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Abstract: In this article we present several developed and improved combinatorial 

techniques to optimize processing conditions and material properties of organic thin films. 

The combinatorial approach allows investigations of multi-variable dependencies and is the 

perfect tool to investigate organic thin films regarding their high performance purposes. In 

this context we develop and establish the reliable preparation of gradients of material 

composition, temperature, exposure, and immersion time. Furthermore we demonstrate the 

smart application of combinations of composition and processing gradients to create 

combinatorial libraries. First a binary combinatorial library is created by applying two 

gradients perpendicular to each other. A third gradient is carried out in very small areas and 

arranged matrix-like over the entire binary combinatorial library resulting in a ternary 

combinatorial library. Ternary combinatorial libraries allow identifying precise trends for 

the optimization of multi-variable dependent processes which is demonstrated on the 

lithographic patterning process. Here we verify conclusively the strong interaction and thus 

the interdependency of variables in the preparation and properties of complex organic thin 

film systems. The established gradient preparation techniques are not limited to 

lithographic patterning. It is possible to utilize and transfer the reported combinatorial 

techniques to other multi-variable dependent processes and to investigate and optimize thin 

film layers and devices for optical, electro-optical, and electronic applications. 
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1. Introduction 

Combinatorial optimization methods are widely used, above all in pharmaceutical research, to 

screen new molecules for their potential application as drugs [1–5], but the combinatorial 

investigations approach has been aggressively adopted by the field of materials research in recent 

years, too [6–8]. Combinatorial materials science pursues the objective of preparing a family of related 

samples in a single experiment, to investigate interacting parameters and to efficiently and quickly 

optimize materials and processes. Due to the continuously arising challenges in materials development, 

the use of variable gradients and their combination to so called combinatorial libraries has been driven 

forward. Important research areas of established combinatorial approaches include sensing materials, 

catalysis, electronic and functional materials, and biomaterials [9]. In the last decade research has addressed 

the investigation of properties of organic thin films in relation to certain variable gradients [10]. In 

general the film thickness itself is an important variable for film application. Thus to enable a 

combinatorial investigation, films of continuous thickness gradients were prepared [11]. Amis et al. have 

demonstrated the dewetting behavior of a polystyrene film by preparing a film thickness gradient versus 

a continuous temperature gradient arranged in a 2-D combinatorial library [12]. His group also 

investigated the phase separation of a thin film prepared from a polymer blend gradient in combination 

with a temperature gradient [13]. The film preparation of this polymer blend gradient was realized 

utilizing a custom-built setup. In addition to solution cast composition and layer thickness gradients, 

solvent-free prepared gradients utilizing physical vapor deposition (PVD) are well-known. Here 

combinatorial optimizations of electro-optical devices were investigated in a 2-D combinatorial library 

in regard to composition and layer thicknesses [14]. Another important parameter, especially for 

adhesion investigations, is the chemical surface treatment of a film, thus gradients of surface 

characteristics were developed. Such a surface modification was obtained via electron beam treatment 

of a poly(2-vinylpyridine) coated surface. This electron beam exposure dose gradient applied over a 

length of 5 cm generates a hydrophilicity gradient on the surface [15]. Matsuda et al. have shown 

another method for the preparation of a surface hydrophilization gradient with a poly(vinyl carbonate) 

coated film [16]. This film hydrolyzes gradually via continuous immersion in an aqueous NaOH solution. 

A special field of interest regarding organic thin films is lithography. In the lithographic patterning 

process the resist film has to pass through several steps, e.g., film preparation, annealing steps, 

exposure, development, and etching. This multi-step process, on the other hand, gives a variety of 

variables which interact strongly with each other, such as resist composition, film thickness, annealing 

temperature, exposure dose, or development time, to name but a few. Furthermore, the engineering and 

manufacturing of new patterning tools [17] and the introduction of new materials [18] leads to a 

perpetual optimization of the operating process [19]. Thus, combinatorial investigations became an 

interesting approach for lithographic issues in the last decade. For instance, different compositions of a 

molecular glass photoresist were investigated in combinatorial PVD-prepared libraries as a function of 
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exposure dose [20]. Another important variable for thin polymer films, especially in the lithographic 

context, but also in general, is the annealing (bake) time and temperature. Therefore degradation of 

poly(tert-butoxycarbonyloxystyrene) has been investigated with temperature and also bake time 

gradients [21]. Furthermore the bake steps applied to chemically amplified resist systems in the 

lithographic patterning process have to be precisely identified for the post exposure and post apply 

bake steps. Hence, for the optimization of resist performance both bake steps were performed as 

temperature gradients in research laboratories and applied in a manner orthogonal to each other [22]. 

Recently we have identified a synergistic effect for post exposure bake and resist composition. 

Therefore the composition gradient was applied perpendicular to the temperature gradient of post 

exposure bake and combined with an exposure dose gradient as a ternary gradient [23–25]. These 

different gradient preparation techniques for organic thin film investigations demonstrate impressively 

the fast and effective variable investigation in one experiment. The presented article summarizes our 

improved and newly developed combinatorial techniques for organic thin film investigations, the 

preparation of binary and ternary combinatorial libraries, and their characterization. 

2. Results and Discussion 

2.1. Combinatorial Techniques 

For a combinatorial investigation typically gradients of materials and/or process variables are 

applied. However for new combinatorial approaches the existing techniques have to be adapted, the 

setups modified or new techniques developed just to fit a particular set of requirements. In the 

following sections we show adapted and newly developed combinatorial techniques and the 

corresponding setups focused on combinatorial approaches for solution-processed organic thin films. 

