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ABSTRACT. A set of n lattice points in the plane, no three on a line and no four on a circle, such
that all pairwise distances and coordinates are integral is called an n-cluster (in R2). We determine
the smallest 7-cluster with respect to its diameter. Additionally we provide a toolbox of algorithms
which allowed us to computationally locate over 1000 different 7-clusters, some of them having
huge integer edge lengths. On the way, we have exhaustively determined all Heronian triangles with
largest edge length up to 6 · 106.
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1. INTRODUCTION

Point sets with pairwise rational or integral distances have been studied for a long time, see e.g.
[7, 21]. For brevity we will call those point sets rational or integral. Nevertheless, only a few
theoretical results are known; integral point sets seem to be unexpectedly difficult to construct.
On the other hand there is the famous open problem, asking for a dense set in the plane such that
all pairwise Euclidean distances are rational, posed by Ulam in 1945 [36]. Until now we only
know constructions of rational point sets which are either dense on a line or a circle, see e.g. [3,
Sec. 5.11] or [1]. In [34] the authors have shown that no irreducible algebraic curve other than a
line or a circle contains an infinite rational set. Thus if Ulam’s question admits a positive answer
the corresponding point set has to be very special.

Almering [12] established that, for a given triangle with rational side lengths, the set of points
with rational distances to the three vertices is dense in the plane of the triangle. Berry [15] relaxed
the conditions to one rational side length and the other two side lengths being a square root of a
rational number. More general considerations can be found in the preprint [13]. So far no such
result is known for a quadrilateral with pairwise rational distances. Dubickas states in [16] that
every n ≥ 3 points in R2 can be slightly perturbed to a set of n points in Q2 such that at least
3(n − 2) of the mutual distances are rational. So, for n = 5 just 1 distance may be non-rational.
Declaring which of the mutual distances have to be rational can be modeled as a graph. Classes of
admissible graphs have been studied, see e.g. [14, 17].

Given a finite rational point set, we can of course convert it into an integral point set by rescaling
its edge lengths with the least common multiple of their respective denominators.1 Thus, for each
finite number n one can easily construct an integral point set consisting of n points where all points
are located on a circle. Several constructions of finite integral point sets, where n − 4 points are
located on a line or n− 3 points are located on a circle, are known, see e.g. [3, Sec. 5.11]. To this
end several authors, including Paul Erdős [10, Problem D20], ask for integral point sets in general
position, meaning that no three points are on a line and no four points are on a circle. These objects
seem to be rather rare or at the very least hard to find. For n = 6 points a few general constructions
for integral point sets in general position are known [19]. The only two published examples of
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1As shown in [2, 8] each infinite integral point set is located on a line.
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7-point integral point sets in general position are given in [20]. Independently and even earlier,
in May 2006 Chuck Simmons and Landon Curt Noll found2 more restricted configurations. Their
smallest example has integer coordinates:

(0, 0), (327990000, 0), (238776720, 118951040), (222246024,−103907232),

(243360000, 21896875), (198368352, 50379264), (176610000,−94192000).

Aiming at n-point integral point sets in general position, for especially n = 6, Noll and Bell
[30] additionally required that the coordinates also have to be integral. They called those struc-
tures n2-clusters, or when the restriction to the dimension3 is clear from the context, n-clusters.
Using a computer search, the authors found 91 non-similar 6-clusters, where the respective great-
est common divisor of their corresponding edge lengths is one, but no 7-clusters.4 Using a slightly
improved version and lots of computing time, Simmons and Noll found the first 7-clusters in 2006
and extended their list to twenty-five 7-clusters in 2010.

The aim of this paper is to present a set of sophisticated algorithms in order to construct n-
clusters for n ≥ 5. Using an exhaustive search, we were able to determine the smallest 7-cluster,
with respect to its diameter, and provide heuristic methods to produce more than 1000 non-similar
7-clusters. Unfortunately, no 8-cluster turned up. So the hunt for an integral octagon in general
position or even an 8-cluster is still open. In this context we mention the Erdős/Noll “infinite-or-
bust” nm-cluster conjecture: For any dimension m > 1, and any number n > 2 of points, there
exists either 0 or an infinite number of primitive nm-clusters.

In Section 2 we summarize the known theory on integral point sets, and in Section 3 we go into
the algorithmic details of how to generate large lists of Heronian triangles. Section 4 is devoted to
exhaustive searches for n-clusters up to a given diameter. Here the idea is to combine n-clusters
that share a common n − 1-cluster. Allowing the containment of similar (n − 1)-clusters, i.e. a
scaled version, is the idea behind Section 5. Our most successful algorithmic approach is pre-
sented in Section 6. Since the basic operations of our algorithms have to be performed quite often,
we present low level details in Section 7. A theoretically interesting algorithm, based on circle
inversion, is presented in Section 8. Since almost all of our presented algorithms depend on a se-
lection of Heronian triangles, which may not be too large due to computational limits, we present
ways to select Heronian triangles from larger sets in Section 9. Our computational observations
are summarized in Section 10. We present our computational results in Section 11 before we draw
a conclusion in Section 12.

2. BASIC RESULTS AND NOTATION

Definition 2.1. An integral point set P is a set of points in the plane, not all on a line, such that the
pairwise distances are integers.

We remark that integral point sets can easily be defined in arbitrary dimensions, see e.g. [23, 26].
Here we restrict ourselves to the two-dimensional case.

One of the first questions arising when dealing with integral point sets is how to represent them.
Of course, one may use a list of coordinates. One example of such a representation is given in
the introduction. Another way is to provide a table of the pairwise distances – from which a
coordinate representation can easily be computed. For the example from the introduction we have

2cf. http://www.isthe.com/chongo/tech/math/n-cluster/
3The notion of an integral point set can be easily generalized to arbitrary dimensions m. The term general position

then has the meaning that no m + 1 points are contained in a hyperplane and no m + 2 points are contained in a
hypersphere, see e.g. [30].

