
European Congress on Computational Methods
in Applied Sciences and Engineering (ECCOMAS 2012)

J. Eberhardsteiner et.al. (eds.)
Vienna, Austria, September 10-14, 2012

COMPUTING REACHABLE SETS VIA BARRIER METHODS ON SIMD
ARCHITECTURES

Lars Grüne1, Thomas U. Jahn2

Chair of Applied Mathematics
Mathematical Institute
University of Bayreuth

e-mail: {1lars.gruene, 2thomas.jahn}@uni-bayreuth.de

Keywords: reachable set, feasibility problem, sparse linear equation system, Runge-Kutta
method, CUDA, parallelization, lower arrow form

Abstract. We consider the problem of computing reachable sets of ODE-based control systems
parallely on CUDA hardware. To this end, we modify an existing algorithm based on solving
optimal control problems.

The idea is to simplify the optimal control problems to pure feasibility problems instead of
minimizing an objective function. We show that an interior point algorithm is well suited for
solving the resulting feasibility problems and leads to a sequence of linear systems of equa-
tions with identical matrix layout. If the problem is defined properly, these matrices are sparse
and can be transformed into a hierarchical lower arrow form which can be solved on CUDA
hardware with sparse linear algebra and Cholesky’s method.

We demonstrate the performance of our new algorithm by computing the reachable sets of
two test problems on a CPU implementation using several explicit and implicit Runge-Kutta
methods of different order. The experiments reveal a significant speedup compared to the origi-
nal optimal control algorithm.

Lars Grüne, Thomas U. Jahn

1 INTRODUCTION

For analyzing the behavior of control systems

ẋ(t) = f(t, x(t), u(t))
x(t) ∈ X
u(t) ∈ U
x(t0) = x0 ∈ X

(1)

with state and control constraint sets X ⊂ Rn and U ⊂ Rm, the reachable sets

R(T) = {x(T) ∈ X | x(·) is solution of (1) with any valid u(·)}, T > t0, (2)

play an important role. Here, we call a control function u ∈ L∞([t0, T],U) valid if x(t) ∈ X
holds for all t ∈ [t0, T]. Provided an efficient algorithm for the approximate computation
of R(T) is available, these sets can be used as the basis for solving problems like collision
avoidance or forecasting the whole possible future behavior of the system.

Several different approaches to compute R(T) are proposed in the literature, like level–set
methods [10], trajectory based optimal control [1], Hamilton–Jacobi–Bellman PDE approaches
[2] or adaptive subdivision techniques [6] (the last algorithm considers

⋃
T≥0R(T)). All these

different concepts have one thing in common: the computation takes a lot of time, especially
for n greater than three or four.

In this paper, we want to develop a very fast numerical algorithm for approximating R(T).
To achieve this goal, we propose a massively parallel algorithm on nVidia CUDA enabled hard-
ware devices [3]. Since such hardware is very demanding, most algorithms will not be suited
for this purpose. Among the methods cited above, the optimal control approach by Baier and
Gerdts [1] is the most suitable and the algorithm we present in this paper will be obtained from
a modification of [1]. In order to explain the design of our algorithm, in the next section we first
look at the requirements of the CUDA devices in detail.

2 PRINCIPLES OF SIMD ARCHITECTURES

The CUDA GPU (graphics processing unit) is a SIMD (single instruction multiple data)
streaming processor which requires totally different programming strategies compared to a se-
rial processor. In this section we outline — in a simplified way — those characteristics of the
hardware which motivate our decisions concerning the algorithm design. For details we refer to
the CUDA documentation [3].

2.1 SIMD and thread enumeration

A GPU consists of several multiprocessors, each containing 32 cores1. Unlike a CPU, these
multiprocessors cannot act independently. Instead, each of them has to process the same pro-
gram stream, although not synchronously. The cores of a multiprocessor work even more re-
strictively: Each core runs one thread at the same time and has to process exactly the same
instruction as the other cores of the multiprocessor (or do nothing), only the processed data
may differ. Figure 2.1 illustrates this principle.

To assign a data element to the corresponding thread, an enumeration of the threads is
mandatory. The GPU provides a hierarchical grid enumeration. The threads running on one

1Here, we consider the FERMI architecture that provides 32 cores and up to 48kB shared memory. These
specifications differ on other architectures.

2

Lars Grüne, Thomas U. Jahn

2

a3,6

3

a3,5

9

a3,4

0

a2,6

6

a2,5

8

a2,4

1

a1,6

8

a1,5

2

a1,4

0

a3,3

4

a3,2

7

a3,1

8

a2,3

3

a2,2

1

a2,1

8

a1,3

0

a1,2

5

a1,1

16b1,3

3b1,2

6b1,1

8 b2,3

7 b2,2

8 b2,1

Thread

i ∈ {1, 2}

Program stream

bi,j = ai,j + ai+1,j

j = 1, . . . , 6

Figure 2.1: Illustration of a multiprocessor with two cores processing six addition instructions.

multiprocessor can be assigned to an element of a 3D-grid (up to 512 elements in total) called
“Threadblock” (or simply “Block”). Several threadblocks can be arranged in a 2D-Grid (up to
a maximum of 65535 × 65535 threadblocks), see Fig. 2.2.

