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Abstract

We introduce one-sided Lipschitz (OSL) conditions of set-valued
maps with respect to given set differences. The existence of selections
of such maps that pass through any point of their graphs and inherit
uniformly their OSL constants is studied. We show that the OSL prop-
erty of a convex-valued set-valued map with respect to the Demyanov
difference with a given constant is characterized by the same property
of the generalized Steiner selections. We prove that an univariate OSL
map with compact images in R! has OSL selections with the same OSL
constant. For such a multifunction which is OSL with respect to the
metric difference, one-sided Lipschitz metric selections exist through
every point of its graph with the same OSL constant.

1 Introduction

The One-Sided Lipschitz (OSL) property of a multifunction F, introduced in
[12], generalizes the Lipschitz condition with respect to the Hausdorff metric,
as well as the monotonicity of I — F' (here I is the identity operator). This
condition may be satisfied without any requirement of single-valuedness [12],
in contrast to the monotonicity condition [30, 20, 21, 22]. This property
implies weak exponential stability of the solution mapping of differential
inclusions [13], and, moreover, weak asymptotic stability when the OSL
constant is negative. The existence of one-sided Lipschitz selections of such
maps may have impact on analysis and numerics of dynamical systems,
control problems and other fields related to set-valued analysis (see e.g. [3,
Chap. 9], 2, 1, 28, 6]).

2010 Mathematics Subject Classification: 47TH06, 54C65, 47TH04, 54C60, 26E25
Key words: one-sided Lipschitzian set-valued maps, selections, generalized Steiner
selection, metric selection, set differences, Demyanov difference, metric difference



R. Baier, E. Farkhi: Regularity of Maps and Selections. II. OSL Properties

Following the general framework of [5], we define different OSL notions
of set-valued maps with respect to various differences of two sets. Our
approach is based on the observation that some known OSL-type conditions,
as the uniform OSL (UOSL) condition which appears in [17, 24] can be
represented by the algebraic difference of sets. We extend this approach to
other set differences, as the Demyanov difference, the geometric difference
of Hadwiger-Pontryagin and the metric difference [19].

The OSL condition of the map F' with respect to the set difference © is
defined as

5*(x — 9, P() © F(y)) < Lz — |

In this paper we focus our attention mainly on one-sided Lipschitz con-
dition with respect to the metric and the Demyanov set differences. The
analogous Lipschitz notions based on set differences are studied in [5]. An
important advantage of this approach is that the inclusion hierarchy between
set differences implies directly the hierarchy of the corresponding OSL (Lip-
schitz, monotonicity) conditions.

We first review known one-sided Lipschitz conditions [14, 12, 16, 27, 26]
and present them with known set differences. We define here also new OSL
and monotonicity conditions based on the Demyanov, the metric and the
geometric set difference.

Special attention is given to one-sided Lipschitz conditions with respect
to the metric difference of compacts or the Demyanov difference of convex
compacts in R™. It is shown that the OSL condition for set-valued functions
with respect to the Demyanov difference of sets is equivalent to the same OSL
condition satisfied uniformly by the generalized Steiner (GS) selections in [7,
4]. Also, we prove that a univariate OSL multifunction with one-dimensional
compact values has OSL selections with the same OSL constant, passing
through any point of its graph. If this multifunction is OSL with respect
to the metric difference, it has OSL metric selections. Therefore, if such a
multifunction is monotone with respect to the Demyanov (or the metric)
difference, it has monotone generalized Steiner (resp. metric) selections.

The paper is organized as follows. In the next section we recall some
notions of set differences and recall some basic properties of such differences
derived in [5]. In Section 3 various OSL conditions with respect to given set
differences are introduced and studied. Special cases and properties, arith-
metic operations, as well as the hierarchy of these notions are studied. The
representation of OSL mappings with respect to the Demyanov (resp. the
metric) difference by OSL generalized Steiner (resp. metric) selections is
presented in Section 4. A result on the existence of OSL metric selections
through any point of the graph of OSL maps is also derived. In the last
section a collection of examples illustrating the hierarchy of different OSL
notions is presented.
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2 Set Differences and Their Properties

We refer the reader to [5] for all definitions and notation. We recall shortly
only some notation. We denote by IC(R™) the set of nonempty compact
subsets of R™ and by C(R"™) the set of nonempty convex compact subsets of
R™. By ||-|| we denote some vector norm in R"™ and with || - || the Euclidean
norm, with ||M ||z the spectral norm of a matrix M € R"*"™ and for a set
A € K(R™), ||A]l := sup{||la|]| : @ € A}. The notation | - ||~ is used for the
maximum norm in R™. The convex hull of the set A is denoted by co(A),
co(A) is the closed convex hull of A. S,,_; denotes the unit sphere in R™.

The support function resp. the supporting face for a set C € C(R") is
defined for I € R™ as

3 (1,C) = max (ley, Y(,C):={ceC : (l,c)=06"(1,C)}.
ce
A supporting point (an element of Y (I, C)) is denoted by y(I,C).
Recall that the Hausdorff distance between two compact, nonempty sets
A, B is denoted by dy(A, B). The Demyanov distance is formed by sub-
tracting unique supporting points of common directions:

dp(4, B) = sup{|ly(1, A) — y(1, B)|| : 1 € TaN T} (1)

The notations AA, —A and A 4+ B are used for the multiplication with a
nonnegative scalar resp. with —1 and for the Minkowski sum (see [5]).

We now recall the notation of some known differences of nonempty, com-
pact subsets A, B of R™:

e AS 4 B: algebraic difference e ASg B: geometric difference
e ASp B: Demyanov difference o A Sy B: metric difference

We will use the following inclusions and estimates for the above differences
which are derived in [5].

\)

Aoy BC Acs B,
AcgBCAcpBC Ao, B,
5*(1, Acq B) < 6°(1,A) — 6*(1,B) < 6*(,Acp B) (1€ Sp_1),
5*(1, Ao B) < 6°(1, A) — 6*(1, B) < 6*(1, Aca B) (1€ Sp_1)

~~ ~ —~~

(@)
T O

The metric and the Demyanov difference determine metrics in KC(R™)
resp. C(R™) (see [5]) via

dn(A,B) = [|[Acwm B| (A, B € KR™), (6)
dp(C, D) = [|Cop DIl (C,D € C(R")). (7)

We also remind the known fact that dg(A4, B) < dp(4, B).
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For the set difference “©aA” we list the following stronger forms of the
axioms in [5] for a general set difference of compact sets A, B,C, A;, B; €
K(R™),1=1,2.

