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1  Abstract 

 

In this thesis field-cycling nuclear magnetic resonance relaxometry (FC NMR) is applied to 

measure the spin-lattice relaxation time, 1T , of proton spins in condensed matter not only at 

different temperatures but also at different Larmor frequencies,  . The results are presented 

by means of six publications, from which the first four deal with viscous molecular liquids 

while the latter two address melts of linear polymers of various length or molecular mass, M . 

The spin relaxation rate, 11 1 TR  , reflects the molecular dynamics via the fluctuation of a 

certain interaction. In the present case of protons the spins relax due to magnetic dipole-dipole 

coupling which may be intra- or intermolecular. Because of the latter the proton relaxation is 

not only governed by molecular reorientation but also by translation. Contrary to the common 

assumption that the intramolecular interactions are the most relevant for proton relaxation, it 

even turns out that especially at low frequencies the relaxation rate actually is dominated by 

the intermolecular contribution. 

The rate dispersion curves,  1R , obtained by FC 
1
H NMR can directly be compared to the 

results of other techniques like dielectric spectroscopy (DS) or depolarized light scattering 

(LS). With respect to DS and LS, both solely probing molecular reorientation,  1R  shows 

an enhanced intensity at low frequencies for most molecular liquids. This thesis shows that 

this feature is due to translational dynamics which are only seen by 
1
H NMR in combination 

with a large spectral separation between both types of dynamics. Furthermore it is 

demonstrated that, besides rotational time constants, rot , one can extract self-diffusion 

coefficients, D , from the rate dispersion,  1R . This can be done in a simple, model-

independent way exploiting the universal translationally driven behavior of  1R  at low 

frequencies, which is a consequence of the Fickian diffusion limit at long times. The extracted 

D  show a good agreement with results from field gradient (FG) NMR up to now the most 

prominent technique to access translational diffusion. To reveal the contribution of intra- and 

intermolecular relaxation in liquids isotope dilution experiments were done which allow the 

separation of the total rate,  1R , into its two respective components,  intra,1R  and 

 inter,1R . It is shown that the intermolecular relaxation in 
1
H NMR is not negligible at all 

even at high frequencies, because, besides the purely translational contribution,  inter,1R  also 

contains intermolecularly reflected rotation. This is due to spins placed off the molecules’ 
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center, a phenomenon called ‘eccentricity effect’, and is demonstrated in neat liquids for the 

first time. 

Finally it is shown that from the universal translational low-frequency behavior it is also 

possible to extract D  in the case of polymer melts. Here self-diffusion data in agreement to 

FG NMR could be collected up to molecular masses where the entanglement of the polymer 

chains already is established. In addition FC NMR provides time constants, s , on the 

segmental motion which, in combination with the self-diffusion data, give access to the 

collective polymer dynamics via an ‘iso-frictional’ quantity, sD , which can be checked 

against common theories. Depending on the molecular mass three regimes could be identified: 

the simple liquid behavior, the development of Rouse modes and the final onset of the 

entanglement regime. Thereby, the pure Rouse regime is only seen in a very small M  

interval as the Rouse modes slowly evolve with growing M  and subsequently entanglement 

is established for M  exceeding the entanglement molecular mass. 

In summary, this thesis shows that the intermolecular relaxation channel of the proton spin 

relaxation is not to be considered as a peculiarity which has to be overcome when collecting 

information on reorientational/segmental dynamics in condensed matter, but that this feature 

provides additional information which gives access to translational motion. Thus FC 
1
H NMR 

is a powerful tool for the examination of molecular dynamics in condensed matter and may 

become a serious competitor to FG NMR regarding monitoring of translational diffusion in 

neat systems. 
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2  Kurzdarstellung 

 

In dieser Arbeit wird mit Hilfe von Kernspinresonanz Relaxometrie (FC NMR) die Spin-

Gitter-Relaxationszeit, 1T , von Protonenspins in kondensierter Marterie nicht nur bei 

verschiedenen Temperaturen, sondern auch bei verschiedenen Larmorfrequenzen gemessen. 

Die Ergebnisse werden anhand von sechs Publikationen präsentiert, von welchen die ersten 

vier viskose, molekulare Flüssigkeiten behandeln, während sich die letzten beiden mit 

Schmelzen linearer Polymere von diverser Länge beziehungsweise Molekulargewicht, M , 

befassen. Die Spinrelaxationsrate, 11 1 TR  , spiegelt die molekulare Dynamik durch 

Fluktuation einer bestimmten Wechselwirkung wider. Im aktuellen Fall von Protonen 

relaxieren die Spins aufgrund von magnetischer Dipol-Dipol-Kopplung, welche intra- oder 

intermolekular sein kann. Wegen letzterer wird die Protonenrelaxation nicht nur von 

molekularer Reorientierung beeinflusst, sondern auch von Translation. Im Gegensatz zur 

üblichen Annahme die intramolekularen Wechselwirkungen seien am maßgeblichsten für die 

Protonenrelaxation, stellt sich heraus, dass besonders bei niedrigen Frequenzen der der 

intermolekulare Anteil sogar dominiert. 

Die Ratendispersionskurven,  1R , welche mit FC 
1
H NMR gemessen wurden, können 

direkt mit Ergebnissen von anderen Techniken, wie dielektrische Spektroskopie (DS) oder 

depolarisierte Lichtstreuung (LS) verglichen werden. Mit Hinsicht auf DS und LS, welche 

beide nur die molekulare Reorientierung sondieren, zeigt  1R  bei den meisten molekularen 

Flüssigkeiten eine vergrößerte Amplitude bei kleinen Frequenzen. Diese Arbeit zeigt, dass 

diese Eigenschaft aufgrund der Translationsdynamik, die nur von 
1
H NMR erfasst wird, in 

Kombination mit einer großen spektralen Trennung zwischen den beiden Arten von Dynamik 

auftritt. Außerdem wird aufgezeigt dass, neben rotatorischen Zeitkonstanten, rot , auch 

Selbstdiffusionskoeffizienten, D , aus der Ratendispersionskurve,  1R , gewonnen werden 

können. Dies kann in einer einfachen, modelunabhängigen Prozedur durchgeführt werden, 

welche das universelle, translatorisch bestimmte Verhalten von  1R  bei kleinen Frequenzen 

ausnutzt, welches die Konsequenz des Grenzverhaltens von Fickscher Diffusion bei langen 

Zeiten ist. Die gewonnen D -Werte zeigen eine gute Übereinstimmung mit den Ergebnissen 

von Feldgradienten-(FG) NMR, bis jetzt die bekannteste Methode um Translationsdiffusion 

zu erfassen. Um die Anteile von intra- und intermolekularer Relaxation in Flüssigkeiten zu 

klären wurden Isotopenverdünnungsexperimente durchgeführt, welche die Trennung der 



 

4 

totalen Rate,  1R , in ihre jeweiligen Komponenten,  intra,1R  und  inter,1R , ermöglicht. Es 

wird belegt, dass sogar bei hohen Frequenzen die intermolekulare Relaxation bei 
1
H NMR 

überhaupt nicht vernachlässigbar ist, weil  inter,1R  neben dem reinen translativen Beitrag 

auch intermolekular vermittelte Rotation enthält. Das geschieht wegen Spins, die unzentriert 

auf dem Molekül platziert sind, ein Phänomen, welches ‘Exzentrizitätseffekt‘ genannt wird 

und zum ersten Mal in reinen Flüssigkeiten gezeigt wird. 

Schließlich wird gezeigt, dass es auch im Fall von Polymeren möglich ist mit Hilfe des 

universellen, translatorisch bestimmten Verhaltens bei kleinen Frequenzen D  zu bestimmen. 

Dabei konnten mit FG NMR übereinstimmende Daten für die Selbstdiffusion bis zu 

Molekulargewichten gesammelt werden, wo bereits die Verschlaufung der Ketten eingesetzt 

hat. Weiterhin stellt FC NMR Zeitkonstanten, s , für die Segmentdynamik bereit, welche 

kombiniert mit den Selbstdiffusionsdaten den Zugriff auf die kollektive Polymerdynamik 

mittels einer Größe, sD , ermöglicht, welche sich auf gleiche segmentelle 

Reibungskoeffizienten bezieht und mit gängigen Theorien verglichen werden kann. Je nach 

Molekulargewicht konnten drei Regimes identifiziert werden: Das Verhalten der einfachen 

Flüssigkeit, die Entwicklung von Rousemoden und schließlich das Einsetzten der 

Kettenverschlaufung. Dabei ist das Rouseregime nur über ein kleines Intervall sichtbar, da 

sich die Rousemoden nur langsam mit steigendem M  entwickeln und bald darauf die 

Verschlaufung einsetzt, wenn M  ein bestimmmtes Gewicht überschreitet. 

Zusammengefasst zeigt diese Arbeit, dass der intermolekulare Relaxationsweg der 

Protonenspins nicht als eine Eigenart gesehen werden sollte, welche überwunden werden 

muss, wenn man Information zu Reorientierungs-/Segmentdynamik in kondensierter Materie 

sammelt, sondern dass diese Eigenschaft zusätzliche Informationen bereitstellt, die es 

erlauben Translationsdynamik zu erfassen. Deshalb ist FC 
1
H NMR eine leistungsfähige 

Methode zur Untersuchung der molekularen Dynamik in kondensierter Materie und könnte im 

Feld der Beobachtung von translatorischer Dynamik in reinen Systemen eine ernsthafte 

Konkurrenz zur FG NMR werden. 
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3  Extended Abstract 

 

3.1  Introduction 

 

Nuclear magnetic resonance (NMR) relaxometry is a powerful tool for studying dynamics in 

molecular liquids. The spin-lattice relaxation rate, 11 1 TR  , is closely connected to the 

spectral density which itself is the Fourier transform of a correlation function. As the latter 

describes the dynamics, spin relaxometry provides access to molecular motion. While in the 

very beginning of NMR the nucleus most studied was 
1
H, later people went more and more 

towards other nuclei like 
2
H or 

13
C. A reason for this is that the proton relaxation is governed 

by two-particle interactions where the second particle either can be situated on the same 

molecule (i.e. intramolecular relaxation) or on a different one (i.e. intermolecular relaxation). 

Hence the proton relaxation in molecular liquids generally consists of an intramolecular 

contribution, 
intra,1R , and an intermolecular one, 

inter,1R : 

 

inter,1intra,11 RRR           (1) 

The first contribution merely reflects molecular reorientation the latter additionally contains 

translational motion. Often it was argued that due to the short range nature of the dipole-

dipole interaction, which is responsible for proton relaxation, a given proton will feel 

primarily protons on the same molecule and thus 
1
H NMR measures essentially rotational 

diffusion, an assumption which will be refuted by this thesis. Nevertheless, the intermolecular 

contribution remained long unexplored in detail and, as said, people often avoided these 

uncertainties by measuring nuclei with a pure intramolecular relaxation mechanism like 
2
H or 

13
C, which only reflect rotational diffusion like in the case of other techniques, e.g. dielectric 

spectroscopy (DS) and depolarized light scattering (LS). However, contrary to LS and DS 

common NMR relaxometry only is able to probe the spectral density at one single frequency. 

With the advent of the fast (i.e. electronic) field cycling (FC) technique this changed and it 

became possible to record the rate dispersion,  1R , with 1R  taken at different frequencies, 

 . Furthermore the commercial availability of Stelar Spinmaster FFC 2000 spectrometers at 

Stelar s.r.l. since 1997 made FC NMR relaxometry (the abbreviation ‘FC (
1
H) NMR’ 

henceforth refers to relaxometry) gain new momentum. Because this type of spectrometer is 

best suited to measure protons, especially 
1
H NMR relaxometry was rediscovered. Its 
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frequency range for protons is MHz202kHz10   . Hence the Stelar FFC 

relaxometers are well suited to measure viscous liquids. But also the dynamics of more 

complex systems like polymers are located in this frequency range and with the introduction 

of that commercial relaxometer people turned to a greater extent to systems like these instead 

of reexamining the rather old matter of proton relaxation in molecular (simple) liquids.  

To overcome the still narrow frequency range covered by FC NMR in preceding publications 

of the Rössler group in Bayreuth the measured rate dispersions,  1R , were transformed into 

the so-called ‘susceptibility representation’,     1NMR R , and then master curves, 

 rotNMR   , were constructed by scaling the frequency axis with the rotational time constant, 

rot . The latter procedure assumes ‘frequency-temperature-superposition’ (FTS) to hold and 

was rarely applied to NMR results so far but is known, e.g., from rheology. The susceptibility 

master curves cover several decades in frequency and were compared to those from DS and 

LS. Hereby an additional contribution of the FC 
1
H NMR results at low frequencies was 

found in comparison to the other techniques solely detecting molecular reorientation. Own 

preliminary work covering several liquids confirmed that this low-frequency extra 

contribution even is the usual case. This provoked the question what process is reflected there 

and how it is connected to the fact that 
1
H NMR detects, besides intramolecular relaxation, 

also intermolecular one. Among other experiments the isotope dilution technique can clearly 

answer this question as it separates intra- and intermolecular relaxation contributions. Another 

interesting fact is where translational and rotational motion are respectively located, i.e., 

whether they are spectrally separated which facilitates their separation applying appropriate 

models. It is the purpose of this thesis to clarify these questions and show how to even benefit 

from the intermolecular relaxation contribution in 
1
H NMR, e.g., when determining self-

diffusion coefficients, D . 

In Pub. 1 rate dispersion curves,  1R , of glycerol obtained by FC 
1
H NMR are described by 

applying a model assuming a translational process besides the rotational contribution. The 

extracted D  as well as the rotational time constants, rot , are compared with those from other 

techniques. Pub. 2 experimentally clarifies the shape of the intermolecular relaxation rate 

dispersion,  inter,1R , in glycerol by an isotope dilution experiment (cf. Sec. 3.1.7). Pub. 3 

exploits the universal translationally driven behavior of  1R  at low frequencies, which is a 

consequence of the translational diffusion limit at long times, to determine D  in a model 

independent way (cf. Sec. 3.1.8). The results obtained on various liquids are compared to the 

ones from field gradient (FG) NMR, up to now the most prominent technique to access 
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translational diffusion. Pub. 4 contains an isotope dilution experiment on o-terphenyl (OTP) 

one of the few systems whose results agree with DS as they show no distinct additional low-

frequency contribution. Additionally D  was determined for further liquids and a new type of 

master curve in the rate representation based on the translational diffusion is introduced (cf. 

Sec. 3.1.8). Finally, in Pub. 5 and Pub. 6, the model independent approach to extract D  is 

applied to polymer melts. Again the results are compared with FG NMR.  

By means of these six publications this thesis will show that the intermolecular relaxation 

channel of proton spins is not a handicap of 
1
H NMR but it is an enhancement from which 

additional information on translational diffusion in condensed matter can be obtained. It will 

show that FC 
1
H NMR is capable to access, besides rotational, also translational molecular 

dynamics which may render it a serious competitor with FG NMR at least in neat systems. 

 

3.1.1  Phenomenology of Rotational Dynamics in Liquids 

Besides NMR, depolarized light scattering (LS) [1-4] and various other techniques, especially 

dielectric spectroscopy (DS) [5-7] has a longstanding tradition in the study of reorientational 

dynamics in molecular liquids. DS measures the complex dielectric permittivity, 

     .iˆ    Most descriptive hereby is the dielectric loss,    , which is given by 

the dielectric susceptibility,    , and is connected to the spectral density via the fluctuation-

dissipation theorem [8]: 

 

      DSJ         (2) 

The spectral density is the Fourier transform of the correlation function, )1(C , [9]: 

      ttCJJ tde21 i)1()1(

DS

 



   

where 

         0coscos 11

)1(  PtPtC         (3) 

if neglecting cross relaxation. The brackets  denote the ensemble average,   xxP 1  the 

Legendre polynomial of rank 1l  and   the orientation of the molecular dipoles. Thus the 

molecular reorientation in liquids is essentially probed via the correlation of the projection of 

the molecular dipoles. Commonly correlation functions are normalized to give   10 C , as 

consequence their Fourier transform yields normalized spectral densities: 

  2d
0

 


J  with   rot0 J , where rot  is the time constant giving the time scale of the 

decay of the reorientational correlation. 
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Like in FC NMR most DS experiments are done on viscous or supercooled liquids since 

standard equipment usually operates at frequencies GHz12   . Figure 1a exemplarily 

shows typical results on two liquids, namely glycerol and 3-fluoroanilin by plotting their 

dielectric losses,   , taken at different temperatures versus frequency,  . 
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Figure 1a: The dielectric loss,    , of glycerol (blue open squares, data taken from Ref. [7]) and 3-

fluoroanilin (red open squares, data taken from Ref. [10]) at temperatures as indicated. The solid lines 

are fits using Eq. 6, the dotted lines are power laws. Figure 1b: Master curves for glycerol (184 K - 

288 K) and 3-fluoroaniline (172 K - 187 K) obtained by plotting the dielectric loss versus the reduced 

frequency, rot ; inset: squares: corresponding rot  versus inverse temperature, lines: accessory 

data from Refs. [4] and [6]. 

 

The most prominent feature of the curves is the main peak commonly known as α-peak. The 

α-process is associated with the structural relaxation in the liquid, which is observed in terms 

of molecular reorientation by DS. Therefore the rotational correlation times obtained by DS 

are often labeled as  . For molecular liquids  rot  is valid, whereas in polymers   does 

not refer to the reorientation of a whole molecule, as the α-process is associated with 

segmental dynamics in this case (cf. Sec. 3.1.9). People early noticed that the rotational 

dynamics in liquids cannot be described in terms of isotropic rotational diffusion, which 

results in an exponential correlation loss and finally yields the ‘Debye spectral density’ (cf. 

Figure 4, black dotted line, as susceptibility): 

 

 
 2rot

rot
Debyerot,

1 





J

        (4)

 

The rotational time constant is given by: 
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 

  rot

rotrot
1

1

Dll

l


          (5) 

Its connection to the rotational diffusion coefficient, rotD  (which is connected to the mean-

square angular deviation: tD  rot

2 ), depends on the rank, l , of the associated 

correlation function. In case of DS 1l  (cf. Eq. 3) and thus    rot

1

rotrot 21 D . 

In contrast to rotational diffusion, the experimental shape around the main peak can be 

described with the phenomenological function which was proposed by Davidson and Cole in 

1951 [11, 12] (CD function; cf. Figure 1a, solid lines and Figure 4, red dotted line, as 

susceptibility): 

 

   
  

  22

CD

CD
rotDS

1

arctansin










 JJ        (6) 

Here, CD  is a time constant and 10    is a parameter which controls the asymmetric 

broadness of the respective susceptibility peak. For 1  the expression is reduced to the 

Debye spectral density (Eq. 4). The function can be interpreted as some sort of cooperative 

rotational diffusion which results in a retarded, non-exponential correlation loss. This sort of 

reorientation is addressed as ‘rotational dynamics’ in this thesis. In fact the CD function is 

very similar to the Kohlrausch function, which is given by a stretched exponential correlation 

loss in the time domain, where the stretching parameter is commonly also labeled as 

10    [5]. In both susceptibility curves this parameter manifests itself as power-law 

   at the high frequency-flank of the susceptibility peaks (cf. Figure 1a, solid lines) while 

the low-frequency side agrees among the curves regardless of the value of   (cf. Figure 4, 

dotted lines). The CD function can mathematically be interpreted as a superposition of Debye 

spectral densities weighted with a certain distribution of correlation times. Hence, in the 

following rot  is defined as the mean correlation time, which in the case of the CD function is 

given by: 

 

CDrot            (7) 

As a liquid is cooled down (and crystallization is avoided) it may get in the supercooled 

regime and hereby the dynamics slows down. As seen in Figure 1a the main relaxation 

process (α-peak) shifts towards lower frequencies with decreasing temperature. When its 

shape remains unchanged by a variation of temperature as one may already anticipate visually 

from Figure 1a one can collapse curves taken at different temperatures onto a common master 
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curve,  rot  , by scaling the frequency axis with the appropriate time constants, rot . This 

approach is well known, e.g. from rheology [13] and is believed to reflect a fundamental 

feature of cooperative dynamics in liquids and supercooled liquids [14, 15]. Commonly it is 

referred to as ‘frequency-temperature superposition’ (FTS). Figure 1b demonstrates its 

applicability to the DS measurements on glycerol (blue lines) and 3-fluoroaniline (red lines). 

The measurements on glycerol were taken between K184  and K288  the ones on 3-

fluoroaniline between K172  and K187  and all curves coincide in the area of the α-peak 

which proofs the validity of FTS regarding the α-process.  

For both systems the dependence of the corresponding rot  on inverse temperature is shown in 

the inset of Figure 1b where again the blue symbols refer to glycerol and the red ones to 3-

fluoroaniline. With the accessory data from Refs. [4] and [6] (lines) it is obvious that rot  is 

not linear in this representation versus T1 . This demonstrates that  Trot  generally cannot be 

described in terms of a thermally activated process (i.e. Arrhenius law). The behavior of 

 Trot  can be interpreted as a rising apparent activation energy when the system is driven 

deeper into the supercooled regime [4, 16]. However, it can fairly well be described by the 

phenomenological Vogel-Fulcher-Tammann (VFT) function [17-19]: 

 

   0e0rot

T-TB
T            (8)

 

where 0 , 0T  (with g0 TT  ; gT : cf. below) and B  are parameters depending on the particular 

system. 

By further cooling a supercooled liquid its rotational correlation time will eventually reach a 

value of s100rot  . The respective temperature conventionally defines the glass transition 

temperature, 
gT , where the viscosity is such high ( sPa1012  ) that the system is to be 

considered a solid. As the liquid virtually undergoes no structural changes the glass transition 

is deemed to be a mere kinetic phenomenon. 

In Figure 1a several other relaxation features are visible. At high frequencies the dielectric 

loss of glycerol (blue open squares) undergoes a change in the power law behavior from 

   to 
   with   . This additional process is called excess wing. An examination of 

the master curve of glycerol (cf. Figure 1b, blue lines) shows that FTS essentially also holds 

with respect to the excess wing. In the case of 3-fluoroaniline the situation is different. In 

Figure 1a (red open squares) even a distinct peak is seen at high frequencies reflecting a 

relaxation machanism usually called β-process. Figure 1b (red lines) demonstrates that FTS 

fails with the β-process. The reason for that is a different dependence of the time constants on 

temperature: Unlike the α-process the β-process is describable by an Arrhenius behavior 
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which causes the spectral separation between them to increase with decreasing temperature. 

Since all liquids either show a mere excess wing or an additional β-process, Kudlik et al. [6] 

suggested a classification into type-A systems and type-B systems, respectively. The origin of 

these processes and their connection among each other and to the main relaxation process has 

been a matter of research and debate since nearly fifty years now. As this thesis focuses 

besides molecular reorientation mainly on the translational diffusion in liquids and 

supercooled liquids, which is found at lower frequencies than the rotational main peak, we 

will not go further into the field of the secondary processes. 

Finally, in Figure 1a there is a crossover of the glycerol curve taken at K205  to a power-law 

behavior 
1  (indicated by a dotted blue line) at lowest frequencies. This is an intrinsic 

peculiarity of the DS technique itself which stems from the conductivity contribution of ionic 

impurities. In favorable cases one may subtract the contribution as it was done for the glycerol 

curve in Figure 2b, which reaches to the lowest frequencies. There are also approaches to get 

rid of the impurities, e.g. the ‘DC cleaning’, an application of high DC voltage to the sample 

before measuring [20]. In spite of these counter-measures its occurrence limits the accessible 

range in the low-frequency side of the α-peak. Of course, NMR is not hampered by this issue 

and thus may be well suited for measurements in this regime. 

 

3.1.2  NMR Relaxation (intramolecular) and Rotational Dynamics 

The relaxation of spins with a dipole moment (e.g. the 
1
H spin) is mediated by fluctuations of 

the diplole-dipole interaction with other spins. These arise due to alternation of length, r , and 

angle,   ,  (given by polar angle,  , and the azimuthal angle,  ), of the spin-to-spin 

vector with respect to the external field which stems from the molecular motion. Hence, the 

spin-lattice relaxation rate, 1R , gives information about the molecular dynamics. Analogous 

to DS it is expressed in terms of time correlation functions or spectral densities. But here 

terms due to dipole-dipole coupling, which is a tensorial interaction, enter and the correlation 

function is of rank 2l . Assuming that no internal degrees of freedom exist in the molecule, 

i.e. that the molecule is rigid, for the intramolecular relaxation (i.e. relaxation due to coupling 

between spins located on the same molecule) one merely has to correlate the angle [21, 22]: 

 

         0,2,-2

)(2,

intra  mm

m YtYtCtC       (9) 

mY ,2  denotes a spherical harmonic of rank 2l . In the case of liquids, which are isotropic, 

 tCintra  becomes independent of m  and of the azimuthal angle,  . In this case it can be 
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simplified to an expression which only differs from the dielectric one (cf. Eq. 3) by entering 

of the orientation via Legendre polynomials, lP , of rank 2l  instead of rank 1l  [21]: 

 

           0coscos 22

(2)

intra  PtPtCtC       (10) 

The Fourier transform of the correlation function yields the spectral density, 

      2

intra JJ  , which again is normalized to 2 . 

In the case of dipolar coupling of like spins (i.e. homonuclear coupling, AA) time-dependent 

second order perturbation theory gives the famous Bloembergen-Purcell-Pound (BPP) 

expression for the intramolecular relaxation rate [21, 23]: 
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       (11) 

Here, AI  is the spin quantum number, A  the gyromagnetic ratio and ir  the distance of a 

reference nucleus A to the i -th nucleus A . The summation goes over all other nuclei A on 

the molecule. The Larmor frequency is given by rAB   with rB  being the external 

magnetic field in which the spin of nucleus A relaxes (i.e. relaxation field). In the case of 

dipole-dipole coupling to different spins (i.e. heteronuclear coupling, AB) the expression 

(Solomon-Bloembergen-Morgan (SBM) expression) is (assuming spin B to be always in 

thermal equilibrium) [21, 22, 24]: 
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where BI  is the spin quantum number of the nucleus B and B  its gyromagnetic ratio. The 

summation goes over all nuclei B of the molecule. Like in Eq. 11, rAB  . Assuming the 

additivity of homo- and heteronuclear relaxation rates the whole intramolecular relaxation rate 

is given by       AB

intra,1

AA

intra,1intra,1 RRR   where more terms (i.e.  AC

intra,1R ,  AD

intra,1R ,…) 

follow in the case of further other relevant nuclei (i.e., C, D,…) being present. The 

intramolecular coupling constants ( AA

intraK , AB

intraK , …) are chosen to give with   rotintra 0 J : 
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    rotintrarot

AB

intra

AA

intraintra,1 0  KKKR         (13) 

As already said, besides  intra,1R , relaxation due to interactions of spins situated on different 

molecules with an intermolecular relaxation rate,  inter,1R , also does occur so that that the 

overall rate is given by [21]: 

 

      inter,1intra,11 RRR          (14) 

For the sake of simplicity when comparing results from 
1
H NMR to other techniques probing 

rotation it was often argued that the intermolecular part is negligible and in first order 

    intra,11 RR   holds. The most important reason given was the short range nature of the 

dipole-dipole interaction. Because of it one would expect the major contribution to relaxation 

from the nearest protons most probably belonging to the same molecule [25]. This thesis will 

refute this assumption and clarify the impact of  inter,1R  on the overall  1R . 

 

3.1.3  NMR and other Techniques 

For a long time the role of intermolecular relaxation in 
1
H NMR stayed unexplored in detail 

and people turned to nuclei which only provide an intramolecular relaxation channel such as 

2
H or 

13
C to exclude translational influences on the spectral densities measured and so to 

provide a better comparability to other techniques like DS or LS solely probing rotation. 

While 
13

C predominantly relaxes via dipole-dipole interaction with the neighboring, directly 

bonded protons, regarding 
2
H NMR the spin relaxation is mediated by the coupling of the 

deuteron’s quadrupole moment to an electric field gradient [22]. In molecular systems this 

gradient stems from charge distributions in the bonds and thus the relaxation mechanism of 

2
H, just like the one of 

13
C, is intramolecular solely reflecting the reorientation of the bond(s) 

and thus of the whole presumably rigid molecule. The connection between the 
2
H relaxation 

rate and the spectral density, 
intraJ , is analogous to Eq. 11, only the prefactor has to be 

adapted due to the different kind of coupling. For 
13

C Eq. 12 applies. 

As DS provides information on rotational dynamics based on a rank 1l  correlation function 

and NMR does in terms of rank 2l  it is a crucial point how this influences the results. 

Concerning the rotational time constants usually a good agreement (2)

rot

(1)

rot    is found in spite 

of the theoretical prediction of 3(2)

rot

(1)

rot   (cf. Eq. 5) for the case of isotropic rotational 

diffusion [26]. For example, Dries et al. [27] compared 
2
H NMR measurements on o-

terphenyl (OTP) with results from DS and found equal 
rot  in the liquid and the moderately 

supercooled regime. Blochowicz et al. [28] yielded analogue results on glycerol and tricresyl 
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phosphate. As, like 
2
H NMR, LS also probes molecular reorientation in terms of a rank 2l  

correlation function soon also comparisons with results from LS were done: Brodin and 

Rössler [29] published LS results on glycerol and rot  is found to be alike the one from DS. 

The same is reported by Petzold and Rössler on OTP [30]. Just recently, Schmidke et al. [4] 

demonstrated the consent of rot  from LS to other techniques (particularly DS and NMR) for a 

huge variety of liquids. Besides the above mentioned liquids it contains for example 2-methyl 

tetrahydrofuran, ethyl benzene, toluene, propylene glycol, propylene carbonate, 

benzophenone, salol and several others. As proposed by the experiments, in the following we 

will not distinguish between rot  obtained by different techniques or in terms of different 

ranks in this thesis: 
rot

(2)

rot

(1)

rot    . 

Concerning the spectral shapes of  )1(J  and  (2)J  in the regime of the α-relaxation the 

situation is more difficult. In the case of LS the spectra can be directly compared to these 

from DS as done in Ref. [29] with glycerol. Like in DS the α-peak in the susceptibility of LS 

can be described with a CD function (Eq. 6). However it is broader which corresponds to a 

smaller value   in the case of LS. A similar result is given in Ref. [28] for 
2
H NMR versus 

DS for glycerol. In Ref. [31] results on tricresyl phosphate obtained by DS, photon correlation 

spectroscopy (PCS) and 
31

P NMR are compared in susceptibility representation. Like LS and 

2
H NMR the latter two reflect molecular reorientation in terms of rank 2l . As the 

employed 
31

P NMR data consisted of stimulated echo decays [32] the direct output of 
31

P 

NMR was a correlation function like in the case of PCS. Hence for comparison to DS the data 

had to be Fourier transformed, a process which could be omitted for 
31

P NMR if it was 

experimentally possible to do relaxometry at different Larmor frequencies. Again the 

susceptibility peaks of 
31

P NMR and DSC show a broadening at high frequencies compared to 

DS. It seems that molecular reorientation is reflected as a broader peak in terms of rank 2l . 

Nevertheless, as the α-relaxation seen by NMR can be described with Eq. 6 using an 

appropriate  , from now on we describe the intramolecular spectral density also with the CD 

function:     rotintra JJ  . In Pub. 2 and Pub. 4 it will be demonstrated that this also holds 

for the intramolecular part of the proton relaxation. 

As said, in NMR relaxometry for a direct comparison of the spectral shapes obtained by 

techniques like DS and LS one needs frequency dependent relaxation data,  1R . As, besides 

a few exceptions [33, 34], most of the FC NMR data are still collected via proton relaxation, it 

is an objective of this thesis to show that the intermolecular relaxation pathway of 
1
H NMR 

does not hamper the gathering of information on rotational motion in liquids but provides 
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additional ones on translation. This is achieved via extensively measuring the frequency 

dispersion of the proton relaxation rate  1R  in various systems by FC 
1
H NMR. 

 

3.1.4  Field-Cycling NMR Relaxometry – Development & State of the Art 

First frequency dependent 
1
H NMR measurements on neat liquids were published by the 

group of Noack [35, 36]. Employing a spectrometer that operated on separate channels they 

could measure at 12 different Larmor frequencies   in the range of kHz50  to MHz160 . As 

the NMR signal amplitude follows a dependence 2  they had to use a ml50 (!) sample of 

liquid to get a satisfying signal-to-noise ratio at the lowest frequencies [37]. This fact already 

indicates the problems of acquiring relaxation dispersion curves on a conventional way. 

However, the group of Noack accomplished a then unmatched abundance of data on glycerol 

but had problems to describe it with models available at those days. After unsuccessfully 

trying with several rotational models they eventually turned to the translational spectral 

density given by Abragam [21] (cf. Eq. 20, Sec. 3.1.6). Claiming in Ref. [35] that proton 

relaxation due to rotation prevails as the diffusion coefficients are small in glycerol, while 

suggesting in Ref. [36] that relaxation is mostly driven by diffusion Hausser and Noack leave 

the reader in confusion and conclude that there are still open questions. However the 

statement that in contrast to DS the CD spectral density is not sufficient to describe the proton 

relaxation in molecular liquids is still up-to-date as it is confirmed by more advanced NMR 

techniques like FC NMR as done in a publication by Gainaru et al. [25], in an own 

preliminary report [38] as well as in the present work, where the reasons for this more 

complex spectral shape revealed by 
1
H NMR relaxometry will be analyzed. 

The crucial point of FC NMR is the switching of the external magnetic field. This allows the 

relaxation to take place at a desired relaxation field, rB , while the signal can be acquired at a 

rather high detection field, dB , to get a large signal amplitude. This ‘field cycling’ can either 

be accomplished mechanically or electronically. In the first case the sample is moved between 

sites bearing different fields (sample shuttle technique) [39-41]. This results in rather long 

switching times (i.e. the time when the desired field is achieved and stable) of about ms200  

which constitutes the lower limit of accessible relaxation times. On the other hand, as 

cryomagnets can be employed one can measure at comparatively high fields which also 

entails a better spectral resolution.  

The electronic method, i.e. ‘fast field cycling’ (henceforth simply abbreviated ‘FC’) NMR 

uses electromagnets where the current is tuned. Here the switching time is on the order of 
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some milliseconds but it is not possible to reach field strengths like accomplished by 

cryomagnets. The pioneering work was done in the eighties by Noack [42] and later by 

Kimmich and Anoardo [43]. However, this technique gained genuine momentum not until the 

introduction of a commercial FC NMR spectrometer by Stelar s.r.l., Italy in 1997.  

The instrument operating in Bayreuth is the Stelar Spinmaster FFC 2000 [44] and the data 

presented in this work where measured in a proton frequency interval of 

MHz20kHz10  . A few measurements at very low frequencies were done in Darmstadt 

by a home-built spectrometer [45, 46] which allows to reach frequencies as low as 

Hz200 . These measurements are contained in Pub. 5 and Pub. 6, where the objective was 

to cover slow polymer dynamics. 

 

 

 

Figure 2: Schematic setup of the Stelar Spinmaster FFC 2000 spectrometer 

 

The principal mode of operation of the Spinmaster spectrometer is given in Figure 2. The 

external field, B , is generated by the main solenoid coil. It is connected to the power supply 

via MOSFETs which allow switching its current. It can reach values up to A350 . A part of 

the MOSFETs has a contrary polarity that allows compensating overshooting. So magnetic 

fields up to T5.0  can be set and stabilized within at most ms3 . The high current requires a 

cooling of the main coil and the MOSFETs. This happens with two independent, thermally 

coupled loops. The first one consists of a special cooling fluid (Solvay Galden) which 

surrounds the coil and is also pumped through a copper structure on which the MOSFETs are 

set. This fluid passes a heat exchanger that transfers the heat to a tap water circuit. 

The probehead is equipped with a saddle coil that allows to introduce the glass tube with the 

sample directly from the top of the main magnet. The walls of the probehead are a glass 
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dewar which enables temperature control to maintain temperatures between K160  and K420  

with an accuracy better than about K1 . Above room temperature a dried air flow is heated, 

below evaporated liquid nitrogen is used instead. By a software provided by Stelar one can 

control the external field, apply pulses and read out the signal. 

The standard procedure to obtain the rate dispersion is implemented in the software. It 

consists of many cycles running a basic sequence. One is shown exemplarily in Figure 3. First 

the sample is polarized in a high polarization field, pB . This field is hold sufficiently long that 

equilibrium magnetization is reached, i.e. several times of the relaxation time at the 

polarization field,  pH1 BT   . As noted in Sec. 3.1.2 the frequency,  , is given by B  via 

the gyromagnetic ratio, H  (for protons in this case). After maintaining pB  long enough B  is 

switched to a lower field, rB , and M  will decay towards the new equilibrium value,  M , 

on the timescale of  rH1 BT   . After a delay time,  , a 90° pulse is applied at a high field, 

dB . The magnitude of the acquired free induction decay (FID) is  M . Via a variation of 

  one obtains the whole magnetization curve which usually is monoexponential for 
1
H. This 

kind of fit yields    rH11 1 BTR   . Doing this with different rB  one can measure  1R  up 

to about MHz92   . 

 

 

Figure 3: Basic prepolarized sequence 

 

At higher fields one uses the so called ‘nonpolarized sequence’ which equilibrates the sample 

without external field and then observes the build-up of magnetization. By the combination of 

both kind of sequences it is possible to cover a proton frequency range of 

MHz20kHz10  . While the upper limit is given apart from the power supply by the 

performance of the main coil and the MOSFETs and the capacity to cool them, the lower one 

is given by the magnetic earth field and stray fields in the laboratory mostly from surrounding 

cryomagnets in the present case. In Darmstadt the home-built spectrometer is actually able to 

measure from MHz30  down to Hz200  by employing an active stray field compensation [45, 

46]. 
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However, depending on the relaxation rate dispersion the lowest field may also be limited by 

the switching time as the relaxation time,     11 1 RT  , decreases with decreasing 

frequency and may eventually reach values in order of ms1 . In this case the magnetization 

reaches its equilibrium before one even can start acquiring the FID. 

