computed on a “sufficiently”
large interval [0, n?∆], n? ∈ N, such that a desired
performance estimate can be concluded by Theorem 3.1.

While the proposed procedure allows to verify Step (1)
rigorously, we carry out Step (2) only approximately.
The reason is twofold: Firstly, throughout this paper we
assume feasibility for the set X, i.e. X is control invariant,
cf. Blanchini [1999] for a definition of control invariance.
Hence, a suitable subset has to be computed a priori if
this assumption is violated, see [Grüne and Pannek, 2011,
Chapter 8]. For Example 3.2, numerical computations
show that an appropriately chosen level set L of the value
function V0.6 is control invariant. Secondly, this set has
to be discretized. To this end, a grid of initial values G
with discretization stepsize ∆xi within each direction i ∈
{1, . . . , n} is used. Then, B(t) is approximately determined
for the set L by taking the supremum with respect to all
states contained in the intersection X := L ∩ G.

In conclusion, the proposed approach allows to rigorously
ensure the relaxed Lyapunov inequality except for the
state space discretization assuming that a control invariant
set is given.

Example 3.3. Regarding Example 3.2, let ∆ = 0.0125 and
the control horizon δ = 0.05 be given. Additionally, we
define G := [x?1−a1, x

?
1+a1]×[x?2−a2, x

?
2+a2]×[x?3−a3, x

?
3+

a3] with a1 = 0.4, a2 = 0.5, a3 = 0.9 and discretization
stepsize ∆xi := 0.02, i ∈ {1, 2, 3}, and focus on the level
set L := {x | V0.6(x) ≤ 0.0081} whose convex hull satisfies

all physical constraints, see Figure 1 for an illustration of
X := L ∩ G. Then, Formula (6) enables us to determine
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Figure 1. Illustration of the set X := L ∩ G.

an optimization horizon T such that the relaxed Lyapunov
inequality (7) holds with αT,δ > α = 0. For the computed
function B this methodology yields asymptotic stability of
the MPC closed loop for optimization horizon T = 2.6.

Remark 3.4. Note that the presented method verifies con-
dition (5) for control functions u ∈ L∞([0, T ),Rm), and
allows to conclude asymptotic stability of the closed loop
via Theorem 3.1, cf. [Worthmann et al., 2012, Remark 2.7].

4. IMPACT OF THE CONTROL HORIZON

In Section 3 we showed how to ensure asymptotic stability
for the proposed MPC scheme for a given δ. In this section,
we investigate the impact of δ on the required optimization
horizon length T .

Considering Example 3.2, we compute αT,∆, ∆ = 0.05,
and αT,T/2 for T = n∆, n ∈ {2, 3, . . . , 60}, cf. Figure 2a.
Here, αT,∆ > 0 holds for T ≥ 2.6 = 52∆ whereas this sta-
bility criterion holds for significantly shorter optimization
horizons if the control horizon is chosen equal to T/2, that
is αT,T/2 > 0 for T ≥ 1.25 = 25∆. Hence, enlarging the
control horizon seems to induce an improved performance
index αT,δ.

a) b)

Figure 2. a) Development of αT,δ for varying T and dif-
ferent choices of δ. b) Development of αT,δ depending
on the control horizon δ.

This numerical result motivates to investigate the influence
of δ on αT,δ. To this end, we fix the optimization horizon
T and compute αT,n∆ for n ∈ {1, 2, . . . , T/∆− 1}, cf. Fig-
ure 2b, which leads to the following observations: Firstly,



a symmetry property seems to hold, i.e. αT,δ = αT,T−δ.
Secondly, the performance estimates appear to increase
up to the symmetry axis T/2. Both properties have been
shown for systems which are exponentially controllable in

terms of their stage costs, i.e. B̃(t) = C
∫ t

0
e−µs ds for

an overshoot constant C ≥ 1 and a decay rate µ > 0,
cf. Grüne et al. [2012]. Using the computed function B

instead of exponential decay we obtain B̃(t) ≥ B(t) and
therefore better horizon estimates as shown in Worthmann
[2011] for a discrete time setting. Despite the more general
setting, symmetry still follows directly from Formula (6).

Corollary 4.1. The performance estimate αT,δ given by
Formula (6) satisfies αT,δ = αT,T−δ for δ ∈ (0, T ), i.e.
αT,δ is symmetric with symmetry axis δ = T/2.