Grid

Block (2,0) Block (2,1)

Block (1,0) Block (1,1)

Block (0,0) Block (0,1)

Thread

(2,0)

Thread

(2,1)

Thread

(2,2)

Thread

(2,3)

Thread

(1,0)

Thread

(1,1)

Thread

(1,2)

Thread

(1,3)

Thread

(0,0)

Thread

(0,1)

Thread

(0,2)

Thread

(0,3)

Block (1,1)

Figure 2.2: Example of a thread enumeration. In example the threadblocks just have 2D-indices.

When a program stream is launched on the GPU, each multiprocessor loads up to 8 thread-
blocks (depending on the required amount of registers and shared memory of a threadblock,

3

Lars Grüne, Thomas U. Jahn

see Section 2.2) and executes these threads in parallel, divided into so called warps2. When a
multiprocessor finished executing a threadblock, the next unexecuted threadblock is processed.

2.2 Memory considerations

Each threadblock can make use of up to 48kB memory of a multiprocessor, shared between
all threads of the block1. Referencing variables stored in this shared memory is generally as
fast as addition or subtraction instructions. This memory is accessed by up to 8 concurrently
processed threadblocks. Hence, high memory usage of a threadblock leads to a lower GPU
load, which may reduce execution speed since intelligent scheduling of warp execution can be
affected3. Ideally, a threadblock should not assign more than 6kB of shared memory.

The larger memory (e.g., 3GB on Tesla C2050 devices) on GPUs is called device mem-
ory. This memory is shared between all multiprocessors of a card, but the access is very slow
compared to shared memory, often up to 100 times slower. Algorithms that need to share data
via device memory after every few operations will not achieve good performance and are not
suitable for execution on a GPU. Unfortunately, using the device memory cannot entirely be
avoided, because at least input- and output-data of an algorithm has to be stored on it.

2.3 Suitable algorithms

First of all, an algorithm must be able to run a “long” time compared to the amount of
data that has to be accessed on the device memory. As a rule of thumb, at least a thousand
instructions (additions, multiplications, . . .) per device memory access should be processed,
the more the better (see [8] for some benchmark tests).

To provide a full GPU load of 48 warps per multiprocessor4 with 14 multiprocessors (as,
e.g., on a Tesla C2050), the algorithm should be able to be executed on at least 21504 parallel
threads. Each block must be able to run independently of other blocks, because blocks cannot
be synchronized.

Of course, these numbers are just examples, but they underline the main requirements on
the algorithm: huge parallelization bandwidth, a lot of independent parts, very low memory
consumption and many calculation instructions per memory access. This explains why the
design of such algorithms is a challenging task.

3 ALGORITHM SPECIFICATION

3.1 The approach of Baier and Gerdts

The starting point of our algorithm is the optimal control approach by Baier and Gerdts [1].
In this approach, the (rectangular) domain X = [xl1, x

u
1] × · · · × [xln, x

u
n] is approximated by a

discrete grid

G =

{
(x1, . . . , xn) | xi = xli +

xui − xli
Gi − 1

· k, k = 0, . . . , Gi − 1

}
(3)

with a number of
∏n

i=1Gi gridpoints. In contrast to other methods, the approach in [1] is very
well suited for parallelization because for each point in the grid an independent computation

2In more detail: Each warp contains 32 threads which are executed parallely by the 32 cores of a multiprocessor.
The different warps are executed serially

3For example, the GPU will try to execute some warps during waiting for memory accesses being finished.
48 blocks, each with 192 threads is the optimal GPU load on FERMI cards [3][8].

4

Lars Grüne, Thomas U. Jahn

is performed and no iteration on the grid involving data exchanges between the grid points is
needed. More precisely, for every x̃ ∈ G the following optimal control problem is solved.

ûN = argmin
uN

J(uN)

J(uN) := ‖xN(N, uN)− x̃‖2
(4)

subject to
xN(j, uN) ∈ X , uN,j ∈ U , j = 1, . . . , N. (5)

Here uN is a sequence of N control values uN,j ∈ Rm, j = 1, . . . , N and xN(j, uN) is the
numerical approximation of x(t0 + hj) with initial value x0 = x̃, solved via j Runge–Kutta–
steps with the piecewise constant control function

u(t) ≡ uN,k for t ∈ [t0 + h(k − 1), t0 + hk[, k = 1, . . . , j (6)

and time step size h = (T − t0)/N . By this discretization, the optimal control problem is con-
verted into a static nonlinear program (NLP). The reachable set of the Runge–Kutta discretized
problem is denoted byRh(T) and forms an approximation ofR(T), for details see [1].

The approximation R̃ of Rh(T) computed by this algorithm is now obtained by collecting
all endpoints xN(N, ûN) of the resulting optimal trajectories. In case x̃ ∈ Rh(T), this endpoint
coincides with x̃. Otherwise, xN(N, ûN) is the point on the boundary of Rh(T) closest to
x̃. Hence, in any case xN(N, ûN) ∈ Rh(T) holds and the resulting approximation is a set of
points in Rh(T) with a very dense approximation of its boundary. Moreover, even in case the
minimizer was not able to find a global minimum, xN(N, ûN) ∈ Rh(T) still holds and we
obtain at least an inner approximation of Rh(T). Figure 3.1 shows the result of this algorithm
for the Rayleigh problem from Section 5.1.

A closer look at Figure 3.1 reveals that for many points in the interior orRh(T) the endpoints
visualized in the figure do not coincide with the grid points. This is due to the fact that the
optimization algorithm is often not able to deliver an exact optimal solution. Hence, although
this algorithm complies with the basic requirements of parallelization, since all the minimization
problems can in principle be solved independently, we propose a modified version resolving this
problem before we turn to the parallel version.