 

3.1.5  Data Representation and Refinement 

In order to directly compare the results from FC NMR to others, especially from DS, it is 

useful to employ a alternative way of data representation besides the common relaxation rate. 

While the proton-proton relaxation rate,  1R , is given by a linear combination of spectral 

densities  J  (cf. Eq. 11), the dielectric loss,    , is a susceptibility quantity which is 

related to the spectral density via the dissipation-fluctuation theorem (Eq. 2). Hence, it is 

possible to convert  1R  to a here called ‘NMR susceptibility’,  NMR
 , simply by 

multiplying it with its frequency. In contrast to the ‘rate representation’,  1R , this form of 

data representation is henceforth called ‘susceptibility representation’: 

 

         NMR1 322  KKR      (15) 

Here only proton-proton coupling is considered; the prefactor 3  ensures the normalization, 

    2lndNMR   , 

which follows from the normalization of  J  via 

        2lndlnd    J . 
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Figure 4: Comparison of the NMR susceptibility,  NMR
 , (Eq. 15) with the basic one, 

    J , for two different stretching parameters,  , (cf. Eq. 6). 

 

The comparability of     and  NMR
  is demonstrated in Figure 4. It shows the 

susceptibilities exemplarily based on a Debye (Eq. 4) and a CD spectral density (Eq. 6) versus 
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a scaled frequency which fixes the peak position at 1max  . It is obvious that in a double 

logarithmic scale the slight broadened shape of  NMR
  due to the linear combination in Eq. 

15 is virtually not visible. Of course, in an absolute frequency scale the peak of  NMR
  is 

slightly shifted to lower frequencies with respect to     but this is accounted for by 

applying the whole BPP expression (Eq. 11) to NMR data when extracting rot  by fitting. 

The comparability of NMR relaxation data with other frequency domain techniques is one 

advantage of the susceptibility representation, another one is that analogically to DS it is easy 

to construct master curves in this form provided that FTS applies as yet demonstrated for 

many cases by DS (cf. Sec. 3.1.1, Figure 1b). In practice one applies a fit using Eq. 15 with a 

CD spectral density (Eq. 6) to a NMR susceptibility dataset covering the susceptibility peak 

which, as will be demonstrated later in this Section, reflects rotational dynamics and hence 

gives the rotational time constant, rot . With the obtained rot  this curve is plotted versus 

rot . The NMR susceptibilities obtained at other temperatures are shifted along the 

frequency axis to provide the best overlap with the previous one. The shift factor is rot  at the 

respective temperature. Of course it is advisable to crosscheck these results with other 

techniques like DS and LS. Commonly they agree which proves the general applicability of 

FTS [25, 38]. 

Besides of the extended access to rot  this technique also considerably enhances the covered 

frequency range. This renders FC NMR competitive to DS in spite of its comparatively 

narrow frequency window. A third advantage is that the master curves can be transformed 

into dipolar correlation functions,  rotDD tC , via Fourier transformation, which is not 

possible with curves covering only a few decades in frequency: 

 

 
 

  tttC dcos
0

rot

rotNMR

rotDD 



 

 
      (16) 

As the master curve is scaled by rot  the correlation function is likewise. Strictly  rotDD tC  

consists of a linear combination like    rotrot 24  tCtC   (cf. Eq. 15) but as in the case of 

susceptibilities (cf. Figure 4) in a double logarithmic plot this difference does virtually not 

affect the shape. 

An instructive comparison of measurements on glycerol by  FC 
1
H NMR, DS and LS merged 

into master curves was published by Gainaru et al. in 2008 [25]. Though mainly focused on 

the secondary processes on the high-frequency flank it gives valuable information on the 

rotational main peak itself as seen by the different techniques. Figure 5a presents DS data 

compared to a NMR susceptibility,  NMR
 , on an absolute frequency scale at first. The peak 
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positions of both profiles taken at K262T  (red line: DS, red symbols: FC NMR) agree. 

This is a direct proof that the susceptibility maximum of  NMR
  reflects molecular 

reorientation like DS. It also serves as justification for the identification of the shift parameter 

with the rotational time constant when constructing susceptibility master curves,  rotNMR   . 

(The fact that  NMR
  is based on the BPP equation (cf. Eq. 15) while the DS curves are not 

can be omitted in this illustration) 
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Figure 5a: Dielectric loss of glycerol (lines) taken at different temperatures as indicated and one NMR 

susceptibility,  NMR
 , taken at 262 K (red dots) versus absolute frequency. Adapted from [25]. 

Figure 5b: Susceptibility master curves,  rot  , of glycerol obtained by FC 
1
H NMR (red crosses), 

DS (black dots) and LS (blue dots). Adapted from [25]. 

 

 As the overlap of both curves in Figure 5a is only a narrow frequency interval in the 

maximum region (FC NMR covers lower, DS higher frequencies), for comparison of the 

shape Figure 5b shows the master curves of all three techniques. In case of LS the peak seen 

at high frequencies is a so-called microscopic peak which is revealed by LS in the GHz – THz 

regime. Apart from these microscopic peaks one can see that FC NMR (red crosses) and LS 

(blue dots) agree on the high frequency side, while DS (black dots) exhibits a narrower peak. 

This feature supports the findings of Refs. [28, 29, 31] (cf. Sec. 3.1.3) as it again indicates the 

susceptibility peak being broader when measuring the rank 2l  correlation instead of 1l . 

The rotational correlation times, rot , agree among all methods. But unlike in Ref. [28] where 

2
H NMR was compared with DS the 

1
H NMR results exhibit a sort of additional intensity at 

low frequencies (‘shoulder’), while LS and DS do not (cf. Figure 5b). In the main peak region 

(i.e. 1rot  ) all spectra are reproduced via a CD susceptibility, at low frequency (i.e. 

1rot  ) it only fails with the FC 
1
H NMR results due to the retarded crossover to the simple 

liquid behavior (i.e. 
1 ). As already mentioned (cf. Sec. 3.1.4) the failure of the CD 
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function to reproduce 
1
H NMR measurements was already recognized by the group of Noack 

[35, 36]. As one can clearly attribute the molecular reorientation to the main peak of the 
1
H 

NMR susceptibility (cf. Figure 5a) the additional feature of the 
1
H NMR master curves on the 

low-frequency side appears to represent a slower process only seen by proton relaxation.  

A preliminary study [38] compared results from FC 
1
H NMR to DS for a variety of other 

liquids. It covers homologues of glycerol (propylene glycol, 2,3-butanol, threitol, xylitol, 

sorbitol) as well as non-alcoholic liquids (OTP, tristyrene, 3-fluoroaniline, m-toluidine). 

Except for OTP and tristyrene the results of which agree rather well with DS (disregarding the 

smaller   in the CD function reflected at high frequencies) a distinct additional relaxation 

contribution of different magnitudes was found at low frequencies for the other systems. As 

OTP and tristyrene are the only systems without H-bonds, this indeed seemed to indicate 

clusters due to H-bonds being responsible for this feature as proposed in Ref. [25]. 

Nevertheless the discussion in Ref. [38] proposes translational motion as possible agent. The 

latter assumption will be proven in this thesis.  
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Figure 6: Susceptibility master curves for different liquids in ‘second scaling’ representation (cf. Ref. 

[38]). The part of the curves (at low frequencies) which do not agree with the Debye susceptibility 

(black dashed line) are not given by a CD function and reflect the excess contribution. Adapted from 

[38]. 

 

Besides the systems considered in Ref. [38] Figure 6 shows further examples of liquids which 

were measured afterwards. Also a ionic liquid, 1-butyl-3-methylimidazolium 

hexafluorophosphate (BMIM-PF6), is included. A special scaling (referred to as ‘second 
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scaling’) was applied which makes the susceptibility curves agreeing with a normalized 

Debye susceptibility (black dashed line, cf. Eq. 4) in the interval where a CD function (Eq. 6) 

applies, i.e. at high frequencies. A more detailed description can be found in Ref. [38]. This 

representation facilitates the comparison of the excess contribution of different systems. From 

Figure 6 it is clear that the majority of liquids shows it with varying magnitude. It is the 

purpose of this thesis to demonstrate that the extra contribution at low frequencies originates 

from intermolecular relaxation mediated by molecular translation and even allows to quantify 

translational diffusion in liquids. 

 

3.1.6  Intermolecular Relaxation – Models 

As already noted in Sec. 3.1.2, besides rotation also translational motion enters 
1
H NMR 

relaxation rates via intermolecular dipole-dipole interaction. In contrary to intramolecular 

relaxation where the inter spin distances are considered to be constant, for the intermolecular 

correlation function fluctuations in time of both the orientation,   , , and the length, r , 

of the spin-spin axis, r , have to be taken into account [22]: 
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where  mY ,2
 again denotes a spherical harmonic (here we set 0m  without loss of 

generality, because the correlation function is independent of m  in isotropic systems (cf. Eq. 

9)). 

Since the early days of NMR there have been many calculations of  tCinter  based on various 

model assumptions. For that matter the ensemble average is approximated by employing 

probability functions,  rg  and  tP ,,0 rr  [21, 47]: 
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Hereby is     0,00 rr  and     trt ,r . The pair distribution function of the liquid, 

 rrg , accounts for the probability that a second spin is placed at a distance  0r  with 

respect to the considered one and  tP ,,0 rr  is the conditional probability that a spin-spin 

vector is r  at time, t , given that it was 0r  at time zero. Integration over r  and 0r  gives the 

expectation for          00 3

0,2

3

0,2 rYtrtY   and thus for  tCinter . Therefore  tP ,,0 rr  

determines the dynamics. It is obtained by solving the differential equation describing the 

actual diffusion model. The calculation of  tCinter  is tedious and often not possible in an 
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analytical way especially with an arbitrary  rg . Hence the models which are introduced here 

employ a uniform spin density which only excludes the volume of closest approach of two 

spins, d :   0rg  for dr   and   1rg  else. As the bulkiness of the spin bearing 

molecules imposes a distance of closest approach, d  can be taken as measure for the 

molecules’ diameter in the pure liquid 

In real liquids  rg  shows a first maximum around d  as the volume exclusion by a 

considered molecule renders an accumulation of molecules (and thus spins) in the direct 

surrounding, i.e. first coordination shell. The first coordination shell itself causes a second 

coordination shell which is reflected as a smaller maximum in  rg  and so on, which results 

in a damped oscillatory function. Finally,   1rg  for large r  (compared to the correlation 

length in the liquid) like in the case of a simple distance of closest approach. As large r  go 

along with long times, no differences regarding the shape of spectral densities to those based 

on the crude assumption (i.e.   0rg  for dr   and   1rg  else) are expected at low 

frequencies. But as the aggregation of molecules in the first coordination shell also means a 

concentration of spins at rather short distances, the spectral density is most likely enhanced as 

a whole compared to the one, where a simple distance of closest approach in connection with 

an uniform spin density was assumed. Hence,  rg  only affects the zero-frequency limit of 

the spectral density but not its first order behavior [47]. 

Formerly one of the most employed expression is given by Abragam [21] first published in 

1961. It assumes that  tP ,,0 rr  (cf. Eq. 18) obeys the diffusion equation, PDtP 2

12  . 

Here, 2112 DDD   is the relative diffusion coefficient which is the sum of the self-diffusion 

coefficients of the two participating species. For identical molecules in a neat liquid one has 

DD 212  . Analogical to the rotational time constant, rot , it is useful to define a translational 

one: 

 

 Dd 22

trans           (19)
 

Abragam [21] presents an analytical expression for the spectral density. Normalized to 2  it 

is given by: 
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with  uJ l  being a Bessel function. A graphic description of this model is as follows: The 

spins are present with uniform density undergoing continuous translational diffusion. 

Thereby, each spin is placed in the center of a sphere with diameter d  and trajectories of 
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other spins with dr   simply vanish. With no interaction at dr   imposed, each spin always 

diffuses independently, i.e. PDtP 2

12   always is valid. The spheres are allowed to 

interpenetrate while spins with overlapping spheres do not couple to each other. As 

constructed,  AbrgmJ  is solely affected by translational motion. 

Another early result on relaxation via translational diffusion was published by Torrey in 1953 

[48]. The motional model is isotropic jump diffusion characterized by the mean squared jump 

length, 2l , and the mean time between two jumps, 
jump . The self-diffusion coefficient is 

thus given as 
jump

2 6lD   (cf. Eq. 37). Like in Abragam’s formulation [21] d  is imposed 

while the spins move independently. However, after normalization this spectral density has 

two independent parameters, instead of one. The analytical expression for the spectral density, 

 TrryJ , is lengthy so we refrain from showing it but we will discuss it by means of own 

numerical calculations within the model. We find it most convenient to define the two 

parameters as 22 dl  and  22

jumpTrrytrans, 345 ld  because in this notation for 

transTrrytrans,    one yields     AbrgmTrry JJ   in the limit of continuous diffusion, i.e. 

022 dl . 

The definition of Trrytrans,  can be reasoned via the zero-frequency development given in [48], 

    22

jumpTrry 51210 ldJ   and the respective value for 22 dl  which gives for the 

normalized spectral density:   jumpTrry 210 J . Along   transAbrgm 520 J  the condition 

finally is      trans,Trry

!
22

jumpTrry 5256210   ldJ . 
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Figure 7a: Comparison of  transAbrgm J  (black line, Eq. 20) with  Trrytrans,Trry J  for different ratios 

of mean squared flight distance and squared distance of closest approach, 22 dl , (blue lines); the 

red line is a Debye spectral density. Figure 7b: Same as in Figure 7a but in susceptibility 

representation. 
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Figure 7 shows  trans,TrryTrry J  (cf. Figure 7a, blue lines) and the corresponding susceptibility 

representation (cf. Figure 7b, blue lines) for different ratios 22 dl . The black lines are the 

respective results for  transAbrgm J  the red ones refer to a Debye spectral density (Eq. 4). The 

ratio 22 dl  is the crucial parameter in Torrey’s model and, as mentioned,  transAbrgm J  is 

contained as limiting case for 022 dl , when the jump diffusion becomes continuous. In 

Figure 7a one can see that the characteristic high-frequency behavior of   23

transAbrgm

J  

is followed by  trans,TrryTrry J  until higher frequencies when 22 dl  is smaller before the 

curve bends into a final behavior 
2 . The equivalent behavior is seen in Figure 7b. As 

noted by Sholl [47] when the jump distance becomes large with respect to the distance of 

closest approach,  trans,TrryTrry J  converges towards a Debye spectral density (red lines in 

Figure 7). 

As said, Torrey’s treatment [48], like Abragam’s [21], assumes an independent motion of 

spins. In 1975 Ayant et al. [49] showed that results obtained under this assumption are only 

valid for large diffusion paths, 0rr  , i.e. long times, t , and accordingly only for small 

frequencies,  . Independently from Hwang and Freed [50], who published the same model in 

1975, their treatment imposes reflecting wall boundary conditions, i.e.   0
dr

rP , thus 

describing hard spheres with a diameter, d . This is the first model with a realistic physical 

background: Hard spheres with each a spin in their centers undergo translational diffusion 

until they are reflected when hitting another sphere, i.e. dr  . Besides the fact that the 

spheres are not allowed to interpenetrate no other forces are implied. Thus this model will be 

addressed as force-free hard-sphere (FFHS) model throughout this thesis. For long times r  

becomes large, consequently the influence of the reflecting wall boundary ceases and 

 tP ,,0 rr  of the FFHS model finally also obeys the diffusion equation, PDtP 2

12  . 

Therefore differences between AbrgmJ  and the FFHS model are expected at high frequencies. 

The FFHS model is purely translational and its normalized spectral density is given by: 
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trans  is given alike in Abragam‘s solution [21] by Eq. 19. 

Figure 8 compares the FFHS model ([49, 50]) against the expression of Abragam ([21]). 

While the behavior at low frequencies is alike, the difference between the two models indeed 

manifests itself mainly at high frequencies. The FFHS model shows a limiting behavior of 

2  whereas with Abragam’s expression it is 32 . In the susceptibility representation 
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(cf. Figure 8b) this results in a broader peak for the latter case which leads to a smaller peak 

height due to normalization. Hwang and Freed [50] compared the FFHS model to two 

alternative results employing more realistic assumptions for  rg . While the shape of the 

spectral densities only shows minor differences at higher frequencies their overall magnitude 

gets enhanced with respect to the FFHS model. This may result in a systematic 

underestimation of d  when applying the FFHS model to experimental data. 
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Figure 8a: Comparison of  transAbrgm J  (Eq. 20, red line) to  transtrans J  (Eq. 21, black line); 

Figure 8b: Same as in Figure 8a but in the susceptibility representation. 

 

Later in 1977 Ayant et al. improved the FFHS model [51]. They calculated the spectral 

density,  inter

~
J , for hard spheres again carrying one spin, which, however, is placed off-

centered with a distance,  . The eccentricity,   120  de , of a spin on a molecule 

renders an influence of rotation on the spin-spin vector, r . Hence the intermolecular part 

generally contains both, translation and rotation, and the resulting spectral density is not 

anymore called  transJ , which refers to a purely translational spectral density. For the 

rotational dynamics isotropic rotational diffusion is assumed. The expression for  inter

~
J  is 

quite long and we refrain from giving it explicitly. In Pub. 4 the eccentricity model is 

discussed in detail using exemplary numerical calculations, furthermore it is applied to 

describe the intermolecular relaxation contribution,  inter,1R , of OTP and glycerol-h5 (i.e. 

perdeuterated glycerol, CH5(OD)3) derived by isotope dilution experiments which will be 

discussed below (cf. Sec. 3.1.7). Nevertheless, we will sum up the most important aspects 

here. 

In Figure 9a  transinter

~
J  according to Ref. [51] is plotted exemplarily for different values for 

the spin eccentricity, e . Figure 9b shows the corresponding curves in susceptibility 
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representation. In the case when the spin is placed in the center of the sphere (i.e. 0e ) only 

the translational diffusion drives the intermolecular relaxation and the model gets reduced to 

the simple FFHS case (Eq. 21) (cf. Figure 9, black solid lines). Otherwise (i.e. 10  e ) one 

has to introduce the correlation time for the rotational motion rot . Altogether, the eccentricity 

model has three independent parameters, trans , rot  and e . 
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Figure 9a: Spectral density as given by the eccentricity model of Ayant et al. [51] for different 

eccentricities, e , of the spin position (solid lines); dashed lines: rotational part (cf. text below). Figure 

9b: Same curves as in Figure 9a but in susceptibility representation. 

 

Assuming simple hydrodynamics of a sphere rotating and translating in a viscous medium 

Ref. [21] gives the following ratio between the two time constants, i.e. the spectral separation 

between rotational and translational dynamics, henceforth called Debye-Stokes-Einstein 

(DSE) relation: 

 

9
rot

trans 



r           (22) 

Applying Eq. 5 with 2l  and Eq. 19 it follows from the combination of the Stokes-Einstein 

relation 

 

   HB 6 RTkD           (22a) 

for the translational dynamics with the Einstein relation 

 

   3

HBrot 8 RTkD           (22b) 

for rotational dynamics when identifying the hydrodynamic radius, HR , with the model-based 

distance of closest approach: 2H dR  . Hereby,   is the shear viscosity. 
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This ratio, 9r , is also assumed in Figure 9. Compared to the FFHS spectral density a 

growing rotational part emerges at high frequencies with increasing e . This is best recognized 

in the susceptibility representation (cf. Figure 9b). In Figure 9 the rotational share (i.e. 

   transtranstransinter

~
 JJ  ) is plotted with dashed lines. Its magnitude rises with eccentricity. 

Thus  inter

~
J  for an arbitrary e  is not normalized (indicated by the tilde). 

Besides the complexity of its expression another burden of the eccentricity model is the 

assumption of rotational diffusion (i.e. exponential correlation loss) for the molecular 

reorientation which leads to a slope 
1  of the rotational part (and therefore of 

inter

~
J ) at 

high frequencies in the susceptibility representation (cf. Figure 9b, dashed lines). This 

contradicts experimental results on liquids which usually find a stretched exponential 

correlation decay and thus higher slopes at the high-frequency side of the rotational 

susceptibility (cf. Secs. 3.1.1, 3.1.3 and 3.1.5). Hence, in Pub. 4 we define an approximation 

for the exact solution of the eccentricity problem using the FFHS model and a CD function 

allowing for 1 : 

 

rottransinter

~
JfJJ           (23) 

The phenomenological parameter f  gives the strength of the rotational contribution with 

respect to the translational one and can directly be linked to the eccentricity, e  (cf. Pub. 4). 

Furthermore we note that the apparent spectral separation gets larger with increasing e . In 

Figure 9b it can be easily seen that the position of the rotational peak (cf. dotted lines) shifts to 

higher frequencies as e  gets larger. Hence a description of the eccentricity model in terms of 

Eq. 23 yields an apparent ratio, 
rottransapp r , which is dependent of e . This feature is also 

addressed in Pub. 4. 

First experimental evidence for the eccentricity effect was given by Albrand et al. in 1981 

[52]. They measured the spin-lattice relaxation rate, 1R , of 
13

C in neopentane (C(CH3)4). Due 

to the large chemical shift its possible to distinguish between the centered carbons and the off-

centered ones. To avoid the necessity of separating different relaxation mechanisms di-tert-

butyl nitroxide (DTBN) was added to the neat liquid in different concentrations. DTBN 

contains an unpaired electron and thus provides an efficient intermolecular relaxation channel 

which renders all others negligible. The result is given in Figure 10, where 1R  is plotted 

versus the concentration of DTBN for the centered carbons (a) and the off-centered ones (b). 

As expected both values grow linearly with increasing concentration of radicals, but more 
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important is the fact that the off-centered carbons always have a larger 1R  than the centered 

ones. This is a direct proof of the relaxation enhancement due to eccentricity. 

 

 

 

Figure 10: Spin-lattice relaxation rate, 1R , of 
13

C in neopentane versus the concentration of di-tert-

butyl nitroxide (DTBN) measured at 303K and 25.16 MHz. Curve (a) refers to the centered carbons, 

(b) to the off-centered ones. Taken from [52]. 

 

Nevertheless, this effect was not revealed in neat liquids so far. To do so, one has to separate 

the intramolecular relaxation channel from the intermolecular one. As mentioned this can be 

obtained via an isotope dilution experiment as done in Pub. 2 and Pub. 4, where the 

eccentricity effect was revealed by means of the dispersion of  inter,1R  for the first time. 

Though the details of the isotope dilution experiment will not be discussed until the following 

Section, Figure 11 presents its results in case of glycerol-h5 (i.e. CH5(OD)3) in terms of 

susceptibility master curves as presented in Pub. 2, because it is a clear and vivid 

demonstration of the eccentricity effect in a neat liquid. 

Figure 11a presents the separation of the total susceptibility master curve (  rot1  R , black 

squares) into the intramolecular contribution (  rotintra,1  R , red squares) and the 

intermolecular one (  rotinter,1  R , blue squares). It confirms that the intramolecular part is 

purely rotational as it is given by a CD function. The proof for eccentricity is best seen in 

Figure 11b where only the intermolecular susceptibility is given. The crucial point is the 

broadness of the peak which results in the necessity of the incorporation of two processes to 

interpolate the whole curve. The black line in Figure 11b is a fit based on Eq. 23 which 
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assumes, besides the purely translational part (FFHS model, green line) also a rotational one 

(CD function, red line). A comparison of the location of the intramolecular rotational peak to 

the alleged intermolecular rotational contribution confirms its rotational origin, as their 

positions agree. To our knowledge, this is the first proof of the eccentricity effect in neat 

liquids. 
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Figure 11a: Susceptibility master curve of glycerol-h5 (black solid squares) and its separation into 

intra- (red open squares) and intermolecular contributions (blue open squares). The red line is a fit of 

the intramolecular contribution using the CD function. Figure 11b: Intermolecular part of the 

susceptibility master curve. Black solid line: interpolation according to Eq. 23, green solid line: 

translational part (FFHS model), red solid line: rotational part (CD function). Adapted from Pub. 2. 

 

3.1.7  The Isotope Dilution Experiment and Its History 

Since the mid-fifties there have been various attempts to isolate the rotational contribution to 

proton spin relaxation, i.e. to suppress the intermolecular relaxation contribution. Giulotto et 

al. [53] and Mitchell and Eisner [54, 55] diluted a proton bearing liquid in another one 

without protons. As a consequence the solvent virtually does not support proton relaxation 

and should suppress the intermolecular dipole-dipole interactions of the solute as a considered 

proton on one molecule sees less and less protons on neighboring ones as the concentration of 

the solvent increases. But the introduction of another substance changes the viscosity and 

consequently the relaxation rate. It was tried to account for this by scaling 1R  with viscosity 

or employing elaborate models (e.g. [56]). Nevertheless it became obvious that more 

profound modifications of molecular dynamics happen with dilution and no results on the neat 

liquid can be deduced. Furthermore the authors did not distinguish between intra- and 

intermolecular relaxation but between rotational and translational one. But as shown in the 

previous section (cf. Sec. 3.1.6) the pure translational motion generally cannot be isolated via 
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dilution experiments due to the eccentricity effect. So the evidence on molecular dynamics 

was rather inconclusive and very much dependent on the chosen system of the mixture. In the 

following the term ‘isotope dilution’ refers exclusively to a mixture of a proton bearing liquid 

dissolved in its fully deuterated counter-part. By example we will see in Sec. 3.1.8 that the 

dilution with a chemical different solvent is not at all comparable to an isotope dilution 

experiment in our sense, where the solute has essentially the same chemical properties as the 

solvent.  

The first isotope dilution experiment was carried out by Bonera and Rigamonti [57]. They 

measured spin-lattice relaxation of mixtures of acetone and benzene with their respective 

deuterated counterparts. As the dynamics almost does not change with deuteration this is a 

much more significant experiment. An increasing introduction of deuterated molecules 

suppresses the intermolecular relaxation as the interaction of deuterons and protons is much 

weaker than that between protons among themselves (cf. Eqs. 27 and 28, Sec. 3.1.8). Hence, 

when the dilution with deuterons is not extremely high their contribution to the relaxation 

rate,  ;H1 xR , can be neglected and one finds the following linear dependence on the molar 

concentration of the proton bearing species, Hx : 

 

      inter,1Hintra,1H1 ; RxRxR         (24) 

The measurement of  1R  for different concentrations, Hx , and the extrapolation 0H x  

yields  intra,1R  and thus  inter,1R . 

Bonera and Rigamonti [57] were able to achieve this separation for an extended temperature 

interval but as they were confined to a single Larmor frequency their insight into molecular 

dynamics was limited. From the extracted 
intra,1R  they calculated correlation times, rot , using 

reasonable values for the spin-spin distances, ir , and assuming the extreme narrowing 

condition, i.e. when 1rot   one finds    TJ rotrot    and thus 
intra,1R  only dependent on 

the temperature (cf. Eq. 11). The result was compared to an estimation for rot  given by the 

Einstein relation (Eq. 22b). Satisfactory agreement was only found, in the case of benzene. 

For acetone the estimate was higher than the calculation using 
intra,1R . The results for 

inter,1R  

were compared to a frequency independent estimate for the intermolecular relaxation rate 

given in Ref. [23]. Again the results on acetone did not match at all due to a very much higher 

experimental value of s90inter,1 T  (!) at K298 . Both deviations were explained by a fast 

methyl group rotation. An analogue experiment was published by Harmon and Muller in 1969 
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on ethane [58]. They found their results for 
inter,1R  very well describable by the model of 

Torrey [48] which was improved by a more realistic radial distribution function,  rg . 

An important step represents the publication of Kintzinger and Zeidler in 1973 on glycerol 

[59]. They made basically the same experiment as presented in Pub. 2 in this thesis, namely 

an isotope dilution experiment on glycerol-h5 (i.e. CH5(OD)3) in its fully deuterated 

counterpart (glycerol-h0). The deuteration of all the hydroxyl groups avoids an exchange of 

OD/OH. Employing different kinds of spectrometers they were able to cover 10 different 

frequencies. The intramolecular contribution was identified to be describable via a CD 

spectral density. Concerning the intermolecular part it was more difficult. Though it was 

known that it reflects both translational and rotational dynamics they tried the Torrey model 

[48] because there was no model describing the impact of eccentricity in those days. Contrary 

to Harmon and Muller [58] the Torrey model fails with the richer dataset of Kintzinger and 

Zeidler. 
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Figure 12: Intra- and intermolecular relaxation of glycerol-h5 at 283 K / 285 K (Figure 12a) and 308 K / 

303 K (Figure 12b). The data plotted in open squares is taken from Ref. [59] the solid squares reflect 

measurements done for Pub. 2. Fits of the eccentricity model of Ayant et al. [51] (solid blue lines) and 

its separation into translational part (dashed blue lines) and rotational part (dotted blue lines) are 

included. 

 

Figures 12a and 12b show the separation of intra- and intermolecular contribution of glycerol-

h5 for two similar temperatures respectively. They compare our measurements done in the 

course of Pub. 2 (solid squares) to these from Kintzinger and Zeidler [59] (open squares). 

Included are fits with the eccentricity model of Ayant et al. [51] (solid blue lines) for the 

intermolecular parts, which are itself separated in rotational parts (     transinter

~
JJ  , dotted 
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blue lines) and translational ones (  transJ , dashed blue lines). One can see the difference 

between the frequency intervals accessible by the Stelar Spinmaster FFC 2000 spectrometer 

in Bayreuth and the spectrometers used by Kintzinger and Zeidler. In the latter case only 

rather high frequencies are covered while the Stelar relaxometer is capable to measure down 

to 10 kHz. A comparison to the rotational parts of the fits (dotted blue lines) and to  intra,1R  

(red symbols) shows that the interval covered by Kintzinger and Zeidler hardly exceeds the 

rotation dominated regime and so they missed also the discovery of the excess contribution at 

low frequencies best seen in master curves (cf. Figures 5b and 6). Besides the much denser 

frequency grid provided by the Stelar Spinmaster FFC 2000 spectrometer this demonstrates 

clearly the advantages concerning accessing the translational motion in supercooled liquids, 

because only covering low frequencies makes the quantification of the translational motion 

possible as shown in the next section. 

We further note that in 2003 Friedrich et al. [60] published another work on glycerol 

employing the isotope dilution technique. They diluted glycerol-h8 (i.e. fully protonated 

glycerol) in glycerol-h0 and evaluated 
intra,1R  at a fixed frequency for different temperatures 

arguing that the effect due to OH/OD exchange is small. The result 
intra,1R  from 

1
H NMR was 

compared to measurements on 
2
H and 

13
C both, as noted, relaxing only via intramolecular 

channels. On the lines of previous works the data solely reflecting molecular reorientation 

was describable employing the CD spectral density (Eq. 6). 

Finally we note that there are isotope dilution experiments on polymers, e.g. Collignon and 

Sillescu [61] employed a conventional NMR spectrometer measuring polyethylene while 

Lindner et al. [62] measured polystyrene. Kehr et al. [63] employed FC NMR for the first 

time on poly(ethylene oxide) and polybutadiene and Herrmann et al. [34] investigated 

polybutadiene and poly(dimethyl siloxane) also by FC NMR. 

 

3.1.8  Low-Frequency Limit of the Relaxation Rate and its Applications 

Translational spectral densities show a universal low-frequency behavior, namely linearity in 

the square root of frequency,  . This is the result of an intrinsic feature of translational 

diffusion and found for every model as long as  tP ,,0 rr  (cf. Eq. 18) obeys the diffusion 

equation, PDtP 2

12  , for large distances, 0rr  , and long times, t , [47]. In the 

correlation function this feature manifests itself in a power-law behavior 23

trans

 tC  at long 

times, t , a fact well known for long [52]. 
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Figure 13a shows the correlation function of the models discussed for the intermolecular 

relaxation (cf. Sec 3.1.6) obtained by cosine transform of their spectral densities (cf. Eq. 16). 

For comparison an exponential correlation loss is also plotted (red line) which corresponds to 

a Debye spectral density (Eq. 4). It is the only curve which does not show the translational 

behavior 
23 t  at long times which is indicated by the dashed line. Even Torrey’s model with 

a large jump distance (cyan line) finally obeys the power-law after following the rotational 

correlation function quite long. The curve for the eccentricity model (purple line) shows a 

correlation loss due to rotation at short times, but eventually also obeys the translational 

power-law at long times. 
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Figure 13a: Intermolecular correlation functions versus reduced time,  transinter tC , for the models 

discussed in Sec. 3.1.6 derived from the spectral densities,  transinter J , via cosine transform (cf. Eq. 

16), for comparison an exponential correlation loss (rotational diffusion),  rotrot tC , is also plotted 

(red line). Figure 13b: Intra- and intermolecular correlation function derived by MD simulation on 

di(propylene oxide). Taken from Ref. [64]. Figure 13c: Dipolar correlation functions,  rotDD tC , for 

PG and PDMS with different molecular masses derived via Eq. 16; dashed lines: power laws 
23 t . 

Dotted line: Kohlrausch function. Taken from Pub. 6. 
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Due to the growth of computing capacity this behavior   23 ttC  at long times could also be 

identified in recent molecular-dynamics (MD) simulations of liquids and polymers. Figure 

13b shows a MD simulation on di(propylene oxide) done by Henritzi et al. [64]. The dashed 

black line is the intramolecular correlation function, the solid red line the intermolecular 

correlation function. The former was interpolated by a stretched exponential (Kohlrausch 

function, cf. Sec. 3.1.1) (green solid line) while the latter was fitted to the correlation function 

which corresponds to the FFHS model (Eq. 21) (blue dashed-dotted line). The interpolation 

with the stretched exponential works almost perfectly while the intermolecular part shows 

slight deviations to the FFHS correlation function. This may be due to the eccentricity effect 

which is omitted by the FFHS model. However, the most important fact in this context is the 

crossover of the intermolecular correlation function (red solid line) to the behavior 

  23 ttC  at longest times which reflects translational diffusion in the hydrodynamic limit. 

In Pub. 6 this power-law is firstly demonstrated at experimental data. Via Eq. 16 the 

susceptibility master curves of propylene glycol (PG) and of a polymer, poly(dimethyl 

siloxane) (PDMS) with different molecular masses, M , were transformed into the 

corresponding dipolar correlation functions,  rotDD tC . Figure 13c shows the results. At 

short correlation times the loss is given by a stretched exponential (dotted line) while at 

sufficient long times the power-law   23 ttC  is established for every system. While for the 

liquid systems (PG, PDMS with molg860M ) this happens at shorter times, for higher M  

the crossover gets more and more protracted due to additional polymer dynamics. In Pub. 5, 

Pub. 6 and Sec. 3.1.9 the polymer dynamics are addressed in more detail. 

Concerning the spectral densities this feature of the correlation function at long times comes 

into effect at low frequencies where it is reflected as a first order linear behavior in  . For 

example, the series expansion for the FFHS spectral density (Eq. 21) is as follows [50]: 

 

 













 
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transtrans
trans

trans
212

1

8

23
1

9

4



J     (25) 

While the first order of the expansion in frequency of any translational spectral density thus is 

 , a rotational one is 
2  as seen exemplarily at the series expansion of a Debye 

spectral density (Eq. 4): 

 

  
2

rotrotrot 1 J         (26) 
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This crucial difference between transJ  and rotJ  is well known for a long time, e.g., it was 

given by Harmon in 1970 [65]. Due to experimental restrictions it has not been systematically 

and extensively applied so far. The present work will fill this gap as Pub. 3 – Pub. 6 apply the 

consequences of this feature to the rate dispersion data of a variety of systems. 

By dipole-dipole coupling of a considered nucleus in a bulk liquid to identical nuclei, transJ  

contributes to the translational part of the relaxation rate,  trans

inter,1R , via (BPP expression, cf. 

Eq. 11): 
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Hereby, AN  is the spin density of nuclei A; d  denotes the distance of closest approach. When 

coupled to different nuclei the contribution to  trans

inter,1R  is as follows (SBM expression, cf. Eq. 

12): 
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where BN  represents the spin density of nuclei B. As the rotational contribution to the total 

rate dispersion yet goes with the square in frequency, 
2  (cf. Eq. 26),  1R  is dominated 

by the translational contribution   at sufficiently low frequencies. Hence, from Eqs. 25, 

27 and 28 follows (assuming the additivity of  trans

AAinter,,1R  and  trans

ABinter,,1R ): 
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The summation over X accounts for all species of different nuclei (i.e. B, C, …) which 

undergo dipole-dipole coupling with the nucleus A. We note that Eq. 29 implies that there is 

no ‘extreme narrowing’ in 
1
H NMR, i.e.  1R  is always frequency dependent even at lowest 

frequencies. The introduction of the coupling constant cancels out the model specific 

parameters ( d  and trans ) of transJ  and the prefactor of the term   becomes model 

independent providing direct access to D . As said, it is also independent of the form of the 

radial distribution function,  rg , [47]. Thus the first-order behavior of  1R  is universal. 

 01R  includes, besides the translational contribution, i.e.   transinter

trans

inter,1 940 KR   with 
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also all rotational parts, i.e.   rotinterintra  KfK , which are supposed to be a constant offset 

to the overall rate dispersion at low frequencies (cf. Eqs. 23, 25 - 28): 
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trans
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rot

inter,1

rot

intra,11
9

4
0000  KKfKRRRR    (31) 

where the intramolecular rotational part is   rotintra

rot

intra,1 0  KR  and the intermolecular 

rotational part is   rotinter

rot

inter,1 0  KfR  

As a result of Eq. 29 one can directly calculate the self-diffusion coefficient from the slope, 

dd 1Rm  , at low frequencies, when simply plotting the relaxation rate against the square 

root of frequency: 

 

  32
mBD            (32) 

Except physical constants, B  only contains the spin densities, XN , which are easily 

accessible in most cases (cf. Eq. 6 in Pub. 6). 