(A2) BeaA=—(Aea B),

(A3) AoprBC (AeaC) + (Coa B),
(A4") (@A) ©a (aB) =a(Aoa B) (a>0),
(A57) (@A) ©a (BA) = (o — B)A (a>p2>0),
(A6") (Ay+ A3) ©a (B1+ By) C (A1 ©a By) + (A2 64 Bo)

We also need the following weakened form of (A6’):
(A1 + a2) ©a (B1 +b2) = (41 64 By) + (az — b2) (8)

It is known that the Demyanov difference satisfies (A2’)—(A6’) on K(R™),
(A2’) and (A4’) hold for the metric difference, whereas the algebraic dif-
ference fulfills (A2")-(A4’) and (A6’) and the geometric difference satisfies
(A4’) and (8), (A5’) only holds in C(R™).

3 OSL Multimaps through Set Differences

In this section we recall some known one-sided Lipschitz conditions and
introduce some new OSL notions with respect to set differences.

3.1 One-Sided Lipschitz Conditions

Throughout the paper we consider a closed set X C R"™ and set-valued maps
F : X = R" with images in the metric space X = KC(R") or X = C(R")
supplied with the metric

da(A,B) = |[Aca B| (A,BeX, Ac{M,D}).

We focus in this subsection on the One-Sided Lipschitz (OSL) property,
which also extends monotonicity-type behavior of set-valued maps. We will
define it with respect to a given set difference. Recall first some known
variants of the OSL property.

Definition 3.1 A set-valued map F : X — C(R") is called

(i) UOSL (uniformly OSL in [17] 1) with constant u € R if for all z,y €
X and for allu € F(x),v € F(y)

(@ —yu—v) <pllz -y, (9)

n [25] this property is called just one-sided Lipschitz, but this term is also used in
the later appearing articles [12, 13].
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(ii) S-UOSL (strengthened UOSL in [24, 26] ?) with constant p € R, if
forallz,y € X, allu € F(x),v € F(y) and all indicesi =1,...,n

<€i’ Tr— y) ' <eia u = ’U> < :UH'T - yH2
holds, where €' is the i-th standard unit vector 3,

(i7i) OSL (one-sided Lipschitz in [14, 12]) with constant p € R, if for all
z,y € X and all uw € F(x) there exists v € F(y) such that

(. —y,u—v) < pllz—y|?,

(iv) S-OSL (strengthened OSL in [27] *) with constant u € R, if the con-
dition “for all v € F(y)” in the definition of S-UOSL is replaced by
“there exists v € F(y)” (as in the spirit of the OSL property).

These conditions can be regarded as generalized monotonicity-type con-
ditions, since the UOSL property of the negation of F(-), —F(-) with a
constant 0 means monotonicity of F.

We now express the first two notions by set differences. We can define
the OSL property with respect to a given set difference.

Definition 3.2 Let F : X — C(R"). F is called OSL with respect to the
set difference “OA” (A-OSL) with constant p € R, if for all z,y € X

0"(x —y, F(z) ©a F(y)) < plla —yl*. (10)

The map F is called monotone with respect to the set difference “©Op”
(or shortly, A-monotone), if —F is A-OSL with a constant zero.

The following claim follows directly from Definitions 3.1 and 3.2.
Proposition 3.3 A set-valued map F : X — C(R") is

(i) UOSL iff it is OSL with respect to the algebraic difference, namely
0"z —y, F(z) 04 F(y)) < plle —yl® (zyeX), (11
(i) S-UOSL iff for every i =1,2,...,n,

(e, x—y)o* (", F(z) 04 F(y)) < pllz —yl* (z,ye X), (12)

*In [24, 25, 13] this property is called strengthened OSL (S-OSL) and in [26] it is called
strongly OSL. Since it involves all choices v € F(y) as in the UOSL property we add the
term “uniform” as in [12].

3In [26] a generalization to an arbitrary orthonormal basis of R™ is given.

4Do not mix this with the property called this way in the publications [24, 25, 13], see
also the footnote for the S-UOSL property.
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(iii) OSL iff [12]
0(x —y, F(2)) = 8" (z —y, F(y)) < pllz —yl* (z,yeX), (13)
(iv) S-OSL iff for everyi=1,2,...,n,
(e x —y) (07 (e', Flx)) = 6"(e', F(y))) < pllz —yl* (,y € X). (14)

Remark 3.4 The expression of the OSL and the S-OSL property by some
set difference is more complicated. Such a difference can be defined in an
abstract vector space, in which the convex subsets of R™ are embedded, as the
space of differences of support functions. Such a construction can be found
e.g. in [15, Example 1], but it is beyond the scope of this paper.

If we replace in (10) the algebraic difference by another difference, the
Demyanov difference for instance, then we get a new OSL property.

Definition 3.5 Let F': X — C(R"). F' is called D-OSL (OSL with respect
to the Demyanov difference) with constant p € R, if for all x,y € X

0*(x —y, F(z) ©p F(y)) < plle —yl3- (15)

Similarly we define M-OSL as OSL with respect to the metric difference,
and the G-OSL property with respect to the geometric difference. For the
latter to be well-defined we use the convention that the support function of
the empty set is equal to —oo.

Let us note that since all differences coincide for singletons, the corre-
sponding OSL properties with respect to any of these differences coincide
for single-valued F'(-).

Proposition 3.6 (single-valued case) Let f: X — R" and set F(x) :=
{f(x)}. Then:

(i) The properties G-OSL, OSL, D-OSL, M-OSL and UOSL are identical
and are equivalent to the OSL condition of f(-).

(i) The properties S-OSL and S-UOSL are equivalent.

Proof: The assertions follow directly from the definitions. |
Example 5.7 presents an example of a single-valued OSL function not
being S-OSL.
In the 1d case several notions coincide (as it is proved for UOSL and
S-UOSL in [25, 3.1 Lemma]).

Proposition 3.7 (1d case) Let F' : I = R with images in C(R) and a
closed set I C R be given. Then:
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(i) If F(-) is G-OSL and F(s) ©¢g F(t) # 0 for all s,t € I, then F(-) is
OSL.

(ii) If F(t) = [a(t),b(t)], then F(-) being OSL is equivalent to a(-),b(-)
being both OSL.

(iii) The properties D-OSL, OSL and S-OSL coincide.

(iv) The properties UOSL and S-UOSL are equivalent.

Proof:
(i) As in the proof of [5, Proposition 3.9] the geometric difference coincides
with the Demyanov one so that (4) assures (13).

(ii) In the 1d case there are essentially two cases to prove (13) for s,t €
(for s —t = 0 there is nothing to prove): if s —t is positive, (13) is equivalent
to the OSL condition for b(-) and if s — ¢ is negative, (13) is equivalent to
the OSL condition for a(-).