Unlike symmetry, we conjecture that there exists a coun-
terexample negating monotonicity even if B satisfies the
additional condition [Reble and Allgöwer, 2011, Inequality
(21)] which is, however, violated in Example 3.2. For such
an example (5) holds but αT,δ is not monotone on (0, T/2],
cf. Grüne et al. [2010] for a counterexample in the discrete
time setting.

Yet, for Example 3.2 numerical results indicate that
the monotonicity property holds and allows to conclude
asymptotic stability of the MPC closed loop for signifi-
cantly shorter optimization horizons.

Example 4.2. Again consider Example 3.2. If we impose
the horizon T = 1.25, then from Figure 2b we observe
that stability of the closed loop can only be guaranteed if
δ ∈ [0.45, 0.8]. If the horizon length is increased to T =
2.60, Figure 2a shows that for any chosen δ ∈ [0.05, 2.55]
stability can be concluded.

In the context of arbitrary monotone and bounded func-
tions B : R≥0 → R≥0 another interesting fact arises if we
consider arbitrarily small δ:

Theorem 4.3. For any optimization horizon T > 0 we have
that αT,δ goes to −∞ for δ → 0. In particular, our stability
condition αT,δ ≥ 0 cannot be maintained for arbitrarily
small control horizon δ.

Proof: Follows directly from Formula (6). 2

Note that this assertion was solely shown for an exponen-
tially controllable setting both for discrete and continuous
time systems, cf. [Reble and Allgöwer, 2011, Section 4]
and [Worthmann, 2011, Section 5.1]. Hence, the key con-
tribution is the observation that this conclusion can also
be drawn without the restriction to this particular class of
systems.

Motivated by Example 4.2 and Theorem 4.3, we propose
an algorithm to obtain a control horizon length δ such
that αT,δ exceeds a predefined suboptimality bound α. To
this end, we introduce a partition (τk)k∈{0,...,n}, n ∈ N>1,
of [0, T ] with 0 = τ0 < τ1 < . . . < τn = T . Such a
setting naturally arises in the context of digital control for
sampled data systems with zero order hold. Yet, we like to
note that Algorithm 2 is not limited to the digital control
case. Additionally, we like to stress that monotonicity of
αT,δ in δ is the center of this algorithm.

Algorithm 2 combines two aspects: the improved perfor-
mance estimates obtained for larger control horizons δ, and

Algorithm 2 MPC with increased control horizon

Given: T > 0, (τk)k∈{0,...,n} with n ∈ N>1 and α ∈ [0, 1)
(1) Measure the current state x̂
(2) Set k := 0 and compute a minimizer u? ∈ Ux̂([0, T ))

of (3) and VT (x̂) = JT (x̂, u?).
Do
(a) If (k + 1) = n: Set δ according to exit strategy

and goto (3)
(b) Set k := k+1, δ := τk and compute VT (xu?(δ; x̂))
(c) Compute αT,δ, i.e.

αT,δ :=
VT (x̂)− VT (xu?(δ; x̂))∫ δ

0
`(xu?(t; x̂), u?(t)) dt

(10)

while αT,δ ≤ α
(3) Implement µT,δ(t; x̂)|t∈[0,δ), shift the horizon forward

in time by δ and goto (1)

the inherent robustness resulting from using a feedback
control law which benefits from updating the control law
as often as possible. In order to illustrate this claim let us
consider the numerical Example 3.2 again. From Figure 2b
we observed that asymptotic stability of the MPC closed
loop can be shown for T ≥ 1.25. Indeed, Algorithm 2
only uses δ = ∆ = 0.05 in each step independent of
the chosen initial condition. Hence, MPC with constant
control horizon δ = 0.05 is performed safeguarded by
our theoretically obtained estimates. Consequently, no exit
strategy is needed since Step (2a) is excluded.

We compute αT,δ by Equation (10) for all x ∈ X in order
to test out the limits of Algorithm 2. Here, T = 0.45 is the
smallest optimization horizon such that αT,∆ = αT,∆(x) >

0 is satisfied for all x ∈ X. However, using Algorithm 2
allows to ensure this conditions for T = 0.25 for varying
control horizon δ ∈ {∆, 2∆, 3∆, 4∆}. Figure 3 shows the
sets of states x ∈ X for which αT,δ computed by (10) is
less than zero for the cases δ = ∆ and δ ∈ {∆, 2∆}. Again,
we see that if we allow for larger control horizons δ, then
the performance bound αT,δ increases, i.e. the set of state
vectors for which stability cannot be guaranteed shrinks.
Hence, for the considered Example 3.2 Algorithm 2 allows
to drastically reduce the horizon T while maintaining
asymptotic stability of the closed loop.

a)
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Figure 3. Set of initial values x for which stability cannot
be guaranteed for T = 0.45, ∆ = 0.05 with (a) δ = ∆
and (b) δ ∈ {∆, 2∆}.

