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Introduction

The transformation rule for multiple integrals is on the one hand a constitutive part
of the lectures on analysis. On the other hand all proofs we find in literature are
more or less cumbersome often technically difficult, depending on the level of prelim-
inary knowledge of the students. It is therefore no surprise that we find until quite
recently proposals for new, more simpler proofs. Here I’ll like to mention especially
the papers by P. D. Lax ([La1], [La2]) and the references given there.

In spring 1973 at the occasion of my “Habilitation” (in Germany: formal admission
as an academic teacher) in my (officially) first public lecture (“Antrittsvorlesung”)
I presented a proof based on a simple homotopy argument whose naive idea can be
described easily.

For simplicity let G ⊂ Rn be a domain (i. e. G is open and connected). Then the
(classical) transformation rule reads as follows:

(A)





Suppose that

u ∈ C1(G;Rn), G∗ := u(G)

and that u : G → G∗ is bijective,

detn u′(x) 6= 0 ∀x ∈ G.

Then for f ∈ C0(G∗) ∩ L1(G∗),
(f ◦ u) · | detn u′| ∈ L1(G) and

(0.1)

∫

G∗

f(y)dy =

∫

G

f(u(x))| detn u′(x)|dx

The basic observation for the homotopy argument is the following:
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Let I := [0, 1] and suppose that

(0.2) u ∈ C0(Ḡ× I;Rn) ∩ C1(G× I;Rn)

is a homotopic family such that

10 u(x) := u(x, 0) ∀x ∈ Ḡ,
u(x, 1) = x ∀x ∈ Ḡ

20 detn u′(x, t) 6= 0 ∀x ∈ G× I

30 let G∗
t :=

{
u(x, t)

∣∣x ∈ G
}

for t ∈ [0, 1] and assume that u(., t) : G → G∗
t is

bijective

40 there is an open set U ⊂ Rn such that u(∂G× I) ⊂ U .

Because of (0.2), 20 and the connectedness of G, the sign of detn u′(x, t) is constant
in G× I and because of 10

2:

(0.3) sgn detn u′(x, t) = 1.

Suppose now that f ∈ C0
c (Rn) satisfies f

∣∣
U

= 0. Then, for each t ∈ [0, 1] we may
apply (0.1) to u(., t) and in (0.1) we may replace G∗ by Rn. From (0.1) we finally
get (observe (0.3))

(0.4) h(t) :=

∫

G

f(u(x, t)) detn u′(x, t)dt =

∫

Rn

f(y)dy,

is constant for t ∈ [0, 1].

Last observation was the starting point of my consideration: I was seeking for con-
ditions on a family of mappings u(., t) such that the function h : I → R defined
by the first identity in (0.4) is constant on I. The most simple idea is to make
assumptions on u and f allowing to differentiate the expression defining h “under
the integral sign” and to prove that h′(t) = 0 for t ∈ I. Following this idea (Lemma
2.2) one is quasi automatically lead to the use of the differential equation (1.9) for
the cofactors of a differentiable map. This identity was decisively used by E. Heinz
[He] in his elementary analytic theory of the degree of mapping (compare e. g. [Dei],
Proposition 2.2). By mollifying procedures the regularity assumption of our Lemma
2.2 can be decisively weakened (Theorem 2.5) so that the transformation rule can
be finally proved for injective, locally bi-Lipschitz mappings (Theorem 5.3).

The idea of proof of (0.1) for f ∈ C0
c (Rn) and linear maps u(x) := Ax, where

A ∈ M(n) denotes a n × n-matrix with detn A 6= 0 is very simple. By elementary
transformations such a matrix can be deformed in a diagonal matrix D such that
detn A = detn D. This procedure may be regarded as a series of homotopies (proof
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of Theorem 3.2). Finally for the diagonal matrix D the change of variables formula
(1.11) is then an easy consequence of iterated integration and the one-dimensional
formula. This procedure is similar to that of T. M. Apostol [Ap]. The case of a
differentiable map u : G → Rn with detn u′(x) 6= 0 (x ∈ G) is then reduced locally
by regarding in a sufficiently small ball a homotopy between the map u and its
affine-linear approximation (Lemma 4.3). The general case (section 5) is based on
partition of unity arguments and some further approximations of f ∈ L1(u(G)).

It was H. Leinfelder [Le/Si] who observed that our homotopy Lemma allows as well
an elementary proof of Brouwer’s fixed point theorem (Theorem 6.1) as a proof of
the homotopy invariance of the Brouwer degree (Lemma 6.4 and Theorem 6.9). The
definition of the degree is based on a simple calculation (Theorem 6.2, compare
[Le/Si], p. 354).

The purpose of the underlying paper is to give a detailed elementary proof of the
transformation rule for injective, locally bi-Lipschitz mappings. The necessary pre-
liminaries I listed in the first section, where in addition some properties of locally
(bi-)Lipschitz mappings are studied (Theorems 1.4, 1.6, Lemma 1.7). Our consid-
erations are based on a famous theorem by H. Rademacher [Ra] guaranteeing that
a Lipschitz mapping u : G → R, (G ⊂ Rn open) is totally differentiable almost
everywhere. We note this (Theorem 1.5) without giving a proof. In Lemma 4.4 we
present a simple proof for the fact observed by H. Rademacher [Ra], Satz IV, p.
354) that in a domain G ⊂ Rn a bi-Lipschitz mapping u : G → Rn has the addi-
tional property that detn u′(x) exists a. e., is different from zero and has constant
sign in G. Further we prove as a special case of L. E. J. Brouwer’s open mapping
theorem that a locally bi-Lipschitz mapping is open (Theorem 4.5). For locally
bi-Lipschitz mappings there is a complete analogue to the classical theorem con-
cerning local diffeomorphisms (Theorem 4.6). In addition within the framework of
Lipschitz mappings we give a version of the implicit function theorem (Theorem 4.8).

I have included all details of proofs one should present in lectures for students of
the second year. It is obvious how the proofs can be simplified if only continuously
differentiable maps u : G → Rn with detn u′(x) 6= 0 are regarded.

1 Preliminaries

By M(n) we denote the linear space of real n× n - matrices A = (aik). If n ≥ 2 for
A ∈ M(n) we write (i, j ∈ {1, . . . , n})
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Aij :=




a11 . . . a1j . . . a1n
...

...
...

ai1 . . . aij . . . ain
...

...
...

an1 . . . anj . . . ann



← i(1.1)

↑
j

for the matrix Aij ∈ M(n− 1), where we deleted the i-th row and the j-th column
of A. The matrix Ã complementary to A is defined by

(1.2) Ã := (bij), bij := (−1)i+j detn−1 Aji for i, j = 1, . . . , n

Further there are the expansions by column and by row

(1.3)





n∑
j=1

(−1)i+jaij detn−1 Akj = δik detn A for i, k ∈ {1, . . . , n}
n∑

i=1

(−1)i+jaij detn−1 Aik = δjk detn A for j, k ∈ {1, . . . , n}.

If we regard detn A as a function of the n2 variables aik (i, k ∈ {1, . . . , n}) then we
get from (1.31)

(1.4)
∂ detn A

∂aik

= (−1)i+k detn−1 Aik.

Let G ⊂ Rm be open and let be given differentiable functions

aik : G → R, i, k = 1, . . . , n.

We consider

A(x) := (aik(x)) , A : G → M(n).

Then detn A : G → R is differentiable and by the chain rule and (1.4)

(1.5)
∂

∂xj

detn A(x) =
n∑

i,k=1

(−1)i+k detn−1 Aik(x)
∂aik(x)

∂xj

We need decisively the forthcoming identity (1.9). For the proof we follow Ch. B.
Morrey jr. [Mo1], Lemma 1.1, p. 9. As a preparation we prove
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Lemma 1.1 Let G ⊂ Rn(n ≥ 2) be open and let gr ∈ C2(G) for r = 1, . . . , n − 1.
For j = 1, . . . , n we set for x ∈ G

(1.6) Bj(x) :=




∂g1

∂x1
. . . ∂g1

∂xj
. . . ∂g1

∂xn
(x)

...
...

...
∂gn−1

∂x1
(x) . . . ∂gn−1

∂xj
. . . ∂gn−1(x)

∂xn


 ∈ M(n− 1)

Then

(1.7)
n∑

j=1

(−1)j ∂

∂xj

detn−1 Bj(x) = 0 for x ∈ G.

Proof. We perform induction on n ≥ 2. Let n = 2. Then

det1 B1 =
∂g1

∂x2

, det1 B2 =
∂g1

∂x1

(−1)1 ∂

∂x1

det1 B1 + (−1)2 ∂

∂x2

det1 B2 =

= − ∂2g1

∂x1∂x2

+
∂2g1

∂x2∂x1

= 0

Assume that (1.7) is true for some n ≥ 2. Let G ⊂ Rn+1 be open and let gr ∈ C2(G)
for r = 1, . . . , n. For j, k = 1, . . . , n + 1, j 6= k, and for i = 1, . . . , n let

A
(i)
jk := i →




∂g1

∂x1
· · · ∂g1

∂xj
· · · ∂g1

∂xk
· · · ∂g1

∂xn+1

...
...

...
...

∂gi

∂x1
· · · ∂gi

∂xj
· · · ∂gi

∂xk
· · · ∂gi

∂xn+1

...
...

...
...

∂gn

∂x1
· · · ∂gn

∂xj
· · · ∂gn

∂xk
· · · ∂gn

∂xn+1




∈ M(n− 1)

↑ ↑
j k

where we deleted the j-th and k-th column and the i-th row.

For j = 1, . . . , n + 1 let Bj be defined by (1.6) with n replaced by n + 1. For
j = 1, . . . , n we expand detnBj with respect to the (n + 1)-th column:
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detn Bj =
n∑

i=1

(−1)i+n ∂gi

∂xn+1

detn−1 A
(i)
j(n+1)

Then

n+1∑
j=1

(−1)j ∂

∂xj

detn Bj =

=
n∑

j=1

(−1)j ∂

∂xj

[
n∑

i=1

(−1)i+n ∂gi

∂xn+1

detn−1 A
(i)
j(n+1)

]

+(−1)n+1 ∂

∂xn+1

detn Bn+1

=
n∑

j=1

(−1)j

n∑
i=1

(−1)i+n ∂2gi

∂xj∂xn+1

detn−1 A
(i)
j(n+1)

+
n∑

j=1

(−1)j

n∑
i=1

(−1)i+n ∂gi

∂xn+1

∂

∂xj

detn−1 A
(i)
j(n+1)

+(−1)n+1 ∂

∂xn+1

detn Bn+1 =: I1 + I2 + I3

Observe that

(1.8) I2 =
n∑

i=1

(−1)i+n ∂gi

∂xn+1

[
n∑

j=1

(−1)j ∂

∂xj

detn−1 A
(i)
j(n+1)

]

For xn+1 ∈ R fixed let

Gxn+1 := {x′ ∈ Rn : (x′, xn+1) ∈ G} .

Then Gxn+1 is open and in case that it is not empty we regard

g∗r(x
′) := gr(x

′, xn+1) for x′ ∈ Gxn+1 , r = 1, . . . , n, r 6= i.

Then g∗r ∈ C2(Gxn+1) and by induction hypothesis in (1.8) the expression in brackets
vanishes and so does I2. By (1.5)

∂

∂xn+1

detn Bn+1 =
n∑

i=1

n∑
j=1

(−1)i+j ∂2gi

∂xj∂xn+1

detn−1 A
(i)
j(n+1)

Therefore

I1 + I3 =
n∑

i=1

n∑
j=1

(−1)i+j+n ∂2gi

∂xj∂xn+1

detn−1 A
(i)
j(n+1)

+
n∑

i=1

n∑
j=1

(−1)i+j+n+1 ∂2gi

∂xj∂xn+1

detn−1 A
(i)
j(n+1) = 0
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Theorem 1.2 Let G ⊂ Rn(n ≥ 2) be open and let fr ∈ C2(G)(r = 1, . . . , n). For
x ∈ G let

A(x) = (aij(x)) ∈ M(n),

aij(x) :=
∂fi(x)

∂xj

, i, j = 1, . . . , n

With Aij(x) defined by (1.1),

(1.9)
n∑

j=1

(−1)j ∂

∂xj

detn−1 Aij(x) = 0 ∀x ∈ G, i = 1, . . . , n.

Proof. Let i ∈ {1, . . . , n}. For r ∈ {1, . . . , n}, r 6= i, consider gr := fr. Then (1.9)
follows from Lemma 1.1.

If f ∈ C0
c (Rn)(n ≥ 2), the function

ϕ(x′) :=

+∞∫

−∞

f(x′, xn)dx′, x′ ∈ Rn−1

satisfies ϕ ∈ C0
c (Rn−1). With an elementary induction argument with respect to

n ∈ N it is readily seen that the “elementary form of the Fubini-theorem” holds
true:

(1.10)

∫

Rn

f(x)dx =

∫

R




∫

R

. . .




∫

R

f(x1, . . . , xn−1, xn)dxn


 dxn−1 . . .


 dx1

If D =




λ1 0
. . .

0 λn


 ∈ M(n) is diagonal with detn D 6= 0 and if b ∈ R, then using

(1.10) and n-fold application of the one-dimensional change of variables formula one
readily derives

(1.11)

∫

Rn

f(y)dy = | detn D|
∫

Rn

f(Dx + b)dx.

Similarly for f ∈ C1
c (Rn) using the fundamental theorem of calculus, by (1.10) for

i = 1, . . . , n

(1.12)

∫

Rn

∂if(x)dx = 0

7



(where we use the notation ∂i := ∂
∂xi

).

For approximating functions by smooth functions we use mollifiers. Let

(1.13)





ω ∈ C∞
c (Rn), ω ≥ 0, ω(x) = 0 for |x| ≥ 1∫

Rn

ω(x)dx = 1.

Then for % > 0 put

ω%(x) := %−nω

(
x

%

)
.

By (1.11)

(1.14)





∫
Rn

ω%(x)dx = 1 ∀% > 0,

supp ω% ⊂ B%.

Let G ⊂ Rn be open and let

L1
loc(G) :=

{
f : G → R | f measurable and

∫

K

|f |dx < ∞ for every compact K ⊂ G
}

.

For f, g ∈ L1
loc(G) an equivalence is defined by

(1.15) f ∼ g ⇔
Def.

f = g a. e. in G

We write for f ∈ L1
loc(G)

[f ] = {g ∈ L1
loc(G) | g ∼ f}

L1
loc(G) :=

{
[f ] | f ∈ L1

loc(G)
}

.

