Enumeration of generalized polyominoes

MATTHIAS KOCH andSASCHA KURZ
Department of Mathematics, University of Bayreuth
matthias.koch, sascha.kurz@uni-bayreuth.de
D-95440 Bayreuth, Germany

Submitted: May 5, 2006; Accepted: ??
Mathematics Subject Classification: 05B50

Abstract

As a generalization of polyominoes we consider edge-to-edge connected nonoverlapping
unions of regulark-gons. Forn < 4 we determine formulas for the numbeg(n) of
generalized polyominoes consistingrofegulark-gons. Additionally we give a table of

the numbersi;(n) for small &£ andn obtained by computer enumeration. We finish with
some open problems férpolyominoes.

1 Introduction

A polyomino, in its original definition, is a connected interior-disjoint union of axis-aligned unit
squares joined edge-to-edge. In other words, it is an edge-connected union of cells in the planar
square lattice. For the origin of polyominoes we quote Klarner [13]: “Polyominoes have a long
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Figure 1: Polyominoes with at most 5 squares.
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history, going back to the start of the 20th century, but they were popularized in the present era
initially by Solomon Golomb i.e. [5, 6, 7], then by Martin Gardner in Bisientific American
columns.” At the present time they are widely known by mathematicians, physicists, chemists
and have been considered in many different applications, i.e. itsthg Model[2]. To give

an illustration of polyominoes Figure 1 depicts the polyominoes consisting of at most 5 unit
squares.

One of the first problems for polyominoes was the determination of there number. Although
there has been some progress, a solution to this problem remains outstanding. In the literature
one sometimes speaks also of the cell-growth problem and uses the term animal instead of
polyomino.

Due to its wide area of applications polyominoes were soon generalized to the two other
tessellations of the plane, to the eight Archimedean tessellations [4] and were also considered
as unions ofi-dimensional hypercubes instead of squares. For the known numbers we refer to
the “Online Encyclopedia of Integer Sequences” [19].
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Figure 2: A niceb-polyomino.
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In this article we generalize concept of polyominoes to unions of regular nonoverlapping edge-
to-edge connectekl-gons. For short we call thedpolyominoes. An example of &polyo-

mino, which reminds somewhat to Penrose’s famous non-periodic tiling of the plane, is depicted
in Figure 2. In the next sections we determine exact formulas for the number of noniso-
morphic k-polyominoes withk < 4 and give some further values for small parameteend

n obtained by computer enumeration. So far edge-to-edge connected unions of kegorher

were only enumerated if overlapping of thegons is permitted [9]. We finish with some open
problems fork-polyominoes.

2 Formulas for the number of k-polyominoes

By ax(n) we denote the number of nonisomorplipolyominoes consisting of regulark-
gons as cells wherg,(n) = 0 for k < 3. For at most two cells we havg (1) = ax(2) = 1. If
n > 3 we characterize three edge-to-edge connectedcglls

P
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Figure 3: Angles = Z( Py, P, P;) between three neighbored cells.

C, andC; of a k-polyomino, see Figure 3, by the angle= Z( P, P,, P;) between the centers
of the cells. Since these angles are multipleég—roive call the minimum

. k k
min (Z(Pl, P, P3)2 ,(2m — Z(Py, Py, Ps)) 2—)

o ™
the discrete angle betweén, C,, andC; and denote it by (C;, Cs, Cs).

Lemma 1 Two k-gonsC; andCs joined via an edge to &-gonC, are nonoverlapping if
and only if§(Cy,Cs,C3) > {%J The threek-gons are neighbored pairwise if and only if
k = 0 mod6.

Proof. We consider Figure 3 and sgt = 6(01,(,’2,(,’3)27”. If the cellsC; and(Cs; are non-
overlapping we havé’, P; > P, P, because the lengths of the lin®sP, and P, P; are equal.

