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Computation of Local ISS Lyapunov Functions
Via Linear Programming*
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Abstract— In this paper, we present a numerical algorithm
for computing a local ISS Lyapunov function for systems which
are locally input-to-state stable (ISS) on compact subsets of
the state space. The algorithm relies on a linear programming
problem and computes a continuous, piecewise affine ISS
Lyapunov function on a simplicial grid covering the given
compact set excluding a small neighborhood of the origin. We
show that the ISS Lyapunov function delivered by the algorithm
is a viscosity subsolution of a partial differential equation.

Index Terms— Nonlinear systems, Local input-to-state sta-
bility, Local ISS Lyapunov function, Linear programming,
Viscosity subsolution
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I. INTRODUCTION

The concept of input-to-state stability (ISS) was first
introduced by Sontag [23] in the later 1980s. Basic results
about ISS can be found in [23], [24], [25]. In [27], different
equivalent formulations of ISS are given. In particular, it
is shown that ISS is equivalent to the existence of an ISS
Lyapunov function. The ISS notion is very useful in stability
analysis of large scale systems. If all subsystems are ISS,
then the stability of large scale systems can be analyzed
by ISS small gain theorems [6], [7], [8], [9], [10], [17].
Motivated by these results, in this paper we study how to
compute local ISS Lyapunov functions for low dimensional
systems, as the knowledge of ISS Lyapunov functions leads
to the knowledge of ISS gains which may be used in a small
gain based stability analysis.

Based on [26, Lemma 2.10-2.14], it is shown in [4] that
ISS Lyapunov functions in implication form may be calcu-
lated for the individual subsystems using a Zubov approach.
An alternative Zubov type approach was developed in [20].
In these two papers, ISS Lyapunov functions can be ob-
tained by computing robust Lyapunov functions for suitably
designed auxiliary systems. This robust Lyapunov function
can be characterized by the Zubov equation, a Hamilton-
Jacobi-Bellman partial differential equation, which can be
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solved numerically [3]. This approach, however, only yields
a numerical approximation of an ISS Lyapunov function but
not a true ISS Lyapunov function. For discrete time systems,
following the same auxiliary system approach, true Lyapunov
functions can be computed by a set oriented approach [13].
This numerical approach, however, does not carry over to
the continuous time setting. Moreover, the detour via the
auxiliary system introduces conservatism, since the resulting
Lyapunov function and ISS gains strongly depend on the way
the auxiliary system is constructed.

In this paper, we propose a linear programming based
algorithm for computing true ISS Lyapunov functions. The
linear programming based algorithm for computing continu-
ous, piecewise affine Lyapunov functions was first presented
in [21]. In [14] it was proved that for exponentially stable
equilibria the approach proposed in [21] always works. This
method was subsequently extended to asymptotically stable
systems [15], to asymptotically stable, arbitrary switched,
non-autonomous systems [16] and to asymptotically stable
differential inclusions [1]. The approaches proposed in these
papers yield true Lyapunov functions except possible on a
small neighborhood of the origin. Mainly inspired by [1],
in this paper we will propose an analogous linear program-
ming based algorithm for computing true ISS Lyapunov
functions for local ISS systems. In this paper we focus
on the formulation of the linear program, the proof that a
solution of this program is an ISS Lyapunov function and the
characterization of this solution in terms of viscosity solution
theory. The existence of a solution to the proposed linear
program will be addressed in the forthcoming paper [19].

The paper is organized as follows. In the ensuing Sec-
tion II, we present the notation and preliminaries. In Sec-
tion III we present our algorithm along with a couple of
auxiliary results needed in order to formulate the constraints
in the resulting linear program. Section IV contains the
main results of the paper: we prove that upon successful
termination the algorithm yields an ISS Lyapunov function
outside a small neighborhood of the equilibrium, and the ISS
Lyapunov function computed by the algorithm is a viscosity
subsolution of a partial differential equation. In Section V,
we illustrate our algorithm by a numerical example.