(iii) We can argue similarly to (i) to derive the D-OSL condition from the
OSL one. Due to the 1d case, OSL coincides with S-OSL.

(iv) Obviously, UOSL and S-UOSL coincide by definition for n = 1. [ |

The assumption in (i) that the geometric difference is never empty is
quite restrictive and requires that the diameter of F(-) is constant. Exam-
ple 5.1 illustrates such a case.

Remark 3.8 The 1d case F : [a,b] = R and the single-valued case F(z) =
{f(x)} with an OSL function f: X — R™ are cases for OSL maps in which
all GS-selections are uniformly OSL via Propositions 3.6 and 3.7. Clearly,
this follows from the equivalence of OSL to D-OSL in these two cases.

A class of examples for OSL maps are polytopes whose vertices are single-
valued OSL functions. The next result generalizes parts of Propositions 3.6
and 3.7 for OSL maps.

Lemma 3.9 Consider F'(z) = co{fj(z) : j=1,...,M} with f; : X - R"
OSL forj=1,...,M.
Then, F(-) is OSL wi = 3
hen, F(-) is OSL with constant u 1%%)](\4 1
Proof: Let z,y € X and let { = Zé\il a;fi(z) € F(x) with a convex

combination (¢y;);=1,...m. We choose n = ij\il a;fi(y) € F(y) such that

M M
@—y.&=n) =Y aj{w—y fi(x) = f;() <) ajuslle—yl?
j=1

j=1
< pllz —yl?



R. Baier, E. Farkhi: Regularity of Maps and Selections. II. OSL Properties

which proves the OSL condition for F(-). [
A class of D-OSL maps are scalar Lipschitz functions multiplied with a
constant set.

Lemma 3.10 Consider a convex, compact, nonempty set U C R™ and a
Lipschitz function r : X — [0,00) with constant L.

If the set difference “Sa” fulfills (A2°) and (A5’°) then F(x) := r(x)U for
x € X is A-OSL (especially D-OSL) and S-OSL.

Proof: Let us first consider the case “r(z) > r(y)” in which we use (A5’):

0" (x =y, (r(@)U) ©a (r(y)U)) = 6" (x — y, (r(x) — r(y))V)
= (r(z) = r(y))8"(x =y, U) < L-||U] - [l — y|?

If r(z) < r(y), then (A2’) yields

5" (x =y, (r(@)U) ©a (r(y)U)) = 6" (y — z, =((r(x)U) ©a (r(y)V)))
=0"(y — =z, (r(y)U) ©a (r(@)U)) < L-|[U] - |y —z*.

Since the Demyanov difference satisfies both required equations, we can show

the D-OSL property.

For S-OSL this follows immediately from §*(e?, F(z)) = r(z)5*(e!,U). W
Setting r(x) = 1 we get that constant set-valued maps are also D-OSL.

3.2 Properties and Relations Between the Different Notions

The next proposition is well-known for Lipschitz, OSL, UOSL and S-OSL
maps (see e.g. [25, 3.4 Lemmal).

Proposition 3.11 Let Fi, F5 : X = R™ with images in K(R™) be OSL with
constants 11, o € R with respect to the set difference “SaA” and o > 0. We
set F(-) = aF1(-) and G(-) = F1(-) + Fa().

(1) If (A4’) holds for the set difference “Sa”, then F(-) is OSL with respect
to the set difference “©aA” and constant .

(i) If (A6°) holds for “Sa”, then G(-) is OSL with respect to the set differ-
ence “©Oa” and constant py + pa.

(iii) Both properties (i)—(ii) hold for S-OSL and S-UOSL maps.

Proof: (i) Since a > 0 and (A4’) holds,

0" (z =y, F(z) ©a Fy)) = 0"(z — y, (F1(2) ©a Fi(y)))
=a-8"(z—y Fi(z) oa Fiy)) <a-p-llz —yl?.
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(ii) The result for the sum follows from (A6’) and
0" (z —y, G(x) ©a G(y))
<520, (F(0) B3 ) + (Bai) 28 Fo)

=0"(z —y, Fi(z) ©a F1(y)) + 0" (z — y, F2(x) ©a Fa(y))
<prcllz—ylP+p e -yl

(iii) Since (A4’) and (A6’) are fulfilled for the algebraic difference and the
properties S-OSL and S-UOSL are based on each coordinate, both properties
also hold for these two classes. |

The condition (A4’) holds for the geometric, the metric, the Demyanov
and the algebraic difference, hence for G-OSL, M-OSL, D-OSL and UOSL
maps. Since the condition (A6’) holds only for the Demyanov and algebraic
difference, but not for the metric or the geometric difference, the sum prop-
erty holds for D-OSL and UOSL maps and cannot be expected for G-OSL
and M-OSL maps in general. It is easy to see that (i) cannot be true for
a < 0.

The following corollary is easy to derive (compare [12, Example 2.3] for
an OSL example).

Corollary 3.12 Let G : X = R" have images in K(R™) and h : X — R"
be OSL with constant puy. We consider the set-valued map F : X = R™ with
F(z) =G(z)+ h(z).

(i) If G(-) is A-OSL with constant pg for a set difference “oa” which
fulfills (8), then F(-) is A-OSL with constant ug + pp.

(ii) If G(-) is S-OSL resp. S-UOSL, then F(-) is also S-OSL resp. S-UOSL.

Proof: (i) By Proposition 3.6 the set-valued map H(-) = {h(-)} is A-OSL.

Similarly to the proof of Proposition 3.11, we use (8) instead of (A6’).

(ii) The arguments are the same as in the proof of Proposition 3.11. [ |
The following theorem is proved in [30, 20] for monotone maps. Here,

we formulate it for UOSL maps.

Theorem 3.13 ([30, 20]) Let F : X = R"™ have nonempty images and be
UOSL. Then, F(-) is almost everywhere single-valued.

This theorem is easily reduced to the same result for monotone maps
by considering the monotone map ul — F', where p is the UOSL constant
of F and I is the identity map. Let us summarize some of the known and
established results.

Remark 3.14 Let us recall some well-known facts (see e.g. [12]) together
with new results. To compare with the one-sided Lipschitz condition, in the
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case of single-valued functions, the five properties G-OSL, OSL, M-OSL,
D-OSL and UOSL coincide but still are weaker than the Lipschitz condition
(LC) (see Proposition 3.6). Moreover, they do not imply continuity of the
mapping (see e.g. Example 5.1).