2.1.1. Internal Material Composition Gradient 

For the preparation of a film including an internal composition gradient two individual controllable 

syringe pumps were used. The syringe pump system allows the preparation of a gradient extrudate 

made of solutions A and B, when equipped with two syringes. One syringe is filled with solution A 

and the other with solution B. The syringes are connected via PTFE tubes to the upper part of a static 

mixer. Both tubes were filled completely with the respective solutions. The static mixer was rinsed just 

with solution A to ensure the static mixer was air bubble-free (see the flow rate profile in Figure 1a; 

part 1). Afterwards the syringe pump system was started for one second (see Figure 1a; part 2) to 

premix both solutions in the fixed volume of the static mixer. This step is necessary to extrude the 

rinsing solution A from the mixing device and to fill it with the solution of the initial gradient 

extrudate. Subsequently the static mixer was fixed to the movable part of a doctor blade machine to 

enable the application of the gradient extrudate on a substrate. 
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Figure 1. (a) Schematic illustration of the flow rate profile controlled by the neMESYS 

syringe pump system: Part 1 serves as the rinsing step with solution A to get the static 

mixer air bubble-free; in part 2 the premix inside the static mixer is prepared; part 3 shows 

the opposite flow rate gradients of the two syringes while the actual extrusion takes place. 

(b) The detailed preparation of a composition gradient film is schematically illustrated. The 

gradient extrudate of solution A (blue) and solution B (red) (step 1: extrudate application) 

was realized as described for Figure 1a, part 3. Subsequently the gradient extrudate was 

doctor bladed perpendicular to the application direction (step 2: doctor blading) and 

annealed to remove the solvent. For a systematical characterization the yielded film with 

the internal composition gradient was divided alongside the gradient into the sectors A–P. 

 

The efficiency of this preparation method concerning the constant change of the resulting internal 

composition gradient film is demonstrated realizing a PMMA film with a gradient of a fluorescence 

dye. This gradient film was prepared utilizing two 10 wt % solutions of PMMA in THF, while in 

solution A the fluorescent dye N,N'-di(1-heptyloctyl)-perylene-3,4,9,10-bis(dicarboximide) (to exclude 

concentration quenching: 0.02 mmol in 1 g of solution) was dissolved. The fluorescent dye gradient 

film was characterized by fluorescence spectroscopy utilizing a fluorescence reader. The acquired 

fluorescence spectra excited at a wavelength of 455 nm show three maxima at 532 nm, 572 nm and 

620 nm (see Figure 2). The observed continuous intensity decrease of the complete spectra demonstrates 

the prepared internal dye gradient. The intensities of the maximum at 532 nm of all 16 measured 

spectra of sectors A to P along the composition gradient are summarized in the inset verifying the 

continuous decrease of the fluorescence dye concentration. In conclusion, this technique offers a 

simple and efficient way to make a solvent-based gradient extrudate, which withstands doctor blading 

as well as an ongoing thermal treatment to realize a solid film with an internal composition gradient 

over a broad concentration range. 
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Figure 2. The characterization of the fluorescent dye gradient in PMMA via fluorescence 

spectroscopy: 16 fluorescence spectra (sector A–P) along the application direction with an 

equal gap were measured (only six spectra are shown over the full measured wave length 

range for a better overview). The inset of the graph shows the intensities of the maximum 

at 532 nm of the spectra of all 16 sectors and verifies distinctly the continuous decrease of 

the fluorescence intensity given by the material gradient. 

 

2.1.2. Temperature Gradient 

Various well defined and long-term stable temperature gradients were engineered in our laboratory 

on the basis of plates of different metals. On one side of the plate a vessel was welded and filled with, 

for example, ice-water or liquid nitrogen, which represent the cooling source. Here it has to be 

considered that the vessel must be refilled continuously to ensure constant cooling. The other side was 

placed flat on a hot plate, serving as an active heating source, and was adjusted to a desired 

temperature. After a calibration time of one hour the temperature gradient stayed constant and was 

verified by an infrared camera. For this a reference silicon wafer used for measuring purposes was 

placed in the center of the setup’s metal plate.  

In Figure 3 two temperature gradients with different slopes are shown over a length of 50 mm 

measured using a reference silicon wafer. The gradients demonstrate the ability to adjust the 

temperature gradients by defining appropriate conditions: for the more flat temperature gradient 

(circles) ice-water was used for the active cooling, an aluminum plate served as thermoconductive 

metal plate and for constant heating the hot plate was adjusted to 240 °C. A steeper gradient (squares) 

was generated with liquid nitrogen as cooling source, a steel plate and the hot plate adjusted to 300 °C. 

The flatter temperature gradient (circles) resulted in a steady slope of 0.55 °C/mm from 85 °C to 

112 °C. The second temperature gradient (squares) shows a very steep slope of 1.85 °C/mm from  

39 °C to 130 °C. Further variations in hot plate temperature, plate material or cooling source allow 

well-defined temperature slopes in a wide temperature range. The results and customizability 

demonstrate impressively the applicability of this simple temperature gradient setup and thus offer a 

550 600 650

0

500

1000

1500

2000

2500

3000

a.
u

.

wave length in nm

 A
 D
 G
 J
 M
 P

A B C D E F G H I J K L M N O P
0

500

1000

1500

2000

2500

3000  maxima at 532 nm

532

sector



Molecules 2013, 18 4125 

 

 

versatile utility for annealing processes, e.g., investigations on morphology or thermal crosslinking of 

polymer films. 