4Independently, Randall Rathbun found a few 6-clusters.
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the following distance table:
0 327990000 266765200 245336520 244343125 204665760 200158000

327990000 0 148688800 148251480 87416875 139067760 178292000
266765200 148688800 0 223470520 97162325 79592240 222024000
245336520 148251480 223470520 0 127563605 156123240 46658680
244343125 87416875 97162325 127563605 0 53249365 133911125
204665760 139067760 79592240 156123240 53249365 0 146199440
200158000 178292000 222024000 46658680 133911125 146199440 0


Given a matrix of distances one can decide whether there exists a set of vertices in them-dimensional
Euclidean space Rm attaining those distances, based on a set of inequalities and equations involv-
ing the so-called Cayley-Menger determinants [24, 29].

Definition 2.2. If P is a point set in Rm with vertices v0, v1, . . . , vn−1 and C = (d2
i,j) denotes

the n × n matrix given by d2
i,j = ‖vi − vj‖2

2 the Cayley-Menger matrix Ĉ is obtained from C

by bordering C with a top row (0, 1, 1, . . . , 1) and a left column (0, 1, 1, . . . , 1)T . With this, the
Cayley-Menger determinant CMD({vi0 , vi1 , . . . , vir−1}) is given by det Ĉ.

Theorem 2.3. (Menger [29]) A set of vertices {v0, v1, . . . , vn−1} with pairwise distances di,j is
realizable in the Euclidean space Rm if and only if

(−1)rCMD({vi0 , vi1 , . . . , vir−1}) ≥ 0,

for all subsets {i0, i1, . . . , ir−1} ⊂ {0, 1, . . . , n− 1} of cardinality r ≤ m+ 1, and

(−1)rCMD({vi0 , vi1 , . . . , vir−1}) = 0,

for all subsets of cardinality m+ 2 ≤ r ≤ n.

Thus it is possible to deal with integral point sets by storing their pairwise distances only. Nev-
ertheless it is often computationally cheaper to use coordinate representations which are easy to
compute, see Section 7.2. As remarked in the introduction, we are interested in integral point sets
in the Euclidean plane R2 with some additional properties.

Definition 2.4. An integral point set is in general position, if no three points are on a line and no
four points are on a circle.

For the plane it suffices to check the triangle inequality in order to detect three collinear points.
Checking the condition of Ptolemy’s theorem, one can easily detect when four points lie on a
circle. For general dimensions m ≥ 2 the conditions of general position can be expressed using
Cayley-Menger determinants, see e.g. [23, 24].

Definition 2.5. An n-cluster is a plane integral point set in general position that consists of n points
such that there exists a representation using integer coordinates, i.e., lattice points.

Fortunately we do not have to deal with the constraint of integral coordinates. For an explanation
we have to go far afield: The area A∆(a, b, c) of a triangle with side lengths a, b, c is given by

A∆(a, b, c) =

√
(a+ b+ c)(a+ b− c)(a− b+ c)(−a+ b+ c)

4

due to the Heron formula. If the area is non-zero, we can uniquely write A∆(a, b, c) = q
√
k with

a rational number q and a square-free integer k. The number k is called the characteristic of the
triangle with side lengths a, b, c. Kemnitz [19] has shown that each non-degenerate triangle of an
integral point set has the same characteristic, which was also generalized to arbitrary dimensions
in [24]. Since triangles with integral coordinates have a rational area, see e.g. Pick’s theorem, the
triangles of an n-cluster all have to have a characteristic of 1.
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We now argue that the opposite is also true. Given an integer sided triangle with characteristic
1, we can easily determine a representation using rational coordinates, see e.g. [24]. Due to Fricke
[9], see also [28, 37], each integral point set in the plane which has a representation in rational
coordinates has a representation in integral coordinates.

Lemma 2.6. Let P ⊆ R2 be a point set with pairwise integral distances. If P contains a non-
degenerated triangle with characteristic 1, then P permits a representation in Z2.

Thus, there is no need to explicitly search for integral coordinates for n-clusters. One just needs
to check that all pairwise distances are integral and that at least one contained non-degenerate
triangle has characteristic 1 or, equivalently, that it has a representation in rational coordinates, to
ensure the existence of a representation with integral coordinates.

A Heronian triangle is traditionally defined as a triangle with integer side lengths and area5.
From the formula for A∆(a, b, c) we can deduce that the area of an integer sided triangle with
characteristic 1 is rational. To conclude that the area is indeed integral one may consider the cases
of the side lengths modulo 8 (see [6]). We summarize these findings in:

Lemma 2.7. Given a non-degenerate triangle T with integer side lengths then the following state-
ments are equivalent:

(a) T has characteristic 1
(b) T has rational area
(c) T has integral area, i.e. T is Heronian

Thus Heronian triangles are the basic building blocks of n-clusters and we will consider algo-
rithms how to generate them in the next section.

In the introduction we have spoken of the smallest cluster. So in order to have a measure of the
size of an n-cluster, or more generally an integral point set, we denote the largest distance between
two points as its diameter. If we perform an exhaustive search in the following, we will always
impose a limit on the maximum diameter. We remark that other metrics are possible too, but most
of them can be bounded by constants in terms of the maximum diameter.

Given an n-cluster, we can obviously construct an infinite sequence of non-isomorphic n-
clusters by rescaling the clusters by integers 2, 3, . . . . We call those n-clusters similar, and we
are generally interested in lists of non-similar n-clusters. To this end we call a given n-cluster
primitive if its edge lengths do not have a common factor larger than 1. As argued before, dividing
the edge lengths of a given integral point set by the greatest common divisor does not destroy the
property of admitting integral coordinates.