For set-valued functions, the OSL property is weaker than the six prop-
erties LC, UOSL, M-OSL, D-OSL, S-UOSL and S-OSL (see Theorems 3.16
and 83.17). If n =1, UOSL is equivalent to S-UOSL, but still stronger than
OSL and S-OSL (see Proposition 3.7 and Example 5.1). One can easily con-
struct examples of maps which are UOSL but not LC (even not continuous

as in Example 5.6), and also examples of LC' (even constant) maps that are
not UOSL (see Lemma 3.10 with r(z) = 1).

Let us remark that the OSL property of the supporting faces Y (I, F'(-))
uniformly in [ € S, is equivalent to the D-OSL condition. This uniform
property is obviously a sufficient condition for OSL (compare in this respect
the hierarchy of OSL notions stated in Theorem 3.17).

Proposition 3.15 Let F' : X = R™ with images in C(R™) be given.
Then, F(-) is D-OSL iff Y (I, F(+)) is OSL uniformly inl € S,_1.

Proof: Sufficiency for D-OSL: Motivated by the definition of the Demyanov
difference, we consider | € Tp(,) N Tp(y). By the uniform OSL property of
Y (I, F(-)) and for the direction ! of unique support, we get

(@ —y,y(l, F(2)) = y(I, F(y))) < pllz —yl*. (16)

Taking the union over all such directions [ of unique support, we can estimate
the support function of the Demyanov difference and obtain the D-OSL
condition.
Necessity for D-OSL: The left-hand side in (16) for I € T,y N Tg(,) can be
bounded from above by the support function of F(z) ©p F(y) and the D-
OSL condition. In a standard way using the Theorem of Straszewicz in [29,
Theorem 1.4.7] (the convex set coincides with the closed convex hull of its
exposed points that are actually points of unique support) we can extend
the D-OSL estimate for any point in the supporting face Y (I, F'(x)). |
The following result shows that D-OSL is a generalization of D-Lipschitz
as OSL is a generalization of Lipschitz maps (see [12, Remark 2.2]).

Theorem 3.16 Let F : X = R" be given with images in IC(R™).
If F(+) is Lipschitz with respect to the set difference “Oa”, it is also A-OSL.

Proof: The claim follows by the Cauchy-Schwarz inequality:

3"z —y, F(zr) ©a F(y)) < |z —yl2 - |F(2) ©a F(y)|l2 < Lz —yll3

10
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If we take in (10) a set difference generating a smaller set than the
algebraic difference, then we clearly will get a generalization of the UOSL
property. Natural candidates for this are the Demyanov difference and the
metric difference. More generally, we get the following

Theorem 3.17 (hierarchy for OSL conditions)
Let F : X = R" be given with images in C(R™).
Then, the following implications hold:

(i) S-UOSL = UOSL = D-OSL = OSL = G-OSL,
(ii) UOSL = M-OSL = OSL,
(iii) S-UOSL = S-OSL = OSL

Proof: (i) All implications follow from the relations (2)—(4). The implica-
tion S-UOSL =- UOSL is proved in [25, 3.3 Lemma].

(ii) By (2), the metric difference is a subset of the algebraic one, so that the
implication “UOSL = M-OSL” is obvious.

By (5), the support function of the metric difference majorizes the difference
of support functions so that the implication “M-OSL = OSL” is also clear.

(iii) In the third chain of implications the first implication is obvious from
the definition and the second one can be proved along the lines of [25,
3.3 Lemma]. [ |

The hierarchy of notions proved above easily follows from inclusions that
hold for set differences resp. by estimates of support functions of the set
differences.

G-OSL Exam. 5.2
OsL Bam s Bamss  Lipschitz
D-OSL . 5. ‘ Exam. 64 T ' ‘
Fxom 91 | (Exam. 64 D-Lipschitz ||
U-OSL Exam.56 | |
(S-UOSL _Exam.58 | | ) |

Figure 1: hierarchy of OSL and Lipschitz notions

Each Lipschitz map is also OSL as well as each D-Lipschitz map is also
D-OSL. The diagram in Figure 1 illustrates the first chain of implications in
Theorem 3.17 as inclusions of regularity classes for set-valued maps. It also
shows that the inclusions are strict. The examples in the next section will
demonstrate these facts, e.g. Example 5.5 presents a set-valued map which
is OSL, but neither D-OSL nor Lipschitz. Example 6.4 in this figure refers
to [5].

11
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Remark 3.18 [5, Example 2.4] indicates that we cannot hope for the im-
plication M-OSL = D-OSL or for the inverse one. Examples 5.3 and 5.4
present set-valued maps which are M-OSL but not D-OSL and vice versa.

To illustrate the sharpness of inclusions in the second and third chain
of inclusions: Example 5.1 lists a M-OSL map which is not UOSL, while
Ezxample 5.4 contains the definition of an OSL map which is not M-OSL.

For the third chain, Lemma 3.10 shows that the constant map F(x) =
B1(0) € R™ is S-OSL with constant 0, but not S-UOSL (since it is not
UOSL by Theorem 3.13). Example 5.6 shows a map that is UOSL (and
hence, OSL), but not S-OSL.

4 One-Sided Lipschitz Selections

Here, we present results on the existence of OSL selections passing through
any point of the graph of set-valued maps which are one-sided Lipschitz of
various kinds (D-OSL, M-OSL and OSL). For set-valued maps with convex,
compact images we characterize the D-OSL property by the existence of
uniformly OSL generalized Steiner selections. In the nonconvex case we
can show the existence of uniformly OSL metric selections for M-OSL maps
in the one-dimensional case. Similarly to the D-OSL case, we characterize
OSL maps by the existence of a family of uniformly OSL selections passing
through any point of their graphs.

4.1 OSL Generalized Steiner Selections

In this subsection we turn our attention to D-OSL mappings and prove that
the GS-selections of a D-OSL mapping are uniformly OSL. In Subsection 5.2
we will see that the existence of OSL selections require more than the OSL
condition for the set-valued map. This corresponds to [5] in which the exis-
tence of uniform Lipschitz selections requires more than Lipschitz regularity
(namely Lipschitzness with respect to the Demyanov difference).

Let us recall the generalized Steiner selections for convex-valued set-
valued maps as introduced in [7, 8, 9]. We refer to the notations in [5]
and will denote by Sto(C) the generalized Steiner point of a convex set
C € C(R™). In [8, Theorem 3.4], the Castaing representation

F(z)= |J {Sta(F(2))} (17)

aESM

for a set-valued map F' : X = R™ with convex images is studied, where SM
is the set of smooth measures. In [4] the set AM of atomic measures oy,
which is concentrated in a single point [ € Sy,—1 is introduced as Sta, (F/())
via the Steiner point St(Y (I, F(z))). Following this we get the second Cas-

12
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taing representation

P =w{ | {Stay (F)}}- (18)

ZGSn_1

As in [5], we denote by My, either the measure class AM or SM.