Unlike the treatment given in from Pub. 3 - Pub. 6 where only proton-proton coupling has to 

be considered (the H-D coupling e.g. in glycerol-h3 (i.e. CD5(OH)3) is negligible as will be 

shown in Chap. 3.4) the examination given above is improved as it also includes 

heteronuclear coupling. As further shown exemplarily in Chap. 3.4 the analysis of rate 

dispersions obtained by 
19

F NMR for the liquid 3-fluoroaniline requires the full expression in 

Eq. 29. 

As said, the effect of translational diffusion on the relaxation dispersion is well known for a 

long time but, as it will be shown in the following, only since the recent years the 
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experimental possibilities are potent enough to take systematically advantage from it. One of 

the first attempts to extract D  from the proton relaxation rate dispersion in bulk liquids was 

published by Harmon in 1970 [65]. Figure 14a shows his 1R  data plotted as open squares 

against the square-root of frequency. The dashed line is the linear fit from which D  was 

obtained. The solid squares reflect a recent FC 
1
H NMR measurement from Ref. [25] at the 

same temperature. Both datasets agree well. The slight deviations among them may be 

attributed to minor temperature differences. Nevertheless the data from FC 
1
H NMR covering 

lower frequencies allows much better to estimate the linear regime of  1R  at this 

temperature. It turns out that the linearity only holds until 1000Hz  . After that further 

dispersion sets in which does not stem from the long time diffusion as it is not linear in  . 

This renders Harmon’s fit represented by the dashed line problematic. It gives 

sm109.1 212D  while the solid line fit yields sm103.1 212D . Thus Harmon 

overestimated D  due to the smaller absolute slope of the fit resulting from the fact that no 

data at sufficiently low frequencies could be obtained. 
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Figure 14a: Proton relaxation rate versus square root of frequency for glycerol at T = 296 K; solid 

squares data from Ref. [25]; open squares: data from Ref. [65]. Solid Line: linear fit of the low-

frequency data, dashed line: fit applied in Ref. [65]. Figure 14b: Result for D  versus inverse 

temperature for different liquids as derived from the low-frequency slope of  1R  (solid symbols), 

open symbols reflect data from FG NMR ([66, 67]). Red/black circle: result from Ref. [65]. Solid lines: 

VFT laws for D (cf. Eq. 8). Adapted from Pub. 3. 

 

Figure 14b presents our results for D  (black solid symbols) on glycerol and other liquids as 

published in Pub. 3. They agree well with the available data from FG NMR (black open 

symbols). Additionally the result of Harmon [65] (red/black circle) is included. As explained, 
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the point lies slightly above the others, however the effect is small on the logarithmic scale. 

This points out the robustness of the present analysis. 

For the sake of completeness we mention that previously this low-frequency analysis was also 

applied to solutions of paramagnetic nitroxide radicals. For example, Fries et al. [68] 

reexamined the system of DTBN in neopentane (cf. Sec. 3.1.6 and Ref. [52]). As it contains 

an unpaired electron DTBN is a radical and hence it provides a very effective relaxation 

channel for the proton spins of neopentane, which is intermolecular, of course. The universal 

low-frequency behavior in the solution thus is enhanced and could be revealed in spite of 

neopentane being in the non-viscous regime around room temperature, where the low-

frequency dependence,  1R , of pure neopentane would be very weak and hardly 

resolvable. 

Unlike Ref. [68] or Ref. [69] where the spin-electron coupling was simply accounted for by 

the Solomon-Bloembergen-Morgan (SBM) expression (Eq. 28), Ref. [70] also considers 

hyperfine coupling of the electron spin to the spin of a nucleus in the radical molecule, in this 

case 
15

N with spin 21I . The hyperfine coupling results in two additional regimes of 

linearity in  1R  found at lower frequencies than that one imposed by the SBM expression, 

which is only valid when the Larmor frequency of the electron spin is very large compared to 

the amplitude of the hyperfine coupling. The three regimes were also found experimentally. 

Later Kruk et al. [71] generalized the treatment given in Ref. [70] and extended it for 
14

N with 

spin 1I . In Ref. [72] not only the three linear regimes were identified experimentally but 

also the difference between the two nitrogen isotopes affecting the slope of the linear regime 

at lowest frequencies was resolved. 

Apart from the enhancement of the relaxation rate another advantage of the admixture of 

radicals is the large gyromagnetic ratio of the electron spin with respect to the proton’s, which 

favors the probing of fast translational dynamics. Thus the introduction of paramagnetic 

substances promises an extension of the covered dynamic range compared to the one 

accessible in the pure liquid. However this approach only determines the relative diffusion 

coefficient, 2112 DDD  , between the solvent and the radical. One can get self-diffusion 

coefficients for the radical, 2D , by acquiring diffusion data on the neat solvent, 1D , from 

references assuming that due to the small concentration of the radical the bulk dynamics is not 

affected. Hence, this approach cannot provide information on the neat liquid in a straight-

forward manner. 
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We further note that the low-frequency behavior of  1R  was also derived for translational 

diffusion in two-dimensional and one-dimensional systems. The former is 

   11

1 ln   DR , while the latter is     21

1


 DR   [47]. Diffusion processes in two 

dimensions were identified in lithium intercalation compounds using 
7
Li NMR relaxometry 

and β–radiation detected NMR relaxation [73]. Moreover, one-dimensional translational 

diffusion was identified in the intermetallic compound Li12Si7 also employing 
7
Li NMR 

relaxometry [74]. 

Another application of the universal low-frequency behavior is a new ansatz for the 

construction of master curves in the rate representation instead of  rotNMR   , which is 

presented in Pub. 4. Eq. 29 suggests that plotting the ratio    011 RR   against the square root 

of an appropriate reduced frequency, 2

res x , should bring the translation dominated part of 

every dataset onto a common x1  behavior as 

 

    res11 10  RR  

with 

 

2

1

23res
0 













RD

B
          (33) 

holds (cf. Eq. 29). While the susceptibility master curves,  rotNMR   , always rely on FTS 

the rate dispersion master curves are exact at low frequencies as, by construction, all datasets 

coincide in the x1  behavior. When FTS applies (i.e. const.r  and the spectral shape of 

each translational and rotational contribution stays unchanged) the curves for a given system 

taken at different temperatures should also coincide beyond the linear regime, when the 

higher order terms of the translational and rotational spectral densities come into effect. As in 

this representation master curves from different systems will all coincide in the low-frequency 

x1  regime, comparing them at higher frequencies can be a powerful tool. Especially the 

interplay between rotational and translational contribution can be put into perspective as it is 

crucial for the direction in which the master curve leaves the linear behavior coming from low 

frequencies. 

By taking into account the second order of the expansion of the FFHS model (Eq. 25) and the 

first order of the Debye (Eq. 26) one can define a quantity, c , which is a crucial indicator for 

the shape of      res11 0  fRR  . Considering mere proton-proton coupling one can give 

the following threshold value for c , which designates the two areas, where the curve is 

‘rotationally dominated’ or ‘translationally dominated’ (cf. Pub. 4): 
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53
162

91825 


 rc          (34) 

with  interintrainter KfKK   and r  being the spectral separation (Eq. 22). Thus   is the 

ratio of ‘translational coupling’, interK , and ‘rotational coupling’, interintra KfK  . Figure 15 

adapted from Pub. 4, where this issue is discussed in detail (cf. Chap. 3.5) exemplarily shows 

the impact of c  on the shape of the curve. The translational part is given by the FFHS model 

(Eq. 21) the rotational part by a Debye spectral density (Eq. 4). The Debye spectral density 

was chosen on the lines of the fact that the derivation of the threshold for c  (Eq. 34) is based 

on it by the use of the series expansion given in Eq. 26. 

When 53c  the curve will most likely bend downwards (‘rotationally dominated shape’, 

blue line, 27c ) when leaving the linear behavior (dashed line). As r  enters c  with a power 

of 5.2  while   only does linearly, a downward bent curve in this representation is a strong 

indication towards a narrow spectral separation of rotational and translational contributions 

and experimentally found, e.g., for OTP and tristyrene as shown in Pub. 4. For the present 

11.0 , a realistic assumption, this feature vanishes when the spectral separation is only 

slightly increased (red line). As 55c  is close to the threshold given in Eq. 34 the curve is 

neither decisively bent downwards nor upwards. A further increase of r  makes the curve 

clearly bent upwards (‘translationally dominated shape’, black solid line) like seen in the case 

of glycerol (cf. Pub. 4). 
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Figure 15: Master curves in rate representation for the model system consisting of a Debye (Eq. 4) 

and a FFHS spectral density (Eq. 21) for different spectral separation, r . Adapted from Pub. 4. 
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Figure 16a represents the data of the isotope dilution experiment on glycerol-h5 in glycerol-h0 

from Pub. 3 now firstly in terms of rate representation master curves,     res11 0  RR . 

This has not been done so far as this type of data representation was not introduced until Pub. 

4. In the present context it is of interest to compare it with a system which is diluted by a 

chemically different, protonless substance like also done in Refs. [53-55] (cf. Sec. 3.1.7). For 

this sake, Figure 16b shows so far unpublished data on the system of propylene glycol (PG) 

diluted with deuterated chloroform (Chld). The molar ratios of the solutes, glycerol-h5 and 

PG, are given by Hx  and PGx , respectively. As constructed all curves agree in the linear low-

frequency behavior x1  (black solid lines) and datasets from a given sample taken at 

different temperatures collapse giving a master curve for each dilution ratio, Hx  or PGx . The 

comparison of the development of the master curves due to dilution points out towards 

fundamental differences between an isotope dilution experiment and a dilution experiment 

with another proton-free solvent. Unlike glycerol-h5 in glycerol-h0, PG with Chld shows a 

crossover from the translationally dominated shape to the rotationally dominated shape with 

increasing dilution. 
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Figure 16a: Rate dispersion master curves,     res11 0  RR , of glycerol-h5 diluted in glycerol-

h0 for different molar ratios, Hx , of glycerol-h5, black solid line: low-frequency behavior, blue/red solid 

lines: fits employing a Debye function for the rotational part (dashed lines) and the FFHS model for the 

translational part (dotted lines). Data taken from Pub. 3. Figure 16b:  Same as in Figure 16a, but with 

a new system: PG in Chld. The molar ratio of PG is given by PGx . 

 

In Sec. 3.1.7 we already noted that the introduction of another substance alters the viscosity 

and the authors of Refs. [53-55] tried to account for that by scaling it out. In the case of PG 

with Chld the viscosity decreases with decreasing PGx , i.e. the dynamics gets faster with 

introduction of Chld and in Figure 16 this effect is accounted for by the employment of the 
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rescaled frequency axis. The development of the master curves with dilution hence stems 

from a variation of the shape of the entire spectral density. 

The blue lines with open circles in Figure 16 represent the respective pure substance, the red 

lines with open circles are the results of the most diluted samples and the grey solid lines 

show intermediate dilution ratios. The development in Figure 16a (isotope dilution, glycerol-

h5 in glycerol-h0) can quite easily be rationalized: With advancing dilution the intermolecular 

part gets more suppressed (cf. Eq. 24) and alongside with it the included translational 

contribution. Meanwhile, the purely rotational intramolecular contribution to the whole curve 

remains unchanged and thus its share grows. The gain of the red curve compared to the pure 

substance (blue curve) thus is connected to a growth of the proportion of the ‘rotational 

coupling’ (i.e. interintra KfK  ) and thus to a diminishment of   in Eq. 34. Nevertheless the 

high spectral separation 40r  of glycerol-h5 (cf. Pub. 1) prevents a downward bent curve 

after the x1  behavior at low frequencies, regardless of  . This explanation is proven by 

applying fits (red and blue solid lines) employing a Debye spectral density (Eq. 4) for the 

rotational contributions (inter- as well as intramolecular) (dashed lines) and a FFHS spectral 

density (Eq. 21) for the translational one (dotted lines) like already plotted in Figure 15. (For 

the sake of simplicity we only consider proton-proton coupling.) On the linear scale in Figures 

16a and 16b the fits based on the Debye spectral density work fine. As this representation 

focuses on low frequencies with respect to the rotational regime deviations are only visible at 

the highest reduced frequencies where the fact that the Debye spectral density does not 

support stretching becomes relevant. 

As the absolute coupling is eliminated by dividing by  01R  and likewise is the absolute 

timescale by the introduction of the reduced time scale, 
res , the remaining parameters for 

the fits are the ratios   and r . As expected the fits in Figure 16a have a common 38r  and 

differ only in the ratios of coupling: 27.0  for pure glycerol-h5 and 07.0  for the 

highest dilution, 22.0H x , indicating a diminished ‘translational coupling’. The parameter c  

is in both cases well above the threshold given in Eq. 34: 2400c  and 600c , respectively. 

In the case of PG in Chld (cf. Figure 16b) the situation alters very much. The fit parameters 

for pure PG are: 20r , 35.0  and consequently 650c  which is quite similar to 

glycerol-h5. While the master curve of pure PG is bent upwards the diluted samples show a 

rising downwards curvature which suggests a decreasing spectral separation, r , an effect not 

observed for glycerol-h5 in glycerol-h0 (cf. Figure 16a). This is confirmed by the fit for 

4.0PG x : 9r , 06.0  and thus 14c . As a free fit would yield a even lower r , the 
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value 9r  was set. While contrary to glycerol-h5 in glycerol-h0 a decreasing r  with 

decreasing PGx  is obvious, the trend in   is analogous to the isotope dilution experiment. 

This data representation shows that dilution with a chemically different substance may result 

in profound changes of the dynamics and hence is not an experiment on the lines of an isotope 

dilution experiment. In the case of PG in Chld it suggests that the main aspect is the 

narrowing of the spectral separation with increasing dilution. 

Finally, as an outlook, a more accurate approach to quantify the spectral separation shall be 

mentioned because it is not included in the Publications. As  01R  is a linear combination of 

rot  and trans  (cf. Eq. 31) while the low-frequency slope, m , only depends on the 

translational motion (cf. Eqs. 29 and 32), one can gather information on the 

quantity  rdD 22

rot   (cf. Eqs. 19 and 22) which is also, like the model-based r , a 

measure for the rotational-translational coupling in the liquid, when relating both parameters 

of the linear fit,  01R  and m , as follows (cf. Eqs. 19, 31 and 32): 
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  when  const.r   (35) 

This quantity should be constant when FTS applies or at least when translational-rotational 

coupling holds, i.e.   const.Tr , which is a weaker condition than FTS as the shape of the 

spectral densities still may change without an alternation of the spectral separation. 

Assuming that the spin densities, XN , the intramolecular coupling constant, intraK , and the 

‘molecules’ diameter’, d , (and therefore interK , cf. Eq. 30) are constant in the considered 

temperature range, i.e., that no structural changes in the liquid occurs, one has to relate a 

temperature dependence of   32

1 0 mR  solely to a change in rotD : 
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One can obtain absolute results on rotD  for all profiles,  1R , taken at higher temperature 

when one low-temperature profile is available, which allows to extract both rot  and D  via 

fitting. Figure 17 taken from Pub. 1 exemplarily shows the result of this procedure, besides 

glycerol-h8 also two perdeuterated species are depicted. Pub. 1 proves that  1R  of glycerol 

can almost perfectly be interpolated by a combination of CD function (Eq. 6) and FFHS 

model (Eq. 21) with rot  and D  agreeing with other methods. Besides rot  and D  the fit also 

yields interK  (and therefore d , cf. Eq. 30) and the overall rotational coupling interintra KfK  . 
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With these parameters, interK  and interintra KfK  , Eq. 35 allows the calculation of rotD  for 

other datasets taken at higher temperatures where the rotational dispersion is not any more 

contained in the actual frequency window as one only needs the result of the linear fit of 

 1R  at low frequencies, m  and  01R . This is similar to the susceptibility master curve 

procedure (cf. Sec. 3.1.5), but it does not assume a constant spectral separation and it fastens 

on translational instead of rotational motion. 

 

10
4

10
5

10
6

10
7

10

100

 glycerol-h
8

 glycerol-h
5

 glycerol-h
3

 

 

R
1
 [
s

-1
]

frequency [Hz]  

Figure 17: Rate dispersion curve of glycerol-h8, glycerol-h5 and glycerol-h3 at 278 K; solid lines: fits 

only distinguishing between rotation based on a CD function (dotted lines) and translation based on 

the FFHS model (dashed lines). Taken from Pub. 1. 

 

This procedure for determining rotD  can exemplarily be used to reexamine the difference 

between the isotope dilution experiment (glycerol-h5 in glycerol-h0) and the admixture of a 

chemically different deuterated solvent (PG in Chld). Figure 18a shows the results of the 

various dilutions of glycerol-h5 in glycerol-h0 (solid squares) and of glycerol-h8 (blue stars, 

data from Pub. 4) compared to combined results from FG NMR and DS (Ref. [66], black 

circles). The black open squares depict an own compilation of available literature data on D  

and rot  (Refs. [25, 28, 29, [75]-[77]]). The parameters of the required fits of a low-

temperature profile, interK  and interintra KfK   are given in Pub. 1 and Pub. 2. The first 

observation is that our result on glycerol-h8 well agrees with those from the references. 

Furthermore it reveals that the isotope dilution, like the partial deuteration in the case of 

glycerol-h5, has no effect on rotD . 
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Figure 18a: rotD  for glycerol-h5 in glycerol-h0 (solid squares) and glycerol-h8 (blue stars, data from 

Pub. 4). For comparison data from Ref. [66] were included (open circles), the open squares represent 

an own compilation of available data in the literature (Refs. [25, 28, 29, 75-77]). Figure 18b: Analogue 

data on the system PG in Chld. 

 

Figure 18b presents the data of the system PG in Chld. While isotope dilution seems not to 

affect rotD  it gets higher with dilution in the case of PG in Chld. When applying fits to the 

low-temperature profiles in order to obtain interK  and interintra KfK   for all PG 

concentrations, PGx , the condition PGinter xK   was imposed which led to a global 

m1013.4 10d . Thus considering  rdD 22

rot   a rise in rotD  reflects a decreasing 

spectral separation, r . For pure PG it gives a mean 39r  (c.f. dashed black line in Figure 

18b) for PG in Chld with 4.0PG x  the average in temperature (c.f. dashed cyan line in Figure 

18b) gives 14r . This suggests that the dilution with Chld makes the PG molecules better 

obey the Stokes-Einstein-Debye relation, 9r . 

Summing up, in case of the isotope dilution experiment we find const.r , while for PG in 

Chld r  decreases with increasing dilution with Chld. As unlike in the case of glycerol-h5 in 

glycerol-h0 Chld does not support hydrogen bonds this is an indication that hydrogen bonds 

are responsible for a big spectral separation and thus indirectly for the low-frequency excess 

contribution found in the susceptibility master curves of various hydrogen-bonded liquids.  

For high temperatures 
g2.1 TT   commonly translational and rotational coupling is considered 

to hold in molecular liquids, i.e. const.rot D , while when approaching 
gT , rotD  rises 

considerably, which led to the term ‘enhanced translation’ close to the glass temperature [66, 

67], because a rise in rotD  reflects a decreasing spectral separation, r , which represents an 

acceleration of translational dynamics with respect to rotational one. Despite the fact that all 

the data on glycerol presented in Figure 18a are measured well above 
g2.1 T  one can 

distinguish a slight dependence of rotD  on temperature. Our results as well as the references 
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suggest a rising spectral separation, r , with decreasing temperature, i.e. a slowing down of 

translation with respect to rotation in the liquid and moderately supercooled liquid before the 

anticipated but not experimentally covered contrary process (enhanced translation) sets in 

close to 
gT  [66]. 
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Figure 19a: NMR susceptibility of glycerol-h8 (data from Pub. 4) plotted versus scaled frequency, 

rot , the factor rot  is obtained via calculations along Eq. 35; blue and red solid lines taken at 

temperatures as indicated, grey lines taken at intermediate temperatures, dashed solid line: CD 

susceptibility, dotted lines: FFHS model, inset: comparison of rot  derived via Eq. 35 (blue exes) with 

results from susceptibility master curve construction (black solid squares). Figure 19b: Analogous 

figure employing results from DS ( rotDS   ) instead of the ones derived by Eq. 35. Taken from Ref. 

[38]. 

 

As the susceptibility master curves assume FTS and thus omit effects of temperature on the 

spectral separation it is of interest to compare the rotational time constants, rot , derived with 

the present method (given by rotD  and D ) to the ones which are yielded via the construction 

of susceptibility master curves. Figure 19a illustrates the differences of both approaches for 

glycerol-h8. The inset compares rot  from the susceptibility master curve procedure assuming 

FTS (and thus const.r ) for translation and rotation (black solid squares) with the result of 

the presently discussed method (blue exes). The main picture shows the master curve 

 rotNMR    where the latter rotational correlation times derived from rotD  were used for 

scaling. It is immanent that using the former would make all datasets coincide. 

Like Figure 18a, Figure 19a also suggests that the spectral separation gets narrower with 

increasing temperature. This shall be pointed out by the model functions inserted. The dashed 

black line is a CD susceptibility to account for the rotational part (intra- and intermolecularly 

mediated), whereas the dotted lines represent the translational share in terms of the FFHS 

model. The first one (blue dotted line) located at lower frequencies is placed to account 
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(together with the rotational peak) for the curve taken at lowest temperature (blue line), where 

the spectral separation seems to be rather wide. The second one (red dotted line) is shifted to 

higher frequencies in order to account for the curve taken at highest temperature (red line) 

therefore representing a narrower spectral separation. 

As a further evidence for this change in spectral separation serves Figure 19b, which is taken 

from Ref. [38]. It is analogous to Figure 19a, only that it employs rot  obtained without the 

assumption of FTS from DS experiments. The result is equivalent. 

 

3.1.9  Polymer Dynamics 

This thesis will show that the translationally driven, universal low-frequency dispersion can 

also be found in polymers and thus self-diffusion coefficients can be extracted via Eq. 32, too. 

The main difference between simple liquids and polymers are several polymer specific 

dynamical regimes, which occur between the fast α-process (structural relaxation) and the 

slowest motion, the translational diffusion. In the case of polymers the former is connected to 

the reorientation of the polymer segments (with a time constant  s ) while in liquids it 

reflects molecular reorientation (  rot ). When going from simple liquids to oligomers and 

eventually from oligomers to polymers by increasing the molecular mass, M , a rising 

number of additional processes arise.  

 

 

Figure 20: Schematic dependence of the logarithm of the intramolecular (segmental) correlation 

function,  tCintra
, and the mean-square displacement,  t2

R , on time as expected within the tube-

reptation model. For  tCintra
 also the expectations for an unentangled polymer (dashed line) and for 

a simple liquid (dotted line) are given. Adapted from Ref. [79]. 
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At the beginning of the polymerization, i.e. the molecule is integrated into short chains of 

monomers, their local reorientation is not fully isotropic anymore and cannot fully extinct the 

whole correlation. The remaining correlation decays via slower processes which are identified 

as chain modes. They are most commonly described by the free Rouse model, which assumes 

the polymer being a chain of beads connected by entropic springs [78]. 

Figure 20 shows its predictions for the rank 2l  correlation function,  tCintra
, (left axis, red 

curve). One sees the correlation loss for a simple liquid (dotted line) due to 

molecular/segmental reorientation (regime 0, glassy dynamics) and for the free Rouse chain 

(dashed line) (regime I), the latter protracted because of the slower modes involved. With 

higher molecular masses the chains will start to feel each other and get entangled among 

themselves. This happens when the entanglement mass, eM , is exceeded, and the free Rouse 

regime is joined by the constrained Rouse (II) and the reptation (III) regime at longer times. 

Regime II is described as hindered chain modes in a tube which consists of the other chains, 

regime III describes the one dimensional motion (i.e. reptation) of the chain along these tubes 

[80]. In the case of regime I – III being present normal (Fickian) translational diffusion (IV in 

Figure 20) can be observed only after a quite long time (i.e. d , when reptation already has 

performed), which is needed to dissolve one tube and set up another (cf. Figure 20, red solid 

line). 

The advantage of the employment of the universal translational low-frequency is obvious: 

Because of its model independent approach one can avoid considering all the previous 

polymer dynamics. Here a quantification of D  by fitting the whole rate dispersion employing 

certain models, e.g. FFHS model with CD function like done in Pub. 1 for simple liquids, 

would be very tedious in the best case. Nevertheless the experimental results have to cover 

regime IV, which becomes increasingly difficult the higher M  is. This shall be further 

clarified by means of the predictions on the mean square displacement,  t2
R , for the 

different regimes in Figure 20 (right axis, black curve). The simple liquid only has the 

ballistic regime (free flight of the particle) at very short times, after which the cage of the 

surrounding molecules starts to take effect. The latter’s influence extends to longer times, 

when approaching 
gT  but finally one will see normal translational diffusion, whose main 

feature is that the mean square displacement grows linearly in time. The rate of the growth of 

 t2
R  is given by the self-diffusion coefficient, D , via: 

 

  tDt  62
R          (37) 
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In contrary to simple liquids for polymers after the α-process (regime 0, glassy dynamics) 

several subdiffusive (i.e.   γ2 tt R  with 1 ) regimes (I-III in Figure 20), are 

consecutively inserted with growing M , which retards the final crossover to regime IV 

described by Eq. 5. For this reason with a given experimental setup one only can access D  up 

to a certain molecular mass, as above the translational dynamics is such retarded that the 

universal low-frequency behavior is located below the lowest frequencies measurable and 

cannot anymore be shifted into the covered frequency window by applying higher 

temperatures. 

For many systems (e.g. poly(dimethyl siloxane), polyisoprene, polybutadiene) yet it is 

possible to cover M  values beyond eM  (i.e. entangled polymers) and one can identify a 

crossover of the power-law behavior M  of the transport coefficients at eM  which is 

predicted by the theories (cf. Pub. 5, Pub. 6). 
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Figure 21: Master curves in rate representation,     res11 0  RR , for polybutadiene (PB) with 

different molecular masses,   9470molg466  M . Taken from Pub. 5. 

 

Figure 21 shows the rate dispersion master curves for polybutadiene (PB) with different 

molecular masses, M , as presented in Pub. 5. With the assistance of the relaxometer in 

Darmstadt the universal low-frequency behavior could be detected for PB with molecular 

masses up to molg9470M  (i.e. PB9470). For higher M  the translational regime was not 

contained in the accessible frequency interval. For each system the datasets taken at different 

temperatures collapse onto a common master curve and, as constructed, all of them coincide 

in the low-frequency behavior but show differences at higher reduced frequencies. While 

PB466 (solid black curve in Figure 21) still is a simple liquid, the highest M  considered 
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(cyan and orange curves in Figure 21) clearly exceed the entanglement molecular mass, 

molg1900e M  [81], and therefore should feature polymer dynamics. Their development 

with growing molecular masses can easily be seen in Figure 21 as a systematic change of the 

master curves. 

The master curve of the low- M  system in principle merely shows two dynamical processes: 

translation and rotation. The dispersion due to the latter causes the curve to approach zero at 

intermediate reduced frequencies. With an increase of M  the curve bends more and more 

upwards and finally seems to approach a finite value of    011 RR   at highest frequencies of 

the presently covered interval. This behavior demonstrates the arising of polymer dynamics in 

between the segmental dynamics and translational diffusion which shifts the former to higher 

reduced frequencies with respect to the translation. Eventually it is spectrally separated from 

translation to such an extent that the dispersion due to segmental dynamics is not anymore 

contained in the covered frequency interval and thus acts like a constant underground like 

seen in the case of PB9470 (Figure 21, orange line). 

In the following a short introduction to each of the six publications is given. 
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3.2  Phenomenologicial Description of the Rate Dispersion of 

Glycerol (Pub. 1) 

 

This publication presents FC 
1
H NMR measurements on fully protonated glycerol (glycerol-

h8) and two perdeuterated varieties, namely glycerol-h5 (i.e. CH5(OD)3) and glycerol-h3 (i.e. 

CD5(OH)3) taken in a broad temperature range. To further clarify the intermolecular 

contribution, firstly a translational model is consulted to account for the intermolecular 

relaxation contribution to the whole rate dispersion curve. It turns out that this provides a 

consistent analysis of all samples.  

The experimental results are analyzed in terms of the model functions given in the 

introduction. The rotational part is described by a CD function (Eq. 6) while the translational 

one by the FFHS model (Eq. 21). For glycerol-h8 only the BPP equations (Eqs. 11 and 27) are 

employed. For the perdeuterated samples also heteronuclear dipolar coupling is considered 

which requires the SBM equations (Eqs. 12 and 28) in addition. As Pub. 1 does not yet take 

into account eccentricity effects the intermolecular rotational contribution is included into the 

intramolecular coupling constants  2HH

intraC  for glycerol-h8 and  2redHH,

intraC and  2HD

intraC  for the 

partially deuterated samples which were global, temperature independent fit parameters. 

Thereby,  2HD

intraC  was a fixed multiple of  2redHH,

intraC . Since the labeling in Pub. 1 differs from 

the notation given in Chap. 3.1 we may identify: 

 

    HH

inter

HH

intra

2red)HH(,

intraHH
5

1
1

5

2
KfKCII   

    HD

inter

HD

intra

2HD

intraDD
10

1
1

15

2
KfKCII 

 

The suggested separation between inter- and intramolecular contribution in Pub. 1, 
intra,1R  and 

inter,1R , has strictly to be transferred into rotational and translational ones, 
rot

1R  and 
trans

1R . 

However, as revealed in Pub. 2, this is only a problem of labeling concerning the coupling and 

does not affect the results on the molecular dynamics, i.e. rotR    and D . The major results 

of Pub. 1 are as follows: 

 The rate dispersion curves,  1R , for all samples are perfectly describable by a 

combination of a CD spectral density and the FFHS model with a distance of closest 

approach, d , which only changes slightly with temperature. 
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 For all samples the results for the rotational correlation times, rot , agree with ones 

from DS and the obtained self-diffusion coefficients, D , agree with those from FG 

NMR.  The spectral separation is found to be 50r  considerably exceeding the DSE 

relation, i.e. 9r  (Eq. 22). Thus FC 
1
H NMR is capable to monitor both translational 

and rotational dynamics in liquids. In fair approximation translational-rotational 

coupling holds (i.e.   .constTr ) though a slight trend of r  to decrease with 

increasing temperature can be distinguished (cf. Sec. 3.1.8). 

The previous two points (i.e. good interpolation of data and agreement of rot  and D ) proof 

the validity of this phenomenological separation which however distinguishes between 

rotational and translational parts instead of intra- and intermolecular ones as it is demonstrated 

by isotope dilution experiments in Pub. 2 and Pub. 4. Thus in Pub. 1 for the first time  1R  is 

consistently fitted and self-diffusion data is presented obtained by FC 
1
H NMR in liquids. 



 

54 

3.3  Intermolecular Relaxation in Glycerol (Pub. 2) 

 

As the attempted separation between intra- and intermolecular contributions in Pub. 1 was 

based on models, Pub. 2 reveals the intermolecular contribution,  inter,1R , model 

independently by an isotope dilution experiment (cf. Sec. 3.1.7). So Pub. 2 serves as a 

retrospective justification for the separation done in Pub. 1 because it shows that it can be 

identified as a distinction between rotational and translational parts instead of intra- and 

intermolecular ones. This is done by disclosing the eccentricity effect which is subsequently 

shown to be describable on the lines of the intramolecular rotational contribution. Thus the 

separation into rotational and translational contribution gives correct quantitative estimations 

for both types of molecular dynamics. 

As said in Sec. 3.1.7, in principle the experiment in this publication is a rerun of the one 

already performed in by Kintzinger and Zeidler [59]. Glycerol-h5 was diluted in its fully 

deuterated counter-part, glycerol-h0. Thereby, glycerol-h5 was used to prevent proton 

exchange at the hydroxyl groups. As shown in Sec. 3.1.7 we still were able to obtain new 

results as the FC NMR technique covers lower frequencies than those Kintzinger and Zeidler 

were able to reach using conventional equipment. Their rate dispersion curves do not cover 

the translational dominated frequency regime (cf. Figure 12), they essentially only saw 

rotation. Pub. 2 fills this experimental gap. 

For five different dilution ratios 22.01 H  xx  (with x  being the mole fraction of glycerol-

h5) rate dispersion curves were recorded in a broad temperature range. The results are 

analysed in terms of global fits to rate dispersion curves considering also the heteronuclear 

coupling of protons to deuterons on the one hand and in terms of susceptibility master curves 

on the other hand where the extrapolation 0x  is performed (cf. Eq. 24 multiplied with 

frequency). Regarding the global fits for the intermolecular spectral density the approximation 

for the eccentricity model given in Eq. 23 is used. Based on the notation given in Chap. 3.1 

we identify:  

 

   HH

intra

2redHH,

intraHH
5

1
1

5

2
KCII   

   HD

intra

2HD

intraDD
10

1
1

15

2
KCII 

 

In the apllied fitting procedure the distance of closest approach, d , the strength of the 

rotational contribution due to eccentricity, f ,  2redHH,

intraC  and  2HD

intraC  are global fit parameters, 
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i.e. their value does not change with temperature or dilution ratio. The appropriate spin 

densities for protons and deuterons are given by the spin density of glycerol-h8 , the ratio of 

protons and deuterons in the case of glycerol-h5 and the particular dilution ratio.  

The parameter  , which describes the broadening of the (both intra- and intermolecular 

mediated) rotational spectral density (CD function, Eq. 6) and the spectral separation, r , are 

only allowed to vary with temperature. The rotational time constants, rot , being identical for 

the intra- and intermolecular rotJ  and fixing trans  via r , are free fit parameters. Included into 

the fit procedure are measurements of each dilution ratio x  at four temperatures 

283K273  T  where both the rotational and translational dispersions are contained in the 

frequency window. The global fits and the analysis using susceptibility master curves yield 

consistent results: 

 The most prominent loss of relaxation rate or susceptibility with increasing dilution 

with glycerol-h0 happens at low frequencies. The intermolecular relaxation obviously 

prevails here. The extrapolation 0x  leaves the intramolecular contribution which is 

given by a CD function. This is a direct proof of the intermolecular origin of the 

excess contribution at low frequencies, where about 80% of the magnitude is 

intermolecular. 

 The model used in Pub. 1 (i.e. FFHS model for intermolecular and CD function for 

intramolecular part instead of translational and rotational part, respectly) fails to 

describe the whole dataset, due to a significant decrease of  ;1 xR  with x  in the 

rotational regime. Without eccentricity (i.e. model used in Pub. 1) the rate dispersion 

curves for different x  would coincide in the rotational regime. Thus, the global fits are 

not possible until the introduction of an intermolecular modulated (as thus x -

dependent) rotational contribution via  inter

~
J  (Eq. 23), which contains the same rotJ  

which is also employed for the intramolecular part. The quality of the fits is very good 

and the obtained D  agree with FG NMR. This loss with increasing dilution at the 

rotational regime is an evidence for the eccentricity effect. As noted in Sec. 3.1.6 (cf. 

Figure 11b) an inspection of the intermolecular part of the susceptibility master curve 

is a further demonstration of the eccentricity effect as it shows besides a pure 

translational part, which is responsible for the excess contribution, a rotational one. A 

comparison of the rotational contribution due to eccentricity to the intramolecular part 

shows that the positions of the peaks coincide as expected from the fact that they 
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reflect the same process. These results validate the separation for neat liquids as done 

in Pub. 1 and it becomes clear why it leads to consistent self-diffusion coefficients. 

We note that the found value 68.2f  can be related to an (effective) eccentricity of 75.0e  

(cf. Pub. 4). The value for the intramolecular proton-proton coupling constant 

  2102redHH,

intra Hz101.1 C  is smaller than   2102redHH,

intra Hz1055.1 C  given in Pub. 1 for 

glycerol-h5, because the latter misleadingly also accounts for the rotational contribution due to 

eccentricity. In consistence with Pub. 1 the spectral separation 50r  is found to slightly 

decrease with increasing temperature. 

To summarize, Pub. 2 shows the differences between the separation of rotation and translation 

and intra- and intermolecular contributions. While the intramolecular part is purely rotational 

it is generally not possible to extract the mere translational contribution with an isotope 

dilution experiment because of the eccentricity effect, which, to our knowledge, is 

demonstrated in neat liquids for the first time by Pub. 2. 

Pub. 3 will show that translation can also be quantified in a model-independent way without 

the necessity of a sufficiently large spectral separation, r . In Pub. 4, which contains an 

isotope dilution experiment on OTP, we apply the exact solution of the eccentricity model by 

Ayant et al. [51] instead of Eq. 23. 
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3.4  Application of the Translational Low-frequency 

Dispersion to Molecular Liquids (Pub. 3) 

 

As demonstrated in Sec. 3.1.8 the translationally driven low-frequency behavior of the 

relaxation rate (Eq. 29) gives a handle to extract easily and in a model independent way self-

diffusion coefficients, D , in neat liquids. Pub. 3 shows the results of this method for glycerol, 

OTP, threitol, xylitol and sorbitol (cf. Figure 14b). 

We note, that Pub. 3 employs a different kind of normalization of the intermolecular spectral 

density. The prefactor 
31 d  is included in the expression for  interJ  which renders the first 

order of its series expansion model independent. When 
31 d  is contained in the prefactor 

interK  like formulated in Sec. 3.1.8 (cf. Eq. 30) the model dependent parameters in  interJ  

like d  and trans  do not cancel out until plugged into the expression for the relaxation rate to 

give a first order term which only depends on D  like in Eq. 29. 