Thusg > %” ando(Cy,Cy,C3) > L%J is necessary. Now we consider the circumcircles of the
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cellsC; andCs, see Figure 4. Due t6 > %” only the circlesegments between poifts P5; and
FPs, P; may intersect. The last step is to check that the correspondingfjfésand P P; do
not intersect and they touch each other if and onlyi 0 mod6. O

Py, P v Fs Py

Figure 4: Nonoverlapping 12-gons.

Corollary 2 The number of neighbors of a cell inkapolyomino is at most

k
min | k, —— | <6.

ol

6

With the aid of Lemma 1 we are able to determine the numpg}) of k£-polyominoes consist-
ing of 3 cells.

Theorem 3
k+5

ag(3) = bJ — {TJ +1 fork>3.

Proof. It suffices to determine the possible values{@f;,Cs,C;3). Due to Lemma 1 we have
5(Cy,C2,C3) > | 55| and due to symmetry considerations we h&(@,C,,C3) < |5 . O

In order to determine the number bipolyominoes with more thas cells we describe the
classes of:-polyominoes by graphs. We represent eaafon by a vertex and join two vertices

exactly if they are connected via an edge.

] e 1

Figure 5: The possible graphs kfpolyominoes with! vertices.
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Lemma4 The number of-polyominoes with a graph isomorphic to one of the first three ones
in Figure 5 is given by

(k—3L%ﬁJ)2+6(k—3L%J)+12J
12 ’

Proof. We denote the cell corresponding to the unique vertex of degrethe graph by, and

the three other cells by, Cs, andCs. With 6, = 6(Cy,Co,Co) — |22, 65 = 0(Co,Co,C3) —

|52, andds = 6(C5,Co,C1) — | 552 | we setm = 6, + 6, + 63 = k — 3 | 22| Because the
k-polyominoes with a graph isomorphic to one of the first three ones in Figure 5 are uniquely
described by, -, 43, due to Lemma 1 and due to symmetry their number equals the number
of partitions ofm into at most three parts. This number is the coefficient’dfin the Taylor

series of(lfx)(k;)(lfﬁ) inz = 0 and can be expressed F@Q?SHHJ _ 0

pNC el

Figure 6: Paths of lengttsrepresenting chains of four neighbored cells.

In Lemma 1 we have given a condition for a chain of three neighbored cells avoiding an over-
lapping. For a chain of four neighbored cells we have to consider the two cases of Figure 6. In
the second case the two vertices of degree one are not able to overlap so we need a lemma in
the spirit of Lemma 1 only for the first case.

Lemma5 Fourk-gonsCy, Cs, C3, andC, arranged as in the first case of Figure 6 are nonover-
lapping if and only if Lemma 1 is fulfilled for the two subchains of lersghimd

k+1
5(C1,Ca,Cs) + 6(CaCy. Ca) = {%J |

The chain is indeed &-cycle if and only if
5(C1. o, Cs) +6(Ca. €1, C1) = &
Proof. We start with the second statement and consider the quadrangle of the centers of the
cells. Because the angle sum of a quadrangle iwe have
d(C1,Cq,C3) + 6(Ca,C3,Cyq) + d(C3,C4,Cy) + 0(Cq,C1,Co) = k.
Due to the fact that the side lengths of the quadrangle are equal we have
d(C1,Cs,C3) + 6(Ca,C3,Cy) = 0(C3,Cy,C1) + 9(Cy,C1,Co)

which is equivalent to the statement.
Thus§(Cy,Ca,Cs) 4 6(Ca,C5,Cq) > | %] is a necessary condition. Similar to the proof
of Lemma 1 we consider the circumcircles of the céllsC, and check that the cells do not

intersect. O
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Lemma 6 For k > 3 the number of-polyominoes with a graph isomorphic to one of the last

two ones in Figure 5 is given by

9 2 _
AR (o k= omodiz,  E ORI modio,
48 48
9 2
%%SQICML for k=2 m0d12, W for k=3 m0d12,
9 2
WAk 432 o modi2, 2 2R ) — Smodia,
48 48
9 _ 2
5k+8k12 for k = 6m0d12, % for k= 7m0d12,
9 1 1 2 14k —
5k + 421{: 16 k= smodi, W for k = 9modi2,
2 2 2 2 22 1
bk~ + 4(;k +20 for k= 10mod12, ok + 48k Lt for k=11 modi12.