Similarly

L1(G) :=



f ∈ L1

loc(G) |
∫

G

|f |dx < ∞




and

L1(G) :=
{
[f ] | f ∈ L1(G)

}

If f ∈ L1
loc(G) and x ∈ G, 0 < % < dist(x, ∂G) the ball
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B%(x) := {y ∈ Rn | ‖y − x‖ < %}
satisfies B%(x) ⊂ G. Then

(1.16) f%(x) :=

∫

G

ω%(x− y)f(y)dy

is well defined. It is well known that for any G′ ⊂⊂ G, 0 < % < dist(G′, ∂G)

(1.17)





f% ∈ C∞(G′) ∩ L1(G′)∫
G′
|f(x)− f%(x)|dx → 0 as % → 0

(see e.g. [Fr], part 1, Theorem 6.2, [Gi/Tr], section 7.2).

If f ∈ L1(G) then f% is well defined by (1.15) for all x ∈ Rn and all % > 0. Moreover
(1.17) holds true with G′ replaced by G. If f ∈ C0

c (Rn), then f% ∈ C∞
c (Rn) and

(1.18) f% → f (% → 0) uniformly in Rn

Moreover if f is continuous in G, G′ ⊂⊂ G and 0 < % < dist(G′, ∂G). Then f%(x) is
well defined and f% |G′→ f |G′ (% → 0) even uniformly.

We say that a function f ∈ L1
loc(G) has a generalized Di-derivative in L1

loc(G) if
there is gi ∈ L1

loc(G) such that (Di = ∂
∂xi

= ∂i).

(1.19)

∫

G

fDiφdx = −
∫

G

giφdx ∀φ ∈ C∞
c (G).

If with g̃i ∈ L1
loc(G) the identity (1.19) holds true too, then g̃i = gi a. e. in G.

Therefore g̃i ∈ [gi], and we write

Dif := [gi]

and call any representative of [gi] a weak Di-derivative of f . As usual, in a sloppy way
we don’t distinguish typographically between classes [f ] and their representatives
f . Let f ∈ L1

loc(G) have a weak derivative Dif ∈ L1
loc(G). Let G′ ⊂⊂ G and let

0 < % < dist(G′, ∂G). If x ∈ G′, then B%(x) ⊂ G and therefore ω%(x− .) ∈ C∞
c (G).

By (1.19)

∫

G

∂

∂xi

ω%(x− y)f(y)dy = −
∫

G

∂

∂yi

ω%(x− y)f(y)dy

=

∫

G

ω%(x− y)Dif(y)dy
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By (1.16) this implies

(1.20) Di (f%(x)) = (Dif)%(x) ∀x ∈ G′,∀0 < % < dist(G′, ∂G)

Because of (1.172) (applied to Dif instead of f)

(1.21)

∫

G′

|Dif −Dif%|dx → 0 as % → 0, 0 < % < dist(G′, ∂G).

Let us emphasize that even in case f , Dif ∈ L1(G) the identity (1.20) is true in
general only for x ∈ G′ ⊂⊂ G and 0 < % < dist(G′, ∂G). Similarly (1.21) applies
only to G′ ⊂⊂ G.

In addition, if f ∈ C1(G), then f , Dif ∈ L1
loc(G) and by (1.12) the identity (1.19)

is valid with gi = Dif . That means that the classical derivative of f is a weak
derivative of f too.

In the sequel, we consider Lipschitz maps.

Definition 1.3 Let G ⊂ Rn be an open set.

1. A mapping u : G → Rm(m,n ∈ N) is called Lipschitz continuous (or briefly:
Lipschitz) in G if there is a constant L ≥ 0 such that

‖u(x)− u(x′)‖ ≤ L‖x− x′‖ ∀x, x′ ∈ G

2. A mapping u : G → R is called locally Lipschitz continuous (locally Lipschitz)
in G if for every x ∈ G there exists εx = ε(x,G, u) > 0 and a constant Lx ≥ 0
such that

i) Bεx(x) ⊂ G

ii) ‖u(y)− u(y′)‖ ≤ Lx‖y − y′‖ ∀y, y′ ∈ Bεx(x)

3. A mapping u : G → Rn is called bi-Lipschitz in G, if there are constants
0 < L1 ≤ L2 such that

L1‖x− x′‖ ≤ ‖u(x)− u(x′)‖ ≤ L2‖x− x′‖ ∀x, x′ ∈ G.

4. A mapping u : G → Rn is called locally bi-Lipschitz in G, if for every x ∈ G
there exists εx = ε(x,G, u) > 0 and constants Li = Li(x) > 0, i = 1, 2,
0 < L1 ≤ L2, such that

i) Bεx(x) ⊂ G

ii) L1‖y − y′‖ ≤ ‖u(y)− u(y′)‖ ≤ L2‖y − y′‖ ∀y, y′ ∈ Bεx(x)(1.22)

10



Theorem 1.4 Let G ⊂ Rn be an open set and let u : G → Rm(n, m ∈ N).

a) It is equivalent

i) u is locally Lipschitz in G.

ii) For every compact K ⊂ G there exists LK ≥ 0 such that

‖u(x)− u(x′)‖ ≤ LK‖x− x′‖ for all x, x′ ∈ K

b) It is equivalent

i) u is locally bi-Lipschitz in G and u : G → u(G) is injective

ii) For every compact subset K ⊂ G there are constants 0 < L′K ≤ LK such
that

L′K‖x− x′‖ ≤ ‖u(x)− u(x′)‖ ≤ LK‖x− x′‖ ∀x, x′ ∈ K.

Proof.

1. Suppose that a.ii) resp. b.ii) hold true. Let x ∈ G. Since G is open there
exists δ > 0 such that Bδ(x) ⊂ G. Let ε := δ/2 and K = Bε(x) ⊂ G. Then in
case a.ii) there exists LK ≥ 0 such that

‖u(y)− u(y′)‖ ≤ LK‖y − y′‖ ∀y, y′ ∈ Bε(x).

2. Similarly in case of condition b.ii) estimate (1.22) is valid even for y, y′ ∈ Bε(x).
Let now x, x′ ∈ G, x 6= x′. The set K := {x, x′} is compact and by b.ii) there
is L′K > 0 such that

0 < L′K‖x− x′‖ ≤ ‖u(x)− u(x′)‖.

Then u(x) 6= u(x′) and u is injective.

3. Suppose now conversely that a.i) resp. b.i) holds true. Let K ⊂ G be a
compact set. For x ∈ K let εx > 0 such that conditions 2 resp. 4 of Definition
1.3 are satisfied. Then

{
Bεx/2

(x) | x ∈ K
}

forms an open covering of K. Hence there are xi ∈ K(i = 1, . . . , N ; εi := εxi
)

K ⊂
N⋃

i=1

Bεi/2
(xi) ⊂

N⋃
i=1

Bεi
(xi)

Let
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ε0 :=
1

4
min{εi | i = 1, . . . , N}.

Let y, y′ ∈ K, ‖y − y′‖ < ε0. Then there is i0 ∈ {1, . . . , N} such that y ∈
Bεi0/2

(xi0). Further,

‖y′ − xi0‖ ≤ ‖y − xi0‖+ ‖y − y′‖ <
1

2
εxi0

+ ε0 < εxi0

Therefore, y, y′ ∈ Bεi
(xi) and by assumption there is Li0 = Li0(xi0) > 0 such

that ‖u(y)− u(y′)‖ ≤ Li0‖y − y′‖. Let L̃K := max(L1, . . . , LN). Then

(1.23) ‖u(y)− u(y′)‖ ≤ L̃K‖y − y′‖ ∀y, y′ ∈ K with ‖y − y′‖ < ε0.

By continuity of u,

M := max
x∈K

‖u(x)‖ < ∞.

For y, y′ ∈ K with ‖y − y′‖ ≥ ε0,

‖u(y)− u(y′)‖
‖y − y′‖ ≤ 2M

ε0

Define LK := max
(
L̃K , 2M

ε0

)
. Then

‖u(y)− u(y′)‖ ≤ LK‖y − y′‖ ∀y, y′ ∈ K.

In case that assumption b.i) holds true we see in addition that there are 0 <
L′i ≤ L′′i such that

L′i‖y − y′‖ ≤ ‖u(y)− u(y′)‖ ≤ Li‖y − yi‖ ∀y, y′ ∈ Bεi
(xi).

Then the number LK constructed above is positive. In addition, let

L̃′K := min(L′1, . . . , L
′
N) > 0.

Then we see similarly for y, y′ ∈ K, ‖y − y′‖ < ε0 that

L̃′K‖y′ − y′‖ ≤ ‖u(y)− u(y′)‖.

The set

C :=
{
(x, y) ∈ R2n

∣∣‖x− y‖ ≥ ε0

}

is closed and therefore
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K̃ := (K ×K) ∩ C ⊂ R2n

is compact. Suppose K̃ 6= φ. Then the continuous function

f(x, y) := ‖u(x)− u(y)‖
attains its minimum d in a point (x0, y0) ∈ K̃. Suppose that d = 0. Then
u(x0) = u(y0) and by injectivity of u finally x0 = y0, contradicting ‖xo−y0‖ ≥
εo. Let

D := diam K̃ = sup
{
‖x− y‖ | x, y ∈ K̃

}
> 0

For (x, y) ∈ K̃

d

D
‖x− y‖ ≤ d = ‖u(x0)− u(y0)‖ ≤ ‖u(x)− u(y)‖

We set

L′K :=

{
L̃′K if K̃ = φ

min
(

d
D

, L̃′K
)

if K̃ 6= φ.

Then L′K > 0 and

L′K‖x− y‖ ≤ ‖u(x)− u(y)‖ ∀x, y ∈ K.

Examples and Remarks. Suppose that G ⊂ Rn is open.

i) Let u ∈ C1(G). If x0 ∈ G, there is ε > 0 such that B2ε(x0) ⊂ G. Then
Bε(x0) ⊂ B2ε(x0) and

max
{
‖∇u(x)‖ | x ∈ Bε(x0)

}
=: Cε.

If x, y ∈ Bε(x0), then tx + (1− t)y ∈ Bε(x0) for all t ∈ [0, 1]. Hence

u(x)− u(y) =

1∫

0

d

dt
[u(tx + (1− t)y)]dt =(1.24)

=

1∫

0

n∑

k=1

(Dku)(tx + (1− t)y)(xk − yk)dt

By Schwarz’ inequality

13



∣∣∣∣∣
n∑

k=1

(Dku)(tx + (1− t)y)(xk − yk)

∣∣∣∣∣ ≤ ‖(∇u)(tx+(1−t)y)‖‖x−y‖ ≤ Cε‖x−y‖

Therefore |u(x)− u(y)| ≤ Cε‖x− y‖ ∀x, y ∈ Bε(x0) and u is locally Lipschitz
continuous.

ii) It is easy to construct even bounded domains G ⊂ Rn and functions u ∈ C1(G)
such that

|∇u(x)| ≤ C ∀x ∈ G

but u is not Lipschitz in G, even not uniformly continuous.

iii) Let u ∈ C1(G,Rn) and define

u′(x) := (Diuk(x)) ∈ M(n) for i, k = 1, . . . , n

Assume that

detn u′(x) 6= 0 ∀x ∈ G.

If x0 ∈ G, there exists L1 = L(x0) > 0 such that

‖u′(x0)ξ‖ ≥ L1‖ξ‖ ∀ξ ∈ Rn.

We choose now ε > 0 such that Bε(x0) ⊂ G and |Dkui(x) − Dkui(z)| ≤
L1

2n
for all x, z ∈ Bε(x0) and for all i, k ∈ {1, . . . , n}. If we apply (1.24) to each

component of u = (u1, . . . , un) we see

ui(x)− ui(y) =

1∫

0

n∑

k=1

(Dkui)(tx− (1− t)y)(xk − yk)dt =

=
n∑

k=1

(Dkui)(x0)(xk − yk)+

+

1∫

0

n∑

k=1

[(Dkui) (tx + (1− t)y)−Dkui(x0)] (xk − yk)dt

=: ai + bi

Then |bi| ≤ L1

2
n−

1
2‖x− y‖. Therefore
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‖u(x)− u(y)‖ ≥ ‖a‖ − ‖b‖ ≥ ‖u′(x0)(x− y)‖ − L1

2
‖x− y‖

≥ L1

2
‖x− y‖ ∀x, y ∈ Bε(x0).

Therefore, u ∈ C1(G,Rn) with det′n u(x) 6= 0 for all x ∈ G is locally bi-
Lipschitz.

In a similar way in case m > n and u ∈ C1(G,Rm) it is easily proved that u
is locally bi-Lipschitz, if we assume for the m× n-matrix

u′(x) = (Diuk(x)) k = 1, . . . , m, i = 1, . . . , n

rank u′(x) = n.

There is a celebrated theorem by Rademacher [Ra] (compare e.g. [Mo2], p.
65) on the total differentiability of Lipschitz functions.

Theorem 1.5 (Rademacher) Let G ⊂ Rn be an open set and let u : G → R be
Lipschitz on G,

‖u(x)− u(y)‖ ≤ L‖x− y‖ ∀x, y ∈ G.

Then there exists a subset N ⊂ G of measure zero such that:

i) For each x ∈ G\N the function u is totally differentiable, e.g. for each x ∈ G\
N there exists a neighborhood Bε(x) ⊂ G, a vector w(x) = (w1(x), . . . , wn(x))
and a function ϕ(x, .) : Bε(0) → R such that

u(x + ξ) = u(x) +
n∑

j=1

wj(x)ξj + ϕ(x, ξ) ∀ξ ∈ Bε(0)(1.25)

and lim
|ξ|→0

ξ∈Bε(0)\{0}

ϕ(x, ξ)

‖ξ‖ = 0(1.26)

ii) The map ω : G \N → Rn is measurable and

(1.27) |w(x)| ≤ L ∀x ∈ G \N

iii) If we define for i = 1, . . . , n

Diu(x) :=

{
wi(x) for x ∈ G \N

0 for x ∈ N

then Diu ∈ L1
loc(G) ∩ L∞(G) is a weak derivative of u.
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Clearly for x ∈ G \N ωi(x) is the partial derivative ∂iu(x). An easy consequence is

Theorem 1.6 Let G ⊂ Rn and let u : G → Rm(m,n ∈ N) be bi-Lipschitz,

(1.28) L1‖x− y‖n ≤ ‖u(x)− u(y)‖m ≤ L2‖x− y‖n ∀x, y ∈ G 0 < L1 ≤ L2

Then there is a subset N ⊂ G, |N | = 0, such that u is totally differentiable at each
x ∈ G \N . For x ∈ G \N for the total derivative

u′(x) = (Diuk(x)) ∈ M(m× n)

we have the estimate

(1.29) L1‖η‖n ≤ ‖u′(x)η‖m ≤ L2‖η‖n, ∀x ∈ G \N ∀η ∈ Rn.