Figure 3. Two temperature profiles—measured using the reference silicon wafer—are 

shown utilizing different metal plates prepared over the length of 50 mm. The first 

temperature gradient (circles) was made on an aluminum plate cooling on the left side with 

ice-water and heating on the right side at the temperature of 240 °C. The achieved 

temperature gradient shows a steady slope of 0.55 °C/mm from 85 °C to 112 °C. The 

second (squares) was prepared under the conditions liquid nitrogen, steel plate and 300 °C. 

It shows an overall slope of 1.85 °C/mm from 39 °C to 130 °C. 

 

2.1.3. Exposure Dose Gradient 

The exposure procedure can be the most time-consuming step in manufacturing processes including 

a light-induced reaction. Combinatorial investigations are an appropriate approach to identify the 

optimized exposure conditions to save time and to achieve optimal results. Thus combinatorial 

exposure optimization methods can be used in a versatile manner and easily implemented in exposure 

investigations of solid films. Exposure dose gradients are conceivable for photocycloaddition, orientation 

of chromophores and photopolymerization driven by photoexposure and also evaporation-condensation 

and polymer degradation investigations caused by electron beam exposure. 

An exposure dose gradient for UV exposure was realized for this work with a mask-alignment 

system and a specially designed quartz glass mask. Figure 4a shows a schematic illustration of such an 

exposure set-up with a mercury lamp as light source and a condenser lens to generate parallel light, 

thus a film coated substrate is uniformly exposed with a dose (D) through the shadow mask. This mask 

consists of 70 × 70 sectors arranged and numbered in an X/Y coordinate system. Each sector has a size 

of 1.2 mm × 1.2 mm. It is designed with eight out of nine subsectors with a lightproof chrome coating 

(brown) and one out of nine subsectors of a translucent pattern (white/brown) with an area of  

300 µm × 300 µm for each subsector. The mask-alignment system has an alignment stage with 
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micrometer adjustment for the substrate holder. This allows an accurate alignment for subsequent 

exposures of subsectors in one sector on the same substrate. Therefore the substrate is moved by  

400 µm for realignment between two exposures obtaining two subsectors; by this the substrate is 

moved 100 µm further than the edge length of the translucent pattern to avoid areas of inadvertent 

double exposure. For the verification of the UV-exposure gradient a positive tone resist was used. The 

procedure for a dose-gradient exposure was conducted as follows: the film-coated substrate was 

adjusted to the substrate holder in the mask-alignment system and the exposure of the first subsectors 

in all sectors was conducted. Subsequently the substrate is realigned by movement of the substrate 

holder of 400 µm to the left defining the position for the second subsectors’ exposure and again  

400 µm to the left for the third exposure (see Figure 4b). 

Figure 4. (a) The schematic illustration shows a mask-alignment system consisting of the 
main components: a mercury arc lamp as light source, a condenser lens for the production 
of parallel light to exposure uniformly a film-coated substrate through the shadow mask. 
One sector of overall 4,900 sectors is shown in the schematic magnification of the shadow 
mask, which are arranged and numbered in an X/Y coordinate system. Each sector consists 
of eight out of nine subsectors with lightproof chrome coating (brown) and one out of nine 
subsectors of a translucent pattern (white/brown). The substrate holder is adjustable via 
micrometer adjustment to allow a precise alignment for subsequent exposures. (b) Schematic 
illustration of the realignment directions of the substrate between different exposures: The 
SEM image shows a selected sector with an exposure dose gradient of five subsectors 
realized with a positive tone resist (dark grey). The dose was increased from D1 to D5 
leading from an under- to an overexposure of the resist shown by the increasing proportion 
of the bright appearing substrate surface (light grey). 

 

For the fourth exposure the substrate holder is realigned to the origin (800 µm to the right) and then 

400 µm up and for the fifth exposure 400 µm to the left. The dose was increased for every exposure 

step from 80 mJ/cm² to 160 mJ/cm² and as a result a dose gradient of five different doses on an area of 

1.44 mm² was created. Subsequently the film-coated substrate was thermally treated at 105 °C for 30 s 

for post exposure bake. Afterwards the film is developed in an aqueous 0.26 N tetramethylammonium 

hydroxide (TMAH) solution for 30 s resulting in the removal of the exposed resist if the dose was 
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sufficiently high. The exposure dose gradient of a selected sector is shown in the SEM image in Figure 4b: 

pattern (D1) exposed with the lowest dose is obviously underexposed as the contours of the pattern are 

just slightly visible and the resist (dark grey) is roughly developed. Increasing the dose results in more 

clearly developed patterns, indicated by the stronger contrast (dark–bright) in the corresponding 

subsectors given by the undeveloped unexposed resist material beside the substrate surface  

(light grey). At the highest dose (D5) the pattern is overexposed, which is obvious by the fact the 

features are beginning to strip off. 

For electron beam exposure a different approach is necessary for realizing an exposure dose 

gradient. The coated resist film is not exposed through a mask in one exposure step, but rather it is 

continuously exposed by a controllable electron beam. For this so-called direct write technique the 

patterns are arranged in write-fields. In Figure 5a shows an example of a write-field of 100 µm × 100 µm 

in size, which contains 21 arrays of a 100 nm line/space pattern. Each array is written by a defined 

programmable exposure dose. When beginning with the lowest dose for the first array (D1) and 

continuing with increasing doses realized by the multiplication with a selected constant, an exposure 

dose gradient is generated. 