3.2 An algorithm for computing reachable sets

The modified version of the algorithm from [1] is obtained by converting the optimization
problem into a pure feasibility problem. This is based on the observation that, actually, we are
not really interested in an optimal solution, but simply in any solution that reaches a neighbor-
hood of the gridpoint x̃ ∈ G. We thus introduce an inequality constraint

‖xN(N, uN)− x̃‖ ≤ εG (7)

where εG denotes the distance of two neighboring points in the grid, optionally enlarged5 by a
scaling factor η ≥ 1. This condition ensures that the trajectory targets at a εG–region around x̃.
The objective function of the optimization problem is then set to

J(·) ≡ 0. (8)

5Allowing the endpoint–constraints of neighboring grid points to overlap turned out to yield better results when
computing reachable sets which are hypersurfaces.

5

Lars Grüne, Thomas U. Jahn

−7 −6 −5 −4 −3 −2 −1 0 1 2
1.5

2

2.5

3

3.5

4

4.5

5

Figure 3.1: Reachable set of the Rayleigh problem (see Section 5.1) calculated via the optimal control method
(grid: 200× 200, N = 20).

The iterative optimization algorithm for solving the related NLP now computes control se-
quences u(k)N , k = 1, 2, . . . starting from an initial guess u(0)N . However, instead of iterating
the algorithm until convergence, as termination condition for the optimizer loop we choose a
penalty criterion of the form

P (u
(k)
N) :=

∑
i

gi(u
(k)
N)<0

|gi(u(k)N)| < νεG, (9)

where gi are nonlinear inequality constraints including (7) and ν > 0 is an accuracy parameter.
In case x̃ is not reachable, inequality (9) will never be satisfied. However, then

P (u
(k+1)
N)

P (u
(k)
N)

→ 1, (10)

holds, which can be detected after few steps and serves as a termination criterion in this case. In
order to reduce the number of iterations, the initial guess u(0)N is chosen as the control sequence
computed by the optimizer for an adjacent point, a method called warmstarting.

Assuming the reachable setRh(t) is connected, the approximation R̃ can now be computed
by the following algorithm.

Algorithm Initialization: choose any valid uN , set R̃ := ∅ and FIFO–Buffer F := ∅.

(A1) Determine the grid point x̃ next to xN(N, uN), set R̃ ← R̃ ∪ {x̃}

(A2) For all gridpoints x̃i adjacent to x̃ with x̃i /∈ R̃ do F ← (x̃i, uN).

6

Lars Grüne, Thomas U. Jahn

(A3) If F = ∅, exit

(A4) Pop (x̃, ũN)← F from buffer.

(A5) Solve the feasibility problem: search uN that solves P (uN) < νεG, use u(0)N := ũN
for warmstarting.

(A6) If (A5) fails, go to (A3), otherwise go to (A1)

The advantages of this algorithm over the original problem (4) are as follows.

• The algorithm only processes gridpoints which are part of R̃ (except for some points near
the boundary of R̃). Particularly on small sets or hypersurfaces this fact will lead to a
significant speedup.

• Step (A5) will terminate immediately after a feasible control sequence has been found.
No final iterations to achieve a good accuracy in minimizing an objective function are
required.

• Using ũN for warmstarting in step (A5) is essential. For most of the grid points, the
control sequences that lead to two neighbored grid points are almost identical. Therefore
step (A5) will usually require only two or three iterations (depending on the fineness of
the grid).

At a first glance, the warmstarting seems to contradict the requirement that the problems in step
(A5) can be solved independently which is crucial for an efficient parallelization. However,
after very few executions of the loop (A1)–(A6) the number of elements in the buffer F , i.e., the
amount of data for which the Steps (A4)–(A5) can be executed in parallel, will be so large that
this is not a serious limitation. Numerical experiments show that the loss in performance during
the startup phase of the algorithm is by far compensated by the benefits of the warmstarting.

3.3 Distributing the algorithm to the CUDA hardware

While programming the GPU, the probably most important problem is the partitioning of the
algorithm and the distribution of the parts to threads and threadblocks. Unfortunately, there is
no golden rule or recipe for doing that since it highly depends on the structure of the algorithm.

We aim for solving (A5) on one single threadblock. This requires an efficient feeding of at
least 32 (better 128) threads with similar instructions. After implementing this step, the com-
piler will issue the required ressources of the GPU program, particularly the needed amount of
shared memory. This information is used to compute the total amount of threadblocks that can
be processed by one multiprocessor at the same time (see [3]). Multiplied with the number of
available multiprocessors, this gives us the total amountM of threadblocks that can be executed
simultanously.

This leads to the following algorithm which is processed by M threadblocks in parallel6. On
each threadblock, step (G7) is then distributed onto at least 32 parallel threads. Details of this
distribution will be explained in the subsequent section.

6As already mentioned, the threadblocks do not process the steps simultanously. In order to avoid conflicts in
the buffer access, mutex locks are used which force all threadblocks to pause until the locking threadblock issues
the unlock command.

7

Lars Grüne, Thomas U. Jahn

GPU–Algorithm Initialization before starting the GPU program: Set R̃ := ∅ and F := ∅.
Choose any valid uN , do (G10) and (G11) once. Set d = 0. Run the GPU program with M
threadblocks.