Therefore m ≥ n and

rank u′(x) = n ∀x ∈ G \N

Proof. We apply Theorem 1.5 to each component of u = (u1, . . . , um) and we set
for x ∈ G \N

ϕ(x, ξ) := (ϕ1(x, ξ), . . . , ϕm(x, ξ)) for ξ ∈ Bε(0),

where ε := min(ε1, . . . , εn). Let ξ ∈ Rn, |ξ| = 1. By (1.25), (1.26) for 0 < % < ε

L1‖%ξ‖ ≤ ‖u(x + %ξ)− u(x)‖ = ‖u′(x)%ξ + ϕ(x, %ξ)‖ ≤ L2‖%ξ‖.
Therefore

L1‖ξ‖ ≤ ‖u′(x)ξ‖+
‖ϕ(x, %ξ)‖
‖%ξ‖ → ‖u′(x)ξ‖ as % → 0

Similarly ‖u′(x)ξ‖ ≤ L2‖ξ‖. If 0 6= η ∈ Rn is arbitrary, we consider ξ := η
‖η‖ and

derive (1.29). By (1.29) the kernel of the linear map

A : Rn → Rm, Aη = u′(x)η for η ∈ Rn

has dimension zero. Since

n = dim kernel A + dim image A =

= dim image of A = rank of A,

we see in addition m ≥ n.

Let us consider Theorem 1.6 in case m = n. If we assume that G∗ = u(G) is open,
we could apply Theorem 1.6 to the map v := u−1 : G∗ → G and find N∗ ⊂ G∗,
|N∗| = 0, such that v is differentiable in G∗ \ N∗. But later (Theorem 4.5) we will
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prove that bi-Lipschitz maps are open, e.g. they map open subsets U ⊂ G on open
subsets of Rn.

Let us recall that N ⊂ Rn has measure zero if and only if for each ε > 0 there is a
sequence of balls Bi = Bri

(xi) ⊂ Rn such that

(1.30) N ⊂
∞⋃
i=1

Bi and
∞∑
i=1

|Bi| < ε.

Clearly it is equivalent to demand that

∞∑
i=1

rn
i < ε.

Lemma 1.7 Let G ⊂ Rn be open and let u : G → Rm (m ≥ n) be locally Lipschitz.
Let N ⊂ G be a set of n-dimensional measure zero: |N |n = 0. Then, N∗ := u(N)
has m-dimensional measure zero: |N∗|m = 0.

Proof.

i) Let G′ ⊂⊂ G and choose G′ ⊂⊂ G′′ ⊂⊂ G. Suppose that L = L(G′′) ≥ 0,

‖u(x)− u(x′)‖ ≤ L‖x− x′‖ ∀x, x′ ∈ G′′.

Let N ′ := N ∩G′, then |N ′|n ≤ |N |n = 0. If ε > 0 is given, let

0 < ε0 < min
(
ε, 1,

[
2−1 dist(G′, ∂G′′)

] 1
n

)
.

Then there exist Bi = Bri
(xi) ⊂ Rn such that

(1.31) N ′ ⊂
∞⋃
i=1

Bi and
∞∑
i=1

rn
i <

ε0

Lm

Without loss of generality we may assume N ′ ∩ Bi 6= φ for all i ∈ N. Then
Bi ⊂ G′′. Let yi = u(xi). Then

u(Bi) ⊂ B̃i := {y ∈ Rm : ‖y − yi‖ < Lri}
Because ri < 1 and m ≥ n, rm−n

i ≤ 1 and

∞∑
i=1

(Lri)
m = Lm

∞∑
i=1

rn
i rm−n

i ≤ Lm

∞∑
i=1

rn
i < ε0 ≤ ε

Since u(N ′) ⊂ u

( ∞⋃
i=1

Bi

)
⊂

∞⋃
i=1

u(Bi) ⊂
∞⋃
i=1

B̃i

we see |u(N ′)|m = 0.
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ii) Let now (Gk) be an exhausting sequence for G,

Gk ⊂⊂ Gk+1 ⊂⊂ G ∀k ∈ N,

∞⋃

k=1

Gk = G.

Then N =
∞⋃

k=1

(N ∩Gk) and

N∗ = u(N) ⊂
∞⋃

k=1

u(N ∩Gk).

By part i) of proof, |u(N ∩Gk)|m = 0 and therefore |N∗|m = 0.

2 The Homotopy Theorems

Throughout this section let

(2.1) I := [0, 1]

Lemma 2.1 Let G ⊂ Rn be a bounded open set and let u ∈ C0(Ḡ × I,Rn). Let
U ⊂ Rn be an open set such that

⋃
t∈I

u(∂G, t) ⊂ U.

Then

i)
⋃
t∈I

u(∂G, t) = u(∂G× I) is compact.

ii) dist (u(∂G× I), ∂U) > 0

iii) There exists a compact set K ⊂ G such that

x ∈ Ḡ \K ⇒ u(x, t) ∈ U ∀t ∈ [0, 1]

( i. e. u
(
(Ḡ \K)× I

) ⊂ U)

Proof.

a)

y0 ∈
⋃
t∈I

u(∂G, t) ⇔ ∃t0 ∈ I : y0 ∈ u(∂G, t0) ⇔ ∃x0 ∈ ∂G : y0 = u(x0, t0) ⇔

⇔ y0 ∈ u(∂G× I).

Since ∂G× I is compact, by continuity of u, u(∂G× I) is compact too.
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b) If U = Rn we set K := φ. If φ 6= U 6= Rn, then ∂U 6= φ and it is closed.
Because of compactness of u(∂G× I)

0 < d := dist (u(∂G× I), ∂U)

If y0 ∈ u(∂G× I), then B d
2
(y0) ⊂ U . By uniform continuity of u : Ḡ× I → Rn

there is δ > 0 such that

(2.2) ‖u(x1, t)−u(x2, t)‖ <
d

2
∀x1, x2 ∈ Ḡ with ‖x1−x2‖ < δ, ∀t ∈ I

We define

K := {x ∈ G | dist(x, ∂G) ≥ δ}

Then K is compact. If x ∈ Ḡ \K, then dist(x, ∂G) < δ. By compactness of
∂G there is x0 ∈ ∂G such that

‖x− x0‖ = dist(x, ∂G) < δ.

For t ∈ I, (x0, t) ∈ u(∂G× I) and by (2.2) ‖u(x, t)− u(x0, t)‖ < d
2
, that is

u(x, t) ∈ B d
2
(u(x0, t)) ⊂ U.

Since t ∈ I was arbitrary, u(x, t) ∈ U ∀t ∈ I.

Lemma 2.2 Let G ⊂ Rn be a bounded open set.

Suppose that

(i) u ∈ C2(G× I,Rn) ∩ C0(Ḡ× I,Rn)

(ii) there is an open set U ⊂ Rn such that u(∂G× I) ⊂ U

(iii) f ∈ C1
c (Rn) and f |U= 0

Then

(2.3) h(t) :=

∫

G

f(u(x, t)) detn u′(x, t)dx

is constant in I
(
here u′(x, t) means the n× n-matrix

((
∂ui

∂xk

)
(x, t)

)
∈ M(n)

)
.

Proof.
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a) According Lemma 2.1 we choose a compact K ⊂ G such that

u(x, t) ∈ U ∀x ∈ Ḡ \K, ∀t ∈ I.

Then

f (u(x, t)) = 0 ∀x ∈ Ḡ \K, ∀t ∈ I

that is, supp f(u(., t)) ⊂ K ⊂ G ∀t ∈ I. Clearly h is differentiable in I and

h′(t) =

∫

G

n∑
j=1

(
∂f

∂yj

)
(u(x, t))

∂uj(x, t)

∂t
detn u′(x, t)dx

+

∫

G

f (u(x, t))
∂

∂t
detn u′(x, t)dx =: I1(t) + I2(t).

We write again

A(x, t) = (aij(x, t)) where aij(x, t) :=
∂ui(x, t)

∂xj

According (1.5) (we use the notation (1.1))

∂

∂t
detn u′(x, t) =

n∑
i=1

n∑

k=1

(−1)i+k ∂2ui(x, t)

∂t∂xk

detn−1 Aik(x, t)

We consider I2(t) and integrate by parts (using (1.12)):

I2(t) = −
∫

G

n∑

i,k=1

(−1)i+k ∂ui(x, t)

∂t

∂

∂xk

[f(u(x, t)) detn−1 Aik(x, t)] dx

= −
∫

G

n∑

i,k=1

(−1)i+k ∂ui(x, t)

∂t

n∑
j=1

(
∂f

∂yj

)
(u(x, t))

∂uj(x, t)

∂xk

· detn−1 Aik(x, t)dx

−
∫

G

f (u(x, t))
n∑

i=1

(−1)i ∂ui(x, t)

∂t

[
n∑

k=1

(−1)k ∂

∂xk

detn−1 Aik(x, t)

]
dx

By Theorem 1.2 the expression in brackets [..] vanishes. For the first integral
we observe by (1.3)

n∑

k=1

(−1)i+k ∂uj(x, t)

∂xk

detn−1 Aik(x, t) = δji detn A(x, t) = δji detn u′(x, t).
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Therefore

I2(t) = −
∫

G

n∑
j=1

(
∂f

∂yj

)
(u(x, t))

∂uj(x, t)

∂t
detn u′(x, t)dx = −I1(t).

and h′(t) = 0 for t ∈ I.

We needed the high differentiability assumptions on u and f only for our proof
of Lemma 2.2. But the expression at the right side of (2.3) is well defined if e.g.
f ∈ C0

c (Rn), u ∈ C0(Ḡ× I) and u has merely bounded weak derivatives. Therefore
there is hope to diminish the assumptions by some mollification arguments, what
we’ll do in the sequel.

Lemma 2.3 Let G ⊂ Rn be a bounded open set. Assume that hypotheses (i) and
(ii) of Lemma 2.2 hold and

(iii) f ∈ C0
c (Rn) and f |U= 0.

Then h defined by (2.3) is constant in I.

Proof.

a) If U = Rn then h(t) = 0 ∀t ∈ I. We may assume U 6= Rn, i. e. ∂U 6= φ. Then

0 < d := dist (u(∂G× I), ∂U) < ∞

Let

(2.4) U ′ :=
{

y ∈ U : dist(y, u(∂G× I)) <
d

2

}

U ′ is open, U ′ ⊂⊂ U and u(∂G × I) ⊂ U ′. Let K ′ ⊂ G be the compact set
constructed according Lemma 2.1 with respect to U ′ with u

(
(Ḡ \K ′)× I

) ⊂
U ′.

b) For y ∈ Rn consider the mollified functions

f%(y) :=

∫

Rn

ω%(y − z)f(z)dz for 0 < % <
d

4

If y ∈ U ′, then B%(y) ⊂ U and since

f%(y) =

∫

B%(y)

ω%(y − z)f(z)dz = 0

we see
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(2.5) f% |U ′= 0 ∀0 < % <
d

4
, f% ∈ C∞

c (Rn)

Let h(%) : I → R be defined by (2.3) with respect to f%. By Lemma 2.2 h(%) is
constant on I.

c) Since u
(
(Ḡ \K ′)× I

) ⊂ U ′, by (2.4) we see supp f%(u(., t)) ⊂ K ′ ∀t ∈ I,
∀0 ≤ % < d

4
(where f0 := f for % = 0). By continuity of detn u′(.) on K ′ × I,

L := max{| detn u′(x, t)| : (x, t) ∈ K ′ × I} < ∞

exists. By (1.18) we see f% → f uniformly in Rn, therefore

|f (u(x, t))− f% (u(x, t))| ≤ max
z∈Rn

|f%(z)− f(z)| → 0(% → 0)

Then

∣∣∣∣∣∣

∫

G

[f (u(x, t))− f% (u(x, t))] detn u′(x, t)dx

∣∣∣∣∣∣
≤

≤ max
z∈Rn

|f(z)− f%(z)| · L|G| → 0(% → 0)

∀t ∈ I.

Theorem 2.4 Let G ⊂ Rn be a bounded open set. Suppose that

(i) u ∈ C0(Ḡ× I,Rn),
for each fixed t ∈ I u(., t) ∈ C1(G;Rn) and Diuk ∈ C0(G× I), i, k = 1, . . . , n

(ii) there is an open set U ⊂ Rn such that

u(∂G× I) ⊂ U.

(iii) f ∈ C0
c (Rn) and f |U= 0

Then

h(t) :=

∫

G

f (u(x, t)) detn u′(x, t)dx

is constant in I.

Proof.
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a) Without loss of generality we may assume that there is 0 < δ ≤ 1
3

such that u
is constant with respect to t for 0 ≤ t ≤ δ and 1 − δ ≤ t ≤ 1. Otherwise, let
ϕδ : R→ I

ϕδ(t) :=





0 for t < δ
1

1−2δ
(t− δ) for δ ≤ t ≤ 1− δ

1 for 1− δ < t

and consider

u(δ) : Ω̄× R→ Rn,

u(δ)(x, t) := u(x, ϕδ(t)) for (x, t) ∈ Ω̄× R

Then u(δ) satisfies (i) and (ii) too and

u(δ)(x, t) =





u(x, 0) for t ≤ δ

u(x, 1
1−2δ

(t− δ) for δ ≤ t ≤ 1− δ

u(x, 1) for t ≥ 1− δ

Let h(δ) : R→ R be defined by (2.3) with respect to u(δ). Then for t ∈ I

h(t) = h(δ)(δ + t(1− 2δ))

and the Theorem is proved for h if it is proved for h(δ).

b) In case U = Rn the assertion is trivial. We assume φ 6= U 6= Rn. Let U ′ ⊂⊂ U
and K ′ be constructed as in part a) of proof of Lemma 2.3 such that

(2.6) u
(
(Ḡ \K ′)× I

) ⊂ U ′

We choose now an open G′ such that K ′ ⊂ G′ ⊂⊂ G. Then K ′ ∩ ∂G′ = φ and
if x ∈ ∂G′ then x ∈ Ḡ′ \K ′ and therefore

(2.7)

{
u(∂G′ × I) ⊂ U ′

d1 := dist (u(∂G′ × I), ∂U ′) > 0

Let D := dist(Ḡ′, ∂G) > 0 and %0 := 1
2
(δ,D). Let ω denote an (n + 1)-

dimensional mollifier kernel and consider the mollified mapping

u% : Ḡ′ × I → Rn, 0 < % < %0.
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We observe that by part a) of proof u% is constant with respect to t for
0 ≤ t ≤ δ

2
and for 1− δ

2
≤ t ≤ 1. Then u% ∈ C∞(Ḡ′ × I)

u% → u (% → 0) uniformly on Ḡ′ × I.