We summarize the results: 

 The comparison of  intra,1R  from Pub. 2 to results from DS again confirms the purely 

rotational shape. Contary, the whole rate,  1R , significantly differs from profiles 

obtained by DS as the former exhibit a distinctive linear behavior at low frequencies 

when plotted versus  , while DS profiles start flatly when coming from low 

frequencies. This comparison also demonstrates on the basis of experimental data that 

at sufficient low frequencies the slope of  1R  is purely translational driven as the 

rotational contributions are constant there. So D  can be evaluated directly from the 

whole relaxation rate.  

 The linear part of  1R  at low frequencies can be identified for all liquids 

considered. The results on D  determined from the slope, dd 1R , agree well to 

available results from FG NMR (cf. Figure 14b). 

As the covered liquids (besides glycerol-h5 where the H-D coupling has an insignificant 

contribution which can be omitted) only contain protons as active nuclei, Eq. 6 in Pub. 3 only 

considers proton-proton coupling and therefore is consistent to Eq. 29 with only the first 

summand preserved in the expression for B . As Pub. 4 - Pub. 6 also only consider proton-

proton coupling, the negligible influence of H-D coupling on the result of D  shall be clarified 

exemplarily with glycerol-h3, which has a relatively high deuteron spin density. Furthermore 

we demonstrate a case, where heteronuclear coupling has significant influence. 
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Figure 22: Self-diffusion coefficient, D , vs. inverse temperature for 3-fluoroaniline and glycerol-h3 as 

derived from the low-frequency analysis of  1R . Solid stars: results accounting for heteronuclear 

coupling; open stars: results omitting heteronuclear coupling. Open squares: see text. Solid lines: FG 

NMR data from Ref. [66] (glycerol) and Ref. [82] (3-fluoroaniline). 

 

Figure 22 shows the low-frequency analysis of FC 
1
H NMR data of glycerol-h3 published in 

Pub. 1. The result, where the full coupling (Eq. 29 with second term due to deuteron) is 

incorporated (blue solid stars) is compared to the result where the H-D coupling is omitted 

(blue open stars). We see an almost perfect match of both datasets, a thorough scrutinization 

reveals a slightest trend of D  being smaller when only homonuclear coupling is considered. 

The blue solid lines are measurements by FG NMR [66] and one sees that D  of glycerol-h3 

seems to be slightly higher. This may be due to proton exchange in the hydroxyl groups. The 

fact that glycerol-h5 (blue open squares) better agrees with the results from FG NMR supports 

this claim. 

The second example shows 3-fluoroaniline measured with FC 
19

F NMR a result which is so 

far unpublished. Like 
1
H, the spin of 

19
F ( 21I ) relaxes via dipole-dipole interaction. As its 

gyromagnetic ratio is only slightly lower than that of a proton spin, the measurement with the 

Stelar relaxometer is straight forward and does not need hardware adaption. Every molecule 

only contains one fluorine in contrast to six hydrogen atoms. This fact in combination with 

the similar gyromagnetic ratios renders the contribution due to 
19

F-
1
H coupling significant, as 

demonstrated in Figure 22, where the red solid stars represent the complete treatment whereas 

the red open stars depict the result when only 
19

F-
19

F coupling is considered. With respect to 

FG NMR [82] (solid red line) only the accurate treatment fairly agrees. For comparison 

results derived by FC 
1
H NMR are included (red open squares) also accounting for 

1
H-

19
F 

coupling. They quite well agree to the results of FG NMR and to the full analysis of the FC 
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19
F NMR data. The slight deviations to FG NMR may be due to the fact that the SBM 

equation (Eq. 28) assumes that the other spins are always in equilibrium when the considered 

spin relaxes, which is problematic as 
19

F and 
1
H spins relax on similar time scales. 

We finally note that, as shown in Pub. 3, this low-frequency analysis also works for OTP 

which is known to show no distinct low-frequency excess contribution attributed to the 

translational motion and therefore agrees well with results from DS. So one is tempted to ask 

how the intermolecular part of OTP does look like, which obviously contains the translational 

part that enables the analysis done in Pub. 3 but does not result in a low-frequency shoulder 

like in the case of glycerol. For this reason Pub. 4 presents an isotope dilution experiment on 

OTP. 
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3.5  Intermolecular Relaxation in o-Terphenyl (Pub. 4) 
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Figure 23: Susceptibility master curve of OTP (black solid squares) and its separation into intra- (red 

open squares) and intermolecular contributions (blue open squares). The red line is a fit of the 

intramolecular contribution using the CD function; the blue line is a fit of the intermolecular contribution 

by the eccentricity model of Ayant et al. [51]. Taken from Pub. 4. 

 

As OTP shows no low-frequency excess contribution an isotope dilution experiment was 

performed with OTP in order to clarify the relaxation contributions according to intra- and 

intermolecular interactions. Contrary to Pub. 2, the intermolecular contribution is described 

by the eccentricity model of Ayant et al. [51]. The eccentricity model is also compared to the 

approximation given in Eq. 23 , which was used to describe the results in Pub. 2. In addition 

the rate master curve approach (cf. Sec. 3.1.8, Eq. 33) is introduced and its shape is discussed. 

Hereby is shown, that the quantity 
25rc    (cf. Eq. 34) is the decisive parameter 

characterizing the behavior of the master curve beyond the linear regime, i.e. 53c  suggests 

a ‘rotationally dominated shape’ while 53c  suggests a ‘translationally dominated shape’. In 

the former case going to higher 
res  the master curve leaves the linear regime in 

downward direction while it deviates in upwards direction for the latter case. By mistake in 

Pub. 4, Eq. 15 the threshold 40c  is given, 53c  like in Eq. 34 is correct. This stems from 

a mistake in Pub. 4, Eq. 10c, where 1351  should read correctly  21351 . Apart from the 

‘rescaled correlation time’,   , given by 
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the formalism in Pub. 4 is consistent with the one in Sec. 3.1.8 only considering proton-proton 

coupling. As for exclusive homonuclear coupling  241603

inter  BdK  is valid (cf. Eqs. 29 

and 30), using the expression for  01R  given in Eq. 31 one can easily confirm the connection 

between    (Pub. 4, Eq.13) and res  (Eq. 33) given above. We furthermore note that in Pub. 4 

the FFHS model is addressed as ‘hard-sphere free diffusion (HSFD) model’. 

The major results are: 

 The comparison between the exact solution of the eccentricity model from Ayant et al. 

[51] and the approximation given in Eq. 23 shows that the rotational part of the former 

(derived by subtraction of the corresponding FFHS contribution) is not given by a 

Debye (Eq. 4) or CD (Eq. 6) spectral density. Because it includes the rotational 

correlation time in terms of different ranks , l , its susceptibility peak is broadened, 

however as rotational diffusion is assumed the high-frequency slope is 
1  like in 

the case of a Debye susceptibility. The parameter f  of the approximation initially 

rises slowly for small e , while later the increase rapidly gets steeper. For large 

85.0e  the magnitude of the rotational part exceeds the translational one by more 

than one decade as 10f . The apparent spectral separation, 
appr , which is needed for 

the approximation (Eq. 23) to interpolate the eccentricity model described by r  also 

rises slowly at first with e , then gets steeper and may reach values a decade higher 

than r  for the unphysical case of a spin placed on the surface of the hard-sphere. The 

behavior for different r  is similar. However, while for small r  the apparent ratio, 

appr , is always higher than r  (e.g.   190;9app  err ) while for larger r  it is 

smaller for small e  and will cross r  only at even higher e . For example rr app
 at 

31.0e  for 20r  while for 50r  this holds at 65.0e . 

 Concerning the isotope dilution experiment, unlike in Pub. 2 in the case of glycerol-h5 

the loss of relaxation rate in OTP with decreasing proton concentration is not 

significantly larger at low frequencies than at high ones. The contributions of intra- 

and intermolecular relaxation are quite similar as seen in Figure 23, a fact which 

explains the absence of the low-frequency excess contribution. Nevertheless the 

linearity of the relaxation rate at low frequencies due to translational diffusion can be 

identified for  1R  as well as for  inter,1R . It is demonstrated that the rotational 

contribution does not interfere with the low-frequency linearity, as  intra,1R  is 

constant there. The intermolecular part of the susceptibility of OTP is well describable 

with the eccentricity model but unlike in the case of glycerol-h5 the resulting 
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parameters are rather inconclusive. Furthermore the peak position of the 

intramolecular susceptibility of OTP does not match the one of the intermolecular 

rotational contribution according to the eccentricity model (cf. Figure 23). 

 The rate dispersion master curves show a distinct ‘rotationally dominated shape’ only 

for OTP and tristyrene, while glycerol and its homologues have the ‘translationally 

dominated shape’. As the behavior of the master curve is dominated by the spectral 

separation (cf. Eq. 34) this is most likely because the former two substances are one of 

the few in which the DSE relation (Eq. 22), i.e. 9r , approximately holds. 

 Self-diffusion coefficients, D , derived from the low-frequency behavior in  1R  

for several additional systems not covered in Pub. 3 also agree well to available data 

from FG NMR. 

Since the apparent spectral separation, 
appr , considerably rises with e , one may argue that the 

high spectral separation (exceeding the DSE relation, 9r , Eq. 22) of translation and 

rotation experimentally found, e.g. for glycerol, is due to the eccentricity effect. However the 

large value 50r  is confirmed by the rotational intramolecular contribution obtained by the 

isotope dilution experiment (cf. Pub. 2) in combination with the model-independent access to 

D  via the low-frequency behavior in  1R  (cf. Pub. 3). Furthermore, for 50r  even 

rr app
 may hold at intermediate e  as shown above. 

In this context we want to call in mind some results on glycerol-h5 and glycerol-h3 in Pub. 1. 

The fact that 5433  r  for the former while 7150  r  for the latter may be connected to 

the eccentricity effect, as the hydroxyl protons of glycerol-h3 are supposed to be more off-

centered than the ones of glycerol-h5. Anyway, the connection of eccentricity and spectral 

separation calls for further investigations. 

We further note that in Ref. [66] the issue of spectral separation is also addressed, however in 

terms of ‘apparent hydrodynamic radii’. The results are in agreement to our finding that OTP 

approximately fulfills the DSE relation (Eq. 22) while glycerol does not as 50r . With Eq. 

22a Ref. [66] deducts apparent hydrodynamic radii, 
trans

HR , using D  from FG NMR 

measurements and   from literature. The particular value 
trans

HR  is compared to 
rot

HR , the 

analog result employing rot  from 
2
H NMR measurements [83], Eq. 22b (alongside with Eq. 

5 and 2l ) and again   from literature. For OTP the result is nm23.0rot

H

trans

H  RR  while 

for glycerol nm16.0trans

H R  and nm096.0rot

H R  is found. This means that in the case of 

OTP Eqs. 22a and 22b simultaneously hold using the same HR  which reflects 9r  in our 

notation. In case of glycerol the fact that 
rot

H

trans

H RR   renders the translational motion 
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comparatively slower than the rotational one and indicates that r  exceeds the DSE prediction 

in Eq. 22. 

In summary one can state that in terms of models the relaxation dispersion in simple liquids is 

well understood now. The intramolecular part is proven to be purely rotational, while the 

intermolecular part contains translational and rational dynamics, the latter due to the 

eccentricity effect. We find two opposites: glycerol has a large spectral separation, thus the 

intermolecular contribution is distinctively bimodal which results in this ‘shoulder’ found in 

the whole susceptibility at low frequencies. OTP has a small spectral separation and thus in a 

double logarithmic scale the intermolecular part does not differ much from the intramolecular 

one. As a result no distinct low-frequency shoulder is visible. However, when plotting 

 inter,1R  or  1R  one can identify the translational contribution by means of the linear 

low-frequency behavior, which allows to extract D  without any models. The independence 

of models is very favorable for more complex systems and in the next Sections it is 

demonstrated that this approach for determining D  can also be applied to polymers. 
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3.6  Application of the Translational Low-Frequency 

Dispersion to Polymers (Pub. 5) 

 

This publication shows in form of a short letter, that the translationally driven low-frequency 

behavior can also be identified in polymers and that one can obtain self-diffusion coefficients, 

D , up to molecular masses, M , which exceed the entanglement mass, eM . In polymers with 

even higher M  the time scale where translational diffusion sets in (i.e. the time when Eq. 37 

applies) gets very large, as the longer the polymer chain is the more sub-diffusive regimes 

will retard the onset of translational diffusion (cf. Figure 20). Eventually the linear regime in 

 1R  will not appear in the experimental accessible frequency window but at lower 

frequencies. Consequently one can increase the maximum M  where translation is 

experimentally coverable by extending the minimum frequency of the FC relaxometer. With 

the home-built relaxometer in Darmstadt [45, 46]  1R  was measured at frequencies as low 

as Hz200 . As the present publication and Pub. 6 deal with polymers, in these cases the 

experimental data obtained by the Stelar FC relaxometer were amended by low-frequency 

data obtained in Darmstadt to increase the maximum M  where translational diffusion can be 

identified in  1R . 

The formalism in Pub. 5 is identical to the one given in Chap. 3.1 only considering proton-

proton coupling. The focus was on linear polybutadiene (PB). We summarize the results: 

 It is demonstrated that the linear regime at low frequencies can be identified in 

 1R , though a comparison of the low- M  systems to ones with a higher M  makes 

clear that the linear regime gets smaller with rising M . The results cover about three 

decades in D  and are in good agreement with data obtained by FG NMR. The 

limitations due to M  are reflected in the temperature range, where this analysis can 

be performed. While it is quite broad for PB with the lowest molg466M  (i.e. 

PB466) in case of the largest molg9470M  (i.e. PB9470) the analysis was confined 

to a few high temperatures, where the linear regime is only just revealed with the aid 

of the relaxometer in Darmstadt. 

 The dependence of the self-diffusion coefficients on the molecular mass,  MD  , is 

derived by cuts at a specific temperature, in the present case where reference data were 

available. The agreement with FG NMR is good and the combination of the reference 

data with our results taken at comparative low M  reveals a crossover in the power-
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law behavior 
M . The position of the resulting kink in the double-logarithmic 

plot of  MD  agrees with eM , hence it reflects the crossover from Rouse to 

entanglement behavior. This suggests that the two or three highest M  experimentally 

covered in Pub. 5 by FC NMR are already entangled. 

Regarding the power-laws in  MD  one can compare the exponents to predictions of polymer 

models. However these commonly refer to ‘isofrictional’ quantities and D  fulfills this 

condition only well above eM . We will see  in Pub. 6 that the product sD  is an isofrictional 

quantity and the results will be compared to present models. 
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3.7  Derivation of an Isofrictional Quantity in Polymers and its 

Comparison to Common Theory (Pub. 6) 

 

Besides the coverage of four more types of linear polymers, i.e. poly(dimethyl siloxane) 

(PDMS), polystyrene (PS), polyisoprene (PI) and poly(propylene glycol) (PPG), in Pub. 6 the 

determination of the isofrictional quantity, sD , is an advancement compared to Pub. 5.  

The fact that sD  is an isofrictional quantity can be reasoned as follws: The dependence of 

D  on temperature, T , and M  can be factorized [81, [84]]:      MTMFMTD ,,  . The 

quantity   denotes the monomeric friction coefficient which is another measure for segmental 

dynamics, i.e. s   holds. Generally, it depends on both T  and M . The collective polymer 

dynamics is reflected by F , which only depends on M  and is an iso-frictional quantity. 

Consequently,    MFMD s  also is. For small M  the monomeric friction coeffient 

depends on M  as does the glass transition temperature, gT , itself, which governs the local 

(glassy) dynamics. For large M  both gT  and   get insensitive to M  and iso-thermal and 

iso-frictional quantities become equivalent. 

The formalism in Pub. 6 is consistent with the one given above in this thesis, however we 

have to note a misprint: in Eq. 3 in Pub. 6 the exponent  2  is missing (cf. Eq. 33). In 

principle, one could directly obtain sD  via the procedure given in Sec. 3.1.8, but as this 

method is based on quite crude assumptions for simple liquids the segmental relaxation times, 

s , are derived by the construction of susceptibility master curves under the assumption of 

FTS. Here is an account of the most important results: 

 The complementarity of the segmental time constants, s , obtained by FC 
1
H NMR 

with the ones measured by DS was already demonstrated for PDMS, PI, PPG and PG 

in Refs. [[85]-[88]] which also present the respective NMR susceptibility master 

curves. In case of PS the susceptibility master curves are shown in Pub. 6, the 

corresponding s  are complement to results from DS taken at lower temperatures and 

agree well to LS measurements. 

 Firstly, the dipolar correlation function, DDC , for PDMS with different M and 

propylene glycol is derived from the respective susceptibility master curves via Eq. 

16. (cf. Figure 13c) In all cases a power-law 
23 t  is found at sufficiently long times. 

For PDMS it gets clear that the crossover to the long-time behavior is the more 

retarded the higher M  is. This is due to additional polymer specific dynamics which 
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occur between the correlation loss due to segmental relaxation and the translational 

diffusion. The build-up of polymer dynamics with rising M  is also demonstrated for 

PS and PDMS in terms of rate dispersion master curves. (cf. Figure 21 for PB). 

 From the low-frequency behavior of  1R  self-diffusion coefficients,  TD , can be 

obtained. Their agreement to available literature data obtained by FG NMR is good. 

 The dependence  MD , an ‘iso-thermal’ quantity, derived by taking cuts at a certain 

temperature also agrees well to results from FG NMR. Exemplarily for PDMS the 

product sD  is verified to be an isofrictional quantity by demonstrating its mere 

dependence on M  via showing that sD  is constant in T . This proofs the 

cancellation of the influence of   in sD . The equivalence of iso-thermal and iso-

frictional quantities for large M  can be seen for the polymers where M  is covered 

up to the entanglement regime: For eMM   both quantities, D  and sD , show the 

same M -dependence, i.e. M  with 2.2 , which is somewhat above the 

prediction of the tube-reptation model, 2 . The correction by including s  comes 

into effect for smaller M : depending on the system a narrow and thus indistinct 

Rouse regime, i.e.   MD s
 with 1  and the low- M  limit of the monomeric 

liquid where sD  becomes M -independent is resolved. The best results could be 

obtained on PDMS where the intermolecular relaxation is rather strong [34]. Here the 

entanglement regime, a short interval reflecting Rouse dynamics and the crossover to 

the simple-liquid behavior is covered. The difference between the iso-thermal and the 

iso-frictional quantity is most remarkable at PS. While  MD  shows a very steep M -

dependence,  MD s  suggests that only for molg1920M  first effects due to 

polymer dynamics are revealed, i.e. first Rouse modes are established. This feature 

can be related to a strong dependence of the glass transition temperature, 
gT , of PS on 

M . 

To sum up, the present work demonstrates that FC 
1
H NMR is capable to probe local 

(segmental) as well as collective dynamics in polymers. The results can be compared to 

models and the crossover to the simple liquid behavior may give an answer to the widely 

discussed question: When does a liquid become a polymer? 
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Translational and Rotational Diffusion of Glycerol by Means
of Field Cycling 1H NMR Relaxometry
D. Kruk,† R. Meier, and E. A. R€ossler*

Experimentalphysik II, Universit€at Bayreuth, 95440 Bayreuth, Germany

ABSTRACT: Field cycling (FC) 1H NMR relaxometry has been applied to study translational
and rotational dynamics of nondeuterated (-h8) and partially deuterated (-h3 and -h5) glycerol in a
broad temperature range. We demonstrate that a low-frequency excess intensity observed in the
relaxation dispersion stems from intermolecular dipole-dipole interactions mediated by transla-
tional dynamics, whereas the main relaxation is attributed to rotational dynamics. A theoretical
description of the relaxation processes is formulated accounting for 1H-1H as well as 1H-2H
relaxation channels for the partially deuterated systems. While the intermolecular spectral density
is derived from the force-free-hard-sphere model (Fick diffusion with appropriate boundary
conditions) of translational motion, the intramolecular relaxation contribution is described by
a Cole-Davidson spectral density. This ansatz reproduces very well the dispersion profiles
obtained from FC 1H NMR. Moreover, the approach allows extracting the diffusion coefficient D, which is in good agreement with
results from gradient 1H NMR. Thus, 1H NMR relaxometry has the potential to become an alternative method for measuring the
diffusion coefficient in viscous liquids.

1. INTRODUCTION

With the emergence of a commercial electronic field cycling
(FC) nuclear magnetic resonance (NMR) spectrometer, this
technique gained new momentum for relaxation studies of
condensed matter.1,2 FC NMR monitors the dispersion of the
spin-lattice relaxation time T1(ω). A frequency range from
10 kHz to 20 MHz can be now routinely covered by 1H NMR
relaxometry. In our previous publication,3 subsequently referred
to as paper 1, we have compared the results of 1H NMR
relaxometry and dielectric spectroscopy (DS) for several viscous
(supercooled) liquids. While the DS susceptibility spectra can be
well interpolated by a Cole-Davidson (CD) function yielding
correlation times that are attributed to the rotational dynamics
involved in the structural relaxation (R-process), the corresponding
1H NMR relaxation spectra, in contrast, show in addition to the R-
relaxation peak a low-frequency excess contribution. Its amplitude
varies among the systems. For some liquids essentially no such low-
frequency excess contribution is found, and in this case both NMR
and DS susceptibilities are very similar and well interpolated by a
single CD function. The excess contribution shows similar tempera-
ture dependence as does the R-process; i.e., the seemingly two
relaxation processes cannot be separated by changing temperature.

Discussing several possibilities to explain the low-frequency
excess contribution to the 1H dispersion spectrum we have been
left with arguments supporting the idea that the low-frequency
contribution is caused by translational motion, i.e., by diffusion of
the liquid molecules, cf., paper 1. 1H NMR relaxometry probes
the fluctuations of the dipole-dipole interaction between pairs
of nuclei. Due to an intermolecular contribution, 1H NMR
relaxation data may thus reflect, in addition to the molecular
reorientation also translational motion. In the case of the
hydrodynamic model of a (molecular) sphere rotating and

translating in a viscous medium, Abragam derived the relation-
ship τtrans/τR = 9, where τR is the rotational correlation time of
rank two and τtrans is the corresponding time constant of
translational diffusion.4 The ratio is close to the experimental
finding in paper 1 yielding τex/τR = 20-30, being essentially
temperature independent for a given liquid, and thus indicating
rotational-translational coupling in the moderately viscous
liquid not too close to the glass transition temperature Tg.

5 In
other words, intra- and intermolecular relaxation contributions
are spectrally shifted with respect to each other, and this
facilitates their separation without performing isotope dilution
experiments as usually is done.6-9

In the present publication we attempt to quantitatively
describe the inter- and intramolecular relaxation dispersion of
differently protonated glycerol (-h8, -h5, and -h3) by assuming
appropriate spectral densities. In particular, for the intermolecu-
lar spectral density we apply the so-called force-free hard-sphere
diffusion model introduced by Hwang and Freed10 and Ayant
et al.,11 which provides a spectral density being distinctly of non-
Debye character. For the intramolecular spectral density a CD
function is chosen.We shall demonstrate that this approach gives an
almost perfect interpolation of the total relaxation spectra. More-
over, it allows determining the diffusion coefficient D over a broad
temperature range, which well agrees with data obtained from
gradient NMR.12,13 Though some model assumptions are involved
in the applied description, NMR relaxometry may become an
alternative, and in some cases complementary method to gradient
NMR.
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2. RELAXATION PROCESSES IN VISCOUS LIQUIDS:
THEORETICAL BACKGROUND

In this section the theory of 1H spin-lattice relaxation in
liquids, including intermolecular and intramolecular com-
ponents is summarized. The description begins with nondeut-
erated systems, and it is subsequently extended to partially
deuterated molecules.
2.1. Intramolecular and Intermolecular ProtonRelaxation:

Nondeuterated Systems. The observed proton spin-lattice
relaxation, described by a relaxation rate R1

HH = (T1
HH)-1,

contains intramolecular and intermolecular contributions:

RHH
1 ¼ RHH

1, intra þ RHH
1, inter ð1Þ

The intramolecular relaxation rate, R1,intra
HH , results from fluctua-

tions of dipole-dipole interactions between nuclei (in this case
protons) belonging to the same molecule. It is given as the
well-known combination of intramolecular spectral densities,
Jintra(ω):

4,14,15

RHH
1, intra ¼ 2

5
IHðIH þ 1ÞðCHH

intraÞ2½ JintraðωHÞþ 4Jintrað2ωHÞ� ð2Þ

where ωH is the proton frequency. The effective dipole-dipole
constant, Cintra

HH , fulfills the condition (Cintra
HH )2 e (Cintra,rigid

HH )2 =
Σi[(μ0/4π)(γH

2p/ri
3)]2. Here ri is the distance between a

“reference” proton and the ith proton in the molecule, the
summation goes over all neighboring protons, the spin quantum
number is IH = 1/2, and γH is the proton gyromagnetic factor.
The quantity Cintra,rigid

HH gives the coupling constant in the limit of
no motion (second moment).4 The spectral density, Jintra(ω),
depends upon the motional model applied to describe the
fluctuations of the intramolecular dipole-dipole couplings.
Neglecting any kinds of internal motion, for viscous liquids
governed by cooperative dynamics, the CD spectral density is
commonly used:16

JintraðωÞ ¼ sin½β arctanðωτCDÞ�
ω½1þðωτCDÞ2�β=2

ð3Þ

where τR = τCDβ is the rotational correlation time, while 0 < βe
1 is a phenomenological stretching parameter. This spectral density
represents the Fourier transform of the normalized rotational
correlation functionCintra(t) for the rank-twoWigner rotationmatr-
ices describing the molecular reorientation. By normalization it is
understood that C(t=0) = 1 and

R
0
¥J(ω) dω = π/2.

The intermolecular relaxation pathway is mediated by relative
translational diffusion of the participating molecules, since it
results from fluctuations of dipole-dipole interactions between
nuclei belonging to different molecules. In this case the correla-
tion function reflects changes not only in the orientation of
the dipole-dipole vectors but also in the interspin distance,
explicitly the non-normalized intermolecular correlation function
is given by1,4,15,17,18

~CinterðtÞ ¼ D2�
0,mðΩðtÞÞ
r3ðtÞ

D2
0,mðΩð0ÞÞ
r3ð0Þ

* +
ð4Þ

Here, the rank-two Wigner rotation matrices D0,m
2 describe the

orientation of the internuclear axis in the laboratory frame via the
Euler angle Ω. Again, the form of the correlation function
depends on the assumed diffusion model. For a force-free

diffusion with a uniform distribution of the molecules (treated
as hard spheres) outside the distance of closest approach, d, and
under the assumption of the reflecting wall boundary condition
at r = d, the correlation function for translational diffusion takes
the closed analytical form:10,11

~CinterðtÞ ¼ 72NH
1
d3

Z
¥

0

u2

81þ 9u2 - 2u4 þ u6
exp -

u2t
τtrans

 !
du

¼ 4π
3
NH

1
d3

CinterðtÞ ð5Þ

where NH is the number of interacting spins (protons in this
case) per unit volume (i.e., (4π/3)NH is the number of spins per
unit sphere), while τtrans = d2/D12, where D12 is the relative
translational diffusion coefficient defined as a sum of self-diffu-
sion coefficients of the participatingmolecules. Thus for identical
molecules it is twice larger than the self-diffusion coefficient,
D12 = 2D. The spectral density Jinter(ω) is given as Fourier
(cosine) transform of the normalized correlation function
Cinter(t)

17

JinterðωÞ ¼ 72
3
4π

Z
¥

0

Z
¥

0

u2

81þ 9u2 - 2u4 þ u6
exp -

u2t
τtrans

 !
du

" #
cosðωtÞ dt

¼ 72
3
4π

Z
¥

0

u2

81þ 9u2 - 2u4 þ u6
u2τtrans

u4 þðωτtransÞ2
du ð6Þ

The intermolecular 1H-1H relaxation rate is given, in analogy to
eq 1, as

RHH
1, interðωHÞ ¼ 2

5
IHðIH þ 1ÞNH

4π
3

1
d3

μ0
4π

γH
2p

� �2

½ JinterðωHÞ

þ 4Jinterð2ωHÞ� ð7Þ

The model of translational motion represented by eq 6 is highly
simplified. It assumes that the nucleus carrying the spin is placed
in the center of the molecule. This implies that the fluctuations of
the interspin vector (in terms of its orientation and its length) are
entirely caused by the translational motion. Actually, if the spin of
interest is placed at a different position in the molecule (not in its
center) molecular tumbling also leads to changes of the interspin
vector.19 In this work we do not account for such noncentricity
effects. In consequence, the distance of closest approach, d,
included in eqs 5 and 7, being on the order of the molecular
size, has a meaning of an effective quantity. Assuming further the
Stokes-Einstein-Debye relation for a (molecular) sphere ro-
tating and translating in a viscous medium, the model predicts a
relationship between the rank-two rotational correlation time τR
and the translational correlation time: τtrans/τR = 9.

4 This implies
that the spectral densities of the intra- and intermolecular
relaxation are shifted in frequency with respect to each other.
2.2. Susceptibility Representation and Comparison with

Dielectric Spectroscopy. It is interesting and useful to find
analogies between the description of NMR relaxation and the
way in which dielectric spectroscopy (DS) results are typically
analyzed. In DS one measures a susceptibility function, χ00(ω),
instead of a spectral density, J(ω). These two quantities are
related via the fluctuation-dissipation theorem: χ00(ω) = ωJ(ω).
This implies that one can rewrite eq 1 in the susceptibility
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representation, employing eqs 2 and 7

χ
00
NMRðωHÞ ¼ 2

5
IHðIH þ 1ÞðCHH

intraÞ2½χ
00
intraðωHÞþ 2χ

00
intrað2ωHÞ�

þ 2
5
IHðIH þ 1ÞNH

4π
3

1
d3

μ0
4π

γH
2p

� �2

½χ00
interðωHÞ

þ 2χ
00
interð2ωHÞ� ð8Þ

We note that the appearance of the two susceptibility terms
(χ00(ω) and χ00(2ω)) in each relaxation contribution leads only
to slight broadening with respect to a single susceptibility as
probed in DS. In DS one does not detect effects of translational
motion. Thus, an appropriate comparison betweenDS andNMR
(adjusted to the susceptibility representation) considerably helps
to identify the intermolecular contribution to the NMR relaxa-
tion, i.e., to decompose the overall relaxation into the intra-
molecular and intermolecular contributions. Nevertheless, at
this stage one should be aware that while NMR relaxometry
results are related to a rank-two correlation functions, in DS
one probes the correlation functions of rank one.
2.3. Phenomenological Analysis and the NMR Relaxation

Model. In paper 1 we attempted to describe theNMR relaxation
data for glycerol (and several other liquids) in a phenomenolo-
gical way in terms of a sum of two CD spectral densities. For
convenience of the reader we repeat the applied formula below
(eq 6 of paper 1)

χ00NMRðωHÞ ¼ Kfð1- SÞ½χ00RðωHÞþ 2χ00Rð2ωHÞ� þ S½χ00exðωHÞ
þ 2χ00exð2ωHÞ�g ð9Þ

introducing a factor S describing the relative contributions of
these two processes and a coupling constant K. The first term on
the right-hand side of eq 9 corresponds to the rotational motion
(R-process), while the second term was supposed to describe the
low-frequency excess intensity, the origin of which was then not
specified; now we attribute it to the intermolecular relaxation.
Comparing eqs 8 and 9, one can set up a relationship between the
previous and current quantities:

Kð1- SÞ ¼ 2
5
IHðIH þ 1ÞðCHH

intraÞ2 ð10aÞ

KS ¼ 2
5
IHðIH þ 1ÞNH

4π
3

1
d3

μ0
4π

γH
2p

� �2

ð10bÞ

In the low frequency limit, assuming that the extreme narrowing
condition (ωτ << 1) has been reached, the ratio between the
intramolecular and intermolecular contributions to the overall
relaxation rate can be estimated on the basis of eqs 2 and 7 as

RHH
1, inter

RHH
1, inter

¼ 3
4π

S
τtrans
τR

72
Z

¥

0

du
81þ 9u2 - 2u4 þ u6

� �

¼ 0:45S
τtrans
τR

¼ 0:45S
d2

D12τR
ð11Þ

Since τtrans is at least an order of magnitude longer than τR in the
low-frequency range the intermolecular contribution to the
relaxation is comparable with the intramolecular part; in many

cases (shown later) the intermolecular relaxation rate even
dominates the intramolecular one.
It is important to notice that the spectral density for the

translational motion (eq 6) leads to a susceptibility function of a
spectral shape that is distinct from a CD function. Figure 1 shows
a simulated intermolecular susceptibility, χinter00 ; a CD function is
shown for comparison.
The last remark of this section concerns the meaning of the S

parameter. In paper 1, it has been introduced in connection to a
two-step correlation function. However, the intra- and intermo-
lecular contributions to relaxation are associated with different
kinds of correlation functions; the two-step description proposed
in paper 1 should be treated utterly formally.
2.4. Intramolecular and Intermolecular ProtonRelaxation:

Partially Deuterated Systems. The description of 1H spin-
lattice relaxation in partially deuterated liquids is more compli-
cated than for fully protonated molecules presented above. Now,
the observed relaxation rate, R1

H(ωH), results from four relaxa-
tion pathways

RH
1 ðωHÞ ¼ RH

1, intraðωHÞþRH
1, interðωHÞ

¼ RHH
1, intraðωHÞþRHD

1, intraðωHÞþRHH
1, interðωHÞþRHD

1, interðωHÞ
ð12Þ

The first two terms, R1,intra
HH and R1,intra

HD , describe the 1H-1H and
1H-2H contributions to the intramolecular relaxation, respec-
tively, while the next two terms, R1,inter

HH and R1,inter
HD , correspond to

the intermolecular relaxation and, in analogy, describe its
proton-proton and proton-deuteron parts, respectively. R1,intra

HH

and R1,inter
HH are given by eqs 2 and 7, respectively. The 1H-2H

contribution to the intramolecular relaxation is given as14,15

RHD
1, intraðωHÞ ¼ 2

15
IDðID þ 1ÞðCHD

intraÞ½ JintraðωH -ωDÞ

þ 3JintraðωHÞþ 6JintraðωH þωDÞ� ð13Þ
where (Cintra

HD )2e (Cintra,rigid
HD )2 = Σj(μ0/4π)(γHγD

p)/(rj
3))2, γD

andωD are the
2H gyromagnetic ratio and the Larmor frequency,

respectively, and ID = 1. The sum again goes over all neighboring
deuterons in the molecule. Since the same motion is responsible
for the fluctuations of the 1H-1H as well as of 1H-2H intra-
molecular dipolar interactions, the spectral densities of eq 13 can
also be described by the CD function (eq 3).

Figure 1. Normalized susceptibility function for translational diffusion,
eq 6 (red line), compared with the CD function (black line), βCD = 0.56,
and Debye function (dashed blue).
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The 1H-2H contribution to the intermolecular relaxation is
given as

RHD
1, interðωHÞ ¼ 2

15
IDðID þ 1Þ 4π

3
ND

1
d3

μ0
4π

γHγDp

� �2

� ½ JinterðωH -ωDÞ
þ 3JinterðωHÞþ 6JinterðωH þωDÞ� ð14Þ

whereND is now the concentration of deuterons per unit volume.
The intermolecular spectral density, Jinter(ω), for the force-free-
hard-sphere model of the translational motion is defined by eq 6.
Let us now consider a partially deuterated liquid (for example,

glycerol-h5 with OD groups instead of OH ones or glycerol-h3
with deuterons instead of the nonhydroxyl protons) and denote
by N the entire number of spins per unit volume (not distin-
guishing between 1H and 2H). In such a case the intra- and
intermolecular contributions should be appropriately modified,
yielding

RH
1 ðωHÞ ¼ RHH

1, intraðωHÞþRHD
1, intraðωHÞ

þRHH
1, interðωHÞþRHD

1, interðωHÞ

¼ 2
5
IHðIH þ 1ÞðCHH;red

intra Þ2½ JintraðωHÞ

þ 4Jintrað2ωHÞ� þ 2
15

IDðID þ 1ÞðCHD
intraÞ2½ JintraðωH -ωDÞ

þ 3JintraðωHÞ
þ 6JintraðωH þωDÞ�þ 2

5
IHðIH þ 1ÞnN 4π

3
1
d3

ðCHH
interÞ2½ JinterðωHÞ

þ 4Jinterð2ωHÞ� þ 2
15

IDðID þ 1Þð1- nÞN 4π
3

1
d3

γH
γD

CHH
inter

� �2

�½ JinterðωH -ωDÞþ 3JinterðωHÞþ 6JinterðωH þωDÞ�
ð15Þ

The factor n denotes the fraction of protons in the molecule, and
for example, it is equal n = 5/8 for glycerol-h5, and n = 3/8 for
glycerol-h3; 1 - n denotes then the fraction of deuterons. Then
the intramolecular proton-proton contribution is weighted by
nN, while Cinter

HH = (μ0/4π)γH
2 p. In eq 15 we do not distinguish

between 1H-1H and 1H-2H distances of closest approach. In
the first term of this equation the reduced dipole-dipole
coupling, Cintra

HH,red, has been used, accounting for the partial
deuteration of the molecule (which obviously reduces the
effective proton-proton dipole-dipole coupling). To reduce
as much as possible the number of parameters involved in this
description, the intramolecular 1H-2H dipole-dipole coupling
can be approximated as

ðCHD
intraÞ2=

γD
γH

� �2

ððCHH
intraÞ2 - ðCHH;red

intra Þ2Þ ð16Þ

3. INTERPRETATION OF THE 1H RELAXATION DISPER-
SION FOR GLYCEROL

In this section we present an interpretation of 1H relaxation
data for glycerol-h8, glycerol-h3, and glycerol-h5 in terms of the
model described in section 2. We begin with glycerol-h8;
the experimental data for this case have been presented in
paper 1.