We next state a generalization of [4, Proposition 5.1] in which D-Lip-
schitzness is characterized by the uniform Lipschitz continuity of generalized
Steiner selections.

Theorem 4.1 (characterization of D-OSL) Let F : X = R" with im-
ages in C(R™) be given. Then, F is D-OSL with constant 1 € R if and only
if the family (Sta(F()))aem,, is uniformly OSL with constant p.

Proof: By [4, Theorem 4.6] the Demyanov difference can be represented as
closed convex hull of differences of generalized Steiner selections, i.e.

F(z)op Fly) =0 | (Stay (F(x)) — Stay (F(¥))}- (19)

ZESn—l

If F(-) is D-OSL, then
(& = 4, Stay (F(2)) — Stayy (F@))) < 6°(z — 9, F(z) 0 F)) < pll — |

for all [ € S,_1 holds, i.e. the uniform OSL property for the selections

Stag (F'(+))-
On the other hand, the uniform OSL property

(& = 4,8t (F(2)) = Sta (F) < il = yl* (1€ Su)

together with (19) yields

(@~ 9. F() 60 F(1) = sup (&~ .St (F(2) ~ St (F(w)))

< plle = yll?,

i.e. the D-OSL property holds. The same reasoning works for the smooth
measures in SM. [ |

The following corollary provides a positive answer to the question in [6],
in what cases there exist continuous and uniform OSL selections for a given
set-valued OSL map.

Corollary 4.2 Let F' : X = R" with images in C(R™) be given. Then, F

is D-OSL with constant i € R and D-continuous if and only if the family

{ St (F ())}a em., Bs uniformly OSL with constant p and uniformly contin-
sp

UOUS.

13
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In view of Proposition 3.7 we get

Corollary 4.3 Let F : I = R with images in C(R) and I C R be given.
Then, F is OSL if and only if the family {Sta(F())} is uniformly
OSL with constant p.

aEMsp

From the Castaing representation (17) it follows that GS-points are suf-
ficient to test the corresponding OSL condition for the set difference “©a”.

Proposition 4.4 Let F': X = R" with images in C(R™) be given.
Then, conditions

(i) {x —y,Sta, (F(z) ©¢ F(y))) < pllz — y||? for alll € S,—1 assuming
that F(x) ©¢ F(y) # 0 for all z,y € X,

(i) &=, Stayy (F(2)) = Stagy (F(9))) < pllz =yl for all 1 € Sy,
F

(i) (&~ Sty (F(x) ©a F(9))) < plla — yl? for all 1 € Su_sy
are equivalent respectively to G-OSL (i), to D-OSL (ii) and to A-OSL (iii).

4.2 One-Sided Lipschitz Metric Selections

In this subsection we turn our attention to M-OSL mappings and prove that
the metric selections of a M-OSL map F' : [a,b] — IC(R) are OSL with the
same constant.

According to Definition 3.2, a map is M-OSL if

5 (x —y, F(x) om F(y)) < plle =yl (2,9 € [a,0]). (20)

Metric selections are useful for studying M-OSL maps. We use the following
construction which is a slight modification of the construction from [18]
and from [5, Definition 5.1]. Here, the z-coordinate of the given point in
the graph is incorporated in the grid points and thus a non-uniform grid
is defined, since the constructed selections automatically pass through the
given point of the graph.

Definition 4.5 Let F : [a,b] — K(R) and (z,9) € Graph(F') be given. We
take a uniform partition of [a,b], a =719 < 71 < ... < TNy = b with 7, =
a+i(b—a)/N,i=0,..,N, and add the given point & to the partition. We
denote the new partition points by x;, 1 =0,1,.... N+1, and h; = x;41 — x;.
Without loss of generality denote & = x;,,y = vyi,. Starting from (xi,, Yi,),
we determine Yio+1 € F(ig+1) by [Yig+1 — vio |l = dist(yiq, F(zig+1)). Then,
for every i > ig + 1, and for given x;,xiy1,y; we find subsequently y; 11 €
F(ziy1) satisfying ||yiv1 — il = dist(yi, F(2i41)).

In a similar way we proceed backwards, to the left of z;,: fori <ig, we
find yi—1 € F(x;—1) such that ||y; — yi—1|| = dist(y;, F(xi-1)).

14
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The obtained sequence {(z;,Yyi)}i=o0,. . N+1 s called metric chain. The
piecewise-linear interpolant yN (z) of such points (x;,y;), 1 =0,...,N +1, of
a metric chain is called metric piecewise-linear interpolant.

To prove that M-OSL mappings have uniformly OSL metric selections,
we cannot use the Arzela-Ascoli theorem, since M-OSL maps as well as
their metric selections are not necessarily continuous. Instead, we use the
following theorem (see e.g. [23, Chap. 10, Subsec. 36.5]) for a sequence of
functions of bounded variation, in particular for monotone functions.

Theorem 4.6 (Helly’s selection principle) A uniformly bounded sequence of
functions with uniformly bounded variation, defined on a compact interval,
has a subsequence that converges at every point of this interval.

Obviously, in the case of a sequence of monotone functions, the limit
function in the above theorem is monotone. Let us recall that any mono-
tone function has a countable number of discontinuity points [23, Chap. 9,
Subsec. 31.1], thus the limit function is continuous almost everywhere except
for at most countable number of points in the given 1d domain.

Now, we prove the theorem on the metric selections of M-OSL multival-
ued mappings.

Theorem 4.7 Let F : [a,b] — K(R) be bounded, with closed graph and M-
OSL with constant . Then through any point (&,9) of the graph of F there
is an OSL metric selection of F which is OSL with constant u.

Proof: We construct a metric chain as in Definition 4.5. For any natural N
and step-size h = (b—a)/N we take a uniform partition of [a, b], 7, = a+ih,
i € {0,1,...,N}, and for the given point (Z,9), y € F(Z) we add Z to
the partition, construct a metric chain {(z;,v;), vi € F(xi)}i=o,.. . N+1 and
consider the metric piecewise-linear interpolant y~ with knots (z;,;), i €
{0,1,..., N + 1}. By (20), we get for i € {0,1,..., N}

(Tiv1 — ) (Yir1 — yi) < ph? & yi1 —yi < phi. (21)

To complete the proof, we prove the following claims:
1. The piecewise linear interpolants y~ are OSL with constant .
2. The sequence y~ has a pointwise converging subsequence, and the limit
function is OSL with constant u.
3. The limit function is a selection of F', which passes through (z,y).
To prove the first claim, we show that for all 2/ < 2” € [a, ],

yM (") —yN (@) < pla” o). (22)

We first show that (22) is true when 2/, 2" are both in the same subinterval
[i, xi+1]. By the construction in Definition 4.5, if 2’ — 2’ = A(41 — =),

15
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with 0 < A < 1, then yV (2”) — y™(2') = A(yi+1 — ;). Then, by (21) we get

yN (@) = yN (@) = A Wit — wi)
< M(wigr — o) = p(a” — o).