Because of

∂

∂xi

(uk)% (x, t) =

(
∂uk

∂xi

)

%

(x, t) for (x, t) ∈ Ḡ′ × I

and the continuity of Diuk on G× I

∂

∂xi

(uk)%

∣∣
Ḡ′×I

→ ∂

∂xi

uk

∣∣
Ḡ′×I

uniformly. Then there is 0 < %1 < %0 such that

‖u%(x, t)− u(x, t)‖ <
d1

2
∀(x, t) ∈ Ḡ′ × I, ∀0 < % < %1

If z ∈ ∂U , then

‖u%(x, t)− z‖ ≥ ‖u(x, t)− z‖ − ‖u(x, t)− u%(x, t)‖
≥ d1 − d1

2
=

d1

2
> 0 ∀(x, t) ∈ Ḡ′ × I, ∀0 < % < %1

and therefore

u%(∂G′ × I) ⊂ U ′ ∀0 < % < %1

All assumptions of Lemma 2.3 are satisfied with G replaced by G′ and for u%.
Therefore there is c% ∈ R such that

c% =

∫

G′

f(u%(x, t)) detn u′%(x, t)dx ∀t ∈ I

Since f (u%(., t)) has compact support in G′ for 0 ≤ % < %1 and all functions
are uniformly bounded, we may pass to the limit % → 0 and get finally

c =

∫

G′

f (u(x, t)) detn u′(x, t)dt =

∫

G

f (u(x, t)) detn u′(x, t)dt ∀t ∈ I.

For most applications Theorem 2.4 is sufficient. But if we want to deal with Lipschitz
transforms we have to extend it further.
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Theorem 2.5 Let G ⊂ Rn be a bounded open set. Suppose that

(i) u ∈ C0
(
Ḡ× I,Rn

)

(ii) There exists N ⊂ G, |N | = 0 such that for each fixed t ∈ I the mapping
u(., t) : G \ N → Rn, is (totally) differentiable, Diuk(., t) : G \ N → R are
measurable and that there is L > 0 such that

(2.8) |Diuk(x, t)| ≤ L ∀x ∈ G \N, ∀t ∈ [0, 1]

Further we assume, that for each x ∈ G \N the functions Diuk(x, .) : I → R
are continuous ∀i, k = 1, . . . , n.

(iii) there is an open set U ⊂ Rn such that u(∂G× I) ⊂ U

(iv) f ∈ C0
c (Rn) and f |U= 0. Then

h(t) :=

∫

G

f (u(x, t)) detn u′(x, t)dx

is constant in I.

Proof.

a) As in part b) of proof of Theorem 2.4 we construct U ′ and K ′ ⊂ G′ ⊂⊂ G
such that (2.6) and (2.7) hold true. Now we consider an n-dimensional mollifier
kernel ω and we set for k = 1, . . . , n

uk%(x, t) :=

∫

G

ω%(x− y)uk(y, t)dy, (x, t) ∈ Ḡ′ × I 0 < % < d1

Then uk%(., t) ∈ C∞(Ḡ′) ∀t ∈ I and by (1.20)

(2.9)
∂

∂xi

uk%(x, t) =

∫

G

ω%(x− y)Diuk(y, t)dy ∀t ∈ I

By (2.8)

(2.10) |Diuk%(x, t)| ≤ L.

Let

(xν , tν) ∈ Ḡ′ × I ∀ν ∈ N, (xν , tν) → (x0, t0) ∈ Ḡ′ × I.
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For 0 < % < d1 fixed

|Diuk%(xν , tν)−Diuk(x0, t0)| =

≤
∣∣∣∣∣∣

∫

G

[ω%(xν − y)− ω%(x0 − y)] Diuk(y, tν)dy

∣∣∣∣∣∣

+

∣∣∣∣∣∣

∫

G

ω%(x0 − y) [Diuk(y, tν)−Diuk(y, t0)] dy

∣∣∣∣∣∣

≤ L

∫

G

|ω%(xν − y)− ω%(x0 − y)|dy

+

∫

G

ω%(x0 − y) |Diuk(y, tν)−Diuk(y, t0)| dy

For y ∈ G \N

Diuk(y, tν) → Diuk(y, t0) (ν →∞)

and

|Diuk(y, tν)−Diuk(y, t0)| ≤ 2L ∀y ∈ G \N, ∀ν ∈ N.

Since ω%(x0 − .) is bounded, the second integral tends to zero for ν → ∞ by
Lebesgue’s theorem. Since ω% : Rn → R is uniformly continuous, ω%(xν−y) →
ω%(x−y) uniformly in Rn and since |G| < ∞,

∫
G

|ω%(xν−y)−ω%(x0−y)|dy → 0.

Therefore, Diuk% ∈ C0(Ḡ′× I). Because of uniform boundedness and uniform
continuity of u in Ḡ× I we see similarly u% ∈ C0(Ḡ′ × I). Further for (x, t) ∈
Ḡ′ × I and 0 < % < d1

∫

G

ω%(x− y)dy =

∫

Rn

ω%(x− y)dy = 1

(by (1.14)). This gives

‖u(x, t)− u%(x, t)‖ =

∥∥∥∥∥∥

∫

G

ω%(x− y) (u(y, t)− u(x, t)) dx

∥∥∥∥∥∥
≤ max

{
‖u(x, t)− u(y, t)‖

∣∣∣x, y ∈ Ḡ, ‖x− y‖ ≤ %, t ∈ I
}
→ 0 (% → 0)

Therefore there is 0 < %1 < d1 such that
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‖u%(x, t)− u(x, t)‖ <
d1

2
∀(x, t) ∈ Ḡ′ × I, ∀0 < % < %1.

As in part b) of proof of Theorem 2.4 this guarantees

u%(∂G′ × I) ⊂ U ′ ∀0 < % < %1.

Then all assumptions of Theorem 2.4 are fulfilled for u% with respect to G′.
Then there is c% ∈ R for 0 < % < %1 such that

c% =

∫

G′

f (u%(x, t)) detn u′%(x, t)dx ∀t ∈ I

We observe that supp f (u%(., t)) ⊂ K ′ ∀t ∈ I, ∀0 ≤ % < %1 and |f(z)| ≤ C
∀z ∈ Rn. Therefore all integrals in the next consideration can be taken over
K ′.

I(%) :=

∣∣∣∣∣∣

∫

K′

f (u%(x, t)) detn u′%(x, t)dx−
∫

K′

f (u(x, t)) detn u′(x, t)dx

∣∣∣∣∣∣

≤
∫

K′

|f (u%(x, t))− f (u(x, t))| ∣∣detn u′%(x, t)
∣∣ dx

+

∫

K′

|f (u(x, t)) |
∣∣detn u′%(x, t)− detn u′(x, t)

∣∣ dx =

=: I1(%) + I2(%)

If A = (aik) ∈ M(n), |aik| ≤ L ∀i, k = 1, . . . , n then with the help of (1.3) it
is readily seen by induction that

(2.11) | detn A| ≤ n!Ln.

Since |∂iuk%(x)| ≤ L for x ∈ K ′ and f(u%(.)) → f(u(.)) uniformly on K ′ × I,

I1(%) ≤ n!Ln

∫

K′

|f (u%(x, t))− f (u(x, t))| dx → 0 (% → 0).

For j = 1, . . . , n we abbreviate the j-th column of u′ by

Dju :=




Dju1
...

Djun




27



and write

A := (D1u, . . . , Dnu); A% := (D1u%, . . . , Dnu%)

Then A = u′, A% = u′%. For 1 ≤ k ≤ n− 1 let

A(k) :=
(
D1u%, . . . , Dku%, Dk+1u, . . . , Dnu

)

A(o) := A, A(n) := A%. Then

detn u′% − detn u′ = detn A% − detn A =
n∑

k=1

(
detn A(k) − detn A(k−1)

)

The matrices A(k) and A(k−1) differ only in the k-th column. Therefore (see
(1.1))

detn−1 A
(k)
ik = detn−1 A

(k−1)
ik , i = 1, . . . , n

Expanding detn A(k) and detn A(k−1) with respect to the k-th column (see
(1.32)) gives

detn A(k) − detn A(k−1) =
n∑

i=1

(−1)i+k detn−1 A
(k)
ik (Dkui% −Dkui) .

By (2.11)

∣∣detn A(k) − detn A(k−1)
∣∣ ≤ (n− 1)!Ln−1

n∑
i=1

|Dkui% −Dkui|

Finally we see by (1.21)

I2(%) ≤ C(n−1)!Ln−1

∫

K′

n∑

k,i=1

|Dkui%(x, t)−Dkui(x, t)|dx → 0(% → 0) ∀t ∈ I.

3 The change of variables formula for linear maps

and f ∈ C0
c (Rn).

For n ∈ N, n ≥ 2, c ∈ R we consider for j 6= k the matrices
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k

↓

Mjk(c) :=
j →




1 0 · · · 0 0
0 1 ·
· 1 c ·
· 0 ·
· 1 ·
· ·
· · · 0 1




∈ M(n)(3.1)

having the number c in the i-th row and the j-th column and being identical with
the unit matrix I otherwise. For j = k we set

(3.2) Mjj(c) := I

Then for B ∈ M(n)

(3.3) Mjk(c)B =




b11 · · · b1n
...

...
bj1 + cbk1 · · · bjn + cbkn

...
...

bk1 · · · bkn
...

...
bn1 · · · bnn




← j

← k

Similarly

BMkj(c) =




b11 · · · b1j + cb1k · · · b1k · · · b1n
...

...
...

...
bn1 · · · bnj + cbnk · · · bnk · · · bnn


(3.4)

↑ ↑
j k

We observe Mkj(0) = I,

(3.5) detn Mjk(c) = 1 ∀j, k ∈ {1, . . . , n}, ∀c ∈ R
Lemma 3.1 Let B ∈ M(n), det B 6= 0. If f ∈ C0

c (Rn), c ∈ R, j, k = 1, . . . , n, then

(3.6)





f(B.), f(MB.), f(BM.) ∈ C0
c (Rn) and∫

Rn

f (Mjk(c)Bx) dx =
∫
Rn

f(Bx)dx =
∫
Rn

f (BMkj(c)x) dx
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Proof.

a) For t ∈ I and x ∈ Rn let

u(x, t) := Mjk(ct)Bx.

Then

detn u′(x, t) = detn (Mjk(ct)B) =

= detn Mjk(ct) detn B = detn B 6= 0

Let Sn :=
{
ξ ∈ Rn

∣∣‖ξ‖ = 1
}
. The continuous function

‖u(ξ, t)‖ = ‖Mjk(ct)Bξ‖, (ξ, t) ∈ Sn × I

attains its minimum m ≥ 0 at a point (ξ0, t0) ∈ Sn × I. Since ‖ξ0‖ = 1 and
detn (Mjk(ct0)B) 6= 0, we see m > 0. If 0 6= x ∈ Rn, then ξ := x

‖x‖ ∈ Sn and
therefore by homogeneity

(3.7) ‖u(x, t)‖ = ‖Mjk(ct)Bx‖ ≥ m‖x‖ ∀x ∈ Rn × I

b) Let R > 0 be chosen such that supp f ⊂ BR(0). Because of (3.7) f(Bx) and
f (Mjk(c)Bx) vanish for ‖x‖ ≥ R

m
. We set

G :=

{
x ∈ Rn

∣∣‖x‖ <
2R

m

}

U :=
{
y ∈ Rn

∣∣‖y‖ > R
}

.

By (3.7)

‖u(x, t)‖ ≥ m · 2R

m
= 2R ∀(x, t) ∈ ∂G× I,

hence u(∂G× I) ⊂ U . By Lemma 2.3

∫

Rn

f (Mjk(c)Bx) detn Bdx =

∫

Rn

f (u(x, 1)) detn u′(x, 1)dx

=

∫

Rn

f (u(x, 0)) detn u′(x, 0)dx =

∫

Rn

f(Bx) detn Bdx.

If we devide by det B 6= 0 we see the first identity of (3.6). The second is
proved analogously.
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Theorem 3.2 Let A ∈ M(n), det A 6= 0 and let b ∈ Rn. Then for f ∈ C0
c (Rn)

(3.8)

∫

Rn

f(y)dy =

∫

Rn

f(Ax + b)| det A|dx.

Proof.

a) Let g(x) = f(Ax). Then by (3.6) g ∈ C0
c (Rn) and by (1.11)

(3.9)

∫

Rn

f(Ax)dx =

∫

Rn

g(x)dx =

∫

Rn

g(x + b)dx =

∫

Rn

f(Ax + b)dx

b) By iterated application of Lemma 3.1 (if n ≥ 2) we construct in the sequel a
diagonal matrix D ∈ M(n) with

(3.10)





detn D = detn A∫
Rn

f(Dx)dx =
∫
Rn

f(Ax)dx.

Consider the last column of A. If ann = 0, there is k ∈ {1, . . . , n} such that
akn 6= 0. Consider

A(1) := Mnk(1)A, A(1) =
(
a

(1)
ij

)

Then a
(1)
nn = akn 6= 0 and by Lemma 3.1

∫

Rn

f
(
A(1)x

)
dx =

∫

Rn

f(Ax)dx.

det A(1) = det A

Without loss of generality we may therefore assume ann 6= 0. Then, for j =
1, . . . , n− 1 we consider the matrices

Mnj

(
−ajn

ann

)
· A

Applying successively Lemma 3.1 for j = 1, . . . , n− 1, we get a matrix

B = (bij) ∈ Mn, det B = det A,

bjn = 0 for j = 1, . . . , n− 1, bnn 6= 0∫

Rn

f(Bx)dx =

∫
f(Ax)dx.
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We consider now the matrices

B ·Mnk

(
−bnk

bnn

)
, k = 1, . . . , n− 1

and apply each time Lemma 3.1. After at most n− 1 steps we get a matrix

C = (cij) ∈ M(n), det C = det A

cjn = cnj = 0, j = 1, . . . , n− 1, cnn 6= 0∫

Rn

f(Cx)dx =

∫

Rn

f(Ax)dx

This procedure we apply step by step to all further columns and rows. After
at most n2 steps we find the desired diagonal matrix D with (3.10). By (1.11)

∫

Rn

f(y)dy = | detn D|
∫

Rn

f(Dx)dx =

= | detn A|
∫

Rn

f(Ax)dx.

Combining last identity with (3.9) yields (3.8).

4 Some properties of bi-Lipschitz mappings

Throughout this chapter, let G ⊂ Rn be an open set and, if not otherwise stated,
let u : G → Rn be a bi-Lipschitz mapping. Let

N ⊂ G, |N | = 0

such that u is differentiable on G \N (compare Theorem 1.5).

Lemma 4.1 Let x0 ∈ G \ N . Then there is δ = δ(x0, G, N, u) > 0 such that
Bδ (u(x0)) ⊂ u(G).

Proof.

a) By Theorem 1.5 there is ε′ > 0 such that Bε′(x0) ⊂ G and there is

ϕ : Bε′(0) → Rn, lim
Bε′ (0)3ξ→0

ξ 6=0

ϕ(ξ)

‖ξ‖ = 0

such that
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(4.1) u(x) = u(x0) + u′(x0)(x− x0) + ϕ(x− x0) ∀x ∈ Bε(x0).

We choose 0 < ε < ε′ such that

(4.2) ‖ϕ(ξ)‖ ≤ L1

4
‖ξ‖ ∀ξ ∈ Bε(0)

(where 0 < L1 ≤ L2 by Theorem 1.6). We set δ := L1

4
ε > 0 and for y ∈

Bδ(u(x0))

(4.3)
u(x, t) := tu(x) + (1− t) [u(x0) + u′(x0)(x− x0)]− y for (x, t) ∈ Bε(x0)× I.