(G1) Lock mutex

(G2) If F 6= ∅, goto (G6)

(G3) Set d← d+ 1

(G4) If d = M , exit

(G5) Unlock mutex, wait some time, lock mutex, set d← d− 1 and goto (G2)

(G6) Pop (x̃, ũN)← F from buffer, unlock mutex.

(G7) Solve the feasibility problem: search uN that solves P (uN) < νεG, use u(0)N = ũN
for warmstarting.

(G8) If (G7) fails, go to (G1)

(G9) Lock mutex

(G10) Determine grid point x̃, that is next to xN(N, uN), set R̃ ← R̃ ∪ {x̃}

(G11) For all gridpoints x̃i adjacent to x̃ with x̃i /∈ R̃ do F ← (x̃i, uN).

(G12) Go to (G2)

4 SOLVING THE FEASIBILITY PROBLEM

The NLP corresponding to the feasibility problem in (G7) can be formulated in various ways.
In order to solve (G7) for each x̃with at least 32 threads and using at most 48kb of memory (less
than 6kb would be best), the NLP has to be designed in a way that leads to a sparse NLP and
this must be exploited in the minimization algorithm. To this end, we use a full discretization
approach for the control problem which we explain in Section 4.2, below.

In order to ensure a high efficiency of the distribution of step (G7) onto the parallel threads,
the structure and size of the numerical subproblems of the iterative minimization algorithm
must always be identical. Barrier methods satisfy this requirement since the structure of these
methods does not depend on activity of constraints and thus the linear equation system that has
to be solved during the optimization steps always has the same layout. Hence, we will choose
this method.

4.1 The interior–point algorithm

We use the interior–point algorithm describted at [9]. In our setting without objective func-
tion, the barrier problem of a basic interior point method is defined as

min
x,s

−µ
∑
i

log si

subject to h(x) = 0
g(x)− s = 0

(11)

8

Lars Grüne, Thomas U. Jahn

where x is the optimization variable, s is a vector of slack variables, g are inequality and h
equality restrictions and µ → 0. The additional requirement s ≥ 0 will be automatically
satisfied due to the terms − log si in the optimization objective.

The solution of (11) will be obtained by solving the KKT–conditions

− ∂

∂x
h(x)y − ∂

∂x
g(x)z = 0

−µS−1e+ z = 0
h(x) = 0

g(x)− s = 0

(12)

where S is a diagonal matrix containing the entries of s, e = (1, . . . , 1)T and y, z are Lagrange
multipliers. Using Newton’s method to compute x, s, y, z requires to solve

∇2
xxL 0 ∂

∂x
h(x)T ∂

∂x
g(x)T

0 Σ 0 −I
∂
∂x
h(x)T 0 0 0

∂
∂x
g(x)T −I 0 0

px
ps
−py
−pz

 = −

− ∂

∂x
h(x)Ty − ∂

∂x
g(x)T z

z − µS−1e
h(x)

g(x)− s

 (13)

iteratively, where
L(x, s, y, z) = −h(x)Ty − (g(x)− s)T z (14)

and Σ is a diagonal matrix with the entries zi/si. Solving (13) with x = x(i), s = s(i), y = y(i)

and z = z(i), the next iterate of Newton’s method is given by

x(i+1) = x(i) + αspx
s(i+1) = s(i) + αsps
y(i+1) = y(i) + αzpy
z(i+1) = z(i) + αzpz

(15)

with suitably chosen step lengths αs, αz (see [9] for details). To sparsify the Hessian∇2
xxL, the

matrix will be approximated by a limited memory BFGS–approach
ξI 0 ∂

∂x
h(x)T ∂

∂x
g(x)T

0 Σ 0 −I
∂
∂x
h(x)T 0 0 0

∂
∂x
g(x)T −I 0 0

︸ ︷︷ ︸

=:H

+

L
0
0
0

︸ ︷︷ ︸
=:U

(
KLT 0 0 0

)
.︸ ︷︷ ︸

=:V T

(16)

Using the Sherman–Morrison–Woodbury (SMW) formula for computing (H+UV T)−1 results
in the inversion of H instead of solving (13), see [9]. This advantage comes at the expense of
a further matrix inversion when applying the SMW formula. However, choosing a very short
BFGS history compared to the large optimization vector makes the computational effort of this
additional inversion negligible.

4.2 Defining the restrictions

We have to define g and h such that ∂
∂x
g(x) and ∂

∂x
h(x) are sparse matrices. Using the

Runge–Kutta–Method [4] with r stages

c A

b
(17)

9

Lars Grüne, Thomas U. Jahn

with A ∈ Rr×r and c, b ∈ Rr, xN(N, uN) can be calculated via

ki,j = f(ti−1 + cjh, xi−1 + h
∑r

l=1 aj,lki,l,), j = 1, . . . , r
xi = xi−1 + h

∑r
l=1 blki,l

(18)

with i = 1, . . . , N and xi := xN(i, uN). The full discretization approach now consists of
introducing all xi and ki,j as additional optimization variables and including the equalities in
(18) as additional equality constraints. We thus concatenate uN,i ∈ Rm, xi ∈ Rn and ki,j ∈ Rn

into one vector of optimization variables

x := (uN,1, . . . , uN,N , x1, . . . , xn, k1,1, . . . , k1,r, . . . , kN,1, . . . , kN,r)
T ∈ RN(m+n(r+1)) (19)

The equality constraints can now be defined as

h(x) =

f1,1 − k1,1
...