Figure 5. (a) The schematic illustration shows a write-field with an area of 100 µm × 100 µm 
used for electron beam lithography. The write-field consists of 21 arrays of a 100 nm 
line/space pattern with an increasing dose from bottom left (D1) to the upper right (D21) 
indicated by the greyscale gradient. (b) The SEM image shows the dose gradient of 
line/space patterns of a developed negative tone resist of a complete write-field. D1 is 
underexposed and just shadowy observable on the substrate. The patterns get more visible 
because of the increasing dose: in the center the pattern are exposed to their optimum dose 
while at higher doses the patterns get overexposed and even besides the pattern some resist 
material remains, observable by the darker arrays at these high doses. 

 

In Figure 5b the SEM image shows a selected section of the resulting exposure dose gradient of a 

film prepared out of a negative tone resist: The pattern corresponding to the lowest dose (D1) in the 

bottom left is only shadowy observable and is clearly underexposed. Increasing the dose results in 

more distinct patterns and the optimum dose range is observed in the center. A further dose increase 

results in overexposed patterns (right), indicated by residues surrounding the actual patterns and 

observable by the darker arrays. 

20 µm 20 µm

a b

D1

D2

D3

D4

D5

D21

D20

.
:

.
:



Molecules 2013, 18 4128 

 

 

Exposure dose gradients for deep UV and electron beam exposure realized by the combinatorial 

approaches described above are not limited to the lithographic investigations shown but are also 

suitable for process optimization of exposure processes. 

2.1.4. Dissolution Investigation 

The dissolution behavior of organic film systems in distinct organic solvents or aqueous media is of 

fundamental and essential interest for many scientific investigations and technical applications. Thus 

we used quartz crystal microbalance (QCM) measurements as a screening method to investigate the 

impact of solvents or solutions to time-resolved swelling and/or dissolution behavior of organic thin 

films. Here we demonstrate the efficiency of this method with respect to the dissolution behavior of a 

polymer resist film by increasing stepwise the base strength of an aqueous tetramethylammonium 

hydroxide (TMAH) solution.  

For this purpose films on quartz crystals (QCs) were prepared out of a positive tone resist and a 

photoacid generator (PAG). Polymer-coated QCs were exposed to UV-light to activate the PAG, 

followed by a PEB step to catalyze the deprotection reaction. Thus, depending on exposure time and 

consequently the amount of activated PAG, the resist becomes hydrophilic. These selectively exposed 

QCs were clamped one by one into the QC holder and immersed into water during dissolution 

measurement. After defined time periods a stepwise increase of the TMAH concentration was 

achieved from 10 to 25, 50, 100, and 260 mN by adding corresponding amounts of a concentrated 

TMAH solution (see Figure 6). 

Figure 6 shows film thickness changes of resist films exposed to different UV doses during their 

development. In addition, the stepwise increase of developer strength after defined time periods allows 

detailed investigations on dissolution behavior with relation to dissolution time and the developer 

(TMAH) concentration at a fixed exposure dose. All resist films show no swelling or dissolving 

characteristics in pure water at the beginning of the measurement. At the first titration a sudden 

increase of film thickness for all resist films is observable, explainable by the deprotonation of the 

acrylic acid units. Here, the carboxylate anions formed result in repulsion and in an ambient hydration 

which dampens the oscillation frequency of the quartz crystal. In addition, this measurement method is 

so sensitive that the distinct density increase is detected by a general oscillation frequency damp at the 

last titration step from 100 mN to 260 mN. The unexposed film (0 mJ/cm²) retains a constant film 

thickness over the complete titration process. Here all titration steps can be easily identified by the 

frequency jumps. However the lowest exposed resist film (50 mJ/cm²) shows a slight swelling 

character at the first titration step as well as a slow dissolution occurs at a concentration of 50 mN. The 

resist film exposed to 75 mJ/cm² shows a more distinct swelling character at the first titration step and 

shows a swelling maximum at the TMAH concentration of 50 mN followed by the dissolution of the 

resist material observable by the increasing oscillation frequency. The most exposed resist film  

(100 mJ/cm²) shows a high swelling character already at the first titration step and reaches the 

maximum at a concentration of 25 mN TMAH. The following fast dissolution of the resist film ends in 

a fully developed quartz crystal at the concentration of 100 mN TMAH. 
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Figure 6. Quartz crystal microbalance (QCM) measurements of four resist films exposed 

to different UV exposure doses are shown. The graphs show the corresponding QCM 

frequencies change—translated to normalized film thickness change [26]—during the 

periodic titration of a concentrated developer solution observable due to the transient 

oscillation. The unexposed hydrophobic resist film (○) stays at a nearly constant film 

thickness while slight swelling and dissolving of reacted resist material is observable for 

the resist film exposed to 50 mJ/cm² (). The resist film exposed to 75 mJ/cm² (□) shows a 

more distinct swelling character. The swelling slightly begins at the first titration and 

increases markedly until the concentration of 50 mN where the dissolving character 

exceeds. This behavior of swelling and dissolving is also observed for the resist exposed to 

100 mJ/cm² (⌂) but the dissolution shifts to a lower concentration of 25 mN. The exposed 

resist film is fully developed at a concentration of 100 mN TMAH. 

 

The results of the QCM prescreening experiments specify the processing window of the dissolution 

behavior of investigated organic materials. Typically the materials’ dissolution is influenced by the 

nature of the solvent as well as the application period. In this context a simple way to study dissolution 

behavior is an immersion process, which allows also the preparation of gradients controlled by the 

immersion period. Two options are conceivable to realize an immersion time gradient: stepwise or 

continuous: for the stepwise immersion time gradient it is useful to section the substrate into a defined 

number of segments via marks at the edge of the substrate. The substrate is clamped into an inverse 

pair of tweezers adjusted above a filled vessel and immersed then into the solution beginning at the 

lowest segment. In consequence the lowest segment gets the longest immersion time period in contrast 

to the top segment which gets the shortest one. After the solution treatment the substrate is removed 

from the vessel all at once. Dependent on the application of this immersion gradient the film on the 

substrate must be dried, immersed into another solution or the film must be rinsed with an inert solvent. 