It is immediately seen that hypotheses (i) and (ii) of Theorem 2.5 hold (with
G replaced by Bε(x0)). For ‖x− x0‖ = ε, t ∈ [0, 1] by (4.1)

u(x, t) = u′(x0)(x− x0) + tϕ(x− x0) + u(x0)− y

By (1.29) and (4.2)

(4.4)





‖u(x, t)‖ ≥ ‖u′(x0)(x− x0)‖ − ‖ϕ(x− x0)‖ − ‖u(x0)− y‖
≥ L1 · ε− L1

4
ε− L1

4
ε = L1

2
ε = 2δ > 0

∀‖x− x0‖ = ε, ∀t ∈ I

Let U := {y ∈ Rn : ‖y‖ > δ}. Then u(x, t) ∈ U for (x, t) ∈ ∂Bε(x0)× I.

By Theorem 2.5 (applied to Bε(x0)) for f ∈ C0
c (Rn) with f

∣∣
U

= 0

∫

Bε(x0)

f(u(x)− y) detn u′(x)dx =(4.5)

=

∫

Bε(x0)

f (u(x0) + u′(x0)(x− x0)− y) · detn u′(x0)dx

b) Assume now that there is no x ∈ Bε(x0) such that u(x) = y. Then

min
{
‖u(x)− y‖

∣∣x ∈ Bε(x0)
}

=: σ > 0.

For x = x0 we see because of y ∈ Bδ(u(x0))

(4.6) σ ≤ ‖u(x0)− y‖ < δ.
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Let

(4.7) ϕ(t) :=

{(
σ
2
− t

)
for 0 ≤ t ≤ σ

2

0 for t ≥ σ
2

and f(z) := ϕ(‖z‖) for z ∈ Rn. f ∈ C0
c (Rn) and because of (4.6) it vanishes

on U . Further, f (u(x)− y) = 0 for x ∈ Bε(x0) and therefore the integral at
the left of (4.5) is zero.

On the other hand, detn u′(x0) 6= 0, and there exists a unique z ∈ Rn such
that y − u(x0) = u′(x0) · z. By (1.29)

L1ε

4
= δ > ‖y − u(x0)‖ = ‖u′(x0) · z‖ ≥ L1‖z‖,

hence ‖z‖ < ε
4

and

x1 := x0 + z ∈ Bε/4(x0),

f (u(x0) + u′(x0)(x1 − x0)− y) = f(0) =
σ

2
.

By continuity there is τ > 0 such that Bτ (x1) ⊂ Bε(x0) and

f (u(x0) + u′(x0)(x− x0)− y) ≥ σ

4
∀x ∈ Bτ (x1).

Then

| detn u′(x0)|
∫

Bε(x0)

f (u(x0) + u′(x0)(x− x0)− y) dx ≥

≥ σ

4
|Bτ (x1)| | detn u′(x0)| > 0,

a contradiction.

Corollary 4.2 Let N∗ := u(N) ⊂ u(G), |N∗| = 0 (Lemma 1.7). Then there are
open sets V , V ∗ ⊂ Rn such that

u(V ) = V ∗

G \N ⊂ V ⊂ G, u(G) \N∗ ⊂ V ∗ ⊂ u(G).
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Proof. For x ∈ G \N let Bδx(x) be according Lemma 4.1 and set

V ∗ :=
⋃

x∈G\N
Bδx(x)

Then V ∗ ⊂ Rn is open, V ∗ ⊂ u(G) and V := u−1(V ∗) ⊂ G is open too. Clearly by
construction, G \N ⊂ V and because u is injective, u(G) \N∗ ⊂ V ∗.

Lemma 4.3 For each x0 ∈ G \N there is δ = δ(x0, G, N, u) > 0 such that

i) Bδ(u(x0)) ⊂ u(G)

ii) sgn detn u′(x) = sgn detn u′(x0) for all x ∈ u−1 (Bδ(u(x0)) \N)

iii) for every f ∈ C0
c (Rn) with supp f ⊂ Bδ(u(x0))

(4.8)

∫

u(G)

f(y)dy =

∫

G

f(u(x))| detn u′(x)|dx

Proof.

a) We proceed similarly as in the proof of Lemma 4.1. We choose ε > 0 and
δ = L1ε

4
as there. Now we consider

u(x, t) := tu(x) + (1− t) [u(x0) + u′(x0)(x− x0)] ∀(x, t) ∈ Bε(x0)× I.

Again hypotheses i) and ii) of Theorem 2.5 hold with G replaced by Bε(x0).
By (4.1)

u(x, t) = u(x0) + u′(x0)(x− x0) + tϕ(x− x0).

For ‖x− x0‖ = ε, t ∈ I, by (1.29) and (4.2)

(4.9) ‖u(x, t)− u(x0)‖ ≥ L1‖x− x0‖ − L1

4
‖x− x0‖ =

3

4
L1 · ε = 3δ

Let now

U ′ :=
{
y ∈ Rn

∣∣‖y − u(x0)‖ > δ
}

By (4.9)

u(x, t) ∈ U ′ for (x, t) ∈ ∂Bε(x0)× I

and by Theorem 2.5 for all f ∈ C0
c (Rn) with supp f ∈ Bδ(u(x0))
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(4.10)∫

Bε(x0)

f(u(x)) detn u′(x)dx =

∫

Bε(x0)

f(u(x0) + u′(x0)(x− x0)) detn u′(x0)dx

b) Let for x ∈ Bε(x0) \N

σ := sgn detn u′(x0)

By Theorem 3.2 and (4.9), (4.10) for f ∈ C0
c (Bδ (u(x0)))

∫

Bδ(u(x0))

f(y)dy =

∫

Rn

f(y)dy =

∫

Rn

f(u(x0) + u′(x0)(x− x0))| detn u′(x0)|dx

= σ

∫

Bε(x0)

f(u(x0) + u′(x0)(x− x0)) detn u′(x0)dx(4.11)

= σ

∫

Bε(x0)

f(u(x)) detn u′(x)dx

c) Let Ω := u−1 (Bδ (u(x0))). Ω is open, Ω ⊂ Bε(x0). Let h ∈ C0
c (Ω). Then

u(supp h) ⊂ Bδ(u(x0)) is compact and with

f(y) := h(u−1(y))

we see supp f = u(supp h) and therefore f ∈ C0
c (Bδ(u(x0)) and it is admissible

for (4.11). Suppose in addition, that h ≥ 0, then f ≥ 0 too. We consider the
case σ = 1. Then by (4.11)

(4.12) 0 ≤
∫

Bε(x0)

f(u(x)) detn u′(x)dx =

∫

Ω

h(x) detn u′(x)dx.

This is true for all h ∈ C0
c (Ω), h ≥ 0. Let

M := {x ∈ Ω \N : detn u′(x) ≤ 0} .

Then M is measurable, |M | ≤ |Bε(x0)| < ∞. Hence the characteristic function
χM of M is integrable. Then there is a sequence (hk) ⊂ C0

c (Ω) such that∫
Ω

|χM − hk|dx → 0. Clearly |hk| ∈ C0
c (Ω) and

∫

Ω

|χM − |hk||dx =

∫

Ω

||χM | − |hk||dx ≤
∫

Ω

|χM − hk|dx → 0.
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Since | det u′(x)| ≤ C ∀x ∈ Ω,

∫

Ω

|χM(x)− |hk(x)|| | detn u′(x)|dx ≤

≤ C

∫

Ω

|χM(x)− |hk(x)|| dx.

By (4.12)

∫

Ω\N

χM(x) detn u′(x)dx = lim
k→∞

∫

Ω\N

|hk(x)| detn u′(x)dx ≥ 0

On the other hand χM(x) detn u′(x) ≤ 0, for x ∈ Ω \ N . Therefore |M | = 0
and detn u′(x) > 0 a. e. in Ω\N , σ ·detn u′(x) = | detn u′(x)| and (4.7) follows
from (4.11). The case σ = −1 is treated analogously.

Lemma 4.4 Let G ⊂ Rn be in addition connected. Then either detn u′(x) > 0 or
detn u′(x) < 0 ∀x ∈ G \N .

Proof. Let xi ∈ G \ N(i = 0, 1) x0 6= x1. Then there is a continuous curve
γ : I → G such that γ(i) = xi(i = 0, 1). Let

γ̄ :=
{
γ(t)

∣∣t ∈ [0, 1]
}

.

Then γ̄ ⊂ G is compact, hence d := dist(γ̄, ∂G) > 0 (if ∂G 6= φ; set d := 1 if G =
Rn). We choose δi > 0 according Lemma 4.3 such that Bδi

(xi) ⊂ u(G) (i = 0, 1).
Let

δ :=
1

2
min

(
δ1, δ2, d,

‖x0 − x1‖
2

)
> 0

Then

G′ :=
{
x ∈ G

∣∣ dist(x, γ̄) < δ
}

is a bounded open set subset of G, G′ ⊂⊂ G. We set

u(x, t) := u(x)− u(γ(t)) for (x, t) ∈ Ḡ′ × I.

Clearly, ∂G′ ⊂ {
x ∈ G

∣∣ dist(x, γ̄) = δ
}
. By compactness of γ̄ for every x ∈ ∂G′

there exists t0 ∈ I such that

‖x− γ(t0)‖ = δ = inf
{‖x− γ(t)‖

∣∣t ∈ I
}

.

Then for t ∈ I, x ∈ ∂G′

(4.13) ‖u(x, t)‖ = ‖u(x)− u(γ(t))‖ ≥ L1‖x− γ(t)‖ ≥ L1‖x− γ(t0)‖ = L1 · δ
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Let

U :=

{
y ∈ Rn

∣∣ dist(y, u(γ̄)) > L1
δ

2

}

By (4.13) u(∂G′ × I) ⊂ U . Let now ϕ ∈ C0
c (Rn), supp ϕ ⊂ Bδ(0) and

∫

Bδ(0)

ϕ(y)dy = 1.

By Theorem 2.5 (applied to G′)
∫

G′

ϕ(u(x, 0)) detn u′(x, 0)dx =

∫

G′

ϕ(u(x, 1)) detn u′(x, 1)dx

that is

∫

G′

ϕ(u(x)− u(x0)) detn u′(x)dx =

∫

G′

ϕ(u(x)− u(x1)) detn u′(x)dx

Since ϕ(u(x)−u(xi)) vanishes for x /∈ u−1(Bδ(u(xi)), the domain of integration may
be replaced by these sets respectively. According Lemma 4.3 ii)

sgn detn u′(x) = sgn detn u′(xi) =: σi ∀x ∈ u−1(Bδu(xi)) \N, i = 1, 2

Therefore

σ0

∫

u−1(Bδ(u(xo)))

ϕ(u(x)− u(x0))| detn u′(x)|dx =

= σ1

∫

u−1(Bδ(u(x1)))

ϕ(u(x)− u(x1))| detn u′(x)|dx

We apply Lemma 4.3 to each of this integrals and to the maps vi(x) := u(x)−u(xi)
and we get

σ0

∫

Bδ(0)

ϕ(y)dy = σ1

∫

Bδ(0)

ϕ(y)dy

and therefore σ0 = σ1. Since xi ∈ G \N (i = 0, 1) had been arbitrary (x0 6= x1), the
claim is proved.

The next result is a special case of a famous theorem by L. E. J. Brouwer. This
theorem guarantees that a continuous, locally injective mapping f : G → Rn, where
G ⊂ Rn is open, is an open mapping, i. g. it maps open subsets U ⊂ G onto open
subsets f(U) ⊂ Rn. Especially, f(G) is open. Here, locally injective means that to
every x ∈ G there exists a neighborhood Ux ⊂ G such that f

∣∣
Ux

: Ux → f(Ux) is

injective (see e.g. [Dei], Theorem 4.3).
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Clearly, locally bi-Lipschitz mappings are continuous and locally injective.

Theorem 4.5 Let G ⊂ Rn be open and let u : G → Rn be a locally bi-Lipschitz
mapping. Then u is open.

Proof.

a) We prove first that for each x ∈ G there is εx > 0 such that Bεx(x) ⊂ G and
there is δx > 0 such that Bδx(u(x)) ⊂ u(Bεx(x)). Without loss of generality
let x0 = 0 ∈ G and u(0) = 0. Otherwise consider

ũ(x) := u(x− x0)− u(x0)

for x ∈ G̃ :=
{
y + x0

∣∣y ∈ G
}
. Then there is ε > 0 such that Bε(0) ⊂ G and

u
∣∣
Bε(0)

is bi-Lipschitz (compare Definition 1.3, part 4). Clearly, by continuity,

there is a unique bi-Lipschitz extension to Bε(0) : 0 < L1 ≤ L2

(4.14) L1‖x− x′‖ ≤ ‖u(x)− u(x′)‖ ≤ L2‖x− x′‖ ∀x, x′ ∈ Bε(0)

Consider y ∈ Bδ(0), where δ := L1ε
2

> 0 and consider

u(x, t) := u(x)− ty for (x, t) ∈ Bε(0)× I.

Then for (x, t) ∈ ∂Bε(0)× I by (4.14) and u(0) = 0

(4.15) ‖u(x, t)‖ ≥ ‖u(x)‖ − ‖y‖ ≥ L1‖x‖ − ‖y‖ > L1 · ε− L1ε

2
=

L1ε

2
= δ

Suppose that y /∈ u
(
Bε(0)

)
. Then

σ := min
{
‖u(x)− y‖

∣∣x ∈ Bε(0)
}

> 0.

Clearly,

σ ≤ ‖u(0)− y‖ = ‖y‖ < δ =
L1ε

2
.

Consider again ϕ defined by (4.7) and f(z) := ϕ(‖z‖) for z ∈ Rn. Let

U :=
{
y ∈ Rn

∣∣‖y‖ > δ
}

.

By (4.15) u(∂Bε(0) × I) ⊂ U , f ∈ C0
c (Rn) and f

∣∣
U

= 0. By Theorem 2.5 we
see
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(4.16)

∫

Bε(0)

ϕ(‖u(x)− y‖) det u′(x) =

∫

Bε(0)

ϕ(‖u(x)‖) det u′(x)dx

Then ϕ(‖u(x) − y‖) = 0 ∀x ∈ Bε(0) and the left integral vanishes. On the
other hand u(0) = 0, therefore ϕ(‖u(0)‖) = σ

2
. Then there is 0 < ε′ < ε such

that

ϕ(‖u(x)‖) ≥ σ

4
> 0 ∀x ∈ Bε′(0).

Since Bε(0) is a domain, by Lemma 4.4 detn u′(x) is of constant sign on
Bε(0) \N . Without loss of generality let sgn detn u′(x) = 1 for x ∈ Bε(0) \N .
By (4.16)

(4.17) 0 =

∫

Bε(0)

ϕ(‖u(x)‖) detn u′(x)dx ≥ σ

4

∫

Bε′ (0)

detn u′(x)dx.