Assuming that the observed relaxation is a sum of intramo-
lecular and intermolecular contributions we have attempted to
reproduce the relaxation dispersion data in terms of eq 2 for
the rotational motion and of eq 7 for the translational motion.
The adjustable parameters are Cintra

HH , τR, β, and d, D. The
intramolecular dipole-dipole coupling constant, Cintra

HH , is
assumed constant for all temperatures. The density of pro-
tons, NH = 6.6 � 10-2 Å-3, is evaluated from the molecular
mass and the density of glycerol (the volume of one glycerol
molecule is 121 Å3).20 The obtained parameters are collected
in Table 1. The intramolecular dipole-dipole constant is
found to be 2/5IH(IH þ 1)(Cintra

HH )2 = 5.84 � 109 Hz2 while
the effective coupling constant resulted from the phenomen-
ological analysis performed in paper 1 (cf. also eq 9) is equal to
K(1 - S) = 5.89 � 109 Hz2, which is in very good agreement
(eq 10a). The relaxation data and the corresponding fits are
presented in Figure 2. In comparison with the analysis pre-
sented in paper 1 (a sum of two CD contributions) the fits are
now almost perfect.

To explicitly show the intermolecular contribution to
the overall relaxation, in Figure 3 we show a decomposi-
tion of the relaxation dispersion data into the intermolecular
and intramolecular at T = 278 K (this figure also contains
data for glycerol-h5 and glycerol-h3 discussed later). The
ratio between the intermolecular and intermolecular relaxa-
tion rates reaches in the low-frequency limit the value of
RHH
1,inter/R

HH
1,intra = 3.

Table 1

temp (K) τR (s) β d (Å) D (m2/s) d2/(2DβτR)

Glycerol-h8

263 3.2� 10-8 0.68 3.59 5.14� 10-14 58

268 2.2 � 10-8 0.61 3.59 7.71� 10-14 62

270 1.5� 10-8 0.67 3.57 1.03� 10-13 62

273 1.1� 10-8 0.67 3.56 1.42� 10-13 61

278 7.3 � 10-9 0.65 3.52 2.33� 10-13 56

283 4.9� 10-9 0.66 3.47 3.63� 10-13 51

288 2.5� 10-9 0.69 3.30 6.25� 10-13 50

296 1.3 � 10-9 0.69 3.20 1.34� 10-12 43

301 8.4� 10-10 0.68 3.17 2.04� 10-12 43

306 6.4� 10-10 0.61 3.07 2.93� 10-12 40

Glycerol-h5

273 1.5� 10-8 0.69 3.57 1.17� 10-13 54

278 1.0� 10-8 0.69 3.52 1.71� 10-13 52

283 7.0� 10-9 0.63 3.37 3.06� 10-13 41

293 2.8 � 10-9 0.66 3.33 7.65� 10-13 40

298 1.6� 10-9 0.65 3.33 1.49� 10-12 37

303 1.2� 10-9 0.67 3.32 1.94� 10-12 36

308 8.7� 10-10 0.65 3.32 2.95� 10-12 33

318 4.3� 10-10 0.66 3.33 6.02� 10-12 33

Glycerol-h3

268 3.4� 10-8 0.65 3.97 5.35� 10-14 67

270 2.5 � 10-8 0.61 3.95 7.44� 10-14 69

273 1.8� 10-8 0.61 3.95 1.02� 10-13 71

278 9.7� 10-9 0.67 3.95 1.80� 10-13 67

288 3.3 � 10-9 0.66 3.87 5.05� 10-13 68

298 1.6� 10-9 0.61 3.74 1.42� 10-12 50
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To establish a line of analogy between the current analysis of
the relaxation dispersion data for individual temperatures and the
phenomenological interpretation of master curves (obtained by

applying frequency-temperature superposition) shown in paper
1, we have attempted to describe the master curve for glycerol-h8
in terms of eq 8 with χinter00 = ωJinter(ω), where R

HH
inter(ω) is given

by eq 6 (the intramolecular part is described by a CD function).
The result is shown in Figure 4. The average ratio τtrans/τR= 56
matches well the average of the values for the individual
temperatures (Table 1).

Coming back to the analysis of the individual relaxation
dispersion data, we compare the obtained rotational correlation
times, τR, with the values presented in paper 1, which stem from
DS and from the construction of the NMR master curve (cf.
Figure 4). The comparison is shown in Figure 5. The obtained
rotational correlation times are now somewhat shorter than these
reported in paper 1 and better follow the Vogel-Fulcher-
Tammann (VFT) relation.21 The obtained translational diffusion
coefficient D are compared with the corresponding values
measured using the NMR static field gradient technique12,13

(Figure 6). The D values agree very well among the different
methods. Assuming that translational-rotational coupling holds,
one is able to estimate the translational diffusion coefficients for
higher temperatures (than it has been measured) on the basis of
the lower temperature results. For this purpose we have used the

Figure 2. 1H spin-lattice relaxation dispersion data for glycerol-h8 and
corresponding theoretical curves obtained as least-squares fits of the
superposition of intramolecular and intermolecular contributions (eqs 2
and 7).

Figure 3. Decomposition of relaxation dispersion data for differently
protonated glycerol at 278 K into intramolecular (dotted lines) and
intermolecular (dashed lines) parts. Solid line: model fit.

Figure 4. Susceptibility master curve for glycerol-h8, obtained by
applying frequency-temperature superposition (cf. paper 1). The curve
has been reproduced (solid line) using the model of eq 6 for the
intermolecular relaxation and a CD function for the intramolecular
contribution. Dashed and dotted lines show the intramolecular and
intermolecular parts, respectively. For comparison the master curve
from dielectric spectroscopy is included (blue), not showing the low-
frequency excess intensity.

Figure 5. Comparison of rotational correlation times τR obtained from
the present analysis (red squares) with correlation times obtained from
the phenomenological approach in paper 1 (blue squares), from the
NMR master curves (black squares), and from dielectric spectroscopy
results18 (open circles). The interpolating line represents a fit with
Vogel-Fulcher-Tammann equation.

Figure 6. Comparison of translational diffusion coefficients obtained
from the current analysis of differently protonated glycerol, and from
NMR gradient methods taken from refs 12 and 13. Solid line: estimation
ofD(T) from the VFT fit of τR(T) (in Figure 5) assuming translational-
rotational coupling.
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rotational correlation times τR from the VFT fit (solid line in
Figure 5), the distance of closest approach, d = 3.07 Å (Table 1)
and the ratio, d2/2DτR = r = 40 both for 306 K. The calculated D
values are included in Figure 6 as solid line. For higher tempera-
tures they somewhat deviate from the literature field gradient
results, in fact as expected because of the tendency of the d and r
values to decrease with temperature. Nevertheless, the deviations
do not exceed a factor 2.

Next we turned our attention to the case of glycerol-h5. In the
analysis, two dipole-dipole couplings are used, (Cintra

HH )2 and
(Cintra

HH,red)2 (eq 15). The second coupling constant, (Cintra
HH,red)2, is

chosen as an adjustable parameter ((Cintra
HH,red)2 denotes here the

contribution to the overall coupling constant, (Cintra
HH )2, generated

by the nondeuterated part of the molecule, while (Cintra
HH )2 is fixed

to the value previously obtained for glycerol-h8, (Cintra
HH )2 = 1.97�

1010 Hz2. For the (Cintra
HD )2 value the relationship of eq 16 is

employed. The same value of the coupling constant (Cintra
HH,red)2 is

assumed for all temperatures. The other adjustable parameters
are τR, β, d, and D. The proton fraction is set to n = 5/8. The
results are collected in Table 1; for the coupling constant,
(Cintra

HH,red)2 = 1.55 � 1010 Hz2. The relaxation dispersion data
and the fitted curves for glycerol-h5 are shown in Figure 7. The
translational diffusion coefficients for glycerol-h5 are compared
with the values for glycerol-h8 in Figure 6. The results agree very
well with those obtained for glycerol-h8.

It is interesting to compare the relaxation data and the
corresponding intramolecular and intermolecular contributions
to the overall relaxation for the case of glycerol-h8 and for
glycerol-h5; such a comparison is shown in Figure 3. As one
can see, the overall relaxation rates are not very much different.
This is consistent with the obtained values of the dipole-dipole
coupling constants, (Cintra

HH,red)2 = 0.8(Cintra
HH )2. This relation-

ship can be understood when one notices that a major contribu-
tion to the effective dipole-dipole coupling stems from the
protons bound to the distant carbons (the distance between
the -CH2 protons is short compared to other interproton
distances). The relatively larger intramolecular contribution
in the case of glycerol-h5 originates from the somewhat longer
rotational correlation time compared to fully protonated
glycerol-h8.

Finally, we take into consideration the complementary case of
glycerol-h3. Again we have performed five-parameter fits with
adjustable τR, β, d, and D and the coupling constant (Cintra

HH,red)2

assumed to be temperature independent (in this case (Cintra
HH,red)2

is associated with the part of the molecule containing the OH
groups). The dipole-dipole coupling corresponding to fully
protonated glycerol molecule has again been set to (Cintra

HH )2 =
1.97� 1010 Hz2, while for the (Cintra

HD )2 value eq 16 has again been
used; n = 3/8. The obtained results are collected in Table 1, while
the relaxation dispersion data and the fitted curves for glycerol-h3
are shown in Figure 8.

For the dipole-dipole coupling constant corresponding
to the protonated part of the molecule it has been obtained
(Cintra

HH,red)2 = 0.58 � 1010 Hz2. The sum of the independently
obtained dipole-dipole coupling constant for the protonated
parts of glycerol-h5 and glycerol-h3 gives 2.13 � 1010 Hz2,
which is in acceptable agreement with (Cintra

HH )2 = 1.97 � 1010

Hz2. In analogy to glycerol-h8 and glycerol-h5 the decomposi-
tion of the relaxation data for glycerol-h3 (278 K) into the
intermolecular and in intermolecular contributions is pre-
sented in Figure 3. The obtained translational diffusion coeffi-
cients for glycerol-h3 are also shown in Figure 6 for compar-
ison. The values are consistent with the previous results for
glycerol-h8 and glycerol-h5.

4. DISCUSSION

Applying the force-free-hard-sphere diffusion model for the
intermolecular relaxation contribution and a CD function for the
intramolecular part, we can quantitatively reproduce the relaxa-
tion spectra of differently deuterated glycerol. As one can see
from Figures 2, 7, and 8 (glycerol-h8, -h5, and -h3, respectively),
the theoretical curves agree very well with the experimental
results. The quality of the fits is better than when attempting to
reproduce the relaxation dispersion data in terms of two CD
functions, as previously done in paper 1. The very good agree-
ment with the experimental data proves that the spectral density
of eq 6 captures the essential features of the translational motion,
despite the simplifying assumptions leading to this model. This
description yields D(T) values that agree well with those
measured by gradient NMR (Figure 6). The results obtained
for nondeuterated and partially deuterated molecules are con-
sistent; for the latter case the rotational and translational
correlation times are somewhat longer compared to the proto-
nated molecules, as expected from the molecular mass. The
effective distance of closest approach, d, is, in all cases, on the
order of the molecular radius (3.07 Å).20 The d value changes

Figure 7. 1H spin-lattice relaxation dispersion data for glycerol-h5 and
corresponding theoretical curves obtained as least-squares fits of
the superposition of intramolecular and intermolecular contribu-
tions (eq 15).

Figure 8. 1H spin-lattice relaxation dispersion data for glycerol-h3 and
corresponding theoretical curves obtained as least-squares fits of
the superposition of intramolecular and intermolecular contribu-
tions (eq 15).
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somewhat with temperature, it becomes shorter for higher
temperatures (Table 1).

The force-free-hard-sphere model of translational diffusion
applied here is entirely based on the concept of a single
correlation time. As has been explained in section 2.1, the
assumption that the spin is placed in the molecular center means
that one neglects effects of molecular tumbling on the changes of
the intermolecular vector in terms of its length and its orienta-
tion. We suppose that the slight temperature dependence of the
distance of closest approach is a consequence of the simplified
character of the applied model, i.e., of neglecting the noncen-
tricity effects. Due to a considerable influence of rotational
motion on the intermolecular correlation function, it becomes
more “rotational-like” and, as a consequence, the intra- and
intermolecular contributions to relaxation are spectrally less
separated.We believe that this explains why one does not observe
a distinct low-frequency excess intensity for some liquids, for
instance, for o-terphenyl.

The ratio τtrans/τR decreases somewhat with temperature as
one can see from Table 1, being anyway much larger than the
factor 9. This value stems from the Stokes-Einstein-Debye
equation assuming the force-free-hard-sphere model (section 2),
while glycerol molecules can hardly be considered as hard
spheres with spins in their center and therefore one should not
treat the factor 9 as “a reference”. As one can see from the table,
the τtrans/τR = r ratio is somewhat larger for glycerol-h3 compared
to glycerol-h8 and glycerol-h5). Still, the analysis indicates that
translational-rotational coupling holds in a fair approximation in
the investigated temperature range, which is actually well above
the glass transition temperature Tg of the liquid. Only close to Tg

translational-rotational coupling is expected to break down.5

5. CONCLUSIONS

It has been demonstrated that 1H NMR relaxation dispersion
for nondeuterated and partially deuterated glycerol can be
consistently interpreted as a superposition of intramolecular
and intermolecular contributions. The intramolecular part has
been described in terms of CD spectral densities, while for the
intermolecular dipole-dipole correlation function the force-
free-hard-sphere model of translational diffusion has been ap-
plied. The spectral shape of the intermolecular spectral density
resulting from this model leads to very good agreement with the
experimental data. The extracted translational diffusion coeffi-
cients have been compared with the results of gradient NMR,
again being in an excellent agreement with them. The analysis
shows that NMR relaxometry can serve as a credible way to
determine the diffusion coefficient and the rotational correlation
times by means of a single experiment. Thus, NMR relaxometry
has the potential to become an alternative method measuring the
diffusion coefficient in viscous liquids.
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1H spin-lattice relaxation rates R1 = 1/T1 have been measured for partly deuterated glycerol-h5 di-
luted in fully deuterated glycerol-h0 for progressively lower concentrations of glycerol-h5. By means
of the field cycling (FC) technique relaxation dispersion data, R1(ω), have been collected for sev-
eral temperatures in the frequency range of 10 kHz–20 MHz. In order to disclose the spectral shape
of the intra- and intermolecular relaxation, extrapolation of the relaxation data to the zero concen-
tration limit has been performed. The paper confirms that the low frequency excess contribution
to the total relaxation rate R1(ω) previously reported for several liquids is of intermolecular origin
and reflects translational motion, whereas the high-frequency part is attributed to molecular rotation.
Thus, intra- and intermolecular relaxation contributions are spectrally separated. The intermolecular
relaxation itself contains also a contribution from rotational motion, which is due to non-central po-
sitions of the interacting nuclei in the molecule. This eccentricity effect is quantitatively reproduced
by treating the intermolecular spectral density as a sum of translational-like (described by the free
diffusion model) and rotational-like contributions (described by a Cole-Davidson function). Apply-
ing frequency-temperature superposition master curves as well as individual relaxation dispersion
data, R1(ω), are analyzed. It is demonstrated that, in spite of the rotational influence, the transla-
tional diffusion coefficients, D(T), can be extracted from the 1H relaxation dispersion which gives 1H
NMR relaxometry the potential to become a routine technique determining the diffusion coefficient
in liquids. © 2012 American Institute of Physics. [doi:10.1063/1.3672096]

I. INTRODUCTION

In recent years, field cycling (FC) nuclear magnetic
resonance (NMR) relaxometry has become a powerful tool
for investigating dynamics in condensed matter.1, 2 Due to
availability of commercial FC spectrometers this technique
gained new momentum. Field cycling 1H NMR allows routine
measurements of spin-lattice relaxation time dispersion T1

= T1(ω) in a frequency range of 10 kHz–20 MHz.
In our two recent publications we have compared the

results of 1H NMR relaxometry and dielectric spectroscopy
(DS) for several viscous liquids.3, 4 It is well known that
DS spectra for such systems can be described in terms of a
Cole-Davidson spectral density providing correlation times
of the reorientational dynamics involved in the structural re-
laxation (α–process) which is determined by the glass tran-
sition phenomenon.5, 6 1H NMR susceptibility spectra, i.e.,
relaxation dispersion data transformed to the susceptibility
representation, show, in addition to the α–relaxation peak,
a low-frequency excess contribution (a kind of a shoulder)
the amplitude of which varies for different liquids. We have
attributed this low-frequency process to intermolecular re-
laxation mediated by translational motion of the molecules,
while the main relaxation peak originates from intramolecu-
lar relaxation associated with reorientational dynamics.4 As

a)Author to whom correspondence should be addressed. Electronic mail:
ernst.roessler@uni-bayreuth.de.

1H NMR relaxation probes fluctuations of dipole-dipole in-
teractions between pairs of protons, one has to distinguish be-
tween proton sites within the same molecule (intramolecular)
and in different molecules (intermolecular). Thus, the overall
relaxation rate R1 = 1/T1 is a sum of intramolecular and inter-
molecular relaxation rates, R1, intra and R1, inter, respectively. It
is expected that the intermolecular relaxation is dominated by
the relative translational motion of the spins located on differ-
ent molecules.

Assuming a Cole-Davidson susceptibility for the in-
tramolecular part reflecting reorientational dynamics, while
the intermolecular part of the overall 1H relaxation rate R1(ω)
has been described by the force-free-hard-sphere model,7, 8

i.e., Fickian diffusion with appropriate boundary conditions,
we have been able to describe quantitatively the T1 disper-
sion data for differently deuterated glycerol over a large tem-
perature range.4 Thereby, we have extracted values of the
diffusion coefficient, D(T). The values obtained are in good
agreement with those from pulse field gradient NMR.9, 10

This shows that FC 1H NMR has the potential to become
an alternative method of measuring diffusion coefficients
in liquids. Here, we note that a similar analysis has al-
ready been attempted by Kintzinger and Zeidler.11 The au-
thors pointed out that describing the intermolecular relaxation
of glycerol in terms of Torrey’s jump model of translation
diffusion12 one gets values of the diffusion coefficients which
are larger than those independently measured. The essential

0021-9606/2012/136(3)/034508/8/$30.00 © 2012 American Institute of Physics136, 034508-1
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difference between Torrey and Hwang/Freed models is the
specification of the boundary conditions that influences the
form of the resulting correlation function.

The above outlined interpretation of FC 1H NMR disper-
sion data of simple liquids relies on the fact that the intra-
and intermolecular relaxation contributions exhibit distinct
dispersion features, i.e., they are spectrally shifted.15–17 For
the hydrodynamic model of a (molecular) sphere rotating and
translating in a viscous medium Abragam13 derived the re-
lationship τ trans/τ rot = 9, where τ trans is the correlation time
of translational diffusion and τ rot = τα is the rotational cor-
relation time that can be identified with the time constant of
the α–process. Experimentally, we have observed τ trans/τ rot

= 30–60.4 This ratio is essentially temperature independent
as expected for translational-rotational coupling to hold for
moderately viscous liquids.13

Yet, the ultimate proof of our approach can only be given
if one is able to separate the intra- and intermolecular re-
laxation in a model free way. This is usually done by per-
forming so-called isotope dilution experiments.17–19 Substi-
tuting protonated molecules by their deuterated counterpart
allows suppressing the intermolecular dipole-dipole interac-
tions. Then by extrapolating the results to the infinite dilution
limit one can isolate the intramolecular relaxation for a given
frequency and temperature, thereby obtaining the intermolec-
ular part. Up to our knowledge, such experiments have been
rarely performed by FC 1H NMR.11, 20 In the present contri-
bution we use isotope dilution to separate intra- and inter-
molecular relaxation in the glass former glycerol. As it will
be demonstrated, because the interacting protons belonging
to different molecules are not placed in the molecular center
the intermolecular relaxation is also affected by molecular ro-
tation. This is referred to as the eccentricity effect.21 Thus,
the intermolecular relaxation is influenced by both transla-
tional and rotational motion. In the simple diffusion model
mentioned above the eccentricity effect is not taken into ac-
count. In other words, it is assumed that the protons are in
the center of a (spherical) molecule treated as a hard sphere.
The eccentricity has been discussed in the literature,22, 23 how-
ever, no systematic studies have been performed, so far. In this
work we explicitly show the combined effects of the trans-
lational and rotational motions on the intermolecular relax-
ation. The translational diffusion coefficient can be extracted
from the relaxation dispersion results in spite of the rotational
influence.

II. RELAXATION THEORY FOR ISOTOPICALLY
DILUTED SYSTEMS

A description of 1H spin-lattice relaxation for non-
deuterated and partially deuterated liquids has been given in
Ref. 4. Here we shall extend it to the case when a partially
deuterated (or non-deuterated) liquid is diluted in its fully
deuterated counterpart, for instance, glycerol-h8/glycerol-h0,
or glycerol-h5/glycerol-h0 (h8 denotes non-deuterated glyc-
erol, h5 with deuterated hydroxyl groups and h0 – fully
deuterated). As already explained, the observed relaxation
rate, RH

1 (ωH ) (ωH denotes the proton Larmor frequency)
is a sum of intramolecular, RH

1,intra (ωH ), and intermolecular,

RH
1,inter (ωH ), contributions, i.e.,

RH
1 (ωH ) = RH

1,intra (ωH ) + RH
1,inter (ωH ) . (1)

For partially deuterated molecules the intramolecular as
well as intermolecular relaxation results from 1H-1H (HH)
and 1H-2H (HD) dipole-dipole interactions; that means

RH
1,intra (ωH ) = RHH

1,intra (ωH ) + RHD
1,intra (ωH ) , (2a)

RH
1,inter (ωH ) = RHH

1,inter (ωH ) + RHD
1,inter (ωH ) . (2b)

The 1H-1H relaxation contributions are expressed as the
well-known combination of spectral densities for a system of
two equivalent spins with corresponding proportionality con-
stants

RHH
1,intra (ωH ) = 2

5
IH (IH + 1)

(
CHH

intra

)2

× [Jintra (ωH ) + 4Jintra (2ωH )], (3a)

RHH
1,inter (ωH ) = 2

5
IH (IH + 1) NH

4π

3

1

d3

( μ0

4π
γ 2

H¯
)2

× [Jinter (ωH ) + 4Jinter (2ωH )], (3b)

where CHH
intra denotes an effective intramolecular dipole-dipole

coupling constant, IH = 1/2, γ H is the proton gyromagnetic
ratio, other symbols have their obvious meaning. The param-
eter d (Eq. (3b)) is the distance of closest approach of the
interacting nuclei (for identical molecules d = 2a, where a is
the molecular radius), while 4π

3 NH is the number of protons
per unit sphere. The intramolecular spectral density, Jintra(ω),
reflects rotational dynamics of the molecules. For viscous liq-
uids one typically assumes a Cole-Davidson form of the sus-
ceptibility function χ ′′

intra(ω) related to Jintra(ω) as χ ′′
intra(ω)

= ωJintra(ω), i.e.,24

Jintra (ω) = Jrot (ω) = sin [β arctan (ωτCD)]

ω[1 + (ωτCD)2]
β

2

, (4)

where τ rot = τCDβ is the rotational correlation time, while
0 < β ≤ 1 is a phenomenological stretching parameter. In
Ref. 4 the intermolecular spectral density, Jinter(ω), reflect-
ing the translational motion has been described according to
the model proposed by Hwang and Freed7 and Ayant et al.8

as hard spheres with the nuclei of interest assumed to be
placed in their centers. In consequence, the following form
of Jinter(ω) has been used:25, 26

Jinter (ω) = Jtrans (ω)

= 72
3

4π

∫ ∞

0

u2

81+9u2−2u4+u6

u2τtrans

u4+(ωτtrans)
2 du

(5)

with τtrans = d2

D12
, where D12 is the relative translational dif-

fusion coefficient defined as a sum of self-diffusion coeffi-
cients of the participating molecules (for identical molecules
D12 = 2D). We note that Jintra(ω) and Jinter(ω) are normalized,
i.e.,

∫ ∞
0 Jintra (ω) dω = π/2. As already explained in Sec. I the

assumption that the interacting nuclei (spins) are placed in
the center of the molecule implies that the fluctuations of the
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intermolecular vector (in terms of its orientation and length)
are entirely caused by the translational motion. However, for
polyatomic molecules with nuclei placed at different positions
in the molecule the fluctuations of the intermolecular dipole-
dipole interactions are also mediated by rotational dynamics
(besides the translational motion). The 1H-2H contributions to
the intra- and intermolecular relaxation are given as

RHD
1,intra = 2

15
ID (ID + 1)

(
CHD

intra

)2
[Jintra (ωH − ωD)

+ 3Jintra (ωH ) + 6Jintra (ωH + ωD)], (6a)

RHD
1,inter (ωH ) = 2

15
ID (ID + 1)

4π

3
ND

1

d3

( μ0

4π
γHγD¯

)2

× [Jinter (ωH − ωD) + 3Jinter (ωH )

+ 6Jinter (ωH + ωD)], (6b)

where γ D and ωD are the deuteron gyromagnetic factor and
the deuteron Larmor frequency, respectively, and ID = 1,
while 4π

3 ND is the number of deuterons per unit sphere.
Let us now consider a partially deuterated liquid (for ex-

ample, glycerol-h5) mixed with its fully deuterated counter-
part (glycerol-h0 in this case). Combining the invoked expres-
sions for intramolecular and intermolecular relaxation rates,
one gets the following expression for the overall 1H spin-
lattice relaxation rate:

RH
1 (ωH ) = RHH

1,intra (ωH ) + RHD
1,intra (ωH )

+RHH
1,inter (ωH ) + RHD

1,inter (ωH )

= 2

5
IH (IH + 1)

(
C

HH,red
intra

)2

× [Jintra (ωH ) + 4Jintra (2ωH )]

+ 2

15
ID (ID + 1)

(
CHD

intra

)2
[Jintra (ωH − ωD)

+ 3Jintra (ωH ) + 6Jintra (ωH + ωD)]

+ 2

5
IH (IH + 1) nxN

4π

3

1

d3

( μ0

4π
γ 2

H¯
)2

× [Jinter (ωH ) + 4Jinter (2ωH )]

+ 2

15
ID(ID + 1) (1−nx) N

4π

3

1

d3

( μ0

4π
γHγD¯

)2

× [Jinter (ωH − ωD) + 3Jinter (ωH )

+ 6Jinter (ωH + ωD)]. (7)

The factor n denotes the fraction of protons in the
molecule (for instance, n = 5/8 for glycerol-h5), thus (1
− n) is the fraction of deuterons, while x is the mole frac-
tion of molecules which contain 1H (not fully deuterated
molecules); x = 1 means that there are no fully deuterated
molecules, while for x = 0 all molecules are fully deuterated.
For x = 1 this expression is identical with Eq. (15) of Ref. 4;
nN = NH and (1 − n)N = ND. The dilution (reflected by the
factor x) obviously affects only the intermolecular relaxation.
The intramolecular part remains unchanged. The meaning of
C

HH,red
intra has already been explained in Ref. 4; it is a reduced

dipole-dipole coupling constant after accounting for partial
deuteration of the molecule. In the case of isotopic dilution
the 1H-1H contribution to the intermolecular relaxation is re-
duced by the fraction x, i.e., n → nx, while the 1H-2H contri-
bution is weighted by the factor (1 − nx). To explain this, let
us consider a reference 1H nucleus. The intermolecular 1H-
2H contribution stems from its interactions with 2H nuclei of
the partially deuterated molecules and of the fully deuterated
molecules. The first contribution is now weighted by the fac-
tor (1 − n)x and the second one by (1 − x); summing them
up one gets (1 − nx) appearing in the fourth term of Eq. (7).
Although for highly protonated systems, x → 1, the RHD

1,inter

contribution can be neglected compared to RHH
1,inter, it becomes

progressively more relevant for decreasing x (see Fig. 1).
To analyze the intermolecular contribution to the overall

relaxation as a function of x let us assume that n = 1. This
means that we consider a system containing a fraction x of
fully protonated molecules and (1 − x) of fully deuterated
molecules. Figure 1 shows simulations in terms of Eq. (1) of
1H spin-lattice relaxation rates versus x for a set of param-
eters suiting well to the case of glycerol-h8/glycerol-h0 (pa-
rameters for glycerol have been obtained in Ref. 4). As τtrans

is significantly longer than τrot the intermolecular relaxation
contribution is observed at low frequencies and progressively
suppressed by isotope dilution. For x = 0 the intermolecular

(a) (b)

FIG. 1. Theoretical predictions for the overall relaxation dispersion (a) and for the susceptibility representation of the data (b) for glycerol-h8 (n = 1) dissolved

in glycerol-h0 for different mole fractions x of glycerol-h8, according to Eq. (7). It has been assumed that
(
CHH

intra

)2 = 1 × 109 Hz2, β = 0.65, D = 1.0
× 10−13 m2/s, d = 3.0 Å, and τ rot = 1.0 × 10−8 s.
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FIG. 2. Relaxation dispersion data for glycerol-h5/glycerol-h0 for different mole fractions, x, of the partially protonated molecules at T = 273 K (a) and
T = 278 K (b). Solid lines: fits according to Eq. (9). The parameters obtained are given in Table I.

contribution stems entirely from 1H-2H dipole-dipole interac-
tions.

The theoretical predictions are compared with the results
of dilution experiments in Sec. IV. Details of the 1H relax-
ation experiments for diluted systems are given in Sec. III.

III. EXPERIMENTAL

Dispersion of 1H spin-lattice relaxation rates, R1 = 1/T1,
for glycerol-h5 diluted in glycerol-h0 (i.e., fully deuterated
glycerol) was studied in the temperature range of 248 K–
348 K by employing the commercial fast (electronic) field
cycling spectrometer STELAR FFC 2000,1 which allows to
cover the frequency range of 104 Hz–2 × 107 Hz. Spin-
lattice relaxation times down to about 1 ms are accessible
for the spectrometer. The temperature was controlled by heat-
ing flowing air or evaporating liquid nitrogen. The tempera-
ture stability was ±0.3 K. In all cases a single-exponential
relaxation has been observed. The measurements were done
for several mole fractions of glycerol-h5 (CDN Isotopes) in
glycerol-h0: x = 1.0, 0.87, 0.56, 0.30, and 0.22. Glycerol-h5

has been used to avoid exchange effects which would likely
be present for glycerol-h8.

IV. INTERMOLECULAR CONTRIBUTION TO 1H
RELAXATION FOR GLYCEROL

An example of relaxation dispersion data for different
mole fractions of glycerol-h5 is shown in Fig. 2. The overall
relaxation rate becomes progressively smaller due to a dimin-
ishing contribution of the intermolecular relaxation. While for
x = 1 one can clearly see an intermolecular contribution to
the relaxation at low frequencies (one can notice that the re-
laxation dispersion contains two components), for x = 0.22
this effects is much smaller. Solid lines represent theoretical
predictions (fits) which will be discussed later.

To get a qualitative picture of the changes in the 1H relax-
ation due to dilution the obtained relaxation dispersion data
have been first transformed to the susceptibility representa-
tion according to the relationship: χ ′′(ω) = ωR1(ω). Next, the
susceptibility results for individual temperatures have been

merged in order to construct a master curve for every con-
centration, as shown in Fig. 3.3, 4 The concept of constructing
a master curve from individual relaxation data is based on
frequency-temperature superposition (FTS), which assumes
that the spectral shape of the susceptibility does not signifi-
cantly change with temperature; only the time constant is dif-
ferent; FTS is assumed to be a generic feature of the dynamics
in viscous liquids.27 First, a reference data set showing a max-
imum (in the susceptibility representation) is chosen and fitted
by a Cole-Davidson function and then plotted as a function of
ωτ rot. The susceptibilities for other temperatures are shifted
along the ωτ rotaxis until an overlapping is reached.

To check the linear dependence of the overall relaxation
rate, R1, on the mole fraction x, three values of ωτ rot have
been selected; they are marked in Fig. 3 as vertical dashed
lines. For these values the ratio between the relaxation rate
for the concentration of x, R1, x, and the relaxation rate for
x = 1, R1, x = 1, has been plotted versus x (Fig. 4) confirming
the expected result. Interesting to note is the fact that at low
frequencies more than 80% of the total relaxation is due to
intermolecular relaxation.

FIG. 3. NMR master curves in the susceptibility representation for glycerol-
h5 dissolved in glycerol-h0 for different mole fractions x of glycerol-h5; data
sets in the temperature range 248 K–348 K have been merged; extrapola-
tion to the zero concentration limit is included. Dashed vertical lines indicate
frequencies for which x dependence is checked in Fig. 4.
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FIG. 4. R1, x/R1, x = 1 versus mole fraction x for selected ωτ rot values
(cf. Fig. 3).

The first observation in Fig. 3 is that the low frequency
contribution to the overall relaxation (low frequency excess
intensity) becomes progressively less pronounced for lower
x, and, eventually disappears in the zero concentration limit.
This is a direct proof of its intermolecular origin. The sec-
ond observation is that even for relatively large ωτ rot, where
according to the simulations shown in Fig. 1, one should not
expect intermolecular effects, the master curves for different
concentrations of glycerol-h5 differ. This reflects the fact that
there is a rotational contribution to the modulations of the in-
termolecular interactions. Although the simulations have been
done for glycerol-h8 (to avoid discussing HD intra-molecular
contributions present for partially deuterated molecules) they
also apply to glycerol-h5 – only the intra-molecular contribu-
tion is smaller in the last case.

To disclose the full spectral shape of the intermolecular
relaxation the master curves shown in Fig. 3 have been ex-
trapolated to the zero concentration limit (x → 0). In this
way the intramolecular contribution to the entire relaxation
has been obtained (red open squares in Fig. 5). One should
be aware at this stage that it also contains the 1H-2H inter-
molecular contribution, which is, however, not significant.
The intramolecular susceptibility can be well fitted by a Cole-
Davidson function as is expected for the rotational dynamics
in viscous liquids (cf. Fig. 5). Next, the intramolecular master
curve has been subtracted from the total relaxation (x = 1)
to reveal the intermolecular contribution (blue solid spheres
in Fig. 5). One clearly sees that the contribution of the inter-
molecular relaxation around the maximum of the total mas-
ter curve is still significant in contrary to the theoretical pre-
dictions of the hard-sphere-force-free model. In addition, this
high-frequency part of the intermolecular susceptibility corre-
sponds to the position of the intramolecular maximum. This
can be interpreted as a consequence of the rotational effects on
the fluctuations of the intermolecular dipole-dipole couplings.

To take into account the rotational effects we modify the
expression for Jinter(ω) (Eq. (5)) as follows:

J̃inter (ω) = Jtrans (ω) + f Jrot (ω)

=
[

72
3

4π

∫ ∞

0

u2

81+9u2−2u4+u6

u2τtrans

u4+(ωτtrans)2
du

]

FIG. 5. Decomposition of the master curve of the entire relaxation for x
= 1 (black squares) into intramolecular (red squares) and intermolecular
(blue spheres) contributions. The intramolecular contribution (red squares)
has been obtained by extrapolating the experimental results to the limit x
→ 0, while the intermolecular contribution (blue spheres) is given as a dif-
ference between the results for x = 1 (black squares) and for x → 0; f = 2.68,
β = 0.6, τ trans/τ rot = 52.

+ f

⎡
⎣ sin [β arctan (ωτCD)]

ω
[
1 + (ωτCD)2

] β

2

⎤
⎦ , (8)

where the parameter f is a measure of the rotational contri-
bution; J̃ indicates a non-normalized spectral density. The
parameter f is, in fact, related to an effective eccentricity
factor21–23 in the sense, that for centrally placed spins f = 0
and it increases for spins more distant from the central po-
sition. This expression is a kind of simplification because
it treats the translational and rotational effects on the in-
termolecular interactions as independent of each other. We
consider it as a pragmatic way to include the rotational ef-
fects. In Fig. 6 the intermolecular master curve has been de-
composed into translational and rotational parts according to
Eq. (8). One notices here the relatively large contribution of
the rotational part. Since the translational and rotational spec-
tral densities of Eq. (8) are normalized, the factor f = 2.68
directly shows the substantial contribution of the rotational
term.

FIG. 6. Intermolecular master curve reproduced as a sum of translational
(black) and rotational (red) parts according to Eq. (8).
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FIG. 7. Relaxation dispersion data for glycerol-h5/glycerol-h8 for different mole fractions of the partially protonated molecules at T = 275 K (a) and T = 283 K
(b). Solid lines: fits according to Eq. (9). The parameters are given in Table I.

The analysis in terms of master curves reflects averaged
relations between the translational and rotational parameters.
To investigate in detail their temperature dependence for so-
lutions with different dilution ratios, the individual relaxation
dispersion data are analyzed.