A continuous immersion gradient was realized with an electrical motor drive which has ten 

adjustable speeds from 25 µm/s to 25 mm/s. A wire was attached to the drive roller of the motor drive 

and connected with the further end to an inverse tweezers which again clamps the substrate. The drive 
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roller was positioned directly above the filled vessel the attached substrate has to be immersed into. 

Then the substrate was lowered into the vessel at a defined speed. The time intervals of the solution 

treatment for each position on the substrate are calculated by the length of the immersed substrate and 

the preset speed of the electrical motor drive. After complete immersion, the substrate was removed 

from the solution all at once and treated as described above. 

2.2. Combinatorial Libraries 

Synthesis and/or investigation of applicability of new materials are often time-consuming and take a 

lot of effort. Thus, it is a common approach to use combinatorial techniques as a fast way for getting 

materials and optimizing their processing variables. However, the full potential of a new material—be 

it the synthesis or the properties—is typically affected by the interaction of multiple variables, so the 

possibility of material optimization of just one variable will result only in a local optimum. To avoid 

this fact, a combinatorial investigation of at least two interacting variables should be conducted in one 

investigation, a so-called combinatorial library. 

2.2.1. Binary Combinatorial Library 

In the following we show an example for the combination of two gradients in one combinatorial 

library. Therefore a film with an internal composition gradient is applied on a substrate and annealed 

with a temperature gradient perpendicular to it. These two variables are crucial for lithographic 

systems, especially as process variables for chemically amplified resists. For the experiment presented 

here a resist system known from the literature [27] was used, consisting of α,α,α'-tris(4-hydroxy-

phenyl)-1-ethyl-4-isopropylbenzene (as matrix component), N,N,N,N-tetra-(methoxymethyl)glycoluril 

(as crosslinker component), and triphenylsulfonium perfluoro-1-butanesulfonate (as photoacid 

generator—PAG). The efficiency of a well-designed combinatorial library is next shown using this 

known three component resist system. 

For the film preparation a silicon wafer of four inch diameter served as substrate. The resist film 

consisted of an internal composition gradient of matrix component versus crosslinker component with 

an overall constant concentration of PAG, as well as an overall constant film thickness. This film was 

applied out of solution A (9.5 wt % of the matrix component + 0.5 wt % of PAG in 1-methoxy-2-

acetoxypropane) and solution B (9.5 wt % of the crosslinker component + 0.5 wt % of PAG in  

1-methoxy-2-acetoxypropane). The resist material gradient was prepared as described in Section 2.1.1, 

followed by a subsequent thermal prebake step at 115 °C for 60 s. For analyzing the material 

composition of the resulting gradient, high performance liquid chromatography (HPLC) was used. 

Beforehand the three components were calibrated to determine weight ratios of component mixtures. 

From the prepared composition gradient on the silicon substrate a defined stripe was cut off with a 

length of 70 mm and a width of 10 mm parallel to the application direction. The stripe was divided into 

14 pieces (A–N) with a length of 5 mm and each was rinsed off with acetonitrile separately for the 

HPLC analysis. The measured ratios of the three components are shown graphically in Figure 7 and 

detailed values listed in Table 1. 

The composition gradient produced by gradient extrusion and subsequent doctor blading was 

realized over a broad concentration range with a nearly constant film thickness of 350 nm: the PAG 
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concentration stays nearly constant at 5–6 wt % over the whole length of 70 mm. The matrix content is 

continuously decreasing from 88.6 wt % to 18.2 wt % while the crosslinker content is steadily 

increasing from 6.4 wt % to 75.9 wt %. The gradient covers a huge range of resist component ratios and 

thus presents a good starting point for a combinatorial investigation of a multicomponent material system. 

Figure 7. The graph shows the resist material ratios of the 14 wafer pieces of the three 

components resist gradient film analyzed by high performance liquid chromatography. In 

the achieved material composition gradient the photo acid generator content (○) stays 

constant in the desired range of five to six weight percent. The matrix content (□) is 

constantly decreasing from 88.6 wt % to 18.2 wt % while the crosslinker content () is 

steadily increasing from 6.4 wt % to 75.9 wt %. 

 

Table 1. Material composition ratios of each wafer piece of the three components resist 

gradient film analyzed by high performance liquid chromatography. 

Wafer piece A B C D E F G H I J K L M N 

Wafer segment (mm) 0–5 5–10 10–15 15–20 20–25 25–30 30–35 35–40 40–45 45–50 50–55 55–60 60–65 65–70 

PAG (wt %) 5.0 5.0 5.1 5.1 5.3 5.3 5.5 5.5 5.7 5.6 5.9 5.9 6.2 5.9 

Matrix (wt %) 88.6 83.9 78.6 71.2 65.9 57.1 50.2 48.7 39.7 37.9 29.5 27.3 20.5 18.2 

Crosslinker (wt %) 6.4 11.1 16.3 23.7 28.8 37.6 44.3 45.8 54.6 56.5 64.6 66.8 73.3 75.9 

The next step in the lithographic process is the exposure, which activates the PAG. This step was 

conducted with the EVG®620 mask-aligner utilizing a shadow mask with a line/space pattern. The 

dose was adjusted to 60 mJ/cm². Immediately afterwards a PEB was applied to perform the acid 

catalyzed crosslinking reaction of crosslinker and matrix. For the preparation of a combinatorial library 

a temperature gradient for PEB was applied perpendicular to the material composition gradient for  

30 s. The applied temperature gradient had a constant slope of 1.07 °C/mm within the temperature 

interval from 85 °C to 20 °C. Subsequently the resist film was developed in a 0.26 N aqueous solution 

of TMAH for 10 s by dissolving the resist materials of the unexposed areas. In Figure 8 a photograph 
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of the processed film with the remaining patterned resist material and SEM images of the pattern of 

selected sectors of the combinatorial library are shown. 