Because of the first inequality in (1.19), detn u′(x) 6= 0 ∀x ∈ Bε′(0) \ N . If
we suppose

∫
Bε′ (0)

detn u′(x)dx = 0, we would conclude (observe detn u′(x) ≥
0 in Bε′(0)) detn u′(x) = 0 a. e. in Bε′(0), a contradiction. Therefore∫
Bε′ (0)

detn u′(x)dx > 0 and we get by (4.17) a contradiction. Since y ∈ Bδ(0)

was arbitrary we see Bδ(0) ⊂ Bδ(0) ⊂ u(Bε(x)).

b) By part a) of proof, for every x ∈ G there is δx > 0 such that Bδx(u(x)) ⊂ u(G).
Then

⋃
x∈G

Bδx(u(x)) is open in Rn and clearly

u(G) ⊂
⋃
x∈G

Bδx(u(x)) ⊂ u(G).

Therefore u(G) is open in Rn.

c) If G′ ⊂ G is any open set, then we apply parts a) and b) of proof to G′ in
place of G and we see by b) that u(G′) is open in Rn.

Theorem 4.6 Let G ⊂ Rn be open and let u : G → Rn be a locally bi-Lipschitz
mapping. Then

i) G∗ := u(G) is open

ii) For every x0 ∈ G there are open neighborhoods Ux0 ⊂ G and Vy0 ⊂ G∗(y0 :=
u(x0)) such that u

∣∣
Ux0

: Ux0 → Vy0 is bijective and there is a set M ⊂ Vy0,

|M | = 0, such that

v : Vy0 → Ux0 , v :=
(
u
∣∣
Ux0

)−1

is differentiable on Vy0 \M .
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Proof. Due to Theorem 4.5, G∗ is open. There is a neighborhood Ux0 such that
u
∣∣
Ux0

: Ux0 → Rn is a bi-Lipschitz mapping, hence u : Ux0 → Vy0 := u(Ux0) is

bijective and Vy0 is open by Theorem 4.5. Due to Rademacher’s theorem (Theorem
1.4) there is M ⊂ Vy0 , |M | = 0 such that v : Vy0 \M → Uy0 is differentiable.

Theorem 4.6 is a generalization of the classical theorem on local diffeomorphisms.

Theorem 4.7 Let G ⊂ Rn be open and let u : G → Rn be an injective, locally
bi-Lipschitz mapping. Then

i) G∗ := u(G) is open,
u : G → G∗ is bijective and differentiable on G \N , |N | = 0.

ii) There is a set M ⊂ G∗, |M | = 0 such that v := u−1 is differentiable on G∗\M .

Proof. By Theorem 4.5, G∗ is open and because of global injectivity, u : G → G∗

is bijective. Let (G∗
k) ⊂ G∗ be an exhausting sequence for G∗:

G∗
k ⊂⊂ G∗

k+1 ⊂⊂ G∗ ∀k ∈ N,

∞⋃

k=1

G∗
k = G∗

Due to Theorem 4.6 for each y0 ∈ G∗
k there is an open Vy0 and a set My0 , |My0| = 0

such that v
∣∣
Vy0\M

is differentiable. By compactness of G∗
k there are y

(k)
i ∈ G∗

k

(i = 1, . . . , mk) such that G∗
k ⊂

mk⋃
i=1

V
y
(k)
i

, M
(k)
i ⊂ V

(k)
yi , |M (k)

i | = 0 and v
∣∣
V

(k)
yi

\M(k)
i

is

differentiable. Then v
∣∣
G∗k\Mk

is differentiable, where Mk :=
mk⋃
i=1

M
(k)
i , |Mk| = 0. Let

M :=
∞⋃

k=1

Mk ⊂ G∗, |M | = 0. Then v is differentiable on G∗ \M .

As a further corollary we derive

Theorem 4.8 (implicit function theorem) Let m,n ∈ N and let Um ⊂ Rm, Un ⊂ Rn

be open sets, U := Um × Un ⊂ Rn+m. Let

f : U → Rn

and suppose that

i) there is a ∈ Um, b ∈ Un such that

f(a, b) = 0

ii) there exists L > 0 such that

‖f(x, y)−f(x′, y′)‖n ≤ L(‖x−x′‖m+‖y−y′‖n) ∀x, x′ ∈ Um, ∀y, y′ ∈ Un
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iii) there exists K > 0 such that

‖f(x, y)− f(x, y′)‖n ≥ K‖y − y′‖n ∀y, y′ ∈ Un ∀x ∈ Um.

Then there exists an open neighborhood Vm ⊂ Um of a and a Lipschitz mapping

g : Vm → Rn

such that

10 (x, g(x)) ∈ U ∀x ∈ Vm

20 there is a subset Nm ⊂ Vm, |Nm| = 0 and g is differentiable on Vm \Nm

30 g(a) = b and f(x, g(x)) = 0 ∀x ∈ Vm

40
{
(x, y) ∈ Vm × Un

∣∣f(x, y) = 0
}

=
{
(x, g(x))

∣∣x ∈ Vm

}

Proof.

a) Let h : U → Rm+n be defined by

hi(x, y) := αxi for i = 1, . . . , m

(x, y) ∈ Um × Un = U

hm+k(x, y) := fk(x, y) for k = 1, . . . , n

where α =
[

1
2
K2 + L2

] 1
2 > 0.

For (x, y), (x′, y′) ∈ U

‖f(x, y)− f(x′, y′)‖n ≥
∣∣‖f(x, y)− f(x, y′)‖n − ‖f(x, y′)− f(x′, y′)‖n

∣∣.

Then by ii) and iii) (for ε > 0: 2|a · b| ≤ εa2 + ε−1b2; choose ε := 1
2
)

‖f(x, y)− f(x′, y′)‖2
n ≥ (‖f(x, y)− f(x, y′)‖n − ‖f(x, y′)− f(x, y′)‖n)

2

≥ 1

2
‖f(x, y)− f(x, y′)‖2

n − ‖f(x, y′)− f(x, y′)‖2
n

≥ 1

2
K2‖y − y′‖2

n − L2‖x− x′‖2
m

Hence

‖h(x, y)− h(x′, y′)‖2
n+m = α2‖x− x′‖2

m + ‖f(x, y)− f(x′, y′)‖2
n

≥ (α2 − L2)‖x− x′‖2
m +

1

2
K2‖y − y′‖2

n

≥ 1

2
K2‖(x, y)− (x′, y′)‖2

n+m
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and therefore

‖h(x, y)− h(x′, y′)‖n+m ≥ L1‖(x, y)− (x′, y′)‖n+m, ∀(x, y), (x′, y′) ∈ U

(4.18)

L1 :=
1

2
K ·

√
2 > 0.

‖h(x, y)− h(x′, y′)‖n+m ≤ α‖x− x′‖m + L(‖x− x′‖m + ‖y − y′‖m)
(4.19)

≤ L2‖(x, y)− (x′, y′)‖n+m ∀(x, y), (x′, y′) ∈ U

where L2 := α + 2L > 0.

Because of (4.18), (4.19) h : U → Rn is a bi-Lipschitz mapping and by Theorem
4.7 U∗ := h(U) is open. Let

v := h−1 : U∗ → U

and by (4.18), (4.19) for z ∈ Rn, ω ∈ Rm, (z, ω) ∈ U∗

L−1
2 ‖(z, ω)− (z′, ω′)‖n+m ≤ ‖v(z, ω)− v(z′, ω′)‖n+m

(4.20)

≤ L−1
1 ‖(z, ω)− (z′, ω′)‖n+m ∀(z, ω), (z′, ω′) ∈ U∗.

b) Since h(a, b) = (αa, 0) ∈ U∗ and U∗ is open, there is δ > 0 such that

Bδ(αa, 0) =
{
(z, ω) ∈ Rn+m

∣∣‖(z, ω)− (αa, 0)‖n+m < δ
} ⊂ U∗.

Let

Bm :=

{
z ∈ Rm

∣∣‖z − αa‖m <
δ√
2

}

Bn :=

{
ω ∈ Rn

∣∣‖ω‖n <
δ

2

}

Obviously (αa, 0) ∈ Bm ×Bn ⊂ U∗. Let

Vm :=

{
x ∈ Rm

∣∣‖x− a‖m <
δ

α
√

2

}

Observe that x ∈ Vm if and only if αx ∈ Bm. We write v =
(
ṽ, ˜̃v

)
, where

ṽ := (v1, . . . , vm), ˜̃v := (vm+1, . . . , vm+n).
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(z, ω) ∈ U∗ if and only if there is a unique (x, y) ∈ U such that

(z, ω) = h(x, y) = (αx, f(x, y)).

Therefore z = αx, ω = f(x, y), hence

ṽ(z, ω) = x, ˜̃v(z, ω) = y

Since h(a, b) = (αa, f(a, b)) = (αa, 0),

˜̃v(αa, 0) = b.

If (x, ω) ∈ Vm ×Bn, then (αx, ω) ∈ Bm ×Bn and

(αx, ω) = h(v(αx, ω)) = (αx, f(x, ˜̃v(αx, ω)),

hence

ω = f(x, ˜̃v(αx, ω))

If ω = 0, 0 ∈ Bn, x ∈ Vm, then

(
x, ˜̃v(αx, 0)

) ∈ U.

We set

(4.21) g(x) := ˜̃v(αx, 0) for x ∈ Vm

g is continuous, (x, g(x)) ∈ U and

0 = f(x, g(x)) ∀x ∈ Vm.

Further, g(a) = ˜̃v(αa, 0) = b. If (x, y) ∈ Vm × Un ⊂ U and f(x, y) = 0, then
h(x, y) = (αx, 0) ∈ U∗, therefore v(αx, 0) = (x, ˜̃v(αx, 0)) = (x, g(x)). Then
trivially 40 is true. By (4.20) for x, x′ ∈ Vm

‖g(x)− g(x′)‖n = ‖˜̃v(αx, 0)− ˜̃v(αx′, 0)‖n ≤
≤ ‖v(αx, 0)− v(αx′, 0)‖n+m ≤ L−1

1 ‖α(x− x′)‖m =

= L−1
1 α‖x− x′‖m

By Rademacher’s theorem there is Nm ⊂ Vm, |Nm|m = 0, such that g is
differentiable on Vm \Nm.
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Corollary 4.9 Let the hypotheses of Theorem 4.8 hold true. Then there is N ⊂
Rn+m, |N |n+m = 0 such that f is differentiable on U \N . For (x, y) ∈ U \N let

(Dyf)(x, y) =




∂f1

∂y1
(x, y) · · · ∂f1

∂yn
(x, y)

...
...

∂fn

∂y1
(x, y) · · · ∂fn

∂yn
(x, y)




Then

(4.22) K‖η‖n ≤ ‖(Dyf)(x, y)η‖n ≤ L‖η‖n ∀η ∈ Rn, ∀(x, y) ∈ U \N

and

rank (Dyf)(x, y) = n ∀(x, y) ∈ U \N.

Proof. The proof is completely analogous to the proof of Theorem 1.5

Clearly f and g are a.e. differentiable and f(x, g(x)) = 0 ∀x ∈ Vm too. At points
x ∈ Vm \ Nm such that (x, g(x)) /∈ N ⊂ Rn+m (N denoting the set where f is not
differentiable), then the chain rule may be applied to f(x, g(x)). But it may happen
that (x, g(x)) ∈ N ∀x ∈ Vm. A simple example:
Let U :=

{
(x, y) ∈ R2

∣∣|x| < 1
2
, |y| < 1

}

f(x, y) :=





(1 + x)y for y ≥ 0

(x, y) ∈ U

(1 + x)2y for y < 0

Then f(0, 0) = 0,

‖f(x, y)− f(x′, y′)‖1 ≤ 3(‖x− x′‖1 + ‖y − y′‖1)

‖f(x, y)− f(x, y′)‖1 ≥ 1

2
‖y − y′‖1 ∀|x| < 1

2
∀|y| < 1.

All hypotheses of Theorem 4.8 hold true. Let Vm :=
{
x ∈ R

∣∣|x| < 1
2

}
, g : Vm → R,

g(x) := 0. Then f(x, g(x)) = 0 ∀x ∈ Vm. The set where f is not differentiable is

N :=
{
(x, y) ∈ U

∣∣y = 0
} ⊂ R2, |N |2 = 0

and
{
(x, g(x))

∣∣x ∈ Vm

}
= N . The chain rule is not applicable.

5 The change of variables formula for (locally) bi-

Lipschitz mappings.

We assume firstly

(A.1) Let G ⊂ Rn be an open set
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(A.2) Let u : G → Rn be a bi-Lipschitz mapping. Let N ⊂ G, |N | = 0, be the set
where u is not differentiable

For x ∈ G we write again

u′(x) :=

{
(Diuk(x))i,k=1,...,n if x ∈ G \N

0 if x ∈ N

Lemma 5.1 Assume (A.1) and (A.2). Then u(G) is open and for every x0 ∈ G\N
there is δ = δ(x0, G,N) > 0 such that

i) Bδ(u(x0)) ⊂ u(G)

ii) for every f ∈ L1(Rn) such that f(y) = 0 for y ∈ Rn \Bδ(u(x0))
f(y(.))| detn u′(.)| ∈ L1(G) and

(5.1)

∫

u(G)

f(y)dy =

∫

G

f(y(x))| detn u′(x)|dx

Proof.

i) By Theorem 4.5 u(G) is open and therefore there exists δ > 0 sucht that i)
holds true. Assume in addition f ≥ 0 and f ∈ L∞(Rn). For k ∈ N, k ≥ 2 let

δk :=

(
1− 1

k

)
δ

and let χk denote the characteristic function of Bδk
(u(x0)), let fk := f · χk.

For k ∈ N fixed, let (%ν) be a sequence with 0 < %ν < 1
2
(δ − δk), %ν → 0, and

consider the mollified functions (fk)%ν ∈ C0
c (Rn), supp(fk)%ν ⊂ Bδ(u(x0))

∫

Rn

|fk − (fk)%ν | dy → 0 (u →∞).

There is a subsequence (again denoted by %ν) such that (fk)%ν → fk a. e. in
Rn. Therefore there is a set M∗ ⊂ Bδ(u(x0)), |M∗|n = 0 and (fk)%ν (y) → fk(y)
for y ∈ Bδ(u(x0)) \M∗. Let v := u−1 : u(G) → G. By Lemma 1.7 with

M := v(M∗) ⊂ u−1(Bδ(u(x0)), |M |n = 0.