Applying this insight to the example given in the introduction, we observe that the greatest com-
mon divisor of the edge lengths is 145. Thus dividing all edge lengths by 145 gives the following
distance matrix:

0 2262000 1839760 1691976 1685125 1411488 1380400
2262000 0 1025440 1022424 602875 959088 1229600
1839760 1025440 0 1541176 670085 548912 1531200
1691976 1022424 1541176 0 879749 1076712 321784
1685125 602875 670085 879749 0 367237 923525
1411488 959088 548912 1076712 367237 0 1008272
1380400 1229600 1531200 321784 923525 1008272 0


5Some authors allow the side lengths and the area of the Heronian triangle to be rational and remark that all

quantities can be easily rescaled to be integers.
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This 7-cluster has a diameter of 2262000, which is the smallest possible as verified in Section 4.
A coordinate representation is given by

(0, 0), (374400,−2230800), (1081600,−1488240), (−453024,−1630200),

(426725,−1630200), (569088,−1291680), (−439040,−1308720).

3. GENERATION OF HERONIAN TRIANGLES

The conceptually simplest algorithm to exhaustively generate all Heronian triangles up to a
given diameter is to loop over all non-isomorphic integer triangles and to check whether the area is
integral. This leads to time complexity Θ(n3). Two O(n2+ε) algorithms, where ε > 0 is arbitrary,
have been given in [25]. We give and apply another O(n2+ε) algorithm here.

Complete parameterizations have been known for a long time, i.e. the Indian mathematician
Brahmagupta (598-668 A.D.) gives the parametric solution

a =
p

q
h(i2 + j2), b =

p

q
i(h2 + j2), and c =

p

q
(i+ h)(ih− j2)

for positive integers p, q, h, i, and j fulfilling ih > j2 and gcd(p, q) = gcd(h, i, j) = 1, see e.g.
[5, 25].

Due to the presence of the denominators q, this parameterization is not strongly compatible with
restrictions on the maximum diameter. We can easily generate primitive Heronian triangles by
looping over all feasible triples (h, i, j) below a suitable upper bound, setting p to 1 and choosing
q such that gcd(a, b, c) = 1. Using this approach we can quickly generate a huge number of
primitive Heronian triangles. But we may get those with small diameters rather late, compared to
the upper bound on h, i, j, and have to face the fact that the same primitive Heronian triangle may
be generated several times over.

For the purpose of this paper we use a different exhaustive algorithm to generate all primitive
Heronian triangles up to a prescribed diameter. Given a triangle with side lengths a, b, and c we
have cosα = b2+c2−a2

2bc
and sinα = 2A∆(a,b,c)

bc
. For a Heronian triangle sinα and cosα are rational

numbers so that also tan α
2

= sinα
1+cosα

∈ Q. Thus, there are coprime integers m,n satisfying
tan α

2
= n

m
. With these parameters we obtain

cosα =
1− tan2 a

2

1 + tan2 a
2

=
m2 − n2

m2 + n2
,

where gcd(m2 − n2,m2 + n2) ∈ {1, 2}. We conclude that m2 + n2 divides 4bc. So, given two
integral side lengths b and c of a Heronian triangle, we can determine all possibilities for m2 + n2,
then determine all possibilities for m and n, and finally determine all possibilities for the third side
a:

Algorithm 3.1. (Find the third side)
loop over all divisors k of 2bc

loop over all solutions (m,n) of m2 + n2 = k

solve b2+c2−a2

2bc
= m2−n2

m2+n2 for a
if a ∈ Q and the triangle inequalities are strictly satisfied for (a, b, c)
then output a

So, in order to determine all primitive Heronian triangles up to diameter N , we have to loop
over all coprime pairs (b, c) with N ≥ b ≥ c ≥ 1 and apply the above algorithm to determine a.
Given a, we can check whether a, b, c are coprime, a ≤ N , and a ≥ b, a ∈ N (to avoid isomorphic
duplicates). A similar approach is presented in [18].
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In this context the maximum diameter n has to be limited to a few millions so that we can easily
determine the prime factorizations of all integers at most n in a precomputation. Given this data,
we can quickly determine the prime factorization of 2bc and loop over all divisors without any
additional testing.

Next, we want to describe the set of solutions of m2 + n2 = k and assume that

k = 2h · qi11 . . . qiss · p
j1
1 . . . p

jt
t ,

where the ql are primes congruent to 3 modulo 4 and the pl are primes congruent to 1 modulo 4. If
any of the il is odd, then no integer solution of m2 + n2 = k exists. Otherwise each solution can
be written as (m,n) = λ · (m̃, ñ), where λ = 2bh/2c · qi1/21 . . . q

is/2
s and m̃2 + ñ2 = k/λ2 =: k̃, i.e.

k̃ = 2h̃ · pj11 . . . p
jt
t ,

where h̃ ≤ 1. Due to (x2
1 + x2

2)(y2
1 + y2

2) = (x1y1 + x2y2)2 + (x1y2 − x2y1)2 and the unique
factorization of the Gaussian integers Z[i], it suffices to combine the solutions of the problem,
where k̃ is a prime power. Ignoring signs for k̃ = 2, the unique solution is given by 12 + 12 = 2.
Ignoring signs and order, there is a unique solution for u2 +v2 = p, if the prime p is equivalent to 1
modulo 4. Again ignoring signs and order, for prime powers the set of solutions of x2 + y2 = pj is
given by x+yi = (u+vi)l(u−vi)j−l, where 0 ≤ l ≤ j/2. Thus, it remains to determine a solution
of u2 + v2 = p, which can be done by the Hermite-Serret algorithm: First determine an integer
z satisfying z2 ≡ i (mod p), using that w

p−1
2 ≡ −1 (mod p) for each quadratic nonresidue w,

and then apply the Euclidean algorithm on (p, w) to determine (u, v). See [11, 32] for the original
sources and [4] for an improved algorithm. The just sketched algorithm for the generation of all
Heronian triangles up to diameter n runs in O(n2+ε) time, where ε > 0 is arbitrary.