II. NOTATIONS AND PRELIMINARIES

Let R+ := [0,+∞). For a vector x ∈ Rn we denote its
transpose by x>. The standard inner product of x, y ∈ Rn
is denoted by 〈x, y〉. We use the standard norms ‖x‖p :=
(
∑n
i=1 |xi|p)1/p for p ≥ 1 and ‖x‖∞ := maxi∈{1,...,n} |xi|

and let Bp(z, r) := {x ∈ Rn | ‖x−z‖p < r} denote the open
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ball of radius r around z in the norm ‖ · ‖p. The induced
matrix norm is defined by ‖A‖p := max‖x‖p=1 ‖Ax‖p.
By ‖u‖∞,p = ess supt≥0 ‖u(t)‖p we denote the essential
supremum norm of a measurable function u : R+ → Rm.

The convex hull of vectors x0, x1, . . . , xm ∈ Rn is given
by

co{x0, . . . , xm} :=

{
m∑
i=0

λixi : 0 ≤ λi ≤ 1,

m∑
i=0

λi = 1

}
.

A set of vectors x0, x1, . . . , xm ∈ Rn is called affine
independent if

∑m
i=1 λi(xi − x0) = 0 implies λi = 0

for all i = 1, . . . ,m. This definition is independent of the
numbering of the xi, that is, of the choice of the reference
point x0.

In this paper we consider nonlinear perturbed systems
described by the ordinary differential equation

ẋ = f(x, u) (1)

with vector field f : Rn × Rm → Rn, f(0, 0) = 0, state
x ∈ Rn and perturbation input u ∈ Rm. The admissible
input values are given by UR := clB1(0, R) ⊂ Rm for
a constant R > 0 and the admissible input functions by
u ∈ UR := {u : R→ Rm measurable | ‖u‖∞,1 ≤ R}.

We assume
(H1) The vector field f is twice continuously differentiable

with respect to x and u.
The following definition specifies the stability property we
are considering in this paper and uses K∞ and KL functions
(see e.g. [18], [28]).

Definition 1: System (1) is called locally input-to-state
stable (ISS), if there exist ρx > 0, ρu > 0, γ ∈ K∞ and
β ∈ KL such that for all ‖x(0)‖2 ≤ ρx and ‖u‖∞ ≤ ρu

‖x(t, x(0), u)‖2 ≤ β(‖x(0)‖2, t)+γ(‖u‖∞) ∀ t ∈ R+. (2)

If ρx = ρu = ∞, then system (1) is called input-to-state
stable (ISS).

Observe that ISS implies that the origin is an equilibrium
of (1) which is locally asymptotically stable for u ≡ 0.

It is known that the ISS property of (1) is equivalent
to the existence of an ISS Lyapunov function for (1), see
[26]. While this Lyapunov function is even guaranteed to
be smooth, in what follows we will work with nonsmooth
Lyapunov functions. In order to define these functions, we
need a generalized notion of the gradient and for our purpose
Clarke’s subdifferential turns out to be useful. Since we are
exclusively dealing with Lipschitz functions, we can use the
following definition, cf. [5, Theorem 2.5.1].

Definition 2: For a Lipschitz continuous function V :
Rn → R, Clarke’s subdifferential is given by

∂ClV (x) := co
{

lim
i→∞

∇V (xi) | lim
i→∞

xi = x,

∇V (xi) and lim
i→∞

∇V (xi) exist
}
. (3)

The elements ξ ∈ ∂ClV (x) are called generalized gradients.
Now we can state the definition of a nonsmooth ISS Lya-
punov function.

Definition 3: Let G ⊆ Rn with 0 ∈ intG. A Lipschitz
continuous function V : G → R+ is said to be a (local)
nonsmooth ISS Lyapunov function for system (1) on G if
there exist K∞ functions ψ1, ψ2, α and β such that

ψ1(‖x‖2) ≤ V (x) ≤ ψ2(‖x‖2), (4)
〈ξ, f(x, u)〉 ≤ −α(‖x‖2) + β(‖u‖1) (5)

hold for all x ∈ G, u ∈ UR and ξ ∈ ∂ClV (x). If G = Rn and
R =∞, then V is called a global nonsmooth ISS Lyapunov
function.