Proof. Because each of the last two graphs in Figure 5 contains a path of kagth subgraph
we consider the two cases of Figure 6. We denote the two interesting discrete anglesdy

d». Due to symmetry we may assume< ¢, and because the graphs do not contain a triangle
we haves, > ¢, > |%:%| due to Lemma 1. From the definition of the discrete angle we have
6 < 85 < |%]. To avoid double counting we assurpet® | < §; < 6, < |%1] in the second
case, so that we get a number of

(1= )

k-polyominoes. With Lemma 5 and a look at the possible symmetries the numbeyadyo-
minoes in the first case is given by

1%] 1£]
Z Z 1.

S1=| B8 | p=max(dy, | 25 | -o1)
A little calculation yields the proposed formulas.

Theorem 7 For £ > 3 we have

( 3k2+284k+24 for k=0 mod12, % for k=1 modl2,
SAS—A for k=2mod12, kIS for [ =3 mod12,

0 (4) = —3’“2;;3’““6 for k=4 mod12, % for k=5 modl2,
S ABEE2  for k=6 modl12, =T for k=7 modl2,

LSS for k=8 modl12, kLS for k=9 mod12,

| WHUEHIS for k=10 mod12, I3 for k=11 mod12.

Proof. The list of graphs in Figure 5 is complete because the graphs have to be connected and
the complete graph ofivertices is not a unit distance graph. Adding the formulas from Lemma
4 and Lemma 6 yields the theorem. O
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3 Computer enumeration ofk-polyominoes

Forn > 5 we have constructektl-polyominoes with the aid of a computer and have obtained
the following values ofy;(n) given in Table 1 and Table 2.

W 5 6 7 8 9 10 11 12 13
3 4 12 24 66 160 448 1186 3334 9235
412 35 108 369 1285 4655 17073 63600 238591
525 118 551 2812 14445 76092 403976 2167116 11698961
6 22 82 333 1448 6572 30490 143552 683101 3274826
7 25 118 558 2876 14982 80075 431889 2354991 12930257
8 50 269 1605 10102 65323 430302 2868320 19299334 130807068
9 82 585 4418 34833 280014 2285047 18838395 15664452A311575691
10127 985 8350 73675 664411 6078768 5619875952392438@918127659

11186 1750 17501 181127 1908239 20376032 219770162390025622
12168 1438 13512 131801 1314914 133035238 136035511402844804
13187 1769 1777% 185297 1968684 21208739 230877322534857846
14263 2718 30467 35237% 4158216 49734308 60109466(7326566494
15362 4336 55264 725869 9707046131517548 800038803
16472 6040 8325211805261 70547024959872[8690421289
17613 88141344222104488352202%540742898810416620
18566 76781125141694978601973%104616118
19615 883913517%2123088394290b49711709
207761187619512232914816653785083715865

Table 1: Number of-polyominoes withn cells for smallk andn.

Now we go into more detail how the computer enumeration was done. At first we have to
represent;-polyominoes by a suitable data structure. As in Lemmakipolyomino can be
described by the set of all discrete angles between three neighbored cells. By fixing one direc-
tion we can define the discrete angle between this direction and two neighbored cells and so
describe &-polyomino by am x n-matrix with integer entries. Due to Corollary 2 we can also
describe it as & x n-matrix by listing only the neighbors. To deal with symmetry we define a
canonical form for these matrices.