f1,s − k1,s
x0 + h

∑s
l=1 blk1,l − x1

...
fN,1 − kN,1

...
fN,s − kN,s

xN−1 + h
∑s

l=1 blkN,l − xN

= 0 (20)

with

fi,j := f(ti−1 + cjh, x0 + h
s∑

l=1

aj,lki,l , uN,i). (21)

In our implementation, we will only consider “reduced” boxed constraints of the form

x̃L ≤ PLxi and PUxi ≤ x̃U
ũL ≤ uN,i ≤ ũU
i = 1, . . . , N

(22)

where PL and PU are (not necessarily square) permutation matrices, that allow to pick those
components of xi which have to be restricted7. Further, xN has to comply with the endpoint
condition (7). To allow different grain sizes for the different dimensions of the grid, we model
this condition as

x̃− εG ≤ xN ≤ x̃+ εG, εG ∈ Rn (23)
7Vector inequalities a ≤ b for a, b ∈ Rn are meant componentwise, i.e., ai ≤ bi for all i = 1, . . . , n.

10

Lars Grüne, Thomas U. Jahn

We define the inequality constraints combining (22) and (23) as

g(x) =

ũU − u1
u1 − ũL

...
ũU − uN
uN − ũL
x̃U − PUx1
PLx1 − x̃L

...
x̃U − PUxN−1
PLxN−1 − x̃L

PU
T min∗ {x̃U , PU(x̃+ εG)}+

(
I − PU

TPU

)
(x̃+ εG)− xN

xN − PL
T max∗ {x̃L, PL(x̃− εG)} −

(
I − PL

TPL

)
(x̃− εG)

≥ 0 (24)

with x defined as in (19),

min∗{a, b} :=

min{a1, b1}
...

min{an, bn}

 , a, b ∈ Rn (25)

and max∗{a, b} defined analogously. Obviously, ∂
∂x
h(x) and ∂

∂x
g(x) are sparse matrices with

∂

∂x
h(x) =

∂uf1 ∂xf
A
1

0 −I B

. . .
∂xf1

. . .I −I
. . .

∂ufN ∂xfN−1 ∂xf
A
N

0 I −I B

(26)

∂

∂x
g(x) =

−I

0

I
. . .
−I
I
−PU

PL

. . .
−PU

PL

−I
I

(27)

∂xfi :=

∂xfi,1...
∂xfi,s

 (abbreviating ∂xfi,j := ∂fi,j/∂x) (28)

11

Lars Grüne, Thomas U. Jahn

∂ufi :=

∂ufi,1...
∂ufi,s

 (29)

∂xf
A
i :=

a1,1h∂xfi,1 − I · · · a1,sh∂xfi,1
...

as,1h∂xfi,s · · · as,sh∂xfi,s − I

 (30)

B :=
(
hb1I · · · hbsI

)
(31)

4.3 Exploiting sparsity

After applying the L–BFGS approach and using the SMW formula, (13) is replaced by a
similar system with ξI in place of∇2

xxL. This system can be rearranged to

=: Ĥ︷ ︸︸ ︷ξI +
∂

∂x
g(x)TΣ

∂

∂x
g(x)

∂

∂x
h(x)T

∂

∂x
h(x) 0

(px
−py

)
=

(
∂

∂x
h(x)Ty +

∂

∂x
g(x)T

(
z − Σg(x) + µS−1e

)
−h(x)

) (32)

ps =
∂

∂x
g(x)px + g(x)− s

pz = −Σps − z + µS−1e
(33)

We identify the entries of Σ as

Σ :=

σu
U,1

σu
L,1

. . .
σu
U,N

σu
L,N

σx
U,1

σx
L,1

. . .
σx
U,N

σx
L,N

, (34)

where σu
U,i is a diagonal matrix containing the zj/sj–elements, that correlate with the upper

constraints of the i–thm–dimensional control vector (σu
L,i, σ

x
U,i and σx

L,i respectively), and define

σu
i := ξI + σu

U,i + σu
L,i, i = 1, . . . , N

σx
i := ξI + P T

U σ
x
U,iPU + P T

L σ
x
L,iPL, i = 1, . . . , N − 1

σx
N := ξI + σx

U,N + σx
L,N

(35)

which represent the evaluated entries of ξI + ∂
∂x
g(x)TΣ ∂

∂x
g(x). The structure of the resulting

symmetric sparse matrix Ĥ of (32) is illustrated in Fig. 4.1.

12

Lars Grüne, Thomas U. Jahn

U
1

. Ft
1

.

. U. Ft.

. . U. Ft.

. . . U
N

. Ft
N

.

. . . . X
1

. -I
Gt
2

I

. X. -I Gt. . . I . .

. X. -I
Gt
N

I

. X
N

. -I

. D . . . At
1

Bt

. D At. . . Bt

. D At. . . Bt . .

. D At
N

Bt

F
1

. A
1

.

. . . . -I . . . B

. F. G
2

. . . . A.

. . . . I -I . . . B

. . F. G. A.

. I -I . . . B

. . . F
N

. . G
N

. . . . A
N

.

. I -I . . . B

U
i σu

i ∈ Rm×m X
i σx

i ∈ Rn×n D ξI ∈ Rrn×rn

F
i ∂ufi ∈ Rrn×m G

i ∂xfi ∈ Rrn×n A
i ∂xf

A
i ∈ Rrn×rn

B B ∈ Rn×rn I I ∈ Rn×n -I −I ∈ Rn×n

Ft
i

Gt
i

At
i

Bt transposed respectively

Figure 4.1: Sparse structure of the matrix Ĥ in (32).