Inserting Eq. (8) into Eq. (7) one can express the total
relaxation rate RH

1 in terms of Jrot(ω) and Jtrans(ω):

RH
1 (ωH ) = 2

5
IH (IH + 1)

[(
C

HH,red
intra

)2 + f nxN
4π

3

1

d3

×
( μ0

4π
γ 2

H¯
)2

]
[Jrot (ωH ) + 4Jrot (2ωH )]

+ 2

15
ID (ID + 1)

[(
CHD

intra

)2

+ f

(
(1 − nx)N

4π

3

1

d3

( μ0

4π
γHγD¯

)2
)]

× [Jrot (ωH − ωD) + 3Jrot (ωH )

+ 6Jrot (ωH + ωD)]

+ 2

5
IH (IH + 1) nxN

4π

3

1

d3

( μ0

4π
γ 2

H¯
)2

× [Jtrans (ωH ) + 4Jtrans (2ωH )]

+ 2

15
ID (ID + 1) (1 − nx)

×N
4π

3

1

d3

( μ0

4π
γHγD¯

)2

× [Jtrans (ωH − ωD) + 3Jtrans (ωH )

+ 6Jtrans (ωH + ωD)]. (9)

This expression has been applied to interpret 1H relax-
ation dispersion data for individual temperatures for glycerol-
h5/glycerol-h0 for different mole fractions x. Examples of the
analysis are shown in Figs. 7(a) and 7(b) for 275 K and 283 K,
respectively. The following fitting strategy has been applied.
The coupling constants C

HH,red
intra and CHD

intra have been treated as
global fit parameters for all concentrations and temperatures;

the same concerns the relative contributions of the transla-
tional and rotational parts to the intermolecular spectral den-
sity, f, and the distance of closest approach d. The correlation
time, τ rot = βτCD, has been allowed to change depending on
the temperature and concentration, the ratio τ trans/τ rot as well
as β have been treated as dependent only on temperature. The
same fitting strategy has been applied to the data shown in
Fig. 2. The parameters obtained are summarized in Table I.
From the large values of the τ trans/τ rot ratio one should not
conclude that the elementary translational jump time is signif-
icantly longer from that of the rotational displacements; τ trans

merely defines the time scale of the decay of the translational
correlation function.

Comparing the present results with those obtained in
Ref. 4 by applying solely the force-free-hard-sphere model
to describe intermolecular relaxation (that means f = 0)
one notices that now the intramolecular coupling con-
stant (CHH,red

intra )2 = 1.1 × 1010 Hz2 is smaller than previously
((CHH,red

intra )2 = 1.55 × 1010 Hz2) because now it has been
recognized that part of the relaxation which was previously
treated as intramolecular is, in fact, of the intermolecular
origin.

FIG. 8. Comparison of translational diffusion coefficient D obtained from
pulse field gradient NMR (Refs. 9 and 10) and NMR relaxometry (Kruk
et al.4 with the current analysis).
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TABLE I. Parameters obtained by fitting the relaxation dispersion data in
terms of Eq. (9). The global parameters are: (CHH,red

intra )2 = 1.1 × 1010 Hz2,

(CHD
intra)2 = 6.5 × 107 Hz2, f = 2.68, and d = 3.50 Å.

T τ rot (ns)

(K) x = 1 x = 0.87 x = 0.56 x = 0.30 x = 0.22 β τ trans/τ rot

273 10.0 9.4 9.8 11.9 8.5 0.61 60
275 8.2 7.7 7.9 9.4 7.2 0.60 57
278 6.3 6.1 5.7 6.9 6.0 0.60 52
283 4.1 3.9 3.9 4.0 3.7 0.60 47

The obtained distance of closest approach, d, has been
used to calculate the translational diffusion coefficient, D
from the relationship D = d2/2τtrans. These diffusion coef-
ficients are compared with the results of NMR pulse field
gradient experiments and with the values obtained in Ref. 4
from the analysis of 1H relaxation dispersion data under the
assumption that the intermolecular interactions are entirely
modulated by the translational diffusion.4 The comparison is
shown in Fig. 8 (the diffusion coefficients from the current
analysis are given as values averaged over all x); all results
are in good agreement. In spite of the strong intermolecular
rotational contribution the extracted D values are not signifi-
cantly altered. One can see from Table I that the values of the
correlation time, τ rot, somewhat scatter with the mole fraction
x for a given temperature. We attribute that to temperature in-
stability.

V. DISCUSSION

As already explained, the concept of the intermolec-
ular interactions being entirely modulated by the transla-
tional dynamics is highly simplified. Applying it for glycerol-
h8, glycerol-h5, and glycerol-h3 in our previous work,4 we
have, nevertheless, obtained translational diffusion coeffi-
cients which are in good agreement with those from our
present analysis and also from pulse field gradient NMR.
However, the treatment of Ref. 4 has led to temperature de-
pendent values of the distance of closest approach, d. A sys-
tematic trend has been observed; for higher temperatures d
became shorter. Also for glycerol-h5 the averaged d value was
shorter than for glycerol-h3. One can understand this find-
ing as follows. 1H nuclei in glycerol-h3 are placed further
away from the molecular center than in glycerol-h5. In con-
sequence, the rotational influence on the intermolecular re-
laxation is more pronounced; in other words, the intermolec-
ular spectral density becomes more “rotational-like.” A larger
d value reflects the fact that the relative contribution of the
purely translational dynamics compared to the rotational one
becomes smaller due to the increasing role of the molecular
tumbling for the intermolecular relaxation.

The current description is also (as in Ref. 4) based on
a superposition of Cole-Davidson and translational spectral
densities, but now the Cole-Davidson spectral density is par-
titioned between the intramolecular and intermolecular relax-
ation. This means that the weight of overall Cole-Davidson
contribution now also depends partly on the distance of clos-
est approach. In consequence, it was possible in the present

analysis to keep d temperature independent, as one expects.
This indicates that using 1H NMR relaxometry as a source
of information on the translational dynamics one should con-
sider the rotational influence on the intermolecular relaxation.
This statement does not contradict the conclusion that even
the simple model7, 8 attributing the fluctuations of the in-
termolecular interactions entirely to the translational motion
leads to diffusion coefficients which are in good agreement
with those from pulse field gradient NMR. The reason for that
is that the translational part of the intermolecular interaction
is spectrally separated from the rotational contributions.

Finishing this section we note that the present approach
still leads (as in Ref. 4) to a temperature dependent ratio
τ trans/τ rot. This dependence cannot be explained by violating
the rotation-translation coupling, because the trend is oppo-
site: the obtained τ trans/τ rot is smaller for higher temperatures.
This suggests that this effect should be still attributed deficien-
cies of the applied motional models, assuming a superposition
of translational and rotational components for the intermolec-
ular spectral density.

VI. CONCLUSIONS

1H NMR relaxation dispersion studies have been per-
formed for glycerol-h5 diluted in glycerol-h0 versus the mole
fraction of glycerol-h5. By extrapolating the results to the
zero concentration limit the spectral shape of the intermolec-
ular relaxation has been revealed. For polyatomic molecules
with nuclei at non-central positions the intermolecular dipole-
dipole interactions are modulated by both translational and
rotational dynamics. Therefore, in addition to a contribution
caused by translational motion a strong contribution associ-
ated with rotational dynamics of the molecules has been ob-
served which clearly demonstrates the important role of ec-
centricity effects. Both contributions appear to be spectrally
separated. The intermolecular spectral density has been de-
scribed as a sum of purely translational and rotational parts.
This additive model allows interpreting the relaxation disper-
sion data for individual temperatures as well as the NMR
master curve obtained by applying FTS. Translational diffu-
sion coefficients D(T) have been determined from the analysis
based on the bimodal form of the intermolecular spectral den-
sity. The values obtained are in good agreement with those
of pulse field gradient NMR. The results also agree with the
D values obtained from NMR relaxometry in our previous
work4 under the assumption that the intermolecular interac-
tions are modulated entirely by the translational motion. Thus,
regarding the determination of the diffusion coefficient this
simple analysis still allows to extract reliable D values. Hav-
ing clarified the role of inter- and intramolecular relaxation in
liquids, 1H NMR relaxometry has the potential to become a
routine technique determining the diffusion coefficient. Fin-
ishing this section, we wish to note that there are liquids, for
instance, in o-terphenyl, for which no spectrally separated in-
termolecular relaxation contribution has been found.3 With
the experience gained from this work we attribute this fea-
ture to large eccentricity effects that lead to a rotational-like
shape of the intermolecular spectral densities.
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Nuclear magnetic resonance relaxometry as a method of measuring translational diffusion
coefficients in liquids
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By application of the field-cycling technique, we measure the dispersion of the 1H nuclear magnetic resonance
(NMR) spin-lattice relaxation time T1(ω) for a series of molecular liquids. We demonstrate that such NMR
relaxometry studies can be used for determining diffusion coefficients. A broad frequency range of 10 kHz–
20 MHz is covered. By scanning T1(ω) one directly probes the spectral density of the diffusion processes. The
value of the diffusion coefficient D can be determined from a linear dependence of the 1H spin-lattice relaxation
rate on the square root of the frequency at which it is measured. The power of this method lies in its simplicity,
which allows one to determine D(T ) independently of the diffusive model. The results obtained are in very good
agreement with those of field gradient NMR methods.

DOI: 10.1103/PhysRevE.85.020201 PACS number(s): 66.10.cg, 76.60.Pc, 61.25.Em, 76.60.Es

Nuclear magnetic resonance (NMR) is a phenomenon that
gives rise to a variety of specific experimental methods which
are very valuable as sources of information on dynamical
properties of molecular systems. In recent decades NMR
field gradient diffusometry has became the key method of
measuring translational diffusion coefficients D in liquids [1].
In order to probe the translational motion the sample is
placed in an inhomogeneous magnetic field characterized by a
linear, well-controlled field gradient. The position of a nucleus
possessing a spin (an NMR-active nucleus) is monitored by
changes in its Larmor frequency (precession frequency) which
depend on the location of the traced nucleus. The range
of D accessible by field gradient NMR methods is 10−6–
10−14 m2 s−1 [1,2]. The higher bound of D refers to diffusion
in gases while the lower one corresponds to moderately viscous
(supercooled) liquids.

In this paper we demonstrate, focusing on liquids, that
1H NMR relaxometry can be treated as a method complemen-
tary to field gradient diffusometry. The idea of NMR relaxation
experiments is as follows [3,4]. First, the sample is polarized in
a strong external magnetic field. The generated magnetization
is proportional to the difference in the equilibrium popula-
tions of the 1H Zeeman quantum states determined by the
Boltzmann distribution. Then the field is switched to a lower
value (relaxation field Brel) and the energy levels repopulate
according to the new equilibrium conditions. As a result the 1H
magnetization decreases in time, reaching eventually the value
determined by the lower field Brel. The magnetization decay
is in most cases exponential with a time constant referred to
as the spin-lattice relaxation time T1. The spin transitions are
induced by stochastic fluctuations of magnetic dipole-dipole
interactions between pairs of protons (this is in most cases the
dominating relaxation mechanism), and one has to distinguish
between proton sites on the same molecule (intramolecular)
and on different molecules (intermolecular). In consequence,
the measured value of the relaxation rate R1 (R1 = 1/T1) is
the sum of two contributions resulting from intramolecular and

*ernst.roessler@uni-bayreuth.de

intermolecular dipolar interactions, respectively [3]:

R1(ω) = R1,intra(ω) + R1,inter(ω), (1)

where ω = γHBrel (γH is the proton gyromagnetic factor).
The intramolecular relaxation is associated with molecular
rotation changing the orientation of the vector connecting
the interacting nuclei (within a molecule) with respect to
the direction of the external magnetic field. The relaxation
rates depend on the spectral density of these fluctuations (as
well as on the dipolar interaction strength). In the case of
intermolecular relaxation the dipolar interactions are mediated
by the relative translational motion of the molecules, which
leads not only to fluctuations of the orientation of the
internuclear axis, but also to changes in their separation, as
reflected by the intermolecular dipolar correlation function
Cinter(t) [3,5,6]:

Cinter(t) ∝
〈
Y 2∗

m (�(t))
r3(t)

Y 2
m(�(0))
r3(0)

〉
. (2)

Here, the spherical harmonics Y 2
m(�) describe the molecular

orientation via the Euler angle �, while r is the interspin
distance. For isotropic liquids the rotational and translational
dynamics averages the dipole-dipole interactions to zero. For
dipolar relaxation of nuclei with spin quantum number 1

2
the intermolecular relaxation rate R1,inter(ω), measured at the
angular frequency ω = 2πν, is related to the intermolecular
spectral density Jinter [which is a Fourier transform of the
correlation function Cinter(t)] in a simple way according to the
well-known relaxation formula [3]

R1,inter(ω) = 3

10
N

(
μ0

4π
γ 2

Hh̄

)2

[Jinter(ω) + 4Jinter(2ω)], (3)

where N is the proton density (number of protons per unit
volume). This number can be obtained from the relation
N = nNAρ/Mmol, where Mmol is the molecular mass, ρ is the
density of the liquid, n is the number of hydrogen atoms per
molecule, and NA is the Avogadro number. Thus by varying
the relaxation field the spectral density is scanned.

Until recently, field-dependent relaxation experiments had
not been routinely possible. Due to the recent commercial
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availability of STELAR NMR field-cycling (FC) spectrom-
eters, which cover about three orders of magnitude in the
frequency (10 kHz–20 MHz for 1H), NMR relaxometry gained
new momentum [4,7]. The FC technique employs repetitive
changes in the magnetic field: the external magnetic field
is switched from a polarization field to a relaxation one
and back to a high detection field. The measured frequency
dependence of the spin-lattice relaxation rate R1 = T −1

1 is
referred to as relaxation dispersion. An expression analogous
to Eq. (3) can be written for the intramolecular relaxation
rate R1,intra(ω), but including intramolecular spectral densities
that are associated with molecular rotation [3,7]. Thus the key
dynamical processes, translation and rotation, can be moni-
tored, in principle, with 1H NMR relaxometry simultaneously,
which is a unique and great advantage of this method, as shown
in [7,8].

The rotational dynamics of a liquid can be probed by other
methods, for instance dielectric spectroscopy (DS) [9]. The DS
spectral density obtained from the imaginary part of the com-
plex permittivity via JDS(ω) = ε′′/(	εω), where 	ε is linked
to the static dielectric constant εs [(εs − ε∞) = 	ε, where ε∞
is the high-frequency permittivity], is often modeled by a Cole-
Davidson spectral density which reflects its non-Lorentzian
character. It gives as a limit a Lorentzian spectral shape that
corresponds to an exponential correlation function (force-free
isotropic tumbling). As dielectric spectroscopy is indifferent
to translational motion, a comparison between NMR and
DS results is of great value for differentiating between the
contributions to the 1H relaxation associated with rotation
and translation. Recently, we have compared results of FC
1H NMR relaxometry and DS for several viscous
liquids such as glycerol [5,10]. 1H NMR relax-
ation dispersion data compared with the DS results
show a low-frequency excess contribution. To con-
firm its intermolecular (translational) origin, a series of
1H NMR relaxation experiments for isotopically diluted
systems (for instance glycerol-h5 dissolved in glycerol-d8) has
been performed (for a full account see [11]). In Fig. 1 we show
that the low-frequency contribution becomes progressively
suppressed for a decreasing concentration of the 1H-containing
molecules. As 1H-2H dipole-dipole interactions are much
weaker than those between proton pairs (1H-1H), this observa-
tion gives an ultimate proof of the intermolecular origin of the
excess relaxation contribution. The intramolecular relaxation
dispersion (obtained by extrapolating the relaxation data to
the zero-concentration limit of glycerol-h5) and the dielectric
spectral density shapes are essentially identical as in both
cases the rotational dynamics is solely probed. In conclusion,
the dilution experiment shows that there is a considerable
time scale separation of inter- and intramolecular relaxation
contributions.

Different motional models have been applied to quan-
titatively describe the translational motion in condensed
matter [12]. A closed form expression for the intermolecular
correlation function referred to as the hard-sphere force-free
diffusion model has been derived in [5,6]:

Cinter(t) = 72
1

d3

∫ ∞

0

u2

81 + 9u2 − 2u4 + u6
exp

(
− u2t

τtrans

)
du,

(4a)

FIG. 1. (Color online) 1H relaxation dispersion data for glycerol-
h8 and glycerol-h5–glycerol-h0 mixtures with a mole fraction
x = 100%,56%,22%, and 0% (extrapolated) of glycerol-h5. Dashed-
dotted line, fit in terms of the model presented in [8]. In the last case the
low-frequency contribution disappears and only the intramolecular
relaxation part (associated solely with rotational dynamics) remains.
For comparison the dielectric spectral density is included (solid line).
As it well agrees with the relaxation dispersion for x = 0% the
translational origin of the low-frequency relaxation contribution is
again confirmed.

which leads to the spectral density [8]

Jinter(ω)

= 72
1

d3

∫ ∞

0

u2

81 + 9u2 − 2u4 + u6

u2τtrans

u4 + (ωτtrans)2
du,

(4b)

where u is an integration variable. This model assumes that the
interacting nuclei are placed in the centers of the molecules that
undergo Fick diffusion (force-free) with a uniform distribution
of the molecules (treated as hard spheres) outside the distance
of closest approach, d. The correlation time τtrans is defined
as τtrans = d2/D12, where D12 is the relative translational
diffusion coefficient defined as the sum of self-diffusion
coefficients of the participating molecules (thus for identical
molecules it is twice larger than the self-diffusion coefficient,
D12 = 2D). It has been shown by computer simulations that
the effects of structural correlation present in liquids affect
the intermolecular correlation function [13]. In addition, the
intermolecular dipolar interactions are not only mediated
by the translational motion, they are also affected by the
molecular tumbling if the interacting nuclei were not placed
in the molecular centers; this is referred to as eccentricity
effects [14,15]. As we are going to extract the diffusion
coefficients from the low-frequency range of the relaxation
dispersion which corresponds to long times (via the inverse
Fourier transform relationship) these effects become irrelevant
[13,16,17]. For long times the intermolecular correlation func-
tion Cinter(t) follows a power law ∝ t−3/2 that is characteristic
of free diffusion. This time power law implies the form of
the low-frequency expansion of the corresponding spectral
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(b)

(a)

FIG. 2. (Color online) (a) Low-frequency behavior of the trans-
lational spectral density for the hard-sphere force-free model [5,6]
compared with those of rotational spectral densities modeled as
Debye and Cole-Davidson functions; dotted straight line, the
limiting linear dependence predicted by Eq. (2). (b) Normalized
1H NMR relaxation rate R1 and dielectric spectral density for glycerol
as functions of

√
ωτrot. The decomposition of the 1H relaxation

dispersion into intermolecular (dashed) and intramolecular (dotted)
parts [8] shows that the first one controls the low-frequency shape of
the entire relaxation curve.

density [5,12,18–21]:

Jinter(ω) = a − b
√

ω. (5)

This expansion applies when ωτtrans < 1. The seminal fact is
that the constant b depends only on the diffusion coefficient
D; it does not include any details of the diffusion model
[12,17,21]. Besides the very simple mathematical formulation,
which makes the task of determining the diffusion coefficient
values straightforward, an important consequence of this
relation is that for the intermolecular relaxation contribution
there is no frequency-independent low-field region. This is il-
lustrated in Fig. 2(a) where the intermolecular spectral density
(obtained from the hard-sphere force-free model) is compared
with Cole-Davidson and Debye (Lorentzian) spectral densities
describing intramolecular relaxation associated with rotational
motion, both plotted as functions of

√
ωτ (τ denotes here

the characteristic correlation time; it has been set as τtrans =
τrot = τ .) While Jinter in the low-frequency range shows the
linear dependence of Eq. (5), the intramolecular spectral

density Jintra follows a Gaussian-like limiting dependence; for
a Debye function (which is a special case of the Cole-Davidson
function) one gets Jintra ∝ [1 − (ωτrot)2]. Thus, from the low-
frequency shape of the spectral density (relaxation rate) one
can clearly distinguish between rotational and translational
dynamics. To confirm this theoretically predicted feature we
compare in Fig. 2(b) the 1H relaxation dispersion R1(ω) for
glycerol with the corresponding DS results, both plotted as
functions of

√
ωτrot. One sees that the limiting low-frequency

behavior of R1(ω) is indeed linear (it is determined by the
translational contribution) whereas the DS results show a
different frequency dependence.

The translational diffusion coefficient can be obtained from
the model-independent relation b = π/9D3/2. This implies [in
combination with Eq. (3)] that for ωτtrans < 1 the relaxation
dispersion follows the relation

R1(ν) ∼= R1(0) − B
√

ν

= R1(0) − N

(
μ0

4π
γ 2

Hh̄

)2(√
2 + 8

30

)(
π

D

)3/2√
ν,

(6)

where the intramolecular contribution has been included into
R1(0) as there is no visible dispersion of the intramolecular re-
laxation in the linear range of the intermolecular contribution.
The fact that the intramolecular relaxation contribution can be
included into R1(0) is ensured by the relationship between the
rotational and translational correlation times. For the idealized
case of mono-atomic molecules modeled as hard spheres
with the nucleus placed in the molecular center, it has been
theoretically predicted that τtrans/τrot = 9 [3]. Investigating a
variety of liquids, we have found that this ratio is considerably
larger (40–70) [10] (which makes the time scale separation
of these two processes even more easily discernible, as is also
seen in Fig. 1 for glycerol). As a result, the diffusion coefficient
can be straightforwardly calculated from the slope B (which
contains only the spin density N and the diffusion coefficient
D) of the limiting linear dependence of R1(ν) on

√
ν. We wish

to stress that, although relaxation dispersion data contain both
the intramolecular and intermolecular components (which
makes them a unique source of information about the rotational
and translational motion at the same time), for determining the
translational diffusion coefficient there is no need to separate
these contributions.

Although the feature of the low-frequency intermolecular
relaxation dispersion encoded in Eq. (6) has been known
for years, its advantages have not been appreciated so far.
The relationship has been used to determine the diffusion
coefficient for paramagnetic species in solutions [17]. In all
cases the focus was on the dynamics of the paramagnetic
molecules and the electron spin relaxation. In fact, the
relationship of Eq. (6) was once applied to determine the
diffusion coefficient of molecular liquids a long time ago [19];
however, this possibility was not, to our knowledge, further
exploited until now. The reason likely lies in experimental
difficulties—field-dependent relaxation studies have become
routinely available only recently.

We have collected 1H spin-lattice relaxation dispersion data
for several liquids. In Fig. 3, as an example, the 1H relaxation
data for xylitol [HOCH(CH2OH)3CH2OH] obtained in a broad
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FIG. 3. (Color online) 1H relaxation dispersion of the liquid
xylitol plotted as a function of

√
ν; the slope of the linear part at

low frequencies yields the diffusion coefficient D(T ) [cf. Eq. (6)];
the inset shows enlarged high-temperature data.

temperature range are plotted against
√

ν. The linear range of
this dependence progressively extends to higher frequencies
when the motion becomes faster (higher temperatures). The
values of the diffusion coefficients extracted from the linear
part are compared with those from NMR field gradient
diffusometry [22–24] in Fig. 4. The results follow the Vogel-
Fulcher-Tammann expression [10] as is typical of viscous
liquids. A very good agreement between NMR relaxometry
and diffusometry is reached, encouraging us to explore further
the potential of 1H NMR relaxometry by applying it to other
systems. The results for other liquids also are in a very good
agreement with those of field gradient diffusometry. It is worth
mentioning that recently we have applied a full relaxation
theory combined with the force-free hard-sphere diffusion
model to reproduce the whole relaxation dispersion including
the determination of the rotational time constants—cf. Fig. 1
[8,11].

As far as fast diffusional motion is concerned, the limit of
NMR relaxometry is determined only by the fact that a percep-
tible (beyond the experimental inaccuracy of the FC technique)
relaxation dispersion has to be seen in the accessible frequency
range (up to 20 MHz). Using conventional NMR spectrometers
operating at higher frequencies (say up to 600 MHz), this
range can be considerably extended. Nevertheless, NMR
relaxometry loses its sensitivity for fast diffusion processes of
the order of water diffusion (10−9 m2/s). The slow diffusion
limit is determined by two factors. The first one is that using
this type of spectrometer one cannot measure relaxation times
shorter than 1 ms. In the low-field range the relaxation time de-
creases when the correlation times becomes longer, eventually
reaching this limit. The second limitation is that the linear

FIG. 4. (Color online) Translational diffusion coefficient D as
obtained from 1H NMR relaxometry (full symbols) for several liquids
versus the reciprocal temperature; for comparison data from field
gradient NMR (open symbols) are displayed [22–24]; the data are
interpolated via the Vogel-Fulcher-Tammann expression [10].

range of the relaxation dispersion is observed when the
condition ωτtrans < 1 is fulfilled. This implies that to be able
to detect the linear part of the relaxation dispersion at the
low-frequency limit of 10 kHz, the correlation time τtrans must
not be longer than approximately 5 × 10−6 s. Using the relation
τtrans = d2/2D introduced in the force-free hard-sphere model,
where d defined as the distance of closest approach is close to
the molecular diameter, one can estimate the upper limit of the
accessible values of the diffusion coefficient. For a molecule
of diameter of the order of 3 Å one reaches D ∼= 10−14 m2/s,
which is at the limit of field gradient NMR diffusometry. We
have thus demonstrated that 1H NMR relaxometry can serve
as a highly advantageous method of determining values of
diffusion coefficients in a broad range. Taking into account the
simplicity of the mathematical operations required, one can
say that the diffusion coefficients are accessible in a (almost)
direct way. The proposed method of determining diffusion
coefficients can be used in a variety of areas—from industrial
applications (such as, for instance, probing oil properties)
to various research fields. Although we concentrated on 1H
relaxometry, other nuclei, such as, for instance 19F, can also
be exploited, which enlarges its potential. Nevertheless, when
other (than dipole-dipole) relaxation mechanisms are of im-
portance (for instance, hyperfine interactions for paramagnetic
systems), Eq. (6) has to be modified according to a relaxation
theory appropriate for the system of interest.
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Abstract Field cycling 1H nuclear magnetic resonance (NMR) relaxometry is applied

to study rotational as well as translational dynamics in molecular liquids. The measured

relaxation rates, T�1
1 xð Þ � R1 xð Þ, contain intra- and intermolecular contributions,

R1;intra xð Þ and R1;inter xð Þ. The intramolecular part is mediated by rotational dynamics,

the intermolecular part by translation as well as rotation. The rotational impact on the

intermolecular relaxation (eccentricity effect) is due to the spins not located in the

molecule’s center. The overall relaxation rate is decomposed into R1;intra xð Þ and

R1;inter xð Þ by isotope dilution experiments. It is shown that the eccentricity model

(Ayant et al. in J. Phys. (Paris) 38:325, 1977) reproduces fairly well the bimodal shape

of R1;inter xð Þ for o-terphenyl and glycerol. As the relaxation contribution associated

with translational dynamics dominates at lower frequencies, the overall relaxation rate

shows a universal linear behavior when plotted versus square root of frequency. This

allows determining the self-diffusion coefficient, D, in a model-independent way. It is

demonstrated that the shape of NMR master curves comprising relaxation data for

different temperatures, linked by frequency–temperature superposition, reflects the

relative strength of translational and rotational contributions.

1 Introduction

Field cycling (FC) nuclear magnetic resonance (NMR) relaxometry has become a

powerful tool for investigating dynamics in condensed matter, in particular in
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viscous liquids and polymers [1, 2]. One distinguishes mechanical and electronic

FC. Mechanical FC can be combined with high-resolution NMR [3–5], whereas in

electronic FC usually only the total amplitude of the NMR signal is monitored. Due

to recent availability of commercial (electronic) FC spectrometers the technique has

gained new momentum [1, 2]. Currently FC 1H NMR relaxometry allows routine

measurements of spin–lattice relaxation time dispersion T1 ¼ T1 xð Þ in a frequency

range of 10 kHz–20 MHz.

Recently, we have compared the results of FC 1H NMR relaxometry and

dielectric spectroscopy (DS) for several viscous liquids [6]. Such liquids can

easily be supercooled and thereby their viscosity, diffusion coefficient, D, and

re-orientational correlation time, srot, change in a super-Arrhenius manner [7–9]. It

is well known that DS spectra for these systems can be described in terms of a Cole–

Davidson (CD) spectral density which provides a phenomenological interpolation of

the non-exponential (stretched) correlation function of the highly cooperative

re-orientational dynamics involved in the structural relaxation (a-process) of liquids

[10]. The 1H NMR susceptibility [11, 12], i.e., relaxation dispersion data

transformed to the susceptibility representation, v00NMRðxÞ ¼ x=T1ðxÞ show, in

addition to the a-relaxation peak, a low-frequency excess contribution (of a varying

amplitude) which cannot be reproduced by a single CD susceptibility. Figure 1a

summarizes our results for a series of different liquids (some of the data have

already been published previously [6, 13]). Whereas, for instance, glycerol shows a

pronounced low-frequency excess contribution, in the case of o-terphenyl such a

contribution is almost missing, and NMR and DS curves agree well. The results

shown in Fig. 1a stem from combining the relaxation dispersion data collected at

different temperatures by means of frequency–temperature supposition (FTS). This

allows constructing NMR master curves, v00NMRðxsaÞ, covering several decades of

the reduced frequency xsrot, where srot � sa is the (re-orientational) time constant

attributed to the a-process. Applying FTS one assumes that the spectral shape of the
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Fig. 1 a Susceptibility master curves for different liquids. Note the low-frequency excess contribution with
respect to a Debye curve (dashed line), b total (black filled squares), intra- (red open squares) and
intermolecular (blue circles) NMR susceptibility of glycerol obtained from isotope dilution experiments; the
inter-contribution shows a bimodal spectral shape reflecting the eccentricity effect (color figure online)
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susceptibility does not change significantly with temperature, which is actually a

generic feature of the cooperative motion in highly viscous liquids [9, 14].

As 1H NMR relaxation probes fluctuations of dipole–dipole interactions, one has

to distinguish between protons within the same molecule (intramolecular) and in

different molecules (intermolecular). In consequence, the overall relaxation rate

R1 ¼ 1=T1 is a sum of both rates, R1;intra and R1;inter, R1 ¼ R1;intra þ R1;inter [15]. We

have attributed the excess low-frequency contribution to the intermolecular

relaxation mediated by translational motion of the molecules, while the main

relaxation peak stems from rotational dynamics associated with both inter- and

intermolecular relaxation [13, 16]. Performing isotope dilution experiments we have

shown that indeed the excess contribution is suppressed, when the protonated

molecules are substituted by their deuterated counterpart. The intra- and intermo-

lecular relaxation contributions are spectrally separated with the intermolecular part

dominating at low frequencies. So far such isotope dilution experiments have been

rarely performed by FC 1H NMR [17–19].

In Fig. 1b the separated R1;intraðxÞ and R1;interðxÞ relaxation contributions for

glycerol are displayed [16]. The intramolecular part (red open squares) can be well

reproduced by a CD function, while the spectral shape of the intermolecular

relaxation (blue circles) can be described as bimodal. Its low-frequency part is

dominated by translational modulations of the intermolecular dipole–dipole

interactions, whereas the high-frequency part reflects the rotational influence on

the intermolecular interaction resulting from the non-central positions of the nuclei in

the molecule. In our first attempt [13], this eccentricity effect has been described by

treating the intermolecular spectral density as a sum of a translational part described

by the hard sphere free diffusion (HSFD) model introduced by Hwang and Freed [20]

and Ayant et al. [21], and a rotational part described by a CD function. The HSFD

model describes the translational dynamics in terms of free (Fick) diffusion with

appropriate boundary conditions introducing a distance of closest approach d which

is expected to be on the order of the molecular size. For the hydrodynamic model of a

(molecular) sphere rotating and translating in a viscous medium one gets

r ¼ strans=srot ¼ 9 [15] where strans ¼ d2
�

2D. Experimentally we have observed

r = 30 - 60 [13, 16]. This ratio is essentially temperature-independent as expected

for the translational–rotational coupling to hold for moderately viscous liquids [22].

Thus, as strans [ srot, the translational modulations of the intermolecular interactions

are responsible for the low-frequency shoulder of the overall relaxation rate R1ðxÞ
from which the diffusion coefficient DðTÞ can be extracted [23].

For long times the intermolecular correlation function follows the power-law

/ t�3=2, which is characteristic for free diffusion [24]. The time power-law implies

the form of the low-frequency expansion of the corresponding spectral density

[24–28].

R1 xð Þ ¼ R1 0ð Þ � B � 1

D3=2
�
ffiffiffiffi
x
p

; xstrans\1: ð1Þ

The important fact is that in addition to standard physical constants, the factor B
depends only on the spin density N, i.e., the number of spins per unit volume. It does

not include any details of the diffusion model [24]. This makes the task of determining
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the diffusion coefficient straightforward, there is no frequency-independent (low-

frequency) region for the intermolecular relaxation contribution (the extreme

narrowing condition does not apply). Although Eq. (1) is well known, for quite a

long time it has never been exploited systematically for liquids (except of the diffusion

of paramagnetic species in solutions [29, 30]), probably due to missing technical

possibilities of obtaining the dispersion of the NMR relaxation. Now, with the

emergence of commercially available FC spectrometers, its potential can be fully

exploited. Since, as already said, strans [ srot, the translational diffusion always

controls the low-frequency behavior of the relaxation dispersion as the rotational part

is constant there. Thus, Eq. (1) can be applied for extracting the diffusion coefficient in

protonated liquids without taking recourse of the isotope dilution experiment. In the

present contribution this approach is further applied to determine D Tð Þ for several

liquids, extending the results presented in Ref. [23]. Moreover, given that the

translational–rotational coupling applies, Eq. (1) allows constructing NMR master

curves, from which the ratio r � strans=srot as well as relative magnitudes of the

intermolecular and intramolecular dipole–dipole couplings can be estimated for

different liquids.

As mentioned above, in the susceptibility data of o-terphenyl essentially no low-

frequency excess contribution is observed (cf. Fig. 1) and it is interesting to ask

what spectral shape is found for R1;intraðxÞ and R1;interðxÞ in this case. Thus, we will

present results of an isotope dilution experiment for o-terphenyl, once again

demonstrating the importance of the intermolecular relaxation contribution also in

this case. Ayant et al. [31] have developed a general expression for the

intermolecular relaxation rate R1;interðxÞ accounting for the eccentricity of the spin

positions. We will refer to this expression when attempting to describe R1;interðxÞ
quantitatively.

2 Theoretical Background

2.1 Eccentricity Effects and Intermolecular Relaxation

The HSFD model of translational dynamics assumes spherical particles with one

spin placed at their centers. Ayant et al. [31] have extended this description to

spherical molecules carrying an off-centered spin and undergoing rotational

diffusion which now also contributes to the modulation of the intermolecular

interactions. The model assumes isotropic rotational diffusion. Although this

assumption is not fully adequate for the cooperative dynamics of viscous liquids [2,

7–9, 14], it is definitely worthwhile to discuss the model of Ayant et al. [31] in more

detail. As the resulted expression for the intermolecular spectral density is quite

cumbersome, we refrain from quoting it again and refer to Ref. [31]. Using it, the

intermolecular NMR susceptibility v00inter mð Þ � 2pm � Jinter mð Þ can be calculated

depending on the eccentricity parameter e � 2q=d (q denotes the distance of the

spin from the center of a spherical molecule) and the ratio between the translational

and rotational correlation times r � strans=srot; Fig. 2 shows some examples for

r � strans=srot ¼ 9 (Fig. 2a) and r ¼ 50 (Fig. 2b). The value r ¼ 9 corresponds to

R. Meier et al.
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the hydrodynamic model of a sphere (molecule) rotating in a viscous medium [15],

r ¼ 50 is close to the experimental value obtained for glycerol [16]. For e ¼ 0 the

model reduces to the HSFD model [20, 21] (black line), while with increasing of the

eccentricity parameter, e, an additional contribution rises on the high-frequency

flank of v00inter mð Þ reflecting the rotational contribution to the intermolecular

relaxation. The latter is more resolved for r ¼ 50 (cf. Fig. 2b).

Phenomenologically, the intermolecular spectral density, ~Jinter xð Þ, calculated

applying the eccentricity model of Ayant et al. can be separated into two terms:

~JinterðxÞ ¼ JtransðxÞ þ f � JrotðxÞ; ð2Þ

where Jtrans is given by the HSFD model (e ¼ 0 ), while f � JrotðxÞ is the additional

part which arises from eccentricity. Jtrans and Jrot are normalized:R1
0

J xð Þdx ¼ p=2; thus ~Jinter xð Þ is not normalized
R1

0
~Jinter xð Þdx ¼ p=2 � 1þ fð Þ.

The separation according to Eq. (2) has been done in Fig. 3. One gets the

rotational contribution f � JrotðxÞ by subtracting the corresponding HSFD suscep-

tibility from the total one. Attempts to reproduce the rotational contribution by

means of a Debye or CD spectral density fail, because of its broadened shape.

Although the model assumes that the rotational dynamics is described by Lorentzian

spectral densities, the fact that the description includes rotational correlation times

of different orders leads to a broadening of the rotational contribution. A CD

function can partially mimic the broadening; however, the eccentricity model

predicts a high-frequency behavior / x�1 at xsrot [ 1 which cannot be reproduced

in this way (cf. Fig. 3).

The parameter f has been obtained by integrating the rotational part. Figure 4a

shows the f parameters obtained for different e values; obviously, f e ¼ 0ð Þ ¼ 0. For

small e values the factor f rises quite slowly and f ¼ 1 is reached only for e � 0:56.

For larger eccentricity the rotational contribution and thus the f factor grows rapidly.

In the (unphysical) case of spins located on the surface of the (molecular) sphere,

i.e., e ¼ 1; the rotational contribution to intermolecular relaxation will be 50 times

larger than the translational one.
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Fig. 2 Intermolecular NMR susceptibility, 2pm � Jinter mð Þ, for different eccentricity parameters e r ¼ 9
(a), and r ¼ 50 (b)
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One can see in Fig. 2 that the rotational peak shifts to higher frequencies with

increasing e. Hence the apparent ratio rapp ¼ strans

�
srot;app can be discussed as a

function of eccentricity e (cf. Fig. 4b). The time constant srot;app is obtained from the

peak position (xsrot;app ¼ 1) of the rotational part (obtained by subtraction of the

HSDF contribution from the total spectral density). The apparent ratio rapp initially

rises slowly (for low e), but for higher e it grows much faster. This can be explained

by the larger linear velocity (a faster loss of correlation) of more off-centered spins.