Our general construction strategy is orderly generation [18], where we use a variant intro-
duced in [15, 17]. Here &-polyomino consisting of. cells is constructed by glueing two
k-polyominoes consisting af — 1 cells havingn — 2 cells in common. There are two ad-
vantages of this approach. Inkapolyomino each two cells must be nonoverlapping. If we
would add a cell in each generation step we would have to cheel pairs of cells whether
they are nonoverlapping or not. By glueing twepolyominoes we only need to perform one
such check. To demonstrate the second advantage we compare in Table 3 the ry(mbkeys
andcs(n, k) of candidates produced by the original version and the used variant via glueing of
orderly generation.

To avoid numerical twists in the overlapping check we utilizél@rer bases [1].
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E\n

5

6

7

8

k\n 5

6

7

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

972
1179
1437
1347
1439
1711
2045
2376
2786
2641
2790
3204
3706
4193
4789

16410
20970
27720
24998
27787
34763
44687
54133
67601
62252
67777
81066
99420
116465
140075

294091
397852
566007
495773
568602
751172
1031920
1307384
1729686
1557663
1737915
2169846
2808616
3413064
4306774

5402087
7739008
11832175
10079003
11917261
16624712
24389611
32317393
45260884
39891448
45587429
59424885
81124890
102292464
135337752

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

4575
4796
5380
6089
6760
7578
7282
7584
8373
9321
10207
11282
10890
11290
12309

130711
140434
163027
193587
221521
259396
244564
259838
295558
342841
385546
442543
420154
443178
495988

3943836
4326289
5204536
6464267
7634297
9311913
8643473
9341040
10958872
13215115
15274792
18169170
17012270
18217475
20944951

Table 2: Number of:-polyominoes withn cells for smallk andn.

41 5

6

7

8

9

10

11

5
21
19

29
74
62

118
242
197

551
1038
8146

2812
4474
3541

14445
21944
17297

76092
111233
87336

403976
58013¢
45221%

5
31

29
107
62

118
356
196

558
153¢
821

2874
6682
3584

33057

)
)
4
14982
4
17778

?
4
)
80075
168881

)

9110¢

43188¢
88972]
479814

23
126

187
721

>
)
>
)
|
1
1769 1777% 185297 1968684 21208739 230877323
5059 43842 420958 4294445 45258582 485481211
76 408 2697 23412 223789 2274489 23849241 254712159
48 614 8814134422210448%8352202 0
2552039220389288743116816660052 3
17112611296417383%¥545538900800

3540742895881041662
3057440378704370152
5 614066925982891785Q

)
)
)
)
)
)| 19
)
)
)
)
)
)

Table 3: Number of candidates(n, k) andcy(n, k) for k-polyominoes with cells.

4 Open problems fork-polyominoes
For 4-polyominoes the maximum area of the convex hull was considered in [3]. If the area of

a cell is normalized td then the maximum area of4&polyomino consisting ofi squares is
given byn + % {"T’lj L%J The second author has proven an analogous result for the maximum
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content of the convex hull of a union dfdimensional units hypercubes [14], which is given by

S =]

IC{1,....d}

for n hypercubes. For other values/othe question for the maximum area of the convex hull
of k-polyominoes is still open. Besides from [11] no results are known for the question of the
minimum area of the convex hull, which is non trivial forZ 3, 4.

Another class of problems is the question for the minimum and the maximum number of
edges ofk-polyominoes. The following sharp inequalities for the numbeaf edges ofk-
polyominoes consisting of cells were found in [8] and are also given in [10].

1
k=3: n+[§<n+\/6n>-‘§q§2n+l
k=4: 2n+ [2v/n] <q¢<3n+1

k=6: 3n—[V12n—3] <g<5n+1

In general the maximum number of edges is given(by- 1)n + 1. The numbers ofi-
polyominoes with a minimum number of edges were enumerated in [16].

Since fork # 3,4, 6 regulark-gons do not tile the plane the question about the maximum
densityd (k) of an edge-to-edge connected packing of regkdgons arises. In [12]

3vV5—5
2

5(5) = ~ 0.8541

is conjectured.
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