To make use of the sparse structure we need an efficient way to solve the system of equations
Ĥx = c without eliminating zeros. Ideally, the amount of temporary memory while computing
should only moderately exceed those needed to store the entries of Ĥ . Additionally, we have to
keep in mind, that the system has to be solved on at least 32 SIMD threads.

13

Lars Grüne, Thomas U. Jahn

Our approach is to transform the system into lower arrow form
D1 NT

1
.

DN NT
N

N1 · · · NN M

x̂1
...
x̂N
X

 =

ĉ1
...
ĉN
C

 (36)

by symmetric permutations. After that the system of equations can be solved via

W := M −
N∑
j=1

NjD
−1
j NT

j , w := C −
N∑
j=1

NjD
−1
j ĉj

X = W−1w, x̂i = D−1i (ĉi −NT
i X), i = 1, . . . , N

(37)

as described in [5]. The transformation into lower arrow form can be performed by a symmet-
rical permutation of Ĥ , which can be chosen such that the submatrices Di of the transformed
matrix are lower arrow shaped, as well, see Fig. 4.2. As a result, the solution of (37) can be
divided into numerous small and independent matrix inversions which can be efficiently dis-
tributed onto the parallel threads. Additionally, σu

i and σx
i are diagonal matrices when solely

using boxed constraints. Needless to say that this fact turns their inversion into a trivial task.
Due to the simple sparse structure of Nj , operations like NjD

−1
j NT

j can be implemented
very efficiently. It can also be shown, that W (and the equivalent matrices of the subproblems
produced by computing D−1j) are symmetric and positive definite, so that Cholesky’s method
can be used. Moreover, W has a tridiagonal form made of n × n matrices and Cholesky’s
method can be tuned to make use of that structure.

5 NUMERICAL EXAMPLES

We test the algorithm by computing the approximations of reachable sets of two problem
settings called Rayleigh’s problem and Kenderov’s problem in [1]. While our algorithm is de-
signed for GPU implementation, so far only a parallel CPU version is implemented which we
use for our numerical tests. More precisely, for our runtime–benchmarks we will use a F77–
implementation running parallelly on two Intel Quadcore–CPUs with 2.0 GHz. For all tests we
used η = 1.2, ν = 10−2, ξ = 0.1 (see (7), (9) and (32)) and a L-BFGS history of size 1 as
algorithm parameters. As the algorithm does not actually work on points that do not belong to
the set approximation, there is no need to consider a total gridsize for comparison issues. Thus,
we will just mention the grain size of the used grids.

5.1 Rayleigh

The control system of the Rayleigh problem is defined as

ẋ(t) = y(t)
ẏ(t) = −x(t) + y(t) (1.4− 0.14y(t)2) + 4u(t)
x(0) = −5
y(0) = −5
u(t) ∈ [−1, 1]

t ∈ [0, T], T = 2.5

(38)

To compare the algorithm’s runtime with the algorithm of Baier and Gerdts, we use the same
gain sizes and step sizes h = T/N and Euler’s method as ODE solver. The tests show a
significant speedup compared to distance function approach of Baier and Gerdts (see Table 1).

14

Lars Grüne, Thomas U. Jahn

U
1

. . Ft
1

.

. X
N

. -I

. . D
At
1

. Bt . . .

F
1

. A
1

.

. . . . U
2

. . Ft
2

.

. X
1

. Gt
2

. -I I . .

. D
At
2

. Bt . .

. . . . F
2

G
2

A
2

.

. U. Ft.

. X. . . . Gt. -I I .

. D At. Bt .

. F. . . G. . . A.

. U
N

. . Ft
N

. . . .

. X
N-1

. Gt
N

. . -I I

. D
At
N

. . . Bt

. F
N

G
N

A
N

.

. . B . . -I

. I B . . -I

. I B . . -I

. -I I B

Figure 4.2: Ĥ transformed to lower arrow form by symmetrical permutations (see fig. 4.1 for symbol legend)

Figure 5.1 illustrates the plots of some sets for different step sizes and ODE solvers8 with
constant grain size. The thin black line denotes the border of the reference set9. The corre-
sponding benchmarks are displayed in Table 2.

5.2 Kenderov

Kenderov’s problem leads to a 1–dimensional reachable set shaped as a circle. Just working
on lines will prevent the algorithm to “disseminate”, so that could be a problem. The control

8Euler’s method and Radau IA method with different orders, see [7].
9The reference set has been computed using a grid with grain size 10−3, N = 320 and Radau (order 3) method

and can be considered as almost exact.

15

Lars Grüne, Thomas U. Jahn

-7 -6 -5 -4 -3 -2 -1 0 1 2 3

0

1

2

3

4

5

6

7

Euler
N=10

-7 -6 -5 -4 -3 -2 -1 0 1 2 3

0

1

2

3

4

5

6

7

Euler
N=20

-7 -6 -5 -4 -3 -2 -1 0 1 2 3

1

2

3

4

5

Euler
N=40

-7 -6 -5 -4 -3 -2 -1 0 1 2 3

1

2

3

4

5

Euler
N=160

-7 -6 -5 -4 -3 -2 -1 0 1 2 3

1

2

3

4

5

Radau (order 1)
N=10

-7 -6 -5 -4 -3 -2 -1 0 1 2 3

1

2

3

4

5

Radau (order 1)
N=20

-7 -6 -5 -4 -3 -2 -1 0 1 2 3

1

2

3

4

5

Radau (order 1)
N=40

-7 -6 -5 -4 -3 -2 -1 0 1 2 3

1

2

3

4

5

Radau (order 1)
N=160

-7 -6 -5 -4 -3 -2 -1 0 1 2 3

1

2

3

4

5

Radau (order 3)
N=10

-7 -6 -5 -4 -3 -2 -1 0 1 2 3

1

2

3

4

5

Radau (order 3)
N=20

Figure 5.1: Approximation of Rayleigh’s set with different ODE solvers, step sizes and constant grain size 10−2.