Figure 8. Photograph of the patterned resist film on the silicon wafer after applying the 

material composition gradient (left to right: column A to N), post apply bake of 115 °C for 

60 s, photo exposure (60 mJ/cm²), PEB temperature gradient (top to bottom: row 1 to 40) 

and development in a 0.26 N aqueous solution of tetramethylammonium hydroxide for  

10 s. Already with the naked eye can be seen that below row 15 (60 °C) all patterns are 

completely stripped off. The dependence of temperature to material composition is obvious 

by the SEM insets of column E: sector E7 shows distinct pattern while in sector E2 all 

lines are merged. Under the conditions of a steady temperature (row 2) distinct pattern are 

obvious at high matrix content (sector A2) while with increasing crosslinker content the 

patterns tend to merge (C2/E2). A trend is observable as for higher crosslinker content 

lower PEB temperatures are needed for distinct patterns (A2, C4, E7). 

 

The composition gradient ranges from a high matrix content (left: column A) to a high crosslinker 

content (right: column N) arranged perpendicular to the temperature gradient from a high (top: row 1) 

to a low temperature (bottom: row 40). It can be seen with the naked eye that below row 15 (60 °C) 

even the exposed resist of each material composition was completely stripped off the substrate during 

development. This indicates a minimum temperature is necessary to crosslink this resist system at any 

material composition. Most of patterns to the right of column F (matrix ≤ 57.1 wt %/crosslinker  37.6 

wt %/PAG 5 wt %) corresponding to high crosslinker contents are stripped off, too. The inset SEM 

images show clearly the PEB temperature dependence on the resist material composition (column E): 

While sector E7 (72 °C) shows distinct lines, in sector E2 (83 °C) the pattern lines are merged 

together. This is due to the fact that the higher applied temperature results in an increased acid 

diffusion to this material composition beyond the exposed areas. With a higher matrix component  

(row 2) the pattern quality increases from sector E2 to C2 until in sector A2 distinct patterns were 

observed. These observations reveal a tendency which is confirmed by sector C4: distinct patterns 
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were achieved with decreasing matrix content and concurrent temperature decreases beginning with 

sector A2 over sector C4 and ending with sector E7. These results demonstrate impressively the 

strength of combinatorial libraries in recognizing variable dependent trends of interacting multi-variable 

system and so combinatorial approaches are an excellent technique for optimizing material composition 

and their processing conditions. 

2.2.2. Ternary Combinatorial Library 

The upgrade of a binary combinatorial library by a third gradient is here called ternary 

combinatorial library. For the preparation of a binary combinatorial library variable gradients are 

typically arranged orthogonally on two-dimensional areas. Thus for the realization of a ternary library 

the third variable gradient must be implemented in the third dimension or arranged in a very small area 

in which the first as well as the second variable are effectively constant within the gradient. To implement 

the latter case the third variable is applied several times—matrix-like—in one small spot on the binary 

library. As described above the exposure dose gradients have the ability to fulfill these requirements 

and hence it is possible to investigate three interacting variables in just one combinatorial library. 

In the following we present the developed ternary library for a lithographic investigation as shown 

schematically in Figure 9. The ternary library consists of a temperature gradient perpendicular to a 

development time gradient, which represents the variable gradients of the binary library, while small 

sectors of electron beam exposure dose gradients are applied matrix-like to this binary combinatorial 

library. For the shown lithographic combinatorial investigation a star-shaped teroligomer  

[statistically copolymerized out of γ-butyrolactone methacrylate, methyladamantyl methacrylate, and 

hydroxyladamantyl methacrylate (GBLMA-co-MAMA-co-HAMA)] as positive tone resist plus the 

PAG triphenylsulfonium perfluoro-1-butanesulfonate was used. The resist material solution was cast 

via spin coating on a hexamethyldisilazane-primed four inch silicon wafer, resulting in a film thickness 

of about 90 nm. The film-coated substrate was cut to a rectangle of 30 mm × 20 mm, thermally treated 

at 125 °C for 150 s, and electron beam exposed by a dose gradient which was conducted in 12  

write-fields, applied matrix-like (see Figure 9). This matrix consists of three rows and four columns while 

the gap between each row is 10 mm and between each column 5 mm. Each write-field—100 µm × 100 µm 

in size—comprises an exposure dose gradient of 24 arrays of 100 nm line/space pattern between  

10 µC/cm² to 410 µC/cm². Afterwards PEB was applied—parallel to the rows of the exposed matrix—by 

a temperature gradient for 30 s. This temperature gradient was prepared on an aluminum plate with 

ice-water as cooling source and a hot plate adjusted to 220 °C as heating source. Thus the temperature 

gradient applied to the substrate ranged from 95 °C to 102 °C with a slope of 0.47 °C/mm. After that a 

development time step gradient was applied alongside the columns of the exposed matrix for 15, 30, 