The downside of considering potentially large control hori-
zons δ is the possible lack of robustness in case of distur-
bances. Utilizing the introduced partition (τk)k∈{0,...,n},
we can perform an update of the feedback law at time
τj ∈ {0, . . . , n} via

µT,δ(t;x) := u?(t− τj ;xµT,δ(τj ;x)), t ≥ τj , (11)



where we extended the notation of the open loop op-
timal control to u?(t;x) to indicate which initial state
is considered. Such an update can be applied whenever
the following Lyapunov type update condition holds, see
also Pannek and Worthmann [2011] for the discrete time
setting.

Proposition 4.4. Let α ∈ [0, 1), T > 0 and a partition
(τk)k∈{0,...,n}, n ∈ N, of [0, T ] with 0 = τ0 < τ1 < . . . <
τn = T be given. For δ = τk suppose (7) holds with
αT,δ > α for some x ∈ X. Let u?(·;xµT,δ(τj ;x)) be a
minimizer of (3) for some j ∈ {1, . . . , k−1}. If additionally

VT (xu?(τk − τj ;xµT,δ(τj ;x)))− VT−τj (xµT,δ(τj ;x))

< (1− α)

∫ τj

0

`(xµT,δ(t;x), µT,δ(t;x))dt (12)

− α
∫ τk−τj

0

`(xu?(t;xµT,δ(τj ;x)), u?(t;xµT,δ(τj ;x)))dt

holds, then the respective MPC feedback law µT,δ(·;x) can
be modified by (11) and the lower bound α on the degree
of suboptimality is locally maintained.

We like to stress that if the stabilizing partition index k is
known, then Proposition 4.4 allows for iterative updates of
the feedback until this index is reached. Hence, only Step
(3) of Algorithm 2 needs to be adapted, see Algorithm 3
for a possible implementation.

Algorithm 3 MPC with intermediate update

(3) For n = 0, . . . k − 1 do
(a) Implement µT,δ(t; x̂)|t∈[τn,τn+1)

(b) Compute u?(·;xµT,δ(τn+1; x̂))
(c) If (12) holds: Update µT,δ(·; x̂) via (11)
Shift the horizon forward in time by δ and goto (1)

5. AGGREGATED PERFORMANCE

Usually, the relaxed Lyapunov inequality (7) is tight for
only a few points in the state space. Hence, if a closed loop
trajectory xµT,δ(·;x) visits a point for which (7) is not an
equality, then we can compute the occuring slack along the
closed loop via

s(t, x) :=VT (x)− VT (xµT,δ(t;x))

− α
∫ t

0

`(xµT,δ(s;x), u
µT,δ
MPC(s)) ds. (13)

This slack can be used to weaken the requirement (7)
by considering the closed loop instead of the open loop
solution. For simplicity of exposition, we formulate the
following result using constant δ, yet the conclusion also
holds in the context of time varying control horizons as in
Algorithm 2.

Theorem 5.1. Consider an admissible feedback law u
µT,δ
MPC,

an initial value x0 ∈ X and α ∈ (0, 1) to be given.
Furthermore, suppose there exist K∞ functions η, η such
that `?(x) ≥ η(‖x − x?‖) and VT (x) ≤ η(‖x − x?‖) hold
for all x ∈ X. If additionally s(t, x) from (13) converges for
t tending to infinity, then the MPC closed loop trajectory
with initial value x0 behaves like an asymptotically stable
solution. Furthermore, the following performance estimate
holds

V
µT,δ
∞ (x0) ≤ 1− limt→∞ s(t, x0)/VT (x0)

α
V∞(x0). (14)

Proof: Let the limit of s(t, x0) for t → ∞ be denoted
by θ. Then, for given ε > 0, there exists a time instant
t? such that ‖s(t, x0) − θ‖ ≤ ε holds for all t ≥ t?. As a
consequence, we obtain

s(t, x0) =s(t?, x0)− VT (xµT,δ(t;x0)) + VT (xµT,δ(t
?;x0))

− α
∫ t

t?
`(xµT,δ(s;x0), u

µT,δ
MPC(s)) ds ≥ θ − ε.