Using this algorithm we have exhaustively generated all primitive Heronian triangles up to di-
ameter 6 ·106. They are available for download at [22]. Having the data at hand we have computed
an approximate counting function, which fits best for a given type of functions. Let count(x) de-
note the number of primitive Heronian triangles with diameter between (x − 1) · 10000 + 1 and
x · 10000. The best least squares fitting function of the form c1 + c2 log x + c3 log2 x + c4x +
c5x log x+ c6x log2 x is given by

160436.33 + 117761.45 log x+ 3191.78 log2 x+ 12023.76x− 2787.79x log x+ 169.14x log2 x

and leads to a ‖ · ‖2-distance of 152331 for the entire data.
We remark that, besides the (implicit) O(n1+ε) upper bound from [25], we are not aware of any

non-trivial lower and upper bounds for the number of (primitive) Heronian triangles with a given
diameter. As shown in [27] one may deduce lower bounds for the minimum diameter of plane
integral point sets. However, current knowledge is still incomplete [33]. The number of Heronian
triangles with diameter at most n is in O(n

25
13

+ε), see [18]. Counts with additional restrictions are
also given in [35].

4. EXHAUSTIVE GENERATION OF n-CLUSTERS UP TO A GIVEN DIAMETER

In order to determine the smallest 7-cluster, we have performed an exhaustive search for n-
clusters up to a given diameter. For the purpose of this paper the chosen maximum diameter
is 6 · 106. A starting point is a complete list of all Heronian triangles up to this diameter. More
concretely we have chosen the exhaustive algorithm described in Section 3 to generate all primitive
Heronian triangles up to diameter 6 · 106 and extended this list by including all rescaled versions
such that the resulting diameter is at most 6 · 106.

The underlying basic idea to construct n-clusters is to combine two (n − 1)-clusters sharing a
common (n−2) cluster. This way, we can benefit from the fact that the constraints can be partially
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checked very early. So, starting from a list of 3-clusters, i.e. Heronian triangles, we generate all
4-clusters, then all 5-clusters, then all 6-clusters, and finally all 7-clusters.

For the first combination step, i.e. n = 4, “sharing a common (n − 2)-cluster” means that the
two triangles to be combined both must have a side of the same length.

To save time and memory we apply the concept of orderly generation, see [31], which avoids
pairwise isomorphism checks when cataloging combinatorial configurations like in our example
integral point sets or n-clusters. To this end a canonical form has to be defined, so that during the
algorithm only canonical objects are combined. The constructed objects are accepted if and only if
they are canonical too. The benefit from such an approach is that no isomorphic copies arise. For
the details we refer the reader to [27] with the adaptation of considering triangles of characteristic
1 only.

As a result we have computationally verified that the smallest 7-cluster has diameter 2262000
and that there is no other 7-cluster with diameter less then 4 · 106. Along the way we have also
exhaustively constructed all 4-, 5-, 6-, and 7-clusters with diameter at most 6 · 106. Those lists
will be beneficial for the construction of additional 7-clusters as will be explained in the following
sections.

5. COMBINING LISTS OF n-CLUSTERS

In the previous section we have described an algorithm to exhaustively generate a list of all n-
clusters up to given diameter D. As input we take a complete list of (n−1)-clusters up to diameter
D so that initially we need a complete list of all Heronian triangles up to diameter D. Such an
approach is computationally limited to rather small diameters, where only a few 7-clusters exist.
So from now on we will leave the approach of exhaustive generation and switch to incomplete
construction algorithms.

Our assumption for this section is that we are given a list of n-clusters, which we then combine
to a list of n′-clusters. For our paper, the most general setting is the following: Given a list L1 of
n1-clusters and a possibly different list L2 of n2-clusters we consider pairs (l1, l2), where l1 ∈ L1

and l2 ∈ L2, to construct n′-clusters. Mostly we assume n′ > max(n1, n2).
In Section 4 we have assumed that the (n − 1)-clusters l1 and l2 share a common (n − 2)-

cluster. Since in the end we are only interested in lists of non-similar n-clusters we relax that to
the requirement that l1 and l2 contain a common c-cluster, where c is an additional parameter.

Having the c-cluster C1 of l1 fixed we loop over all c-clusters C2 of l2 and check whether C1 and
C2 can be rescaled so that they coincide. This check is implemented as follows: Let diam1 be the
diameter of C1 and diam2 be the diameter of C2. We define f1 = diam2/gcd(diam1, diam2) and
f2 = diam1/gcd(diam1, diam2). With thisC1 andC2 are similar if and only if f1·C1 is isomorphic
to f2 ·C2. Comparing the sorted lists of the pairwise distances is a first computationally cheap test
for this task. If successful, we compare the canonical forms of C1 and C2.

By rescaling we are in the situation that l1 and l2 contain a common c-cluster and we proceed
by computing common coordinates: We apply the algorithm from Subsection 7.2 to compute
coordinates for l1 and l2 separately.6 By assuming that the first c points of l1 and l2 coincide,
we can obtain a common coordinate system by just scaling the numerators. We remark that for
c = 2 we have two possibilities for the join, otherwise just one. Having the coordinates at hand, we
can loop over all k-sets of the points and check whether they satisfy the conditions of a k-cluster
relaxing the condition of integral distances to rational distances. If all (relaxed) conditions are
satisfied we store a primitive version of the corresponding, possibly scaled, k-cluster.

6If L2 is large it is computationally beneficial to store a coordinate representation, given by the algorithm in Sub-
section 7.2, for each l2 ∈ L2.
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We have mostly used three instances of this general framework. The first is with the parameters
n1 = n− 1, n2 = 3, and c = 2, i.e. we try to extend a given list of (n− 1)-clusters by combining
them with a list of primitive Heronian triangles along a common edge. Since we use rescaling,
this combination is always possible, although an n-cluster might not be formed. Depending on
the available computation time and the size of the list of the (n − 1)-clusters, one may choose all
known primitive Heronian triangles for the second list. We have done that to a large extent for the
list of known 7-clusters but unfortunately did not locate an 8-cluster.

The second instance has the parameters n1 = n2 = 6 and c = 3, i.e. we combine lists of 6-
clusters sharing a common triangle. The resulting point sets consist of nine points. We remark that
the second method was able to discover some previously unknown 6- and 7-clusters but turned out
to be rather slow. For later reference we call this method the combine-hexagons algorithm.

The third method mimics the exhaustive generation method from Section 4. Starting from n = 4
we set n1 = n2 = n− 1, c = n− 2 and increase n by one in each iteration.