60 s in a 0.26 N tetramethylammonium hydroxide solution. Therefore the substrate was subdivided 

into three segments whereas each segment contains one row of write-fields. Selected SEM images of 

line/space patterns and their corresponding processing conditions are shown in Figure 9. Furthermore 

line edge roughness (LER) values – used as performance criterion—of these selected line/space 

patterns are also listed. LER is a mathematical calculated value, describing the deviation of pattern 

edges to an ideal shaped pattern. The LER values of the line/space patterns were calculated over a 

length of 15 µm by the software SuMMITTM from EUV technology. 
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Figure 9. Schematic illustration of the ternary combinatorial library prepared on a 

substrate with a size of 30 mm × 20 mm. The PEB temperature gradient (95–102 °C) is 

arranged horizontal and perpendicular to it the development time step gradient (15 s,  

30 s, 60 s). The 12 write-fields (100 µm × 100 µm) with the exposure dose gradient  

(10–410 µC/cm²) are arranged matrix-like in small sectors and provide 24 arrays of 100 nm 

line/space profiles. The selected SEM images demonstrate the strong influence of the 

applied three variable gradients. The respective conditions (PEB temperature, development 

time, and dose plus the LER values) of these patterns are listed below. 

 

The extensive scanning electron microscopy investigation of the ternary combinatorial library 

showed clear dependencies on the applied variables exposure dose, PEB temperature, and development 

time. The distinct quality of the observed line patterns guided us straight forward to the optimized 

sectors and the LER values identify the detailed influences of these variables in dependence to the 

resist performance. The pattern with the clearest lines (B2) was observed at a dose of 214.2 µC/cm², a 

PEB temperature of 100 °C, and a development time of 30 s resulting in a LER value of 5.3 nm. This 

achieved LER of the investigated statistical star block copolymer is clearly decreased compared to a 

former published reference linear terpolymer with a LER value of about 7 nm [25] and thus 

demonstrates the efficiency of this combinatorial approach to identify the potential of a new resist 



Molecules 2013, 18 4135 

 

 

material within one ternary combinatorial library. The patterns prepared at a PEB temperature higher 

and lower than the observed optimum temperature of 100 °C, but with the same development time 

show clearly increased LER values of 6.8 nm (A2) and 7.6 nm (D2). Noticeable is the decreasing dose 

required to achieve pattern for a higher applied PEB temperature (A2) under the same development 

conditions. Less PAG was activated due to a lower dose, but this is compensated by the increased acid 

diffusion and reaction rate at higher temperatures and vice versa for D2. The increase of LER values 

are also observable for patterns annealed at the same PEB temperature but applied to longer and 

shorter development times than the observed optimum of 30 s with the LER of 5.3 nm in sector B2 

(B1: 60 s, LER 7.0 nm, B3: 15 s, LER 5.8 nm). Here the operation with the optimized exposure dose is 

distinctive and crucial. While the exposure dose for the longest development time B1 is about 25% 

lower than the dose of the optimum B2, the dose for the shortest development time B3 is about 20% 

higher than the dose of the optimum pattern in B2. In summary, this combinatorial investigation 

demonstrates the strong interdependence and interaction of resist processing variables and shows the high 

efficiency of a ternary combinatorial library for such a complex investigation of a multi-variable system. 

3. Experimental 

3.1. Chemicals and Materials 

Unless otherwise stated, all solvents and chemicals were purchased from Sigma-Aldrich (St. Louis, 

MO, USA) and used as received. N,N'-Di(1-heptyloctyl)-perylene-3,4,9,10-bis(dicarboximide) was 

kindly provided by Dr. Andrè Wicklein, MC I, University of Bayreuth. Poly (methyl methacrylate) 

(Mw = 123.4 kg/mol) was purchased from Evonik (formerly known as Degussa, Essen, Germany). 

1,1,1-tris(4-hydroxyphenyl)-1-ethyl-4-isopropylbenzene was purchased from ABCR (Karlsruhe, Germany). 

N,N',N'',N'''-tetra(methoxymethyl)glycoluril was purchased from Worlée-Chemie (Hamburg, Germany). 

3.2. Internal Material Composition Gradient 

The gradient extrudate was prepared using the neMESYS syringe pump system (cetoni GmbH, 

Korbußen, Germany) containing two individual controllable syringe pumps which were connected via 

PTFE tubes to a static mixer (Adchem GmbH, Wendelstein, Germany; MA 3.0-13-S: shortened to a 

length of 15 mm). The syringe pump system was programmed to start solution A with a flow rate of  

30 µL/s but decreasing constantly with time, while solution B starts with a flow rate of 0 µL/s but 

increasing constantly with time. For the actual extrusion of the homogeneous mixed gradient the flow 

rates of each syringe pump are tuned regarding a summarized steady flow rate of 30 µL/s, thus a 

constant variation of the solutions A & B is given for a time period of seven seconds (see Figure 1a; 

part 3). Simultaneously the doctor blade machine to which the static mixer is fixed has to be activated 

with a velocity of 10 mm/s for the same time period. Both simultaneously running procedures are 

described in Figure 1b step 1: extrudate application. The second step takes place after the substrate’s 

rotation through 90 degrees. The extrudate is then doctor bladed with a doctor blade machine (Erichsen 

Coatmaster 509 MC-1, Hemer, Germany) using a 4-sided bar (BYK, Wesel, Germany; gap: 50, 100, 

150, 200 µm) perpendicular to its application direction with a velocity of 10 mm/s using a doctor blade 

of corresponding size (see Figure 1b step 2: doctor blading). Afterwards the film was baked to 
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evaporate the application solvent and to fix the composition gradient. The yielded film with the 

internal composition gradient was divided alongside the gradient into the sectors A to P for a 

systematical characterization. The PMMA film with the internal gradient of the fluorescent dye was 

verified by Fluorescence Reader Flashscan 530 (AnalytikJena AG, Jena, Germany). The measurement 

was executed at spots every 5 mm parallel to the gradient. The resist film with the internal composition 

gradient was verified with high performance liquid chromatography (HPLC; Agilent 1100 series, 

Böblingen, Germany, column: ZORBAX Bonus-RP 4.6 × 150 mm, 5 µm; 1 mL/min of 80% ACN/20% 

H2O; 201 nm/278 nm). 