For r ¼ 9 the apparent ratio varies between rapp � 14 for e! 0 and rapp � 200 for

e ¼ 1. As the model includes rotational correlation times of different ranks (which

are related to the assumed rank-two correlation time srot), one does not get

srot;app ¼ srot. Thus, the experimentally observed rather higher ratio rapp may

actually correspond to a smaller r value combined with large eccentricity e.

2.2 The Low-Frequency Limit of the Overall 1H Spin–Lattice Relaxation Rate

The total spin–lattice relaxation rate of systems containing only protons can be

written as:
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Fig. 3 Separation of the
intermolecular NMR
susceptibility (solid black line)
into rotational (solid red line)
and translational (solid blue
line) parts; attempts to
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Debye (dashed dark cyan line)
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spectral densities (color figure
online)
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R1 xð Þ ¼ R1;intra xð Þ þ R1;interðxÞ ¼ R1;intra xð Þ þ Rrot
1;inter xð Þ þ Rtrans

1;inter xð Þ; ð3Þ

when one accepts that the intermolecular spectral density can be approximated as a

sum of translational and rotational contributions (Eq. (2)) with

Rtrans
1;inter xð Þ ¼ Kinter

5
Jtrans xð Þ þ 4Jtrans 2xð Þ½ �; ð4Þ

R1;intra xð Þ þ Rrot
1;inter xð Þ ¼ Kintra þ fKinter

5
Jrot xð Þ þ 4Jrot 2xð Þ½ �; ð5Þ

where

Kinter ¼ 2p
l0

4p
�hc

� �2 N

d3
: ð6Þ

As mentioned, N denotes the spin density. Expanding the translational and

rotational spectral densities, Jtrans xð Þ and Jrot xð Þ (in Debye approximation) up to

the rank-two terms one gets:

Jtrans xð Þ ¼ 4strans

9
1� 3

4
ffiffiffi
2
p xstransð Þ1=2þ 1

12
ffiffiffi
2
p xstransð Þ3=2þ � � �

� �
; ð7Þ

Jrot ¼ srot 1� xsrotð Þ2þ � � �
� �

: ð8Þ

These expansions hold for xstrans\1 and xsrot\1, respectively. Substituting

Eq. (7) into Eq. (4); Eq. (8) into Eq. (5) and then adding the terms according to

Eq. (3), one obtains for the total rate R1 xð Þ:

R1 xð Þ ffi R1 0ð Þ þ R
1ð Þ

1 xð Þ þ R
2ð Þ

1 xð Þ; ð9Þ

where

R1 0ð Þ ¼ R
0ð Þ

1 xð Þ ¼ Kintra þ fKinterð Þsrot þ
4

9
Kinterstrans; ð10aÞ

R
1ð Þ

1 xð Þ ¼ � 4

15

ffiffiffi
2
p

8
þ 1

� �
Kinterstrans xstransð Þ1=2

¼ � p
30

1þ 4
ffiffiffi
2
p� � l0

4p
�hc2

� �2 N

D3=2

ffiffiffiffi
x
p

; ð10bÞ

R
2ð Þ

1 xð Þ ¼ � 17

5
Kintra þ fKinterð Þsrot xsrotð Þ2þ 1

135
1þ 8

ffiffiffi
2
p� �

Kinterstrans xstransð Þ3=2:

ð10cÞ
As already discussed in Sect. 1, Eq. (10b) once again demonstrates that the

pre-factor of
ffiffiffiffi
x
p

depends only on the self-diffusion coefficient D and the spin

density N.

To reveal the universality of the relaxation dispersion in the low-frequency range

we shall consider the ratio R1 xð Þ=R1 0ð Þ, which yields:
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R1 xð Þ
R1 0ð Þ ffi 1�

4
15

ffiffi
2
p

8
þ 1

� �
Kinterstrans xstransð Þ1=2

Kintra þ fKinterð Þsrot þ 4
9

Kinterstrans

þ
1

135
1þ 8

ffiffiffi
2
p� 	

Kinterstrans xstransð Þ3=2� 17
5

Kintra þ fKinterð Þsrot xsrotð Þ2

Kintra þ fKinterð Þsrot þ 4
9

Kinterstrans

:

ð11Þ
The first order term in Eq. 11 can be rewritten as:

R1 xð Þ
R1 0ð Þ ffi 1�

3
ffiffiffi
2
p
þ 8

� 	

40

ffiffiffiffiffiffiffi
xs0
p

ffi 1� 0:7 �
ffiffiffiffiffiffiffi
xs0
p

; ð12Þ

where one defines a rescaled correlation time s0 as:

s0 ¼ strans

4nr

4nr þ 9

� �2

; n ¼ Kinter

Kintra þ fKinter

: ð13Þ

This shows that the low-frequency part of the relaxation dispersion can indeed by

mapped to a universal linear dependence versus
ffiffiffiffiffiffiffi
xs0
p

, and D is given as:

D ¼
4p
9

l0

4p �hc2
H

� 	2
NH

R1 0ð Þ
ffiffiffiffiffiffi
2s0
p

 !2=3

: ð14Þ

First deviations from the low-frequency linear behavior observed at higher

frequencies are determined by the second-order term in Eq. (11), they go in the

upward direction (second derivative positive) or in the downward direction (second

derivative negative) depending on the interplay between the rotational and

translational contributions. When the rotational contribution prevails, the direction

is downward, and upward otherwise. The second term vanishes when

c � n � r�5=2 � 40; ð15Þ

where the last equality has been obtained taking into account that the rotational

contribution shows significant dispersion only at frequencies for which xsrot � 1.

Equation (15) gives the condition under which the square root term dominates the

relaxation dispersion over a large frequency range.

Figure 5a shows reduced relaxation rates, R1 xð Þ=R1 0ð Þ versus 0:7 �
ffiffiffiffiffiffiffi
xs0
p

for

different parameter n, r � strans=srot ¼ 9 is kept constant as predicted by Stokes–

Einstein–Debye law [15]; the rotational contribution is described by a Debye

spectral density and the translational one by the HSFD model. For c ¼ 40 the

reduced relaxation rate follows the linear behavior up to rather high frequencies,

while for c larger or smaller than about 40, the curves bend up or down from the

linearity, respectively. In Fig. 5b n has been fixed to a small value which means that

the coupling constant associated with the rotational dynamics, Kintra þ fKinter,

dominates the coupling constant for the translational spectral density Kinter. For

r � strans=srot ¼ 9 the relaxation curves bend down, but this changes with increasing

r. The shape of the relaxation dispersion is highly sensitive to r as it enters Eq. (15)

with an exponent 5/2. Below, we will demonstrate that the different relaxations
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characteristics (deviations from the low-frequency linearity) are actually found

experimentally.

3 Experimental

The dispersion of the 1H spin–lattice relaxation rate, R1 ¼ 1=T1, was studied in the

temperature range of 200–400 K (depending somewhat on the system) by

employing a commercial fast (electronic) FC spectrometer STELAR FFC 2000

[1] which allows one to cover the frequency range of 104–2 � 107 Hz. Spin–lattice

relaxation times down to about 1 ms are accessible. The temperature was controlled

by heating flowing air or evaporated liquid nitrogen. The temperature stability was

±0.3 K. In all cases a single-exponential relaxation has been observed. In the case

of o-terphenyl, the fully protonated liquid o-terphenyl-h14 was diluted with the fully

deuterated o-terphenyl-h0. The measurements were done for several mole fractions

of o-terphenyl-h14 in o-terphenyl-h0 xH = 1.0, 0.75, 0.5 and 0.25. The susceptibility

data measured at different temperatures were merged by shifting the data m=T1 along

the frequency axis to get the best overlap. Fitting a CD function to the susceptibility

master curve allows determining the time constant srot and consequently

v00NMRðxsrotÞis obtained.

4 Results

4.1 Isotope Dilution Study of o-Terphenyl

As mentioned above, the 1H relaxation dispersion of o-terphenyl does not show a

discernible low-frequency contribution and therefore, in analogy to the dielectric

spectra it can be approximated by a CD function (cf. Fig. 1). Thus, it is of interest to

single out the R1;intraðmÞ and R1;interðmÞ contributions. We have diluted o-terphenyl-

h14 by its deuterated counterpart, o-terphenyl-h0. Relaxation dispersion profiles for
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different mole fractions xH at T = 290 K are shown in Fig. 6a and in the

susceptibility representation v00NMRðmÞ ¼ m=T1ðmÞ in Fig. 6b. In Fig. 7a the corre-

sponding susceptibility master curves v00NMRðxsrotÞ (cf. Sect. 1) are displayed. The

corresponding shift factor of the individual data sets can be identified with the

correlation time srot. The rotational correlation times obtained in this way agree well

with those obtained from 2H NMR [32] and light scattering [33] (cf. Fig. 7b).

Moreover, in Figs. 6b and 7b no influence of the ratio xH on the dynamics is seen as

there is no visible shift of the susceptibility peaks (cf. Fig. 6b).

The amplitude of the master curves in Fig. 7a decreases linearly with xH (cf. inset

Fig. 7a) as expected, however, one should note that the fraction of the intermo-

lecular relaxation contribution does not strongly change with x. Extrapolating to

xH ! 0 yields the intramolecular part R1;intraðmÞ, while the intermolecular contri-

bution is obtained according to R1;interðmÞ ¼ R1ðmÞ � R1;intraðmÞ [16]. The results are

displayed in Fig. 8a. Regarding the amplitude, the intramolecular (red symbols) and

intermolecular (blue symbols) contributions are quite similar, once again
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demonstrating the relevance of the intermolecular relaxation in molecular liquids.

The time constants srot extracted when constructing the master curves for each xH

are (as expected) virtually the same independently of xH (cf. Fig. 7b). Also the

spectral shapes of both contributions look very similar; however, at low frequencies

small but systematic differences between R1;interðmÞ and R1;intraðmÞ are revealed which

are better disclosed when the original relaxation rates (at 290 K) are plotted as a

function of
ffiffiffi
m
p

(cf. Fig. 9). Whereas, the intramolecular part exhibits a flat low-

frequency behavior, the intermolecular relaxation contribution as well as the total

relaxation rate exhibit the same linear low-frequency behavior. Thus, although

R1;interðmÞ and R1;intraðmÞ look rather similar when displayed double logarithmically

as a function of m, they can be well distinguished by their limiting behavior at low
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frequencies when plotted versus
ffiffiffi
m
p

. Moreover, the linear behavior in
ffiffiffi
m
p

still

survives for the total relaxation rate R1ð
ffiffiffi
m
p
Þ, since strans [ srot always holds.

For comparison, in Fig. 8b we included once again our result from the isotope

dilution experiment for glycerol. In this case, as discussed above, the total relaxation

rate R1ðmÞ shows a low-frequency shoulder which is absent in the intramolecular

part (red symbols), what confirms its intermolecular origin. In contrast to

o-terphenyl, for glycerol also the intermolecular part (blue symbols) shows a

bimodal spectral shape with a strong maximum at high frequencies which originates

from the rotational influence due to eccentricity effects. In both cases, o-terphenyl

and glycerol, the intermolecular contributions can be reproduced by the model of

Ayant et al. [31] (cf. Sect. 2.1) see Fig. 8. Overall, the fits are satisfying although, as

said, this model does not reproduce the high-frequency behavior (xsrot [ 1), since it

does not take into account the non-Debye character of the rotational dynamics in

viscous liquids. For glycerol the obtained ratio r ¼ 30 is somewhat smaller than the

previously reported rapp � 50 [16] which in any case is significantly beyond the

Stokes–Einstein–Debye limit r ¼ 9.

The eccentricity e ¼ 0:77 suggests that the average distance of a spin to the

center of the molecule is about three quarters of its radius. The diameter (or distance

of closest approach) is found d ¼ 3:5 � 10�10m. Again this is in agreement with the

previously reported values (cf. Table 1) [34]. With o-terphenyl the corresponding

parameters are less conclusive. Here one has to fix the ratio r to get a convergence of

the fitting procedure; we fixed it to the hydrodynamic value r ¼ 9. Then the

eccentricity e ¼ 0:60 and the diameter d ¼ 3:72 � 10�10m are rather small with

respect to values reported from other techniques (cf. Table 1). In contrast to

glycerol-h5, for o-terphenyl the positions of the maxima of the intramolecular

relaxation and the part of intermolecular contributions which is associated with

rotation do not coincide (cf. Fig. 8a). This might stem from the fact that although

the model of Ayant et al. [31] is an exact mathematical solution of the problem of

intermolecular spectral density, it assumes spherical molecules.

Regarding the experimental finding of rapp � 50, for glycerol and other liquids

[13, 16] one could argue that this large apparent separation could be in agreement

with the Stokes–Einstein–Debye relation r ¼ 9, but under the condition of a large

eccentricity. This is indeed possible, but the required value e � 0:9 seems to be too

large especially for glycerol-h5.

A comparison of Fig. 9a, b also visualizes the impact of the rotationally driven

relaxation contributions on the shape of the total relaxation curves. One sees that for

Table 1 Diameters of glycerol and o-terphenyl molecules obtained by applying the eccentricity model of

Ayant et al. [31] compared to the values obtained from diffusion coefficient measurements by field

gradient NMR diffusometry and to van der Waals diameter from gas phase data [34]

Diameter van der Waals [34] (Å) Field gradient NMR [34] (Å) Eccentricity model (Å)

Glycerol 4.4 3.2 3.5

O-Terphenyl 7.6 4.6 3.72
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glycerol-h5 (cf. Fig. 9b) the intramolecular relaxation (red open circles) does not

exhibit dispersion, until reaching quite high frequencies; obviously the same is

expected for the rotationally mediated part of the intermolecular contribution. In

consequence, the total rate R1

ffiffiffi
m
p
ð Þ (as well intermolecular part R1;inter

ffiffiffi
m
p
ð Þ)

departures from the linear behavior in upward direction due to the dispersion of the

relaxation rate associated with the translational dynamics. For o-terphenyl R1

ffiffiffi
m
p
ð Þ

bends downwards due to the dispersion of the rotationally driven relaxation which is

observed at much lower frequencies than for glycerol. Thus, the fact that R1;inter

ffiffiffi
m
p
ð Þ

is also affected by the rotational dynamics is now clearly seen as it also bends

downwards (cf. Fig. 9a). But yet at lower frequencies the linear behavior due to

translation still prevails in both curves R1

ffiffiffi
m
p
ð Þ and R1;inter

ffiffiffi
m
p
ð Þ (cf. dashed lines in

Fig. 9a).

4.2 Master Curves for the Total Relaxation Rate

The discussion of Sect. 2.2 implies that the reduced total relaxation rate R1ðmÞ=R1ð0Þ
plotted versus 0:7 �

ffiffiffiffiffiffiffi
xs0
p

(Eq. 12) yields a master curve provided that translational–

rotational coupling holds. In Fig. 10a the glycerol relaxation rates measured at

different temperatures plotted versus square root of the frequency are shown. The

linear behavior at low frequencies is well visible and allows for extrapolating to the

R1 0ð Þ limit. Given R1 0ð Þ the time constants s0 can be chosen in such a way that the

individual data form the master curve described by Eq. (12). This is demonstrated in

Fig. 10b; data collected in a broad temperature range coincide.

In Fig. 11 analogous master curves obtained for different liquids are shown. They

all coincide in the linear, low-frequency range, but they show quite different

behaviors beyond this limit. Whereas the curves for o-terphenyl and tristyrene bend

downwards, all other curves bend upwards with respect to the low-frequency limit.

As demonstrated in Sect. 2.2, the character of the deviations from the linearity

depends on the interplay between the rotationally and translationally driven

relaxation contributions (cf. Fig. 5) and thus varies for different liquids. Glycerol,

its homologues (DL-threitol, xylitol, sorbitol) and propylene glycol show translation-
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dominated (bending upwards from linear behavior) relaxation curves. It is known

that for these liquids the ratio r ¼ srot=strans is rather large [13, 16]. On the other

hand, the rotational shape (the relaxation curve bending downwards) is observed

only for o-terphenyl and tristyrene. This indicates a rather small r and a relatively

large contribution of the rotationally driven terms which may originate from large

eccentricity and/or strong intramolecular coupling. Finally, the master curve of 2,3-

butanol has an intermediate shape.

The data shown in Fig. 11 have been used for extracting translational diffusion

coefficients according to the procedure applied by us previously to other liquids

[23]. Figure 12 comprises the diffusion coefficients D for the new results and the
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previous ones plotted versus reciprocal temperature. The results of NMR

relaxometry agree very well with the values obtained by field-gradient NMR

diffusometry [22, 34–36].

5 Conclusions

Performing 1H FC NMR relaxometry experiments for isotopically (2H) diluted

glycerol and o-terphenyl, the overall relaxation has been unambiguously decom-

posed into intra- and intermolecular parts. It has been demonstrated that the

intermolecular relaxation stems from a combined effect of translational and

rotational dynamics modulating intermolecular dipole–dipole interactions. The

rotational influence on the intermolecular relaxation originating from non-central

positions of the interacting spins (eccentricity effects) has been described in terms of

the eccentricity model proposed by Ayant et al. [31], which provides mathematical

form of the intermolecular spectral density including the joint effect of translation

and rotation. The spectral density of the model can be decomposed in a sum of

purely translational and purely rotational terms. Describing the rotational term as a

CD function one can, to a certain extent, mimic the broadening of the spectral

density predicted by Ayant et al. [31] as a result of rotational correlation times of

different ranks entering the exact expression. Yet, the eccentricity model assumes

rotational diffusion which does not apply in viscous liquids, and the CD function

provides a better description at high frequencies. Finally, a criterion has been

derived which allows for resolving which motional process gives the dominant

contribution to the relaxation. Applying the criterion to several liquids, it has been

shown that for glycerol and its homologues (threitol, xylitol, sorbitol) and propylene

glycol the dominating influence on the intermolecular relaxation stems from

translation, while for o-terphenyl and tristyrene the rotational effects prevail.

Qualitatively, this can be explained by large eccentricity of protons in these

molecules.
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16. R. Meier, D. Kruk, J. Gmeiner, E.A. Rössler, J. Chem. Phys. 136, 034508 (2012)

17. J.P. Kintzinger, M.D. Zeidler, Ber. Bunsgens. Phys. Chem. 77, 98 (1972)

18. M. Kehr, N. Fatkullin, R. Kimmich, J. Chem. Phys. 126, 094903 (2007)

19. A. Herrmann, B. Kresse, M. Wohlfahrt, I. Bauer, A.F. Privalov, D.Kruk, N. Fatkullin, F. Fujara, E.A.
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§University of Warmia and Mazury in Olsztyn, Faculty of Mathematics and Computer Science, Sloneczna 54, PL-10710 Olsztyn,
Poland

ABSTRACT: We demonstrate that field-cycling 1H NMR relaxom-
etry can be used as a straightforward method of determining
translational diffusion coefficient D = D(M) in polymer systems.
The 1H spin−lattice relaxation dispersion for polybutadiene of
different molecular masses M (446 < M/(g mol−1) < 9470) is
measured at several temperatures (233 < T/K < 408) in a broad
frequency range. The diffusion coefficient D(T) is determined from
the intermolecular contribution to the overall spin−lattice relaxation
rate R1(ω), which dominates in the low-frequency range and follows a
universal dispersion law linear in √ω. The extracted diffusion
coefficients are in good agreement with the values obtained previously by field gradient NMR. The molecular mass dependence
D = D(M) exhibits two power laws: D ∝ M−1.3±0.1 and ∝M−2.3±0.1. They show a crossover for M = 2300, a value that is close to
the entanglement molecular mass Me of polybutadiene. The corresponding power-law exponents are close to the prediction of
the tube-reptation model.

Field-cycling (FC) 1H NMR relaxometry has become a
powerful tool for investigating dynamics of polymers.1,2 By

varying the external magnetic field B, the frequency dependence
of the spin−lattice relaxation rate R1(ω) = T1

−1(ω) can be
measured up to five decades in frequency if an earth field
compensation is employed.3,4 By converting the relaxation
dispersion into the susceptibility representation χNMR″ (ω) =
ω·R1(ω) and then applying frequency−temperature super-
position (FTS), master curves χNMR″ (ωτs) are obtained; τs
denotes the correlation time of the segmental (local)
dynamics.2,5,6 As at low temperatures the NMR relaxation is
solely determined by the segmental dynamics (other dynamical
processes are too slow to act as an effective relaxation
mechanism), τs is directly accessible. FTS is an important
property of cooperative dynamics in condensed matter and has
been applied for a long time, for example, in rheology of
polymers. This procedure allows extending the covered
frequency range and including both the polymer and the
segmental dynamics into the master curve. Consequently,
converting then the master curve into the time domain, the
dipolar correlation function CDD(t) is obtained for a time range
encompassing 10 decades. Characteristic power-law regimes of
the correlation function can be identified and compared with
the prediction of polymer theories, for example, the Doi−
Edwards tube-reptation model.7 Moreover, the segmental mean
square displacement of the polymer can be accessed in the
subdiffusive regime.8,9

The proton spin−lattice relaxation rate, R1(ω), consists of
intramolecular and intermolecular parts: R1(ω) = R1

intra(ω) +

R1
inter(ω).10 The intramolecular contribution stems from

protons belonging to the same molecule, while the
intermolecular contribution originates from dipole−dipole
interactions between protons of different molecules. Thus,
R1
intra(ω) is solely associated with molecular rotation, whereas

R1
inter(ω) is predominantly mediated by translational diffusion.

This enables 1H NMR relaxometry to probe the translational
motion, which has recently been demonstrated for low
molecular mass liquids.11,12 A comparison of the 1H NMR
relaxation results in the susceptibility representation with
dielectric spectroscopy data has revealed that the NMR
susceptibility shows a low-frequency excess contribution (of
varying amplitude) in addition to the primary or α-relaxation
peak.13 We have confirmed that the excess contribution
originates from the intermolecular relaxation contributions to
the total relaxation rate R1(ω).

14 The ultimate proof has been
given by isotope dilution experiments,15 that is, the excess
contribution disappears when the protonated molecules are
substituted by their deuterated counterpart, whose interactions
with protons are much weaker. The extrapolation of the
relaxation data to zero concentration limit gives R1

intra(ω) and,
hence, also R1

inter(ω).
The translational dipolar correlation function Cinter(t) =

⟨Ym
2*(Ω(t))Ym2 (Ω(0))/r3(t)r3(0)⟩ describes fluctuations of the

interspin distance r and the orientation of interspin axis with
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respect to the direction of the external magnetic field via the
angle Ω encoded in spherical harmonics of rank two Ym

2 . At
long times, the correlation function follows the power law
Cinter(t) ∝ t−3/2, which is characteristic of free diffusion.16 As a
result, the spectral density (Fourier transform of the correlation
function) and thus R1(ω) depends linearly on the square root
of the resonance frequency, √ω.16−19 As shown for low-M
liquids,11 the rotational correlation time is significantly shorter
than the corresponding correlation time for translational
motion, as expected. Combining this dependence of the
spectral density with the expression for the total 1H spin−
lattice relaxation rate,10 the low-frequency expansion (up to the
first-order term and in absence of other NMR active nuclei) of
the relaxation dispersion is given by16−19

ω ω ω ω= + = − ·R R R R
B

D
( ) ( ) ( ) (0)1 1

intra
1
inter

1 3/2

(1)

with

π μ
π

γ= · + · ℏ ·⎜ ⎟⎛
⎝

⎞
⎠B N

30
(1 4 2 )

4
0

H
2
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where γH is the proton gyromagnetic ratio and N is the spin
density, that is, the number of spins per unit volume. The
intramolecular contribution associated with reorientational
dynamics is included in R1(0). This is allowed as the rotational
contribution is frequency independent in the low-frequency
range, that is, ωτrot ≪ 1 (τrot denotes the rotational correlation
time).
The important fact is that, besides the standard physical

constants, the factor B only depends on N. It does not include
any details of a diffusion model.16 Although eq 1 is well-known,
its potential could have been fully exploited only lately due to
commercial availability of FC spectrometers. Recently, diffusion
coefficients of several liquids have been determined via eq 1 and
they are in excellent agreement with those of field gradient
(FG) NMR diffusometry.11,12

In the present contribution, we demonstrate that the
described approach can also be applied to polymer systems,
and polybutadiene melts of different molecular masses M (mass
average) are used as an example. There eq 1 applies for ω≪ 1/
τt, where τt is the terminal relaxation time, that is, the Rouse
time or the disengagement time of the tube-reptation model for
nonentangled and entangled polymers, respectively (where one
assumes that τt ∝ D−1).
The dispersion of the spin−lattice relaxation above 10 kHz

was measured by an electronic field cycling spectrometer

Spinmaster FFC 2000 manufactured by STELAR. Experiments
were performed in the temperature range 233 < T/K < 408.
The relaxometer covers a 1H frequency range from ν = ω/2π =
10 kHz to 20 MHz (for 1H), while the switching time from
high polarization field to relaxation field is 3 ms. Lower 1H
frequencies were reached using a home-built spectrometer in
Darmstadt operating down to 400 Hz.3 The low frequencies
were achieved by utilizing a three-dimensional resistive coil
arrangement for compensating for the earth field and other
magnetic stray fields.4 The relaxation rate R1 was determined by
an exponential fit of the magnetization decay curve. The results
have been published previously in the susceptibility representa-
tion.3 In the present contribution we display and analyze the
corresponding relaxation dispersion curves.
Figure 1a presents the spin−lattice relaxation rate R1 plotted

against the square root of the frequency √ν for polybutadiene
(PB) with rather small molecular mass M/(g·mol−1) = 466 (PB
466). The polymer chains are still so short that essentially no
polymer dynamics is discovered and the system relaxes like a
low-molecular mass liquid.2,3 The solid lines at low frequencies
indicate the limiting, linear part of the relaxation dispersion. At
higher frequencies, the relaxation dispersion deviates from
linearity, and the linear part shrinks with decreasing temper-
ature (cf. inset in Figure 1a). The deviation from the linear
behavior is caused by the increasing importance of higher order
terms of the expansion of the translational spectral density (eq
1) and by a dispersion of the intramolecular relaxation
contribution for which the extreme narrowing condition
(ωτrot ≪ 1) does not hold any longer.
Figure 1b shows the relaxation rates R1 versus √ν for PB of

M = 2020 which is close to the entanglement molecular mass
Me ≅ 1800.20 Again, the solid lines indicate the linear part of
the relaxation dispersion observed at low frequencies.
Compared to the low-M system, PB 466, the range in which
R1(√ν) behaves linearly is rather small, but it becomes larger at
high temperatures (cf. inset of Figure 1b). The pronounced
difference from the data of low-M polybutadiene in Figure 1a is
caused by a significantly slower as well as by a stronger
relaxation dispersion due to polymer specific dynamics (cf.
below).
We analyzed the relaxation dispersion for a series of

polybutadienes of molecular masses M = 466, 777, 816, 1450,
2020, 2760, 4600, 9470 at several temperatures (data from ref
3). The procedure cannot be applied to higher M values as the
linear regime in Figure 1 becomes too small or is even beyond
the accessible frequency range. The relaxation data are shown
as master curves in Figure 4 and discussed further below. The
values of the diffusion coefficients, D = D(T), are extracted

Figure 1. 1H spin−lattice relaxation rates R1 of polybutadiene (PB) M = 466 (a) and M = 2020 (b) plotted as a function of the square root of the
Larmor frequency √ν in the temperature range as indicated (data from ref 3).
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from the slope of the linear part in Figure 1 and from
corresponding plots for the polybutadienes with different
molecular masses using eq 1, and displayed in Figure 2. For all

polybutadienes, the spin density N = 5.75 × 1028 m−3 was taken
as provided by the mass density ρ = 0.86 g/cm3.20 The
temperature dependence of N is marginal when comparing
diffusion coefficients on logarithmic scales. A super-Arrhenius
temperature dependence of the diffusion coefficients is
observed, and for each molecular mass D(T) can be well
interpolated by the Vogel−Fulcher−Tammann (VFT) equa-
tion. There is a trend that the M dependence becomes stronger
at high M. Note that the temperature range in which the
diffusion coefficients can be determined narrows with
increasing M. For comparison, we included the results of
Fleischer and Appel, which have been obtained at 373 K by
applying FG NMR which is presently the standard method
measuring diffusion coefficients in polymers.21

The M dependence of D is presented in Figure 3 and is
obtained by interpolating D(T) from FC NMR at T = 373 K
(dashed line in Figure 2). The results from both FC and FG
NMR nicely agree though the FC data appear to be
systematically slightly higher. Two power-laws D∝M−α are

revealed with a crossover at M ≅ 2300, which is quite close to
the entanglement molecular mass Me ≅ 1800.20 The tube-
reptation model predicts α = 1 for the Rouse regime and α = 2
for the entanglement regime. Fleischer and Appel have
attributed all their data points to the latter regime and have
reported an exponent α = 2.0.21 Considering the combined
results of NMR relaxometry and diffusometry, it seems that for
low M the Rouse regime is already seen. By interpolating both
data sets (straight lines), it has been obtained: α = 1.2 ± 0.1 for
M < Me and α = 2.3 ± 0.1 for M > Me. To our knowledge, this
is the first time that the crossover in D(M) has been found for
PB. In another work, Fleischer and Appel found two regimes in
the case of polydimethylsiloxane (PDMS) and polyethylene
oxide (PEO).22 In the entanglement region, the exponent is
similar to that found for polystyrene23 and hydrogenated
polybutadiene.24 It is well-known that the tube-reptation model
needs some modifications to account for effects such as
constraint release or contour length fluctuations.7

Equation 1 implies that 1H relaxation dispersion results
obtained at different temperatures can be scaled to follow a
master curve, at least at low frequencies where the expansion in
eq 1 applies.12 Thus, eq 1 can be rewritten in a master curve
form:

ω ωτ= −R R( )/ (0) 11 1 res (2)

where

τ
γ
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In Figure 4, such master curves are displayed for a series of
polybutadienes investigated in the temperature range as

indicated. Note that the master curves contain all relaxation
data discussed in the present paper (taken from ref 3), and for a
given M value, the data collapse even at high frequencies
beyond the linear low-frequency regime. This is a consequence
of the fact that translational-rotational coupling or more
generally FTS applies in good approximation for polymer
melts. The master curves for different M coincide in the linear
low frequency range but systematically differ at higher reduced
frequencies (ωτres)

0.5. Whereas for PB 466 the reduced

Figure 2. Diffusion coefficient D(T) for polybutadiene of different
molecular masses M as indicated extracted applying eq 1. Lines:
interpolation by VFT equation. Stars: results from field gradient NMR
at T = 373 K reported by Fleischer and Appel.21.

Figure 3. Dependence of the diffusion coefficient D on molecular mass
M, as obtained by field cycling (FC) NMR relaxometry and by field
gradient (FG) NMR;21 solid lines: power laws with exponents as
indicated; arrow marks the crossover at a molecular mass being close
to Me.

Figure 4. Master curves of PB of different M constructed from 1H
spin−lattice relaxation dispersion data obtained in the indicated
temperature ranges along eq 2; dashed line: universal linear low-
frequency limit.
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relaxation rate R1(ω)/R1(0) follows the linear dependence in a
wide frequency range, for the high-M polymers this regime is
significantly smaller and eventually, for M > 9470, vanishes.
The progressing bending over of R1 = R1(√ω) for increasing
M stems from increasing contributions of polymer specific
relaxation terms reflecting Rouse and entanglement dynamics
to the overall relaxation. In terms of their time-scale, they are
located between the terminal relaxation and the segmental
relaxation as demonstrated in our previous publications.2,3

In conclusion, the present study demonstrates that the
method of determining the diffusion coefficient from the low-
frequency slope of the 1H spin−lattice relaxation dispersion, as
already applied to low-molecular mass liquids,11,12 can also be
used for neat polymers. An extension to polymer solutions is
not straightforward as the method probes the relative
translational displacements among the proton bearing species.
NMR relaxometry allows probing rotational and translational
dynamics of polymer systems in a single experiment. The
rotational dynamics has been discussed in our previous works,
in which the temperature and molecular mass dependencies of
the segmental (reorientational) contribution dominating the
high-frequency behavior of the relaxation rate were analyzed in
addition to the polymer specific.2,3,5,6 In the present work, the
low-frequency features of the 1H relaxation rate were used to
complete the analysis of the polymer dynamics by extracting
the diffusion coefficients and inquire into their dependence on
temperature and molecular mass. Note that this evaluation is
only possible by attaining the relaxation rate at extremely low
frequencies. The obtained D(M) data agree well with those
reported by FG NMR, thus making FC NMR a further
technique probing diffusion of condensed matter.
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†Experimentalphysik II, Universitaẗ Bayreuth, 95440 Bayreuth, Germany
‡Institut für Festkörperphysik, TU Darmstadt, Hochschulstrasse 6, 64289 Darmstadt, Germany
§Faculty of Mathematics & Computer Science, University of Warmia & Mazury in Olsztyn, 10710 Olsztyn, Poland

ABSTRACT: We extract the translational diffusion coefficient
D(T,M) from field cycling (FC) 1H NMR relaxometry which
provides the relaxation dispersion of poly(dimethylsiloxane),
1,4-poly(butadiene), poly(styrene), 1,4-poly(isoprene), and
poly(propylene glycol) with various molecular masses M.
Oligomers with very low M, nonentangled (M < Me), and
entangled (M > Me) polymers are included. The low-frequency
1H NMR relaxation dispersion is dominated by translational
dynamics and allows extracting D via benefiting from an
universal dispersion power-law characteristic of free diffusion. In order to correct for the additional mass dependence of the
monomeric friction coefficient observed at low M and controlled by the M dependence of the glass transition, the segmental
correlation time τs(T,M) is taken from previous analyses of the FC susceptibility master curves. Consequently, we present the
temperature independent, iso-frictional quantity Dτs ∝ F(M), which reveals the M-dependence of the pure collective polymer
dynamics. While at the lowest M the quantity Dτs displays a trend to become M independent typical of simple liquids, it crosses
over to a behavior characteristic of Rouse dynamics. In most systems, however, this crossover manifests itself in a rather narrow
M interval as entanglement dynamics takes over at M > Me. Thus, pure Rouse behavior is difficult to identify, yet the approach
allows one to decide when a molecule becomes a polymer, in terms of the (smallest) Rouse unit.