For x ∈ u−1 (Bδ(u(x0))) \M

(5.2) (fk)%ν (u(x)) → (fk)(u(x)) (ν →∞)

By Lemma 4.3 for all ν ∈ N
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(5.3)

∫

u(G)

(fk)%ν (y)dy =

∫

G

(fk)%ν (u(x))| detn u′(x)|dx

Since |(fk)%ν (y)| ≤ ‖f‖L∞(Rn), by Lebesgue’s theorem the left hand side of
(5.3) tends to

∫
u(G)

fk(y)dy. By (5.2) fk ◦ u is measurable and because of

| detn u′(x)| ≤ n!Ln
2

again by Lebesgue’s theorem the right hand side of (5.3) converges too. There-
fore (5.1) holds with f replaced by fk. Now

∫
G

fk(y)dy → ∫
G

f(y)dy by Levi’s

theorem. Since fk(u(x)) → f(u(x)) ∀x ∈ u−1 (Bδ(u(x0))), (k → ∞) we see
the measurability of f ◦ u and again by Levi’s theorem

∫

G

fk(u(x))| detn u′(x)|dx →
∫

G

f(u(x))| detn u′(x)|dx.

ii) If 0 ≤ f ∈ L1 (Bδ(u(x0))), then we consider for j ∈ N

f (j)(y) :=

{
f(y) if f(y) ≤ j

j if f(y) > j

By part i) of proof the assertion is true for all f (j). Again using at both sides
of (5.1) Levi’s theorem, we finally prove the Lemma for 0 ≤ f ∈ L1 (Bδ(x0)).

iii) If f ∈ L1 (Bδ(u(x0))), apply ii) to 0 ≤ f+, f− ∈ L1 (Bδ(u(x0))), f = f+ − f−.

Theorem 5.2 Assume (A.1) and (A.2). Then u(G) is open and for each f ∈
L1(u(G))

10 (f ◦ u)| detn u′(.)| ∈ L1(G)

20

∫

u(G)

f(y)dy =

∫

G

f(u(x))| detn u′(x)|dx.(5.4)

Proof.

i) G∗ := u(G) ⊂ Rn is open by Theorem 4.5 and by Lemma 1.7 N∗ := u(N) has
n-dimensional measure zero. Therefore, for each k ∈ N there exists an open
set Ok ⊂ Rn such that N∗ ⊂ Ok and |Ok|n ≤ 1

k
. Let

U∗
k :=

k⋂
j=1

Oj ∩G∗, |U∗
k |n ≤ |Ok|n ≤ 1

k
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Then U∗
k is open, N∗ ⊂ U∗

k ⊂ G∗. Finally let U∗ :=
∞⋂

k=1

U∗
k . Then

N∗ ⊂ U∗ ⊂ G∗, |U∗|n = 0.

Let χk resp. λ denote the characteristic function for G∗ \ U∗
k resp. G∗ \ U∗.

Then λk(y) → λ(y) ∀y ∈ G∗ (k →∞). Let U := u−1(U∗) = v(U∗), if v := u−1

denotes the inverse mapping. Since v is Lipschitz, |U |n = 0.

ii) Let G∗
1 ⊂⊂ G∗ and let 0 ≤ f ∈ L1(G∗

1). We extend f by zero to Rn. Since U∗
k

is open, the set

Kk := G∗
1 ∩ (Rn \ U∗

k ) ⊂ G∗ \N∗

is compact and fχk vanishes on Rn\Kk. If y ∈ Kk, there is x ∈ G\N such that
u(x) = y. According Lemma 5.1 we choose δx > 0 such that Bδx(u(x)) ⊂ u(G)
and (5.1) is true for f ∈ L1 (Bδx(u(x))). Then

{
Bδx(u(x))

∣∣x ∈ u−1(Kk)
}

forms an open covering of the compact set Kk. Then there is mk ∈ N such
that

Kk ⊂
mk⋃
i=1

Bi, Bi = Bδxi
(u(xi)), xi ∈ u−1(Kk).

Let χi denote the characteristic function of Bi.

Then for y ∈ Kk :
mk∑
j=1

χj(y) ≥ 1. We set

ϕi(y) :=
χi(y)

mk∑
j=1

χj(y)

Then ϕi(y) = 0 for y /∈ Bi,
mk∑
i=1

ϕi(y) = 1 ∀y ∈ Kk. Further, fχG∗1χkϕi ∈
L1(Rn) and it vanishes on Rn \Bi. By Lemma 5.1

fχG∗1χkϕi ◦ u| det′n u(.)| ∈ L1(G)

and (5.4) is true for all i = 1, . . . , mk with f replaced by fχkϕi. If we observe
that

mk∑
i=1

fχkϕi = fχk

after summation we get
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(5.5)

∫

u(G)

f(y)χG∗1 · χk(y)dy =

∫

G

f(u(x))χG∗1(u(x))χk(u(x))| detn u′(x)|dx.

The sequence fχG∗1χk is monotonically increasing and it converges pointwise
to

fχG∗1χ = fχG∗1\U∗ ≤ f ∈ L1(G∗).

By Levi’s theorem the left hand side of (5.5) tends to
∫

u(G)

f(y)χG∗1\U∗(y)dy.

For x ∈ u−1(G∗
1 \ U∗) we see

f(u(x))χG∗1(u(x))χk(u(x)) → f(u(x))χG∗1\U∗(u(x)).

monotonically for k → ∞. If x /∈ u−1(G∗
1 \ U∗) all these numbers are zero.

Again by Levi’s theorem the integrals at the right hand side converge and
finally by (5.4)

(5.6)

∫

u(G)

f(y)χG∗1\U∗(y)dy =

∫

u(G)

f(u(x))χG∗1\U∗(u(x))| det
n

u′(x)|dx.

Since |U∗|n = 0, χG∗1\U∗(y) = χG∗1(y) for almost all y ∈ Rn, therefore

∫

u(G)

f(y)χG∗1\U∗(y)dy =

∫

u(G)

f(y)χG∗1(y)dy.

Let G1 := u−1(G∗
1), U := u−1(U∗). Then

χG∗1\U∗(u(x)) = χG1\U1(x) and χU∗(u(x)) = χU(x).

Since χG1\U1 = χG1 a. e. in G,

∫

G

f(u(x))χG∗1\U∗(u(x))| detn u′(x)|dx =

∫

G

f(u(x))χG∗1(u(x)| detn u′(x)|dx

Finally we get for G∗
1 ⊂⊂ G∗ and 0 ≤ f ∈ L1(Rn), f(y) = 0 for y /∈ G∗

1 identity
(5.4) from (5.6).
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iii) Let now 0 ≤ f ∈ L1(G∗). Let (G∗
j) be an exhausting sequence for G∗:

G∗
j ⊂⊂ G∗

j+1 ⊂⊂ G ∀j ∈ N,

∞⋃
j=1

G∗
j = G∗.

Let χj denote the characteristic functions of G∗
j . By part ii) of proof

[(fχj) ◦ u] | detn u′(.)| ∈ L1(G)

and formula (5.4) is valid for fχj in place of f . Since (fχj) is monotonically
increasing on u(G), (fχj)(y) → f(y) ∀y ∈ u(G),

0 ≤
∫

u(G)

f(y)χj(y)dy ≤
∫

u(G)

f(y)dy ∀j ∈ N,

∫

u(G)

f(y)χj(y)dy →
∫

u(G)

f(y)dy.

On the other hand

f(u(x))χj(u(x)) → f(u(x)) (j →∞) ∀x ∈ G.

Again by Levi’s theorem and (5.4) for fχj we see i) and ii) in case of 0 ≤ f ∈
L1(u(G)).

iv) If f ∈ L1(u(G)) is arbitrary, we decompose f = f1−f2 with 0 ≤ fi ∈ L1(u(G))
and we apply part iii) of proof separately to fi.

Theorem 5.3 Let G ⊂ Rn be an open set and let u : G → Rn be injective and
locally bi-Lipschitz. Then u(G) is open and for each f ∈ L1(G)

10 (f ◦ u)| detn u′(.)| ∈ L1(G)

20
∫

u(G)

f(y)dy =
∫
G

f(u(x))| detn u′(x)|dx

Proof.

i) By Theorem 4.5 the mapping u is open. Let (Gj) be an exhausting sequence
for G,

Gj ⊂⊂ Gj+1 ⊂⊂ G ∀j ∈ N,

∞⋃
j=1

Gj = G.

Let G∗
j := u(Gj) for j ∈ N, G∗ = u(G). Then G∗

j is open, G∗
j ⊂⊂ G∗

j+1 ⊂⊂ G∗,
∞⋃

j=1

G∗
j = G∗. Let χj denote the characteristic function of G∗

j . Clearly, χj ◦ u

is the characteristic function of Gj.
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ii) By Theorem 1.4 b) u
∣∣
Gj

: Gj → Rn is a bi-Lipschitz mapping. Let now

f ∈ L1(u(G)) and f ≥ 0. By Theorem 5.2 (applied to Gj)

∫

G∗j

f(y)dy =

∫

Gj

f(u(x))| detn u′(x)|dx

Using the characteristic functions we rewrite this identity

(5.7)

∫

G∗

f(y)χj(y)dy =

∫

G

f(u(x))χj(u(x)| detn u′(x)|dx.

The sequence fχj is monotonically increasing and tends pointwise to f .

(5.8) 0 ≤
∫

G∗

f(y)χj(y)dy ≤
∫

G∗

f(y)dy

By Levi’s theorem,

(5.9) lim
j→∞

∫

G∗

f(y)χj(y)dy =

∫

G∗

f(y)dy.

Similarly the sequence (f ◦ u)(χj ◦ u)| detn u′(.)| is monotonically increasing
and it converges to (f ◦ u)| detn u′(.)| in G \N , where N ⊂ G denotes the set
such that |N |n = 0 and u is differentiable in G \ N . Because of (5.7), (5.8)
the sequence of the integrals extended over G \N remains bounded. Again by
Levi’s theorem, we see assertion 10. Further,

lim
j→∞

∫

G\N

f(u(x))χj(u(x))| detn u′(x)dx =

∫

G\N

f(u(x))| detn u′(x)|dx =

=

∫

G

f(u(x))| detn u′(x)|

and finally because of (5.7) and (5.9) we see 20.

iii) If f ∈ L1(u(G)) is arbitrary, we split

f = f+ − f−, 0 ≤ f+, f− ∈ L1(u(G))

and apply part ii) of proof to f+ and f−. By additivity of the integral, 10 and
20 follows for f .
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6 Some further applications of the homotopy the-

orem

6.1 Brouwer’s fixed point theorem

Let

B := B1(0) =
{
x ∈ Rn

∣∣‖x‖ < 1
}

.

Theorem 6.1 Every continuous mapping u : B̄ → B̄ has at least one fixed point.

Proof.

i) First we prove that it suffices to consider those continuous u : B̄ → B̄ with
the additional property u ∈ C∞(B; B̄). Let ū : Rn → B̄ be defined by

ū(x) :=

{
u(x) for x ∈ B̄

u
(

x
‖x‖

)
for x ∈ Rn \ B̄

Obviously ū(x) ∈ B̄ for all x ∈ Rn and ū is continuous in B ∪ (Rn \ B̄). If
(xk) ⊂ Rn is a sequence such that xk → x0 ∈ ∂B, then we may assume xk 6= 0
for all k. Let ξk := xk

‖xk‖ . Then ξk → x0

‖x0‖ = x0,

ū(x0) = u(x0) = lim
ν→∞

u(ξ0) = lim
ν→∞

ū(xν)

proving continuity of ū for x0 ∈ ∂B. For % > 0 consider the mollified functions

ūi%(x) =

∫

Rn

ω%(x− y)ūi(y)dy, i = 1, . . . , n, x ∈ Rn.

ū% := (ū1%, . . . , ūn%) ∈ C∞(Rn;Rn). Clearly, ū% → ū = u uniformly in B̄. By
Schwarz’ inequality

|ūi%(x)| ≤
∣∣∣∣∣∣

∫

Rn

ω%(x− y)
1
2 ω%(x− y)

1
2 ūi(y)dy

∣∣∣∣∣∣

≤



∫

Rn

ω%(x− y)dy




1
2



∫

Rn

ω%(x− y) · ūi(y)2dy




1
2

Since
∫
Rn

ω%(x− y)dy = 1 and ‖ū(y)‖ ≤ 1,
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‖ū%(x)‖2 =
n∑

i=1

|ūi%(x)|2 ≤
∫

Rn

ω%(x− y)
n∑

i=1

ūi(y)2dy

≤
∫

Rn

ω%(x− y)dy = 1,

hence ū% ∈ C∞(Rn; B̄). Let (%k) be a sequence with %k > 0 for all k and
%k → 0. Let

ū(k) := ū%k
.

Suppose that for each k ∈ N there is xk ∈ B̄ such that ū(k)(xk) = xk. Then
there is a subsequence (again denoted by (xk)) and x0 ∈ B̄ such that xk → x0.
Since ū(k) → ū = u uniformly,

‖u(xk)− ū(k)(xk)‖ → 0 (k →∞),

hence

u(x0) = u(x0)− u(xk) + u(xk)− ū(k)(xk) + ū(k)(xk)− xk + xk → x0(k →∞),

u(x0) = x0.

ii) Assume now u ∈ C2(B; B̄)∩C0(B̄, B̄) and assume that u(x) 6= x for all x ∈ B̄.
For (x, t) ∈ B̄ × I (I := [0, 1]) we set

(6.1) u(x, t) := x− tu(x).

Then u ∈ C2(B × I;Rn) ∩ C0(B̄ × I,Rn). By assumption u(x) 6= x for x ∈ B̄

‖u(x, 1)‖ = ‖x− u(x)‖ > 0 ∀x ∈ B̄(6.2)

‖u(x, t)‖ ≥ ‖x‖ − t‖u(x)‖ ≥ 1− t > 0 ∀x ∈ ∂B, ∀0 ≤ t < 1.(6.3)

By (6.2), (6.3)

‖u(x, t)‖ > 0 ∀(x, t) ∈ ∂B × I

Therefore

δ1 := min
{‖u(x, t)‖

∣∣(x, t) ∈ ∂B × I
}

> 0.
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Because of (6.2)

δ2 := min
{‖u(x, 1)‖

∣∣x ∈ B̄
}

> 0.

Let δ := 1
2
min(δ1, δ2) > 0. Then

‖u(x, t)‖ > δ ∀(x, t) ∈ ∂B × I(6.4)

‖u(x, 1)‖ > δ ∀x ∈ B̄.(6.5)

Let now G := B, U :=
{
y ∈ Rn

∣∣‖y‖ > δ
}
. By (6.4) u(∂B × I) ⊂ U . Let

f(y) := ωδ/2(y)

where ωδ/2 denotes the mollifier kernel, ωδ/2 ∈ C∞
c (Rn), supp ωδ/2 ⊂ Bδ/2(0),

(6.6) 1 =

∫

Bδ/2

ωδ/2(x)dx =

∫

B

ωδ/2(x)dx.

By Lemma 2.2 we conclude

∫

B

ωδ/2(u(x, 0)) detn u′(x, 0)dx =

∫

B

ωδ/2(u(x, 1) detn u′(x, 1)dx,

hence by (6.1)

(6.7)

∫

B

ωδ/2(x)dx =

∫

B

ωδ/2(u(x, 1)) detn u′(x, 1)dx.