3.3. Temperature Gradient 

The temperature gradients were adjusted on metal plates with a length of 35 cm, a width of 20 cm, 

and a thickness of 0.5 cm. On one side of the plate a vessel was welded with a length of 10 cm, a width 

of 20 cm, and a height of 10 cm serving as reservoir of the cooling agent. This cooled side of the metal 

plate was placed on cork for insulation. The other side of the plate was placed planar on a hot plate 

(Präzitherm PZ 28-2T; Harry Gestigkeit GmbH, Düsseldorf, Germany) with a defined contact area of  

6 cm × 20 cm. A reference silicon wafer—525 µm thickness, polished front side, n-type, highly arsenic 

doped with a resistance of <0.01 Ωcm, which exhibits less infrared transparency—was placed on the 

plate after a calibration time of one hour. This wafer was monitored with an infrared camera 

(ThermaCAMTME300; FLIR Systems, Wilsonville, OR, USA), which was adjusted 30 cm directly 

above the wafer. Before utilizing the infrared camera, the extinction coefficient of the silicon wafer was 

calibrated with the help of the melting points of stearic acid (69 °C), benzyl (1,2-diphenylethane-1,2-

dione) (95 °C) and benzoic acid (122 °C) [28]. 

3.4. Exposure Dose Gradient 

The UV-exposure dose gradient using a mask-alignment system (EVG®620; EV Group, St. Florian 

am Inn, Austria) and specially designed five inch quartz glass mask (produced by ML&C, Jena, 

Germany). For the verification of this UV-exposure gradient a resist film was prepared out of a 

positive tone star-shaped teroligomer [statistically copolymerized out of γ-butyrolactone methacrylate, 

methyl adamantyl methacrylate, and hydroxyl adamantyl methacrylate (GBLMA-co-MAMA-co-HAMA)] 

(95 wt %) and the photoacid generator triphenylsulfonium perfluoro-1-butanesulfonate (5 wt %) and 

was applied from a 2.5 wt % solution in 1-methoxy-2-acetoxypropane on a silicon wafer. After spin 

coating the resulting film was pre-baked and had a thickness of 90 nm measured by a surface 

profilometer (Dektak 3030 ST; Veeco, Plainview, NY, USA). The wavelength range of the  

mask-alignment system was adapted to 240 nm to 290 nm for the used resist system. The electron 

beam exposure was performed using a Zeiss 1530 FESEM equipped with a Raith Elphy Plus at an 

accelerating voltage of 20 kV and doses were adjusted from 100 µC/cm² (D1) to 2516 µC/cm² (D21). 

The exposure took place on a new molecular glass negative tone resist utilizing physical vapor 

deposition for film preparation and consisted of 2-[(methylsulfonyl)oxy]-1H-benz[de]isoquinoline-

1,3(2H)-dione (41%), 1,1'-binaphthyl-2,2'-diamine (40%), and 2-[(methylsulfonyl)oxy]-1H-

benz[f]isoindole-1,3(2H)-dione (19%). Afterwards the film was developed 60 s in stirred cyclohexane. 
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3.5. Dissolution Investigation 

For QCM measurements quartz crystal holder (Maxtek CHC-100, INFICON, Bad Ragaz, 

Switzerland) and quartz crystals (QCs; 1 inch, 5 MHz, polished gold electrodes; purchased from QT 

Quarztechnik GmbH, Daun, Germany) were used. For the resist film preparation on the QCs solutions 

out of a positive tone star-shaped teroligomer (GBLMA-co-MAMA-co-HAMA) and the photoacid 

generator (triphenylsulfonium perfluoro-1-butanesulfonate) were spin-coated under equal conditions 

(see Section 3.4) on quartz crystals resulting in a film thickness of about 90 nm. The wavelength for 

UV-exposure was adjusted to 240 nm to 290 nm (F300S; Fusion UV, Gaithersburg, MD, USA). The 

PEB was performed at a temperature of 130 °C for 30 s. 

4. Conclusions 

This work demonstrates several methods for combinatorial investigations on solution-coated 

organic thin films. In this context film preparation of an internal material composition gradient by a 

syringe pump system and a static mixing device was successful established for polymeric as well as 

low molecular weight materials. The characterization by fluorescence spectroscopy as well as HPLC 

confirmed a linear slope of the achieved material composition gradient. We have also shown the 

controlled preparation of various temperature gradients, here applied for thermal annealing processes 

whose slope is adjustable to the particular requirement. In addition, we have applied exposure dose 

gradients for UV light and electron beam exposure on tiny areas allowing a matrix-like application and 

thus the preparation of a ternary combinatorial library. For dissolution investigations quartz crystal 

microbalance measurements in combination with a titration process were shown to provide an efficient 

screening technique. Based on these valuable results further combinatorial investigations on solution-

coated films were conducted with either stepwise or continuous immersion gradients. Finally these 

gradients were combined to a binary and a ternary combinatorial library and applied to lithographic 

systems. Here the resist material was efficiently prescreened allowing the evaluation of the 

interdependence of the applied variables. Thus, by this method a fast optimization of the resist material 

processing was also achieved. These results impressively demonstrate the efficiency of combinatorial 

approaches on organic thin films applied for complex multi-variable dependent applications. 
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