In order to state the relationship between the ISS Lyapunov
function delivered by the algorithm which we will propose
and a viscosity subsolution of a partial differential equation,
we now recall the definition of viscosity solutions. For more
details of this theory we refer to [2, Sec. II.1 and III.2].
Here, C1-test functions are used to avoid the gradient of the
solution at points of non-differentiability in the domain.

Definition 4 ([2, Chap. II, Def. 1.1]):
Given an open subset Ω of Rn and a continuous function
H : Ω × R × Rn → R, we consider the partial differential
equation

H(x,W,DW ) = 0 ∀x ∈ Ω (6)

for a continuous function W : Rn → R. We say that a
continuous function W : Rn → R is a viscosity subsolution
(resp. supersolution) of the equation if for all test functions
φ ∈ C1(Ω) and x ∈ arg maxΩ(W − φ) (resp. x ∈
arg minΩ(W − φ)) we have

H(x,W (x), Dφ(x)) ≤ 0 (7)
resp. H(x,W (x), Dφ(x)) ≥ 0. (8)

A continuous function W : Ω→ R is said to be a viscosity
solution of (6) if W is a viscosity supersolution and a
viscosity subsolution of (6).

Remark 1: A Lipschitz continuous viscosity solution sat-
isfies almost everywhere the partial differential equation (6)
due to [2, Chap. II, Proposition 1.9].
Based on [2, Chap. II, Lemma 1.7], the set of derivatives
Dφ(x) for x ∈ arg minΩ(W − φ) coincides with the set

D−W (x) :=

{p ∈ Rn : lim inf
y→x,y∈Ω

W (y)−W (x)− 〈p, y − x〉
‖x− y‖2

≥ 0} (9)

and the set of derivatives Dφ(x) for x ∈ arg maxΩ(W −φ)
equals the following set:

D+W (x) :=

{p ∈ Rn : lim sup
y→x,y∈Ω

W (y)−W (x)− 〈p, y − x〉
‖x− y‖2

≤ 0} (10)

Therefore, one can equivalently define viscosity solution by
the sets D−W (x) and D+W (x) which are called sub- and
superdifferentials, respectively, i.e.

H(x,W (x), p) ≤ 0 ∀ p ∈ D+W (x), (11)

resp. H(x,W (x), p) ≥ 0 ∀ p ∈ D−W (x). (12)



i
i

“linearprogrammingMTNS14˙final˙www” — 2014/5/8 — 10:42 — page 3 — #3 i
i

i
i

i
i

Remark 2: For any locally Lipschitz continuous function
W : Ω → R the sub- and superdifferentials satisfy (cf. [2,
Chap. II, (4.6)])

D−W (x) ∪D+W (x) ⊆ ∂ClW (x) ∀x ∈ Ω. (13)

III. THE ALGORITHM

In this section we are going to introduce the linear
programming based algorithm to compute an ISS Lyapunov
function on a compact set G ⊂ Rn with 0 ∈ intG and per-
turbation inputs from the set UR ⊂ Rm. The algorithm uses
linear programming and the representation of the function on
a simplicial grid in order to obtain a numerical representation
as a continuous, piecewise affine function. By taking into
account interpolation errors, the algorithm yields a true ISS
Lyapunov function, not only an approximative one.