Now, let 2/, 2" belong to different subintervals of the partition. Without
loss of generality suppose ©’ € [xg,z1],2" € [w;, i11], i € {0,..., N}, with
r1 —a' = NMay —xg), A € [0,1], and 2" — z; = v(xi11 — x4), v € [0,1]. Then
a" —a' = vh;+ 37"y hj—1+ Aho. Using (21) and (22) in any subinterval of
the partition, we get

y™ (") =y ()

=yN(@") —yN () + ) (0N () — vV (@im0) +yN (@) — N (@)

= v (yN(@ir1) =y (@) + > (Y (=) — vV (25-1))

=2

+ A (N (1) — ™V (20)) < p(vhi + ) b1+ Aho) = p(a” — o),
=2

which completes the proof of the first claim.

To prove the second claim, we observe that the functions y™ () — pux are
monotone decreasing, which follows trivially from (22), and also bounded
on [a,b], since F' is bounded. Then by the Helly’s selection principle, the
sequence 4™V (-) has a pointwise convergent subsequence on [a, b]. Denote the
limit function of this subsequence by y*°. Now, we show that y* is OSL.
Indeed, since the functions y (z) — pa are monotone decreasing, the limit
function y*°(x) — px is also monotone decreasing, which implies that y*° is
OSL, and also that it has a countable set of discontinuity points.

To prove the third claim, we first note that the limit function passes
through the given point (Z,7), since all polygonal functions pass through
this point. To show that the limit function is a selection of F', we take a

subsequence of binary partitions, i.e. we take N}, = 2k k=1,2,.... Then a
fixed binary point z = a+ 10(22;7?) appears in all refined partitions for k > ko,

and y™k(z) € F(x) for all k > kg. Since the graph of F is closed, the limit
of this sequence satisfies y*°(z) € F(z) for all binary points .

Now, since every point z € [a, b] is a limit of a sequence of binary points,
and since the graph of F is closed, it follows that y>°(z) € F(z) at every
point = € [a,b]. Hence, y* is a selection of F. [ ]

4.3 One-Sided Lipschitz Selections of OSL Maps

In this subsection we prove that a OSL map F' : [a,b] — K(R) with a
compact graph has OSL selections with the same constant passing through

16
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every point of its graph. We use the following construction in the proof.

Definition 4.8 Let F : [a,b] - K(R) and (z,y5) € Graph(F). We take
a uniform partition of [a,b], a = 19 < 71 < ... < Ty = b with 1; =
a+i(b—a)/N,i=0,..,N, and add the given point & to the partition. We
denote the so-obtained new partition points by x;, ¢ = 0,1,...., N + 1, and
hi = xit1 — x;. Let & = xiy, § = yi,. Starting from (x4, yi, ), we determine
Yig+1 € F(xig+1) by the OSL condition:

(Tig+1 — Tio) Wior1 — Yio) < MTigr1 — Tig|* <= Wio+1 — Yio < phiy.

Then, increasing i fromig+1 to N, for given x;, x;11,y; we find subsequently
Yi+1 satisfying

(@it1 = 2)(Yir1 — yi) < pleip —@? = v —yi <phio (23)

In a similar way we proceed backwards, to the left of z;,: fori <ig—1, we
find y; € F(x;) satisfying (23).

We then construct a piecewise-linear interpolant yN(x) of the points
(a:i,yi), i=0,....N+1.

Theorem 4.9 Let F : [a,b] — KC(R) be bounded, with closed graph and OSL
with constant p. Then through any point (&,7) of the graph of F there is a
selection of F' which is OSL with constant p.

Proof: We construct the piecewise-linear functions passing through (z,3)
as in Definition 4.8. Then the steps of the proof are the same as in that of
Theorem 4.7. |

It is easy to show that if there exists an OSL selection through any point
of the graph of a multifunction F'(-) and if all these selections have the same
OSL constant, then F'(-) is OSL. Thus we obtain

Corollary 4.10 Let F : [a,b] — K(R) be bounded with closed graph.
F(-) is OSL with constant p iff through any point (Z,9) of the graph of F\(+)
there is a OSL selection with the same constant (.

Remark 4.11 A direct consequence of Theorem 4.9 is that D-OSL and M-
OSL maps have OSL selections through each point of their graphs, but these
selections are not mecessarily GS-selections or metric ones. In this sense,
the stronger requirements of Theorems 4.1 and 4.7 lead to stronger conclu-
stons — they provide existence of special OSL selections, namely generalized
Steiner resp. metric selections.

Remark 4.12 We conjecture that the last theorem can be extended to maps
with images in R™ which are S-OSL (in the sense of Lempio/Veliov [27]).

17
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5 Examples

The examples presented below demonstrate that the OSL notions in Sec-
tion 3 are indeed different and that the inclusions in the diagram in Figure 1
are strict. Furthermore, some of them highlight the selection results in Sec-
tion 4 and study generalized Steiner and metric selections.

5.1 Examples Illustrating Strict Inclusions in Theorem 3.17

The first 1d example illustrates Proposition 3.7. As in [12, Example 2.1],
the OSL map in this example is even discontinuous, see Figure 2.

Example 5.1 Set F': R — R as
F(t) = [—sign(t),—sign(t) + 1] (t € R).

Then, F(-) is G-OSL, OSL, M-OSL and D-OSL, but neither UOSL nor Lip-
schitz.

05

-05

Figure 2: OSL set-valued map in Example 5.1

(i) The D-OSL property follows from Lemma 3.10 (r(x) = 1) and Corol-
lary 3.12 for F(t) = [0,1] + (—sign(t)). Although Theorem 3.17 holds, the
G-OSL property with p =0 follows directly from diam(F(t)) = 1,
F(s) &g F(t) = {—sign(s) + sign(¢)},

0" (s —t,F(s) g F(t)) = (s — t)(—sign(s) + sign(t)) <0
by the OSL condition of the negative signum function.
(ii) F(-) is M-OSL
To verify the M-OSL property with p = 0, we check only two cases. The
other cases for s,t € R can be treated similarly.