6. TRIANGLE EXTENSIONS

The algorithms in Section 5 have to be applied iteratively in order to end up with n-clusters for
large n. Now we describe an algorithm that directly approaches n-clusters without specifying n.
Let L be a list of primitive Heronian triangles of length n.

Algorithm 6.1. (Triangle extension)
for i from 1 to n
P = ∅
for j from i to n

combine L(i) with L(j) in all possible ways
compute coordinates of the fourth point p /∈ L(i)
if L(i) ∪ p is a 4-cluster then add p to P

compute all pairwise distances between the points in P
loop over all k-sets K = {p1, . . . , pk} of P such that L(i) ∪ K\{pk} is a cluster

if L(i) ∪ K is a cluster then output L(i) ∪ K

The implementation details for the coordinate and distance computations are described in Sec-
tion 7.

7. LOW LEVEL MATHEMATICAL AND IMPLEMENTATION DETAILS

In the previous sections we have described our algorithms omitting implementation details. The
application of those algorithms result in many sub-computations, like coordinate and distance com-
putations. Those sub-routines have to be carefully designed in order to save costly unlimited pre-
cision rational computations.

7.1. Compute rational coordinates of a Heronian triangle. Suppose we are given three integer
side lengths a, b, and c, which form a non-degenerate Heronian triangle. Our aim is to compute
rational coordinates for the points P1, P2, and P3 attaining those pairwise distances, i.e. |P1P2| = a,
|P1P3| = b, and |P2P3| = c.

W.l.o.g. we can assume that the first point is located in the origin and the second point on the
positive part of the x-axis, i.e. P1 = (0, 0) =

(
0
2a
, 0

2a

)
and P2 = (0, a) =

(
0
2a
, 2a2

2a

)
. Setting

t1 := b2 − c2 + a2 and t2 := 4b2a2 − (b2 − c2 + a2)2 we have P3 =
(
t1
2a
,± t2

2a

)
, where we may use

the solution with positive y-coordinate.
In some algorithms all permutations of the three edge lengths of a Heronian triangle (a, b, c)

have to be considered. To this end we assume that the above auxiliary integer values t1 and t2 have
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already been computed. Permuting the two latter side lengths, i.e. (a, c, b), is equivalent to swap
the points P1 and P2. The corresponding coordinates with non-negative y-values are given by( 0

2a
,

0

2a

)
,
(2a2

2a
,

0

2a

)
,
(2a2 − t1

2a
,
t2
2a

)
.

By applying a suitable rotation matrix, we obtain the coordinate representation( 0

2b
,

0

2b

)
,
(2b2

2b
,

0

2b

)
,
(2b2 − t1

2b
,
t2
2b

)
for the triangle (b, c, a) and ( 0

2c
,

0

2c

)
,
(2c2

2c
,

0

2c

)
,
(2a2 − t1

2c
,
t2
2c

)
for the triangle (c, a, b).

So there is no need to compute additional square roots. Of course, the common sub-expressions
like a2, b2, and c2 should be stored additionally.

7.2. Compute rational coordinates of an n-cluster. We assume a suitable but fixed ordering
of the points and denote the integer distance between the first two points by a. According to
Subsection 7.1 we set P1 =

(
0
2a
, 0

2a

)
, P2 =

(
0
2a
, 2a2

2a

)
, and P3 =

(
t1
2a
, t2

2a

)
. For 4 ≤ i ≤ n we apply

the construction of Subsection 7.1 to the triangle given by the points P1, P2, and Pi. To decide
the sign of the y-coordinate of Pi we utilize the distance to P3. Thus all points have coordinates(
xi
2d
, yi

2d

)
with integers xi, yi.

7.3. Checking for rational distances. Suppose we are given two points with rational coordinates(
x1

a1
, y1

b1

)
and

(
x2

a2
, y2

b2

)
. The task is to decide whether they are at rational distance and eventually

compute the distance. Since during our searches most of the checked distances are irrational, it is
important to have a quick check for the decision problem. An exact expression for the distance is
given by √

(b1b2)2(a2x1 − a1x2)2 + (a1a2)2(b2y1 + b1y2)2

a1a2b1b2

.

Thus the problem is reduced to the question whether a certain integer is a square.
Here we can benefit from modular arithmetic. Suppose that m is an arbitrary integer and com-

pute (b1b2)2(a2x1−a1x2)2+(a1a2)2(b2y1+b1y2)2 mod m by performing all intermediate compu-
tations modulom. If the result is not a square in Zm the distance under study can not be rational. If
m is a product of distinct primes then we can check the square property separately for each prime
p by simply tabulating a boolean incidence vector for the squares in Zp. In our implementation we
use m1 = 493991355 = 3 ·5 ·11 ·13 ·17 ·19 ·23 ·31 and m2 = 622368971 = 7 ·29 ·37 ·41 ·43 ·47,
i.e. we perform two successive modular tests. Since computations modulo 4 are very cheap in most
arbitrary precision libraries it pays off to first check whether the integer under study is equivalent
to either 0 or 1 modulo 4; otherwise its square can not be rational.

If we can assume a common denominator of the coordinates, as e.g. implied by the algorithm in
Subsection 7.2, the computations can be simplified since the distance between the points

(
x1

d
, y1

d

)
and

(
x2

d
, y2

d

)
is given by

√
(x1−x2)2+(y1+y2)2

d
.

7.4. Canonical forms. In order to be able to check n-clusters for similarity, we define a canonical
form in such a way that two n-clusters are similar if and only if their canonical forms coincide.
Given a matrix of the pairwise rational distances we first normalize by multiplying with the unique
rational number such that all distances are coprime integers. Since distances are symmetric, it
suffices to consider the upper right triangular submatrix without the diagonal of zeros. We append
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the columns of this matrix to a distance vector v. With this we define the canonical form to be the
lexicographically maximal distance vector over all permutations of the points.