A. Definitions

We recall the following basic definitions: A simplex in
Rn is a set of the form Σ = co{x0, x1, . . . , xj}, where
x0, x1, . . . , xj are affine independent. The faces of Σ are
given by co{xi0 , . . . , xik}, where {xi0 , . . . , xik} ranges over
the subsets of {x0, x1, . . . , xj}. An n-simplex is generated
by a set of n+ 1 affine independent vertices. A collection S
of simplices in Rn is called a simplicial complex, if

(i) for every Σ ∈ S, all faces of Σ are in S ,
(ii) for all Σ1,Σ2 ∈ S the intersection Σ1 ∩ Σ2 is a face

of both Σ1 and Σ2 (or empty).
Some authors consider the empty simplex to be a face of
every Σ, so that the last statement in (ii) is superfluous, but
this will have no relevance in the present paper. The diameter
of a simplex Σ is defined as diam(Σ) := maxx,y∈Σ ‖x−y‖2.

We now return to our problem. We assume that G ⊂ Rn
may be partitioned into finitely many n-simplices T =
{Γν | ν = 1, . . . , N}, so that T defines a simplicial complex.
Here we require that 0 ∈ Tν if only if 0 is a vertex of Tν .
By assumption, we may also partition UR into m-simplices
Tu = {Γuκ | κ = 1, . . . , Nu} defining a simplicial complex.
We briefly write hx,ν = diam(Γν), hu,κ = diam(Γuκ ) and
hx = maxν=1,...,N hx,ν , hu = maxκ=1,...,Nu hu,κ. For each
x ∈ G we define the active index set IT (x) := {ν ∈
{1, . . . , N} |x ∈ Γν}. For the simplices Tu, we additionally
assume that

for each simplex Γuκ ∈ Tu, the vertices of Γuκ
are in the same closed orthant. (14)

Let PL(T ) denote the space of continuous functions V :
G → R which are affine on each simplex, i.e., there are
aν ∈ R, wν ∈ Rn, ν = 1, . . . , N , such that

V |Γν (x) = 〈wν , x〉+ aν ∀x ∈ Γν , Γν ∈ T (15)
∇Vν := ∇V |intΓν ≡ const = wν ∀Γν ∈ T . (16)

With ∇Vν,k we denote the k-th component of ∇Vν .
Likewise, we define PLu(T u). Observe that our assump-

tion on the vertices of the Γuκ implies that the map u 7→ ‖u‖1
is contained in PLu(T u).

Remark 3: In order to ensure that a given function V ∈
PL(T ) is an ISS Lyapunov function, in the algorithm we
will in particular have to ensure the inequality

〈ξ, f(x, u)〉 ≤ −‖x‖2 + r‖u‖1 ∀ ξ ∈ ∂ClV (x). (17)

To this end, observe that from the definition it follows that for
any function V ∈ PL(T ) Clarke’s subdifferential is given
by

∂ClV (x) = co{∇Vν | ν ∈ IT (x)}. (18)

Hence, for fixed x and u inequality (17) becomes

〈ξ, f(x, u)〉 ≤ −‖x‖2 +r‖u‖1 ∀ ξ ∈ co{∇Vν | ν ∈ IT (x)}.

Linearity of the scalar product in its first argument implies
the equivalence to

〈∇Vν , f(x, u)〉 ≤ −‖x‖2 + r‖u‖1 ∀ ν ∈ IT (x). (19)

An inequality of this type will be used for ensuring (17) in
the algorithm.

B. Interpolation errors

As in [1], [16], the key idea for the numerical computation
of a true Lyapunov function lies in incorporating estimates
for the interpolation errors on T — and in this paper also
on T u — into the constraints of a linear program. In this
section we analyze the error terms we need for this purpose.

Let x ∈ Γν = co{x0, x1, . . . , xn} ∈ T , x =∑n
i=0 λixi, 0 ≤ λi ≤ 1,

∑n
i=0 λi = 1 and u ∈ Γuκ =

co{u0, u1, . . . , um} ∈ Tu, u =
∑m
j=0 µjuj , 0 ≤ µj ≤ 1,∑m

j=0 µj = 1.
The basic idea of the algorithm is to impose conditions on

V in the vertices xi of the simplices Γν ∈ T which ensure
that the function V satisfies the inequalities (4) and (19) on
the whole set G.