(a) s <0<t”:

F(s)ou F(t) =[1,2] oy [-1,00= |J {a—0}u |J {1-b}=[1,2],
a€F(s) beEF(t)

§ (s —t,F(s) Oa F(t)) = (s — 1) < 0

18
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(b) V<t <s”:

F(s) oy F(t) = [-1,0] ©a7 [-1,0] = {0},
§*(s —t, F(s)©n F(t)) =0

(iii) Since the map is not almost everywhere single-valued, it cannot be UOSL
by Theorem 3.13. The discontinuity at t = 0 prevents the Lipschitz property.

We next state an example of a G-OSL map which is not OSL which
shows that G-OSL is a weaker assumption than OSL.

Example 5.2 Set X =[0,00) x R and F : X — R? as

F(g;)_co{@),(\;%)} (z € X).

Then, F(-) is G-OSL, but not OSL.
(i) We show that F(-) is not OSL by considering

1 m [ 2hm m [ Pm

0% (™ —y™, F(a™)) = 6% (@™ —y™, F(y™)) = hip + (V2 = Dl v/ i

Then,

which, for large m € N, is bigger than
plla™ —y™ |3 = 2uhy, .
(ii) F(-) is G-OSL with constant p =0 for x = (z1,22), y = (y1,y2) € X:

F(z) 6¢ F(y) 0 for x,y with x1 # y1,
€T =
¢ Y {0} fOT’ T,y with 1 =Y,

) —0 for x,y with 1 # y1,
OZé(x—y,F(ﬂﬁ)@GF(y)):{O for x,y with x1 =y

The next example is stated in [10, Example 3.1] to demonstrate that
continuity with respect to the Hausdorff and the Demyanov distance differs
(F(+) is proved to be Hausdorff continous, but not D-continuous). But it
can also show that D-OSL is a stronger condition than OSL and that there
exist Lipschitzian maps which are not D-OSL.
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Example 5.3 ([10, Example 3.1]) Set F : R? — R? as

0 cos(z1) 9
F(x) = R*).
=eoq(o) ()} <™
Then, F(-) is obviously Lipschitz and hence, OSL. We show that it is also

M-OSL, but neither D-Lipschitz nor D-OSL.

(i) F(-) is M-OSL, since it is Lipschitz and Theorem 3.16 applies for the
metric difference.

(ii) F(-) is not D-OSL.
The support function for 1 = (I1,13)" € Sy is

5*(1, F(z)) = max{0, 1y cos(z1) + lasin(z1)} .

With | .= (é) and

2

we get the inequality

1 1
— CoSs <7r_> + sin (W—> < 4h,,
2 m 2 m

which cannot hold for large m € N, since the left-hand side tends to 1.
(iii) F(-) is not D-Lipschitz by Theorem 3.16.

We now show a D-OSL map with nonconvex images which is not M-OSL.

Example 5.4
Consider F' : R = R with images in K(R) (see Figure 3) defined as

Fi) {[—2,—1] U[L,2]  fort<O,
[—2,2] fort>0.

F(-) is OSL and D-OSL with constant 0, but neither M-OSL nor Lipschitz.
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(1) F(-) is OSL, since co(F(t)) = [—2,2] for allt € R.
(ii) F(-) is D-OSL by the same reasoning.

(iii) F(-) is not M-OSL, since if we assume this and consider hy, = X,

F(=hm)ou F(0)= |J {-1-b}u [J {1-0}=[-1,1],
be[—1,0] b€(0,1]
6*(_hm - OaF(_hm) OMm F(())) = 5*(_hma [_17 1]) = hm

which cannot be less or equal than p| — hy, — 0| = O(h2,) for large m € N.
(i) F(-) is obviously not Lipschitz in t = 0.

The construction of the next example is based on Corollary 3.12. The
set-valued map is a sum of a Lipschitz map and an OSL function, which is
used in [13, Example 5.4]. Here, Fj(-) is Lipschitz, but not D-Lipschitz and
f2(+) is OSL, but not Lipschitz at the origin.

1

Example 5.5 Consider Fy : R? — R? as in Example 5.3, v = (_1) and set

F(z) = Fi(z)+ {f2 (m — gv>} (z € R?),
(1) + (22) )

~(2)3 + ()3

Then, F(-) is OSL, but not Lipschitz or D-OSL.

(i) F(-) is OSL, since it is a sum of a Lipschitz set-valued map and a OSL
function with constant p = % by [13, Example 5.4].

(ii) F(-) is not D-OSL

Assume that F(-) is D-OSL and consider hy, = L, 2™ = (5 — hy,) (_11),
ZM = (% + hm) (_11) and y"™, y>™ € R? as in Example 5.3. Consider the

winn Wi

fo(z) = (

Figure 3: D-OSL set-valued map in Example 5.4
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following scalar product:

The right-hand side of the D-OSL condition is
plla™ = 2"3, = pll = 2hmvl%, = 4uhs,
while the left-hand side (see also (24)) can be estimated for big m € N as

(@™ — 2" y(l, F (™)) —y(l, F(2")))
= (g™ — 2™ ybm By 4 <xm — 2" fa (xm - %v) ( )>
> hm

T 1 T 1 4 9
=2 i ———)— - — = — 8h3, > 2h,, —43
hum, (sm<2 COS(2 >) 8h3, > 2h (10 h

This leads to the contradiction hy, < 4uh2, for large m € N. Hence, F(-) is
not D-OSL.

(iii) F(-) is not Lipschitz

With a similar reasoning as in (ii), one can show after some calculations
that F(-) is not Lipschitz in x = Sv.

\—/I\D\—\%

The next example shows that there are UOSL maps that are not S-UOSL.

Example 5.6 Consider a convex function f : R™ — R and define F : R" —
C(R™) as F(x) = —0f(x).

If f(z) = ||x||2, then F(-) is UOSL but neither S-UOSL nor S-OSL (for
n > 2) or Lipschitz.

(i) F(-) is UOSL.

It is well-known that the subdifferential is mazximal monotone by [2, Sec. 3.4,
Proposition 1], hence F(-) is UOSL with constant = 0.

(ii) F(-) is neither S-UOSL nor S-OSL.

The subdifferential is given by

{mx} if x #0,

of(x) =
f) {Bl(o) ifz=0.
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Let us consider the unit vectors e € R, i =1,...,n, and
1
hm = — ) " = hm(3€1 + 462) s ym = hm(€1 + 62) s
m
"= ™ e F(a™), n" = -y e F(y™)

|2 1™ |2

for all m € N which will lead to
2™ |l2 = /92, + 1652, = Shun,  |[Y"[|l2 = /B2, + h2, = V2hy, .
The following left-hand side of the S-UOSL condition
(@' = y")8" (el F(x) ©a4 F(2™)) = (27" — ") (" — ")

1 1 V2 3
= 2h,, | ———3h,, + hn | =2hm | — — =] >0

and its right-hand side
pllz™ = y™ 1% =p(3himn)?* = 9uhy,

yield a contraction for large m € N, since the estimate 0 < 2 <§ — %) <

uhy, cannot hold true for large m € N. Since F(-) is single-valued for
x #0, F(-) cannot be S-OSL as well.