16

Lars Grüne, Thomas U. Jahn

N Grain size Runtime A1 Runtime A2 Runtime A3

10 2.5 · 10−1 2.076 s 0.148 s 0.053 s
20 1.25 · 10−1 24.302 s 1.988 s 0.157 s
40 6.25 · 10−2 424.194 s 33.334 s 0.901 s
80 3.125 · 10−2 — 684.691 s 6.010 s
160 1.5625 · 10−2 — ≈ 19500 s 24.409 s

Table 1: Overview of the runtimes of Baier and Gerdts non-adaptive (A1) and adaptive algorithm (A2) compared
to our algorithm using Euler’s method (A3) while working on Rayleigh’s problem.

N Euler Radau (order 1) Radau (order 3) Radau (order 5)
total point total point total point total point
[s] [10−5 s] [s] [10−5 s] [s] [10−5 s] [s] [10−5 s]

10 3.437 1.216 2.293 1.467 3.451 2.333 5.136 3.462

20 5.018 3.214 5.005 3.285 8.391 5.594 12.744 8.480

40 12.163 8.042 12.259 8.124 20.824 13.844 32.237 21.401

80 27.975 18.609 30.049 20.009 48.993 32.561 78.439 52.082

160 64.968 43.265 64.239 42.798 116.198 77.217 180.346 119.685

Table 2: Overview of the runtimes (total runtime and time per reachable gridpoint) of different step sizes and ODE
solvers with constant grain size 10−2 while working on Rayleigh’s problem.

system is defined as

ẋ(t) = 8(a11x(t) + a12y(t)− 2a12y(t)u(t))
ẏ(t) = 8(−a12x(t) + a11y(t) + 2a12x(t)u(t))
x(0) = 2
y(0) = 2
u(t) ∈ [−1, 1]

t ∈ [0, T], T = 1

(39)

with a11 := σ2 − 1, a12 := σ
√

1− σ2 and σ := 0.9.
Figure 5.2 shows the approximation of the reachable set with different step sizes and ODE

solvers. Here, the thin black line denotes the whole exact reference set10. As one can see, the
overlapping factor η = 1.2 ensures a good spreading of the algorithm, so that the whole set can
be computed. Even when using higher order methods, that lead to a very thin approximation,
the set is computed correctly. Surprisingly, the algorithm reveals some additional areas of the
approximated reachable set, that have not been detected by the algorithm of Baier and Gerdts.
The benchmarks for a constant grid, different step sizes and ODE solvers are shown in Table
3. The computation time per reachable point is considerably higher compared to the Rayleigh
problem, which is due to the fact that most points lie close to the boundary of the reachable sets.
Hence, the computation needs more time since many unreachable points have to be touched that
are still “almost” reachable from the numerical point of view. Compared to the computation of

10The reference set has been computed on a grid with grain size 10−3, N = 500 and Radau (order 3) method.

17

Lars Grüne, Thomas U. Jahn

an inner point, for such points the optimizer loop needs much more iterations until it considers
the point as unreachable.

Again, we observe a very good speedup compared to the distance function approach as shown
in Table 4. Note that for small values of N the results of the two algorithms differ considerably
and the algorithm from [1] computes much smaller sets, which is why the speedup only becomes
visible for large N .

N Euler Radau (order 1) Radau (order 3) Radau (order 5)
total point total point total point total point
[s] [10−4 s] [s] [10−4 s] [s] [10−4 s] [s] [10−4 s]

20 9.684 0.370 1.500 1.522 2.526 17.701 3.500 24.423

40 10.315 2.216 3.939 4.586 4.527 30.776 6.496 42.278

80 19.196 13.154 11.146 17.275 8.251 56.279 12.399 83.834

160 33.774 52.120 26.763 59.499 16.212 109.247 24.624 164.490

320 34.000 129.671 32.915 136.463 33.917 225.062 53.118 350.384

Table 3: Overview of the runtimes (total runtime and time per reachable gridpoint) of different step sizes and ODE
solvers with constant grain size 10−2 while working on Kenderov’s problem.

N Grain size Runtime A1 Runtime A2 Runtime A3

20 5 · 10−2 1.296 s 0.152 s 0.644 s
40 2.5 · 10−2 14.313 s 0.752 s 1.469 s
80 1.25 · 10−2 234.151 s 5.980 s 4.300 s
160 6.25 · 10−3 ≈ 5208 s 66.528 s 16.76 s
320 3.125 · 10−3 ≈ 168155 s ≈ 1283 s 75.487 s

Table 4: Overview of the runtimes of Baier and Gerdts non-adaptive (A1) and adaptive algorithm (A2) compared
to our algorithm using Euler’s method (A3) while working on Kenderov’s problem.

6 CONCLUSIONS

We presented an optimal control based algorithm for reachable sets which is designed for
massively parallel implementation on a GPU. Even in its parallel CPU implementation tested
in this paper the algorithm significantly outperforms the method from [1] which we used as
starting point for the design of our algorithm.