In order to ensure (4), we impose the condition

V (xi) ≥ ‖xi‖2 (20)

for every vertex xi ∈ Γν and V (0) = 0. Note that this
implies (4) for all x ∈ G \B2(0, ε).

In order to make sure that V (x) satisfies (19) for all x ∈
Γν ∈ G, u ∈ Γuκ ∈ Gu via imposing inequalities in the
node values V (xi), we need to incorporate an estimate of
the interpolation error into the inequalities. To this end, we
demand that

〈∇Vν , f(xi, uj)〉− r‖uj‖1 +‖∇Vν‖1Aν,κ ≤ −‖xi‖2, (21)

for all i = 0, 1, 2, . . . , n, j = 0, 1, . . . ,m. Here Aν,κ ≥ 0 is
a bound for the interpolation error of f in the points (x, u)
with x ∈ Γν ∈ G, u ∈ Γuκ ∈ Gu, x 6= xi, u 6= uj .

Remark 4: Close to the origin the positive term
‖∇Vν‖1Aν,κ may become predominant on the left hand
side of (21), thus rendering (21) infeasible. This is the
reason for excluding a small ball B2(0, ε) in the construction
of V . Under certain conditions on f this problem can be
circumvented by choosing suitably shaped simplices near the
origin. In order to keep the presentation in this paper concise
we do not go into details here and refer to [11], instead.
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Since (21) will be incorporated as an inequality constraint
in the linear optimization problem to be formulated, below,
we need to derive an estimate for Aν,κ before we can
formulate the algorithm. For this purpose we introduce the
following Proposition 1. Here, for a function g : Rn×Rm →
R which is twice differentiable w.r.t. to its first argument, we
denote the Hessian of g(x, u) w.r.t. x at z by

Hg(z, u) =


∂2g(x,u)
∂x2

1

∣∣∣
x=z

· · · ∂2g(x,u)
∂x1∂xn

∣∣∣
x=z

· · ·
∂2g(x,u)
∂xn∂x1

∣∣∣
x=z

· · · ∂2g(x,u)
∂x2
n

∣∣∣
x=z

 .
For the first argument x ∈ Γν , let

Hx(u) := max
z∈Γν

‖Hg(z, u)‖2, (22)

and let Kx denote a positive constant satisfying

max
z∈Γν

r,s=1,2,...,n

∣∣∣∣∂2g(z, u)

∂xr∂xs

∣∣∣∣ ≤ Kx (u ∈ UR). (23)

In the next proposition which is proved in a similar way
to [1, Proposition 4.1, Lemma 4.2 and Corollary 4.3], we
state properties of scalar functions g : G × UR → R or
vector functions g : G × UR → Rn with respect to their
first argument. Analogous properties hold with respect to the
second argument.

Proposition 1: Consider a convex combination x =∑n
i=0 λixi ∈ Γν , Γν = co{x0, x1, . . . , xn},

∑n
i=0 λi = 1,

1 ≥ λi ≥ 0, u ∈ UR and a function g : G × UR → Rp with
components g(x, u) = (g1(x, u), g2(x, u), . . . , gp(x, u)). If
gj(x, u) is twice continuously differentiable with respect to
x with the bound Hx(u) from (22) on its second derivative
for some j = 1, . . . , p, then∣∣∣∣∣gj

(
n∑
i=0

λixi, u

)
−

n∑
i=0

λigj(xi, u)

∣∣∣∣∣ ≤
1

2

n∑
i=0

λiHx(u)‖xi − x0‖2(
max
z∈Γν

‖z − x0‖2 + ‖xi − x0‖2
)
≤ Hx(u)h2

x,ν .

Under the same differentiability assumption for all j =
1, . . . , p, the estimate∥∥∥∥∥g

(
n∑
i=0

λixi, u

)
−

n∑
i=0

λig(xi, u)

∥∥∥∥∥
∞

≤ nKxh
2
x,ν (24)

holds for all u ∈ UR by assuming the bounds from (23).