Since VT (xµT,δ(t
?;x0)) ≤ η(‖xµT,δ(t?;x0)−x?‖) as well as

VT (xµT,δ(t;x0)) ≥ 0 hold, this inequality implies

2ε+ η(‖xµT,δ(t?;x0)− x?‖)
≥s(t?, x0)− θ + ε+ VT (xµT,δ(t

?;x0))− VT (xµT,δ(t;x0))

≥α
∫ t

t?
`(xµT,δ(s;x0), u

µT,δ
MPC(s)) ds.

Hence, boundedness of the integral on the right hand side
can be concluded. Now, due to positivity and continuity
of ` we have limt→∞ `(xµT,δ(t;x0), u

µT,δ
MPC(t)) = 0. In turn,

the latter ensures η(‖xµT,δ(t;x0) − x?‖) → 0 and, thus,
xµT,δ(t;x0)→ x? for t approaching infinity. Inequality (14)
is shown by using

lim
t→∞

VT (xµT,δ(t;x)) ≤ lim
t→∞

η(‖xµT,δ(t;x)− x?‖) = 0

in combination with (13) to obtain

αV
µT,δ
∞ (x) = lim

t→∞
α

∫ t

0

`(xµT,δ(s;x), u
µT,δ
MPC(s)) ds

= VT (x)− lim
t→∞

s(t, x).

Then, since VT (x) ≤ V∞(x), the assertion follows. 2

Note that within Theorem 5.1 we did not assume semi-
positivity but convergence of s(t, x) to conclude stability.
Here, we like to stress that limt→∞ s(t, x) ≥ 0 implies a
suboptimality index αT,δ ≥ α. Clearly, both the stability
and performance result shown in Theorem 5.1 can be
extended to assertions for all x ∈ X if s(t, x) converges
for every x ∈ X or a uniform lower bound can be found,
i.e. infx∈X limt→∞ s(t, x) = θ > −∞.

Apart from its theoretical impact, s(t, x) is also meaningful
at runtime of the MPC algorithm. For instance, the
condition s(t, x) ≥ 0 can be checked at each time instant
t = nδ, n ∈ N, instead of αT,δ > α, cf. (10). This is
particularly useful since accumulated slack can be used
in order to compensate local violations of αT,δ ≥ α, i.e.
weakening the stability condition (10), as long as the
overall performance is still satisfactory.

If s(t, x) < 0 occurs within the MPC algorithm, the slack
can also be used to form an exit strategy. To this end, we
denote the performance of the MPC closed loop until time
t by

α(t) :=
VT (x)− VT (xµT,δ(t;x))∫ t

0
`(xµT,δ(s;x), u

µT,δ
MPC(s)) ds

. (15)

Now, if s(t, x) < 0 but α(t) > 0, then stability is still
maintained, yet the current performance index is worse
than the desired bound α.

Example 5.2. Again we consider Example 3.2 and an-
alyze the MPC closed loop for µT,δ with T = 0.25
and δ = ∆ = 0.05. If we choose the initial value
x0 = (1.03960373,−0.085, 0.9122974248)>, then we ob-
serve from Figure 4 that the local estimate αT,δ drops



below zero for t = δ, i.e. stability cannot be guaranteed
for δ = ∆. Yet, computing α(t) according to (15) shows
that the relaxed Lyapunov inequality is satisfied after two
steps of the MPC algorithm. Hence, using the slack infor-
mation incorporated in α(t) allows to conclude asymptotic
stability.

Figure 4. Development of αT,δ and α(t) for T = 0.25 and
δ = 0.05 along a specific closed loop solution.

6. CONCLUSIONS AND OUTLOOK

We have shown a methodology to verify the assumptions
introduced in Reble and Allgöwer [2011] under which sta-
bility of the MPC closed loop without terminal constraints
can be guaranteed. Additionally we presented an algorith-
mic approach for varying control horizons which allows to
reduce the optimization horizon length. Last, we provided
robustification methods via update and slack based rules.
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L. Grüne and J. Pannek. Nonlinear Model Predictive
Control: Theory and Algorithms. Springer, 2011.
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