The speedup is mainly due to exploiting the sparse structure of the feasibility problem which
is at the core of our algorithm. Moreover, the computational cost per grid point seems to increase
only linearly with the number of time steps. As such, our new approach reduces the time needed
for approximating reachable sets to an order of seconds instead of minutes or hours. A further
significant speedup is expected for the future GPU implementation, since our algorithm already
exhibits the necessary structure for this implementation.

Besides this GPU implementation, further research will aim at various extensions of the
algorithm, removing some of the limitations of the current version. For instance, our approach

18

Lars Grüne, Thomas U. Jahn

-4 -3 -2 -1 0 1 2 3 4

-4

-3

-2

-1

0

1

2

3

4

Euler
N=20

-4 -3 -2 -1 0 1 2 3 4

-4

-3

-2

-1

0

1

2

3

4

Euler
N=40

-2 -1 0 1 2

-2

-1

0

1

2

Euler
N=80

-2 -1 0 1 2

-2

-1

0

1

2

Euler
N=160

-2 -1 0 1 2

-2

-1

0

1

2

Euler
N=320

-2 -1 0 1 2

-2

-1

0

1

2

Radau (order 1)
N=20

-2 -1 0 1 2

-2

-1

0

1

2

Radau (order 1)
N=40

-2 -1 0 1 2

-2

-1

0

1

2

Radau (order 1)
N=80

-2 -1 0 1 2

-2

-1

0

1

2

Radau (order 1)
N=160

-2 -1 0 1 2

-2

-1

0

1

2

Radau (order 1)
N=320

-2 -1 0 1 2

-2

-1

0

1

2

Radau (order 3)
N=20

Figure 5.2: Approximation of Kenderov’s set with different ODE solvers, step sizes and constant grain size 10−2.

19

Lars Grüne, Thomas U. Jahn

relies on the fact that the feasible control for two neighboring points in the reachable set is
similar, for which there is, of course, no warranty. Violating this assumption will cause an
incomplete approximation of the set. To handle this, tuning the optimizer for finding global
minima will be necessary.

We note that the algorithm can be easily modified to compute lower dimensional projections
of reachable sets for higher dimensional systems. First tests with the computation of a 2–
dimensional projection of a reachable set for a 7–dimensional automotive model turned out to
be very promising with an execution time in the order of seconds.

We finally remark that introducing an objective function to rate the control sequences on the
right hand side of (13) does not affect the sparse structure. Hence, in principle, the structure
can also be exploited for general nonlinear optimal control problems. However, in this case the
optimizer has to be modified by using a filter and a merit function in order to balance the weight
of objective function and constraint, see [11], [9].

REFERENCES

[1] R. Baier and M. Gerdts. A computational method for non-convex reachable sets using op-
timal control. In Proceedings of the European Control Conference (ECC) 2009, Budapest,
Hungary, pages 97–102, 2009.

[2] O. Bokanowski, N. Forcadel, and H. Zidani. Reachability and minimal times for state
constrained nonlinear problems without any controllability assumption. SIAM J. Control
Optim., 48(7):4292–4316, 2010.

[3] NVIDIA Corp. NVIDIA CUDA C programming guide, Version 3.2, 2010.

[4] P. Deuflhard and F. Bornemann. Scientific computing with ordinary differential equations,
volume 42 of Texts in Applied Mathematics. Springer Verlag, New York, 2002.

[5] I.S. Duff, A.M. Erisman, and J.K. Reid. Direct Methods for Sparse Matrices. Oxford
University Press, 1986.

[6] L. Grüne. Subdivision techniques for the computation of domains of attraction and reach-
able sets. In Proceedings of NOLCOS 2001, St. Petersburg, Russia, pages 762–767, 2001.

[7] M. Hermann. Numerik gewöhnlicher Differentialgleichungen: Anfangs- und Randwert-
probleme [Numerics of Ordinary Differential Equations: Initial and boundary value prob-
lems]. Oldenbourg Verlag, Munich, 2004.

[8] T. Jahn. Implementierung numerischer Algorithmen auf CUDA–Systemen. Diploma the-
sis, University of Bayreuth, 2010.

[9] J. Nocedal and S. J. Wright. Numerical Optimization. Springer Verlag, 2nd edition, 2006.

[10] J. A. Sethian. Level set methods, volume 3 of Cambridge Monographs on Applied and
Computational Mathematics. Cambridge University Press, Cambridge, 1996.

[11] A. Wächter and L. T. Biegler. On the implementation of an interior-point filter line-search
algorithm for large-scale nonlinear programming. Mathematical Programming, 106:25–
57, 2006.

20

	1 INTRODUCTION
	2 PRINCIPLES OF SIMD ARCHITECTURES
	2.1 SIMD and thread enumeration
	2.2 Memory considerations
	2.3 Suitable algorithms

	3 ALGORITHM SPECIFICATION
	3.1 The approach of Baier and Gerdts
	3.2 An algorithm for computing reachable sets
	3.3 Distributing the algorithm to the CUDA hardware

	4 SOLVING THE FEASIBILITY PROBLEM
	4.1 The interior–point algorithm
	4.2 Defining the restrictions
	4.3 Exploiting sparsity

	5 NUMERICAL EXAMPLES
	5.1 Rayleigh
	5.2 Kenderov

	6 CONCLUSIONS