1. INTRODUCTION

Characterizing translational diffusion in condensed matter is an
important issue in many areas of science and technology. In
particular, understanding the slow diffusion in polymer melts is
of great interest. Here, the Rouse model1 and de Gennes’
reptation idea2 provide the most accepted framework for
nonentangled (M < Me) and entangled (M > Me) melts of
linear polymers, respectively, where Me denotes a polymer
specific crossover molecular mass. The full theory of polymer
melts has been formulated by Doi and Edwards in terms of the
so-called tube-reptation model.3 Depending on the chain length
or the molecular mass M, the diffusion coefficient D(M)
exhibits a characteristic power-law dependence which is
explained semiquantitatively. The model has been refined by
introducing effects such as contour length fluctuations4,5 and
constraint release.6,7 It offers not only an explanation for the
long-time diffusion, i.e., the M dependence of D, but also for
the subdiffusive translation of a polymer segment at times much
shorter than the terminal relaxation time τd. Specifically,
different power-law regimes are forecast for the mean square
displacement as a function of time and they can be probed
piece-wise for example by neutron scattering8, field gradient
(FG) nuclear magnetic resonance (NMR)9−11 and recently by
field cycling (FC) 1H NMR relaxometry.12,13

Regarding the determination of the diffusion coefficient D,
FG NMR diffusometry has become the key method of

measuring translational motion in condensed matter.14,15 The
range of D accessible by FG NMR methods is 10−6−10−14 m2

s−1.15 In low-molecular mass systems the lower bound of D
refers to moderately viscous or supercooled liquids. Regarding
polymer systems, such D values are found at comparatively high
temperatures in systems with a low glass transition temperature
Tg such as poly(butadiene) (PB).
We have recently shown that FC 1H NMR relaxometry has

the potential to become an alternative, straightforward route for
measuring D in bulk liquids as well as in polymers.16−19 The
idea of FC NMR is as follows:20−23 First, the sample is
polarized in a strong, external magnetic field. The generated
magnetization is proportional to the difference in the
populations of the 1H Zeeman quantum states determined by
the Boltzmann distribution. Then the field is switched to a
lower value (relaxation field) and the energy levels repopulate
according to the new equilibrium conditions. The magnet-
ization decay is usually exponential with a time constant
denoted as the spin−lattice relaxation time T1. The spin
transitions are induced by stochastically fluctuating interactions
between the magnetic dipole moments of the protons. The
transition probability and in consequence T1 depends on the
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strength and the spectral density of these fluctuations, i.e., for a
given relaxation field on the spectral density at multiples of the
Larmor frequency. By varying the relaxation field which is
proportionally linked to the 1H frequency, the spectral density
is scanned via the relaxation dispersion R1(ω) = 1/T1(ω).
As 1H NMR relaxation reflects fluctuations of the magnetic

dipole−dipole interactions between pairs of protons, one has to
distinguish between protons on the same molecule and on
different molecules.24 Thus, the measured relaxation rate R1(ω)
is a sum of two contributions which result from intra- and
intermolecular dipolar interactions, respectively. The intra-
molecular relaxation is associated with molecular rotation
changing the orientation of the vector connecting the
interacting nuclei. The intermolecular dipolar interactions are
additionally mediated by the relative translational motion of the
molecules which leads not only to fluctuations of the
orientation of the internuclei axis, but also to changes in their
distance. This implies that translation as well as rotation can be
monitored by 1H NMR relaxometry simultaneously provided
that a sufficiently broad range of (Larmor) frequencies is
covered.
Until recently field dependent relaxation experiments have

not routinely been possible. Because of the commercial
availability of STELAR FC NMR relaxometers which cover
about 3 orders of magnitude in the frequency (10 kHz to 20
MHz for 1H), this has changed and NMR relaxometry gained
new momentum.20−23 By performing FC 1H NMR experiments
on several liquids and polymers we have demonstrated16−19 (in
particular by applying the isotope dilution technique25−30) that
the limiting low-frequency behavior of R1(ω) is determined
solely by the intermolecular relaxation controlled by transla-
tional diffusion of the protons. Moreover, a universal dispersion
law, explicitly R1(ω) = R1(0) − Aω1/2 holds for 1H NMR in the
low-frequency limit as a consequence of free diffusion
dominating translational dynamics in liquids at long
times.31−34 The constant A depends only on the diffusion
coefficient D and on the spin density (apart from physical
constants). This dispersion law is an important fact; it implies
that no frequency independent relaxation rate is observed even
at the lowest frequencies in contrast to the often discussed so-
called extreme narrowing condition which actually is reached
only for the intramolecular relaxation contribution.17,18 In the
case of PB we have been able to extract D(M,T) from the low-
frequency behavior of R1(ω) covering the range 446 < M/(g
mol−1) < 9470 and 230 < T/K < 410.19 The obtained D values
complement those reported by FG NMR,35 and the crossover
from Rouse to entanglement dynamics has been clearly
identified by a change of the power-law dependence of D(M).
In the present contribution we extend the analysis of our

previous FC 1H NMR experiments in order to extract D(M,T)
and include also the polymers poly(styrene) (PS), poly-
(dimethylsiloxane) (PDMS), poly(propylene glycol) (PPG),
and 1,4-poly(isoprene) (PI). In addition to employing the
commercial spectrometer STELAR FFC 2000, only with the
help of a home-built spectrometer13,36,37 sufficiently low-
frequency dispersion was compiled to allow the present
analysis. As only at high M the monomeric friction coefficient
becomes independent of M, which is equivalent to the fact, that
the glass transition temperature Tg becomes independent of M,
the diffusion data at a given temperature have to be corrected
for the M dependence of the friction coefficient in order to test
the scaling laws of the tube-reptation model. The correction is
in particular important for low M in the Rouse regime. This is

easily possible, since FC 1H NMR provides in addition to D
also the segmental correlation time τs(T,M)38−44 which can be
taken proportional to the friction coefficient. Iso-frictional
diffusion data have only been presented in rare cases, for
example, by Colby and co-workers for PB,45 where the
approach has also been called iso-free-volume correction.
Thus, in the present contribution we analyze theM dependence
of the product Dτs which allows testing the M dependence of
the structural factor, i.e., the function representing solely the
behavior of the collective polymer dynamics. As we will show,
the inclusion of low-M systems in our analysis also enables us
to estimate the crossover to simple liquid dynamics, that is, in
principle, the onset of polymer dynamics in terms of the
dynamic bead size; i.e., the Rouse molecular mass MR can be
given.

2. THEORETICAL BACKGROUND

It has recently been demonstrated that the low-frequency
dispersion of the 1H spin−lattice relaxation rate R1(ω) = 1/
T1(ω) of a liquid is dominated by the intermolecular dipolar
relaxation contribution mediated by translational motion of the
molecules, while at higher frequencies both inter- and
intramolecular contributions are relevant.12,16−19 In a liquid,
self-diffusion at long times is Fickian which yields a power-law
Ctrans(t) ∝ t−3/2 of the intermolecular NMR correlation
function.34 Therefore, the total relaxation rates (including
intra- and intermolecular contribution) can be expanded at low-
frequencies providing a universal dispersion law17,18

ω ω ω ω= + = −R R R R
B

D
( ) ( ) ( ) (0)1 1

intra
1
inter

1 3/2 (1)

with

π μ
π

γ= + ℏ⎜ ⎟⎛
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⎞
⎠B N

30
(1 4 2 )

4
0

H
2

2

where γH is the proton gyro-magnetic ratio and N the spin
density, i.e., the number of spins per volume unit. The
intramolecular (reorientational) contribution is included in
R1(0) as the rotational contribution is frequency independent
in the low-frequency range, i.e., at ωτrot ≪ 1. In other words,
the corresponding spectral density is flat at low-frequencies.
Thus, at sufficiently high temperatures a linear regime of
R1(√v) (with ν = ω/2π) is expected at low frequencies and
confirmed experimentally for several liquids17,18 as well as for
polymers.19,23 With given spin density N, the diffusion
coefficient D(T) can be directly extracted from the slope of a
linear fit of the relaxation rate plotted versus √v at low
frequencies. In the present work the approach is applied to
measure the diffusion coefficient D(T,M) of several polymers as
a function of temperature and molecular mass M.
In our previous works we rescaled the susceptibility data

χ″(ω) ≡ ω/T1(ω) by applying frequency−temperature super-
position (FTS) (see also below);38−44 however, also the
relaxation rate R1(ω) itself measured at different temperatures
can be merged into a single master curve.18,19 On the basis of
the universal dispersion law (eq 1), one can rescale R1(ω)
reaching a common low-frequency behavior

ωτ ωτ= −R R( )/ (0) 11 res 1 res (2)

where the rescaling time τres is given by
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Polymer theories, most prominently the tube-reptation
model,3,46,47 provide characteristic M dependences for trans-
port quantities in polymer melts. Depending on the molecular
mass being above or below the entanglement mass Me,
characteristic power-law behavior is forecast for D(M),
specifically D(M) ∝ M−1 (M < Me) and D(M) ∝ M −2 (M >
Me). Experiments covering usually the entanglement regime
have essentially confirmed the prediction, yet, the magnitude of
the exponent has turned out to be somewhat larger than 2 (i.e.,
2.2−2.4).46,47 The entanglement mass Me varies among
different polymers; typical values are Me = 17000 for PS47 or
Me = 3500 for PPG,48 for example. For the other polymers
considered Me can be found in Table 1.
In order to test the predictions of the polymer theory one has

to consider “iso-frictional” dynamics, i.e., dynamics with a
constant monomeric friction coefficient ζ instead of constant
temperature T since ζ depends not only on temperature but
also onM, in particular for short chains. This behavior is caused
by the M dependence of the glass transition phenomenon
controlling the “local” or “glassy” dynamics at short times and is
reflected in the M dependence of the glass transition
temperature Tg. In many cases the function Tg(M) saturates
only at high M.45,46 Whether the saturation is connected with
onset of entanglement at M > Me is debated.49−51

Consequently, the mass and temperature dependence of the
diffusion coefficient can be factorized:46,47,52

ζ=D T M F M T M( , ) ( )/ ( , ) (4)

Here ζ depends on both mass and temperature, whereas the
structural factor F depends only on M and reflects the M
dependence of the collective polymer dynamics. For short
chains the M dependence of D is influenced by both quantities,
whereas with increasing M the sensitivity of ζ to M vanishes

(ζ(T,M) ⎯ →⎯⎯⎯⎯⎯
Mlarge

ζ∞(T)). Thus, for long chains iso-thermal and
iso-frictional quantities are equivalent in terms of their M
dependence. Yet, for low M one has to correct D with the
friction coefficient in order to establish the structural factor
F(M). As the segmental time constant τs is proportional to ζ
one has to consider the product Dτs to unravel the behavior of

F(M). As mentioned such an analysis was only carried out in
rare cases.45

Reformulating the Bloembergen, Purcell, Pound expression53

the NMR relaxation data are converted to the susceptibility
representation according to the equation:

ω ω χ ω χ ω χ ω= ″ + ″ ≅ ″R K K( ) [ ( ) 2 (2 )] 3 ( )H DD1 (5)

where K is an effective NMR coupling constant. The index
“DD” stands for dipolar coupling which, as discussed, contains
intra- and intermolecular contributions. Applying FTS as often
done, e.g., in rheological studies,46,47 χDD″ (ω) can be expressed
as χDD″ (ωτs), where τs is the segmental (“local”) correlation
time.38−44 In other words, master curves can be constructed by
shifting the susceptibilities measured at different temperatures
solely along the frequency axis to provide the best overlap
among the individual spectra collected. FTS reflects a
fundamental feature of cooperative dynamics in condensed
matter.54 While at low-frequency diffusion dominates the
dispersion of the 1H NMR relaxation rate, at high frequencies
(and low temperatures) local (or glassy) dynamics determine
the relaxation rate. Thus, the time constant τs is directly
accessed at certain temperatures by fitting the data by a Cole−
Davidson function.55 Extending the measurements over a large
temperature range, the construction of the master curves yields
τs(T), and the corresponding data for the polymers considered
here (except for PS) have partly been published previ-
ously.38−44,56 Determining D(M,T) from an analysis of the
low-frequency dispersion of R1(√v) and plotting the product
D(T,M)τs(M,T) the function F(M) is extracted (cf. Equation 4)
and can be checked against the predictions of the tube-
reputation model. The current study investigates molecular
masses as low as possible (crystallization has to be avoided) and
it is also the aim to find out whether the function F(M) allows
to determine the crossover from Rouse to simple liquid
dynamics at the lowest M.

3. EXPERIMENTAL SECTION
Samples of linear polystyrene (PS) with a narrow molecular mass
distribution were purchased from Polymer Standards Service, Mainz,
Germany. Table 2 gives an overview of molecular masses and
polydispersities Mw/Mn. Note that in the following Mw in g/mol
denotes the mass average molecular mass. The samples of 1,4-
poly(butadiene) (PB), poly(dimethylsiloxane) (PDMS), 1,4-poly-
(isoprene) (PI), and poly(propylene glycol) (PPG) were investigated

Table 1. Applied Spin Densities N for Poly(dimethylsiloxane), Poly(butadiene) and Poly(isoprene) Calculated from Mass
Densities ρ, Number of Hydrogen Atoms nH per Monomer, and Molar Mass M of the Monomer via Eq 6 and Their
Entanglement Masses Me

ρ [g/cm−3] nH M [g/mol] N [1028 m−3] Me
47 [g/mol]

polydimethylsiloxane 0.965 6 74.17 4.70 12 000
polybutadiene 0.86 6 54.09 5.75 1900
polyisoprene 0.92 8 69.06 6.42 6400

Table 2. Details on the Polystyrene (PS) Samples: Molar Mass (Mass Average) Mw, Polydispersity Mw/Mn (with Mn Number
Averaged Molar Mass), Molar Mass M used in Eq 6, Number of Protons nH, Density ρ, and Spin Density N

sample Mw [g/mol] Mw/Mn M [g/mol] nH ρ [g/cm−3] N [1028 m−3]

ethylbenzene 106.17 1.00 106.17 10 0.866557 4.91
PS 370 371.47 1.00 371.47 35 1.06558 6.04b

PS 690 690 1.09 104.15a 8a 1.0459 4.81
PS 1380 1380 1.05 104.15a 8a 1.04 4.81
PS 1920 1920 1.08 104.15a 8a 1.04 4.81

aPer monomer. bHigher due to a tertiary butyl end group.
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over a broad range of molecular masses M. Details of the samples and
the results in the susceptibility representation were already published
in refs 38−43. Furthermore, Table 3 gives an overview over molecular
masses and polydispersities for PPG also taken from ref 43.
The 1H NMR spin−lattice relaxation experiments were performed

with two different electronic field cycling relaxometers, a commercial
one (STELAR Spinmaster FFC2000) at Bayreuth University and a
home-built one36,37 at the Technische Universitaẗ Darmstadt. With the
first equipment experiments were performed at temperatures from 173
to 408 K; with the latter, 1H NMR spin−lattice relaxation rates from
403 to 413 K were measured. The Stelar relaxometer covers a 1H
frequency range from ν = ω/2π = 10 kHz to 20 MHz while the
switching time from high polarization field to relaxation field was 3 ms.
Lower 1H frequencies can only be reached with the home-built
relaxometer where frequencies down to 400 Hz and up to 30 MHz

were accomplished for the present project. The low frequencies were
attained by utilizing a three-dimensional resistive coil arrangement for
compensating the earth field, other magnetic stray fields, and field
drifts.37 Switching times of 3 or 6 ms were achieved when the
compensation system is not used (ν > 1 kHz) or when it is employed
(ν ≤ 1 kHz), respectively. The relaxation time T1 was determined by
an exponential fit of the magnetization decay curve. When measuring
at the Stelar relaxometer the sample was in a 10 mm tube with a filling
height of about 15 mm, whereas it was in 5 mm tubes with a filling
height of around 10 mm in case of the low frequency experiments in
Darmstadt.

In order to determine the diffusion coefficient along eq 1 one needs
the spin density which is given by the formula

Table 3. Details on the Poly(propylene glycol) (PPG) Samples: Molar Mass (Mass Average) Mw, Polydispersity Mw/Mn (with
Mn Number Averaged Molar Mass), Molar Mass M used in Eq 6, Number of Protons nH, Density ρ, and Spin Density N

sample Mw [g/mol]b Mw/Mn
b M [g/mol] nH ρ [g/cm−3] N [1028 m−3]

propylene glycol 76.09 1.00 76.09 8 1.0460 6.58
di(propylene glycol) 134.173 1.00 134.173 14 1.020661 6.41
tri(propylene glycol) 192.26 1.00 192.26 20 1.0262 6.39
PPG 455 455 1.06 58.08a 6a 1.00563 6.25
PPG 790 790 1.03 58.08a 6a 1.005 6.25
PPG 1000 1000 1.03 58.08a 6a 1.005 6.25
PPG 3080 3080 1.03 58.08a 6a 1.005 6.25
PPG 5300 5300 1.06 58.08a 6a 1.005 6.25

aPer monomer. bCf. ref 43.

Figure 1. (a) Relaxation rate R1(ν) of polystyrene (PS) with molecular mass M = 1380 at various temperatures as indicated. The data at 408 K were
measured at the home-built spectrometer allowing to access lower frequencies. (b) Susceptibility master curves χ″DD(ωτs) of all the polystyrenes in
the temperature range investigated; in addition, the master curve for a high molecular mass PDMS is included.42,43

Figure 2. (a) Segmental time constants τs as a function of the inverse temperature for PS with M = 377, 690, 1380, and 1920 compared to those
reported by dielectric spectroscopy (DS)50 and depolarized light scattering (LS); (b) Corresponding time constants for PDMS at M values
indicated.43 Data are interpolated by the Vogel−Fulcher−Tammann formula (cf. Table 4).
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where nH denotes the number of hydrogen atoms,M the molar mass, ρ
the density and NA the Avogadro constant. Table 1 lists the applied
values and the resulting spin number densities for PDMS, PB and PI.
For PS and PPG they are listed in Table 2 and 3, respectively. The
error of the evaluated diffusion coefficients was in many cases smaller
than the size of the points; exemplarily for PDMS 162 error bars are
included (cf. Figure 6a).
In order to test the applicability of FTS for the analysis of the NMR

relaxation data some polystyrenes were also studied by depolarized
light scattering (LS). For details, the reader is referred to ref 64.

4. RESULTS

In Figure 1a, the dispersion of the spin−lattice relaxation rate
R1(ν) of PS with molecular mass M = 1380 is displayed on
double−logarithmic scales for the temperature range from 363
to 408 K. With increasing temperature, the frequency
dependence of R1(ν) gets weaker toward lower frequencies
and the slower relaxation processes are shifted into the
experimentally accessible frequency window. Note that for
the highest temperature (T = 408 K), R1(ν) was measured with
the home-built Darmstadt relaxometer by employing the stray
field compensation system, which extends the frequency range
by one decade toward low frequencies.
By applying FTS the susceptibility is shifted solely in

frequency to provide a master curve as a function of the
reduced frequency ωτs (see Figure 1b). Thereby the effective
frequency window of the technique is significantly extended
and the segmental time constants τs(T) are provided (Figure
2). The master curves χ″DD(ωτs) exhibit a peak at ωτs ≈ 1

which is identified with the segmental or local dynamics
governed by the α-process of the glass transition. For polymers
at ωτs < 1, an excess intensity with respect to the spectrum of a
simple liquid is observed, which is on the one hand due to the
slower, M-dependent segmental polymer dynamics38−44 and on
the other hand due to the intermolecular relaxation
contribution.13 Actually, in the case of PS the effect of the
polymer specific relaxation is almost not discernible as no
higher M can be studied due to the quickly rising Tg of PS. For
PS, however, the crossover to the “monomeric liquid”
ethylbenzene can be studied. As we have reported on the
polymer relaxation dispersion of PB, PI, PPG, and PDMS in a
series of papers38−44 we refrain to show the data again; just one
example for a high-M PDMS is included in Figure 1b.42,43

Clearly, in the case of PDMS a strong excess low-frequency
contribution is recognized and attributed to the collective
polymer dynamics.
Figure 2a shows the time constants τs(T) of segmental

motion for all the PS samples investigated (cf. Table 2) as
obtained by constructing the susceptibility master curves in
Figure 1b. They are compared with the results from dielectric
spectroscopy (DS).50 While FC 1H NMR provides time
constants at high temperature, DS gives results at low
temperatures close to Tg. Both techniques complement each
other. For a given temperature, the dynamics is slowing down
whith increasing M. A drastic change is observed for
ethylbenzene for which the τs(T) curve is strongly shifted to
low temperatures. Here Tg = 117 K is found while in the high
M limit of polystyrene Tg = 373 K is reported.50 Thus, Tg(M)
changes strongly when crossing over from the simple liquid
limit to the high-M polymer. As Tg quickly becomes very high

Figure 3. (a) Relaxation rate R1 as a function of √v for PDMS with M = 5940 at different temperatures as indicated. Dashed lines: linear
interpolations at low frequencies (cf. Equation 1). (b) Magnification of the high temperature curves.

Figure 4. (a) Relaxation rate master curves for polystyrene as a function of √(ωτres) obtained from eq 2 for molecular masses and temperature
ranges as indicated. Dashed line: linear limit at low frequencies. (b) Master curves for PDMS (data from ref 43).
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polymer dynamics cannot be accessed by 1H FC NMR beyond
about M ≅ 2000. For tristyrene and ethylbenzene we compare
τs(T) with the results from depolarized light scattering (LS)
which are collected in the same temperature range. An almost
perfect agreement is found which demonstrates that the
construction of the FC NMR master curves provides reliable
segmental correlation times. For comparison τs(T,M) of PDMS
is shown in Figure 2b.43 Again, the agreement between DS50

and FC 1H NMR is very good as it has been demonstrated also
for PB,40 PI43,56 and PPG.43 The joint data sets in Figure 2 of
DS, NMR, and LS are interpolated by a Vogel−Fulcher−
Tammann function, i.e., τs(T) = τ0e

B/(T‑T0), (VFT; solid-lines)
for each M. The fitting parameters τ0, B, and T0 are given in
Table 4 (Appendix).
The diffusion coefficient D(T) is extracted from the

relaxation dispersion data by plotting R1 as a function of √v
(cf. eq 1). This is shown exemplarily in Figure 3a for the
relaxation rate of PDMS with M = 5940 at low temperatures,
while Figure 3b presents the data at higher temperatures. The
low-frequency range in which R1(√v) can be linearly
interpolated is increasing with temperature. The straight
(dashed) lines in Figure 3 represent the linear fits from
which D(T) has been determined.
Figure 4 shows master curves of the relaxation rate R1

constructed according to eq 2 for PS (Figure 4a) and PDMS
(Figure 4b). They contain all relaxation data for different
molecular masses collected in the indicated temperature range.
For a given value of M the data coincide even beyond the linear
low-frequency limit which proofs that FTS generally applies for
polymer melts including both polymer specific as well as local
(glassy) dynamics, a fact already demonstrated in the master
curve representation χ″DD(ωτs) (cf. Figure 1b). For different M
universal low-frequency behavior is observed (dashed line). At
higher reduced frequencies √(ωτres) the scaled relaxation rate
R1(ω)/R1(0) increasingly bends up with increasing M. We have
previously shown (cf. ref 18) that a progressing upward turn
suggests a larger spectral separation between the translational
and rotational/segmental dynamics and in the case of polymers
(here PDMS in Figure 4b) a systematically growing
contribution of polymer specific relaxation due to Rouse and
entanglement dynamics. The latter, regarding their time scale,
occurs between the segmental dynamics and the terminal
relaxation, which is associated with free translational diffusion.
Similar results as for PDMS have already been reported for
PB.19

The situation for the oligomers of PS is somewhat different
(Figure 4a). In tristyrene and PS690 the spectral separation of
rotational and translational dynamics seems to be quite narrow
and even a downward curvature with respect to the limiting
low-frequency behavior is observed at intermediate rescaled
frequencies as found in other simple liquids like o-terphenyl.18

The PS samples with higher M show a somewhat similar trend
withM as PDMS. The relaxation behavior of ethylbenzene does
not fit in this systematics. Here, details of the inter- and
intramolecular coupling determine the master curve. Although
important differences are observed in the master curves of PS in
Figure 4a, the actual polymer specific relaxation distribution is
rather small when compared to PDMS where relaxation for
samples of much higher M values were measured (cf. Figure
1b).
Finally, we show in Figure 5 the full dipolar correlation

function, i.e. CDD(t) = ⟨(D0,‑m
2(Ω(t))/r3(t))(D0,m

2(Ω(0))/
r3(0))⟩ where D0,m

2(Ω) denotes Wigner rotation matrices

and r the inter spin distance, obtained for PDMS after Fourier
transformation of the susceptibility master curves (cf. Figure
1b). By applying the isotope dilution technique, which allows to
single out intra- and intermolecular relaxation contributions, it
has recently been demonstrated that in the case of PDMS the
intermolecular relaxation is rather strong, i.e., it dominates the
total relaxation already at ωτs < 1.13 Although we could not
explain this difference with respect to all the other polymers
studied so far then, now we suppose that this effect results from
fast methyl group rotation in PDMS which preaverage
predominately the intramolecular dipolar coupling. Thus,
PDMS is best suited to demonstrate the relevance of
intermolecular relaxation caused by translational diffusion. As
seen in Figure 5, the higher M the more retarded is the
correlation loss due to the increasing polymer dynamics
appearing at t/τs ≫ 1. As Me =12000

47 the dynamics essentially
reflects Rouse dynamics (cf. also ref 43). At longest times the
correlation function bends down to a faster decay which,
however, is not (stretched) exponential as expected for a
dominating intramolecular relaxation but rather described by
the universal long-time power-law Ctrans(t) ∝ t−3/2 characteristic
of free diffusion as indicated by the dashed lines.34 In Figure 5,
the correlation functions are compared to that of the simple
liquid propylene glycol which shows a similar long-time
behavior but the relaxation is much less extended in time
compared to those of the polymers. The expected Kohlrausch
decay typical of reorientational dynamics dominated by glassy
(local) dynamics is indicated by the dotted curve; it controls
the dynamics at short times for all polymers. In simple liquids it
can only be singled out via an isotope dilution experiment16,18

or by performing FC 2H NMR.13

In Figure 6a, the diffusion coefficient D(T,M) of PDMS in
the temperature range T = 163 K − 408 K is shown as obtained
from the analysis of the low-frequency relaxation dispersion.
For all M a constant spin density was taken (cf. Table 1) for the
application of eq 1. As expected, D is reduced by several
decades with increasing M. For each M a super-Arrhenius
temperature dependence of D(T) is observed, which is again
interpolated by the VFT formula (solid lines), i.e., D(T) =
D0e

−B/(T‑T0). In Table 5 (Appendix) the applied parameters D0

Figure 5. Dipolar correlation functions CDD(t) vs. reduced time t/τs
for different molecular masses (M) of PDMS; for comparison the
result for propylene glycol is included; dashed straight lines: power
laws ∝ t−3/2 characteristic of free diffusion. Dotted line: Kohlrausch
function expected for reorientational dynamics controlled solely by the
glassy dynamics.
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,B and T0 for PDMS and the other polymers are given. One
observes a trend that the M dependence becomes stronger at
higher M. For comparison we included literature data from FG
NMR actually only taken at a single temperature T = 333 K.65

In general, for PDMS a very similar picture is rendered as in
the case of PB, which has been reported previously,19 and the
data are again shown in Figure 6b for comparison. The results
for PS are presented in Figure 6c. As discussed before the M
range of PS is restricted to M < 2000 as Tg becomes too high
and the relevant temperature range of the segmental and
polymer dynamics is beyond the current experimental
possibilities. The corresponding FG NMR results66 include
somewhat higher M. Here, the D data for the low-M limit
ethylbenzene are strongly shifted to lower temperatures. This
reflects the fact that Tg is very low in the low-M limit. Parts d
and e of Figure 6 display the diffusion coefficient for PI and
PPG, respectively, and the corresponding FG data from the
literature for comparison.35,67 Again a very similar systematic
mass and temperature dependence is observed. For all the
polymers investigated the results from FC 1H NMR
relaxometry and the literature data fit well.
In Figure 7, the M dependence of the diffusion coefficient is

shown for the different polymers (black diamonds) by
evaluating the corresponding D(T,M) curves of Figure 6 at a
given temperature (in most cases where the literature data were
also available). While the FC 1H NMR data extend to lower M
the overall agreement between FC and FG 1H NMR is very
satisfactory. From the combined results a clear crossover
between two apparent power-laws, ∝ M−a′, can be seen for
PDMS, PB, and PI. The observed exponents for high M, α′ ≈
2.2, are in accord with literature data6 and somewhat above the
predictions of the tube-reptation model. They reflect the
regime of entanglement dynamics. The crossover molecular
mass is close to the Me values reported in the literature (cf.
Table 1) as also indicated in Figure 7. In the case of PPG,
samples of high M were not available, thus the crossover is not
observed. For PS, as said, only a few low M values can be
analyzed. However, apart from PDMS the power-laws found for
low M values do not at all agree with the prediction of the
Rouse theory (i.e., ∝ M−1) but show higher exponents α′ > 1.
For PS we even find α′ ≈ 4 apparently due to its prominent M
dependence of Tg mentioned above. This points out to the
necessity of analyzing an iso-frictional quantity in order to test
the collective polymer effects in the low-M limit.
Exemplarily for PDMS Figure 8 presents the quantity Dτs

determined at different temperatures. The values of the time
constants τs are taken from Figure 2b. As expected (cf. Section
2), at fixedM Dτs is essentially temperature independent, which
proves the cancellation of the monomeric friction ζ(T,M).
Here, we note that usually according to Einstein, or Doi−
Edwards in the case of polymers, the product Dτs should be
proportional to temperature. In Figure 8 one finds no
systematic temperature dependence. This we also take as an
indication that in the (high) temperature range studied terminal
and segmental dynamics are not decoupled. The horizontal
lines are the mean values Dτs(M) of the particular molecular
masses M. Thus, Dτs(M) ∝ F(M) is an iso-frictional quantity
and allows to probe the structural function F(M) (cf. eq 4)
which reflects solely the M dependence of the collective
polymer dynamics.
The right-hand axis of Figure 7 presents Dτs(M) for all

polymer systems considered. For PS the applied time constants
τs can be found in Figure 2a, for the other polymers τs(T) is
taken from works published previously.38−44 Starting again with
the results for PDMS and comparing the power-law exponent
of F(M) ∝ M−α in the Rouse regime (M < Me) it drops
continuously below α = 1 (dotted line in Figure 7) when M

Figure 6. Diffusion coefficients D(T,M) obtained from FC 1H NMR
(full symbols) as a function of inverse temperature for (a)
poly(dimethylsiloxane) (PDMS) compared to field gradient (FG)
data (open symbols) taken at T = 333 K65 (b) 1,4-poly(butadiene)
(PB) and FG data at T = 373 K35 (c) poly(styrene) (PS) and FG
data66 (d) 1,4-poly(isoprene) (PI) and FG data at T = 373 K,35 and
(e) poly(propylene glycol) (PPG) and FG data67 with molecular
masses M in g/mol as indicated. In most cases, the error bars are
smaller than symbol size. Solid lines: Vogel−Fulcher−Tammann
interpolation. Dashed lines: cuts at a given T providing D(M).
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reaches low values. In contrast, D(M) itself follows essentially
an apparent power-law. Actually, in the case of PS, the formerly
striking M-dependence disappears completely at lowest M
indicating that only for M = 1920 first effects from polymer
dynamics are revealed. PS (as well as PPG) are the rare cases
for which relaxation data down to the monomeric simple liquid
are accessible.
In the case of PB, the results between D(M) and F(M) are

not very different while for PI the M dependence again crosses
over to a rather weak M dependence; i.e., it is significantly

weaker than that of D(M) and the exponent α becomes lower
than 1 at lowest M. For PPG a nonsystematic behavior is
observed for the simple liquid limit, a fact well-known also for
Tg(M).43,68 In any case, the M dependence essentially
disappears also in this case at lowest M. Thus, correcting to
get iso-frictional data, F(M) depends more weakly on M than
D(M) at M < Me (from literature), i.e., the behavior expected
for Rouse dynamics does not clearly show up; its apparent
presence in D(M), e.g., in PDMS, has to be taken as accidental.
In addition, for most polymers the Rouse regime extends over a
too narrow M interval since entanglement dynamics quickly
takes over at high M. In the latter regime, the iso-friction
correction does not change the power-law exponent, and in all
cases one observes α′ ≈ 2.2 which is somewhat above the
prediction of the tube-reptation model, a well-known fact.

5. DISCUSSION AND CONCLUSIONS
Benefiting from the universal low-frequency dispersion of the
1H spin−lattice relaxation characteristic of free diffusion we
have extracted the temperature and mass dependence of the
diffusion coefficient D for a series of different polymers
(PDMS, PB, PS, PI, PPG). Very satisfactory agreement is found
when compared to the results provided by field gradient NMR
which so far is the major technique to determine diffusion in
liquids and in particular in polymer melts. In the case of PDMS
with its comparatively strong intermolecular dipolar coupling a
range of diffusion coefficient 10−9 > D/(m2/s) > 10−13 m2/s is
covered by FC 1H NMR which is close to the range accessed by
FG NMR. However, deep in the entanglement regime the
currently accessible frequencies of FC NMR are not sufficiently
low to detect the terminal relaxation.
As FC 1H NMR allows to measure the full dipolar correlation

function probing glassy, Rouse as well as entanglement
dynamics (as long as M is not too high), the relaxation analysis
provides the segmental correlation time τs in addition which is a
measure for the monomeric friction coefficient. Of course, the
full correlation function is only accessible when exploiting FTS
and constructing susceptibility master curves. Yet, the
procedure works particularly well above Tg as confirmed by
comparing the extracted time constants τs with those reported
from other techniques like dielectric spectroscopy or
depolarized light scattering. The temperature dependence of
τs is controlled by the glass transition phenomenon and its M
dependence in polymers is different from that of translational
diffusion. Thus, FC 1H NMR relaxometry offers the unique
possibility to access the iso-frictional quantity Dτs(M) ∝ F(M)

Figure 7. Diffusion coefficients D obtained from FC 1H NMR (full
black diamonds, left scale) as a function of the molecular mass M for
(a) PDMS, (b) PB, (c) PS, (d) PI, and (e) PPG at temperatures as
indicated, for comparison data from FG NMR from refs 35 and 65−67
(open black diamonds), dashed straight lines: apparent power-laws gpt
for D(M). Iso-frictional quantity Dτs(M) ∝ F(M) (right axis and full
red squares), corresponding data from FG NMR35,65 (open squares)
with τs taken from FC 1H NMR, red straight solid lines: fitted power-
laws for entanglement dynamics (M > Me) with exponents as
indicated; dotted straight lines: expected power-law for Rouse
dynamics.

Figure 8. Iso-frictional quantity Dτs(M) ∝ F(M) for PDMS plotted
versus inverse temperature, horizontal lines represent average value of
Dτs.
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which solely reflects the effect of collective polymer dynamics,
actually within the same experiment. While the results for high
M (M > Me) remain unchanged, the correction becomes
relevant at short chains, and the correction effect is stronger the
stronger the M dependence of Tg is, which, in the case of
polystyrene, is very strong. As a consequence one observes a
continuous crossover from an M-independent F(M) in the low-
M limit toward an exponent α close to the one expected for the
Rouse regime. In most polymers, however, this power-law
manifests itself (if at all) in a rather narrow M range as
entanglement effects take over at higher M.
Regarding the crossover to an M-independent structural

factor F(M) at lowest M, it is only observed for PS and for
PPG. Here, the low-M limit of the monomeric liquid has been
included in the present analysis. For the other polymers this
limit cannot experimentally be reached either since no such
oligomers are available or they show a high tendency to
crystallize or the current temperature interval of FC
spectrometer does not extend to sufficiently low temperatures.
Remarkably, in the case of PS first indications of polymer
dynamics are reflected in F(M) only beyond, say, M = 1500 (cf.
Figure 7), and one may take this value as an estimate of the
Rouse mass or dynamic bead size MR. In the case of PPG, one
can estimate MR = 500 from Figure 7. Here, we mention that
Sokolov and co-workers49,69 have argued that the Kuhn length
being a static quantity is not an appropriate measure when
characterizing the dynamic bead size. Indeed, it is well-known
from neutron scattering that the onset of Rouse dynamics is
observed for length scales significantly larger (about a factor 4
in many polymers) than the Kuhn length.70 In particular, the
authors speculated that in the case of PS the dynamic bead size
is about M = 5000. This has surely been a too large estimate,
but still about 15 monomer units (MR ≅ 1500) are needed that
first collective polymer dynamics can be observed in PS which
is rather large when compared to the other polymers. In the
case of PB, polymer dynamics set in only at M > 500.40 In the
case of PDMS 162, we are not able to access τs(T) as Tg is
shifted to too low temperatures. In any case, inspecting the
structural factor F(M) or the low-frequency contribution in the
susceptibility/spectral density in the low-M limit may be taken
as a way to answer the question when does a liquid become a
polymer melt; and it can be addressed by FC 1H NMR. Finally,
we note studying the M dependence of the viscosity Gray et
al.71 have observed three M regimes and the one at lowest M
has been attributed to the simple liquid limit.
All in all, the present work demonstrates that FC 1H NMR

relaxometry is a versatile technique which allows to probe local
as well as collective dynamics in polymers. Because of the
dominance of intermolecular relaxation in the low-frequency
limit the diffusion coefficient can be determined by a
straightforward analysis of the relaxation dispersion, and a
wealth of diffusion data can be collected within short measuring
time. Thus, in many cases FC 1H NMR may become a
promising alternative to FG NMR.

■ 6. APPENDIX

Applied parameters for the Vogel−Fulcher−Tammann (VFT)
fits are given in Tables 4 and 5.
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Table 4. Applied Parameters for the Vogel−Fulcher−
Tammann (VFT) Fits of Segmental Time Constant τs(T) in
Figure 2

sample τ0 [s] B [K] T0 [K]

ethylbenzene 2.378 × 10−13 484.6 100.6
tristyrene 9.110 × 10−13 829.5 209.0
PS 690 4.079 × 10−15 2014 209.0
PS 1380 1.011 × 10−18 3816 229.4
PDMS 311 7.415 × 10−13 418.4 111.9
PDMS 860 1.029 × 10−12 505.1 118.0
PDMS 1600 1.487 × 10−12 451.2 124.3
PDMS 2490 1.203 × 10−12 500.5 124.4
PDMS 11 000 6.591 × 10−13 549.4 127.3
PDMS 21 600 8.484 × 10−13 520.4 128.3
PDMS 41 400 7.057 × 10−13 526.0 128.4
PDMS 232 000 7.455 × 10−13 514.2 128.9

Table 5. Applied Parameters for the Vogel−Fulcher−
Tammann (VFT) Fits of the Diffusion Coefficient D(T) in
Figure 6

sample D0 [10
−10 m2/s] B [K] T0 [K]

PDMS 311 17.49 245.7 105.0
PDMS 860 22.42 424.7 105.0
PDMS 1600 27.69 680.2 105.0
PDMS 2490 18.65 709.3 105.0
PDMS 3510 21.45 834.7 105.0
PDMS 5940 17.10 866.3 105.0
PDMS 11 000 8.678 901.9 105.0
PDMS 21 600 6.019 989.8 105.0
PDMS 41 400 3.204 1178 105.0
PB 355 24.58 517.1 142.5
PB 466 46.89 754.4 142.5
PB 777 53.31 926.9 142.5
PB 816 50.55 989.4 142.5
PB 1450 35.21 1051 142.5
PB 2020 27.72 1107 142.5
PB 2760 28.75 1211 142.5
PB 4600 8.995 1158 142.5
PB 9470 1.642 1203 142.5
ethylbenzene 80.60 349.6 109.0
tristyrene 79.13 700.1 216.8
PS 690 163.1 1174 216.8
PS 1380 2841 2294 216.8
PS 1920 409.0 2243 216.8
PI 652 111.5 1034 146.1
PI 790 86.38 991.7 146.1
PI 1040 87.98 1105 146.1
PI 1370 126.3 1251 146.1
PI 1920 134.5 1355 146.1
PI 2390 90.38 1301 146.1
PI 3840 57.11 1409 146.1
PI 4470 84.85 1562 146.1
PI 9910 19.19 1619 146.1
propylene glycol 212.1 886.0 166.3
di(propylene glycol) 593.2 1116 166.3
tri(propylene glycol) 861.5 1097 166.3
PPG 455 529.8 1110 166.3
PPG 790 174.6 1037 166.3
PPG 1000 124.0 1032 166.3
PPG 3080 22.64 1022 166.3
PPG 5300 15.01 1057 166.3
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