Clearly, this canonical form is unique and can be determined by comparing all n! possible per-
mutations. For our purposes this was fast enough even for n = 7, but we remark that one can easily
design an O(n2) algorithm.

8. CIRCLE INVERSION

As observed in [34], the rationality of distances in R2 is preserved by translations, rotations,
scaling with rational numbers, and by some kind of circle inversion. Here we go into the details
of the latter transform. Assume that our point set has a point at the origin. A circle inversion
through the origin with radius one sends each point with coordinates (x, y) besides the origin to(

x
x2+y2 ,

y
x2+y2

)
7.

Using this transform we can construct (n− 1)-clusters from n-clusters by moving each of their
points to the origin and applying the described circle inversion. Doing this for the set of all known
7-clusters gives no new 6-clusters. Strangely enough, the set of the contained subtriangles, i.e.
the set of the (normalized) subtriangles from the resulting 6-clusters, coincides with the set of the
subtriangles contained in the 7-clusters.

Discarding one point is, on the one hand, disadvantageous. On the other hand we obtain some
freedom in the initial point set, i.e. it does not have to be an n-cluster. To be more precise, we need
a rational point set P with characteristic 1, where no four points are on a line and no four points
are on a circle. Circle inversion at a vertex of P automatically destroys collinear triples. We were
able to extend some of the 7-clusters to an 8-point rational set. Unfortunately, in each of these
cases the 8th point also was part of a circle containing four points of the point set. A promising
configuration might be the so-called Pappus configuration consisting of nine points and nine lines,
with three points per line and three lines through each point. Unfortunately we were not able to
find a representation of the Pappus configuration with pairwise rational distances.

So while circle inversion might be theoretically interesting, we were not able to draw any com-
putational advantages.

9. CHOOSING PROMISING HERONIAN TRIANGLES

The algorithms presented in the previous sections can in principle deal with large lists of n-
clusters, but of course the computation time limits such searches. In order to find many non-similar
7-clusters we have tried to restrict ourselves to promising search spaces.

Both the exhaustive-like algorithm from Section 5 and the triangle extension algorithm from
Section 6 are based on a list of Heronian triangles. Unfortunately we do not have the computational
capacity to run those algorithms with all Heronian triangles known to us, but have to select a subset
of them. Of course, this subset should be selected in a way so that it is small but generates many
7-clusters. Satisfying the latter aim is essential but, of course, harder. To formalize this idea, we
ask for a method that is able to compute a score for a given Heronian triangle, and then choose a
given number of Heronian triangles with the largest scores.

A very easy but effective scoring function is the negative diameter of all Heronian triangles.
In order to verify our claim we have used the triangle extension algorithm with subsets of 1000
Heronian triangles. Using the first 1000 smallest Heronian triangles produces 237 6-clusters and
four 7-clusters (having diameters 5348064, 15772770, 47570250, and 662026750). The second
smallest 1000 Heronian triangles produces only nine 6-clusters and no 7-cluster.

7Using complex notation this is (ignoring a reflection) equivalent to the map z 7→ 1
z .
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A promising idea might be to use the number of divisors or prime divisors of the side lengths
normalized by magnitude, i.e. prime side lengths should get the lowest possible score while highly
composite numbers get large scores. As an example, we report the results of two explicit scoring
functions based on this idea. For

score1(a, b, c) :=
#prime divisors a

log log a
+

#prime divisors b
log log b

+
#prime divisors c

log log c

we have chosen the 1000 Heronian triangles with maximal score among all Heronian triangles with
diameter at most 10000. Applying the triangle-extension algorithm results in three 6-clusters and
no 7-cluster. The similar function

score2(a, b, c) :=
#prime divisors a

log a
+

#prime divisors b
log b

+
#prime divisors c

log c

increases the number of found 6-clusters to 40 with the same setting. But of course score2 tends
to prefer triangles with smaller diameter. We remark that using the number of divisors instead of
the number of prime divisors yields similar results.

The most successful approach in our computational study was to use the known lists of n-clusters
as selectors. To be more precise, given a list of n-clusters we can determine the contained sub-
triangles, which then, after rescaling, gives a list of primitive Heronian triangles. If the resulting
list of Heronian triangles is too large for our purposes we take the m smallest ones according to
their diameter or we take frequency into account, i.e. we consider only those primitive Heronian
triangles which appear at least k times, where k is suitably chosen, as sub-triangles within the list
of n-clusters.

As an example, we report the following experiments performed near the end of our computa-
tional study, when we already knew lots of 6- and 7-clusters. For n = 6 and n = 7 we choose
the 1000 Heronian triangles having the smallest diameter, respectively. In the first case triangle
extension yields 247 6-clusters and four 7-clusters. For the latter case we obtain 912 6-clusters and
100 7-clusters. So a higher initial value of n results in more clusters, but of course those examples
are harder to find.

A completely different idea is to associate Heronian triangles (a, b, c) with ellipses represented
by a+b

c
. As an experiment we took the 3000000 smallest Heronian triangles and computed the three

associated ellipses in each case. The most frequent ellipse representation occurs 10277 times. Tak-
ing the smallest 1000 triangles results in 603 5-clusters applying the triangles extension algorithm.
Taking triangles from ellipse representations that occur exactly once result in just six 5-clusters.

We did not come to a satisfactory solution and propose the design of a good scoring function as
an open problem.

10. COMPUTATIONAL OBSERVATIONS

In this section we collect some computational observations that help us to design our searches
for 7-clusters.

Observation 10.1. The triangle-extension algorithm is more effective than the combine-hexagons
algorithm.

Using the 412 triangles contained in the original twenty-five 7-clusters found by Simmons and
Noll in 2010 as an input for the triangle-extension algorithm yields 84 non-similar 7-clusters in
less than two minutes of computation time. If we instead take the sub-hexagons of the original
twenty-five 7-clusters plus an additional list of 1736 hexagons and apply the combine-hexagons
algorithm we end up in 33 non-similar 7-clusters. We remark that all but one of these heptagons
is contained in the list of the 84 heptagons from the triangle extension algorithm. Additionally the
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computation time of the combine-hexagons algorithm is usually much larger than the computation
time of the triangle-extension algorithm.