C. The algorithm

Now we have collected all the preliminaries to formulate
the linear programming algorithm for computing an ISS
Lyapunov function V for system (1). In this algorithm, we
introduce the values V (xi) as optimization variables. Since
it is desirable to obtain an ISS Lyapunov function in which
the influence of the perturbation is as small as possible, the
objective of the linear program will be to minimize r in (17).

As explained in Remark 4, we only consider x satisfying
x ∈ G \ B2(0, ε) for a small ε > 0. To this end we define
the subsets

T ε := {Γν |Γν ∩B2(0, ε) = ∅} ⊂ T . (25)

Gε :=
⋃

Γν∈T ε
Γν (26)

In the following algorithm, we will only impose the con-
ditions (20) in those nodes xi ∈ G and (21) in those
nodes xi which belong to simplices Γ ∈ T ε. Moreover,
the interpolation errors Aν,κ will be replaced by the values
derived in the previous section.

Algorithm
We solve the following linear optimization problem.

Inputs:



ε > 0,
xi, ‖xi‖2 for all vertices xi of each

simplex Γν ∈ T ,
uj , ‖uj‖1 for all vertices uj of each

simplex Γuκ ∈ Tu,
hx,ν for each simplex Γν ∈ T ε,
hu,κ for each simplex Γuκ ∈ Tu ,
Kx,Ku from (24) with respect to x, u,

for g(x, u) = f(x, u) from (1).

(27)

Optimization variables:



Vxi for all vertices xi of
all simplices Γν ∈ T ,

Cν,k for k = 1, 2, . . . , n

and every Γν ∈ T ε,
r ∈ R+.

(28)

Optimization problem: (29)
minimize r

subject to
(A1) : Vxi ≥ ‖xi‖2 for all vertices xi of each

simplex Γν ∈ T ,
(A2) : |∇Vν,k| ≤ Cν,k for each simplex

Γν ∈ T ε, k = 1, 2, . . . , n,
(A3) : 〈∇Vν , f(xi, uj)〉 − r‖uj‖1

+(nKxh
2
x,ν +mKuh

2
u,κ)

n∑
k=1

Cν,k

≤ −‖xi‖2,
for all vertices xi of each simplex Γν ∈ T ε,
all vertices uj of each simplex Γuκ ∈ Tu.

Remark 5: (i) The condition (A1) makes sure V (x) ≥
‖x‖2 for x ∈ G.

(ii) The condition (A2) defines linear constraints on the
optimization variables Vxi , Cν,k.

Remark 6: If the above linear optimization problem has
a feasible solution, then the values V (xi) = Vxi from this
feasible solution at all vertices xi of all simplices Γν ∈ T and
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the condition V (x) ∈ PL(T ) uniquely define a continuous,
piecewise affine function

V : G → R. (30)

IV. MAIN RESULT

In this section we formulate and prove our two main
results. We show that any feasible solution V (x) of our
algorithm defines an ISS Lyapunov function on Gε and prove
that this ISS Lyapunov function is a viscosity subsolution of
a Hamilton-Jacobi-Bellman partial differential equation. We
start with the former.

Theorem 1: If the assumption (H1) holds, and the linear
optimization problem (29) has a feasible solution, then the
function V from (30) is an ISS Lyapunov function on Gε,
i.e., it satisfies (4) and (5) for all x ∈ Gε.

Proof: Consider convex combinations x =∑n
i=0 λixi ∈ Γν , Γν = co{x0, x1, . . . , xn} ∈ T ε,∑n
i=0 λi = 1, 0 ≤ λi ≤ 1, and u =

∑m
j=0 µjuj ∈ Γuκ ,

Γuκ = co{u0, u1, . . . , um} ∈ Tu,
∑m
j=0 µj = 1, 0 ≤ µj ≤ 1.