The next example is a modification of the previous one and shows that
single-valued functions may be OSL, but not S-OSL.

Example 5.7 Let F(x) be defined as in Example 5.6 and consider the func-
tion f:R™ — R"™ with f(0) =0 and F(z) = {f(x)} for z #0.
Then, f(-) is OSL, but not S-OSL.

The next example states a typical S-UOSL example which is not Lip-
schitz continuous (even discontinuous).

Example 5.8 Let us consider the function f(z) = Y i, |z;| in Ezam-
ple 5.6. The function F(x) = —0f(x) is S-UOSL and discontinuous.

(i) The set-valued map F(-) is S-UOSL.

Forn =1, F(x) equals the set-valued signum function

{1} forz <0,
Sign(z) = ¢ [-1,1] forx =0,
{-1} for x >0,
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for higher dimensions F(x) coincides with

= Z Sign(x;)e’
i=1

Since Sign(z;) is the negative subdifferential of f;(x;) = |x;|, [25, Lemma 3.6]
applies showing the S-UOSL property with constant p = 0.

(ii) F(-) is obviously discontinuous, e.g. in x = 0.

5.2 Examples of One-Sided Lipschitz Selections

We continue the discussion of Example 5.3 (see also the comments in [5,
Example 6.3]), to show that the generalized Steiner selections for atomic
measures are not Lipschitz, although the set-valued map is Lipschitz. Here,
we show that these selections are not OSL either, although the map is even
Lipschitz (and hence, OSL).

Example 5.9 For F(-) defined in Ezample 5.3, St (F(-)) s not OSL for
some direction | € S1 in x = %(_11), although F(-) is Lipschitz.

Indeed, we calculate

Stq = St(
Z?If((ill ) if 1y cos(z1) + lasin(z1) > 0,
)= (), if lcos(an) + lasin(an) =0,
else.

Let us consider | = 0 ) and the sequences (™), (2™)m as in Ezample 5.3.
Since

Stay, (F(2)) = St(Y (1, F(2))) = y(I, F(2))

for z € {z™,2™ : m € N}, we can assume that Sta, (F()) is OSL and
arrive to the same contradiction as in Example 5.3.

As the generalized Steiner selection is discontinuous, F(-) cannot be D-OSL
by Theorem 4.1.

The next example studies the 1d case for which uniform OSL selections
exist for OSL maps. The reason for this is the equivalence of OSL and D-
OSL maps for the 1d case (see Proposition 3.7). It also demonstrates that
not all GS and metric selections need to coincide.

Example 5.10 For F(-) defined in Example 5.1, we prove that the GS-
selections are uniformly OSL.
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(i) The GS selections are uniformly OSL with constant 0.
Since Y (I, F(t)) is just a point for | = +1, the generalized Steiner point
Stay, (F'(t)) coincides with y(l, F(t)). Clearly, we have

Stayy (F(1) = y(1, (1)) = —sign(t) + 1 (t€ R),
Sta,_(F(1) = y(~1, F(1) = —sign(t)  (tER),

i.e. the two GS-selections are discontinuous (see Figure 4), but (uniformly)
OSL with constant 0.

(i) The metric selections are uniformly OSL with constant 0.

20 2
1.5 1.5
L e EEE— ] 1
0.5 0
0 r— 0
0.5 0.5
1 o 1

Figure 4: generalized Steiner (left) and metric selections (right) for Exam-
ple 5.10

The metric selections passing through (—1,«) resp. (1,8) from the graph of
F(-) (see Figure 4) can be parametrized as

« fort <0,
0 fort >0,

g )1 fort <0,
n(t)_{ﬁ fort>0

for a € F(-1) = [1,2] and p € F(1) = [-1,0]. They are all OSL with
constant 0. It turns out that the metric selection n='(-) and n2(-) coincide
with one of the two generalized Steiner selections in (i).

Conclusions

In this paper we investigated the question raised in [6], whether there exist
continuous and uniformly OSL selections for a set-valued OSL map and give
a partial answer to it. In the subclass of the D-OSL mappings with convex
images, the generalized Steiner selections are OSL with the same OSL con-
stant as the set-valued map. If in addition the map is D-continuous, these
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selections are continuous with the same modulus of continuity as the given
mapping. A sufficient condition for a map with compact, not necessarily
convex images in R, to have uniformly continuous and uniformly OSL selec-
tions passing through every point of its graph, is that this map is continuous
(in the Hausdorff metric) and M-OSL. A direct consequence is that a M-
monotone map (that is a map F' with —F being M-OSL with OSL constant
zero) has monotone selections, and if in addition it is continuous, then these
selections are also continuous. Similarly, a D-monotone map, that is a map
F such that —F is D-OSL with a constant zero, has monotone generalized
Steiner selections, and if F' is also D-continuous, then these selections are
also continuous. If we are interested only in existence of uniformly OSL
selections, then it is sufficient that the univariate map with images in R is
OSL.

Generalized Steiner selections for the convex case give an interesting way
to derive selection results for set-valued maps. They are closely related to
the Demyanov difference of sets. As we saw in [5], uniformly Lipschitz GS
selections provide a characterization of the class of D-Lipschitz set-valued
maps and uniformly OSL generalized Steiner selections provide a character-
ization of the class of D-OSL mappings.

Results for the rather weak notions G-Lipschitz and G-OSL set-valued
maps remain a future task. The collection of examples presented here illus-
trates the established hierarchies and hopefully provide more insight in the
various regularity classes for set-valued maps.

To make a brief comparison of the OSL-type conditions, we remind
that the S-UOSL condition is stronger than the UOSL condition by [25,
3.3 Lemma], but it is remarkable, since it implies O(h) convergence of the
Euler method for differential inclusions with a unique solution, although it
does not imply continuity [25, Theorem 2.4]. The S-OSL condition [27] is not
so well-known. It is essentially weaker than S-UOSL, but still guarantees
the convergence order O(h) for the Euler method applied to autonomous
systems (see [27, Theorem 2.4 and Theorem 3.3]). It does not require con-
tinuity of the right-hand side of the differential inclusion. On the other
hand, the OSL condition for autonomous right-hand sides ensures at least
convergence order O(v/h) for the Euler’s method (see [13, 27] resp. [11] for
the non-autonomous case). The question that naturally arises is what order
of convergence is achieved by D-OSL maps. Can we do better than O(v/h)
then? Can the GS-selections help to find the sharp order?
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