Observation 10.2. Stripping isosceles triangles from the input set of Heronian triangles only
mildly reduces the number of 6- and 7-clusters found in the search of the triangle-extension al-
gorithm.

Because any pair of isosceles Heronian triangles, after scaling, forms a 4-cluster, there are nu-
merous 4-clusters formed from pairs of isosceles triangles. When three isosceles Heronian tri-
angles are joined together along their base, then the resulting pentagon has pairwise rational dis-
tances, but three points are on a line. This situation happens when combining two such 4-clusters
with a common isosceles triangle.

As expected the runtime increases while including isosceles Heronian triangles, where the pre-
cise factor strongly depends on the chosen subset of Heronian triangles. For comparison we chose
the 1000 smallest non-isosceles Heronian triangles and applied the triangle-extension algorithm,
which resulted in 172 6-clusters and four 7-clusters. So we have missed 65 6-clusters but no
7-cluster. Here the computation time was decreased by a factor of two. In a larger experiment
we have chosen 1383799 Heronian triangles and obtained 424593 6-clusters and 1110 7-clusters.
Stripping all 24583 isosceles triangles we have obtained 424543 6-clusters and 1110 7-clusters,
while the computation time decreases by a factor larger than 10.

Observation 10.3. Partitioning the set of triangles can speed up the search of the triangle-extension
algorithm.

Given a list of m n-clusters containing the same (n−1)-cluster the ordinary combination would
need m2 tests. Since integral point sets with many points on a line or a circle are quite common it
makes sense to take this fact into account. Partitioning 4-clusters by a line through 2 of the points
or by a circle through 3 of the points avoids many spurious comparisons and speeds up the search.
The important thing is that a pair of items in a partition cannot form an n + 1-cluster because it
would violate a con-circularity or co-linearity constraint. In our programs we can either turn on
or off the partitioning algorithm, but mostly use it to increase the computation speed. The typical
performance boost is around 10 %.

Observation 10.4. Large Heronian triangles tend to not form 4-clusters.

That is, given two random small Heronian triangles, the probability they form a 4-cluster is rela-
tively high compared to the probability that two large Heronian triangles will form a 4-cluster, i.e.
we have to perform many unsuccessful combinations of Heronian triangles per found 4-cluster. To
justify this theoretically, one might appeal to Ceva’s theorem. As we allow the size of a Heronian
triangle to increase the prime factors present in the numerators of the sines of the Heronian angles
increase making it more difficult to find sets of angles where the numerators cancel each other out.

Observation 10.5. Iterating the triangle-extension algorithm can find new triangles and n-clusters.

As described in Section 9 combining the triangles contained in the twenty-five 7-clusters found
by Simmons and Noll in 2010 yields 84 non-similar 7-clusters. Those 7-clusters contain 602
triangles which combine to 86 non-similar 7-clusters using the triangle extension algorithm. Then
the iteration gets stuck since those 7-clusters contain exactly 602 non-similar triangles again.

Similarly we have used the 237 6-clusters which arose from combining the 1000 smallest Hero-
nian triangles, see Section 9. Those 6-clusters contain 1808 non-similar triangles which can be
combined to 1644 non-similar 6-clusters and 22 non-similar 7-clusters.

Observation 10.6. The rational distance test rules out most of the combinations of Heronian tri-
angles.
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To make this observation plausible we report the statistics of a large scale experiment. We have
chosen the 3000000 smallest primitive Heronian triangles along with those contained in the 6-
clusters known to us. Using 25000 cores during 4.5 days 3.0 · 1014 pairs of 3-clusters were tried.
In 99.71 % the missing sixth distance was not rational. The concircular test ruled out 10414450261
possibilities (0.00 %) and the collinearity test 20129596307 possibilities (0.01 %), while we found
835620202676 (possibly similar) successful combinations (0.28 %). The longest list of 4-clusters
containing a common 3-cluster had length 396442. In Table 1 we have summarized the corre-
sponding statistics for the combinations of the resulting k-clusters for 3 ≤ k ≤ 7.

k comb. distance concircularity collinearity successful intersectable
3 3.0 · 1014 99.71 % 0.00 % 0.01 % 0.28 % 396442
4 2.1 · 1015 41.87 % 58.13 % 0.00 % 0.00 % 91
5 1.6 · 108 49.93 % 33.17 % 14.01 % 2.89 % 16
6 1.5 · 105 60.89 % 18.93 % 8.86 % 11.32 % 2
7 82 100 % 0.00 % 0.00 % 0.00 % 0

TABLE 1. Failure of different checks for k + 1-clusters combining two k-clusters

11. COMPUTATIONAL RESULTS

We have constructed 1154 non-similar 7-clusters and 443711 non-similar 6-clusters8. The 5-
and 4-clusters are so numerous that we did not collect them. The total number of stored Heronian
triangles is 807677361. The smallest diameter of a primitive 7-cluster is 2262000 while the largest
found primitive 7-cluster has a diameter of 92986018038515228913684944937313015456 ≈ 1038.
The 1154 7-clusters contain in total

(
7
3

)
· 1154 = 40390 sub-triangles, while only 9264 of them are

non-similar, i.e., on average each (normalized) triangle is used more than four times. The smallest
contained triangle is (5, 4, 3), which is indeed the smallest possible Heronian triangle, and the
largest has diameter 121990813408205791 ≈ 1018. Some counts of 7-clusters are given in Table 2.
We remark that the Heronian triangles (6, 5, 5), (8, 5, 5), and (13, 12, 5) are not contained in any of
the known 7-clusters. The 6-clusters contain more than 1400000 non-similar Heronian triangles.
The smallest Heronian triangle that is not contained in one of the known 6-clusters is (149, 148, 3).