As V (x) is affine on Γν and the constraint from (A1) and
the convexity of the norm ‖· ‖2 hold, we obtain

V (x) = V

(
n∑
i=0

λixi

)
=

n∑
i=0

λiV (xi) ≥
n∑
i=0

λi‖xi‖2

≥

∥∥∥∥∥
n∑
i=0

λixi

∥∥∥∥∥
2

= ‖x‖2 > 0 (31)

for all x ∈ Gε. Thus V (x) is positive on Gε and the existence
of ψ1 and ψ2 satisfying (4) follows.

In order to prove inequality (17) we compute

〈∇Vν , f(x, u)〉 =

n∑
i=0

λi〈∇Vν , f(xi,

m∑
j=0

µjuj)〉

+ 〈∇Vν , f(

n∑
i=0

λixi,

m∑
j=0

µjuj)〉

−
n∑
i=0

λi〈∇Vν , f(xi,

m∑
j=0

µjuj)〉

≤
n∑
i=0

λi

m∑
j=0

µj〈∇Vν , f(xi, uj)〉

+ ‖∇Vν‖1

∥∥∥∥∥f(

n∑
i=0

λixi, u)−
n∑
i=0

λif(xi, u)

∥∥∥∥∥
∞

+

n∑
i=0

λi‖∇Vν‖1

∥∥∥∥∥∥f(xi, u)−
m∑
j=0

µjf(xi, uj)

∥∥∥∥∥∥
∞

.

According to Proposition 1, the constraint (A3) ensures that
V satisfies

〈∇Vν , f(x, u)〉 ≤ −‖x‖2 + r‖u‖1 (32)

for all x ∈ Gε and all u ∈ UR.
Remark 7: We point out that an ISS-Lyapunov function

defined on Gε will only imply ISS if the maximum of V
on G \ Gε is smaller than the minimum of V on ∂G. This

condition is checked a posteriori for the solution provided
by our algorithm. We remark that this condition is always
satisfied if the system is ISS on G.

Now we turn to the second objective of this section, i.e.,
to prove that the ISS Lyapunov function delivered by the
algorithm is a viscosity subsolution of a partial differential
equation.

Theorem 2: We assume that (H1) holds and the linear
optimization problem (29) has a feasible solution, then the
function V from (30) is a viscosity subsolution of the partial
differential equation (33) on Gε

H(x, V (x), DV (x)) = 0 (33)

with the Hamiltonian

H(x, V, p) = sup
u∈UR

{〈p, f(x, u)〉+ ‖x‖2 − r‖u‖1} (34)

defined for x, p ∈ Rn, V ∈ R.
Proof: It follows from the proof of Theorem 1

〈∇Vν , f(x, u)〉 ≤ −‖x‖2 + r‖u‖1 (35)

for all x ∈ Gε and all u ∈ UR.
According to Remark 3, we obtain

〈ξ, f(x, u)〉 ≤ −‖x‖2 + r‖u‖1 ∀ ξ ∈ ∂ClV (x) (36)

for all x ∈ Gε and all u ∈ UR.
Thus the following inequality (37) holds for V (·) and all

x ∈ Gε based on Remark 2:

sup
u∈UR

{〈p, f(x, u)〉+ ‖x‖2 − r‖u‖1} ≤ 0 ∀ p ∈ D+V (x)

(37)

Therefore the function V from (30) is a viscosity subsolution
of the partial differential equation (33) on Gε.

The partial differential equation (33) can be transformed
to a Hamilton-Jacobi-Bellman equation (38) which is studied
e.g. in [12, Sec. 3.5].

Corollary 1: Under the assumptions of Theorem 2, the
function V from (30) is a viscosity subsolution of the partial
differential equation (38) on Gε:

sup
u∈UR: 2r‖u‖1≤‖x‖2

{〈DV (x), f(x, u)〉+
1

2
‖x‖2} = 0 (38)

Proof: The proof is similar to Theorem 2, but we use

〈ξ, f(x, u)〉 ≤ −1

2
‖x‖2 ∀ ξ ∈ ∂ClV (x) (39)

for all x ∈ Gε satisfying ‖x‖2 ≥ 2r‖u‖1, u ∈ UR.
Remark 8: Based on Theorem 2 and Corollary 1, it is

concluded that a viscosity subsolution of a certain Hamilton-
Jacobi-Bellman equation such as (33), (38) can be obtained
by solving the linear optimization problem (29).
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V. EXAMPLE

In this section we illustrate the algorithm by a numerical
example.