Because of (6.5) we see ωδ/2(u(x, 1)) = 0 ∀x ∈ B and by (6.7)
∫
B

ωδ/2(x)dx = 0,

contradicting (6.6).

6.2 A preparation for the definition of the Brouwer-degree

Theorem 6.2 Let G ⊂ Rn be a bounded open set and let

i) u ∈ C0(Ḡ,Rn) ∩ C2(G;Rn).

ii) Let z ∈ Rn, z /∈ u(∂G), d := dist(z, u(∂G)) > 0.
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iii) Let fi ∈ C0
c (Bd(0)) with

∫

Bd(0)

fi(y)dy = 1 (i = 1, 2)

Then fi(u(x)− z) detn u′(.) ∈ C0
c (G) and

∫

G

f1(u(x)− z) detn u′(x)dx =

∫

G

f2(u(x)− z) detn u′(x)dx

Proof.

i) Since supp fi ⊂ Bd(0), the functions fi(u(.) − z) vanish in a neighborhood of
∂G. Let h := f1 − f2. Then h ∈ C0

c (Bd(0)) and

(6.8)

∫

Bd(0)

h(y)dy = 0

Let 0 < %0 := dist(supp h, ∂Bd(0)). For 0 < % < 1
2
%0, i = 1, . . . , n and

y ∈ Bd(0) let (with ω% by (1.14))

φ
(%)
i (y) := −

1∫

0




∫

Bd(0)

ω%(y − ts)sih(s)ds


 dt

Then φ
(%)
i (y) = 0 if dist(y, ∂Bd(0)) < %, hence φ(%) :=

(
φ

(%)
1 , . . . , φ

(%)
n

)
∈

C∞
c (Bd(0);Rn). Furthermore

div φ(%)(y) = −
1∫

0

∫

Bd(0)

n∑
i=1

(∂iω%)(y − ts)sih(s)dsdt

Since

d

dt
ω%(y − ts) = −

n∑
i=1

(∂iω%)(y − ts)si

we see because of (6.8)
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div φ(%)(y) =

∫

Bd(0)




1∫

0

d

dt
ω%(y − ts)dt


 h(s)ds =

=

∫

Bd(0)

ω%(y − s)h(s)ds− ω%(y)

∫

Bd(0)

h(s)ds

=

∫

Bd(0)

ω%(y − s)h(s)ds = h%(y).

ii) Let A(x) := u′(x), let Ã(x) be the matrix complementary to A(x) (see (1.1),
(1.2)) and let

w(%)(x) := Ã(x)φ(%)(u(x)− z),

(6.9)

w
(%)
i (x) =

n∑
j=1

(−1)i+j detn−1 Aji(x)φ
(%)
j (u(x)− z), i = 1, . . . , n, x ∈ G

Then ω
(%)
i ∈ C1(G) and

∂iω
(%)
i (x) =

n∑
j=1

(−1)i+j∂i [detn−1 Aji(x)] φ
(%)
j (u(x)− z)+

+
n∑

j=1

(−1)i+j detn−1 Aji(x)
n∑

k=1

(∂kφ
(%)
j )(u(x)− z)∂iuk(x)

Hence by the fundamental identity (1.9) and by (1.31)

div ω(%)(x) =
n∑

j=1

(−1)j

[
n∑

i=1

(−1)i∂i detn−1 Aji(x)

]

︸ ︷︷ ︸
=0 by (1.9)

φ
(%)
j (u(x)− z)+

+
n∑

j=1

n∑

k=1

(
∂kφ

(%)
j

)
(u(x)− z)

[
n∑

i=1

(−1)i+j detn−1 Aji(x)∂iuk(x)

]

︸ ︷︷ ︸
=δjk detn u′(x) by (1.31)

=

=
n∑

j=1

(
∂jφ

(%)
j

)
(u(x)− z) · detn u′(x) =

= h%(u(x)− z) detn u′(x).
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Since supp φ(%) ⊂ Bd(0), because of hypothesis ii) ω(%) ∈ C1
c (G), hence by the

trivial form of the Gaussian theorem (1.12)

0 =

∫

G

div ω(%)(x)dx =

∫

G

h%(u(x)− z) detn u′(x)dx =

=

∫

G

f1%(u(x)− z) detn u′(x)dx−
∫

G

f2%(u(x)− z) detn u′(x)dx.

Because of fi% → fi(% → 0, i = 1, 2) uniformly in Bd(0) the claim is proved.

6.3 The Brouwer degree

Now we are in the position to define the degree of mapping for C1-maps (following
E. Heinz [He]).

Definition 6.3 Let G ⊂ Rn be a bounded open set and let

i) u ∈ C2(G;Rn) ∩ C0(Ḡ;Rn)

ii) Let z ∈ Rn such that

d := min
x∈∂G

‖u(x)− z‖ > 0

iii) Let f ∈ C0
c (Bd(0)) satisfy

(6.10)

∫

Bd(0)

f(y)dy = 1

Then the Brouwer degree d[u,G, z] is defined by

(6.11) d[u,G, z] :=

∫

G

f(u(x)− z) detn u′(x)dx.

Because of Theorem 6.2 this definition is independent of the choice of f ∈ C0
c (Bd(0))

enjoying property (6.10). We admit here slightly more general functions f than E.
Heinz [He] did in his famous paper. He considered radially depending functions
f(y) := φ(‖y‖) which in addition vanish in a neighborhood of zero.

If instead of u we consider v : Ḡ → Rn, v(x) := u(x)− z, then
d = min{‖v(x)‖

∣∣x ∈ ∂G} > 0 and we see immediately

(6.12) d[u,G, z] = d[u− z, G, 0].

One of the most important properties of the Brouwer degree is its homotopy invari-
ance. A first version we derive from our homotopy theorem (Theorem 2.4).
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Lemma 6.4 Let G ⊂ Rn be a bounded open set and let

i) ui ∈ C2(G;Rn) ∩ C0(Ḡ;Rn) (i = 1, 2)

ii) z ∈ Rn,

(6.13) min{‖u2(x)− z‖ : x ∈ ∂G} =: 2d > 0

and let

(6.14) ‖u1(x)− u2(x)‖ < d for x ∈ ∂G

Then

‖u1(x)− z‖ > d for x ∈ ∂G

and

(6.15) d[u1, G, z] = d[u2, G, z]

Proof. For t ∈ I := [0, 1] let

u(x, t) := tu1(x) + (1− t)u2(x)− z for x ∈ Ḡ.

Then u ∈ C2(G× I;Rn) and the derivatives with respect to x depend continuously
on t. Further, for (x, t) ∈ ∂G× I

‖u(x, t)‖ = ‖u2(x)− z + t(u1(x)− u2(x)‖ ≥
≥ ‖u2(x)− z‖ − ‖u1(x)− u2(x)‖ > d

Therefore, ‖u1(x) − z‖ = ‖u(x, 1)‖ > d. Let U := {y ∈ Rn
∣∣‖y‖ > d}. Then U is

open and u(∂G × I) ⊂ U . Let f ∈ C0
c (Bd(0)) satisfy (6.10) and let f be extended

by zero to Rn. By Theorem 2.4

d[u1, G, z] =

∫

G

f(u(x, 1)) detn u′(x, 1)dx =

=

∫

G

f(u(x, 0)) detn u′(x, 0)dx = d[u2, G, z].

Lemma 6.5 (Tietze’s extension theorem). Let C ⊂ Rn be a compact set and let
v : C → R be continuous. Then there exists a continuous V : Rn → R such that
V (x) = v(x) for x ∈ C.
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A method of proof, going back to M. Nagumo [Na] is presented in Heinz’ paper ([He],
Lemma 3, p. 236). Another very elegant proof can be found in Dunford-Schwartz
([Du/Sch], p. 15/16), compare also Rudin’s textbook [Ru], Theorem 20.4.

Lemma 6.6 Let G ⊂ Rn be a bounded open set and let u ∈ C0(Ḡ;Rn). Then there
exists a sequence (uk) ⊂ C∞(Rn;Rn) such that

uk

∣∣
Ḡ
→ u uniformly (k →∞).

Proof. For each component ui of u = (u1, . . . , un) we consider the continuous
extension Ui : Rn → R according Lemma 6.5. Let (%k) ⊂ R be a sequence such that
%k > 0, %k → 0. Then the mollifications

uik := Ui%k
, uk = (u1k, . . . , unk)

satisfy uk ∈ C∞(Rn;Rn) and uk

∣∣
Ḡ
→ u(k →∞) uniformly.

Let now G ⊂ Rn be open and bounded, let u ∈ C0(Ḡ× Rn) and let z ∈ Rn satisfy
u(x) 6= z for x ∈ ∂G. Then

3d := min
x∈∂G

‖u(x)− z‖ > 0.

Let (uk) ⊂ C∞(Rn;Rn) be chosen such that uk

∣∣
Ḡ
→ u (k →∞) uniformly (according

Lemma 6.6 such a sequence exists). Then there exists k0 ∈ N such that

‖u(x)− uk(x)‖ < d, ‖uk(x)− uj(x)‖ < d, ∀k, j ≥ k0 ∀x ∈ Ḡ

Hence

(6.16) ‖uk(x)− z‖ ≥ 2d ∀x ∈ ∂G, ∀k ≥ k0

For k ≥ k0 the degree d[uk, G, z] is well defined and by Lemma 6.4

d[uk, G, z] = d[uj, G, z] ∀k, j ≥ k0.

This consideration justifies.

Definition 6.7 Let G ⊂ Rn be a bounded open set, let u ∈ C0(Ḡ;Rn) and let z ∈ Rn

such that u(x) 6= z ∀x ∈ ∂G. Let (uk) ⊂ C∞(Rn;Rn) be any sequence such that

uk

∣∣
Ḡ
→ u (k →∞) uniformly in Ḡ.

Let k0 ∈ N be such that for k ≥ k0

min
x∈∂G

‖uk(x)− z‖ ≥ 2

3
min
x∈∂G

‖u(x)− z‖ > 0

Then the Brouwer degree d[u,G, z] is uniquely defined by

(6.17) d[u,G, z] = lim
k→∞
k≥k0

d[uk, G, z].
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We study now some properties of this degree.

Theorem 6.8 (domain additivity) Let Gi ⊂ Rn (i = 1, 2) be bounded open sets such
that G1 ∩G2 = φ. Let u ∈ C0(Ḡ1 ∪ Ḡ2;Rn) and let

z ∈ Rn, u(x) 6= z ∀x ∈ ∂G1 ∪ ∂G2.

Then

d[u,G1 ∪G2, z] = d[u,G1, z] + d[u,G2, z].

Proof. Let (uk) ⊂ C∞(Rn;Rn) be any approximating sequence for u in the sense
of Definition 6.7, then for k ≥ k0 by (6.11)

d[uk, G1 ∪G2, z] =

∫

G1∪G2

f(uk(x)− z) detn u′k(x)dx =

=

∫

G1

f(uk(x)− z) detn u′k(x)dx +

∫

G2

f(uk(x)− z) detn u′k(x)dx

= d[uk, G1, z] + d[uk, G2, z]

and the claim follows by Definition 6.7.

Theorem 6.9 (homotopy invariance). Let G ⊂ Rn be a bounded open set, let I :=
[0, 1] and let u ∈ C0(Ḡ×I;Rn). Assume that z ∈ Rn and u(x, t) 6= z ∀(x, t) ∈ ∂G×I.
Then

d[u(., t), G, z] = d[u(., 0), G; z] ∀t ∈ I.

Proof. Let

3d := min
{‖u(x, t)− z‖

∣∣(x, t) ∈ ∂G× I
}

> 0.

u being uniformly continuous in Ḡ× I, there is δ > 0 such that

‖u(x, t)− u(x, t′)‖ <
d

2
∀x ∈ Ḡ, ∀t, t′ ∈ I such that |t− t′| ≤ δ.

Let now t1, t2 ∈ I with |t1 − t2| ≤ δ. We choose sequences (uik)k∈N ⊂ C∞(Rn;Rn)
such that uik

∣∣
Ḡ
→ u(., ti) (k → ∞), i = 1, 2 uniformly. Then there is k0 ∈ N such

that

‖uik(x)− u(x, ti)‖ <
d

4
∀x ∈ Ḡ, i = 1, 2.

Then

‖uik(x)− z‖ ≥ 2d ∀x ∈ ∂G, i = 1, 2, ∀k ≥ k0

‖u1k(x)− u2k(x)‖ < d ∀x ∈ ∂G, ∀k ∈ N
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By Lemma 6.4

d[u1k, G, z] = d[u2k, G, z].

Passing to the limit k →∞ yields

d[u(., t1), G, z] = d[u(., t2), G, z]

Since t1, t2 ∈ I with |t1 − t2| ≤ δ had been arbitrary, the assertion follows.

As a corollary we derive

Theorem 6.10 Let G ⊂ Rn be a bounded open set and let u ∈ C0(Ḡ;Rn). Let

z0 ∈ Rn and u(x) 6= z0 ∀x ∈ ∂G

Then there exists an ε > 0 such that

u(x) 6= z ∀z ∈ Bε(z0), ∀x ∈ ∂G

and

(6.18) d[u; G, z] = d[u,G, z0] ∀z ∈ Bε(z0).

Proof. Let ε := 1
2

min
x∈∂G

‖u(x) − z0‖ > 0. For t ∈ [0, 1], z ∈ Bε(z0) and x ∈ Ḡ

we set u(x, t) := u(x) − t(z − z0). Then for x ∈ ∂G, t ∈ [0, 1] ‖u(x, t) − z0‖ =
‖u(x)− z0 − t(z − z0)‖ ≥ ε. By Theorem 6.9

d[u,G, z] = d[u(., 1), G, z0] = d[u(., 0), G, z0] = d[u,G, z0].

Theorem 6.11 Let G ⊂ Rn be a bounded open set and let u ∈ C0(Ḡ;Rn). Suppose
that z ∈ Rn, u(x) 6= z ∀x ∈ ∂G and d[u,G, z] 6= 0. Then there exists x0 ∈ G such
that u(x0) = z.

Proof. Let (uk) ⊂ C∞(Rn;Rn) be an approximating sequence for u in the sense of
Definition 6.7. If we assume u(x) 6= z for all x ∈ Ḡ, then

2d := min
x∈Ḡ

‖u(x)− z‖ > 0.

There is k0 ∈ N such that

‖uk(x)− z‖ ≥ d ∀x ∈ Ḡ, ∀k ≥ k0

Let now f ∈ C0
c (Bd(0)). Then

f(uk(x)− z) = 0 ∀x ∈ Ḡ, ∀k ≥ k0

and
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d[u, G, z] = lim
k≥k0
k→∞

d[uk, G, z] = lim
k→∞
k≥k0

∫

G

f(uk(x)− z) detn u′k(x)dx = 0,

a contradiction.

For all further properties of the degree we refer to [He].
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