diameter # 7-clusters diameter # 7-clusters diameter # 7-clusters
≤ 107 4 ≤ 1019 688 ≤ 1031 1130
≤ 108 11 ≤ 1020 752 ≤ 1032 1137
≤ 109 26 ≤ 1021 819 ≤ 1033 1145
≤ 1010 52 ≤ 1022 877 ≤ 1034 1147
≤ 1011 89 ≤ 1023 927 ≤ 1035 1150
≤ 1012 139 ≤ 1024 974 ≤ 1036 1153
≤ 1013 198 ≤ 1025 1024 ≤ 1037 1153
≤ 1014 270 ≤ 1026 1050 ≤ 1038 1154
≤ 1015 347 ≤ 1027 1067
≤ 1016 431 ≤ 1028 1087
≤ 1017 516 ≤ 1029 1111
≤ 1018 609 ≤ 1030 1124

TABLE 2. Number of (known) non-similar 7-clusters up to a given diameter

8The list of the primitive 6- and 7-clusters currently known to us can be obtained at [22].
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As hardware we have used 25000 cores at Google Inc. and the Linux computing cluster of
the University of Bayreuth, which consists of 201 2xIntel E5520 2.26 GHz and 52 2xIntel E5620
2.4GHz processors (100-300 jobs are done in parallel). The computations for the triangle-extension
algorithm using the triangles in the known 7-clusters were done on a customary laptop computer
in less than one day of computation time per iteration. We used the GNU MP Bignum library9 and
class library of numbers (CLN)10 libraries to provide arbitrary precision integers and rationals.

Although we have invested a large amount of processing power we have not found an 8-cluster.

12. CONCLUSION

The techniques of finding n-clusters have dramatically improved since the discovery of the first
6-clusters in R2. Before that some researchers had even incorrectly conjectured that 6-clusters in
R2 do not exist. At the current state it is still a significant computational challenge to find new
7-clusters, but we have shown that many examples exist. A toolbox of algorithms to generate n-
clusters is provided. Using the triangle-extension algorithm one may eventually extend a small list
of n-clusters to a larger list of n-clusters by just combining their contained subtriangles. Compared
with its running time and its output in terms of newly found n-clusters this is certainly the most
effective algorithm that is currently known. For a given n-cluster the knowledge of only n − 2
of its sub-triangles may suffice to recover all distances and so all

(
n
3

)
sub-triangles. Moreover we

have some kind of scale invariance, i.e. only the angles but not the side lengths have to be known
in advance. Considering all possible scalings comes at constant cost.

However this algorithm is at the mercy of a good list of Heronian triangles, or indirectly a list
of starting n-clusters. To some extent the algorithm itself produces some new Heronian triangles
so that it can be applied iteratively. But admittedly the number of successful iterations is observed
to be rather small in practice. So different algorithms are needed to populate the set of promising
triangles. Choosing them directly from the list of Heronian triangles, based on a scoring function,
still has no satisfactory solution and is left as an open problem. So still the discovery of new 7-
clusters depends on extensive computer calculations so that highly optimized low level routines
are essential to check a large number of cases.

Along the way we have exhaustively constructed all primitive Heronian triangles with diameter
up to 6 · 106. This database may serve as a starting point to check various conjectures.

The question of whether there exists an infinite number of non-similar 7-clusters is still open.
At this point one may of course speculate on the existence of 8-clusters in R2.
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21. E.E. Kummer, Über die Vierecke, deren Seiten und Diagonalen rational sind, J. Reine Angew. Math. 37 (1848),

1–20 (German), available at http://resolver.sub.uni-goettingen.de/purl?GDZPPN00214638X.
22. S. Kurz, http://www.wm.uni-bayreuth.de/index.php?id=554&L=3.
23. , Konstruktion und Eigenschaften ganzzahliger Punktmengen, Ph.D. thesis, Bayreuth. Math. Schr. 76,

Universität Bayreuth, 2006.
24. S. Kurz, On the characteristic of integral point sets in Em, Australas. J. Comb. 36 (2006), 241–248.
25. , On the generation of heronian triangles, Serdica Journal of Computing 2 (2008), 181–196.
26. S. Kurz and R. Laue, Bounds for the minimum diameter of integral point sets, Australas. J. Comb. 39 (2007),

233–240.
27. S. Kurz and A. Wassermann, On the minimum diameter of plane integral point sets, Ars Comb. 101 (2011),

265–287.
28. S.H. Marshall and A.R. Perlis, Heronian tetrahedra are lattice tetrahedra, Am. Math. Mon. 120 (2013), no. 2,

140–149.
29. K. Menger, Untersuchungen über allgemeine Metrik., Math. Ann. 100 (1928), 75–163 (German).
30. L.C. Noll and D.I. Bell, n-clusters for 1 < n < 7., Math. Comput. 53 (1989), no. 187, 439–444.
31. R.C. Read, Every one a winner or how to avoid isomorphism search when cataloguing combinatorial configura-

tions, Ann. Discrete Math. 2 (1978), 107–120.
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35. P. Stănică, S. Sarkar, S.S. Gupta, S. Maitra, and N. Kar, Counting heron triangles with constraints, INTEGERS

13 (2013), no. A3, pp. 17.
36. S.M. Ulam, A collection of mathematical problems, (Interscience Tracts in Pure and Applied Mathematics. No.

8.) New York and London: Interscience Publishers. XIII, 150 p., 1960.
37. P. Yiu, Heronian triangles are lattice triangles, Am. Math. Mon. 108 (2001), no. 3, 261–263.

SASCHA KURZ, DEPARTMENT OF MATHEMATICS, PHYSICS AND INFORMATICS, UNIVERSITY OF BAYREUTH,
BAYREUTH, GERMANY

E-mail address: sascha.kurz@uni-bayreuth.de

LANDON CURT NOLL, CISCO SYSTEMS, SAN JOSE CALIFORNIA, USA
E-mail address: ncluster-mail@asthe.com

RANDALL RATHBUN, GREEN ENERGY TECHNOLOGIES, LLC, MANNING, OREGON, USA
E-mail address: randallrathbun@gmail.com

CHUCK SIMMONS, GOOGLE, MOUNTAIN VIEW, CALIFORNIA, USA
E-mail address: csimmons@google.com