We consider the following system which is adapted from
[22]

ẋ1 = −x1[0.5− (x2
1 + x2

2)] + 0.1u2
1,

ẋ2 = −x2[0.5− (x2
1 + x2

2)]− 0.1u2
2,

(40)

where x ∈ R2 with ‖x‖2 ≤ 0.3 and u ∈ R2, ‖u‖2 ≤ 0.3.
The algorithm calculates the ISS Lyapunov function (see
Figure 1) on the domain excluding a ball with radius ε =
0.012 around the origin. The minimization of r delivers the
optimal value r = 0.213014.

-0.3 -0.2 -0.1  0  0.1  0.2  0.3 -0.3-0.2-0.1 0 0.1 0.2 0.3
 0

 1

 2

V(x)

x1
x2

V(x)

Fig. 1. Numerical ISS Lyapunov function V (x) delivered by the algorithm
for system (40) and its level sets, ε = 0.012, r = 0.213014.

VI. CONCLUSION AND OUTLOOK

In this paper, a numerical algorithm for computing true ISS
Lyapunov functions has been presented for systems which
are locally ISS on compact subsets of the state space. The
corresponding ISS gain is also computed by this algorithm.
The results delivered by the algorithm make it is easier to
analyze stability of interconnected systems by ISS small
gain theorems. Furthermore, it has been proved that this ISS
Lyapunov function computed by the algorithm is a viscosity
subsolution of a Hamilton-Jacobi-Bellman partial differential
equation.

In our future paper [19] we will prove that if the system
is locally ISS, then the inequality (17) can be satisfied on
a given compact subset of the state space excluding a ball
around the origin. We will also state conditions under which
the algorithm proposed in this paper has a feasible solution.
Moreover, in future research we intend to study whether
the proposed algorithm can be used to compute viscosity
subsolutions also for other types of Hamilton-Jacobi-Bellman
equations, e.g., for equations characterizing optimal control
problems [2, Chap. III and IV].
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[6] S. Dashkovskiy, B. Rüffer, and F. Wirth, “An ISS small-gain theorem
for general networks,” Zentrum für Technomathematik, Bremen,
Germany, Berichte aus der Technomathematik 05-05, 2005. [Online].
Available: http://www.math.uni-bremen.de/zetem/reports/reports-liste.
html

[7] ——, “A small-gain type stability criterion for large scale networks of
ISS systems,” Proc. of 44th IEEE Conference on Decision and Control
and European Control Conference (ECC 2005), 2005.

[8] ——, “Construction of ISS Lyapunov functions for networks,”
Zentrum für Technomathematik, Bremen, Germany, Berichte aus
der Technomathematik 06-06, 2006. [Online]. Available: www.
math.uni-bremen.de/\discretionary{-}{}{}zetem/\discretionary{-}
{}{}reports/\discretionary{-}{}{}reports-liste.html

[9] ——, “An ISS Lyapunov function for networks of ISS systems,” in
Proc. 17th Int. Symp. Math. Theory of Networks and Systems (MTNS
2006), Kyoto, Japan, July 24-28 2006, pp. 77–82.

[10] ——, “An ISS small-gain theorem for general networks,” Math.
Control Signals Systems, vol. 19, pp. 93–122, 2007.

[11] P. Giesl and S. Hafstein, “Existence of piecewise linear Lyapunov
functions in arbitrary dimensions,” Discrete Contin. Dyn. Syst., vol. 32,
no. 10, pp. 3539–3565, 2012.
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